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Passing Platforms
ROBERT GUSTAFSSON
ANDREAS LINDHÉ
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract

We use self-stabilization techniques to construct a distributed service for shared
memory emulation on message passing platforms. We are the first to implement
and practically evaluate the self-stabilizing algorithm for atomic shared memory
emulation developed by Dolev, Petig and Schiller, which in turn is the first al-
gorithm of its kind to address privacy, malicious behaviour and self-stabilization.
Furthermore, we have used techniques from the Self-Stabilizing Reconfiguration
paper by Dolev et al. to create a mechanism for performing a virtually synchronous
global reset of the entire system to deal with transient faults.

With a firm analytical basis, these algorithms provide the tools needed to deal with
arbitrary starting configurations and recover to legal behaviour within a bounded
time. To show the applicability and correctness in practice, we have created an
evaluation environment using PlanetLab. The evaluation shows that our imple-
mentation of the self-stabilizing version of the Coded Shared Atomic Memory al-
gorithm (CAS) scales very well both in terms of the number of servers and in terms
of the number of concurrent clients. It is shown to have only a constant overhead
compared to the traditional CAS algorithm. Furthermore, the evaluation shows
that it scales well with respect to data object size too—the system shows almost
no slowdown for data objects up to 512 KiB, and is only slightly slower for data
objects up to 1 MiB. Last but not least, the evaluation reveals that the global
reset mechanism, which is the worst case scenario for handling transient faults, is
as fast as a few client operations. For systems with up to 20 servers, the global
reset is done within a few seconds.

The same techniques used in this project can also be used to create a multitude
of other self-stabilizing services and algorithms, such as self-stabilizing Paxos and
self-stabilizing Virtual Synchrony to name a few.

Keywords: distributed systems, distributed shared memory emulation, self-stabilizing
algorithms
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1
Introduction

The concept of shared memory emulation is a cornerstone in distributed comput-
ing. Many problems—e.g., consensus—can be more easily resolved in the shared
memory paradigm than using message passing. While any shared memory solution
can be ported into a solution using message passing, many algorithms are designed
to use shared memory because of the performance and ease-of-use that it brings on
non-distributed systems. For some applications, switching from shared memory to
message passing might entail unwanted overhead and large development costs. To
abstract away the complex task of developing a new, application specific, message
passing solution, an alternative is to emulate shared memory on a message passing
platform. A library can handle the message passing and provide the application
with read() and write(x) function calls, making it seem as if the system was
operating on a shared memory.

Shared memory emulation can either be used as a fault-tolerant and highly avail-
able distributed storage solution or as a low-level synchronization primitive. No
matter the context, it is desirable to have a solution with low communication
cost and storage cost which can guarantee apparent atomicity of the operations.
Prominent examples of where such techniques can be used are cloud computing
and cloud storage. There are also new emerging markets for such technologies,
such as the area of autonomous vehicles, which produces large amounts of data
during operation [2]. In order to process such large amounts of data, fog or cloud
solutions might be the only viable solution. But of course, that would require
a high performance, reliable solution to store all that data, in the asynchronous
context of highly mobile vehicular systems.

Distributed systems have many advantages over centralized solutions such as data
redundancy and greater availability. While many systems can handle server crashes
by redundancy, there are rare faults that can cause the system to malfunction inde-
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1. Introduction

terminately. Reaching such a state may require external (human) intervention for
triggering a complete restart of the system, which might not be feasible in a large,
distributed system. Self-stabilization is a powerful technique for fault tolerance,
which provides guarantees that the system will always return to a well behaved
state within a bounded time period. In this project, we study and implement
self-stabilizing solutions for shared memory emulation on asynchronous message
passing systems.

1.1 Background

Sharing a data object among decentralized servers to provide the functionality of
a distributed storage has been a topic within research for decades. The problem
that has been studied, is to emulate a shared memory that has the property that
operations are by all appearances atomic (linearisable), either in a single-writer
multi-reader (SWMR) or multi-writer multi-reader (MWMR) setting. One of the
earliest and most significant contributions is [3] by Attiya, Bar-Noy and Dolev,
later known as the ABD algorithm, which uses a tagged data objects in a quorum
system with full replication, to achieve fault-tolerance with high availability while
still being able to guarantee atomicity. It has since been iterated upon by Lynch
and Shvartsman [4] (amongst others), making it work in a MWMR setting.

For small data objects, algorithms like these are quite efficient but do not scale well
when it comes to larger data objects. This is because of the full replication to all
servers in the system. In 2017, Cadambe et al. proposed a solution to this, through
the Coded Atomic Storage (CAS) algorithm [5]. The CAS algorithm uses erasure
coding in order to achieve data redundancy but with much lower communication
cost compared with algorithms that use full replication.

Although CAS provides an efficient solution to the problem of distributed data
replication, and provide tolerance against crash prone servers, it may end up in
a situation it can not recover from. While server crashes and lost messages are
in the fault model of the system, there is a type of fault called transient fault.
Such a fault is something that happens incredibly rarely, but once it happens it
can cause the system configuration to enter any arbitrary state. Most algorithms
do not account for such faults, since they are rare and are hard to deal with.
This is where another concept of fault-tolerance comes in, which is called self-
stabilization. A self-stabilizing system will always converge to a safe state within a
bounded period of time, with no intervention needed. So while the transient fault
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1. Introduction

will cause a recovery period where the system might be broken, it is guaranteed
to eventually return to normal operation (called a legal execution; LE).

In [6], Dolev, Petig and Schiller present a self-stabilizing version of CAS, which
provides fault-tolerance against malicious behaviour, privacy and self-stabilization.
In this report, we call their algorithm CASSS, for Coded Atomic Storage Self-
Stabilization. The authors provides theoretical proofs for the correctness and
complexity bounds of the algorithm, and we are the first to practically implement
and verify their algorithm for self-stabilizing CAS. We do this in the asynchronous
setting of message passing systems on the Internet, where messages may be lost
in transit, reordered or even maliciously corrupted.

1.2 Related Work

We know of no published work which implements and evaluates self-stabilizing
MWMR algorithms for emulation of shared memory. But there are many inter-
esting works which relates to this project, and in this section we take a look at a
number of those works.

Dolev et al. proposes a pseudo self-stabilizing version of SWMR ABD in [7]. The
authors extends the ABD algorithm to tolerate transient and permanent faults, but
with a weaker notion of self-stabilization than [6] uses. A pseudo self-stabilizing
algorithm guarantees convergence, but unlike proper self-stabilization it gives no
bound on how long it will take to converge.

Vacana [8] at the University of Cyprus did a master thesis about implementa-
tion and evaluation of a self-stabilizing atomic read/write register service. The
algorithms implemented were a non-self-stabilizing and a self-stabilizing version of
SWMR ABD based on the work by Alon et al. [9].

Nicolaou and Georgiou [10] did an experimental evaluation of four MWMR register
emulation algorithms. The algoritms evaluated were SWF, APRX-SWF, CwFr
and SIMPLE. The SIMPLE algoritm is a MWMR version of ABD for generalized
quorum systems and we use an alternative implementation with a self-stabilizing
quorum system in this project.

Layered Data Replication, or LDR, is an algorithm by Fan and Lynch [11] for
distributed storage which is optimized for large data objects. More specifically, it

3
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is optimized for when the size of the data objects are considerably greater than
the size of its metadata. The key idea is to separate the functionality among
the servers in a layered structure. Some of the servers are so called directory
servers, which only stores metadata about the objects. The actual objects are
stored in the so called replica servers. To know which replica server a specific
data object is stored on, a client first needs to query the directory servers and
get a quorum of responses. This reduces the communication cost significantly
compared to traditional replication based schemes like ABD, since read and write
operations can be done in near constant time. Even though this gives algorithm
gives particularly fast read operations, CAS is more flexible when it comes to cost
efficiency versus redundancy.

The Layered Data Storage (LDS) algorithm by Konwar et al. is another algorithm
which optimizes storage of large data objects by a dual layer approach. Unlike
LDR, the clients in LDS never interact with the second layer; clients only interact
with the first layer. Instead LDS adopts an approach inspired by the edge com-
puting paradigm, by having the first layer of servers act as proxy servers which
will cache objects from the second layer to be served down to the clients. It also
adopts regenerative erasure coding to improve storage and communication costs.

Cadambe et al. [13] have recently published an algorithm called ARES (Adaptive,
Reconfigurable, Erasure Coded, Atomic Storage), which supports reconfiguration
of a shared memory emulation service that is based on erasure coding. The au-
thors also presents the first atomic memory service that uses erasure coding with
only two-rounds for a client operation. While combining these two create an ef-
ficient solution with liveness even during quorum collapses, it does not consider
self-stabilization. Lynch and Shvartsman [14] presents another algorithm that also
support reconfiguration, called RAMBO. The algorithm uses full replication and
changing configuration requires that old members send the data to the new mem-
bers.

RADON, standing for Repairable Atomic Data Objects in Networks, is an algo-
rithm for distributed atomic storage by Konwar et al. [15]. Its read and write
operations are nearly identical to those of ABD, but with a larger quorum size
for write operations. RADON employs a self-repair mechanism to rebuild the lost
data via erasure coding, making it resilient against server crashes while still pro-
viding atomicity and liveness. This should mean that it is particularly suitable in
systems with high churn rate of servers. It does however not facilitate for multiple
concurrent writers (because of its similarity to ABD), and is not self-stabilizing.
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1.3 Our Contribution

We are the first to implement and practically evaluate the self-stabilizing algorithm
for atomic shared memory emulation developed by Dolev, Petig and Schiller [6].
This is the first algorithm of its kind to address privacy, malicious behaviour and
self-stabilization. We have also created a reset mechanism, based on principles
from [1] by Dolev et al. The reset mechanism can perform a virtually synchronous
global reset of the entire system. Additionally, we created a self-stabilizing rein-
carnation number service, which provides recyclable client identifiers.

To test the system during development, we created a virtualised platform based
on Docker and NS-3, which provides a more realistic setting (with real communi-
cation delays and bandwidth limitations than just running it locally). A similar
endeavour was made by Casparsson and Gardtman [16]. In order to show the ap-
plicability and correctness in practice, we have created an evaluation environment
using PlanetLab. Our experiments on PlanetLab shows that the algorithms are
indeed efficient enough to be used in practice, as demonstrated by our prototype.

The evaluation shows that our implementation of the self-stabilizing version of CAS
scales very well when increasing the number of servers and clients respectively. The
overhead for self-stabilization, in our experiments, is constant when compared to
two implementations of the original CAS algorithm. The system shows almost
no slowdown for data objects up to 512 KiB, and is only slightly slower for data
objects up to 1 MiB. Last but not least, the evaluation reveals that the reset
mechanism is almost as fast as a few client operations.

There are many other services and algorithms that make use of quorum systems
and gossip services or has bounded tag numbers. We believe that the building
blocks in this project could therefore be used to create other self-stabilizing services
and algorithms.

1.3.1 Document Structure

The rest of this report is structured as follows. In Chapter 2, we introduce the
system, models and evaluation criteria which are used. We then go into the the-
oretical background in Chapter 3, which is the existing foundation on which this
project has been built. That includes the concept of quorum systems, what shared
memory emulation is, the communication channel used as well as an outline of the
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1. Introduction

algorithms for shared memory emulation which are used in this project. After that,
in Chapter 4, the newly developed algorithms for reincarnation and global reset
are described. Chapter 5 and Chapter 6 go over how the system was implemented
and how it was evaluated, respectively. The evaluation results are presented and
discussed in Chapter 7, and Chapter 8 concludes the report by a short discussion
regarding similar works, possible extensions as well as a conclusion.
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2
System

In this chapter, the system setting and system models are described. In Section 2.1,
the architecture and functionality of the system are explained. Some note worthy
implementation decisions are discussed, and a description of the building blocks
which make up the system. Section 2.2 outlines the definitions and assumptions
regarding how communication, execution and faults are modelled.

2.1 System Setting

The system setting considers a network with N nodes which are referred to as
servers and another set of nodes which are client nodes. Each of the servers has
access to a register where records are stored. A record can hold either a coded
element or an empty element (i.e., a None object). The original data object can
be reassembled from any k, non-empty, elements.

Clients are nodes which interact with the shared-memory service using read and
write operations. These operations include multiple communication rounds of
requests and responses between a client and the servers. Every client performs
operations sequentially, but operations can still be concurrent since clients acts
independently of each other.

The basic architecture of the system is based on a client-server scheme, as seen
in Figure 2.1. The servers are part of a fully connected network, since we are
using transport layer protocols to communicate. Logical links are established using
acknowledged, directed channels. Every server communicates with every other
server using two such directed channels—one in each direction. The servers can at
any time send or receive gossip messages over these channels, informing each other

7



2. System

Server

Server

Client Proxy

Figure 2.1: Diagram of the basic client-
server architecture for the system. Ar-
rows represent directed, acknowledged
communication channels. The servers are
in a fully connected cluster, and every
client is connected to every server via a
directed channel.

about the state of the data object or other meta data and configuration changes.
The underlying communication on which the channels are implemented is assumed
to be unreliable, meaning that packets may be omitted, reordered, duplicated or
corrupted, and the channels must be able to deal with that.

Every client is connected to every server via a directed link. We call these links
directed, even though they technically send information in both directions. While
a server can piggyback a payload on the acknowledgement message to the client,
the delivery of that payload is in turn not acknowledged. Therefore, we find it
more useful to view it as a directional rather than bidirectional link.

The environment is asynchronous, and servers and clients may at any time fail-
stop. In the absence of transient faults, servers can resume their operation at
any moment, but clients can not. Instead, clients have to reincarnate, meaning
that if they come back, they must do so under a new unique identifier (effectively
becoming a new client).

2.1.1 Functionality

The service is implemented as a library, which can be used by applications in order
to provide access the read and write operations. Calls to the functions read() and
write(x) behaves just as if the service was an actual shared memory. Calls to these
functions blocks the calling process until it returns. A successful read operation
returns the data object, and a write operation blocks until it is done writing the
object (and returns nothing).

8



2. System

Each node is initialized with a configuration file, which specifies the information
needed for the system to work. The configuration file holds a list of participating
servers, coding parameters, how many server failures can be tolerated, and the
storage bounds.

2.1.2 Shared Objects

The functionality for the whole system is to emulate a shared memory. This
memory contains a single data object and there are multiple readers and writers
concurrently accessing the object. An important property that has to be satisfied
for emulating a shared memory is atomicity. In other words, if a client reads
two times in a row, the second read operation should never return an older value
than the first read operation did. The key take-away is that concurrent operations
should appear as if they were sequential (i.e., they are linearisable).

Unique tags are used to determine the causal relationship between writes, and are
used to retrieve the most up-to-date version of the shared object. A tag is defined
as a tuple of a sequence number and a writer’s identification, which in turn consist
of an incarnation number and a unique hardware address. The sequence number
is used as an overall causal relationship identifier but concurrent writes with the
same sequence number are deterministically sorted on the writer identification.

A record in a server’s register is a tuple of the form (tag, element, phase). Along
with the unique tag and the coded element (see Section 3.5.1), there is a field
called the Record’s phase (which can be pre, fin or FIN ). The record phases are
discussed in more detail in Section 3.5.

2.1.3 Building Blocks

There are algorithms which has critical roles in the main algorithm, but are not
themselves part of the main algorithm. We call these algorithms building blocks,
and there are many alternatives for which building blocks to use when building the
main algorithm. This section goes through what building blocks we have chosen
and why. The building blocks are summarized below, and are covered more in-
depth in Chapter 3 and Chapter 4.

A self-stabilizing system can not use a regular TCP connection to communicate,
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since TCP is not self-stabilizing. Therefore, another protocol is required, which
has both reliable and self-stabilizing end-to-end communication. The protocol we
use is a self-stabilizing version of the token passing algorithm by Dolev in [17,
Figure 4.1]. In our implementation of this token passing channel, both TCP and
UDP can used for the data transfer (see Section 5.2.1).

A self-stabilizing gossip protocol is used between servers to periodically share the
largest tag number for each of the phases: pre, fin and FIN. Gossip messages are
delivered unreliably, and that is a feature. New gossip messages should overwrite
old ones, if one message has not yet been delivered before the next one arrives.

Quorum systems are used to have good availability and to guarantee atomicity
when servers can fail during operation. A quorum system rely on that enough
information can be recovered from the intersection between subsets of servers. An
external directory service which can serve the list of storage servers is assumed to
exist. In our implementation, a configuration file is used. For more information
on quorum systems, see Section 3.1.

A reset mechanism is needed in self-stabilizing distributed services, whenever there
is any kind of sequence number present. Even if the sequence number counter in a
message were to be chosen to be so large that it could never reasonably be expected
to overflow (like a 64-bit integer), a transient fault could still cause the counter to
jump to a number so large that it will overflow. To handle such a scenario, there
is a wrap-around mechanism that should be triggered whenever MAXINT (e.g.,
264 − 1) is observed.

An assumption in Dolev et al. [6] is that if clients fail they stop and never return to
operation. But [6] mentions as a possible extension that recyclable client identifiers
could be used to overcome that problem. If a client crashes during an operation
and then comes back again, it will be treated as if it was a completely new client
joining. When a client rejoin, it must have a new globally unique identification
number. To achieve that, a monotonically incrementing counter (called incarnation
number) is appended to the client’s unique identifier.

2.2 Models

In this section, we present the models that the system is based on. The models
describe certain core concepts and approaches which are fundamental for under-
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standing how and why the system works. These models define how the communi-
cation, execution, and faults are represented in the design of the system. Last but
not least we give our definition of self-stabilization.

2.2.1 Communication Model

In this project, we use transport layer protocols for message passing. That means
that routing does not concern us, and the network can be seen as a fully connected
virtual topology. The model we use assumes an asynchronous setting where mes-
sages may be arbitrarily reordered, created or deleted during transit. Furthermore,
we assume communication fairness, under the definition that if a node is trying
to send a message over a link infinitely often it will eventually deliver the mes-
sage. Simply put, this means that a link might be down for an arbitrary amount of
time, but not forever. If the system were to be truly self-stabilizing, the underlying
communication protocols would also need to be self-stabilizing.

2.2.2 Execution Model

A running instance of the program is said to be a processor, and can live either on
the same machine as other processors or on a machine which is physically separated
from others. A processor can take (atomic) steps according to the program code,
and may only end up in an illegal state as a consequence of a transient fault. An
illegal state is defined as any state such that the invariants of the system does not
hold. A state is a configuration of all variables and any in-transit messages, at
some given point in time. Transitions between states represent a step being taken,
which can be either the departure or arrival of a message or an execution which
changes one or more variables.

The execution model builds on a discrete time model which considers an asyn-
chronous setting, where any step can be interleaved in any order with other steps
(as longs as they are not causally related). Any step which can be taken at some
point in time is guaranteed to eventually be taken, but no guarantee is given as to
when that happens. This is called fair execution.

An execution is a sequence of steps. The set of steps which performs the desired
task of a system is called the legal execution (LE). During the legal execution, no
step can be taken which violates the system requirements.
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2.2.3 Fault Model

Communication Faults are faults which may occur to messages during transit,
as well as when sending or receiving a message. There are three types of commu-
nication faults which can occur: omission, duplication, and reordering. Omission
means that a message was lost, duplication means that a received message may be
received again, and reordering means that two messages may be in another order
than they were sent in.

Node Faults may occur, in the form of a crash failure. Servers may crash and
return to operation again at any moment, except that all servers are required to be
alive at the time of a global reset. At most f servers are allowed to fail. Clients are
allowed to crash and resurrect, but if they do they must use a new client identifier
(see Section 4.1). Note that there is no way to externally distinguish between a
crashed node and a node that has lost connectivity.

Transient Faults are assumed to occur only very rarely, but when they do they
may cause the program to end up in an arbitrary state. Any violation of the system
assumptions is considered a transient fault. Transient faults can for example be
a soft error (such as a bit flip, perhaps induced by background radiation) or the
very unlikely event of a CRC code failing to detect a bit error in a transmitted
packet. What causes the error and what effect the error will have on the system is
impossible to say, why it is impossible to protect against within traditional fault
models.

2.2.4 Self-Stabilization

The concept of self-stabilization provides a strong fault-tolerance guarantee in that
it will always recover from a transient fault. While there is no way of avoiding
transient faults from occurring, a self-stabilizing system will return to correct be-
haviour within a bounded period of time (assuming the program code itself stays
intact).

The self-stabilization model we use assumes that a processor may start in an
arbitrary state caused by a transient fault, after which no more transient faults
occur. Since the transient fault may cause the system to enter any conceivable
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state without a good reason, the history leading up to that point is of no interest.
Therefore, we do not consider any progress before the last instance of a transient
fault. Every possible execution of a self-stabilizing algorithm should eventually
lead to a set of steps which belongs to LE. LE stands for Legal Execution, and
is the sequence of steps such that the system continuously exists in well behaved
states.

2.3 Evaluation Criteria

A common evaluation criteria in the field is to measure operation latency; the
average time it takes for an operation to complete [18]. This includes both com-
munication delay and local processing time. We use this as our primary metric for
evaluation.

The operation latency is measured both in an isolated setting where no other
clients are doing any requests and in a setting when we have different levels of
base load on the servers. For comparison, we have two non self-stabilizing versions
of CAS, as well as a MWMR implementation of ABD that uses a self stabilizing
quorum system. The evaluation platform and the different test cases are described
in Chapter 6.
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3
Theoretical Background

In this chapter, we present the theoretical background on which our project is
based. We go through core concepts and algorithms which has not been developed
by us, yet plays an integral role in our project. We begin by explaining the concept
of a quorum system and shared memory emulation, and proceed to detail the
algorithms which are used in this project. The first algorithm is used as a basis
for the communication channel, and is used for communication between nodes
in our main algorithm. We then conclude by describing the two shared-memory
emulation algorithms – ABD and CAS. ABD is used as a baseline comparison for
performance, and CAS is of course at the core of the project.

3.1 Quorum Systems

Famously, highly distributed services stand before the issue of the CAP theorem
– consistency, availability and partition tolerance are all important qualities, but
achieving all three is not always possible. But as discussed in [19], it is not nec-
essarily the case that only two out of the three characteristics can be reached.
In fact, it is often the case that systems can deliver better than that, and using
quorum based solutions is a wide-spread approach to do it.

A quorum is defined as the smallest subset of participants needed to make a
decision. Exactly which subset that is, depends on the application. In a situation
where the quorum size is equal to the number of participants in the quorum system,
every participants needs to be consulted. Conversely, if the quorum size is one,
only a single participant needs to be contacted (possibly because of one participant
having an elevated position).
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In systems with very large numbers of participants, it’s exceedingly unlikely that
everyone is available at a given time. If each server has an uptime of 99.99%, in
a system with 10 000 servers that would mean only a 36% chance that all servers
are available. And today it is common to have millions of servers in a cloud
infrastructure [20, 21, 22], so it is clear that reasonable availability guarantees can
not be given if all servers need to be contacted.

In applications which requires consistency in a partition free environment (e.g.,
reaching consensus), a quorum system can be designed to give such guarantees
while providing superior availability compared to contacting all participants. As
long as the definition of a quorum assures overlap between itself and any other
quorum, consensus can be reached. The trivial solution to this is what is called a
majority vote quorum. If responses were received from a majority of participants,
it is impossible to construct another subset which comprises a majority of the
participant without there being overlap. There are also other alternatives which
can guarantee overlap, like for example a matrix based quorum system (where
one row and one column in the matrix of servers are required to have a quorum).
Formally, in a system of quorums Q = {Q1, Q2, . . . } it must hold that @Qx, Qy ∈
Q : Qx ∩Qy = ∅.

When designing a quorum system to provide great availability, it is generally de-
sirable to define the quorum to be as small as possible. A small quorum naturally
minimizes the number of servers which needs to be contacted, but in order to
guarantee the desired functionality of an application it can usually not be arbi-
trarily small. In CAS for example, there are two essential attributes which both
puts requirements on the quorum size: consistency and coding (see Section 3.5).
It is not enough to simply require a majority (and thus ensuring overlap), but
the overlap must be at least of size k. Otherwise, the original message can not
be reconstructed from the coded elements. This lends another very interesting
effect of the choice of coding parameter k: with less redundancy (and thus smaller
code words) more responses are required. So while less redundant data being sent
would mean strictly better performance on a traditional system, it can actually
have negative effect in a quorum system since it would require more responses than
otherwise.

Another advantage of quorum based solutions over contacting a predetermined set
of participants, is that not only are fewer answers needed – it is in particular only
the |Q| fastest answers that are needed. In other words, we never have to wait
for the slowest participants. This is especially useful in a heterogeneous setting
such as for servers on the Internet, which may have widely varying load, different
resources available or simply located at different places around the world. We
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again want to point out that this benefit is forfeited if the coding is set to make
the code words as small (i.e., non-redundant) as possible.

3.2 Shared Memory Emulation

The goal of emulating a shared memory is to hide the message passing from the
clients, to instead provide the low-level operation primitives read and write. These
operations are invoked from an external source, using a client as proxy. Opera-
tions on the memory should have the atomicity property and therefore appear as
sequential.

3.2.1 Atomicity

There are two main criteria that need to be satisfied for the atomicity property.
One is that any invocation of a read operation, after a write operation is completed,
must return a value at least as recent as the value written by that write operation.
The other is that a read operation that follows another read operation will return
a value at least as recent as the value returned by the first read operation.

3.2.2 Shared Memory Model

Shared memory model is a cornerstone of distributed computing. The setup is
that nodes communicate with each other by doing read and write operations to a
physically shared memory. The memory is often either single-writer and multiple-
reader (SWMR) or multiple-writer and multiple-reader (MWMR).

In shared memory, it is an unreliable and asynchronous setting where nodes can
fail-stop is assumed. Due to spatial locality in shared memory, it is easier to get an
overall perspective on the system, compared to object sharing in message passing
systems.
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3.2.3 Object Sharing in Message Passing Systems

Shared memory makes it fast and easy to share data objects between processes.
But doing so on an asynchronous message passing platform is much harder, since
there might be link failures and unbounded communication delays. Yet, it is vital
that systems can share data reliably with each other on the Internet.

Objects can be shared in a message passing system by emulating a shared memory.
An object is accessed using a series of operations at a client node in order to
satisfy the atomicity property. But links can fail and therefore can information be
temporarily unavailable due to partitioning.

3.3 Communication Channel

A self-stabilizing communication channel is needed for Algorithm 3 in [6]. A chan-
nel is constructed using the self-stabilizing version of the token passing algorithm
described in [17, Figure 4.1]. The extension needed to make that algorithm self-
stabilizing is simply to increment the sender’s counter modulo cap + 1, where cap
is the upper bound on the number of messages that can be in transit (the channel
capacity). It is assumed that the number of latent messages in the channel is less
than 232, which we deem to be sufficiently large. The pseudocode for the self-
stabilizing communication channel can be found in Algorithm 1 and Algorithm 2.

3.3.1 Token Passing Algorithm

In order to make Dolev’s self-stabilizing communication channel realizable, without
a mechanism for removing old messages, a slight modification is necessary. At
line 11 in [17, Figure 4.1], there is an else-statement: else send(counter). That
line can cause practical implementation issues. In the (presumably relatively rare)
event of the receiving end being slower than usual, the timeout might trigger and
cause one or many retransmissions of the counter. There would thus be at least two
tokens in circulation, assuming the original message was slow but never dropped.
If the sender also resends upon any message arrival (which the aforementioned
line 11 would bring about), the channel would never have cause to get the extra
tokens out of the system. Our modification does not change the theory, since the
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timeout will eventually trigger a retransmission if the if-statement is never entered.

There are other self-stabilizing communication channels that could be used instead,
like [23] or [24]. The advantage of implementing a channel based on a token passing
algorithm is that it uses a stop-and-wait approach, while [23] and [24] relies on a
repeating retransmission of messages until it receives an acknowledgement. That
way, an application layer mechanism for congestion control does not have to be
implemented since it is not needed in a stop-and-wait communication.

3.3.2 Sender Algorithm

A sender has access to three local variables: message, counter and cap. A message
that is about to be sent is placed in message. The current value of the token is
held by counter and cap is the upper bound on the number of messages that can
exist simultaneously in the channel.

The sender protocol has two types of events (see Algorithm 1). The first event
(line 1) is a timeout on the communication between processor i and j. This
functionality is necessary in order to retransmit, in case a message or the token is
lost. The second event (line 3) is triggered whenever a message arrives at processor
i. When such a message arrives the message counter field is examined to see if it is
a fresh message with an up-to-date token. If so, the local counter is updated and
a token arrival event is triggered. This event could be either an acknowledgement
from a gossip message or a response to a PingPong request. The data sent is a
concatenation of the token and the message and once it is invoked, the sender
stops holding the token.

Algorithm 1: Algorithm for the sender’s protocol in the communication
channel.
Variables: message, counter, cap

1 upon timeout on message from pj to pi do
2 send(j, counter||message)
3 upon (msgCounter, message) from pj to pi do
4 if msgCounter ≥ counter then
5 counter ←− (msgCounter + 1) % cap
6 raise pingpong or gossip event according to channel type
7 send(j, counter||message)
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3.3.3 Receiver Algorithm

A receiver has access to the local variables counter and response. The latest
non-duplicated token value is stored in counter and the response (whether it is an
acknowledgment or not) in response.

The receiver algorithm has only one event and it is triggered on every message
arrival (see Algorithm 2). The received token is examined and compared to the
local counter value. If they are different, then the receiver has the token and can
trigger a second event accordingly. The counter together with a response is then
sent back to the sender.

Algorithm 2: Algorithm for the receiver’s protocol in the communication
channel.
Variables: counter, response

8 upon msgCounter, message from pj to pi do
9 if msgCounter 6= counter then

10 counter ←− msgCounter
11 raise pingpong event or response← ACK according to channel type
12 send(counter||response)

3.4 ABD

One of the first and most significant contributions to shared memory emulation
algorithms is the work by Attiya, Bar-Noy and Dolev [3], which is most known
as the ABD algorithm. The ABD algorithm has been iterated upon by Lynch
and Shvartsman [4], making it MWMR. A similar MWMR implementation using
general quorums is the Simple algorithm proposed by Nicolaou and Georgiou [10].
Georgiou has created a summary of Simple, with pseudo code, in [25].

ABD is a SWMR algorithm, and employs full data replication with a majority vote
quorum system to achieve data consistency. One of the key elements introduced
in [3] was the use of so-called tags, for versioning of the data objects. In the SWMR
case the tag can simply be a counter, incremented by the writer each time a new
object is written. But a tag might also include the unique identifier (UID) of the
writer client, which is needed in the MWMR versions of the algorithm. Each tag
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is associated with some data value, <timestamp, value>, and is (together with
majority vote quorums) the key to consistency in ABD.

ABD uses full replication, which results in the total amount of data stored being
quite large. Denoting the number of servers N and the size of one data object d,
the system will need to store a total of N ×d. This means that a single write from
a single client could occupy quite considerable resources, both on the network links
and storage wise.

3.4.1 ABD Client Algorithm

On the client side, ABD has two distinct parts: a read protocol and a write
protocol. As per the MWMR version presented in [25], both protocols consists of
two phases. For a writer client, we call the first phase the writer query and the
second phase the write phase. During the writer query, the client sends a query
message to all servers, requesting their respective latest tag. The client then waits
until it has received responses from a quorum of servers, and stores the greatest
tag value as maxTag. The writer query phase now ends, and the write phase can
commence. The client increments the tag counter to be maxTag + 1, adds its own
identifier to the tag, and then proceeds by sending a message (containing the new
tag) to all servers. After receiving acknowledgements from a quorum of servers,
the client is assured to have successfully written a new value to the quorum system.

A reader client has two phases, and much like a writer client it starts with a
query phase. The reader query requests the latest timestamp from every server,
and waits until is has received a quorum of responses containing tuples of tag
and value. It then finds the greatest tag amongst the received responses, and
stores it as maxTag. After the query phase the client enters the propagation
phase, in which it disseminates its knowledge of the globally most recent tag value
found. The client sends out maxTag to all servers, and subsequently waits for
acknowledgements from a quorum of servers. At this point, the read operation is
considered successful (returning the value corresponding to maxTag).
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3.5 Coded Atomic Storage

Coded Atomic Storage (CAS) was presented by Cadambe et al. in [5]. It builds on
techniques which were introduced already in 2003 by Fan and Lynch [11] and Lynch
and Shvartsman [26], and provides an efficient MWMR algorithm for shared mem-
ory emulation. It uses erasure coding to reduce the communication cost, instead
of using full replication like ABD. CAS is a quorum based algorithm, where a
quorum is any subset Q of all servers such that |Q| = dN+k

2 e. N is the number of
servers and k is the coding parameter deciding how many elements are needed to
reassemble the message. The CAS algorithm allows for up to f server failures.

3.5.1 Erasure Codes

Erasure coding is a technique whereby a relatively small amount of redundant in-
formation is added to a piece of data, in order to make it robust to bit erasures. An
(N , k) erasure code splits the data into N coded elements which has coding applied
to them such that only a subset containing k elements is needed to reassemble the
original data. An erasure code is said to be a maximum distance separable (MDS)
code if it has the property that the original data can be reconstructed from any k
of the N coded elements (as opposed to requiring one or more of the k elements
to be of a particular kind). The particular kind of MDS erasure coding we use is
(N, k)-Reed-Solomon codes, which is a group of MDS erasure codes.

CAS builds on having (N, k) coding applied to the data, and distributing the N
coded elements to the servers in the quorum system. Since k elements are required
in order to reassemble the data, the coding parameters have a direct effect on the
quorum size. This accommodates for a flexibility in choosing between having
smaller sized coded elements and better data redundancy – CAS can be tweaked
according to the system needs. The fraction r = k/N is called the code rate, and
is a measure of how big part of the coded elements is non-redundant data. A
high code rate means less redundancy but smaller elements, while the inverse is
true for low code rates. The special case of k = 1 is effectively equivalent to full
replication.
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3.5.2 CAS Client Algorithm

All algorithms for shared memory emulation provides read and write operations
for the clients. The writer’s protocol in CAS has three phases: a query, a pre-write
and a finalize phase. The reader’s protocol in CAS has only two phases, a query
and a finalize phase. The phases in the respective protocols are described below.

CAS Writer’s Protocol

Query sends a message to all servers to request the highest tag that has the label
finalized. The client then waits until it has received responses from at least a
quorum of servers. It then takes the maximum of all received tags, which is the
global maximum tag.

Pre-write sends a message on the form (t, m, ‘pre’) to all servers and waits for
an acknowledgement from a quorum of servers. The variable t is the received tag-
number from the query phase, increased by one. The variable m holds a coded
element (see Section 3.5.1).

Finalize sends a message (t, ⊥, ‘wfin’) to all servers. After receiving a quorum
of acknowledgements, the write operation is finished. The finalize phase hides the
write operations that have not been seen by a quorum, since the query phase only
looks at records with phase ’fin’. Once the client has passed the pre-write phase, it
knows that at least a whole quorum has enough elements to reconstruct the data
and therefore it can be made visible in other operations.

CAS Reader’s Protocol

Query: this phase is identical to the query phase in the writer’s protocol.

Finalize sends out a message (t, ⊥, ‘rfin’) to all servers, where t is the maximum
tag-number calculated during the query phase. The label ‘rfin’ is used for the server
do differentiate between a reader finalize and a writer finalize. The client waits
until every server in a quorum has responded with the coded element corresponding
to t (if they have it) or an empty object. If at least k of the servers that responded
have included a coded element, the reader will reassemble the message and return
it to the application. Otherwise, it just returns as an unsuccessful read.
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3.5.3 CAS Server

A server has a local state that is its storage of records. A record has the form
(t, w, label) where t is a tag, w is a coded element and label is either ‘pre’ or ‘fin’.
A tag is a tuple of sequence number and an identifier for the client that originally
created the tag. The server protocol also has event handlers corresponding to the
client requests: query, pre-write, read-finalize and write-finalize.

Clients can fail-stop during a write operation, and there might exist unfinished
records because of non-finalized records. If a client crashes during the pre-write
phase, it is not a problem for other clients since this record is not yet visible to
them. However, if a client crashes during the finalize phase, then that tag is visible
during another client’s query phase, even if it was not finalized on an entire quorum.
This potential problem is solved by having every server periodically gossip their
finalized records to the other servers. This mechanism is used to implicitly finalize
records which has already been finalized by other servers.
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In this chapter, we introduce the algorithms which has been developed during this
project. The first section describes the reincarnation service, which provides a way
for clients to resume with a unique identifier after a crash. In the section following
that, we describe the mechanism for global reset. The algorithm used for global
reset builds on principles from [1], but was adapted to fit our purposes.

4.1 Reincarnation Service

Reincarnation of clients is an extension mentioned in Dolev et al. [6]. Without this
extension, clients must never resume after a crash, except as part of the global reset
procedure. If a client sends a request, crashes and then restarts again and performs
a new request, the response to the first request might be received and mistaken
as the response to the new request. That would violate correctness, and is dealt
with by the reincarnation service.

4.1.1 Client Identifier

A client identifier consists of an incarnation number and a unique hardware ad-
dress. The incarnation number is requested (and updated, if needed) at boot as
well as periodically, in order to ensure that it is updated after a crash. This way,
clients do not have to delay joining until a global reset is triggered by a transient
fault, but can resume immediately. However, this will put a new bound on the
number of clients allowed in the system. It is not only the amount of client nodes,
but the number of client nodes and their incarnations.
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It is important to note that a new type of sequence number (the incarnation
number) has been introduced and it too is prone to transient faults. Such a
situation is handled the same way as with a maximum tag number. If a maximum
incarnation number is noticed, then new queries are blocked and a global reset is
invoked.

4.1.2 Reincarnation Service Algorithm

The pseudocode for the reincarnation service algorithm can be found in Algo-
rithm 3. The algorithm includes both server and client functionality as well as
their local variables.

A client has access to the uid variable, which is a tuple of incarnation number
and the client’s globally unique hardware address. The client also has access to an
interface called qrmAccess(), which gives access to a majority quorum of servers.
A server has a first-in-first-out queue where it stores tuples containing the hardware
address and highest corresponding incarnation number for each client. In order
to bound the storage space it is assumed that there exists an upper bound on
the space of relevant hardware addresses. However, since it is a queue, the set of
relevant addresses can vary over time.

The client algorithm performs a periodic task which starts with a query phase to
check if its current incarnation number is up to date. It queries all servers, and
awaits responses form a quorum of servers. The maximum value of all received
incarnation numbers is calculated, and if that number differs from the current
client incarnation number, a second phase is triggered. In the second phase, the
incarnation number is updated both at the client side and in the quorum system.
The client takes the maximum of the current incarnation number and all received
incarnation numbers, increments that by one and sends it out to all servers. After
receiving a quorum of acknowledgements, the client knows that it has been assigned
a new valid incarnation number and can thus proceed with operation as usual by
updating its uid accordingly.

The server algorithm has two event types that can be triggered: a request for a in-
carnation number and an update of an old value. The query procedure first checks
that the maximum allowed incarnation number does not appear in the server’s
incarnation number queue. If there exists such a value, new incarnation number
requests will be blocked in the query phase until a global reset has completed.
Otherwise, if no previous number associated with the requested hardware address
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exists, the default value 0 is returned. If the client’s previous number is present,
then that tuple is placed at the tail of the queue and is sent as a response to
the request. The update procedure is simpler and just adds the new value to the
queue. If a previous value was recorded, then the update procedure removes the
old value from the queue.

Algorithm 3: Algorithm for reincarnation service.
Variables:
uid: is a tuple of hardware address and incarnation number
cntrs: is a FIFO queue of all incarnation numbers associated with a
corresponding hardware address. The size of the queue is the upper bound on
the number of relevant hardware addresses allowed. New entries are included
in the queue after one complete cycle.

1 The client:
2 upon periodic task do
3 let incNbr ←− max{qrmAccess(‘cntrQry’)}
4 if incNbr 6= uid.incNbr then
5 newIncNbr ← max{incNbr, uid.incNbr}+ 1
6 qrmAccess((newIncNbr,‘incCntr’))
7 uid←− 〈hwAddr, newIncNbr〉

8 The server:
9 upon cntrQry arrival from pj’s client to pi’s server do

10 if maxIncNbr ∈ cntrs then return
11 if 〈j, •〉 ∈ cntrs then
12 cntrs.add(cntrs.remove(j))
13 reply(j, (cntrs.get(j).incNbr,‘cntrQry’))
14 else
15 reply(j, (0,‘cntrQry’))

16 upon (newIncNbr,‘incCntr’) arrival from pj’s client to pi’s server do
17 if 〈j, •〉 ∈ cntrs then cntrs.remove(j)
18 cntrs.add(〈hwAddrj, newIncNbr〉)

4.2 Global Reset

A global reset mechanism is needed to reset sequence numbers and wrap around
to a default value. That a sequence number reaches its maximum value is in
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practice only possible due to a transient fault. In order to wrap around, all servers
have to be alive for agreement to happen. Guaranteeing that every server in a
configuration is alive requires access to reliable failure detectors. As this is not the
main focus of this project, we assume that an external mechanism is implemented
to remove failed servers from the configuration [1].

4.2.1 Global Reset Algorithm

The ideas behind the Global Reset Algorithm is similar to [1, Algorithm 3.1]
by Dolev et al. Their algorithm is a self-stabilizing membership reconfiguration
but has been adapted to act as a reset mechanism in our context.

The key idea is that a server proposes a tag and then a coordinated phase transition
used in order for all servers to agree on that specific tag number. When they have
reached an agreement, all other tag numbers should be removed from their storage
(in the localReset() procedure). This is referred to as the replacement phase.
Since this is a self-stabilizing algorithm, it constantly checks for transient faults.
If a transient fault is noticed, the algorithm cancels the replacement phase and
enters a reset phase. This reset phase is used to restart the replacement process.
The pseudocode for the adapted algorithm can be found in Algorithm 4. This
requires an updated version of the gossip protocol in Dolev et al. [6] which can be
found in Algorithm 5.

Algorithm 4 requires the local variables: prp, all, echoAnswers, allSeenProcessors,
config and dfltPrp. The lists prp and all store received proposals and whether
or not all have seen their proposals respectively. The list echoAnswers holds the
latest value that a processor has sent, which has also been acknowledged by the
servers. The set allSeenProcessors are used to gather all servers that have re-
ported that everyone has seen their proposal. Addresses to all participants are
in config and dfltNtf is a default proposal used when there is no wrap around
currently in progress. The proof, and how the mechanism works, can be found in
the original paper [1].

4.2.2 Reset Indication

A reset of the proposals is done when a transient fault is detected. This process is
triggered by line 22 and results in a ⊥ in every prpi[k] : pk ∈ config. The goal of
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this is to stop any ongoing global reset procedure and start over from a state where
every processor pi has prpi[i] = dfltPrp. During the reset phase no processor can
propose a new record with a call to propose(tag) due to being blocked by the
macro enableReset() until the reset phase has finished.

Line 21 should catch every possible transient fault. The arguments are similar
to the paper by Dolev et al. [1], but are adopted for our purpose. One of the
main differences is that we do not make use of failure detectors but rather assume
that there exists another mechanism to ensure that every processor will be alive
both during the reset phase as well as the replacement phase. Another difference
is that both the replacement mechanism and the reset mechanism from [1] works
with proposals for a record with the current highest tag number and not a new
configuration. Therefore the trigger is when there exists any processor or message
with its proposal field set to ⊥. In the original paper, Lemma 3.2 is triggered
by conflicting configurations and this can be due to transient faults or servers
restarting with a different local state than other servers.
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Algorithm 4: Algorithm to perform a global reset, using coordinated phase
transitions.
Variables:
prp[], all[], echoAnswers[], allSeenProcessors, dftlPrp = 〈0,⊥〉
function: propose(tag) = {if enableReset() then

(prp[i], all[i])← (〈1, tag〉, false)}
macro: enableReset() = return(@pk ∈ config : (prp[k] = ⊥)

∨ ((prp[k], all[k]) 6= (dfltPrp, true)))
macro: prpSet(val) = foreach pk ∈ config do (prp[k], all[k])← (val, false)
macro: modMax() = if Phs = {0, 1} then return max Phs else return

prp[i].phase, where Phs = {prp[k].phase}pk∈config

macro: degree(k) = return (2 · prp[k].phase + |{1 : myAll(k)}|)
macro: corrDeg(k, k′) = return ({{degree(k), degree(k′)} ∈

{{x, x}, {x, x + 1 mod 6}, {x, x + 2 mod 6} : x ∈ {0, . . . , 5}})
macro: maxPrp() = if {(degree(k)− degree(i)) mod 6}pk∈config * {0, 1}

then return prp[i] else return
〈modMax(), maxlex{prp[k].tag}pk∈config〉

macro: myAll(k) = return (all[k] ∨ (∃pl ∈ allSeenProcessors :
prp[i].phase + 1 mod 3 = prp[l].phase))

macro: greaterOrEqual(k) = return
(prp[i].phase + 1) mod 3 = prp[k].phase ∨ prp[i] = prp[k]

macro: echoNoAll(k) = return
(prp[i] = echoAnswers[k].prp) ∧ greaterOrEqual(k)

macro: echo(k) = return
({(prp[i], all[i])} = {echoAnswers[k]}) ∧ greaterOrEqual(k)

macro: increment(prp) = case (prp.phase) of 1: return
(〈2, prp.tag〉, false); 2: return (dfltPrp, false); else return
(prp[i], all[i]);

macro: allSeen() = (all[i] ∧ config ⊆ (allSeenProcessors ∪ {pi}))
macro: proposalSet = {prp[k].tag : ∃pk′ ∈ config : prp[k′] = 〈2, •〉}pk∈config

19 Do forever begin
20 foreach pk ∈ config : all[k] do

allSeenProcessors← allSeenProcessors ∪ {pk}
21 if (∃pk : ((prp[k] = 〈0, s〉) ∧ (s 6= ⊥)) ∨ (∃pk, pk′ ∈ config :

¬corrDeg(k, k′)) ∨ ({pk ∈ config : prp[i].phase + 1 mod 3 =
prp[k].phase} * allSeenProcessors) ∨ (|proposalSet| > 1) ∨ ((∃pk ∈
config : prp[k] = ⊥) ∧ (prp[i] 6= {dfltPrp}))) then

22 prpSet(⊥)
23 if (prp[i] = ⊥ ∧ all[i]) then
24 prp[i]← dfltPrp

25 (prp[i], all[i])← (maxPrp(), ∧
pk∈config(echoNoAll(k)))

26 if (Prps 6= {dfltPrp} ∧ @x ∈ Prps : x = ⊥), where
Prps = {prp[k]}pk∈config then

27 if allSeen() ∧ ∧
pk∈config(echo(k)) then

((prp[i], all[i]), allSeenProcessors)← (increment(prp[i]), ∅)
28 if prp[i].phase = 2 then localReset(prp[i].tag)
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Implementation

In this chapter, we describe the system implementation. We begin with a short
mention of our development approach, where we discuss the programming lan-
guage, paradigms, external libraries as well as testing approach. We then proceed
to a more concrete discussion regarding the implementation choices and outcome.
The first concrete part is the communication channel, which is discussed in Sec-
tion 5.2. In Section 5.3, the Gossip and PingPong protocols are described. Finally,
the actual implementation outcome of ABD and CAS is described.

5.1 Approach

This section first describes the choice of development method, and then how con-
tinuous testing was conducted, as well as the test bed. The code developed during
this project is licensed under the MIT license, and can be found in our code repos-
itory1.

5.1.1 Development

The library is developed using the Python programming language. It is a good
general purpose programming language that allows fast prototyping and, since it
is an interpreted language, makes the library portable.

We chose to work in the object oriented programming paradigm, using an asyn-
1https://bitbucket.org/selfStabilizingAtomicStorage/datx05-code
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chronous, event-driven approach to concurrency using the Asyncio library. Asyncio
can be used to write single-threaded concurrent code. When programming with
Asyncio, one does not run code explicitly. Instead, functions (or coroutines) are
scheduled in an event loop. The two main reasons for using asynchronous program-
ming is less overhead compared to spawning new threads and the code structure
makes it easier to argue about its correctness. We want the software to be event
driven, since that ties well into both the asynchronous nature of the system and
how the algorithm in [6] is described.

Some of the necessary functionality is already implemented and therefore it is used
as dependency instead of reimplementing it. One of the libraries is a cross-platform
library called liberasurecode that provides implementations of Reed-Solomon en-
coding and decoding. This library can be accessed from a Python application
using the PyEClib2 library, which serves as an interface to liberasurecode.

Python’s own socket class, which is an abstraction of a low-level networking inter-
face is used to create network endpoints. Asyncio, as part of the standard library,
provide non-blocking socket I/O operations. Another blocking operation is file
I/O. Reading and writing of large files to disk takes in relative terms substantial
time so asynchronous file operations are handled using Aiofiles3.

5.1.2 Testing

To test the implementation during development, the discrete event simulator NS-3
is used to simulate a real LAN environment. This makes the testing more realistic
because of the possibility of changing network configurations.

The NS family of simulators is widely used in research and the latest version NS-3
has been shown to have good performance compared to other network simula-
tors [27]. The controlled test environment consists of a simulated network where
we can control the communication latency and the data rate, similar to the ap-
proach taken in a previous master thesis project at Chalmers [16] or as described
in the official NS Wiki [28].

In order to standardize the test environment in which the implementation is run,
we are using containerisation software to isolate each instance of the application.

2https://github.com/openstack/pyeclib
3https://pypi.python.org/pypi/aiofiles
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Containers can be very light-weight compared to virtual machines, while still pro-
viding isolation from the host system. This way, together with the simulated
network, we get a full-stack environment that acts as if there were multiple differ-
ent machines running, connected via a network. The Docker ecosystem makes it
easy to setup automated test environments, which in turn can be deployed on any
machine with Docker installed.

5.2 Communication Channel

The communication channel consist of two parts, a sender and a receiver. The
sender is responsible for reliable transfer of a message to the receiver. The channel
is constantly circulating a token between the sender and the receiver. Upon a
token arrival at the sender, a new message is put in the send buffer. Upon token
arrival at the server, a response is calculated and brought back to the sender along
with the token. A token is an integer and is prepended to the payload.

5.2.1 Dual Transport Protocols

TCP is not a self-stabilizing protocol, but it has many advantages over UDP. TCP
has an assortment of nifty features built in to maximize throughput while treating
other connections fairly and also not overloading the receiving party. UDP does
not have that, and implementing it in a higher level layer is not trivial.

One can avoid the problem altogether by never sending more often than one
packet every round trip time (RTT ). Then the only time when multiple trans-
missions without intermittent ACK could occur is during retransmission of data-
grams. Some algorithms use a constant retransmission strategy (“send infinitely
often”), while those which use a stop-and-wait strategy must handle omission
faults by retransmitting after a timeout when no ACK was received. According
to RFC 8085 [29], an application using UDP which does not receive return traffic
should send no more than one UDP datagram every 3 seconds (in order to avoid
congestion). Since the stop-and-wait strategy necessarily waits for at least 1 RTT
before retransmitting (assuming a reasonably long timeout) it needs no further
congestion control. The only control mechanism needed for a stop-and-wait based
channel is to have a fair retransmission strategy for when no ACK is received.
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One issue with sending only once every RTT is that it can be prohibitively slow for
large payloads. Since one of the main advantages of CAS is the erasure coding, it
should be beneficial to write large data objects. When sending large data objects,
the 216 bytes of data that fits in a UDP datagram might not be enough. To transfer
objects larger than that, a TCP connection is established where both the token
and data object is transferred. After the transfer is finished the connection is torn
down. Due to only a single token is sent, the behaviour of sending a single message
(even though it is actually an entire TCP session) is emulated. An illustration of
how that switch between UDP and TCP would look like (from the perspective of
the communication channel) is found in Figure 5.1.

Figure 5.1: High-level view of how
the switch between UDP and TCP
should be perceived by the channel,
when transferring a large data object.
The red arrows marking the TCP part
represents an entire TCP session.

5.2.2 Sender Channel

A sender channel is used to communicate with only one peer and is therefore
associated with a specific peer address and a channel type. The peer address is IP
and port number of a specific server end point. The channel type specifies what
type of message is exchanged in the channel and is needed in order to determine
the protocol for the communication. A message channel indicator is put before
the actual protocol data, together with the token.

With the sender channel it is possible to switch between TCP and UDP between
communication rounds. Which one to use is determined by setting a specific flag
in the channel. The starting state of a channel is only passing a token back and
forth and is therefore initialized to use UDP. When to change to TCP and back are
determined by the quorum and gossip service, which is explained in Section 5.2.1.
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5.2.3 Server Receiver Channel

A receiver channel is used by a server in order for sender channels to connect.
A server handles many connected sender channels at the same time and are not
aware beforehand how many will exist. The first time a sender channel connects
and sends a message, the server will do a lookup in a table to see if there is a
previous token associated with the sender. If that is the case then the new token
will be compared to the previous received one, otherwise it will be added to the
table. If the token indicates that this is a fresh message, then it will be further
processed by looking at the message type and parse it with the correct protocol.

The server is serving both TCP and UDP requests and the response is sent using
the same transport protocol as the request. A UDP request only consists of a
single message and is therefore straight forward to receive. Since a TCP request
is a stream of bytes it is more difficult to determine when and when not to expect
more data. This is solved by first sending four bytes that contain the total size
of the complete message. The receiver end can use this information to know how
much more data to expect and when to finish the receiving part and start process
the data.

5.2.4 Multiplexing

As described in Section 5.1.1, we make use of the asyncio library for multiplexing
instead of the more traditional approach of using threads. When using threads,
the context switching is already dealt with at operating system level, but that does
not happen when doing concurrency at the code level. The downside of spawning
new threads for each connections is that it will exhaust system resources quickly.
Another approach is to use a thread pool, but that risks ending up in a deadlock
situation unless much attention is devoted to managing mutual exclusion properly.

Using asynchronous programming, the program itself is responsible for yielding
processor time. So when sending or receiving fairly large data objects over TCP,
this might block other concurrent events. To overcome this and reduce the overall
response time, we define a parameter which specifies a threshold on a TCP transfer.
If this threshold is reached, the sending or receiving is rescheduled in order to let
other events run. This way, each client will get a piece of the information at a
time, in a round robin fashion.
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5.3 Communication Protocols

In order to interpret the byte stream that is passed from one network socket
to another, it needs to follow a certain structure. If all the participants in the
communication knows the underlying structure, they can easily parse the stream
and read the data. The received data is parsed according to a protocol that is
associated with the channel. The two different protocols are the PingPong protocol
and the Gossip protocol.

5.3.1 Gossip Protocol

The Gossip protocol is used in the communication between all servers. This is to
exchange information to eventually update stale information at servers. A Gossip
message contain the three highest tag numbers with the labels pre, fin, FIN (see
tagTuple in Chapter 3), that is used for the correctness of the self-stabilizing CAS
implementation. Along with the tag numbers are information about the global
reset mechanism and the set of incarnation numbers exchanged.

How often gossip messages are sent will have an impact on the performance of
client operations. How much it will affect depends most on the overall load on the
servers. Things that should be considered is how often should servers send their
gossip messages and whether or not all information have to be included in every
message. Such configuration parameters should not be “hard coded” since what
setup to prefer might change depending on where it is used. In order to make
these parameters easy to adjust, they are part of a start-up configuration file that
the server is initialized with during boot up procedure.

5.3.2 PingPong Protocol

The PingPong protocol is used between a client sender and a server receiver. This
protocol is used in Dolev et al. [6] and was originally described as part of the
communicate procedure in Attiya et al. [3]. The implementation of this protocol
contain the fields: label, tag, mode, payload and a request tag. Label is used to
determine the operation. A tag is used as reference to a specific data object. Mode
is used to determine if it is part of a read or write operation. Payload is the byte
element that is a part of a data object. In order to match the response with the
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right request, the request is always passed back with the server response.

A PingPong message is an object created at a client node as part of a quorum
access procedure and is later converted to a byte stream before delivered to the
transport protocol. A server receives the byte object and if it is identified as
a PingPong protocol is is parsed accordingly. The server looks at the message,
triggers an event as part of the response and then passes it back to the client
piggy-backed with the token.

5.4 Implemented algorithms

In addition the main algorithm, which is the self-stabilising CAS, we have also
implemented two other shared memory algorithms. The other algorithms are a
MWMR version of ABD and a CAS version without self-stabilising mechanisms.

5.4.1 MWMR ABD

The MWMR ABD implementation is based on the Simple algorithm proposed
by Nicolaou and Georgiou [10], which is described in Section 3.4. This algorithm
is implemented on top of the robust communication channel in Section 5.2. The
algorithm itself does not require a self-stabilizing communication channel, because
the algorithm is not self-stabilising, but it is good for a fair comparison during
the performance evaluation. By using the communication channel we can look
at differences in the algorithms rather than comparing implementation specific
details.

5.4.2 CAS Algorithm

To measure the overhead caused by the self-stabilising mechanisms in CASSS, we
have a previously implemented version of the original CAS algorithm. This imple-
mentation is quite different from the self-stabilising version. The main difference
is that it does not use the communication channel described in Section 5.2, but
instead uses the ZeroMQ4 library to send and receive atomic messages.

4https://zeromq.org
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ZeroMQ is a messaging library that abstracts traditional sockets and solves many
of the networking issues that need to be handled otherwise. This means that
a TCP session can be started during the initialization of the program and any
disconnection or lost messages is dealt with automatically in the background. This
gives a performance advantage over the implementation of the self-stabilizing CAS.

5.4.3 Self-Stabilizing CAS

The only difference between the client side protocol of the self-stabilizing version of
CAS and the traditional CAS algorithm is that the write operation has one more
round. On the server side, the main differences are the updated gossip protocol
(see Algorithm 5), and of course updated event handlers for the clients’ requests.
Common to both the client side and server side is that all the building blocks needs
to be self-stabilizing. More details, along with pseudo code, can be found in [6].

The algorithm uses the communication channel described in Section 5.2 and the
communication protocol described in Section 5.3. The integration of functionalities
is done according to Algorithm 5. Algorithm 5 is an updated version of the gossip
protocol presented by [6]. In addition to the original version, this includes both
testing for transient faults and keeping the table of incarnation numbers updated.

Algorithm 5 has several variables, macros and functions that are defined in other
algorithms (Algorithm 2 in [6], Algorithm 3, Algorithm 4) but are present here
for integration purposes. A macro called stabilize is defined here, which tests
whether or not all servers report the same set of tags and the maximal tags have
propagated.

The first if-statement is for establishing a new proposal if a maximum integer has
been seen in the register. Otherwise, the records are updated according to the gos-
sip messages and irrelevant records are removed. Line 35–37 updates incarnation
numbers and in line 38 is a new gossip sent.
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Algorithm 5: Algorithm for the gossip protocol.
macro: stabilized() = (∀pk ∈ config[i] : gossip[k] =

tagTuple()) ∧ (tagTuple() = (t, t′, t′) ∧ t ≥ t′)
29 upon gossip

({(pre[k], fin[k], F IN [k]) = gossip[k]}pk∈P , prp[j], all[j], echo[j], cntrsj)
from pj do

30 if (maxPhase(D) ≥ ttop ∨maxIncNbr ∈ cntrs) ∧ stabilized() then
31 propose(maxPhase(D \ {‘pre’}))
32 else
33 Line 59–64 from Dolev et al. [6]
34 S ← relevant(S)
35 for 〈hwAddr, incNbr〉 ∈ cntrsj do
36 if hwAddr ∈ cntrsi then currentIncNbr = cntrsi.get(hwAddr) else

currentIncNbr = 0
37 cntrsi.update(hwAddr, max(incNbr, currentIncNbr))
38 gossip(tagTuple(), prp[i], all[i], (prp[j], echo[j]), cntrsi)
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Evaluation Environment

In this chapter, we describe the evaluation environment. First, we describe the
evaluation platform and its characteristics. After that, we describe the experiments
used to evaluate the performance, and the rationale behind each of them.

6.1 Evaluation Platform

This section begins with a description of the PlanetLab platform, and the specific
setup which was used as evaluation platform for this project. We then proceed by
describing the particular experiments used for the evaluation.

6.1.1 PlanetLab

Experiments are conducted in a real-world scenario to evaluate the system perfor-
mance. For this purpose we have access to the PlanetLab EU1 platform, which
provides us access to a set of virtual machines running Fedora 25. A PlanetLab
user gets access to a containerised instance via Linux containers (LXC). The Plan-
etLab EU servers are distributed all over Europe, and since they are connected
over the Internet, they do indeed provide a suitable environment to evaluate a
real-world distributed application. Because of this, an application on PlanetLab
has to deal with all the real-world issues one usually runs into, such as congestion,
link failures and node failures. This makes it a good platform to evaluate the
robustness of a distributed system.

1https://www.planet-lab.eu/
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6.1.2 PlanetLab Setup

Table 6.1 lists the PlanetLab nodes which were used as servers, and Table 6.2 lists
the PlanetLab nodes which were used as clients. Even though there are hundreds
of machines available on the Planet Lab platform and they run the same operating
system, they do differ in compatibility. We had to carefully pick nodes so that
they had a global static IP, that applications were able to bind to ports and, for
the case of client nodes, had the hardware support needed for the erasure coding
library.

Hostname TLD IP Address
cse-yellow.cse.chalmers.se se 129.16.20.70
planetlab-1.ing.unimo.it it 155.185.54.249
planetlab-2.cs.ucy.ac.cy cy 194.42.17.164
planetlab-2.ing.unimo.it it 155.185.54.250
planetlab2.upm.ro ro 193.226.19.31
ple1.cesnet.cz cz 195.113.161.13
ple1.planet-lab.eu eu 132.227.123.11
ple2.planet-lab.eu eu 132.227.123.12
ple4.planet-lab.eu eu 132.227.123.14
ple44.planet-lab.eu eu 132.227.123.44

Table 6.1: The ten PlanetLab nodes which were used for servers in the experi-
ments.

Hostname TLD IP Address
pl1.uni-rostock.de de 139.30.241.191
pl2.uni-rostock.de de 139.30.241.192
planet4.cs.huji.ac.il il 132.65.240.103
planetlab11.net.in.tum.de de 138.246.253.11
planetlab13.net.in.tum.de de 138.246.253.13

Table 6.2: The five PlanetLab nodes which were used for clients in the experi-
ments.

6.2 Experiment Scenarios

In this section, we describe the scenarios we constructed, and the underlying ra-
tionale for why we run the experiments we do. We begin by describing the generic
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setting used for the experiments, and how the performance is measured. We then
dive into the details of each scenario, and how they differ from the generic setting.

6.2.1 Baseline Settings

In order to standardise the evaluation setting, a baseline as presented below is
used for each of the experiments unless otherwise noted. The configuration used
for each specific experiment can be found in Appendix A.

The setting which all experiments proceed from is to have 15 machines in total, ten
of which run one server process each and five of which run one client process each.
When increasing the number of clients or servers beyond the amount of physical
machines, multiple instances are put on the same physical machine. In order to
guarantee a fair latency between a client and a server instance, clients processes
are never placed on the same physical machine as server processes. More clients or
servers than available nodes are distributed in a round-robin fashion. Operations
of a client are invoked sequentially with a random delay in between.

The system is initialized by a 512 KiB data object with random data being writ-
ten to the quorum system before the experiments starts. Each client repeats the
operation 50 times, and the fastest and slowest operations are removed in order
to mitigate the effect of outliers. The final operation latency result is the aver-
age of every client’s average operation latency. Taking the average over all clients
accounts for local variations, since different PlanetLab nodes have different condi-
tions.

PlanetLab servers do not have any uptime guarantees, and we therefore want to
allow a few servers to fail (i.e., f > 0). But because k is bounded to be an integer
value such that 1 ≥ k ≥ N − 2f , f can not be chosen freely. It therefore stands
clear that if f is constant, N can never be chosen such that k would be forced to
be less than 1. Conversely, since we want to run an experiment with as few as
five servers, that puts a bound on f . The table in Appendix B shows all allowed
values for k, and demonstrates very succinctly that the maximal f that can be
chosen for five servers is 2. Because of this, f was chosen to be fixed to 2 for the
experiments.
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6.2.2 Client Scalability Experiment

This scenario is made to evaluate how the read and write latency are affected when
increasing the number of writers and readers respectively. This tests the ability of
the servers to handle an increase of concurrent client operations. The number of
allowed node failures is kept constant, which means that the quorum size is also
constant. Both the read and write operation latency is measured. The settings
are summarized in Table A.1 and Table A.2.

6.2.3 Server Scalability Experiment

The server scalability experiment is constructed to evaluate in what way the read
and write latency are affected when increasing the number of servers. The number
of allowed node failures is kept constant, which means that the quorum size grows
with the number of servers. So when the servers increase, the number of servers
that a client has to access will also increase but the coded elements will be smaller
in size. One interesting aspect to look at when increasing the number of servers
is whether the effect of higher code rate trumps the effects of having a larger
quorum. Both the read and write operation latency is measured. The settings are
summarized in Table A.3.

6.2.4 Data Object Scalability Experiment

To evaluate how the read and write latency are affected by the size of the stored
data object, this experiment performs operations using increasingly large data
objects. The size is increased to a maximum of 4 MiB, which was found to be
enough to see the scalability. These algorithms are not particularly suitable for
replicating very large data objects, and if that is expected to be the common,
algorithms which are optimized for that use case (like [11]) would be a better
choice.

The number of allowed node failures is kept constant, as well as the number of
servers, which means that the quorum size is also constant. The experiment is run
in isolation from other client nodes, so that scalability in increasing data object
sizes can be reliably measured. Both the read and write operation latency are
measured. The settings are summarized in Table A.4.
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6.2.5 Reset Experiment

This scenario measures how long it takes for the servers to reset their local state
after a transient fault. Since this part requires that all servers participate, we do
not allow any servers to be unresponsive. Because some nodes on PlanetLab were
highly unstable, it was hard to run experiments for prolonged stretches of time.
Therefore, we limited the number of repetitions for the reset experiment (which
was expected to take longer than the other experiments) to 20 instead of 50.

Having to reset the global system state is the worst case scenario when it comes to
convergence after a transient fault. The time measured is from a client pre-write
phase (with a maximal tag number) until a query operation is successful. In order
to know that every server has finished the reset phase, f is set to 0, meaning the
client has to receive responses from all servers before returning. The settings are
summarized in Table A.5.

6.2.6 Overhead Experiment

In this scenario, we compare the overhead of the self-stabilizing version of CAS
to the original CAS algorithm. To evaluate this, we have two implementations
of the original CAS. The first is a modified version of the self-stabilizing variant,
where parts of the implementation related to self-stabilizing mechanisms has been
removed. The second experiment is a more performance optimized version using
ZeroMQ sockets. More about the implementations can be found in Section 5.4.
The settings are summarized in Table A.6.
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7
Evaluation Results

In this chapter, we present and discuss the results of each of the evaluation exper-
iments. We start by looking at the two client scalability experiments, and then at
the server scalability experiment. Those are followed by the data object scalability
experiment and reset time experiment. Last but not least we have the two over-
head experiments, where we compare the overhead of the self-stabilizing version
of CAS (called CASSS) with two different implementations of the traditional CAS
algorithm.

Our results show that the self-stabilizing version of CAS that we have implemented
is efficient and scalable. Compared to the traditional CAS algorithm, it has only
a constant overhead in terms of operation latency. It is efficient in storing up to
1 MiB of data, and can perform a global reset within a few seconds for systems
with up to 20 servers.

7.1 Client Scalability

In this section, the results of the client scalability experiments are presented and
discussed. Figure 7.1 shows the result of the experiment where the number of
concurrent readers was changed, and Figure 7.2 the corresponding experiment
for number of concurrent writers. Both graphs show a pretty flat curve, which
indicates that none of the experiments reached a point where the system was
overwhelmed by the number of concurrent operations.

A more interesting point is to understand what causes the difference between each
of the operations. The fact that the ABD read operation is the slowest of the four
is not much of a surprise. Not only does ABD send larger messages because of the

47



7. Evaluation Results

Figure 7.1: Operation latency with respect to the number of concurrent readers.

Figure 7.2: Operation latency with respect to the number of concurrent writers.
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lack of coding, but the read operation actually transfers data twice: once to fetch
the data from the servers, and once during the propagation phase.

The ABD write operation and CASSS write operation completes in about the
same amount of time. While the CASSS write operation has two more rounds of
communication to perform than ABD write, ABD messages are larger due to the
lack of coding. Considering the relatively short RTT between PlanetLab nodes
(see Table 7.1), the cost of two extra rounds seems to be about as expensive as
the cost of larger messages.

Hostname min max avg
pl1.uni-rostock.de 27.50 79.59 45.59
pl2.uni-rostock.de 27.47 79.57 44.87
planet4.cs.huji.ac.il 65.84 131.41 84.20
planetlab11.net.in.tum.de 15.76 67.85 32.61
planetlab13.net.in.tum.de 15.67 68.68 33.31

Table 7.1: Table of the average ping time (in milliseconds) from each of the five
client nodes to all server nodes on our slice on PlanetLab.

Last but not least, we find that the CASSS read operations are the fastest ones.
This too was expected, since it has as few rounds of communication as ABD write,
but uses coding which decreases the message size.

7.2 Server Scalability

The result of the servers scalability experiment can be found in Figure 7.3. The first
observation to make is that with five servers, both the read and write operations
for the self-stabilizing CAS, as well as the ABD write operation, ends up at more
or less the same spot. That is because with only five servers, CASSS effectively
performs full replication and the CASSS quorum size is equal to majority quorum.
While ABD read has fewer rounds than CASSS write, ABD read transfers more
data which is why it is the slowest of the operations.

Looking at the interval between five and ten servers, the operation latency of ABD
increases while the operation latency of CASSS decreases or stays the same. That
is because when increasing the number of servers, the quorum size grows but so
does the code rate. So while both ABD and CASSS waits for responses from more
servers, CASSS gains the advantage of decreased message size.
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The coding library we use has a limitation that k + m ≤ 32. Because of this, f
could not be kept at 2 for quorum systems with 20 and 30 servers. For 20 servers,
f had to be at least 4, and for 30 servers it had to go all the way up to 14. The
point where f is changed is marked by the dashed vertical line in the graph.

Figure 7.3: Operation latency with respect to the number of servers. The dashed
vertical line denotes the point where the parameter f had to be changed.
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7.3 Data Object Scalability

This section looks at the results from the data object scalability experiment, shown
in Figure 7.4. Other algorithms have previously been shown to be more suitable
than CAS and ABD for large data objects, for example [11]. Up until about
1 MiB, the operation latency is fairly minimal. ABD begins to escalate already at
512 KiB, but CASSS is reasonably fast all the way to 4 MiB. This is of course a
consequence of the coding, which effectively reduces the message size.

It is also worth pointing out that the multiplexing chunk size (discussed in Sec-
tion 5.2.4) was set to 1024 KiB during these experiments, which might contribute
to the degrading performance after that point (on top of the algorithms being
unsuitable for very large data objects).

Figure 7.4: Operation latency with respect to the size of the data object.

51



7. Evaluation Results

7.4 Global Reset

The mechanism for global reset should only be triggered because of a transient
fault, and so should only have to be run very rarely. Even so, it is still important
that it the reset time has a realistic bound. And as we can see in Figure 7.5, up
to 20 servers it takes almost as short time as two client write operations, which is
rather efficient for such a rare occurrence. Comparing with the other experiments,
where the operation latency is in the order of one second, it is not bad at all to
see a reset time of just a few seconds.

With more servers, the trade-off of having to contact all N servers starts to show.
As the number of servers increase, the likelihood of having to wait for one really
slow server rapidly increases too. If the responsiveness for a server at a given time
is normally distributed, the likelihood of having one or more slow servers in the
system increases exponentially.

Figure 7.5: The time it takes for the Global Reset mechanism to complete, with
respect to the number of servers.
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7.5 Overhead

In this section, we present and discuss the results of the experiments where the
self-stabilizing version of CAS is compared to implementations of the traditional
CAS algorithm. The two experiments demonstrate two different perspectives:
Figure 7.6 reveals the overhead that the extra communication round and intensive
gossiping have, while Figure 7.7 additionally shows the overhead caused by our
implementation of the self-stabilizing token-passing channel. Both figures have a
vertical dashed line, which indicates at which point the variable f was changed
due to the coding library requirement discussed previously.

Figure 7.6: Comparison between the operation latency of CASSS versus the
traditional CAS algorithm. The dashed vertical line denotes the point where the
parameter f had to be changed.

First of all we note that CASSS read and CAS read are nearly identical. This is
exactly what one would expect, since the self-stabilizing version of CAS has the
same number of rounds for the read operation as the traditional CAS algorithm.
The write operations differs slightly, and with the self-stabilizing version needing
one extra communication round to complete the write operation, we expected it to
be slightly slower than the traditional CAS. The ping time between the PlanetLab
nodes were about 50 ms, so the expected cost for one round of communication is
consistent with what we find in Figure 7.6.
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In the second overhead experiment, we compare our implementation of CASSS
with an implementation of CAS which is using ZeroMQ for communication instead
of the self-stabilizing channels. In Figure 7.7 it can be seen that each plot follow
the same structure. This is expected since they almost run the same algorithm and
any difference should be added as a constant factor. The reason that the latency
decreases when scaling up the servers from 5 to 10 is the reduced size of the coded
elements. When going from 15 to 20 servers, we once more find that there is a
decrease in latency. This is due to the aforementioned limitation of the erasure
coding library, which forced us to change parameters to reduce the quorum size.

Looking at the difference between CAS ZeroMQ read and write in Figure 7.7, we
see that their difference in operation latency is minor. The reason for the difference
is the additional communication round needed for the write operation. The CASSS
implementation is overall slower, which is expected because of the communication
overhead in the self-stabilizing communication channel. Even though it is slower,
the overhead is constant which is desirable for good scalability.

Figure 7.7: Comparison between the operation time of an implementation of
CAS and the self-stabilizing version of CAS. The dashed vertical line denotes the
point where the coding had to be changed.
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8
Discussion

In this chapter, we first compare our work to similar projects from the literature.
Then we proceed to discuss what can be done in future work, and end with a
conclusion of the project.

8.1 Comparison with Literature

In this section we compare our work with two other implementations and evalua-
tions of similar algorithms, both of which used PlanetLab as evaluation platform.

Vacana [8] did an implementation and evaluation of a self-stabilizing version of
a SWMR ABD. The implementation uses epochs to overcome transient faults,
compared to our implementation that does a global reset of the sequence numbers
instead. Their implementation relies entirely on TCP as transport protocol and we
make use of a self-stabilizing communication channel that also overcome commu-
nication deadlock. Their implementation of the self-stabilizing ABD has shorter
operation latency than our implementation of the Self-Stabilizing CAS. This is
most likely because of a combination of chosen programming language, replicating
smaller data objects (up to 320 bits), being a SWMR algorithm and not using a
self-stabilizing communication channel.

Nicolaou and Georgiou [10] did an experimental evaluation of four MWMR reg-
ister emulation algorithms and one of them was the SIMPLE algorithm. Their
algorithm implementation is programmed in C++ and use TCP as transport proto-
col. Their implementation of SIMPLE achieves lower operation latency than our
implementation of CASSS, but is not self-stabilizing. In most of our experiments,
we use 512 KiB large data objects, for the benefits of erasure coding.
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8.2 Extensions

We believe that the same principles that we use in this project can be applied
to other algorithms, in order to make them self-stabilizing. This could for exam-
ple be applied to other algorithms for distributed storage, like LDR by Fan and
Lynch [11]. It could also, we believe, be used to create a self-stabilizing consensus
protocol based on Paxos [30]. This could lead to new areas of application for those
algorithms, with the stronger fault tolerance guarantee given by self-stabilization.

An extension to replace the TCP file transfer with a TCP friendly rate control for
UDP would be a worthwhile effort to optimize the communication. The modular
structure of our software makes it easy to change the underlying functionality of
the channel without any major changes to the rest of the software. Resources for
such an extensions are for example the DCCP protocol [31] and the various RFC
for congestion control for UDP [32, 33, 34, 35, 36, 37].

Another extension would be to add a reconfiguration mechanism, in order to allow
servers to dynamically leave and join the quorum system. CAS allows for up
to f simultaneous server failures, so if there are more crashed servers than that,
they need to be removed from the quorum system. Without a mechanism to add
functioning servers to the quorum system, the system might eventually reach a
quorum collapse. There are algorithms for quorum reconfiguration, for example [1]
and [13], that allows for servers to leave and join the quorum system.

8.3 Conclusion

In this report we show how to create self-stabilizing applications for emulating
shared memory. It has been shown to work on a real network, the PlanetLab EU
platform. There is a small overhead caused by the extension which makes CAS
self-stabilizing, and this (albeit slight) trade-off between latency and robustness
should be taken into account when considering to implement the algorithm. Some
modules of the system may be useful independently for other systems, like for
example the reset mechanism which offers synchronized reset of sequence numbers.
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A
Experiment Parameters

This appendix lists all the parameter settings used for each of the evaluation
scenarios. Coding parameter f is the number of servers allowed to fail. N is the
number of servers for each round. R is the number of reader clients and W the
number of writer clients.

Nodes Parameters
Servers (N) 10 f 2
Readers (R) 5, 10, 15, 20, 30, 40 File Size (KiB) 512
Writers (W ) 10 gossip_freq 1

Table A.1: Parameters for the reader scalability experiment.

Nodes Parameters
Servers (N) 10 f 2
Readers (R) 10 File Size (KiB) 512
Writers (W ) 5, 10, 15, 20, 30, 40 gossip_freq 1

Table A.2: Parameters for the writer scalability experiment.

Nodes Parameters
Servers (N) 5, 10, 15, 20, 30 f 2
Readers (R) 10 File Size (KiB) 512
Writers (W ) 10 gossip_freq 1

Table A.3: Parameters for the server scalability experiment.
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A. Experiment Parameters

Nodes Parameters
Servers (N) 10 f 2
Readers (R) 1 File Size (KiB) 1, 32, 128, 512, 1024, 2048, 4096
Writers (W ) 1 gossip_freq 1

Table A.4: Parameters for the data object scalability experiment.

Nodes Parameters
Servers (N) 5, 10, 15, 20, 25, 30 f 0
Readers (R) 0 File Size (KiB) 0.25
Writers (W ) 1 gossip_freq 1

Table A.5: Parameters for the reset experiment.

Nodes Parameters
Servers (N) 10 f 2
Readers (R) 1 File Size (KiB) 512
Writers (W ) 1 gossip_freq 1

Table A.6: Parameters for the overhead experiment.
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B
Coding Parameter k

This appendix is a cheat sheet for deciding on the coding variable k depending on
the number of servers (N) and number of allowed server failures (f). Table B.1
shows the maximum value k can have, while the lowest is always 1. Cells without a
value indicate that k would need to be less than 1, which is illegal. More formally,
it must hold that 1 ≤ k ≤ N − 2f .

N
f 0 1 2 3 4 5 6 7 8 9 10

5 5 3 1
10 10 8 6 4 2
15 15 13 11 9 7 5 3 1
20 20 18 16 14 12 10 8 6 4 2
30 30 28 26 24 22 20 18 16 14 12 10
40 40 38 36 34 32 30 28 26 24 22 20

Table B.1: The maximal value for the coding parameter k, depending on number
the of servers (N) and number of servers allowed to fail (f).

It is worth noting that the coding library PyEClib used in project requires N +k ≤
32, which must also be taken into consideration when choosing f , N and k.
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