
Deriving Via
Type-directed instances

Master’s thesis in Algorithms, Languages and Logic

BALDUR BLÖNDAL

Computer Science and Engineering Department
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2020

Master’s thesis 2020

Deriving Via

Type-directed instances

BALDUR BLÖNDAL

Computer Science and Engineering Department
Algorithms, Languages and Logic

Chalmers University of Technology
University of Gothenburg

Gothenburg, Sweden 2020

Deriving Via
Type-directed instances
Baldur Blöndal

© Baldur Blöndal, 2020.

Supervisor: Mary Sheeran, Computer Science and Engineering
Examiner: Mary Sheeran, Computer Science and Engineering

Master’s Thesis 2020
Computer Science – algorithms, languages and logic
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX
Gothenburg, Sweden 2020

iv

Deriving Via
Type-directed instances
Baldur Blöndal
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
Type classes are at the heart of Haskell and constitute a language of type-directed
behaviour. The programmer defines behaviour for each type by defining a class
instance where the compiler transparently fills in the blanks with code. Types guide
this process.
Each type has a single instance: what if there is more than one way to act? The
established approach is to wrap such a type in a newtype, ensuring it has the same
memory representation. newtypes require require laborious manual wrapping and
unwrapping which have no effect at runtime.
Haskell’s deriving construct allows easily generating instances that follow a com-
mon pattern by simply listing the classes you want derived. At present, GHC only
supports deriving a few classes. The only alternative is to write it by hand.
This thesis offers an alternative: the language extension -XDerivingVia (appeared
in GHC 8.6) and the GHCi command :instances (appeared in GHC 8.10) which
lists instances of types. The Deriving Via introduces a new deriving strategy via
which allows deriving classes from one or more ‘via types’. These types must be
identical (at runtime) to the type we are deriving for. We instantiate behaviour at a
via type and then coerce it to our type. The :instances command lists candidates
that can be derived via a given type.
That enables programmers to compose instances from named programming patterns,
thereby turning deriving into a high-level domain-specific language for defining
instances. Deriving Via leverages newtypes—an already familiar tool of the Haskell
trade—to declare recurring patterns in a way that both feels natural and allows a
high degree of abstraction.

Keywords: Thesis, deriving, Haskell, program synthesis, type classes, safe coercions.

v

Acknowledgements
I would like to thank Andres Löh, Ryan Scott for making the paper happen and
Simon Peyton Jones for his encouragement and his review. I also thank anonymous
reviewers for their suggestions. Thanks to Richard Eisenberg for his feedback on
Section 4.3, as well as my former colleagues at Standard Chartered Bank for their
feedback.

Baldur Blöndal, Gothenburg, May 2020

vii

Contents

1 Introduction 1
1.1 Haskell and Type Classes . 1

1.1.1 Extending classes . 2
1.1.2 Multiple Candidates . 3

1.2 newtypes — “datatype renamings” 5
1.3 Representational equality . 7
1.4 newtypes for behaviour . 8
1.5 Problem Description . 10
1.6 Deriving . 13
1.7 Introducing Deriving Via . 13
1.8 Contributions and structure of the thesis 15
1.9 Statement of Contribution . 16

2 Background 17
2.1 Kinds . 17
2.2 Type Classes . 18

2.2.1 Default methods and Minimal pragmas 18
2.2.2 Associated type families . 19

2.3 Deriving . 20

3 Case study: QuickCheck 23
3.1 Composition . 24
3.2 Adding new modifiers . 25
3.3 Parameterized modifiers . 25
3.4 Conclusions . 26

4 Typechecking and translation 27
4.1 Well-typed uses of Deriving Via . 27

4.1.1 Aligning kinds . 27
4.1.2 Eta-reducing the data type . 28

4.2 Code generation . 29
4.2.1 Generalized newtype deriving (GND) 29

4.3 Type variable scoping . 30
4.3.1 Binding sites . 30
4.3.2 Establishing order . 30
4.3.3 Conclusions . 31

ix

Contents

5 Use Cases 33
5.1 More Use Cases . 33

5.1.1 Asymptotic Improvements with Ease 33
5.1.2 Deriving with configuration 35
5.1.3 Equivalent Applicative definition 35
5.1.4 Making Defaults more Flexible 36
5.1.5 Deriving via Isomorphisms . 38
5.1.6 Retrofitting Superclasses . 39
5.1.7 Avoiding Orphan Instances . 40

5.2 Conclusions . 41

6 Current Status 43
6.1 Multi-parameter Type Classes . 43
6.2 Applying Via . 44

6.2.1 ala’ . 44
6.2.2 ala’ versus via . 45

6.3 Instances Via . 46
6.4 Reactions . 46

7 Conclusions 49
7.1 Related Ideas . 49

7.1.1 ML functors . 49
7.1.2 Code Reuse in Dependent Type Theory 49
7.1.3 Explicit Dictionary Passing 49

7.2 Current Status . 50
7.2.1 Quality of Error Messages . 50

7.3 Conclusions . 51

Bibliography 53

x

1
Introduction

Why repeat yourself when the compiler can write it?
The purely functional programming language Haskell has excellent facilities for ab-
stracting repeated patterns. One such example instance derivation.
In Haskell, a set of operations is specified by a type class and a data type can be given
a class instance that specifies the behaviour of that type under those operations.
These instances can be written by hand but are often so formulaic that the task
of generating them can be relegated to the compiler, freeing the programmer from
writing any code. This is an example of a deriving clause. With time the scope
of deriving expanded, adding support for new built-in functionality to be derived
as well as functionality defined by the programmer who is no longer dependent on
compiler writers.
Despite these advancements there are still numerous limitations on what can be
derived; there are many cases where line-for-line identical code can not be derived
and should a programmer wish to parameterise existing deriving clauses with their
own configuration values they must forego the niceties of deriving and write it by
hand.
This thesis introduces Deriving via, a simple zero-cost language extension with far-
reaching consequences and a ghci command :instances that lists instances that
can derive via a given type. This thesis aims to answer the research questions

1. Can boilerplate in instance declarations be reduced to composable behaviours?
This should be done leveraging the Haskell ecosystem.

2. Can we list the behaviours a given type has?
The first half introduces the extension and relevant machinery. The consequences
will be explored in the latter half of the thesis.

1.1 Haskell and Type Classes
The type class system of Haskell is one of its most fundamental aspects. It uses
open ad-hoc polymorphism[1] to capture common interfaces.
The operations of a type class are its methods and a class instance is an implemen-
tation of those methods for a data type, this specifies the semantics of the class.
Openness means other users can independently define new types and instances for
them.
To showcase typeclasses we introduce semigroup; an algebraic structure with an
associative binary operator. This structure is captured by the type class Semigroup
that lives in Data.Semigroup from base, a core library that ships with the Glasgow

1

1. Introduction

Haskell Compiler (GHC). The first line requires -XStandaloneKindSignatures (see
chapter 2) indicating that it is defining a type class constraint for a given type a.
type Semigroup :: Type -> Constraint
class Semigroup a where
(<>) :: a -> a -> a

The Semigroup class specifies the binary operator <> parameterised over a single
type a which scopes over the class body. The associativity condition is not checked
by the compiler, the programmer is expected to make sure the implementation
adheres to the law:
a <> (b <> c) = (a <> b) <> c
This class declaration defines two things, a Semigroup constraint and a binary oper-
ator constrained by it. This is how they appear in the GHCi interactive interpreter:
>> :kind Semigroup
Semigroup :: Type -> Constraint
>> :type (<>)
(<>) :: Semigroup a => a -> a -> a
The left-hand side of the fat arrow => constrains a to types with a semigroup in-
stance. Having defined a type class we can define instances of types.
The central theme of this thesis is the type-directed form of programming that type
classes enable and how types direct the behaviour of a program.
The Semigroup behaviour of lists ([a]) generalises the standard Haskell operator ++
for appending lists. Writing signatures of instances requires the -XInstanceSigs
extension described in chapter 2.
-- >> "one" <> " " <> "two"
-- "one two"
instance Semigroup [a] where

(<>) :: [a] -> [a] -> [a]
(<>) = (++)

This is the base Semigroup instance for lists but it is not the only one we could
have given. Lists, indeed any type, forms a semigroup where the operator <> returns
its first argument (dropping its second) and vice versa.

1.1.1 Extending classes
Now that we have defined Semigroup it is time to extend it with more operations.
We define a type class Monoid which extends the Semigroup class with a mempty
method. We say that Monoid is a subclass of Semigroup indicated by a fat arrow
(Semigroup a => ..). Conversely Semigroup is a superclass of Monoid:
type Monoid :: Type -> Constraint
class Semigroup a => Monoid a where

mempty :: a
This means that Monoid inherits all the methods of its superclass Semigroup and
extends it with one of its own.
>> :kind Monoid
Monoid :: Type -> Constraint

2

1. Introduction

>> :type mempty
mempty :: Monoid a => a
mempty serves as an identity element for <>. The associativity law of semigroup is
additionally extended with the following laws which the programmer is expected to
verify:
a <> mempty = a
mempty <> b = b
For lists this is the empty list:
instance Monoid [a] where

mempty :: [a]
mempty = []

The :instances command lists the instances of [a] for an arbitrary type, written
with a partial type (_)
>> :set -XPartialTypeSignatures -Wno-partial-type-signatures
>> :instances [_]
..
instance Semigroup [_]
instance Monoid [_]
This command was proposed by the author to supplement the ideas presented in
this thesis. It was implemented by Xavier Denis. This command is the positive
answer to the second research question: “Can we list the behaviours a given type
has?”.
A subclass like Monoid implies its superclass Semigroup. It’s because of this that
memptyMempty does not need to list a Semigroup constraint:
memptyMempty :: Monoid a => a
memptyMempty = mempty <> mempty

1.1.2 Multiple Candidates
What follows are informal rules for constructing Semigroup instances that will be
made concrete later on. The first two rules are applicable at any type, the third rule
presupposes a <> definition:
‘First’ rule Return the first argument.
‘Last’ rule Return the second argument.
‘Dual’ rule Flip the arguments of an existing <> definition.
While there can only be a single Semigroup [a] instance the choice is clearly not
unique, we could have used any of the three rules. Using the First rule (<>) is
defined to be const, a binary function that returns its first argument. Last is a
flipped const and and the third example flips the standard definition of Semigroup
[a]. Interactions with GHCi are indicated by » in comments.
-- >> "one" <> " " <> "two"
-- "one"
instance Semigroup [a] where -- First

(<>) :: [a] -> [a] -> [a]
(<>) = const

3

1. Introduction

-- >> "one" <> " " <> "two"
-- "two"
instance Semigroup [a] where -- Last
(<>) :: [a] -> [a] -> [a]
(<>) = flip const

-- >> "one" <> " " <> "two"
-- "two one"
instance Semigroup [a] where -- Dual
(<>) :: [a] -> [a] -> [a]
(<>) = flip (++)

An observant reader may notice that Last is a combination of the other two rules.
The rules for First and Last are valid for all types, so one might reasonaibly want
to capture them with the mechanisms of type classes, as instances. Here is a “first”
attempt to capture First as an instance:
instance Semigroup a where -- First

(<>) :: a -> a -> a
(<>) = const

Unfortunately, this general instance is undesirable because it overlaps with all other
instances. Standard instance resolution of a constraint like Semigroup Bool works
by matching it against a single instance; a semigroup constraint for Bool does not
match the list instance so there is no overlap:
instance Semigroup a where -- First

(<>) :: a -> a -> a
(<>) = const

instance Semigroup [a] where
(<>) :: [a] -> [a] -> [a]
(<>) = (++)

-- yes = False
yes = False <> True
Constraints such as Semigroup [Bool] do however match more than one instance,
as the compiler informs us:
-- • Overlapping instances for Semigroup [Bool] arising from a
-- use of ‘<>’
-- Matching instances:
-- instance Semigroup a
-- instance Semigroup [a]
no = [False] <> [True]
Additionally the Last rule cannot coexist with First:
-- Duplicate instance declarations:
-- instance Semigroup a
-- instance Semigroup a
instance Semigroup a where (<>) = const -- First
instance Semigroup a where (<>) = flip const -- Last

4

1. Introduction

The same situation crops up with arithmetic and Boolean operations. There are
many such associative operations, most notably addition, multiplication, conjunc-
tion and disjunction:
instance Semigroup Int where -- Sum

(<>) :: Int -> Int -> Int
(<>) = (+)

instance Semigroup Int where -- Product
(<>) :: Int -> Int -> Int
(<>) = (*)

instance Semigroup Bool where -- All
(<>) :: Bool -> Bool -> Bool
(<>) = (&&)

instance Semigroup Bool where -- Any
(<>) :: Bool -> Bool -> Bool
(<>) = (||)

We now turn to the solution.

1.2 newtypes — “datatype renamings”
When a type has many possible instances the standard approach is to introduce
a new type that wraps the existing type. This new type can be given a distinct
instance from its underlying type.
Haskell supports the definition of new types represented as other types in memory,
using newtype. The underlying type is called the representation type.
newtypes are algebraic datatypes with a single constructor taking one argument
exactly. A newtype declaration is generative, declaring a new type that is not equal
to any existing type.
The key reason for using newtype instead of Haskell’s data declaration is that Sum
a and Product a are both guaranteed to have the same representation in memory
as their representation type a. All three types are said to be representationally equal
which will be described in more detail in section 1.3.
type Sum :: Type -> Type
newtype Sum a = Sum a

type Product :: Type -> Type
newtype Product a = Product a
There are in fact no Semigroup instances for numbers or Bool in GHC base. Instead
of making one operation default the designers of GHC chose to capture addition and
multiplication as instances of newtypes:
instance Num a => Semigroup (Sum a) where
(<>) :: Sum a -> Sum a -> Sum a
Sum a <> Sum a = Sum (a + b)

5

1. Introduction

instance Num a => Semigroup (Product a) where
(<>) :: Product a -> Product a -> Product a
Product a <> Product b = Product (a * b)

Same for disjunction and conjunction:
type All :: Type
type Any :: Type
newtype All = All Bool
newtype Any = Any Bool

newtype Semigroup All where
(<>) :: All -> All -> All
All a <> All b = All (a && b)

instance Semigroup Any where
(<>) :: Any -> Any -> Any
Any a <> Any b = Any (a || b)

Notice the boilerplate that results from wrapping and unwrapping. Unlike previous
definitions ((<>) = (+)) we must now unwrap the arguments and wrap the return
value of these newtype instances. This drudgery is a longstanding complaint in the
Haskell community.
The rules mentioned previously are made concrete as instances of newtypes, these
all exist in GHC base:
type First :: Type -> Type
type Last :: Type -> Type
type Dual :: Type -> Type
newtype First a = First a
newtype Last a = Last a
newtype Dual a = Dual a
instance Semigroup (First a) where

(<>) :: First a -> First a -> First a
First a <> First _ = First a -- (<>) = const

instance Semigroup (Last a) where
(<>) :: Last a -> Last a -> Last a
Last _ <> Last b = Last b -- (<>) = flip const

instance Semigroup a => Semigroup (Dual a) where
(<>) :: Dual a -> Dual a -> Dual a
Dual a <> Dual b = Dual (b <> a)

The left-hand side of the double arrow => is the context of the instance. It says that
Dual a can only be a semigroup if a is a semigroup.
As previously mentioned these definitions can be composed. First and Last behave
the same as Dual of the other. We can obtain the same behaviour (modulo newtype
wrapping) by defining new versions as:
type First' :: Type -> Type
type Last' :: Type -> Type

6

1. Introduction

type First' a = Dual (Last a)
type Last' a = Dual (First a)
We can view the instances of these (composite) types using the newly released ghci
command :instances which lists instances of any type. It shows that First’ a
and Last’ a are unconditionally semigroups, just like First a and Last a:
>> :instances First' _
instance Semigroup (Dual (Last _))
..
>> :instances Last' _
instance Semigroup (Dual (Last _))
..
This is a benefit of :instances over the command :info which only works for base
types. Now we can query what nested behaviour we can derive from nested types.
This composition of behaviour is as if we were using the definition:
instance Semigroup (First' a) where

(<>) :: First' a -> First' a -> First' a
Dual (Last a) <> Dual (Last _) = Dual (Last a)

instance Semigroup (Last' a) where
(<>) :: Last' a -> Last' a -> Last' a
Dual (First _) <> Dual (First b) = Dual (First b)

We invoke it by wrapping and unwrapping its argument and result:
>> Dual (Last 1) <> Dual (Last 2)
Dual (Last 1)
>> Dual (First 1) <> Dual (First 2)
Dual (First 2)

1.3 Representational equality
The usual notion of type equality in Haskell is nominal equality (equality at compile
time) written with a tilde ~. It is extended by equality at runtime, representational
equality, which holds when two types share the same run-time representation. It is
written Coercible and indicates that two types may be safely coerced to one another.
Although Coercible constructs a constraint it is not backed by an actual type class.
Instead, it can be thought of as a kind of psuedo-type class (faux-clas?) with custom
solving rules and no user-defined instances[2].
These special Coercible rules are determined by what newtype constructors are in
scope so when types are representationally equal as Bool, Any and All are coercible
to one another.
Any Coercible types can be coerced; the function coerce taps into the power of
representational equality, a function that safely converts between coercible types:
coerce :: Coercible a b => a -> b
coerce is a zero-cost operation, it changes the type but has no effect operationally.
coerce :: Bool -> Any
coerce :: Any -> All
coerce :: (Any, Bool) -> (Bool, All)

7

1. Introduction

This slices through arbitrary layers of type constructors like a hot knife, at arbitrary
nesting depth:
coerce :: Maybe [[([Int], All)]]

-> Maybe [[(Sum [Int], Bool)]]
This holds even for function types which can be coerced to remove all layers of a
newtype. This uses the visibility override @ enabled by the visible -XTypeApplications
extension.
(<>) @(Sum a) :: Num a => Sum a -> Sum a -> Sum a
(<>) @(Product a) :: Num a => Product a -> Product a -> Product a
The type variables are brought into scope by forall with the -XScopedTypeVariables
extension.
add :: forall a. Num a => a -> a -> a
add = coerce do

(<>) @(Sum a)

mul :: forall a. Num a => a -> a -> a
mul = coerce do

(<>) @(Product a)
To reduce parentheses I use -XBlockArguments allowing functions to take do-block
directly as an argument. All these extensions are discussed in chapter 2.

1.4 newtypes for behaviour
This is a powerful ability. With one hand we instantiate types, specifying potentially
nested behaviour of arbitrary complexity. With the other we remove all trace of
them.
It means we can define
first :: forall a. a -> a -> a
first = coerce do (<>) @(First a)
first = coerce do (<>) @(Dual (Last a))
first = coerce do (<>) @(Dual (Dual (First a)))
first = coerce do (<>) @(Dual (Dual (Dual (Last a))))

last :: forall a. a -> a -> a
last = coerce do (<>) @(Last a)
last = coerce do (<>) @(Dual (First a))
last = coerce do (<>) @(Dual (Dual (Last a)))
last = coerce do (<>) @(Dual (Dual (Dual (First a))))
This works equally with derived functions that use those methods. A function like
mconcat which turns a list of monoidal values [a,b,c,d] into a<>b<>c<>d<>mempty.
These definitions are equal ignoring bottom:
mconcat :: Monoid a => [a] -> a
mconcat = foldr (<>) mempty
sum :: forall a. Num a => [a] -> a
sum = coerce do mconcat @(Sum a)
sum = coerce do mconcat @(Dual (Sum a))

8

1. Introduction

sum = coerce do mconcat @(Dual (Dual (Sum a)))
sum = coerce do mconcat @(Dual (Dual (Dual (Sum a))))

product :: forall a. [a] -> a
product = coerce do mconcat @(Product a)
product = coerce do mconcat @(Dual (Product a))
product = coerce do mconcat @(Dual (Dual (Product a)))
..
There is no sensible “first” or “last” element of an empty list. Correspondingly those
newtypes have no lawful Monoid instance so they don’t work for mconcat.
The fundamental data type data Maybe a = Nothing | Just a can be used to lift
a Semigroup to a Monoid by adjoining Nothing to act as mempty:
type LiftSemigroup :: Type -> Type
type LiftSemigroup = Maybe

instance Semigroup a => Semigroup (Maybe a) where
(<>) :: Maybe a -> Maybe a -> Maybe a
Nothing <> as' = as'
as <> Nothing = as
Just a <> Just a' = Just (a <> a')

instance Semigroup a => Monoid (Maybe a) where
mempty :: Maybe a
mempty = Nothing

Combining the behaviour of the LiftSemigroup with First and Last turns their
Semigroup instances to Monoid instances with an ability to describe empty strutures.
type LiftFirst :: Type -> Type
type LiftList :: Type -> Type
type LiftFirst a = LiftSemigroup (First a)
type LiftLast a = LiftSemigroup (Last a)
We now reap benefits from :instances. Unlike the :info command which lists
information and instances of ground types our new command has the ability to
enumerate instances of arbitrarily nested types.
>> :instances LiftFirst _
instance Monoid (Maybe (First _))
instance Semigroup (Maybe (First _))
..
>> :instances LiftLast _
instance Semigroup (Maybe (Last _))
instance Monoid (Maybe (Last _))
They now have a sensible answer for the first and last element of an empty list:
-- >> liftFirst []
-- Nothing
-- >> liftFirst [Just 'A', Nothing, Just 'Z']
-- Just 'A'
liftFirst :: forall a. [Maybe a] -> Maybe a

9

1. Introduction

liftFirst = coerce $ mconcat @(LiftFirst a)

-- >> liftLast []
-- Nothing
-- >> liftLast [Just 'A', Nothing, Just 'Z']
-- Just 'Z'
liftLast :: forall a. [Maybe a] -> Maybe a
liftLast = coerce $ mconcat @(LiftLast a)
The First and Last semigroups we have been using come from Data.Semigroup.
Confusingly a different set of newtypes come from Data.Monoid with a Monoid
instance from our LiftFirst and LiftLast.

1.5 Problem Description

We said that type classes capture interfaces but when defining class instances, we
often discover repeated patterns where different instances have the same definition.
For example, the following instances appear in the base library:
instance Semigroup a => Semigroup (IO a) where

(<>) = liftA2 (<>)
instance Semigroup a => Semigroup (ST s a) where

(<>) = liftA2 (<>)

instance Monoid a => Monoid (IO a) where
mempty = pure mempty

instance Monoid a => Monoid (ST s a) where
mempty = pure mempty

Notice, these have completely identical instance bodies (method signatures are omit-
ted to preserve this) The underlying pattern works not only for IO and ST s, but
for any applicative functor f.
It is tempting to avoid this obvious repetition by defining an instance for all such
types in one fell swoop.
One might think that that situation is different this time around. After all this is
not a catch-all rule but is limited to applicatives applied to semigroups and monoids:
instance (Applicative f, Semigroup a) => Semigroup (f a) where
(<>) :: f a -> f a -> f a
(<>) = liftA2 (<>)

instance (Applicative f, Monoid a) => Monoid (f a) where
mempty :: f a
mempty = pure mempty

Unfortunately, this general instance is undesirable. Because instance resolution
matches the instance head first without considering the context this instance overlaps
with all other instances of applied types (f a) whether they are headed by an
applicative functor or not. Once GHC has commited to an instance, it will never

10

1. Introduction

backtrack.1
Consider:
type Endo :: Type -> Type
newtype Endo a = Endo (a -> a) -- Data.Monoid
Here, Endo is not an Applicative and not even a Functor (it is invariant since a
appears in input and output position). Endo a would still match the above instance
and promptly get rejected for lack of an Applicative.
It still admits a perfectly valid Monoid instance that overlaps with the above f a
instance:
instance Semigroup (Endo a) where
(<>) :: Endo a -> Endo a -> Endo a
Endo f <> Endo g = Endo (f . g)

instance Monoid (Endo a) where
mempty :: Endo a
mempty = MkEndo id

This rule holds for any Category so the instance for Endo a can be captured by a
different rule.
instance Category cat => Semigroup (cat a a) where

(<>) :: cat a a -> cat a a -> cat a a
(<>) = (.)

instance Category cat => Monoid (cat a a) where
mempty :: cat a a
mempty = id

Endo a does not have the right shape to match the instance cat a a as it expects
a type constructor applied to two arguments. Even so the monoid instance for Endo
a and a -> a are equal at runtime.
Since functions are categories the monoid instance for Endo a can be captured by
a different rule. Even though Endo a doesn’t have the right shape to match the
monoid instance for ((->) a a) they share the same representation in memory:
Moreover, even if we have an applicative functor f on our hands there is no guarantee
that this is the definition we want. Notably, lists are the free monoid (the most
‘fundamental’ monoid) where <> is list concatenation whose identity is the empty
list. These instances do not coincide with the rule above and in particular impose
no constraint on a:
instance Semigroup [a] where

(<>) :: [a] -> [a] -> [a]
(<>) = (++)

instance Monoid [a] where
mempty :: [a]
mempty = []

This can be captured by yet another rule, this time headed by an Alternative:

1Backtracking is “fundamentally anti-modular.” as discussed by Edward Kmett[3].

11

1. Introduction

instance Alternative f => Semigroup (f a) where
(<>) :: f a -> f a -> f a
(<>) = (<|>)

instance Alternative f => Monoid (f a) where
mempty :: f a
mempty = empty

Because instance resolution doesn’t backtrack, we can’t define rules that are given by
Applicative as well as Alternative. This is true even with overlapping instances,
and there is no way for Endo a to even match the rule given by Category.
The only viable workaround using the Haskell type class system is to write the
instances for each data type by hand, each one with an identical definition (like the
instances for IO a and ST s a), which is extremely unsatisfactory:

• It is not clear that we are instantiating a general principle.
• We do not express this general principle as code with a name and documen-

tation. Its use must be communicated in another way; by comments or as
folklore. This makes it difficult to search for and discover. Our code has lost
a connection to its intention.

• There are many such rules, some quite obvious, but others more surprising
and easy to overlook.

• Combining rules must be done manually.
• While the work required to define instances manually for Semigroup, Monoid—

totalling only two methods—is perhaps acceptable, it quickly becomes un-
wieldy and error-prone for classes with many methods.

As an illustration of the final point, consider Num. There is a way to lift a Num
instance through any applicative functor:2
class Num a where

(+), (-), (*) :: a -> a -> a
negate, abs, sinum :: a -> a
fromInteger :: Integer -> a

instance (Applicative f, Num a) => Num (f a) where
(+), (-), (*) :: f a -> f a -> f a
(+) = liftA2 (+)
(-) = liftA2 (-)
(*) = liftA2 (*)

negate, abs, signum :: f a -> f a
negate = liftA negate
abs = liftA abs
signum = liftA signum

fromInteger :: Integer -> f a
fromInteger = pure . fromInteger

Defining such boilerplate instances manually for concrete type constructors is so
2Similarly for Floating and Fractional, numeric type classes with a combined number of 25

methods (15 for a minimal definition).

12

1. Introduction

annoying that Conal Elliott introduced a preprocessor [4] for this particular use
case several years ago.

1.6 Deriving

Readers familiar with Haskell’s deriving mechanism (discussed in section 2.3) may
wonder why we cannot simply derive all the instances we just discussed. Unfortu-
nately, our options are very limited.
To start, Semigroup and Monoid are not one of the few blessed type classes that
GHC has built-in support to derive. It so happens that IO a, ST s a and Endo a
are all newtypes, so they are in principle eligible for generalized newtype deriving
(GND), in which their instances could be derived by reusing the instances of their
underlying types [5]. However, this would give us the wrong definition in all three
cases.
Our last hope is that the the Monoid type class has a suitable generic default imple-
mentation [6]. If that were the case, we could use a deriving clause in conjunction
with the DeriveAnyClass extension, and thereby get the compiler to generate an
instance for us.
However, there is no generic default for Monoid, a standard class from the base
library (which would be difficult to change). But even if a generic instance existed,
it would still capture a single rule over all others, so we couldn’t ever use it to derive
both the monoid instance for lists and for ST s a.
We thus have no other choice but to write some instances by hand. This means
that we have to provide explicit implementations of at least a minimal subset of the
class methods. There is no middle ground here, and the additional work required
compared to deriving can be drastic—especially if the class has many methods—so
the option of using deriving remains an appealing alternative.

1.7 Introducing Deriving Via
We are now going to address this unfortunate lack of abstraction and try to bridge
the gap between manually defined instances and the few available deriving mech-
anisms we have at our disposal.
Our approach has two parts:

1. As before we capture general rules for defining new instances using newtypes.
2. We introduce Deriving Via, a new language construct that allows us to use

such newtypes to explain to the compiler exactly how to construct the instance
without having to write it by hand.

As a result, we are no longer limited to a fixed set of predefined ways to define
particular class instances, but can instead teach the compiler new rules for deriving
instances, selecting the one we want using a high-level description.
Let us look at examples. For the first part, we revisit the rule that explains how to
lift a semigroup and monoid instance through an applicative functor. We can turn
the problematic generic and overlapping instance for Monoid (f a) into an entirely

13

1. Introduction

unproblematic instance by defining a suitable adapter newtype [7] and wrapping the
instance head in it:3
type Ap :: (k -> Type) -> (k -> Type)
newtype Ap f a = Ap (f a)
The first line (type Ap :: . . .) is a standalone kind signature enabled the an
extension with the same name explained in chapter 2.
instance (Applicative f, Semigroup a) => Semigroup (Ap f a) where
(<>) :: Ap f a -> Ap f a -> Ap f a
Ap f <> Ap g = Ap (liftA2 (<>) f g)

instance (Applicative f, Monoid a) => Monoid (Ap f a) where
mempty :: Ap f a
mempty = Ap (pure mempty)

If we derive an applicative instance for Ap f with generalized newtype deriving we
get rid of the wrapping and unwrapping of newtypes in the Semigroup and Monoid
instances. The resulting instance bodies now look like the overlapping instances in
the beginning:
newtype Ap f a = Ap (f a)

deriving
newtype (Functor, Applicative)

instance (Applicative f, Semigroup a) => Semigroup (Ap f a) where
(<>) :: Ap f a -> Ap f a -> Ap f a
(<>) = liftA2 (<>)

instance (Applicative f, Monoid a) => Monoid (Ap f a) where
mempty :: Ap f a
mempty = pure mempty

The second part is to now use such a rule in our new form of deriving statement.
We can do this when defining a new data type, such as in
data Opt a = No | Yes a

deriving (Semigroup, Monoid)
via Ap Opt a

instance Functor Opt ..
instance Applicative Opt ..
This requires that we independently have an Applicative instance for Opt, but
then we obtain the desired Monoid instance nearly for free.
In the deriving clause, via is a new language construct that explains how GHC
should derive the instance, namely by reusing the Semigroup and Monoid instances
already available for the via type—Ap Opt a. It should be easy to see why this
works: due to the use of a newtype, Ap Opt a has the same internal representation
as Opt a, and any instance available on one type can be made to work on the
other by suitably wrapping or unwrapping a newtype. Ap Opt a and Opt a are
representationally equal and thus a binary function on one is representationally

3Has since been added to base as Data.Monoid.Ap in GHC 8.6.

14

1. Introduction

equal to a binary function on the other.
The Data.Monoid module defines many further adapters that can readily be used
with Deriving Via. For example, the rule that obtains a Monoid instance from an
Alternative instance is already available through the Data.Monoid.Alt newtype
(now deriving Alternative with newtype deriving to avoid wrapping and unwrap-
ping):
type Alt :: (k -> Type) -> (k -> Type)
newtype Alt f a = Alt (f a)

deriving
newtype (Functor, Applicative, Alternative)

instance Alternative f => Semigroup (Alt f a) where
(<>) :: Alt f a -> Alt f a -> Alt f a
(<>) = (<|>)

instance Alternative f => Monoid (Alt f a) where
mempty :: Alt f a
mempty = empty

We can also define an adapter to capture the Endo instances
type Join :: (k -> k -> Type) -> (k -> Type)
newtype Join cat a = Join (cat a a)

instance Category cat => Semigroup (Join cat a) where
(<>) :: Join cat a -> Join cat a -> Join cat a
Join f <> Join g = Join (f . g)

instance Category cat => Monoid (Join cat a) where
mempty :: Join cat a
mempty = Join id

Equipped with adapters such as Ap, Alt and Join many Monoid instances that had
to be written by hand can be derived using the via construct.

1.8 Contributions and structure of the thesis

This thesis is based off an existing paper “Deriving Via: or, How to Turn Hand-
Written Instances into an Anti-pattern”[8] written by Andres Löh, Ryan Scott and
myself. I proposed a design for :instances[9] on GitLab (which was then known
as GHC Trac). That design was eventually implemented by Xavier Denis[10].
The thesis is structured as follows: In Section 3, we use the QuickCheck library
as a case study to explain in more detail how Deriving Via can be used, and how
it works. In particular how rules can be combined. In Section 4, we explain in
detail how to typecheck and translate Deriving Via clauses. In Section 5.1, we
discuss several additional applications of Deriving Via. We discuss related ideas in
Section 7.1, describe the current status of our extension in Section 7.2 and conclude
in Section 7.3.

15

1. Introduction

Deriving Via is fully implemented and landed in GHC 8.6 and :instances landed
in GHC 8.10.
The idea of Deriving Via is surprisingly simple, yet it has a number of powerful and
equally surprising properties:

• It further generalizes the generalized newtype deriving extension. (Section 4.2.1).
• It additionally generalizes the concept of default signatures. (Section 5.1.4).
• It provides a possible solution to the problem of introducing additional boiler-

plate code when introducing new superclasses (such as Applicative for Monad,
Section 5.1.6).

• It allows for reusing instances not just between representationtally equal types,
but also between isomorphic or similarly related types (Section 5.1.5).

1.9 Statement of Contribution
I started thinking about this during my time at Standard Chartered Bank. The
original motivator was making use of isomorphisms between datatypes to derive
functionality for one from the other. It turned out to be cumbersome before realizing
that deriving via isomorphisms is a special case of deriving via representationally-
equal types.
Following that I attended ICFP 2017 where I was able to discuss the idea. Simon
Peyton Jones encouraged me to turn it into a fully-fledged paper. I was uncertain
I would finish it on my own so he got me in contact with Ryan Gl. Scott who was
familiar with GHC’s deriving mechanism. Andres Löh also expressed interest in the
project at ICFP.
After ICFP, I together with Ryan and Andres would discuss and split up work on
the paper for the next half-a-year with weekly video calls, finally submitting it to
the Haskell Symposium 2018 where it was accepted.[8]
During the development of the extension I collected unusual or seemingly impossible
use cases that guided the design of the extension.
Ryan implemented the idea in GHC. It was a simple and direct generalisation of
-XGeneralizedNewtypeDeriving where a lot of the code was already in place.

16

2
Background

This thesis uses several GHC extensions that will be discussed here.
I write type signatures for methods when writing instances of type classes, this is
enabled by -XInstanceSigs
instance Eq ABC where

(==) :: Int -> Int -> Bool -- enabled by -XInstanceSigs
A == A = True
B == B = True
C == C = True
_ == _ = False

Arguments of -> are given explicitly by the programmer while type arguments on
the other hand are solved by unification. We say that the quantifiee a (argument
being quantifed over) of a -> ... is visible while the quantifiee of forall a. ...
is invisible:
pure :: forall f a. Applicative f => a -> f a
The syntax @ is used to override the visibility of type arguments and is enabled by
the extension -XTypeApplications
pure @Maybe :: forall a. a -> Maybe a
pure @Maybe @() :: () -> Maybe ()
Kinds signatures (especially of type classes) will be specified with the extension
-XStandaloneKindSignatures which appeared in GHC 8.10:
type Eq :: Type -> Constraint
class Eq a where

(==) :: a -> a -> Bool
(/=) :: a -> a -> Bool

2.1 Kinds
Just as types classify values, kinds classify types. As originally defined in the
Haskell98 report[11], kinds were extremely minimal, following the simple grammar
Kind = Type | Kind -> Kind
Type is the kind of proper, inhabited types such as:
Int :: Type
() :: Type
Int->()->Double :: Type
Maybe () :: Type
Maybe Int :: Type

17

2. Background

Type constructors like Maybe and (->) can appear without their arguments, in
which case they are type level functions[12] with no computational content.
[] :: Type -> Type
Maybe :: Type -> Type
IO :: Type -> Type
(->) Int :: Type -> Type

Either :: Type -> Type -> Type
(->) :: Type -> Type -> Type
Constructors can appear as arguments to datatypes as well like AtIntBool which
contains a value of that constructor at Int and at Bool:
type AtIntBool :: (Type -> Type) -> Type
data AtIntBool f where

Pair :: f Int -> f Bool -> AtIntBool f
An AtIntBool [] would then contain a list of Ints and Bools
Pair @[] :: [Int] -> [Bool] -> AtIntBool []
Pair @IO :: IO Int -> IO Bool -> AtIntBool IO
Just as we can have polymorphism at the term level with forall. we can also
express

2.2 Type Classes
Extending the discussion in the introduction:

2.2.1 Default methods and Minimal pragmas
Haskell 98 supports specifying default implementations of methods, where the type
of the default method matches the method type.
Using the type class for equality as an example, if the /= method is omitted then
the definition a /= b = not (a == b) is assumed.
This is how Eq appears in base:
type Eq :: Type -> Constraint
class Eq a where

{-# Minimal (==) | (/=) #-}

(==) :: a -> a -> Bool
a == b = not (a /= b)

(/=) :: a -> a -> Bool
a /= b = not (a == b)

The default methods along with the {-# Minimal .. #-} pragma, specifies to the
compiler that at least one of the two methods must be defined.
With the extension -XDefaultSignatures it is possible to supply methods with a
more restrictive type. We can always compare Enum
for example knowing we are comparing Enums for equality

18

2. Background

type Enum :: Type -> Constraint
class Enum a where
toEnum :: Int -> a
fromEnum :: a -> Int

it would be possible to define a default methods for Eq that compares their Int
values for equality:
type Eq :: Type -> Constraint
class Eq a where

(==) :: a -> a -> Bool
default

(==) :: Enum a => a -> a -> Bool
a == b = fromEnum a == fromEnum b

(/=) :: a -> a -> Bool
a /= b = not (a == b)

Using the deriving strategy anyclass (which generates a type class without provid-
ing method bodies) we can derive Eq instances for any Enum type, in doing so we
commit to this single path between the two.
It could alternatively be defined as a newtype instance
type Enumy :: Type -> Type
newtype Enumy a = Enumy a

deriving
newtype Enum

instance Enum a => Eq (Enumy a) where
(==) :: Enumy a -> Enumy a -> Bool
a == b = fromEnum a == fromEnum b

and this can now be derived with Deriving Via for any type that has an Enum instance
data A = ..

deriving
stock Enum

deriving Eq
via Enumy A

2.2.2 Associated type families
The primary purpose of type classes is to achieve ad-hoc overloading by indexing
functions (class methods) by types but they can be used to index data types and
type synonyms as well. This thesis only considers the case of synonyms, known as
associated type families.[13] They are functions on types which must be defined once
for each instance.
An example where this is useful is representable functors. They are types that can
be equally represented as functions from a particular representing type (not to be
confused with representation type or representable equality). A polymorphic pair, or
a 2-D vector is representable

19

2. Background

type V2 :: Type -> Type
data V2 a = V2 a a
In this case V2 a is equivalent to the function type Bool -> a so we say that Bool
is the representing type of V2.
This representing type can be made precise by defining an associated type family
Rep:
type Representable :: (Type -> Type) -> Constraint
class Functor f => Representable f where

type Rep f :: Type

index :: f a -> (Rep f -> a)
tabulate :: f a <- (Rep f -> a)

This really describes a natural isomorphism between the functors f and function
types (Rep f ->),
index :: f ~> (Rep f ->)
tabulate :: f <~ (Rep f ->)
We can now formally define V2 to be representable
instance Representable V2 where

type Rep V2 = Bool

index :: V2 a -> (Bool -> a)
index (V2 fls tru) = \case

False -> fls
True -> tru

tabulate :: (Bool -> a) -> V2 a
tabulate make = V2 (make False) (make True)

2.3 Deriving
Many datatypes have instances that follow directly from the structure of the type.
Using deriving automatically generates these derived instances. At first these de-
rived instances could only be generated for built-in classes, which became known as
the stock deriving strategy as other strategies were added.
Currently three strategies exist
stock Deriving strategies hard coded into the compiler: The Haskell Report spec-

ifies Eq, Ord, Enum, Bounded, Ix, Show and Read1.
Language extensions to GHC enable deriving

• Functor (enabled by DeriveFunctor)
• Foldable (DeriveFoldable)
• Traversable (DeriveTraversable)
• Generic and Generic1 (DeriveGeneric)
• Lift (DeriveLift)
• Data (DeriveDataTypeable)

1Haskell 98

20

2. Background

• and Typeable, althought Typeable is now derived automatically for
all types

newtype This deriving strategy enabled by the GeneralizedNewtypeDeriving ex-
tension (GND) makes use of the unique property of newtype that they
have the same memory representation as their representation type.
This means that instances of the representation type can be coerced into
an instance for the new type.

anyclass This deriving strategy enabled by DeriveAnyClass which, when valid, is
the same as writing an empty instance declaration.
This is useful for generic default implementation for a particular instance.

All of those deriving strategies will only derive a type class in a single way. This
thesis proposes a fourth strategy via that generalizes newtype and allows multiple
ways of deriving a class.
Like other deriving strategies we specify the list of classes we want to derive for our
type. In addition to that we specify a via-type that is equal to our type at runtime,
this is where we derive our instances from. For multiple types of instances we can
use more than one via type.

21

3
Case study: QuickCheck

QuickCheck [14] is a well-known Haskell library for randomized property-based test-
ing. At the core of QuickCheck’s test-case generation functionality is the Arbitrary
class. Its primary method is arbitrary, which describes how to generate suitable
random values of a given size and type. It also has a method shrink that is used
to try to shrink failing counterexamples of test properties.
type Arbitrary :: Type -> Constraint
class Arbitrary a where

{-# MINIMAL arbitrary #-}
arbitrary :: Gen a

shrink :: a -> [a]
shrink _ = []

MINIMAL is a pragma that specifies the minimal complete Arbitrary definition. As
shrink has a default definition we only need to provide arbitrary.
Many standard Haskell types, such as Int and lists, are already instances of Arbitrary.
This can be very convenient, because many properties involving these types can be
quick-checked without any extra work.
On the other hand, there are often additional constraints imposed on the actual
values of a type that are not sufficiently expressed in their types. Depending on the
context and the situation, we might want to guarantee that we generate positive
integers, or non-empty lists, or even sorted lists.
The QuickCheck library provides a number of newtype-based adapters (called mod-
ifiers in the library) for this purpose. As an example, QuickCheck defines:
type NonNegative :: Type -> Type
newtype NonNegative a = MkNonNegative a
which comes with a predefined instance of the form
instance (Num a, Ord a, Arbitrary a) => Arbitrary (NonNegative a)
that explains how to generate and shrink non-negative numbers. A user who wants
a non-negative integer can now use NonNegative Int rather than Int to make this
obvious.
This approach, however, has a drastic disadvantage: we have to wrap each value in
an extra constructor, and the newtype and constructor are QuickCheck-specific. An
implementation detail (the choice of testing library) leaks into the data model of an
application. While we might be willing to use domain-specific newtypes for added
type safety, such as Age or Duration, we might not be eager to add QuickCheck
modifiers everywhere. And what if we need more than one modifier? And what if
other libraries export their own set of modifiers as well? We certainly do not want

23

3. Case study: QuickCheck

to change the actual definition of our data types (and corresponding code) whenever
we start using a new library.
With Deriving Via, we have the option to reuse the existing infrastructure of mod-
ifiers without paying the price of cluttering up our data type definitions. We can
define a domain-specific newtype and specify how Arbitrary should be derived, the
simplest option is to derive via Int
newtype Duration = MkDuration Int -- in seconds

deriving Arbitrary
via Int

This declaration has exactly the same effect as using the GeneralizedNewtypeDeriving
extension to derive the instance: because Int and Duration have the same run-time
representation. We can reuse the instance for Int which this allows negative dura-
tions.
If we want to restrict ourselves to non-negative durations, we replace this by
newtype Duration = MkDuration Int

deriving Arbitrary
via NonNegative Int

If :instance is integrated into the editor our programming environment could sug-
gest it as a derivable instance:
>> :instances NonNegative Int
..
instance Arbitrary (NonNegative Int)

-- Defined in ‘Test.QuickCheck.Modifiers’
This Arbitrary instance generates non-negative durations. The deriving clause
changes but the data type itself does not. If we later want positive durations, we
replace NonNegative with Positive in the deriving clause. In particular, we do not
have to change any constructor names anywhere in our code.

3.1 Composition
Multiple modifiers can be combined. For example, there is another modifier called
Large that will scale up the size of integral values being produced by a generator.
It is defined as
type Large :: Type -> Type
newtype Large a = MkLarge a
with a corresponding Arbitrary instance for large numbers:
instance (Integral a, Bounded a) => Arbitrary (Large a)
For our Duration type, we can easily write
type Duration :: Type
newtype Duration = MkDuration Int

deriving Arbitrary
via NonNegative (Large Int)

>> :instances NonNegative (Large Int)
..
instance Arbitrary (NonNegative (Large Int))

-- Defined in ‘Test.QuickCheck.Modifiers’

24

3. Case study: QuickCheck

and derive an instance which only generates Duration values that are both non-
negative and large. This works because Duration still shares the same runtime
representation as NonNegative (Large Int) (namely, that of Int) so we can use
its Arbitrary instance.

3.2 Adding new modifiers
Of course, we can add add our own modifiers if the set of predefined modifiers is not
sufficient. For example, it is difficult to provide a completely generic Arbitrary in-
stance that works for all data types, simply because there are too many assumptions
about what makes good test data that need to be taken into account.
But data types may have other reasonable generic behaviours. For example, for
enumeration types, one strategy is to desire a uniform distribution of the finite set
of values. QuickCheck even offers such a generator, but it does not expose it as a
newtype modifier:
arbitraryBoundedEnum :: (Bounded a, Enum a) => Gen a
We use this to define a new “rule” for Arbitrary
type BoundedEnum :: Type -> Type
newtype BoundedEnum a = MkBoundedEnum a

instance (Bounded a, Enum a) => Arbitrary (BoundedEnum a) where
arbitrary :: Gen (BoundedEnum a)
arbitrary = MkBoundedEnum <$> arbitraryBoundedEnum

We can then use this functionality to derive Arbitrary for a new enumeration type:
data Weekday = Mo | Tu | We | Th | Fr | Sa | Su

deriving
stock (Enum, Bounded)

deriving Arbitrary
via BoundedEnum Weekday

3.3 Parameterized modifiers
Sometimes, we might want to parameterize a generator with extra data. We can do
so by defining a modifier that has extra arguments and using those extra arguments
in the associated Arbitrary instance.
An extreme case that also makes use of type-level programming features in GHC
is a modifier that allows us to specify a lower and an upper bound of a generated
natural number. This instance makes use of visible type applications @low and
@high described in chapter 2.
type Between :: Nat -> Nat -> Type
newtype Between low high = MkBetween Integer

instance (KnownNat low, KnownNat high)
=> Arbitrary (low `Between` high) where

25

3. Case study: QuickCheck

arbitrary :: Gen (low `Between` high)
arbitrary = MkBetween <$> choose
(natVal @low Proxy
, natVal @high Proxy
)

We can then equip an application-specific type for years with a generator that lies
within a plausible range:
newtype Year = MkYear Integer

deriving
stock Show

deriving Arbitrary
via 1900 `Between` 2100

In general, we can use this technique of adding extra parameters to a newtype to
support additional ways to configure the behavior of derived instances.

3.4 Conclusions
This showcases how Deriving Via can be used to naturally specify and derive. Types
specify high-level behaviour where more complex types give composed behaviour,
answering the first research question positively

1. Can boilerplate in instance declarations be reduced to composable behaviours?
This should be done leveraging the Haskell ecosystem.

They are supported out of the box with the Haskell ecosystem that has a long
history of assigning secondary behaviour to newtypes. We reap the benefits and
treat types as a domain-specific language of behaviour. The type Between already
shows Haskell’s limited capability of passing values to newtypes. With the promise
of dependent types in Haskell[12] we stand to see immediate benefits to Deriving Via
where newtypes can be configured with arbitrary run-time values and functions.

26

4
Typechecking and translation

Seeing enough examples of Deriving Via can give the impression that it is a somewhat
magical feature. In this section, we aim to explain the magic underlying Deriving
Via by giving a more precise description of:

• How Deriving Via clauses are typechecked.
• What code Deriving Via generates behind the scenes.
• How to determine the scoping of type variables in Deriving Via clauses.

To avoid clutter, we assume that all types have monomorphic kinds. However, it is
easy to incorporate kind polymorphism [15], and our implementation of these ideas
in GHC does so.

4.1 Well-typed uses of Deriving Via
Deriving Via grants the programmer the ability to put extra types in her programs,
but the flip side to this is that it’s possible for her to accidentally put total nonsense
into a Deriving Via clause, such as:
newtype S = MkS Char

deriving Eq
via Maybe

In this section, we describe a general algorithm for when a Deriving Via clause should
typecheck, which will allow us to reject ill-formed examples like the one above.

4.1.1 Aligning kinds
Suppose we are deriving the following instance:
data D d1 ... dm

deriving C c1 ... cn
via V v1 ... vp

In order for this declaration to typecheck, we must check the kinds of each type. In
particular, the following conditions must hold:

1. The type C c1 ... cn must be of kind (k1 -> ... -> kr -> Type) ->
Constraint for some kinds k1, ..., kr. The reason is that the instance we
must generate,
instance C c1 ... cn (D d1 ... di) where ...
requires that we can apply C c1 ... cn to another type D d1 ... di
(where i ≤ m, see Section 4.1.2). Therefore, it would be nonsense to try
to derive an instance of C c1 ... cn if it had kind, say, Constraint.

27

4. Typechecking and translation

2. The kinds V v1 ... vp and D d1 ... di, and the kind of the argument
to C c1 ... cn must all unify. This check rules out the above example of
deriving Eq via Maybe, as it does not even make sense to talk about reusing
the Eq instance for Maybe—which is of kind (Type -> Type)—as Eq instances
can only exist for types of kind Type.

4.1.2 Eta-reducing the data type

Note that in the conditions above, we specify D d1 ... di (for some i), instead
of D d1 ... dm. That is because in general, the kind of the argument to C c1
... cn is allowed to be different from the kind of D d1 ... dm! For instance,
the following example is perfectly legitimate:
type Functor :: (Type -> Type) -> Constraint

class Functor f where ...

data Foo a = MkFoo a a
deriving
stock Functor

despite the fact that Foo a has kind Type and the argument to Functor has kind
(Type -> Type). This is because the code that actually gets generated has the
following shape:
instance Functor Foo where ...
To put it differently, we have eta-reduced1 away the a in Foo a before applying
Functor to it. The power to eta-reduce variables from the data type is part of what
makes deriving clauses so flexible.
To determine how many variables to eta-reduce, we must examine the kind of C
c1 ... cn, which by condition (1) is of the form ((k1 -> ... -> kr -> Type)
-> Constraint) for some kinds k1, ..., kr. Then the number of variables to
eta-reduce is simply r, so to compute the i in D d1 ... di, we take i = m − r.
This is better explained by example, so consider the following two scenarios, both
of which typecheck:
newtype A a = MkA a deriving Eq via Identity a
newtype B b = MkB b deriving Functor via Identity
In the first example, we have the class Eq, which is of kind Type -> Constraint.
The argument to Eq, which is of kind Type, does not require that we eta-reduce any
variables. As a result, we check that A a is of kind Type, which is the case.
In the second example, we have the class Functor, which is of kind (Type -> Type)
-> Constraint. The argument to Functor is of kind (Type -> Type), which re-
quires that we eta-reduce one variable from B b to obtain B. We then check that B
is kind of (Type -> Type), which is true.

1The term eta-reduction is taken from the internals of GHC for reducing forall a. Foo a to
Foo, where a is not free in Foo. It is inspired from eta reduction of functions where a function
a -> f a can be replaced with the eta-reduced f.

28

4. Typechecking and translation

4.2 Code generation

Once the typechecker has ascertained that a via type is fully compatible with the
data type and the class for which an instance is being derived, GHC proceeds with
generating the code for the instance itself. This generated code is then fed back into
the typechecker, which acts as a final sanity check that GHC is doing the right thing
under the hood.

4.2.1 Generalized newtype deriving (GND)
The process by which Deriving Via generates code is heavily based on the approach
that the GND takes, so it is informative to first explain how GND works. From
there, Deriving Via is a straightforward generalization—so much so that Deriving
Via could be thought of as “generalized GND”.
As we saw in Section 4.2.1, the code which GND generates relies on coerce to do
the heavy lifting. In this section, we will generalize this technique slightly to give
us a way to generate code for Deriving Via.
Recall the following GND-derived instance:
type Age :: Type
newtype Age = MkAge { getAge :: Int }

deriving
newtype Enum

As stated above, GND basically generates the following code:
enumFrom:
instance Enum Age where

...
enumFrom :: Age -> [Age]
enumFrom = coerce (enumFrom @Int)

Here, there are two crucially important types: the representation type, Int, and the
original newtype itself, Age. The implementation of enumFrom simply sets up an
invocation of coerce enumFrom, with explicit type arguments to indicate that we
should reuse the existing enumFrom implementation for Int and reappropriate it for
Age.
The only difference in the code that GND and Deriving Via generate is that in the
former strategy, GHC always picks the representation type for you, but in Deriving
Via, the user has the power to choose this type. For example, if a programmer had
written this instead:
newtype T = MkT Int
instance Enum T where ...

newtype Age = MkAge Int
deriving Enum
via T

then the following code would be generated:
enumFrom = coerce (enumFrom @T)

29

4. Typechecking and translation

This time, GHC coerces from an enumFrom implementation for T (the via type) to
an implementation for Age.
Now we can see why the instances that Deriving Via can generate are a strict superset
of those that GND can generate. Our earlier GND example could equivalently have
been written using Deriving Via like so:
newtype Age = MkAge Int

deriving Enum
via Int

4.3 Type variable scoping
In the remainder of this section, we will present an overview of how type variables
are bound in Deriving Via clauses, and over what types they scope. Deriving Via
introduces a new place where types can go, and more importantly, it introduces a
new place where type variables can be quantified. It takes care to devise a consistent
treatment for it.

4.3.1 Binding sites
Consider the following example:
type Foo :: Type -> Type
data Foo a = MkFoo..

deriving Baz a b c
via Bar a b

Where is each type variable quantified?
• a is bound by Foo itself in the declaration data Foo a. Such a variable scopes

over both the derived class, Baz a b c, as well as the via type, Bar a b.
• b is bound by the via type, Bar a b. Note that b is bound here but a is not,

as it was bound earlier by the data declaration. b scopes over the derived
class type, Baz a b c, as well.

• c is bound by the derived class, Baz a b c, as it was not bound elsewhere. (a
and b were bound earlier.)

In other words, the order of scoping starts at the data declaration, then the via
type, and then the derived classes associated with that via type.

4.3.2 Establishing order
This scoping order may seem somewhat surprising, as one might expect the type
variables bound by the derived classes to scope over the via type instead. How-
ever, this choice introduces additional complications that are tricky to resolve. For
instance, consider a scenario where one attempts to derive multiple classes at once
with a single via type:
type D :: Type
data D

deriving (C1 a, C2 a)
via T a

30

4. Typechecking and translation

Suppose we first quantified the variables in the derived classes and made them scope
over the via type. Because each derived class has its own type variable scope, the
a in C1 a would be bound independently from the a in C2 a. In other words, we
would have something like this (using a hypothetical forall syntax):

deriving (forall a. C1 a, forall a. C2 a)
via T a

Now we are faced with a thorny question: which a is used in the via type, T a?
There are multiple choices here, since the a variables in C1 a and C2 a are distinct!
This is an important decision, since the kinds of C1 and C2 might differ, so the choice
of a could affect whether T a kind-checks or not.
On the other hand, if one binds the a in T a first and has it scope over the derived
classes, then this becomes a non-issue. We would instead have this:

deriving (C1 a, C2 a)
via (forall a. T a)

Now, there is no ambiguity regarding a, as both a variables in the list of derived
classes were bound in the same place.
It might feel strange visually to see a variable being used before its binding site
(assuming one reads code from left to right). However, this is not unprecedented
within Haskell, as this is also legal:
f = g + h where

g = 1
h = 2

In this example, we have another scenario where things are bound (g and h) after
their use sites. In this sense, the via keyword is continuing a rich tradition pioneered
by where clauses.
One alternative idea (which was briefly considered) was to put the via type before
the derived classes so as to avoid this “zigzagging” scoping. However, this would
introduce additional ambiguities. Imagine one were to take this example:

deriving Z
via X Y

And convert it to a form in which the via type came first:
deriving via X Y Z

Should this be parsed as (X Y) Z, or X (Y Z)? It’s not clear visually, so this choice
would force programmers to write additional parentheses.

4.3.3 Conclusions
This shows how to typecheck and generate code for Deriving Via. A limitation of
the deriving mechanism is that it always derives an instance over its last parameter
of a (multi-parameter) type class.
type Sieve :: (Type -> Type -> Type) -> (Type -> Type) -> Constraint
class ..

=> Sieve pro f | pro -> f where
sieve :: pro a b -> (a -> f b)

instance Sieve (->) Identity

31

4. Typechecking and translation

We cannot derive Sieve Fun.. from newtype Fun a b = Fun (a->b) because it
is not the last parameter. This issue is discussed in section 6.1.
We can derive Sieve .. Identity’ as long as we respect the functional depen-
dency (pro -> f) and use something other than the function arrow.
The translation is in terms of coerce. Future developments described in chapter 6
give uniform translation in terms of Applying Via
instance Num Age where

(+) = (+) @(via getAge)
(*) = (*) @(via getAge)
(-) = (-) @(via getAge)
negate = negate @(via getAge)
abs = abs @(via getAge)
signum = signum @(via getAge)
fromInteger = fromInteger @(via getAge)

or Instances Via
instance Num (Age via Int) where

(+) = (+)
(*) = (*)
(-) = (-)
negate = negate
abs = abs
signum = signum
fromInteger = fromInteger

32

5
Use Cases

5.1 More Use Cases
We have already seen in Section 3 how Deriving Via facilitates greater code reuse in
the context of QuickCheck. This is far from the only domain where Deriving Via
proves to be a natural fit, however.
Unfortunately, there is not enough space to document all use cases, so in this section,
I present a cross-section of scenarios in which Deriving Via can capture interesting
patterns and allow programmers to abstract over them in a convenient way.

5.1.1 Asymptotic Improvements with Ease
A widely used feature of type classes is their ability to give default implementations
for their methods if a programmer leaves them off. One example of this can be
found in the Applicative class. The main workhorse of Applicative are the
(<*>) or liftA2 methods, but on occasion, it is more convenient to use the (<*)
or (*>) methods, which sequence their actions but discard the result of one of their
arguments:
type Applicative :: (Type -> Type) -> Constraint

class Functor f => Applicative f where
pure :: a -> f a
(<*>) :: f (a->b) -> f a -> f b

(<*) :: f a -> f b -> f a
(*>) :: f a -> f b -> f b
(<*) = liftA2 \a _ -> a
(*>) = liftA2 _ b -> b

liftA2 :: (a -> b -> c) -> (f a -> f b -> f c)
liftA2 f as bs = f <$> as <*> bs

As shown here, (<*) and (*>) have default implementations in terms of liftA2.
This works for any Applicative, but is not as efficient as it could be in some cases.
For some instances of Applicative, we can actually implement these methods in
O(1) time instead of using liftA2, which can often run in superlinear time. One
such Applicative is the function type (->):
instance Applicative (a ->) where
pure :: b -> (a -> b)

33

5. Use Cases

pure = const

(<*>) :: (a -> (b->b')) -> (a -> b) -> (a -> b')
fs <*> bs a = fs a $ bs a

(<*) :: (a -> b) -> (a -> b') -> (a -> b)
(*>) :: (a -> b) -> (a -> b') -> (a -> b')
bs <* _ = bs
_ *> bs' = bs'

Note that we had to explicitly define (<*) and (*>), as the default implementations
would not have been as efficient. But (->) is not the only type for which this trick
works—it also works for any data type that is isomorphic to (a ->) for some a.
These ‘function-like’ types are characterized by the Representable type class we
presented in subsection 2.2.2. This is a good deal more abstract than (a ->), so it
can be helpful to see how Representable works for (a ->) itself:
instance Representable (a ->) where

type Rep (a ->) = a

index :: (a -> b) -> (a -> b)
tabulate :: (a -> b) -> (a -> b)
index = id
tabulate = id

With Representable, we can codify the Applicative shortcut for (<*) and (*>)
with a suitable newtype:1
type Co :: (k -> Type) -> (k -> Type)
newtype Co f a = Co (f a)

deriving
newtype (Functor, Representable)

instance Representable f => Applicative (Co f) where
pure :: a -> Co f a
pure = tabulate . pure

(<*>) :: Co f (a -> a') -> Co f a -> Co f a'
fs <*> as = tabulate (index fs <*> index as)

(<*) :: Co f a -> Co f a' -> Co f a
(*>) :: Co f a -> Co f a' -> Co f a'
as <* _ = as
_ *> as' = as'

Now, instead of having to manually override (<*) and (*>) to get the desired perfor-
mance, one can accomplish this in a more straightforward fashion by using Deriving
Via to derive Applicative and Monad instances for V2 a using the Representable
V2 instance from subsection 2.2.2.

1Naming follows the adjunctions library https://hackage.haskell.org/package/
adjunctions-4.4/docs/Data-Functor-Rep.html.

34

https://hackage.haskell.org/package/adjunctions-4.4/docs/Data-Functor-Rep.html
https://hackage.haskell.org/package/adjunctions-4.4/docs/Data-Functor-Rep.html

5. Use Cases

data V2 a = V2 a a
deriving (Functor, Applicative, Monad, ..)
via Co Pair

Not only does this save code in the long run, but it also gives a name to the op-
timization being used, which allows it to be documented, exported from a library,
and thereby easier to spot “in the wild” for other programmers.

5.1.2 Deriving with configuration
This lets us pass static values to instance deriving.
type Person :: Type
data Person = P

{ name :: String
, age :: Int
, addr :: Maybe Address
}
deriving (Show, Read, ToJSON, FromJSON)
via Person `EncodeAs` Config OmitNothing

Many of these newtypes existed a long time before -XDerivingVia did but can be
used directly with it which is promising.

5.1.3 Equivalent Applicative definition
There is an equivalent, more symmetric definition of Applicative arising from
category theory (characterizing Applicative as a strong lax monoidal functor)[16]
that can be more convenient to define and work with[17][18]
type Monoidal :: (Type -> Type) -> Constraint
class

Functor f => Monoidal f
where
unit :: f ()
mult :: f a -> f b -> f (a, b)

To establish the equivalence between Applicative and Monoidal we define two
modifiers: WrapMonoidal and WrapApplicative to derive one via the other.
instance Monoidal f => Applicative (WrapMonoidal f)
instance Applicative f => Monoidal (WrapApplicative f)
This lists one direction of the isomorphism, which shows how to get Applicative
via a Monoidal instance:
type WrapMonoidal :: (k -> Type) -> (k -> Type)
newtype WrapMonoidal f a = WrapMonoidal (f a)

deriving
newtype (Functor, Monoidal)

instance Monoidal f => Applicative (WrapMonoidal f) where
pure :: a -> WrapMonoidal f a
pure a = a <$ unit

35

5. Use Cases

(<*>) :: WrapMonoidal f (a -> a')
-> (WrapMonoidal f a -> WrapMonoidal f a')

fs <*> as = fmap (\(f, x) -> f x) (mult fs as)
Apart from codifying their relationship this gives freedom to choose the formulation
that they deem most suitable.

5.1.4 Making Defaults more Flexible
As discussed in subsection 2.2.1 default signatures marry the type class with a par-
ticular default behaviour. This is an unfortunately common trend with type classes
in general: many classes try to pick one-size-fits-all defaults that do not work well in
certain scenarios, but because Haskell allows specifying only one default per method,
if the provided default does not work for a programmer’s use case, then she is forced
to write her own implementations by hand.
In this section, we continue the trend of generalizing defaults by looking at another
language extension that Deriving Via can substitute for: default signatures. De-
fault signatures (a slight generalization of default implementations) can eliminate
large classes of boilerplate, but they too are limited by the one-default-per-method
restriction. Here, we demonstrate how one can scrap uses of default signatures in
favor of Deriving Via and show how Deriving Via can overcome the limitations of
default signatures.
The typical use case for default signatures is when one has a class method that
has a frequently used default implementation at a constrained type. For instance,
consider a Pretty class with a method pPrint for pretty-printing data:
type Pretty :: Type -> Constraint

class Pretty a where
pPrint :: a -> Doc

Coming up with Pretty instances for the vast majority of data types is repetitive
and tedious, so a common pattern is to abstract away this tedium using generic pro-
gramming libraries, such as those found in GHC.Generics [6] or generics-sop [19].
For example, using GHC.Generics, we can define
genericPPrint :: Generic a => GPretty (Rep a) => a -> Doc
The details of how Generic, GPretty, and Rep work are not important to under-
standing the example. What is important is to note that we cannot just add
pPrint = genericPPrint
as a conventional default implementation to the Pretty class, because it does not
typecheck due to the extra constraints.
Before the advent of default signatures, one had to work around this by defining
pPrint to be genericPPrint in every Pretty instance, as in the examples below:
instance Pretty Bool where

pPrint :: Bool -> Doc
pPrint = genericPPrint

instance Pretty a => Pretty (Maybe a) where

36

5. Use Cases

pPrint :: Maybe a -> Doc
pPrint = genericPPrint

To avoid this repetition, default signatures allow one to provide a default imple-
mentation of a class method using additional constraints on the method’s type. For
example:
class Pretty a where

default pPrint
:: Generic a
=> GPretty (Rep a)
=> a -> Doc

pPrint :: a -> Doc
pPrint = genericPPrint

Now, if any instances of Pretty are given without an explicit definition of pPrint,
the default implementation is used. For this to typecheck, the data type a used in
the instance must satisfy the Generic a and GPretty (Rep a) constraints. Thus,
we can reduce the instances above to just
instance Pretty Bool
instance Pretty a => Pretty (Maybe a)
Although default signatures remove the need for many occurrences of boilerplate
code, they also retains a significant limitation of Haskell default methods: every
class method can have at most one default implementation. As a result, default
signatures effectively endorse one default implementation as the canonical one. But
in many scenarios, there is far more than just one way to do something. Our pPrint
example is no exception. Instead of genericPPrint, one might want to:

• leverage a Show-based default implementation instead of a Generic-based one,
• use a different generic programming library, such as generics-sop, instead of

GHC.Generics, or
• use a tweaked version of genericPPrint that displays extra debugging infor-

mation.
All of these are perfectly reasonable choices a programmer might want to make, but
alas, GHC lets type classes bless each method with only one default.
Fortunately, Deriving Via provides a convenient way of encoding default implemen-
tations with the ability to toggle between different choices: newtypes! For instance,
we can codify two different approaches to implementing pPrint as follows:
type GenericPPrint :: Type -> Type
type ShowPPrint :: Type -> Type

newtype GenericPPrint a = MkGenericPPrint a
newtype ShowPPrint a = MkShowPPrint a

instance (Generic a, GPretty (Rep a)) => Pretty (GenericPPrint a) where
pPrint :: GenericPPrint a -> Doc
pPrint (MkGenericPPrint x) = genericPPrint x

instance Show a => Pretty (ShowPPrint a) where
pPrint :: ShowPPrint a -> Doc

37

5. Use Cases

pPrint (MkShowPPrint x) = stringToDoc (show x)
With these newtypes in hand, choosing between them is as simple as changing a
single type:

deriving Pretty via GenericPPrint DataType1
deriving Pretty via ShowPPrint DataType2

We have seen how Deriving Via makes it quite simple to give names to particular
defaults, and how toggling between defaults is a matter of choosing a name. In
light of this, we believe that many current uses of default signatures ought to be
removed entirely and replaced with the Deriving Via-based idiom presented in this
section. This avoids the need to bless one particular default and forces programmers
to consider which default is best suited to their use case, instead of blindly trusting
the type class’s blessed default to always do the right thing.
An additional advantage is that it allows decoupling the definition of such defaults
from the site of the class definition. Hence, if a package author is hesitant to add
a default because that might incur an unwanted additional dependency, nothing is
lost, and the default can simply be added in a separate package.

5.1.5 Deriving via Isomorphisms
All of the examples presented thus far in the thesis rely on deriving through data
types that have the same runtime representation as the original data type. In the
following, however, we point out that—perhaps surprisingly—we can also derive
through data types that are isomorphic, not just representationally equal. To ac-
complish this feat, we rely on techniques from generic programming.
Let us go back to QuickCheck (as in Section 3) once more and consider the data
type
type Track :: Type
data Track = MkTrack Title Duration
for which we would like to define an Arbitrary instance. Let us further assume
that we already have Arbitrary instances for both Title and Duration.
The QuickCheck library defines an instance for pairs, so we could generate values of
type (Title, Duration), and in essence, this is exactly what we want. But unfor-
tunately, the two types are not inter-Coercible, even though they are isomorphic2.
However, we can exploit the isomorphism and still get an instance for free, and the
technique we apply is quite widely applicable in similar situations. As a first step,
we declare a newtype to capture that one type is isomorphic to another:
type SameRepAs :: Type -> Type -> Type

newtype SameRepAs a b = MkSameRepAs a
We call this type SameRepAs, because it denotes that a and b have inter-Coercible
generic representations, i.e., that
Rep a () `Coercible` Rep b ()

2Isomorphic in the sense that we can define a function from Track to (Title, Duration) and
vice versa. Depending on the class we want to derive, sometimes an even weaker relationship
between the types is sufficient, but we focus on the case of isomorphism here for reasons of space.

38

5. Use Cases

holds. Furthermore, the type SameRepAs a b is representationally equal to a, which
implies that a and SameRepAs a b are inter-Coercible.
We now witness the isomorphism between the two types via their generic representa-
tions: if they have inter-Coercible generic representations, we can transform back
and forth between the two types using the from and to methods of the Generic class
from GHC.Generics [6]. We can use this to define a suitable Arbitrary instance for
SameRepAs:
instance (Generic a, Generic b, Arbitrary b

, Rep a () `Coercible` Rep b ()
)

=> Arbitrary (a `SameRepAs` b) where

arbitrary :: Gen (a `SameRepAs` b)
arbitrary = MkSameRepAs . to . co . from <$> arbitrary @b where

co :: Rep b () -> Rep a ()
co = coerce

Here, we first use arbitrary to give us a generator of type Gen b, then coerce this
via the generic representations into an arbitrary value of type Gen a.
Finally, we can use the following deriving declarations for Track to obtain the
desired Arbitrary instance:

deriving
stock Generic

deriving Arbitrary
via Track `SameRepAs` (String, Duration)

With this technique, we can significantly expand the “equivalence classes” of data
types that can be used when picking suitable types to derive through.

5.1.6 Retrofitting Superclasses
On occasion, the need arises to retrofit an existing type class with a superclass, such
as when Monad was changed to have Applicative as a superclass (which in turn
has Functor as a superclass).
One disadvantage of such a change is that if the primary goal is to define the Monad
instance for a type, one now has to write two additional instances, for Functor and
Applicative, even though these instances are actually determined by the Monad
instance.
With Deriving Via, we can capture this fact as a newtype, thereby making the
process of defining such instances much less tedious:
type FromMonad :: (k -> Type) -> (k -> Type)
newtype FromMonad m a = MkFromMonad (m a)

deriving
newtype Monad

instance Monad m => Functor (FromMonad m) where

39

5. Use Cases

fmap = liftM

instance Monad m => Applicative (FromMonad m) where
pure = return
(<*>) = ap

Now, if we have a data type with a Monad instance, we can simply derive the corre-
sponding Functor and Applicative instances by referring to FromMonad:
type Stream :: Type -> Type -> Type
data Stream a b = Done b | Yield a (Stream a b)

deriving (Functor, Applicative)
via FromMonad (Stream a)

instance Monad (Stream a) where
return :: a -> Stream a
return = Done

(>>=) :: Stream a -> (a -> Stream b) -> Stream b
Yield a k >>= f = Yield a (k >>= f)
Done b >>= f = f b

One potentially problematic aspect remains. Another proposal [20] has been put
forth (but has not been implemented, as of now) to remove the return method from
the Monad class and make it a synonym for pure from Applicative. The argument is
that return is redundant, given that pure does the same thing with a more general
type signature. All other prior discussion about the proposal aside, it should be
noted that removing return from the Monad class would prevent FromMonad from
working, as then Monad instances would not have any way to define pure. 3

5.1.7 Avoiding Orphan Instances
Not only can Deriving Via quickly procure class instances, in some cases, it can
eliminate the need for certain instances altogether. Haskell programmers often want
to avoid orphan instances: instances defined in a separate module from both the
type class and data types being used. Sometimes, however, it is quite tempting to
reach for orphan instances, as in the following example adapted from a blog post by
Gonzalez [21]:
newtype Plugin = MkPlugin (IO (String -> IO ()))

deriving
newtype Semigroup

In order for this derived Semigroup instance to typecheck, there must be a Semigroup
instance for IO available. Suppose for a moment that there was no such instance for
IO. How could one work around this issue?

• One could patch the base library to add the instance for IO. But given base’s
slow release cycle, it would be a while before one could actually use this in-

3A similar, yet somewhat weaker, argument applies to suggested changes to relax the constraints
of liftM and ap to merely Applicative and to change their definitions to be identical to fmap
and (<*>), respectively.

40

5. Use Cases

stance.
• Write an orphan instance for IO. This works, but is undesirable, as now anyone

who uses Plugin must incur a possibly unwanted orphan instance.
Luckily, Deriving Via presents a more convenient third option: re-use a Semigroup
instance from another data type. Recall the Ap data type from Section 1.7 that
lets us define a Semigroup instance by lifting through an Applicative instance. As
luck would have it, IO already has an Applicative instance, so we can derive the
desired Semigroup instance for Plugin like so:
type Plugin :: Type
newtype Plugin = MkPlugin (IO (String -> IO ()))

deriving Semigroup
via Ap IO (String -> Ap IO ())

Note that we have to use Ap twice in the via type, corresponding to the two oc-
curences of IO in the Plugin type. This is possible because Ap IO has the same
representation as IO, and it is also necessary if we want to completely bypass the
need for a Semigroup instance for IO: Via the inner Ap IO () and the existing
instance
instance Semigroup b => Semigroup (a -> b)
we first obtain a Semigroup instance for String -> IO (), which we then, via the
outer Ap IO application, lift to IO (String -> IO ()) and therefore the Plugin
type.

5.2 Conclusions
This demonstrates the versatility of Deriving Via whose applications run the gamut
from asymptotic improvement, type class backwards interoperability to serving a
more flexible replacement for default methods, parameterizing deriving with config-
uration data and even deriving via isomorphisms.
Again Dependent Haskell[12] will greatly improve the ability to pass configuration
data, and has the ability to explicitly pass an isomorphism through which to derive.
Default methods can now be derived via one or more user defined types. This is a
big improvement where default methods specify a single behaviour intimately tied
to the class declaration.

41

6
Current Status

Given that the extension -XDerivingVia and :instances have been added to GHC
there is more work that can be done in this space.

6.1 Multi-parameter Type Classes
GHC extends Haskell by permitting type classes with more than one parameter.
Multi-parameter type classes are extremely common in modern Haskell, to the point
where their existence in Section 4.1.1 without further mention. However, multi-
parameter type classes pose an intriguing design question when combined with De-
rivingVia and StandaloneDeriving, another GHC feature that allows one to write
deriving declarations independently of a data type.
For example, one can write the following instance using StandaloneDeriving:
instance Triple A B () where

triple :: (A, B, ())
triple = undefined

class Triple a b c where
triple :: (a, b, c)

instance Triple () () () where
triple :: ((), (), ())
triple = ((), (), ())

newtype A = MkA ()
newtype B = MkB ()
newtype C = MkC ()

deriving via () instance Triple A B C
However, the code this generates is somewhat surprising. Instead of reusing the
Triple () () () instance in the derived instance, GHC will attempt to reuse an
instance for the type Triple A B (). The reason is that, by convention, Stan-
daloneDeriving will only ever coerce through the last argument of a class. That is
because the standalone instance above would be the same as if a user had written:
newtype C = MkC () deriving (Triple A B) via ()
This consistency is perhaps a bit limiting in this context where there are multiple
arguments to C that one could “derive through”. But it is not clear how GHC would
figure out which of these arguments to C should be derived through, as there seven

43

6. Current Status

different combinations to choose from! It is possible that another syntax would need
to be devised to allow users to specify which arguments should be coerced to avoid
this ambiguity.

6.2 Applying Via
The idea of a via-type can be extended further.

6.2.1 ala’
Take Conor McBride’s ala’ as an example.[22] This magical combinator transforms
a higher-order function that produces newtypes
(a -> newty) -> (as -> newty')
into a function operating on the underlying representation
(a -> ty) -> (as -> ty')
This third-order function takes an additional proxy argument: the value of this
argument is discarded and its type information is used to determine the desired
behaviour. The Newtypemethods pack and unpack are used to wrap and unwrap the
representation type. A new instance of Newtype must be written for each newtype.
ala' :: Newtype newty ty

=> Newtype newty' ty'
=> (ty -> newty)
-> ((a -> newty) -> (as -> newty'))
-> ((a -> ty) -> (as -> ty'))

ala' _ = dimap (fmap pack) (fmap unpack)
The function ala’ Sum foldMap uses the type information of Sum to guide the
instantiation of foldMap @_ @(Sum a) for additive behaviour. Like Deriving Via
this uses newtypes to direct behaviour.
A lot of standard definitions can be defined tersely with ala’ in what McBride calls
adverbial programming[23]. ala’ is primarily used with foldMap and traverse:
sum, product :: Foldable f => Num a => f a -> a
sum = ala' Sum foldMap id
product = ala' Product foldMap id

and, or :: Foldable f => f Bool -> Bool
and = ala' All foldMap id
or = ala' Any foldMap id

all, any :: Foldable t => (a -> Bool) -> (t a -> Bool)
all = ala' All foldMap
any = ala' Any foldMap

fmapDefault :: Traversable t => (a -> b) -> (t a -> t b)
fmapDefault = ala' Identity traverse

44

6. Current Status

foldMapDefault :: Traversable t => Monoid m => (a -> m) -> (t a -> m)
foldMapDefault = ala' Const traverse
This even replaces some functions defined in the async package[24] where Concurrently
is a newtype of IO with concurrent semantics:
mapConcurrently :: Traversable t => (a -> IO b) -> (t a -> IO (t b))
mapConcurrently = ala' Concurrently traverse

mapConcurrently_ :: Foldable t => (a -> IO b) -> (t a -> IO ())
mapConcurrently_ = ala' Concurrently traverse_
Despite these select terse definitions the honeymoon ends here: the definition of
ala’ only takes higher-order functions of a particular shape into account.
Definitions like replicateConcurrently and replicateConcurrently_ can not be
defined in terms of ala’:
replicateM :: Applicative f => Int -> f a -> f [a]
replicateM_ :: Applicative f => Int -> f a -> f ()

6.2.2 ala’ versus via
Enter Applying Via1, a work-in-progress GHC extension that instantiates Haskell
functions to via types and coerces them to the desired type. It generalises ala’ to
work with any shape, it doesn’t require user-written Newtype instances and allows
composing behaviour.
Instantiating replicateM to IO will sequentially execute its action n times and
collect the results; the sequentiality comes from the Applicative IO instance.
To spawn a n threads, concurrent behaviour is used: Applicative Concurrently.
replicateM :: Int -> Concurrently a -> Concurrently [a]
The core idea is the same as Deriving Via: running it Concurrently it is represen-
tationally equal to replicateConcurrently. The original function is retrieved by
coercing Concurrently to IO-actions.
replicateConcurrently :: forall a. Int -> IO a -> IO [a]
replicateConcurrently = coerce (replicateM @Concurrently @a)

replicateConcurrently_ :: forall a. Int -> IO a -> IO ()
replicateConcurrently_ = coerce (replicateM_ @Concurrently @a)
The idea is to take the promise of ala’ and apply it to any term. The proposed
syntax for Applying Via is twofold. One is explicit @(<ty> via <viaty>) where
two types are specified, the type we want to end up with (IO) and the via type
(Concurrently) that gets the desired behaviour:
replicateConcurrently = replicateM @(IO via Concurrently)
replicateConcurrently_ = replicateM_ @(IO via Concurrently)
The implicit syntax takes a page out of ala’’s book by taking a proxy function.
The type of this proxy will then be used to determine the via type and end type.
For example the constructor function Concurrently :: Concurrently a -> IO

1Applying Via GHC Proposal: https://github.com/ghc-proposals/ghc-proposals/pull/
218

45

https://github.com/ghc-proposals/ghc-proposals/pull/218
https://github.com/ghc-proposals/ghc-proposals/pull/218

6. Current Status

a contains enough information to redefine all the concurrent variants that exist in
async:
replicateConcurrently = replicateM @(via Concurrently)
replicateConcurrently_ = replicateM_ @(via Concurrently)

6.3 Instances Via

The same idea can be extended to instance declarations. Instances over newtypes
still require a lot of manual wrapping which can be avoided using the same bag of
tricks.
newtype Semigroup All where

(<>) :: All -> All -> All
All a <> All b = All (a && b)

instance Semigroup Any where
(<>) :: Any -> Any -> Any
Any a <> Any b = Any (a || b)

The meaning of these instances is more clearly expressed without newtype clutter.
The syntax of Instances Via and is left as future work.
newtype Semigroup (Bool via All) where
(<>) :: Bool -> Bool -> Bool
(<>) = (&&)

instance Semigroup (Bool via Any) where
(<>) :: Bool -> Bool -> Bool
(<>) = (||)

6.4 Reactions

It has been some time since Deriving Via was released as part of GHC. A patch has
been submitted to add Deriving Via to the PureScript programming language2 and
is being used in production to reduce boilerplate345. New libraries are being build

2https://github.com/purescript/purescript/pull/3824
3https://archive.is/cmxbO
4https://archive.is/cmxbO
5https://github.com/takoeight0821/malgo/commit/06a2cb6ffed3e2d9795b0f9bf790d4fee05cdd61

46

https://github.com/purescript/purescript/pull/3824
https://archive.is/cmxbO
https://archive.is/cmxbO
https://github.com/takoeight0821/malgo/commit/06a2cb6ffed3e2d9795b0f9bf790d4fee05cdd61

6. Current Status

with Deriving Via in mind678910111213141516.
It has been presented17 and written about18192021.
In an informal poll, 61.5% of respondants said it was okay to rely on Deriving Via
when making a new Haskell library.22

The response has been very positive and is encouraging for future work.
Deriving Via is imo one of the most significant changes to ever hit

GHC. The power to weight ratio is incredible. It will literally change
how idiomatic Haskell is written forever. It is a generative change.

— @RainH (https://archive.is/y17PO)
Wow, Deriving Via is another HUGE patch that not only offers tons

of power, but is much simpler than many predecessors. Amazing times.
— @KirinDave (https://archive.is/4Vqjk)

6https://archive.is/1T9BM
7https://github.com/fumieval/deriving-aeson
8https://github.com/trailofbits/indurative
9https://hackage.haskell.org/package/woe-0.1.0.3/docs/Data-WOE.html

10https://hackage.haskell.org/package/enum-text-0.5.1.0/docs/Text-Enum-Text.
html

11https://hackage.haskell.org/package/capability
12https://hackage.haskell.org/package/semigroups-0.19.1/docs/

Data-Semigroup-Generic.html
13https://hackage.haskell.org/package/one-liner-instances-0.1.2.1/docs/

Data-Ord-OneLiner.html
14https://hackage.haskell.org/package/primitive-0.7.0.0/docs/

Data-Primitive-Types.html
15https://hackage.haskell.org/package/generic-deriving-1.12.3/docs/

Generics-Deriving-Default.html
16https://hackage.haskell.org/package/text-show-3.8.3/docs/TextShow-Generic.

html
17https://www.reddit.com/r/haskell_jp/comments/98btal/%E6%9C%AC%E5%BD%93%E3%81%

AF%E3%81%99%E3%81%94%E3%81%84_newtype/
18https://www.tweag.io/posts/2018-10-04-capability.html
19https://archive.is/kc5tb
20https://archive.is/KS4Te
21https://archive.is/Ce1ix
22https://archive.is/ZGlML

47

https://archive.is/y17PO
https://archive.is/4Vqjk
https://archive.is/1T9BM
https://github.com/fumieval/deriving-aeson
https://github.com/trailofbits/indurative
https://hackage.haskell.org/package/woe-0.1.0.3/docs/Data-WOE.html
https://hackage.haskell.org/package/enum-text-0.5.1.0/docs/Text-Enum-Text.html
https://hackage.haskell.org/package/enum-text-0.5.1.0/docs/Text-Enum-Text.html
https://hackage.haskell.org/package/capability
https://hackage.haskell.org/package/semigroups-0.19.1/docs/Data-Semigroup-Generic.html
https://hackage.haskell.org/package/semigroups-0.19.1/docs/Data-Semigroup-Generic.html
https://hackage.haskell.org/package/one-liner-instances-0.1.2.1/docs/Data-Ord-OneLiner.html
https://hackage.haskell.org/package/one-liner-instances-0.1.2.1/docs/Data-Ord-OneLiner.html
https://hackage.haskell.org/package/primitive-0.7.0.0/docs/Data-Primitive-Types.html
https://hackage.haskell.org/package/primitive-0.7.0.0/docs/Data-Primitive-Types.html
https://hackage.haskell.org/package/generic-deriving-1.12.3/docs/Generics-Deriving-Default.html
https://hackage.haskell.org/package/generic-deriving-1.12.3/docs/Generics-Deriving-Default.html
https://hackage.haskell.org/package/text-show-3.8.3/docs/TextShow-Generic.html
https://hackage.haskell.org/package/text-show-3.8.3/docs/TextShow-Generic.html
https://www.reddit.com/r/haskell_jp/comments/98btal/%E6%9C%AC%E5%BD%93%E3%81%AF%E3%81%99%E3%81%94%E3%81%84_newtype/
https://www.reddit.com/r/haskell_jp/comments/98btal/%E6%9C%AC%E5%BD%93%E3%81%AF%E3%81%99%E3%81%94%E3%81%84_newtype/
https://www.tweag.io/posts/2018-10-04-capability.html
https://archive.is/kc5tb
https://archive.is/KS4Te
https://archive.is/Ce1ix
https://archive.is/ZGlML

7
Conclusions

7.1 Related Ideas
The idea behind DerivingVia is extremely versatile technique and can be used to
tackle a wide variety of problems. DerivingVia also bears a resemblance to other
distinct language features which address similar issues, so in this section, we present
an overview of their similarities and differences.

7.1.1 ML functors
(I’m not sure I will discuss them, but this is what we took out of the thesis)
Languages in the ML family, such as Standard ML or OCaml, provide functors,
which are a feature of the module system that allows writing functions from modules
of one signature to modules of another signature. In terms of functionality, functors
somewhat closely resemble DerivingVia, as functors allow “lifting” of code into the
module language much like DerivingVia allows lifting of code into GHC ’s deriving
construct.

7.1.2 Code Reuse in Dependent Type Theory
Diehl et al. present a dependent type theory which permits zero-cost conversions
between indexed and non-indexed variants of data types [25], much in the same
vein as Coercible. However, these conversions must be explicitly constructed with
combinators, whereas Coercible-based casts are built automatically by GHC’s con-
straint solver. Therefore, while Diehl et al. allow conversions between more data
types than DerivingVia does, it also introduces some amount of boilerplate that
DerivingVia avoids.

7.1.3 Explicit Dictionary Passing
The power and flexibility of DerivingVia is largely due to GHC ’s ability to take a
class method of a particular type and massage it into a method of a different type.
This process is almost completely abstracted away from the user, however. A user
only needs to specify the types involved, and GHC will handle the rest behind the
scenes.
A similar approach is to permit the ability to explicitly construct and pass the
normally implicit dictionary arguments corresponding to type class instances [26].
Unlike in DerivingVia, where going between class instances is a process that is

49

7. Conclusions

carefully guided by the compiler, permitting explicit dictionary arguments would
allow users to actually coerce concrete instance values and pass them around as
first-class values.
This is not just a superficial difference as the dictinary-directed approach means
passing an explicit dictionary for each constraint. This stands in stark contrast to the
type-directed approach of this paper where a type is a family of behaviours. A single
type constructor [] will discharge an extensible menagerie of unnamed instances
Functor, Applicative, Monad, .. while the dictionary-directed approach would
have to pass them individually.
Explicit dictionary arguments are a considerable extension of the language and its
type system, too large a hammer for the nail Deriving Via aims to hit. Deriving
Via works by means of a simple desugaring of code with some light typechecking on
top, which makes it much simpler to describe and implement. Finally, the problem
that explicit dictionaries aim to solve—resolving ambiguity in implicit arguments—
almost never arises in DerivingVia, as the programmer must specify all the types
involved in the process.

7.2 Current Status
We have implemented DerivingVia within GHC. Our implementation also interacts
well with other GHC features that were not covered in this thesis, such as kind poly-
morphism [15], StandaloneDeriving, and type classes with associated type families
[13]. However, there are still challenges remaining, which we describe in this section.

7.2.1 Quality of Error Messages
The nice thing about deriving is that when it works, it tends to work extremely
well. When it doesn’t work, however, it can be challenging to formulate an error
message that adequately explains what went wrong. The fundamental issue is that
error messages resulting from uses of deriving are usually rooted in generated code,
and pointing to code that the user did not write in error messages can lead to a
confusing debugging experience.
Fortunately, we have found in our experience that the quality of DerivingVia-related
error messages is overall on the positive side. GHC has already invested significant
effort into making type errors involving Coercible to be easily digestible by pro-
grammers, so DerivingVia benefits from this work. For instance, if one inadvertently
tries to derive through a type that is not inter-Coercible with the original data type,
such as in the following example:
newtype UhOh = MkUhOh Char deriving Ord via Int
Then GHC will tell you exactly that, in plain language:
• Couldn't match representation of type ‘Char’ with that of ‘Int’

arising from the coercion of the method ‘compare’
from type ‘Int -> Int -> Ordering’
to type ‘UhOh -> UhOh -> Ordering’

• When deriving the instance for (Ord UhOh)

50

7. Conclusions

That is not to say that every error message is this straightforward. There are some
scenarios that produce less-than-ideal errors, such as this:
newtype Foo a = MkFoo (Maybe a) deriving Ord via a
• Occurs check: cannot construct the infinite type: a ~ Maybe a

arising from the coercion of the method ‘compare’
from type ‘a -> a -> Ordering’ to type ‘Foo a -> Foo a -> Ordering’

• When deriving the instance for (Ord (Foo a))
The real problem is that a and Maybe a do not have the same representation at
runtime, but the error does not make this obvious. It is possible that one could add
an ad hoc check for this class of programs, but there are likely many more tricky
corner cases lurking around the corner given that one can put anything after via.
We do not propose a solution to this problem here, but instead note that issues with
DerivingVia error quality are ultimately issues with coerce error quality, given
that the error messages are a result of coerce failing to typecheck. It is likely
that investing more effort into making coerce’s error messages easier to understand
would benefit DerivingVia as well.

7.3 Conclusions
In this thesis I laid out the DerivingVia language extension; explained how it is
implemented, and shown a wide variety of use cases. I believe that DerivingVia has
the potential to dramatically change the way we write instances, as it encourages
giving names to recurring patterns and reusing them where needed. Many instance
declarations that occur in the wild can actually be derived by using a pattern that
deserves to be known and named, and that instances defined manually should be-
come an anti-pattern in all but some rare situations.
The Deriving Via feature arose from my frustration with instances that carried
no new information. The development took many twists and turns: this was first
separate from my master’s thesis and it was not until after I published it at ICFP
that my advisor suggested it as thesis material.

51

Bibliography

53

Bibliography

[1] Philip Wadler and Stephen Blott. How to make ad-hoc polymorphism less
ad hoc. In Proceedings of the 16th ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, pages 60–76. ACM, 1989.

[2] Stephanie Weirich, Pritam Choudhury, Antoine Voizard, and Richard A
Eisenberg. A role for dependent types in haskell. Proceedings of the ACM
on Programming Languages, 3(ICFP):101, 2019.

[3] Edward Kmett. A comment on ‘the constraint trick for in-
stances’. https://www.reddit.com/r/haskell/comments/3afi3t/the_
constraint_trick_for_instances/cscblgz/, 2015. [Online; accessed
19-December-2019].

[4] Conal Elliott. applicative-numbers: Applicative-based numeric instances.
https://hackage.haskell.org/package/applicative-numbers, 2009.

[5] Joachim Breitner, Richard A. Eisenberg, Simon Peyton Jones, and
Stephanie Weirich. Safe zero-cost coercions for haskell. In Proceedings
of the 19th ACM SIGPLAN International Conference on Functional Pro-
gramming, ICFP ’14, pages 189–202, New York, NY, USA, 2014. ACM.

[6] José Pedro Magalhães, Atze Dijkstra, Johan Jeuring, and Andres Löh. A
generic deriving mechanism for haskell. In Proceedings of the Third ACM
Haskell Symposium on Haskell, Haskell ’10, pages 37–48, New York, NY,
USA, 2010. ACM.

[7] Jeremy Gibbons and Bruno c. d. s. Oliveira. The essence of the iterator
pattern. J. Funct. Program., 19(3-4):377–402, July 2009.

[8] Baldur Blöndal, Andres Löh, and Ryan Scott. Deriving via. In Proceedings
of the 11th ACM Haskell Symposium (Haskell’18), 2018.

[9] Baldur Blöndal. Ghci command to list instances a (possibly compound)
type belongs to. https://gitlab.haskell.org/ghc/ghc/issues/15610,
2018. [Online; accessed 19-December-2019].

[10] Xavier Denis. List instances for a type in ghci. https:
//github.com/xldenis/ghc-proposals/blob/master/proposals/
0000-ghci-instances.rst, 2018. [Online; accessed 19-December-2019].

[11] Simon Peyton Jones. Haskell 98 language and libraries: the revised report.
Cambridge University Press, 2003.

[12] Richard A Eisenberg. Dependent types in haskell: Theory and practice.
arXiv preprint arXiv:1610.07978, 2016.

[13] Manuel M. T. Chakravarty, Gabriele Keller, and Simon Peyton Jones.
Associated type synonyms. In Proceedings of the Tenth ACM SIGPLAN

55

https://www.reddit.com/r/haskell/comments/3afi3t/the_constraint_trick_for_instances/cscblgz/
https://www.reddit.com/r/haskell/comments/3afi3t/the_constraint_trick_for_instances/cscblgz/
https://hackage.haskell.org/package/applicative-numbers
https://gitlab.haskell.org/ghc/ghc/issues/15610
https://github.com/xldenis/ghc-proposals/blob/master/proposals/0000-ghci-instances.rst
https://github.com/xldenis/ghc-proposals/blob/master/proposals/0000-ghci-instances.rst
https://github.com/xldenis/ghc-proposals/blob/master/proposals/0000-ghci-instances.rst

Bibliography

International Conference on Functional Programming, ICFP ’05, pages
241–253, New York, NY, USA, 2005. ACM.

[14] Koen Claessen and John Hughes. Quickcheck: A lightweight tool for ran-
dom testing of haskell programs. In Proceedings of the Fifth ACM SIG-
PLAN International Conference on Functional Programming, ICFP ’00,
pages 268–279, New York, NY, USA, 2000. ACM.

[15] Brent A. Yorgey, Stephanie Weirich, Julien Cretin, Simon Peyton Jones,
Dimitrios Vytiniotis, and José Pedro Magalhães. Giving haskell a promo-
tion. In Proceedings of the 8th ACM SIGPLAN Workshop on Types in
Language Design and Implementation, TLDI ’12, pages 53–66, New York,
NY, USA, 2012. ACM.

[16] Exequiel Rivas and Mauro Jaskelioff. Notions of computation as monoids.
http://arxiv.org/abs/1406.4823, 2014.

[17] Conor Mcbride and Ross Paterson. Applicative programming with effects.
J. Funct. Program., 18(1):1–13, January 2008.

[18] Ross Paterson. Constructing applicative functors. In Proceedings of the
11th International Conference on Mathematics of Program Construction,
MPC’12, pages 300–323, Berlin, Heidelberg, 2012. Springer-Verlag.

[19] Edsko de Vries and Andres Löh. True sums of products. In Proceedings of
the 10th ACM SIGPLAN Workshop on Generic Programming, WGP ’14,
pages 83–94, New York, NY, USA, 2014. ACM.

[20] Herbert V. Riedel and David Luposchainsky. Monad of no return pro-
posal (mrp): Moving return out of Monad. https://mail.haskell.org/
pipermail/libraries/2015-September/026121.html, Sep 2015.

[21] Gabriel Gonzalez. Equational reasoning at scale, Jul 2014.
[22] Edwin Brady, James Chapman, Pierre-Évariste Dagand, Adam Gundry,

Conor McBride, Peter Morris, Ulf Norell, and Nicolas Oury. An epigram
implementation. URL http://www. e-pig. org, 2011.

[23] Conor McBride and Ross Paterson. Applicative programming with effects.
Journal of functional programming, 18(1):1–13, 2008.

[24] Simon Marlow. async: Run io operations asynchronously and wait for their
results. https://hackage.haskell.org/package/async, 2012. [Online;
accessed 2-March-2020].

[25] Larry Diehl, Denis Firsov, and Aaron Stump. Generic zero-cost reuse for
dependent types. Proc. ACM Program. Lang., 2(ICFP):104:1–104:30, July
2018.

[26] Atze Dijkstra and S. Doaitse Swierstra. Making implicit parameters ex-
plicit. Technical Report UU-CS-2005-032, Department of Information and
Computing Sciences, Utrecht University, 2005.

56

http://arxiv.org/abs/1406.4823
https://mail.haskell.org/pipermail/libraries/2015-September/026121.html
https://mail.haskell.org/pipermail/libraries/2015-September/026121.html
https://hackage.haskell.org/package/async

	Introduction
	Haskell and Type Classes
	Extending classes
	Multiple Candidates

	newtypes — ``datatype renamings''
	Representational equality
	newtypes for behaviour
	Problem Description
	Deriving
	Introducing Deriving Via
	Contributions and structure of the thesis
	Statement of Contribution

	Background
	Kinds
	Type Classes
	Default methods and Minimal pragmas
	Associated type families

	Deriving

	Case study: QuickCheck
	Composition
	Adding new modifiers
	Parameterized modifiers
	Conclusions

	Typechecking and translation
	Well-typed uses of Deriving Via
	Aligning kinds
	Eta-reducing the data type

	Code generation
	Generalized newtype deriving (GND)

	Type variable scoping
	Binding sites
	Establishing order
	Conclusions

	Use Cases
	More Use Cases
	Asymptotic Improvements with Ease
	Deriving with configuration
	Equivalent Applicative definition
	Making Defaults more Flexible
	Deriving via Isomorphisms
	Retrofitting Superclasses
	Avoiding Orphan Instances

	Conclusions

	Current Status
	Multi-parameter Type Classes
	Applying Via
	ala'
	ala' versus via

	Instances Via
	Reactions

	Conclusions
	Related Ideas
	ML functors
	Code Reuse in Dependent Type Theory
	Explicit Dictionary Passing

	Current Status
	Quality of Error Messages

	Conclusions

	Bibliography

