A ;
V) (NANCES 1/

82

Efficient and Dynamic Atmospheric Scattering

Master of Science Thesis in Computer Science — Algorithms, Languages and
Logic

GUSTAV BODARE
EDVARD SANDBERG

Chalmers University of Technology

University of Gothenburg

Department of Computer Science and Engineering
Goteborg, Sweden, June 2014

The Author grants to Chalmers University of Technology and University of Gothenburg
the non-exclusive right to publish the Work electronically and in a non-commercial
purpose make it accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the Work
does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a
publisher or a company), acknowledge the third party about this agreement. If the Author
has signed a copyright agreement with a third party regarding the Work, the Author
warrants hereby that he/she has obtained any necessary permission from this third party to
let Chalmers University of Technology and University of Gothenburg store the Work
electronically and make it accessible on the Internet.

Efficient and Dynamic Atmospheric Scattering

Gustav Bodare
Edvard Sandberg

© Gustav Bodare, June 2014.
© Edvard Sandberg, June 2014.

Examiner: Ulf Assarsson

Chalmers University of Technology

University of Gothenburg

Department of Computer Science and Engineering
SE-412 96 Goteborg

Sweden

Telephone + 46 (0)31-772 1000

Cover: A rendered image displaying the sky and aerial perspective as viewed from the
ground.

Department of Computer Science and Engineering
Goteborg, Sweden June 2014

Abstract

This thesis explores the physical background of atmospheric light scat-
tering, as well as the modeling and implementation of a physically based
sky rendering system. We build upon existing state of the art research
to develop a fast and memory-efficient technique, viable for use in AAA
games. Our mathematical model extends previous work by including the
contribution of ozone, an important addition for a realistic sky. A new
method used for the calculations of aerial perspective is suggested to pro-
vide higher quality. By utilizing the high parallelizability of the GPU, we
show how precomputed scattering tables can be updated dynamically to
provide transitions between atmospheric weather conditions with minimal
impact on real time performance.

Acknowledgements

We would like to thank everyone at Ghost Games for making us feel
welcome, and for giving us the opportunity to work alongside such
talent. We would especially like to thank our supervisor Andreas
Brinck, Sr Software Engineer at Ghost Games, for his continuous
support and help throughout the thesis work.

Mikael Uddholm, Rendering Engineer at DICE, for providing guid-
ance and help with integrating the module into the existing engine,
and for giving us the opportunity to visit and experience DICE.

Fabien Christin, Lighting Artist at DICE, for testing and providing
much appreciated artistic feedback.

Erik Sintorn, our supervisor at Chalmers, for helping with various
problems and solutions, and for proof reading our report.

Finally, we want to thank Ulf Assarsson, Head of Research at the
Chalmers Graphics Department, for inspiring us to pursue a career
within the most interesting area of work there is.

CONTENTS

CONTENTS

Contents

Contents

1 Introduction

1.1 Motivation
1.2 Problem Statement
1.3 Our work

2 Previous Work

3 Atmospheric Scattering

3.1 Physical Basis
3.2 Mathematical Model
Introduction
Scattering Coefficients
Phase Functions
Density Function
Transmittance
Single Scattering
Multiple Scattering

3.2.1
3.2.2
3.2.3
3.24
3.2.5
3.2.6
3.2.7

4 Precomputing Scattering

4.1 Overview
4.2 Texture Parametrization

4.2.1

4.7.1
4.7.2
4.7.3
4.74
4.7.5

Precomputing on the GPU

Transmittance
Precomputing Gathering
Dropping half the LUT
Approximating Mie

5 Dynamic Atmospheric Conditions

5.1 Theory
5.2 Implementation

Height Parametrization
4.2.2 View Angle Parametrization
4.2.3 Sun Angle Parametrization

4.3 Inverse Parametrization

4.4 Transmittance

4.5 Single Scattering

4.6 Multiple Scattering

4.7 Optimization

CONTENTS CONTENTS

6 Rendering 29
6.1 Overview 29
6.2 Rendering the Sky Lo oL 29
6.3 Ground Lighting 30
6.4 Aerial Perspectiveo 31

6.4.1 Previous Method 32
6.4.2 OQOur Method 34

7 Results 36
7.1 Textures i i i e e 36
7.2 Precomputation and Rendering Performance 37
73 Visual Results. 38
7.4 Validation o o 41

8 Discussion and Conclusion 43

9 Future Work 44

References 45

A Appendix 46
A1 System Overview o 46
A.2 Additonal Visual Results 47

1 INTRODUCTION

1 Introduction

Atmospheric scattering contributes to many everyday phenomena that we ex-
perience. It is the reason the sky is blue at noon and red at sunset. It is also
the reason why an object far in the distance appears to have lost a portion of its
original color and adopted the color of the sky. In short, atmospheric scattering
describes what happens with sunlight when it enters the atmosphere.

With this thesis, we intend to continue the work of researchers within the
field of atmospheric scattering for computer graphics.

1.1 Motivation

While many older sky and haze rendering techniques involve sky cubes and a
simple depth-dependant color modifier, it is difficult to create realistic environ-
ments and dynamic time of day transitions using these approaches. Instead, we
aim to provide a way of calculating what is actually happening with the light
emitted by the sun when it enters the atmosphere of a planet.

This topic has been the subject of study for graphics researchers in the past.
However, we believe that there is still room for improvement, not only when it
comes to quality, but also in terms of performance. We intend to utilize modern
computation techniques, such as compute shaders, to develop a dynamic sky and
haze rendering module that provides accurate results in real time, on current
generation hardware, while remaining memory efficient.

The module will primarily be targeting current generation gaming consoles
and PCs of equivalent hardware, utilizing the strengths of DirectX 11.

1.2 Problem Statement

The purpose of our research is to build upon previous state of the art work on
the topic of atmospheric scattering, improving both the quality and the perfor-
mance, to allow use in AAA games. We want to investigate the possibility of
providing dynamic weather transitions, while maintaining the high quality pro-
vided by previous research. Furthermore, although the visual results of previous
research are already of high quality, we would like to investigate how the quality
and realism can be improved even further without sacrificing computation time.

1.3 Our work

In this thesis, we suggest implementation changes and optimizations made to
provide dynamic weather transitions; something previous implementations of
precomputed atmospheric scattering tables have not supported.

We also provide a higher quality approach of calculating aerial perspective,
utilizing a flexible method that could be extended to include scattering in ad-
ditional types of participating media - such as local fog, clouds and water.

In addition, the often ignored but important presence of ozone in the atmo-
sphere is explicitly included in our model.

2 PREVIOUS WORK

2 Previous Work

Over the years, a number of different approaches have been used to solve the
problem of atmospheric scattering in computer graphics. This section aims to
summerize and compare the numerous previous attempts at solving the problem.

Nishita et al present a model in [NSTN93], that has since been the basis
for most computer graphic research, on the topic of atmospheric scattering.
By utilizing assumptions that the earth is perfectly spherical and that rays
of sunlight can be treated as parallel, they suggest the use of precomputed
scattering look-up tables.

In [PSS99|, Preetham et al. suggest calculating skylight by numerically
solving the scattering integrals for different sun positions and mapping approxi-
mative functions to the data. Preetham et al. also suggests an analytic solution
to aerial perspective, through various assumptions - such as the earth being a
flat surface.

In [O’NO5], Sean O’Neil presents a real time approximation of the work by
Nishita et al. by analyzing the results from parts of the scattering equations,
and creating approximative functions.

In [SFEOQ7], Schafhitzel et al. present an approach of precomputing single
scattering into a 3D table, parametrized by height, view angle, and sun angle.
They also present an approach towards solving aerial perspective, utilizing the
same look up tables.

In [BNOS8], Bruneton and Neyret present an extension to the work by Shathitzel
et al., using four dimensions instead of three for their look-up tables, including
the sun-view azimuth in addition to height, view angle and sun angle. Brune-
ton and Neyret also extends the previous work by including multiple scattering,
shadowed scattering, and improved look-up table parametrization.

In [ELE09], Oskar Elek presents an approach much similar to the one by
Schafhitzel et al. Through partially adopting the parametrization by Bruneton
and Neyret, while still using a 3D table, Elek produces a quick and memory
efficient solution. Elek takes various actions to make up for the lack of a fourth
dimension in his precomputed tables, such as deferring the phase functions to
the fragment shader and deriving an ad hoc Rayleigh phase function that aims
to emulate the earth’s shadow on the atmosphere.

In [YUS14], Egor Yusov presents an extension to the work by Bruneton and
Neyret, further improving look-up table parametrization. Additionally, Yusov
suggests calculating the scattering in epipolar space.

3 ATMOSPHERIC SCATTERING

3 Atmospheric Scattering

3.1 Physical Basis

This section describes the physical background for how light behaves in an earth-
like planetary atmosphere. Like many other graphics applications we assume a
clear sky, ignoring light scattering in clouds.

The earth’s atmosphere consists of a mixture of many different compounds.
Generally these can be divided into two main types - gas and aerosol. Gas
refers to air molecules, whereas aerosol consists of larger liquid or solid particles
suspended in the gas, such as water droplets, dust, or ice crystals. Considering
these compounds are vital, as they directly affect how light behaves in the
atmosphere. As a light ray from the sun hits a gas molecule or aerosol particle, a
portion of light will deviate from its original path. This is called light scattering,
and is the very reason the atmosphere appears colored and enlightened from
directions other than the source of light.

Light scattering behaves differently for gas molecules and aerosol particles,
allowing us to recognize two types of scattering - Rayleigh and Mie. Rayleigh
scattering occurs on gas molecules, or more specifically, on particles fulfilling
the following criterion:

i< (1)
2

where d is the diameter of the particle and A is the wavelength of the in-
coming light [ELEQ9]. As the diameter of the particle grows larger than the
wavelength, the scattering smoothly transitions to Mie scattering.

The behavioral difference of Rayleigh and Mie scattering is mainly that the
amount of Rayleigh-scattered light depends largely on the wavelength of the
incoming light, whereas Mie scattering has a very weak dependence on wave-
length. While some CG applications include the wavelength dependency for
Mie scattering, many choose to ignore it for simplicity. For Rayleigh scattering,
light with shorter wavelength has a tendency to scatter more frequently, gen-
erating the blue color of a clear mid-day sky. The orange-red twilight sky can
be explained by light passing close to the horizon traveling a greater distance
through the atmosphere, making most of the blue light scatter away, while the
red light still makes it through.

For a realistic simulation of the earth’s atmosphere it is also important to
consider the effect of ozone. Even tough ozone does not contribute to scattering,
it absorbs a fraction of the incoming light. Furthermore, it is dependent on
wavelength, which means it will affect the color of the light that passes through
it. Although contribution of ozone is usually ignored in computer graphics sky
models, its presence is responsible for an important visual enhancement to our
model (see Section 7.3, Figure 20).

When discussing light scattering models, the terms single and multiple scat-
tering are often present. Single scattering depicts the situation where one and
only one scattering event has taken place before the light reaches the eye, and

3.2 Mathematical Model 3 ATMOSPHERIC SCATTERING

accordingly multiple scattering means that the light has scattered several times,
and possibly undergone both Rayleigh and Mie scattering.

We also need to introduce the term aerial perspective, also commonly known
as haze or distance fog. This phenomena is most noticeable on far away objects
which seem to fade away and accumulate a blueish hue the further from the
observer they appear. Aerial perspective is very important to consider, as its
absence will make objects appear disjoint from the scene, and it allows the
observer to better appreciate distance. The reason for the aerial perspective is
exactly the same as the reason for the color of the sky. At each point between
the observer and the object, light will scatter into the viewing ray, and generate
the blue hue. Furthermore, the light from the light source bouncing off the
object, creating the original color, will be attenuated whilst traveling towards
the observer.

3.2 Mathematical Model

In this chapter, we describe the mathematical model used to calculate the scat-
tering in our system. Such a model can be very complex, especially when taking
multiple scattering into account. Thus, certain approximations must be used in
order to produce model feasible for use in a computer application. The model
is the result of the work initially done by Nishita et al. [NSTN93] and further
extended by Oskar Elek to include multiple scattering [ELE09]. We extend this
model to include ozone and its contribution to atmospheric scattering.

3.2.1 Introduction

The intensity of light that has undergone scattering in a certain point p, towards
a direction v, with an incident light direction I, can be described by the following
equation:

Is(p, 0,0, \) = i () (pR<h>FR<9> Prld) | pM<h>FM<o>mjff)) @)

where I is the intensity of the incident light, p(h) is the density function
for height h, above the earth surface, of point p, F'() is the phase function for
the angle 6 between v and 1, and B()) is the scattering coefficient.

3.2 Mathematical Model 3 ATMOSPHERIC SCATTERING

v

Figure 1: Light traveling in direction I, scattering towards direction v in point
p-

Throughout this chapter, we will further describe the necessary equations
and constants. Please refer to Table 1 for used notation.

’ Notation \ Description
I; Intensity of incident light
Is Intensity of scattered light
Br.M Rayleigh/Mie scattering coefficient
B% mr Ryaleigh /Mie extinction coefficient
From Rayleigh/Mie phase function
PR.M Rayleigh /Mie density function
T Transmittance function
I SR) o Intensity of Rayleigh/Mie single scattered light
GE?M Gathered Rayleigh/Mie light intensity of order k
1 g;) u Intensity of Rayleigh/Mie scattered light of order k

Table 1: Mathematical model notations.

3.2.2 Scattering Coefficients

For all points at sea level, the Rayleigh and Mie scattering coefficients combined
with their respective phase function (see Section 3.2.3) describe the proportion
of incident light scattered in a certain direction. In our model, the Rayleigh
scattering coefficient depends on the density of air molecules and the wave-
length of the incident light, while the Mie scattering coefficient only depends on
density of aerosol, and not the wavelength. Some models include dependency
on wavelength for Mie scattering as well, although the dependency is then much
weaker than for Rayleigh[PSS99].
The Rayleigh scattering coefficient is defined as follows:

3.2 Mathematical Model 3 ATMOSPHERIC SCATTERING

(n? —1)?

Br(A) = 873W (3)

Where n is the refractive index of air (~ 1.0003), N, (molecules - m™3) is
the molecular density of air at sea level, A is the wavelength (m) of the incident
light. As default settings in our system we use (6.5e—7,5.1e—7,4.75¢—7) for
the wavelengths of RGB, 2.545¢25 for N,, resulting in a scattering coefficient of
BRres = (6.55e—6,1.73e—5,2.30e—5).

The Mie scattering coefficient is a bit more complex to calculate. Other mod-
els either base it on measured data or approximate it with a formula [PSS99].
The default Mie scattering coefficient in our implementation is, as in Brune-
ton and Neyret’s implementation|BNO8|, B, = (26 —6,2e—6,2e—6). Note
that the values are identical for all three wavelength, due to the Mie scattering
coefficient being independent of wavelength.

3.2.3 Phase Functions

The phase functions for Rayleigh and Mie represent the angular dependency of
the scattering coefficients. They are parametrized by 6, which denotes the angle
between the direction of the incident light and the direction of the scattered
light. The Rayleigh phase function has an almost uniform distribution, while
the Mie phase function generally has a strong forward lobe.

The Rayleigh phase function is described by:

Fr() = %(1 + cos?(6)) (4)

The Mie phase function is much more complex than the Rayleigh phase
function, as the distribution varies heavily depending on the size of the par-
ticles. However, Cornette and Shanks[CS92] suggest an improvement of the
Henyey-Greenstein function, allowing approximation of the mie phase function
for particles with a diameter larger than the wavelength of the light:

31-g) (1)
FM(G,Q) - 2<2 +92> (1 +g2 o 29(:052(9))3/2 (5)

where g € [—1,1] is an asymmetry factor depicting the width of the forward
lobe of Mie scattering.

3.2.4 Density Function

With the previous two functions, we are able to calculate scattering for a single
point at sea level. The density function scales the scattering coefficients to an
arbitrary height, by representing the change in molecular and aerosol density.
We make the assumption that the molecular density decreases with an expo-
nential rate with respect to the height above the earth surface, and define the
density function as follows:

10

3.2 Mathematical Model 3 ATMOSPHERIC SCATTERING

h
e e ©
where h is the height above sea level, Hr ~ 8000m and Hj; ~ 1200m are
the Rayleigh and Mie scale heights, i.e. the thickness of the atmosphere if the
molecules and aerosol were uniformly distributed.
By combining the density function with scattering coefficients and phase
functions we can now solve equation (2).

3.2.5 Transmittance

We have now defined the amount of light scattered in a certain direction, but we
also need to represent how this light is attenuated. A fraction of the light trav-
eling along a certain path through a participating media such as the atmosphere
will outscatter, or be absorbed by aerosol. The transmittance function describes
the attenuation of light between two points pa, pp inside the atmosphere:

Pb

T(papo V) = exp (= 3 620 [pras(hip)dp (7)
i€R,M e

where h(p) is the height above the earth surface in point p, and 8%), is
the respective extinction coefficients for Rayleigh and Mie. Since molecules
only outscatter light, 5% = Sr. However, as aerosol particles both scatter and
absorb light, 8%, = Bu + 8%, where 4, is an absorption coefficient. In our
system, we use 3§, = % as suggested by Bruneton and Neyret[BN08]. Note
that special care has to be taken for cases where the path between p, and pp

intersects the earth, in which case the light is completely attenuated.

O

~__ absorption

outscattering Tk ..
. Py
)

i

Figure 2: Transmittance from p, to pp.

While this is generally sufficient to produce a realistic looking sky, it does
not take the effects of ozone into account. However, it has been shown by Peter
Kutz [PK13] that the addition of ozone to the model produces more realistic
skies, especially for sunset and sunrise (see Section 7.3, Figure 20).

11

3.2 Mathematical Model 3 ATMOSPHERIC SCATTERING

Ozone does not scatter light, but absorbs a fraction depending on wavelength
of the incoming light. This means that ozone only needs to be accounted for in
the transmittance equation:

Pb
T(papn N =exp (= Y 50 [prao(be)ip (8)
i€R,M,0 Pa

where g is the ozone extinction coefficient, and the ozone density function
po = 6e—7* pr. While ozone, in reality, does not decrease exponentially with
altitude - the mentioned equation for po approximates the density by using the
average overall concentration of ozone relative to air molecules [NASAO09].

As shown by Kutz, 8§ can be acquired using values from Figure 3.

-16
10 — K193
10774 ——DOAS o
10-13 Dobson phhin
) Brewer K233
3 1074 —— SAGEIl —— K243
@ 420 SBUV — K253
5 107+
N"E‘ 10-211
5 107,
- -23
5 1071
B 107
o 10%
w -
S 1075
o .
10% l
10-23 I

200 300 400 500 600 700 800 900 1000 1100
wavelength, nm

Figure 3: Ozone absorption cross section for different wavelengths|[UBR].

Note that the cross section values of Figure 3 are in em? /molecule, and other
values of our model are in m. Thus, all that is required to convert these values
into absorption coefficient is to simply scale the values into m?/molecule.

3.2.6 Single Scattering

We now have everything we need to compute the intensity of light scattering
towards, and reaching, an observer. To evaluate single scattering - light that
has undergone one and only one scattering event before reaching the observer -
we define the following equation:

12

3.2 Mathematical Model 3 ATMOSPHERIC SCATTERING

%W(A)/PR»M(h(p))T(pc,p,A)T(p,pa,A)dp

Pa
(9)
where pa is the point where a ray from the observer position, po, enters the
atmosphere in the viewing direction, ppis the point where the same ray exits
the atmosphere or intersects the ground. pc is the point where the incident
light enters the atmosphere before reaching point p, the point at which light
scatters into the viewing ray. v is the direction from point p to point pa, i.e.
the inverse viewing direction, and [is the incident light direction from the light
source. Note that if the observer is situated inside the atmosphere, p, = po-
Worth mentioning is that the incident light direction I is in fact slightly
different between p, and all the other points along the ray. However, due to
the vast distance to the sun, we make the assumption that all light rays can be
treated as parallel.

O LY

I,(SIR?)M(povvvh >\) = II(A)FR,M(G)

1O(p,.v.L.0)

~— >
\po

Figure 4: Single scattering towards po between p, and pp.

To acquire the total intesntiy of the light scattered into direction v and
reaching the observer, we simply sum the results of Rayleigh and Mie single
scattering.

I5) + Ig), = 1§ (10)

R

3.2.7 Multiple Scattering

The most straightforward solution to computing multiple scattering would be to
obtain the higher scattering orders through nested recursive multidimensional
integrals, which would be very slow. Instead, we will make use of data from pre-
viously calculated scattering orders, allowing us to use an iterative algorithm

13

3.2 Mathematical Model 3 ATMOSPHERIC SCATTERING

rather than the aforementioned recursive method. We define a function express-
ing the amount of light of scattering order k£ reaching a certain point p, and
scattering in direction wv:

G, (0w, 1, 2) = / Frar(0)T8, (p,w, 1, A)de (11)
4

where 6 is the angle between v and —w.

For example, the gathering function for order one would be to integrate
single scattering over all directions and apply the phase function. Thus, the
gathering function of order k expresses the light gathered in point p, where the
light has undergone exactly k scattering events.

Figure 5: Light of order k& scattering towards v.

Using the gathering function, we can express the intensity of light reaching
the observer of scattering order k. We define the function for light of order &
reaching the observer as follows:

Pb
Brar(A B
1) (0o, 0,0,0) = PO [G (01 X) o s ()T (b, s Nl
pa

(12)

14

3.2 Mathematical Model 3 ATMOSPHERIC SCATTERING

-

3 19(p,v.L0)

Wil
.,
. H
. . . .
Wb o B
RN RN
> =% >
PeTi ol e ~ >
'l \‘ - 'l \‘ .
SN SN
Py SN P SN Pa=Po

Figure 6: Light of order k scattering towards p, between p, and pp.

Again, when the observer is situated inside the atmosphere p, = po. As
with single scattering, the total intensity is acquired by summing Rayleigh and
Mie.

k k k
I$) = Ig) + I3, (13)

Finally, to calculate all light reaching the observer after K scattering orders,
all we need to do is sum the results from single scattering and each higher order
scattering.

K
Is=>"1Y (14)
=1

15

4 PRECOMPUTING SCATTERING

4 Precomputing Scattering

In this chapter, we aim to describe how the mathematical model can be utilized
to compute and store atmospheric scattering reaching the observer in a way
that is efficient and feasible to implement in computer software. We show a
procedural way of creating scattering look-up tables, represented as textures,
and how this procedure can be optimized.

4.1 Overview

Providing scattering information for every observer position plx,y, 2], every
view direction v[z,y, z] and every light source direction [z, y, z] would require
a look-up table with nine dimensions. This would not only cause the texture to
become huge, but would also require an infeasible amount of time to compute
the scattering.

In order to reduce the problem into a more viable one, we adopt the assump-
tions made by Bruneton and Neyret[BNO§];

1. The planet can be treated as perfectly spherical.

2. The density of particles in the air change only with height, and does not
depend on geographical location.

3. All light that reaches the atmosphere can be treated as parallel, due to
the vast distance between the earth and the sun.

By making these assumptions, the problem is reduced to four degrees of free-
dom; the height, the sun-zenith angle, the view-zenith angle and the sun-view
azimuth angle. Elek[ELE09] suggests the removal of the sun-view azimuth, fur-
ther reducing the problem to only three degrees of freedom, by making the
assumption that we can model the azimuth dependent difference in hue using a
modified Rayleigh phase function:

8 (7 1
Fr(0) = 10 (5 + 5 cos(@)) (15)

The motivation behind this decision is that the sun-view azimuth mainly
contributes to the earth’s shadowing of the atmosphere, a phenomena barely
visible due to multiple scattering and often hidden by terrain. This will also
cause the sky to appear identical for all horizontal viewing angles, but deferring
the evaluation of the phase functions to the pixel shader solves this. The deferral
of the phase functions also removes artifacts that would otherwise appear as
blockiness in the Mie scattering around the sun.

By reducing our look-up tables to three dimensions, both the texture sizes
and the time required to precompute the scattering tables are greatly reduced.
Figure 7 elucidates the three parameters used for our look-up tables; height,
view-zenith angle and sun-zenith angle.

16

4.2 Texture Parametrization 4 PRECOMPUTING SCATTERING

Hym

Figure 7: Precomputation parameters, sun-zenith angle 65, view-zenith angle
0., and the height h.

4.2 Texture Parametrization

In order to fetch values from our 3D textures, we need a way of translating
the sun angle, view angle and height into the range [0,1]. For this purpose, a
function of the form

f:(he0,Hum)], 0, € [0,7],05 € [0,7]) = (upn € [0,1],u, € [0,1],us € [0,1])

is required to map our values into texture coordinates. The most straightfor-
ward implementation of such a function would be to use a linear parametrization:

h
® Uh T Harm
o Uy, = cos(02,,)+l
o u, — cos(6s)+1

2

While this is sufficient if the texture resolution is large enough, Bruneton and
Neyret [BNO8] shows that better precision can be achieved, even with a smaller
texture, by improving the parametrization. As the sky differs mostly in hue at
view angles near the horizon, the parametrization must provide higher precision
in these regions. The atmosphere is also denser near the ground, and the density
then decreases with height, meaning that the height parametrization must focus
low heights. Furthermore, it is unnecessary to fill the textures with data where
the scattering is occluded by the earth and does not reach the observer. The
remapping functions suggested by Bruneton and Neyret have since been further
improved by Yusov [YUS14].

In the following sections we use the notation ¢, = cos(6s) and ¢, = cos(6,).

4.2.1 Height Parametrization

Because the density of the atmosphere exponentially decreases with altitude, the
difference in sky color is largest at low altitudes. This means that the height

17

4.2 Texture Parametrization 4 PRECOMPUTING SCATTERING

parametrization should be focusing these low altitudes. This is achieved by

using the following function:
PN
up = 16
h (HAtm > ()

091

081

06

051

041

0.3F

0.2

0.1F

L L L L 1l
30000 40000 50000 60000 70000 80000

h

L L
0 10000 20000

Figure 8: Height parametrization for h € [0, Hytpm = 80000]

4.2.2 View Angle Parametrization

As mentioned, the difference in hue is at its largest near the horizon. The
suggested view parametrization solves this by calculating the angle between the
horizon and zenith for the current height of the observer, and provides higher
precision for similar angles.

0.2
0.5 (Cv:“‘h) 0.5, cp > cn WOR 5

Uy = 1=en 0.2 where ¢, = — (E(mhz) (17)
0.5 (cc’;jrcl”) , Co S cpy Rgartn +

18

4.2 Texture Parametrization 4 PRECOMPUTING SCATTERING

Figure 9: View angle parametrization for ¢, € [—1, 1]

4.2.3 Sun Angle Parametrization

While the importance of the direction of the sun does not change drastically
during daytime, we do not need to include sun angles below a certain threshold
in our table because during night time the inscattered light from the sun is
almost nonexistent.

tan~!(max(c,s, —0.1975) tan(1.26 - 1.1))
1.1

s = 0.5(+(1-026) (18)

19

4.3 Inverse Parametrization 4 PRECOMPUTING SCATTERING

Figure 10: Sun angle parametrization for ¢; € [—1,1].

4.3 Inverse Parametrization

When filling the look-up tables, a function that maps the coordinate of the given
texture cell into an actual combination of viewing direction, sun direction and
height is required.

[(up €10,1],u, € [0,1],us € [0,1]) = (h € [0, Hatm], 0, € [0,7],05 € [0,7])

Finding these values can be done by simply using the inverse of the parametriza-
tions (Equations 16, 17, 18), but because it can be quite complicated to eval-
uate and calculate these inverse functions by hand - we provide the inverse
parametrization, as suggested by Yusov [YUS14] and Bruneton and Neyret[BN0§],
below:

e h= u}%Hatm

cn + (uy —0,5)5(1 — ¢p), up > 0.5

.o VR Rgarn+h)
! cn —ud(1+¢p), uy < 0.5

where ¢ = =5

tan((2us—140.26)0.75)
tan(1.26%0.75)

e c, =

4.4 Transmittance

The transmittance calculations are a major part of solving the single and mul-
tiple scattering integrals. This section aims to present the most basic approach

20

4.5 Single Scattering 4 PRECOMPUTING SCATTERING

of algorithmically solving the transmittance integral. Bruneton and Neyret sug-
gest, in their implementation[EVAQ8], the use of an analytically derived solution
to the integral. However, during testing we noticed that while this algorithm is
often sufficient, it fails to provide accurate data in many cases where the relation
between planet radius and atmosphere radius is unlike that of earth.

Due to this, and for additional reasons described in Section 4.7.2, we are
instead solving the transmittance integral using trapezoidal numerical integra-
tion. While the algorithm itself is simple to implement using this approach, it
is provided below as it is referenced in following chapters.

Algorithm 1 Transmittance between p, and pp
stepSize = distance(p,, pp)/INTEGRATION_STEPS
dir = normalize(pp — pa)
for step=0; step < INTEGRATION_STEPS ; ++step
S = pa t stepSizexstep*dir
currentDensityMie = getDensityMie(height(s))
currentDensityRayleigh = getDensityRayleigh(height(s))
totalDensityMie += (currentDensityMie+
previousDensityMie)/2*stepSize
totalDensityRayleigh += (currentDensityRayleigh+
previousDensityRayleigh) /2*stepSize
previousDensityMie = currentDensityMie
previousDensityRayleigh = currentDensityRayleigh
end loop
transmittance = exp(-
(totalDensityRayleigh*fp . +
totalDensityMiex*f%,))

In the following two sections, 4.5 and 4.6, and their respective algorithms,
this algorithm will be referenced using the following syntax:

transmittance(px, Py)

4.5 Single Scattering

In order to calculate single scattering and store the result in a 3D texture,
we iterate each cell of the texture and use the previously described inverse
parametrization (see Section 4.3) to translate the cell coordinate into view direc-
tion, sun direction and height. Trapezoidal integration is then used to calculate
the amount of single scattering along the viewing ray, for the given height and
sun direction.

Algorithm 2 describes the numerical integration for single scattering.

21

4.6 Multiple Scattering 4 PRECOMPUTING SCATTERING

Algorithm 2 Single Scattering reaching p, from direction v with incident light
direction . Recall that phase functions are deferred to the pixel shader.

Pb = intersection(p,, —v, earthRadius, atmosphereRadius)
stepSize = distance(p,, Pp)/INTEGRATION_STEPS
for step=0 ; step < INTEGRATION_STEPS ; ++step
P = Pa * stepSize*step*—v
transmittance = transmittance(p,, p)
Pc = intersection(p, —I, earthRadius, atmosphereRadius)
transmittance *= transmittance(p, pc)
currentInscatteringMie =
getDensityMie (height (p)) *transmittance
currentInscatteringRayleigh =
getDensityRayleigh(height (p))*transmittance
totallnscatteringMie +=
(currentInscatteringMie+previousInscatteringMie)
/2*stepSize
totalInscatteringRayleigh +=
(currentInscatteringRayleigh+previousInscatteringRayleigh)
/2*stepSize
previousInscatteringMie = currentInscatteringMie
previousInscatteringRayleigh = currentInscatteringRayleigh
end loop
totallnscatteringMie *= B/ (4*m)*I1, .,
totalInscatteringRayleigh *= fp,../(4*m)*I1, .,

4.6 Multiple Scattering

Thanks to Equations 11 and 12, it is possible to calculate each order of multiple
scattering iteratively. Again, the first step required is to convert from a texture
coordinate to view angle, sun angle and height, using the inverse parametrization
functions. Trapezoidal numerical integration is then used to integrate along the
view direction of the observer. The main difference between single and multiple
scattering is that in the case of multiple scattering, the sun is not used as a light
source. Instead, for each integration point, we gather the amount of incoming
light, from the previous scattering order, that scatters in direction v.

We will first define an algorithm used to compute part of Equation 11
(G%iﬁ)), the amount of incoming light, from the previous scattering order,
in a certain point.

22

4.7 Optimization 4 PRECOMPUTING SCATTERING

Algorithm 3 Multiple Scattering Gathering, gatheredLight(p, v, I)
for 60,=0 ; 0,<27 ; 6,+=(27/INTEGRATION_STEPS) loop
gathered += fetchScattering(height(p), 0,, 0;)
end for
gathered *= 47 /INTEGRATION_STEPS

Note that, while the gathering function is an integral over a sphere, we only
integrate over the view angles stored in our look up tables. The above algorithm
is, as mentioned, part of the multiple scattering integral. Algorithm 4 describes
how to calculate scattering of order k (Equation 12, Iék)).

Algorithm 4 Multiple Scattering reaching point p, from direction direction v
with incident light direction 1

Pb = intersection(p,, —v, earthRadius, atmosphereRadius)
stepSize = distance(p,, pp)/INTEGRATION_STEPS
for step=0 ; step < INTEGRATION_STEPS ; ++step
P = Pa t stepSizex*step*—v
transmittance = transmittance(p,, p)
currentInscatteringMie =
gatheredLight(p, v, [)*
getDensityMie (height (p)) *transmittance
currentInscatteringRayleigh =
gatheredLight(p, v, D)*
getDensityRayleigh(height (p))*transmittance
totalInscatteringMie += (currentInscatteringMie+
previousInscatteringMie) /2*stepSize
totallnscatteringRayleigh += (currentInscatteringRayleigh+
previousInscatteringRayleigh)/2*stepSize
previousInscatteringRayleigh = currentInscatteringRayleigh
end loop
totallnscatteringMie *= [,/ (4m)
totallnscatteringRayleigh *= (g,.,/(47)

In accordance with Equation 14, when the desired number of scattering have
been computed, single scattering and each higher order scattering are summed,
creating the final 3D look-up table.

4.7 Optimization

In order to reduce the time required to precompute our scattering look-up tex-
tures we have taken multiple actions, of varying importance. With the following
section we intend to describe the most important optimizations and improve-
ments used in our implementation. We will not go into detail about standard

23

4.7 Optimization 4 PRECOMPUTING SCATTERING

shader optimization tricks, but will instead focus on changes to the structure
and flow that greatly reduce the time needed to solve the scattering integrals.

4.7.1 Precomputing on the GPU

The algorithms used to calculate the values of each cell in the scattering textures
are identical. Theoretically, the only difference between cells is the input; the
observer height p,, direction v and direction I. Since the inverse parametriza-
tion described in Section 4.3 allows us to convert texture coordinates into the
aforementioned parameters, a GPU implementation is a very suitable choice.
We utilize the vast amount of processing units on the GPU to parallelize the
procedure, instead of iteratively computing each texture cell on the CPU.

We suggest using one thread for each cell in the textures, finding the thread
ID and thus also the texture coordinate via the thread ID variable. It is possible,
and preferable, to use compute shaders for all precomputations needed.

4.7.2 Transmittance

One of the most time consuming operations in the scattering integrals for a
basic implementation is calculating transmittance. For example, as described
by Algorithm 2, transmittance must be computed not only between the observer
and the point, but also from the point to the atmosphere boundary in the
direction towards the sun. Both of these computations are heavily optimizable,
using the following two approaches.

Calculating transmittance between observer and integration point
Instead of using the algorithm described in Section 4.5, we can utilize the fact
that the scattering integrals integrate over the same ray that is used by the
transmittance. Thanks to this, we can calculate the transmittance between the
observer and the given point while we calculate the scattering. All that is needed
is to solve, and store the result of, the density integral up to the current point.
When transmittance is needed, simply calculate according to Algorithm 5.

Algorithm 5 Calculating transmittance from density

transmittance = exp(-(f3§;*mieParticleDensitySum
+ BR..p*rayleighParticleDensitySum)

Precomputing transmittance to the atmosphere Transmittance between
the integral point and the atmosphere can not use the approach described in the
previous section. However, it is possible to optimize these calculations almost
as much, using a separate precomputed transmittance texture. Transmittance
is precomputed using only two degrees of freedom - height and sun-zenith angle.
The process of filling this texture is very straightforward.

The integration is performed using the steps described in Algorithm 6.

24

4.7 Optimization 4 PRECOMPUTING SCATTERING

Algorithm 6 Precomputing transmittance to the atmosphere

1) For each texture cell, find the viewing direction and

height using inverse parametrization.

2) Integrate along viewing ray from the corresponding height.
2.1) For each integration step, calculate the particle
density of Mie and Rayleigh.

3) Calculate exp(-(ff,;*mieParticleDensitySum+

By *rayleighParticleDensitySum)) .

4) Save the result in the texture

The transmittance table uses the parametrization described in Section 4.2
for view angle and height.

4.7.3 Precomputing Gathering

The process of calculating multiple scattering, described in Section 4.6, is slow
and repetitive. The fact that integration is done over many view directions
for every height and all sun directions means that many very similar gathering
calculations are computed. With this information, we can understand that it
would be possible to precompute this data into an auxiliary look-up texture,
parametrized only by height and sun direction. This process is identical to
Algorithm 3, but with the advantage of using much fewer inputs. Henceforth,
this look-up table will be referenced to as the gathering LUT.

While calculating the gathering LUT, we store two different values in two
different textures. The first one being the gathered light scattering from the
previous scattering order, i.e. we are doing a pre-pass for scattering of order k,
which means that this texture will contain light scattered from the k — 1 order
into the given point. The second texture contains the sum of the gathering for
all scattering orders, up to and including the current order. This second LUT is
later used to include multiple scattering in aerial perspective (see Section 6.4).

Algorithm 7 describes the new process for calculating scattering of order k,
replacing the use of Algorithm 3 in Algorithm 4.

Algorithm 7 Multiple Scattering using the Gathering LUT
gathreedRayleigh = fetchRayleigh(height, sunAngle)
gatheredMie = fetchMie(height, sunAngle)

By only sacrificing minimal precision, this optimization heavily improves the
performance (see Section 7.2).
4.7.4 Dropping half the LUT

As a result of the view angle parametrization, the scattering look-up table is
divided into two parts - view angles above and below the horizon. Previous

25

4.7 Optimization 4 PRECOMPUTING SCATTERING

implementations of atmospheric scattering tables only use the lower half of the
texture for calculations of aerial perspective and multiple scattering. Because
we suggest a new way of calculating aerial perspective (see Section 6.4), we no
longer have any use for the lower half of the texture when the precomputations
for multiple scattering are completed.

By making use of this fact, it is possible to disregard calculating values for
the lower half of the texture during the last scattering order. Thus, making
the precomputations roughly 13% faster when using four scattering orders!.
Furthermore, this allows us to improve the performance of the parametrization
during rendering, again due to the fact that we no longer need the lower half of
the texture.

4.7.5 Approximating Mie

As shown by Bruneton and Neyret[BN08], it is possible to reduce the amount of
data required to store inscattering, by approximating Miergp using only Mier
in combination with Rayleighrgp. This means that it is possible to store all
scattering information in one look-up table, rather than having to use one for
Rayleigh and one for Mie, by storing the red value of Mie scattering in the alpha
channel of the Rayleigh look-up texture.

The formula used to retrieve the Mie scattering is then defined as follows:

Rayleigha Bry Bm
Rayleighr Bumy Br

As can be seen on the Mie scattering around the sun in Figure 11, the
approximation works very well and the results are almost identical.

Figure 11: Left column: Mie and Rayleigh scattering stored separately. Right
column: Mie approximated from Rayleighrgp and Mieg.

MieRGB = RayleighRGB (19)

1Fach scattering order takes about the same time. Le. each scattering order takes 25% of
the time

26

5 DYNAMIC ATMOSPHERIC CONDITIONS

5 Dynamic Atmospheric Conditions

A very important limitation of the previous work on the topic of precomputed
atmospheric scattering is that neither of the previously suggested methods pro-
vide the option to enable dynamic atmospheric conditions. We have tried to
solve this problem, and this chapter will describe our method.

5.1 Theory

In order to provide dynamic weather transitions in the atmosphere, we must
change the properties of the atmosphere. In order to represent this change in
our final scene, we must update the scattering tables. While our optimiza-
tions, combined with the constantly improving hardware of current generation
computers, allow us to recompute the scattering tables each frame while still
providing interactive frame rates (see Section 7.2), it is simply not justifiable to
spend that much time each frame on something as small as weather transitions
in the atmosphere for AAA games.

In reality, weather conditions do not change instantly from perfectly clear to
foggy. Taking this into consideration, we rewrote our system to provide dynamic
update of the look-up tables over multiple frames. In order to distribute the
workload evenly over frames, we investigated the amount of time required for
each part of the precomputations. We found that each scattering order, whether
it is single scattering or multiple scattering, takes about the same amount of
time. We also found that the transmittance precomputations are almost instan-
taneous compared with the time required for scattering orders, and that the
precomputation of the gathering LUT takes roughly five percent of the time
required to complete one scattering order.

In order to make our system as dynamic as possible, without sacrificing
too much useability, we wanted to provide an option for setting the amount of
frames to be used, with certain restrictions due to ease of implementation. To
do this, and while taking the timing of the various stages of precomputing into
consideration, we developed the following formula:

F=(K-1)*X)+X/2+ (K —1)

where F' is the total amount of frames that the system should be precom-
puting over, K is the number of scattering orders and X is a variable free for
the user to choose with the restriction of X € {2,4,8,16,32}.

This means that we divide each of the first K — 1 scattering orders into X
amount of frames, add X/2 frames for the final scattering order (due to the
optimization described in Section 4.7.4), and then add one frame for each gath-
ering table that needs to be precomputed. The transmittance precomputations
are run during the first frame of each precomputation cycle, together with the
first part of the single scattering.

27

5.2 Implementation 5 DYNAMIC ATMOSPHERIC CONDITIONS

5.2 Implementation

Simply implementing a system according to the theory above would not be
sufficient to providing nice looking weather transitions. The biggest problem
occurs because we are updating the texture used for rendering part by part.
This means that when half of the new single scattering calculations have been
computed, half the texture will contain data of only single scattering for the
new atmospheric conditions while the other half will contain multiple scattering
data calculated for the previous conditions of the atmosphere.

In order to solve this, we changed our system to contain two different final
textures. We then toggle which of these two textures is used for precompu-
tations, and let the other one be used for rendering. This nicely solves the
problem of updating parts of the texture while it is being used for rendering.
However, one problem still remains. By considering a system where we divide
the work over 115 frames (X = 32), according to the formula described above,
it would take almost two seconds? to update the look-up tables. In certain ex-
treme cases, it is possible that the change in the precomputed scattering tables
is large enough to be noticed by the user. In order to solve this problem we
implemented a system, working in parallel with the precomputations, that inter-
polates between the previous and the second to previous atmospheric scattering
tables during the precomputation of the first (K — 1) scattering orders.

Interpolation weight: 0% 100%
|
Texture, Textureg
Scattering order: 1 2 3 4

Figure 12: Interpolation run in parallel to precomputations

Simply put, the first three scattering orders in the above example are stored
in temporary textures. When the fourth, and last, scattering order is about
to be precomputed, the interpolation between texture A and texture B has
reached the case where the resulting texture is 100% of texture B. After this,
the precomputations store the new atmospheric scattering data in texture A,
and no interpolation occurs until texture A has been filled with its new data.
When the precomputations are completed, we interpolate in the other direction,
and the process repeats itself if the atmospheric weather conditions are not up
to date.

The process of interpolating is used for the scattering tables, as well as for the
extra textures required by rendering in order to provide fast and fully dynamic
weather transitions.

2 Assuming that the application runs with 60 frames per second.

28

6 RENDERING

6 Rendering

This chapter will describe the sky module rendering procedure, and how it uses
the precomputed data stored in look-up tables. We first show how to render the
sky, from any observer position, followed by the rendering of the ground and
aerial perspective.

6.1 Overview

In our system, the rendering is done by creating a quad located at the far
plane of the camera frustum and drawing all scattering to it, while using a
depth texture, containing all previously rendered geometry, to render the aerial
perspective. Depth testing and drawing to the depth-buffer is turned off when
rendering the atmospheric scattering to preserve the depth data of the scene.
Furthermore, the view vector for each pixel is acquired by interpolating the
vectors from the near plane to the far plane of the frustum, for each corner.
The zenith vector can be found by subtracting the camera position with the
position of the earth center. The light source vector is not dependent on the
camera position due to Assumption 3 in Section 4.1 (in which we state that all
light rays are treated as parallel) and thereby only depends on relative positions
of the earth and the sun.

Note that while a global tone mapping is needed to correct over-saturation,
our report does not cover this area.

6.2 Rendering the Sky

To render the sky, we simply need to fetch the Rayleigh- and Mie-scattered light
from the look-up texture, multiply it with the intensity of the incident light, and
apply their respective phase functions.

Fetching from the texture is performed by calculating the texture coordinates
using the parametrization provided in Section 4.2. Since the look-up texture is
parametrized by cos(6y), cos(,), and h, we need to find these to use as input for
the remapping functions. Both cos(f;) and cos(8,) can easily be calculated by
the dot product of the zenith vector, and the view and sun vector respectively.
The height h is calculated by the distance from the earth center to the camera
position, subtracted by the planet radius. Special care has to be taken when the
camera is outside the atmosphere. In this situation the camera position has to be
moved to the closest intersection between the viewing ray and the atmosphere,
before the parametrizations are computed. Note that if the camera is inside
the atmosphere, we know that the sun direction and height of the observer are
constant during the rendering of each pixel in the current pass. This means that
the parametrization for these variables can be calculated on the CPU and sent
directly to the shader.

It is important to also consider the fact that the look-up table only contains
light that has scattered, meaning we also have to render direct sunlight; direct
light that has only had a portion of its intensity attenuated along its path to the

29

6.3 Ground Lighting 6 RENDERING

observer. A simple way to do this is to render a disc, where the color is calculated
by the intensity of the incident light multiplied with the transmittance along
the path from the point where the light enters the atmosphere, to the camera
position.

Ié'O) (p07 l) = I[()\)T(po, pc) (20)

where p, is the position of the observer, [is the direction to the light source,
and pc is the intersection with atmosphere boundary in the direction I from the
camera position p,. The transmittance between p, and p. can be obtained
by fetching from the precomputed transmittance table, at the height of po in
direction .

Even though our system does not include light scattering in clouds, fairly
realistic clouds can be rendered with simple cloud layer textures. By taking
advantage of the attenuation of the direct light reaching the clouds, the same
way the direct light reaching the observer is calculated, we can achieve the
reddish hue on the clouds during a sunset (see Figure 13).

Figure 13: Simple cloud layer lit by direct sunlight

6.3 Ground Lighting

Lighting on the ground mainly consists of two parts - direct sunlight and ambient
sky illumination. The light reaching a certain point on the earth surface will
also be affected by transmittance, as it is reflected off the surface and travels
towards the observer (see Figure 14).

30

6.4 Aerial Perspective 6 RENDERING

1(pl.2)

Figure 14: Direct sunlight and ambient sky illumination reaching the camera.

However, the attenuation of light between an object and the observer can
be deferred to the rendering of aerial perspective as shown in Section 6.4.2. An
added bonus of this is that light from other sources than the sun, reflected off
a surface, will also be attenuated by the atmosphere. Direct sunlight can then
be calculated with Equation 20, by replacing the observer position p, with the
surface position ps.

Oskar Elek[EK10] shows that the ambient sky illumination can be precom-
puted into a 1D look-up table by fetching from the main 3D scattering texture.
The function for ambient light reaching a certain point p on the ground, when
the sun is in direction [, is defined as follows:

Ia(p, LN = /(now)lg(p,w,l,)\)dw (21)

where n is the surface normal. Since Elek assumes a perfectly spherical earth,
and thereby ignoring terrain, the function is sufficient to calculate the ambient
light at ground level. However, in our case, we want to be able to calculate
the ambient light for arbitrary heights, as well as for any surface normal, which
could be done by adding dimensions to the look-up table. The system in which
we implemented our sky rendering module already had support for calculating
ambient light for any scene, which allowed us to ignore this. Had that not
been the case, adding an extra dimension for height to the look-up table would
hopefully have been sufficient.

6.4 Aerial Perspective

Aerial perspective consists of two core parts. Firstly, the color of the underlying
object must be attenuated according to the outscattering, the transmittance,
between camera and object. Secondly, we must add the color corresponding to
the total amount of inscattering between the observer and the object. Therefore,

31

6.4 Aerial Perspective 6 RENDERING

we must calculate T, as well as I, the transmittance and inscattering between
the observer and the object in question.

6.4.1 Previous Method

Previous research [SFE07] suggest calculating Aerial Perspective using the same
look-up table as for sky rendering. To understand the process of doing this, we
first express the inscattered light reaching the observer (which is stored in our
look-up table) as follows:

IabTab = Istab + IasTas (22)

I, represents light scattering towards the observer, between the observer
and the atmosphere (or earth) behind the object, T, is the transmittance be-
tween the same two points. I is the light scattering towards the observer
between the object and the atmosphere behind it. I, is the light scattering
towards the observer between the observer and the object, and finally T, is the
transmittance between observer and object.

What is important to note is that I, is multiplied with Ty;, and not just
Tsp- This is because the light scattering towards the observer between the object
and the atmosphere must also be attenuated on its path from the object to the
observer.

Equation 22 can be rewritten to:

IasTas - abTab - Istab (23)

Figure 15: Aerial Perspective between p, and ps.

By using Equation 23, we can now define an algorithm (Algorithm 8) to
calculate inscattering between the observer and the object, using only values
from our precomputed look-up tables:

32

6.4 Aerial Perspective 6 RENDERING

Algorithm 8 Aerial Perspective

1. Fetch inscattering from the observer to the atmosphere
or earth behind the object, [Ty

2. Move the camera to the object, and fetch inscattering
from the object to the atmosphere or earth behind it, in
the same viewing direction, Ig % Typ.

3. Calculate transmittance from the observer to the object,
and multiply that with Ig, %

Tsp to get IT,, (T,s can be found

either by real-time integration to the object, or by using
a look-up table containing transmittance to the atmosphere
or ground, T,s = Tup/Tsp) -

4. Use Equation 23 to calculate [,;T,;.

In theory, this sounds like a good way of solving the problem of aerial per-
spective. In practice, however, we came across many small problems with this
approach that made it less than ideal. The worst problem was a discontinuity
at the horizon, as seen in Figure 16. Bruneton and Neyret do not solve this
problem in their paper[BN08§], but suggest a fix in their source code[EVAO08].

Figure 16: Aerial Perspective inscattering, with artifacts due to the discontinuity
at the horizon.

The fix suggested is to interpolate each value, within a certain threshold
angle, above the horizon with a value below the horizon in order to smoothen

33

6.4 Aerial Perspective 6 RENDERING

the discontinuity. However, even by doing so, the results are not as good and
accurate as can be wished for, and the performance suffers from the extra work.

6.4.2 Our Method

Instead, we started to investigate other options. Our first attempt was to simply
sacrifice multiple scattering and integrate single scattering between the viewer
and the object in the pixel shader. Even though the visual result was satisfac-
tory, this method proved, as expected, to be very expensive even with just a
few integration steps.

Finally, we came up with an idea to build two low resolution 3D textures
from the camera frustum, and use a compute shader to fill each cell with the
amount of inscattering or transmittance from the center of the cell to the eye.
This is done every frame, as a pre-pass to the rendering, but still turned out to
be a viable option performance wise due to the low resolution. When rendering
the aerial perspective, we simply fetch the scattering, 1,7, 5, from the scattering
texture for the given position pg within the frustum. The already existing color
of the object is attenuated according to the transmittance, Ty, contained in the
second texture. To find the position of the object within the frustum, we use
a depth buffer containing all previously rendered geometry. Furthermore, the
multiple scattering is included by adding a texture, containing the sum of all
orders of gathered light, to the precomputation procedure (see Appendix A.l
for a full system overview). For each cell in the frustum texture, we fetch the
gathered sum for the given height and sun direction, and include as incoming
light in the scattering calculations.

Figure 17: Our method of computing aerial perspective, using a low resolution
3D texture mapped to the camera frustum.

The process of filling these textures is described in Algorithm 9.

34

6.4 Aerial Perspective 6 RENDERING

Algorithm 9 Aerial Perspective - Our method
1. Dispatch a compute shader, with Resolutionx *
Resolutiony threads.
2. For each thread, use the frustum to calculate a viewing
direction.
3. Calculate single scattering and transmittance along the
aforementioned direction, using numerical integration with
Resolutiony steps.
3.1 After each step, store the intermediate result in
the corresponding texture cell.
3.2 Multiple scatterng is included by fetching from a
texture containing the sum all orders of gathered light.

This proved very successful, and the visual results were excellent. As shown
in Section 7.3, they are at least on par with integrating in real time, and in
some situations even better, because we can afford a much higher number of
integration steps.

Another benefit of this approach is that we no longer need the half of the
precomputed table that contains inscattering from viewing directions below the
horizon, as mentioned in Section 4.7.4.

35

7 RESULTS

7 Results

The following chapter will go into detail about the visual results as well as
the performance of our system. To express the system’s viability in games
targeting current generation hardware, all precomputation and rendering times
are measured on Xbox One.

7.1 Textures

As suggested by Elek[ELE09]|, our main scattering lookup texture has a preci-
sion of 32x128x32 for height /view-angle/sun-angle, with 16 bit floats for each
channel. Thanks to our method of computing the aerial perspective each frame,
we could drop half that look-up table and thereby use a texture with dimen-
sions 32x64x32 (70.5MB) for the rendering pass. This is considerably less than
the 128x128x128 (T16MB) texture used by Shafhitzel et. a. - thanks to the
improved texture parametrizations proposed by Bruneton and Neyret[BNO§],
and further improved by Yusov[YUS14]. However, due to our aerial perspective
method, we also require the 3D textures mapped to the camera frustum, repre-
senting the inscattering and transmittance. Furthermore, the aerial perspective
pre-pass also needs the gathering sum texture to include multiple scattering. We
found that these textures produce satisfying results with dimensions 32x32x16
for the aerial perspective and transmittance, and 32x32 for the gathering sum
texture (with a combined size of ~0.28MB). Lastly, our rendering pass uses the
transmittance to atmosphere texture to calculate the zero-scattered light (direct
sunlight), with the dimensions 32x128 (70.031MB).

In the case of dynamic weather, the aforementioned values need to be dou-
bled, as we use two of each texture, to interpolate between. An exception, how-
ever, is the aerial perspective and transmittance from camera textures. Further-
more, since we recompute scattering tables over several frames, a few additional
and temporary textures are required during the precomputation process. Table
2 lists the total amount of textures used for rendering, when using dynamic
weather transitions, as well as their dimensions and sizes.

’ Texture \ Dimensions \ Memory ‘
Transmittance interpolation target A 32x128 32kB
Transmittance interpolation target B 32x128 32kB

Scattering interpolation target A 32x64x32 512kB
Scattering interpolation target B 32x64x32 512kB
Gathering sum interpolation target A 32x32 8kB
Gathering sum interpolation target B 32x32 8kB
Aerial Perspective 32x32x16 128kB
Transmittance from camera 32x32x16 128kB
Total ~1.33MB

Table 2: Textures used for rendering.

36

7.2 Precomputation and Rendering Performance 7 RESULTS

7.2 Precomputation and Rendering Performance

In our first attempt, we decided to perform the precomputations on the CPU.
This proved to be feasible, but by using roughly one minute to complete the pro-
cess of precomputing - it by far exceeded our limitations regarding the possibility
of dynamically recomputing the look-up table in real time. Worth mentioning
is that, at this stage, our method was very straight forward, and did not utilize
any of the possible optimizations explained in Section 4.7.

When moving the precomputations to the GPU, the total time required
drastically dropped to about 300ms. By using the optimizations previously
described, this was further reduced to about 3ms. The largest time gain comes
from the use of auxiliary gathering textures (see section 4.7.3). Please refer to
Figure 18 for timings of the whole precomputation process for four scattering
orders.

3 3
2.5 25
2 2
1.5 1.5
2]
S
1 1
0.5 0.5

R — . 0
Singe Scattering Multiple Scattering (3x)
Transmittance Gathering (3x)

Figure 18: Transmittance: 0.03ms, Single Scattering: 0.7ms, Gathering:
0.057ms per scattering order, Multiple Scattering: 0.85ms per scattering order.
Total time of about 3.45ms.

To change the weather dynamically, we found that by recomputing the scat-
tering tables over 115 frames, the real-time performance of the system remained
virtually unaffected. The time required for computations each frame never ex-
ceeded 0.1ms.

By rendering the scattering to a single quad located at the far plane of

37

7.3 Visual Results 7 RESULTS

the camera frustum (as explained in Section 6.1), the sky module is in no way
limited by the amount of vertices in the scene. Even though our method for
calculating the aerial perspective requires a separate compute shader pre-pass,
the real time performance does not suffer greatly, as the pre-pass is executed
over only 0.03ms. Figure 19 contains timing comparisons for the different parts
of the rendering pass.

0.6
05
04
0.3
0.2

0.1

0 [
AP pre-pass Scattering +Sun +2 Cloud layers

Figure 19: Average rendering times for scattering only, scattering and direct
sunlight, and scattering with direct sunlight and two cloud layers. Also, the
aerial perspective pre-pass.

Worth noting is that, while the performance numbers used in this section
are measured on Xbox One, we do not utilize the ESRAM - something that
would improve performance even further.

7.3 Visual Results

The system is capable of producing realistic looking skies. We found that by
including ozone we could create far more realistic colors of the sky, compared to
previous research where the contribution of ozone is ignored, especially during
sunsets (see Figure 20).

38

7.3 Visual Results 7 RESULTS

Figure 20: Left: Sunset with ozone. Right: Sunset without ozone.

The system can also produce otherworldly skies. For instance, with a minor
performance loss, we could include a second light source, and thereby simulate
a hypothetical alien planet. Thanks to the fact that the look-up tables con-
tain scattering values without the sun intensity, the only additional work is to
perform texture look-ups for the second light direction, and multiply with its
intensity.

Figure 21: Multiple light sources contributing to the scattering in the atmo-
sphere.

Furthermore, the atmospheric conditions can be changed to simulate other
planets, as shown in Figure 22.

39

7.3 Visual Results 7 RESULTS

Figure 22: Left: 10 times higher molecular density. Middle: Earth-like atmo-
sphere. Right: 10 times lower molecular density.

As can be seen in Figure 23, the visual precision of inscattered light, cal-
culated with our aerial perspective method, does not suffer from the problems
described in Section 6.4.1, and the result is at least on par with real time nu-
merical integration.

Figure 23: Aerial perspective, inscattering only. Left: Our method (multiple
scattering excluded). Right: Numerical integration in the pixel shader, using 4
samples.

Calculating the ground lighting as described in Section 6.3 adds to the nice
transition between different times of day, as seen in Figure 24.

Figure 24: From left to right and top to bottom, ground lighting for 6, =
90°, 88°, 86°, 82°, 75°, 65° .

40

7.4 Validation 7 RESULTS

Additional images rendered with our system can be found in Appendix A.2
- Additonal Visual Results.

7.4 Validation

Bruneton and Neyret validate the results of their implementation by plotting
the sky luminance for all view angles, where the sun-view azimuth is zero[BNOS].
They then compare their resulting graph with measured data preovided by CIE.
Because we want to validate our implementation against both measured data,
but also against previously implemented approaches, we embrace this approach.
Figure 25 displays the result of the measurements in our model, and compares
them to the same measured data, as used by Bruneton and Neyret[BNO§], pro-
vided by CIE[CIEO04].

-8 -60 -0 20 0 20 40 60 8 -8 -60 -0 20 0 20 40 60 8 -8 -60 -0 -0 0 20 40 6 8

Figure 25: Left to right, and top to bottom: 0 =
0°, 10°, 20°, 30°, 40°, 50°, 60°, 70°, 80°. Red line: CIE sky model.
Blue line: Our model.

As Bruneton and Neyret, we use By = 2.2¢75, 85, = g%‘g, g = 0.73 and
Hjy; = 1200m. Because Bruneton and Neyret provide the same measurements
for their implementation|BNO08], it is possible for us to compare our results with
theirs, as well as the CIE model.

We can see an over approximation, although smaller than in Bruneton and

41

7.4 Validation 7 RESULTS

Neyret’s data, close to the horizon. As shown by Zotti et al.[ZWPO07] the
Preetham sky model also suffers from this problem. It is also worth noting
that the modified Rayleigh phase function (Equation 15), derived by Elek, pro-
vides fairly good results, although slightly underapproximating the scattering at
the opposite side of the sun for lower sunangles. Even though the values used for
our measurements are adopted from Bruneton and Neyret, in order to compare
our results with theirs more precisely, we believe that it is possible to match the
CIE model more closely by careful selection of atmospheric properties.

42

8 DISCUSSION AND CONCLUSION

8 Discussion and Conclusion

We have presented several extensions to previous research, including the ad-
dition of ozone to the mathematical model and an efficient way of computing
artifact free aerial perspective. While the addition of ozone increases the realism
of the rendered atmosphere, it is possible that the level of realism could be even
further increased by performing fully spectral calculations[EK10].

Additionally, the utilization of the current generation rendering pipeline,
combined with many optimizations, allows the system to recompute the scat-
tering look-up tables with virtually no impact on real time performance, and
thereby provide seamless transitions between any atmospheric conditions.

While using a 3D texture requires some approximations, aesthetically pleas-
ing results are achieved with a reduced cost. Multiple scattering suffers from the
lack of a fourth dimension, as the phase function cannot be applied correctly.
Instead, a modified phase function is used on the combined light from single and
multiple scattering. If increased precision is desired, the system could easily be
extended to utilize a 4D look-up table, in which case the precomputation perfor-
mance would suffer while the rendering performance would only be marginally
impaired. When using 4D tables, the phase function of each multiple scattering
order could be included during the precomputations, and the single scattering
could be stored in a separate table and still use deferred phase functions for pre-
cision reasons. Worth mentioning is that our aerial perspective method would
still be perfectly viable, and preferable, as it already includes the sun-view az-
imuth during single scattering calculations, and the multiple scattering could
also be included by increasing the dimensions of the gathering LUT to include
a scattering direction.

43

9 FUTURE WORK

9 Future Work

We believe that the area that could benefit the most from future research is the
aerial perspective computations, in which we would like to calculate additional
effects, such as local fog and scattering in clouds. It would also be possible to
extend these calculations by including and utilizing shadow volumes in order to
provide physically based volumetric light shafts.

Another area that we believe to require future work is the area of parametriza-
tion. While the currently used functions provide excellent results, they are slow
to evaluate. This is especially important for the parametrization used by the
real time shader.

44

REFERENCES REFERENCES

References

[NSTN93]

[PSS99]

[0"NO5]|
[SFE07]

[BNOS]|

[ELE09)]

[YUS14]

[EK10]

[CS92]

[PK13]

[NASA09]
[UBR]

[CIE04]

[ZWP07]

[EVAOS]

Tomoyuki Nishita, Takao Sirai, Tadamura Katsumi, Nakamae Fi-
hachiro. “Display of the Earth taking into account atmospheric scat-
tering”. In SIGGRAPH 93.

A. J. Preetham, Peter Shirley, Brian Smits. “A Practical Analytic
Model for Daylight”. In SIGGRAPH 99.

Sean O’Neil. “Accurate Atmospheric Scattering”. In GPU Gems 2.

Tobias Schafhitzel, Martin Falk, Thomas Ertl. “Real-Time Rendering
of Planets with Atmospheres”. In Journal of WSCG, Volume 15.

Eric Bruneton, Fabrice Neyret. “Precomputed Atmospheric Scatter-
ing”. Eurographics Symposium on Rendering 2008, Volume 27, Num-
ber 4, pp. 1079-1086.

Oskar Elek. “Rendering Parametrizable Planetary Atmospheres with
Multiple Scattering in Real-Time”.

Egor Yusov. “Outdoor Light Scattering Sample Update”. URL:
https://software.intel.com /en-us/blogs/2013/09/19/otdoor-light-
scattering-sample-update

Oskar Elek, Petr Kmoch. “Real-Time Spectral Scattering in Large-
Scale Natural Participating Media”.

William M. Cornette, Joseph G. Shanks. “Physical reasonable an-
alytic expression for the single-scattering phase function”. Applied
Optics Volume 31, Issue 16, pp. 3152-3160.

Peter Kutz. URL: http://skyrenderer.blogspot.com
URL: http://ozonewatch.gsfc.nasa.gov/facts/ozone.html

URL: http://www.iup.physik.uni-bremen.de/gruppen /molspec/
databases/referencespectra/o3spectra2011/

International Commission on Illumination (CIE). “Spatial distribu-
tion of daylight”. In CIE standard general sky, second edition.

Georg Zotti, Alexander Wilkie, Werner Purgathofer. “A Critical Re-
view of the Preetham Skylight Model”. In WSCG 2007 Short Com-
munications Proceedings I, pp. 23-30.

Eric Bruneton. URL: http://www-
evasion.imag.fr/Membres/Eric.Bruneton /index.en.html

45

A APPENDIX

A Appendix

A.1 System Overview

Gathering
sum

Multiple Scattering order 2

Gathering
sum

Aerial Perspective
scattering

Transmittance

Single Scattering F.

| Gatheringorder1 '—v

Muliple Scattering
order 2

<«—————| Gathering order
k1

Multiple Scattering
order K

Transmittance

Single Scattering

Gathering
order 1

Multiple Scattering sum

Gathering
order k-1

Multiple Scattering sum

[Aerial

Aerial Perspective
Transmittance

Figure 26: Complete system overview.

46

A.2 Additonal Visual Results A APPENDIX

A.2 Additonal Visual Results

Figure 27: From left to right, and top to bottom: 1. Scattering only 2. Scatter-
ing with ozone contribution 3. Direct sunlight 4. Sky in a scene 5. With aerial
perspective 6. With cloud layer and sun glare

47

A.2 Additonal Visual Results A APPENDIX

Figure 28: Foggy weather.

Figure 29: Inscattering only, rendered from space.

48

