

Application of IEEE
802.1X in HiperLAN

type 2

Chalmers University of Technology, Department of Signals and Systems
 Göteborg, Sweden

Wireless LAN Systems, Ericsson Enterprise AB, Sundbyberg,
Sweden

Master of Science Thesis

July 2001

EX031/2001

By: Amleset Kelati
 Examiner at Chalmers: Prof. Arne Svensson

Advisor at Ericsson: Yi Cheng

Application of IEEE 802.1X in HIPERLAN type 2

 iii

Abstract

The research within Information Technology has been subject to a tremendous speed-up in the latest years,
mainly due to the reduced prices of the related technology and, consequently, to a strongly increased
interest of the users. This causes a positive feedback loop, since many companies decide to invest more
money in such area, reducing further the prices and accelerating this process.
One of the major issues in this big race has been the concept “Be connected always and everywhere”, which
translated in an increased development of public networks on one side and in a further growth of big
corporation networks on the other side. The common factors of these big areas are mobility, which implies
wireless networks, and availability of services, which also means access to more or less important
information.
Increased size, mobility and availability of services on networks that become bigger and bigger increases
tremendously the importance of data-security. Trust, authentication, and authorization have become vital
key words within the design of big, mobile networks.
IEEE 802.1X, also known as “Port Based Network Access Control” is a means for providing
authentication and authorization for big networks that offer the possibility to many devices to attach to
them, making their services available.
This master thesis work, carried out at Ericsson Enterprise AB, Wireless LAN Systems in Sundbyberg
(Sweden), had as a primary objective to study the authentication and authorization standard IEEE 802.1X
(Draft version 11, released March 27th 2001) and its integration in HIPERLAN type 2 (HIPERLAN/2),
which is a standard for wireless LAN. The project has been accomplished for the Department of Signals
and Systems at the Chalmers University of Technology in Göteborg, Sweden. The goals of the thesis work
were to analyze the current version of the standards and other related protocols in order to gain competence
in the area of the study how IEEE 802.1x could be integrated in HIPERLAN/2 based network. In this work
we propose a solution for the implementations problem and design, develop and test a basic prototype.
The result shows that IEEE 802.1x can be deployed within a wireless network based on HIPERLAN/2 by
adapting certain features of the two standards and by adopting certain rationale while developing an
architecture based on them.

This report is structured in such a way to mirror the different goals of the thesis.

Part 1: Contains a description of the current version of the standard and of other related protocols that

collaborate and participate in enhancing security in a typical LAN environment.

Part 2: Illustrates the methodology that has been used and the achieved results in order to integrate IEEE

802.1X and an HIPERLAN/2-based network.

Part 3: Describes roughly the implementation of the prototype, its limitations and further work to make it

usable in a professional and non-experimental environment; furthermore, it describes the result of
the testing operation.

Part 4: Concludes the report by summarizing the whole work, by illustrating the achieved results and by
giving some suggestions for a follow-up of this thesis work.

Application of IEEE 802.1X in HIPERLAN type 2

 v

Acknowledgement

I am very much grateful to my supervisor Yi Cheng at Ericsson Enterprise AB for her valuable consultation
and support throughout this thesis work.

 I would also like to sincerely thank my examiner at Chalmers, Prof. Arne Svensoon.

I take this opportunity to express my sincere thanks to:

Associate Prof. Eric Ström, Program Director Digital Communication and Systems Technology at
Chalmers, for his administrative help, his directions, for the opportunity he gave me to continue my
studies and to join Ericsson for my degree project.

Ann-Marie Danielsson Alatalo, Study Counsellor of Electrical and Computer Engineering at Chalmers
University of Technology, who encouraged me with her advice and guidance through out my studies at
Chalmers including here her frequent follow up.

Mikael Larsson, for the administrative help he gave me at Ericsson Enterprise AB.

 Marco Casole, my partner in this thesis project at Ericsson Wireless LAN Systems, for his significant help
in understanding many security issues and his co-operation in many aspects through out the project.

As well as all people at Ericsson Enterprise, Wireless LAN Department, that helped me in many practical
matters.

Finally, very special thanks to Alem Tekeste, my husband who has been always supporting my choices; and
to my sweet son Yonathan who has made his personal sacrifices on his own way.

Application of IEEE 802.1X in HIPERLAN type 2

vi Table of Content

Table of contents
ABSTRACT .. III

ACKNOWLEDGEMENT ...V

TABLE OF CONTENTS ... VI

PART 1: IEEE 802.1X AND RELATED PROTOCOLS...1

1 INTRODUCTION ...3

1.1 WIRELESS LANS ..3
1.2 SECURITY ...4
1.3 METHODOLOGY AND ACHIEVED RESULTS FOR THE THESIS WORK...4
1.4 TYPICAL OPERATIONAL ENVIRONMENT ..5

2 HIPERLAN 2 ..9

2.1 OVERVIEW ...9
2.2 PROTOCOL ARCHITECTURE...10

2.2.1 The Physical layer ..11
2.2.2 The DLC layer: basic data transport function ...11
2.2.3 The DLC layer: RLC sublayer..14
2.2.4 The packet based convergence layer ..14

2.3 HIPERLAN 2 SECURITY FEATURES ...16
2.3.1 Key exchange..16
2.3.2 Encryption ..16
2.3.3 Authentication ..17

3. IEEE 802.1X...19

3.1 GENERAL CONCEPTS AND ARCHITECTURAL FRAMEWORK..19
3.2 PACKET FORMAT AND PROTOCOL EXCHANGE ..21
3.3 IMPLEMENTATION ISSUES ...23
3.4 DEPLOYMENT OF IEEE 802.1X IN WIRELESS LANS...25

4 EAP..27

4.1 EAP-TLS ...27
4.2 EAP-GSS AND OTHER EXTENSIONS ...30

5 RADIUS...33

5.1 RADIUS’S GENERAL FEATURES ...33
5.2 BASIC OPERATIONS...33
5.3 RADIUS PACKETS ...34
5.4 RADIUS ATTRIBUTES ..34

5.4.1 User related attributes..34
5.4.2 NAS related attributes ..35
5.4.3 Service related attributes..35
5.4.4 Session specific attributes...35

5.5 RADIUS EAP EXTENSIONS ...35
5.5.1 EAP-Message ...35
5.5.2 Message-Authenticator...36

5.6 RADIUS AND IEEE 802.1X ..36

Application of IEEE 802.1X in HIPERLAN type 2

 vii

PART 2: APPLICATION OF IEEE 802.1X IN HIPERLAN 2 ...37

6 ANALYSIS METHODOLOGY ..39

6.1 THE PROTOCOLS...39
6.2 THE OPERATION..39
6.3 THE PROTOCOL EXCHANGE AND THE AUTHENTICATION METHODS ...39
6.4 THE SOFTWARE REQUIREMENTS ...39
6.5 WHY IEEE 802.1X AND HIPERLAN/2 ...40

7 IEEE 802.1X AND HIPERLAN/2: THE PROTOCOLS...41

7.1 IEEE 802.1X AS A PART OF THE HL/2 PROTOCOL ARCHITECTURE ...41
7.2 INTERACTION BETWEEN THE HL/2 AND IEEE 802.1X ...41

7.2.1 First Step: basic assumptions ...41
7.2.2 Second step: interface to the protocols...41
7.2.3 Third step: using LLC...42
7.2.4 Fourth step: completing the model...43
7.2.5 Complete model ..44

8 IEEE 802.1X AND HIPERLAN/2: THE OPERATION ...47

8.1 THE ASSOCIATION PROCEDURE...47
8.2 THE CONTROLLED AND UNCONTROLLED PORT ...47

8.2.1 Management operations ...47
8.2.2 Solution...48

9 IEEE 802.1X AND HIPERLAN/2: PROTOCOL EXCHANGE AND AUTHENTICATION
METHODS...49

9.1 AUTHENTICATION METHODS: BASIC ISSUES..49
9.1.1 Challenge-response ..49
9.1.2 Mutual authentication ..49

9.2 BASIC AUTHENTICATION SCHEMAS...51
9.2.1 Strong participation of the authenticator. ..51
9.2.2 Less participation of the authenticator...51
9.2.3 Minimal participation of the authenticator ..52

9.3 AUTHENTICATION EXCHANGE ..52
9.4 A CERTIFICATE-BASED AUTHENTICATION METHOD: A MODEST PROPOSAL ...54

9.4.1 The protocol exchange ...54
9.4.2 The format of the EAP packet...54
9.4.3 Issues ..55

10 THE SOFTWARE REQUIREMENTS AND ARCHITECTURE..57

10.1 GENERAL ISSUES ..57
10.2 SOFTWARE ARCHITECTURE ON THE MT-SIDE ...58

10.2.1 A simple software architecture for the MT ...59
10.2.2 A complete architecture for the MT..60

10.3 SOFTWARE ARCHITECTURE ON THE AP-SIDE ..61

PART 3: IMPLEMENTATION AND TESTING...65

11 THE IMPLEMENTATION...67

11.1 BASIC FEATURES OF THE PROTOTYPE ...67
11.2 THE MT-SIDE IMPLEMENTATION ..68
11.3 THE AP-SIDE IMPLEMENTATION ...69

12 TESTING ..71

Application of IEEE 802.1X in HIPERLAN type 2

viii Table of Content

12.1 THE TESTBED ...71
12.2 THE TESTING METHODOLOGY AND RESULTS...72

12.2.1 The RADIUS communication ...72
12.2.2 Communication between supplicant and authenticator ...73
12.2.3 Testing of the state machines..73
12.2.4 Testing results: summary..74

PART 4: CONCLUSIONS AND FINAL REMARKS..75

13 CONCLUSIONS AND FINAL REMARKS...77

13.1 SUMMARY ..77
13.2 ACHIEVED RESULTS..77
13.3 FUTURE WORK..78

REFERENCES ..79

TABLES OF FIGURES ..81

BIBLIOGRAPHY..83

APPENDIX A: THE AUTHENTICATION PROCESS...85

APPENDIX B: STRUCTURE OF THE IMPLEMENTATION ...87

B.1 FILES COMMON TO BOTH AP AND MT ...87
B.1.1 802_1Xv9.h ..87
B.1.2 timer.cpp ..87
B.1.3 generalFunc.cpp ..87
B.1.4 globalFunc.cpp ..88
B.1.5 keyreceive.cpp ..88

B.2 FILES ONLY INCLUDED IN THE MT ...88
B.2.1 supplicant.h..89
B.2.2 supplicant.cpp ..89
B.2.3 maindll.cpp...89
B.2.4 eapFunction.cpp...90
B.2.5 supp_key_tran.cpp ...90

B.3 FILES ONLY INCLUDED IN THE AP ..90
B.3.1 authenticator.h ...90
B.3.2 maindll.cpp...91
B.3.3 authenticator.cpp ...91
B.3.4 authKeytrans.cpp ...92
B.3.5 backend.cpp ...92
B.3.6 contrDir.cpp...93
B.3.7 reauthen.cpp...93
B.3.8 RADIUSfuncs.cpp ..94

APPENDIX C: THE USAGE OF THE MICROSOFT EAP APIS ...95

C.1 LOOKING UP IN THE REGISTRY..95
C.2 SETTING UP THE EAP APIS..95
C.3 CONFIGURATION AND START UP...95
C.4 MESSAGE EXCHANGE ..96

PART 1: IEEE 802.1X and related protocols

The basic understanding of the concepts of this thesis project are described in this part
of the report.

• Chapter 1: States a short introduction
• Chapter 2: The basic concepts concerning HIPERLAN 2 are illustrated
• Chapter 3: Describes the IEEE 802.1X standard
• Chapter 4: Deals with the Extensible Authentication Protocol (EAP),

which is a fundamental part of the IEEE 802.1X standard and
with two of its extensions, EAP-TLS and EAP-GSS.

• Chapter 5: A brief description of RADIUS is given, with particular
emphasis on the extensions that allow the use of EAP within
RADIUS.

Application of IEEE 802.1X in HIPERLAN type 2

Part 1: IEEE 802.1X and related protocols 3

1 Introduction
This chapter aims to give a general overview of the topics of this master thesis, which are wireless LANs,
security, and their integration. Furthermore, the last two Sections will depict how the project has been
developed, which results have been achieved, and in which environment it will fit.

1.1 Wireless LANs
A Wireless local area network (WLAN) is a flexible data communication system implemented as an
extension to or as an alternative for a wired LAN. Using radio frequency (RF) technology, wireless LANs
transmit and receive data over air, minimizing the need for wired connection. Thus, wireless LANs combine
data connectivity with user mobility.
Wireless LANs have gained strong popularity in a number of vertical markets, including health-care, retail,
manufacturing, warehousing, and academia. These industries have profited from the productivity gains of
using hand-held terminals and notebook computers to transmit real-time information to centralized hosts for
processing. Today’s wireless LANs is becoming more widely recognized as a general-purpose connectivity
alternative for a broad range of business customers.
A WLAN connects users within a local area, which might be a building or campus, using radio signals to
send data. The basic issues, which differentiate WLANs from telephone cellular networks or satellite
networks, are frequencies, data rates, coverage area and legal issues. The emphasis of the wireless LANs
environments is driven by the strong efforts spent by companies in order to improve data rates, reliability,
and quality of service of such networks. Current available standards have data rates up to 11 Mb/s; there are
other standards, such as 802.11a and HiperLan2, which will reach data rates up to 54 Mb/s and products
based on them are in a development phase. The standardization and availability of such networks will easily
pave the way to their adoption and wide spreading.
The possibility to use such networks without having any cable to connect to a plug and the increased user
mobility will definitely encourage its use by corporations and public place administrators.
The following list describes some of the many applications of wireless LANs:

• Corporate
With a wireless LAN, corporate employees can take advantage of mobile networking for e-mail,
file sharing, and web browsing regardless of where they are in the office.

• Education
Academic institutions leverage the benefits of mobile connectivity be enabling users with notebook
computers to connect to the university network for collaborative class discussions and to the
Internet for e-mail and web browsing.

• Finance
By carrying a handheld PC with a wireless LAN adapter, financial traders can receive pricing
information from a database in real-time and improve the speed and quality of trades. Accounting
audit teams increase productivity with quick network setup.

• Healthcare
Using wireless handheld computers to access real-time information, healthcare providers increase
productivity and quality of patient care by eliminating patient treatment delays, redundant
paperwork, potential transcription errors, and billing cycle delays.

• Hospitality and Retail
Hospitality services can use wireless LANs to directly enter and send food orders from the table.
Retail stores can use wireless LANs to set up temporary registers for special events.

• Manufacturing
Wireless networking helps link factory floor workstations and data collection devices to a
company's network.

• Warehousing
In warehouses, handheld and forklift-mounted data terminals with barcode readers and wireless
data links are used to enter and maintain the location of pallets and boxes. Wireless improves
inventory tracking and reduces the costs of physical inventory counts.

Application of IEEE 802.1X in HIPERLAN type 2

4 Part 1: IEEE 802.1X and related protocols

Wireless networks may even be used in so-called ad-hoc networks, where no central entity provides for
access control or authentication. Usually one entity may be elected as a traffic controller or a resource
manager. Examples may be in conference rooms, where participants want to exchange information, or home
environments, in order to achieve as sometimes addressed as “the wired home” or the “connected home”.

1.2 Security
Nowadays Security becomes a very important issue. One consequence is that many existing protocols,
which were not originally endowed with security facilities, have now been added with further protocol
layers and add-ons, in order to allow their use in hostile environments.
The expansion of open networks, such as the Internet, makes data communications more subject to threats;
the probability of an attack grows as the importance and the amount of data travelling on networks
increases.
Security is today mainly perceived as a feature, which endow higher-level protocols with, although
sometimes it is required to protect communication on the lower level.
Security services on high-level protocols imply a bigger awareness of the user and the necessity to adapt
applications. On the other hand a finer granularity can be obtained, up to be able to protect data on a per-
document basis, such adapting the cost of the security algorithm to the actual value of the data being
transmitted. Furthermore, the protection is ensured from source to destination, thus obtaining an end-to-end
protection.
IEEE 802.1X, which is one of the main topics of this thesis, defines a protocol to achieve authentication
before allowing access to network services. The authentication occurs at the first point of attachment to a
LAN and not somewhere in the core of it. This has implication in terms of increased security, reduced
complexity, greater scalability and availability.
Security is a common and very important issue of wireless LAN; users perceive a connection without wires
as particularly unsecured, although the real difference from normal wired networks lies at the physical layer.
As previously hinted at, the medium through which a WLAN sends data is the air, which means that it has
non-defined boundaries and that it is unprotected from outside signals. These features lead basically to two
kinds of attack, which are typical of the wireless medium.
Eavesdropping is a kind of passive attack that consists in listening to the communication that is happening
on the medium. Because there are no real boundaries of the wireless medium, this kind of attack can be
easily performed by having a transceiver, which is able to demodulate correctly the signals being
transmitted on the network. This kind of attack can be avoided by using particular kinds of modulations
(Frequency Hopping Spread Spectrum or Dynamic Selection Spread Spectrum) which make the
attacker need to know other parameters than the transmission frequency, or by encrypting the session.
Denial of service is a kind of active attack that aims to prevent a user to have access to certain or all
services. It can be achieved in several ways; on the physical level, it consists in sending burst of signals with
no meaning. This prevents users to send signals, since the medium results busy, or to understand the signals
being sent.

1.3 Methodology and achieved results for the thesis work
The thesis work has gone through different stages, which were necessary in order to achieve the goal that
has been proposed. The whole work started with an intensive study work, whose aim was to gain a deep
knowledge of the subject. This was necessary to pass to the next stage and to create a competence in the
area, which was actually one of the main goals of the master thesis.
After this preliminary study-phase, the second goal was to propose a model of integration between IEEE
802.1X and HIPERLAN/2. The basic question that needed an answer was: “How can a network, based on
the HIPERLAN/2 standard, use IEEE 802.1X to perform authentication and access control”. In order to
provide for a solution to this problem the following aspects have been considered:
• How these two standards integrate on a protocol point of view.
• How the operation of the HIPERLAN/2 standard needs to be modified or adapted in order to be used

with IEEE 802.1X.
• How a protocol exchange can look like and which authentication methods could be used.

Application of IEEE 802.1X in HIPERLAN type 2

Part 1: IEEE 802.1X and related protocols 5

• What the requirements and the possible software architecture for a complete implementation are.
Part 2 of the report illustrates how these aspects have been analyzed and what kind of solution has been
proposed for each of those problems.
The next step was to build a prototype of the IEEE 802.1X standard, in order to evaluate its feasibility and
how it can be deployed in a complete environment. Unfortunately, there are no HIPERLAN/2 complete
product available on the market and it was therefore necessary to implement the prototype on a different
kind of network. Many of the conclusions of the previous step were nonetheless still applicable. The
prototype was then tested in a complete environment: the basic protocol exchange was tried out and some
other additional features were added. Part 3 describes and summarizes the work that has been done.
Part 4 of this report depicts the conclusions that might be drawn from the thesis and tries to outline some
basic concepts that result form the whole project. Furthermore, it gives some guidelines for continuing the
work that has started here.

1.4 Typical operational environment
IEEE 802.1X was designed in order to provide a means of authenticating devices being attached to a port of
a network access point and willing to have access to the network infrastructure services. Typically, this is
needed in environments where the access to the network is publicly available, or within networks with many
point of attachments, thus making it difficult to check each of them without having any precise security and
administration policy. Such environments may be big corporations’ LANs, possibly with areas where the
network is publicly available, technology or business parks, conference rooms, airports or train stations,
malls, and even some open-air environments with public network access.
The focus of this thesis is a business wireless environment with a relatively high number of points of
attachments but no public access. An example of this is given in Figure 1.

Figure 1: A typical operating environment.

The corporate network is mainly based on a fixed Ethernet network, fully or almost fully switched. Within
this network it is possible to have wireless access through some wireless protocol, let’s say HiperLAN2.
The access points to the wireless network are connected to the fixed network and act as bridges to it. They
are therefore endowed at least with the Ethernet Service Specific Convergence Sublayer (SSCL)
[HL2ETSSCL] in order to match different kind of services and adapt PDUs of the different networks. Each
mobile terminal will be identified, within the global corporation network, by its 48 bits IEEE MAC address,
while within the HiperLAN2 segment it will be only addressed by its 8 bits MAC ID.

Application of IEEE 802.1X in HIPERLAN type 2

6 Part 1: IEEE 802.1X and related protocols

The authentication of the mobile terminals in order to grant them access to the network resources will be
achieved through IEEE 802.1X. The authentication server will be a RADIUS server located on the fixed
network and accessible through it. In order to get information, the RADIUS server will have access to a
WINDOWS 2000 Active Directory through the Lightweight Directory Access Protocol (LDAP). Mobile
terminals will be based on Windows 98, Windows 98 Second Edition or Windows 2000 Professional as
operating systems. Servers on the network will be based on Windows 2000 Server or on Windows NT 4 as
operating system. The business environment now described is mainly characterized by the following
features:
• Host can access all or almost all resources locally available.
• No charging is required.
• Hosts are subject to administration and management.
• The environment can be assigned a certain level of trust.
• Key and certificate distribution is not so difficult.
This environment can somehow be considered as experimental, since the Windows 2000 based
environments are still on a way to be better defined and it is still not possible, at the current time, to have a
complete working HiperLAN2-based network.
Figure 2 provides another view of the described environment.

Figure 2: A working operative environment.

To summarize, the focus of the thesis is business environment with wireless access to the network. The
deployed wireless standard will be HIPERLAN/2 in the business configuration ([HL2BUE]), which means
configured to work in the centralized mode, i.e. with Access Points controlling the communication,
allowing the flow of packets to the wired network and allocating resources. Authentication and access
control will be based on IEEE 802.1X; the Access Points will act as RADIUS clients, while the RADIUS

Application of IEEE 802.1X in HIPERLAN type 2

Part 1: IEEE 802.1X and related protocols 7

server will be placed on the fixed network. It will likely be a Windows 2000 Server machine; acting as
Internet Access Server (IAS), which incorporates a RADIUS server. The RADIUS server will retrieve
user and access information from a Windows 2000 Active Directory.

Application of IEEE 802.1X in HIPERLAN type 2

Part 1: IEEE 802.1X and related protocols 9

2 HIPERLAN 2

The European Telecommunications Standards Institute (ETSI) has started the Broadband Radio Access
Network (BRAN) project, which aims to develop a set of standard for broadband wireless networks. The
categories of systems covered by the BRAN project are summarized as follows:
• The first result of this project was a standard called High Performance Radio Local –Area Network,

type 1 (HIPERLAN 1) are compatible with wired LANs based on Ethernet and Token Ring standards.
This system is intended to be operated in the 5GHz band.

• The following standard was HIPERLAN 2, which provides high speed radio communications system
with typical data rate from 6 MHz to 54 Mbits /s. It can access to different broad-band core networks
and moving terminals, with QoS support.

• The recent projects, which have planned but not started yet, are HIPERACCESS, which will provide
outdoor, high speed (25 Mb/s), fixed radio access, and HIPERLINK, which will provide extremely
high-speed (up to 155 Mb/s) radio links for static interconnections.

2.1 Overview
The standardization activity of HIPERLAN 2 gave its first result in 1999. HIPERLAN 2 [HL2OV] operates
within the 5 GHz spectrum, in Europe it will be placed in the ranges between 5.15 and 5.30 GHz, and
between 5.470 and 5.725, for a 455 MHz wide spectrum. In USA and Japan, it will be allocated different
intervals, according to local policy rules.
The topology of a typical HIPERLAN 2 based network is illustrated in Figure 3, it has Access Points
(APs), which provide for access to the wireless network, and Mobile Terminals (MTs), which are the
devices willing to have access to the network. The APs will typically be attached to a fixed network. This
operating way is called centralized mode since all traffic passes through the access point, even if it is
directed from one MT to another MT that is connected to the same AP. The AP is in charge of allocating
resources, giving access to a fixed network, and other administrative tasks. All MTs, before operating, need
to establish an association with an AP, in order to be allowed to operate on the HIPERLAN 2 network; an
association procedure consists of link and capabilities negotiation, and of the establishment of user
connections. In order to start to send and receive data, it is necessary to open a DLC user connection
(DUC), which defines the features of the data transfer.
It may happen that there is no AP in charge with providing access to a fixed network. In this situation the
network will operate in direct mode; the communication between MTs will occur directly from the source
to the destination MT, but there is still need of a Central Controller (CC) in charge with allocating
resources to the terminals. The result will be an ad-hoc network, whose applications vary form home-
environments to military infrastructures.

Application of IEEE 802.1X in HIPERLAN type 2

10 Part 1: IEEE 802.1X and related protocols

Figure 3: HIPERLAN 2 centralized mode.

2.2 Protocol architecture
The HIPERLAN 2 protocol has three basic layers. It defines a Physical layer (PHY), with the same
semantic of the ISO/OSI layer, while the link level is constituted by different sublayers: the Data Link
Control (DLC) layer and the Convergence Layer (CL), which is in charge with providing interoperability
with different higher layers (HL) or link layers. The whole protocol stack can be considered divided
vertically in two parts: a control plane part, for administrative and control operations, and a user plane
part, for the transmission of traffic over the established connections. A complete view is given in Figure 4.
The DLC layer, in charge with functions for medium access and transmission as well as connection
handling, is made up of a set of sublayers:

• Medium Access Control (MAC) protocol.
• Error Control (EC) protocol
• Radio Link Control (RLC) protocol with the associated signaling entities DLC Connection

Control (DCC), the Radio Resource Control (RRC) and the Association Control Function
(ACF).

The MAC protocol and the EC protocol constitute the basic data transport functions for the DLC layer.

Application of IEEE 802.1X in HIPERLAN type 2

Part 1: IEEE 802.1X and related protocols 11

Figure 4: HIPERLAN 2 protocol Stack (Source: [HL2DLC]).

2.2.1 The Physical layer
OFDM, the modulation scheme chosen for the HIPERLAN 2 [HL2PHY] standard is very effective in high
dispersive environments. The different channels, each of them assigned automatically and dynamically to an
AP, are 20 MHz wide. Each channel is further divided into 52 subcarriers; 48 of them are actually used to
carry data while the other four are pilots, which facilitate phase tracking for coherent demodulation.
The entire bit stream coming from the upper level is divided into different parallel interleaved bit streams
and each of them will modulate a subcarrier of a channel. Within a channel, many modulation schemes are
possible, such as Binary Phase-Shift Keying (BPSK), Quadrature Phase-Shift keying (QPSK), and
Quadrature Amplitude Modulation (QAM), up to 64 QAM, which provides for the maximum data rate of 54
MB/s. A modulation scheme is chosen according to what has been negotiated in the association phase and
to local radio conditions. OFDM allows a very robust transmission but needs a well-designed system.

2.2.2 The DLC layer: basic data transport function
The basic data transport functions of the DLC layer [HL2DLC] are made up of the MAC protocol and the
EC protocol. As previously hinted, they both have a user panal and a control panal for simple data
transmission functions and control functions.
The Medium Access Control (MAC) protocol is in charge of regulating the access to the air interface. The
air interface is based on Time-Division Duplex (TDD) and Time-Division Multiple Access (TDMA).
This means that within the same time frame, multiple communications are allowed in both downlink (from
the AP to the MTs) and uplink (from the MTs to the APs) directions. Time slots are allowed dynamically
depending on the current traffic load and different requirements for each connection. Within an HIPERLAN
2 network, an MT is identified uniquely in each cell, i.e. in the area covered by one AP, by its MAC ID,
assigned at association time and whose scope is limited to each AP. Since an AP will usually act as a bridge

Application of IEEE 802.1X in HIPERLAN type 2

12 Part 1: IEEE 802.1X and related protocols

to a fixed network, an MT is likely to be identified by an IEEE MAC address within this broader scope. On
higher levels, an MT is likely to be identified by an IP address, and hence mobility issues should be
considered as well, especially in handovers, i.e. the operation of association to another AP. In case of
multicast data transfer there are two ways to handle this situation: N-Multicast, where it is dealt as N
unicast connection, with good reliability but bad bandwidth consumption, or MAC Multicast, where a
MAC ID is assigned to each multicast group, saving bandwidth but loosing reliability.
The basic MAC frame structure on the air interface has a fixed duration of 2 ms, repeated every time, and
comprises different phases, i.e. part of the frame are devoted to different uses, with fixed or variable length.
The Broadcast phase (BC) contains information broadcast to all MTs associated with that AP; the
Downlink phase (DL) transports data from the AP to the MTs, while the Uplink phase (UL) is used for
data transfer from the MTs to the AP. If direct mode is available, a Direct phase (DiL) is inserted between
DL and UL. At the end of the MAC frame, the Random phase (RA) is used by the MT to ask for resources
or to start a new association. It is the only phase where contention is possible. Figure 5 depicts the MAC
frame.

Figure 5: HIPERLAN 2 MAC frame (Source: [HL2DLC]).

The DL, DiL and UL phases consist of two types of Protocol Data Units (PDUs): long PDUs and short
PDUs. Long PDUs have a fixed size of 54 bytes and contain user data and control data. Short PDUs are 9
bytes long and contain only control data.
Within the different phases, the HIPERLAN 2 standard places the so-called transport channels, which
describe the basic message format. They are used to carry different kinds of data, depending on the logical
channels, which are mapped onto them.
A logical channel is any distinct path of data; a set of logical channel is defined for different kinds of data
transfer services as offered by the MAC entity. Each logical channel is defined by the type of information it
carries and the interpretation of the values in the corresponding messages. A logical channel can be
considered to operate between logical connections end points and, hence, between logical entities.
 The following transport channels are defined:

• Broadcast Channel (BCH). It conveys control information (about transmission power, starting and

finishing point of the FCH and RCH (see next paragraph), and identifiers) directed to all MTs.
• Frame Channel (FCH). Contains an exact description of how resources have been allocated within

the current MAC frame.
• Access Feedback Channel (ACH). Conveys information on previous access attempts to the RCH.
• Long Transport Channel (LCH). Is used to transport user data that is sent as unicast, multicast or

broadcast data, and signaling information for the user connection. Contains long PDUs.
• Short Transport Channel (SCH). Transports control information encapsulated in short PDUs.

Application of IEEE 802.1X in HIPERLAN type 2

Part 1: IEEE 802.1X and related protocols 13

• Random Channel (RCH). It is used by the MTs to request transmission resources. It is the only
channel where contention is possible. An MT sends a Resource Request (RR) indicating how much
and what kind of data it needs to transmit.

The following logical channels have been defined:

• Broadcast Control Channel (BCCH). Contains broadcast control channel information concerning the

whole radio cell. Used for sending identifiers of the AP and the net and other information that
sometimes is used as beacon.

• Frame Control Channel (FCCH). Describes exactly how resources are allocated within the current
frame.

• Random Access Feedback Channel (RFCH). The purpose is to inform those MTs that have used the
RCH in the previous frame, about their result of their access attempts. Resources are granted by the AP
through Resource Grants (RGs).

• RLC Broadcast Channel (RBCH). Contains broadcast control information concerning the whole cell.
It is used to transmit broadcast RLC messages, a MAC ID to a non-associated terminal and
convergence layer information.

• Dedicated Control Channel (DCCH). Contains signaling information needed for the user connection
and can be used both in the uplink and in the downlink phase. It is established implicitly during the
establishment of an association.

• User Broadcast Channel (UBCH). Carries user data coming from the upper convergence layer but
directed to all MTs of a cell.

• User Multicast Channel (UMCH). Contains user data coming from the convergence layer, directed to
those MTs that joined a multicast group.

• User Data Channel (UDCH). Contains user data directed to an MT.
• Link Control Channel (LCCH). Bi-directional channel used to carry error control messages.
• Association Control Channel (ASCH). Used only to convey information needed for the establishment

of a new association.

How the different logical channels are mapped onto transport channels is shown in Figure 6 (downlink) and
Figure 7 (uplink).

Figure 6: Mapping of logical channel to transport channels (downlink) (Source: [HL2DLC]).

Application of IEEE 802.1X in HIPERLAN type 2

14 Part 1: IEEE 802.1X and related protocols

Figure 7: Mapping of logical channels to transport channels (uplink) (Source: [HL2DLC]).

2.2.3 The DLC layer: RLC sublayer
The Radio Link Control (RLC) sublayer [HL2RLC] provides for a transport service for the signaling
entities Association Control Function (ACF), Radio Resource Control function (RRC), and the DLC
user connection control function (DCC).
Before an MT is allowed to have access to the HIPERLAN 2 network, it must establish an association with
the AP or the CC. The MT starts with listening to the BCH of different APs in order to decide where to
establish an association, according to the net operator identifier and the best signal. Association requests are
conveyed in the Association Control Channel (ACH).
Before starting to transmit traffic, an MT has to establish at least one DLC user connection (DCC). The
DCC control signaling is transmitted over the DCCH, in order to control the resources for each MAC entity.
The characteristics of each connection may be exchanged during the connection.
The Radio Resource Control (RRC) functions are in charge with the radio link quality operations, which
might result in a handover, i.e. an association with a new AP with a better radio signal. In order to avoid a
complete disassociation and reassociation, HIPERLAN 2 supports the exchange of information over the
fixed network in order to minimize the impact of a handover.
The RRC functions deal also with the Dynamic Frequency Selection (DFS) algorithm, the Power Save
features and the MT Alive operations, which supervise if an MT is currently inactive.

2.2.4 The packet based convergence layer
In order to allow interoperability with other kinds of network and higher-level protocols, the HIPERLAN 2
standard defines what is called Convergence Layer (CL). A convergence layer has basically two functions:

• To adapt service requests from higher levels or other kinds of networks to those that are available
on the HIPERLAN 2 DLC layer.

• To convert the different format of other protocol, of fixed or variable length, into the format
accepted by the DLC layer.

The padding, segmentation and reassemble function of the fixed size DLC Service Data Units (SDU) is one
key issue that makes it possible to standardize and implement a DLC and a PHY that is independent of the
fixed network to which the HIPERLAN 2 network is connected to.
There are currently two convergence layers defined within the HIPERLAN 2 standard, as depicted in Figure
8. The Cell based CL aims to provide for an interface towards protocols with fixed size PDUs. An example
of this is ATM. The Packet based CL provides for an interface towards all those network, which have a
variable size PDU. Examples of such networks are UMTS, PPP, Ethernet and IEEE 1394 “Firewire”. The
architecture of the Packet based convergence layer is depicted in Figure 9.

Application of IEEE 802.1X in HIPERLAN type 2

Part 1: IEEE 802.1X and related protocols 15

Figure 8: HIPERLAN 2 convergence layers.

Figure 9: Packet based convergence layer (Source [HL2PBCL]).

The Packet based convergence layer [HL2PBCL] is made up of two parts, a Common Part and a Service
Specific Convergence sublayer (SSCS). The common part performs the same kinds of operations for
every sort of packet based network, while the service specific part is dependant on the overlying network
and allows easy adaptation of higher level services to the DLC services.
The common part is further divided into two sublayers: the Common Part Convergence Sublayer
(CPCS), and the Segmentation and RE-assembly (SR) part.
The function of the CPCS is to take packets received from the overlying SSCS, to add padding and
additional information and to pass it to the SR part. It has furthermore to remove and interpret padding and
information from the packets received from the underlying level, and passes them to the SSCS.
The SR part takes packets from the CPCS, segments them into fixed size data unit and passes them to the
DLC layer; it also performs the reverse operation, taking packets from the DLC, reassembling them and
passing them to the CPCS. It performs an in-order delivery of packets for the CPCS.

Application of IEEE 802.1X in HIPERLAN type 2

16 Part 1: IEEE 802.1X and related protocols

Following the general HIPERLAN 2 semantic, even the CL is divided vertically into two parts: a user plane
and a control plane, which allow different types of operations.
The Ethernet SSCS [HL2ETSSCS] makes the HIPERLAN 2 look like the segment of a switched Ethernet.
Its main functions are to preserve the original frames and to map the services available on an Ethernet-based
network to an HIPERLAN 2 network, in terms of QoS and traffic types.
Ethernet SSCS offers basically two different types of QoS:
• The best effort scheme, which is mandatory. It is the default QoS type and all traffic is treated in the

same way, without any guarantee of QoS parameters.
• The IEEE 802.1p based priority scheme, which is optional and separates different types of traffic in

different priority queues. There are eight different priority levels, mapped to eight (or less, dependant
on the system) different system queues. Each queue is then mapped to a DLC user connection (DUC),
according to its priority, and, naturally, to its destination MAC addresses. In the Ethernet frame, the
priority is indicated by a tag placed after the source and the destination address. In HIPERLAN/2 the
Quality of Service parameters are negotiated at association time.

As hinted in the previous paragraph, it is up to the SSCS (control plane) to map the different addresses of
the higher level to DUCs of the DLC level, since it is able to identify destination MTs only in this way. The
SSCS of the AP is actually different form the MT’s SSCS: the latter will send all data to the AP, while the
former has to decide whether send data back to the HIPERLAN 2 network or forward it to the fixed
Ethernet network.

2.3 HIPERLAN 2 security features
The HIPERLAN 2 standard provides for its own security features, in order to guarantee authentication and
confidentiality of the data being exchanged on the air interface. The following Subsections give an overview
of how the standard confronts with the security problem.

2.3.1 Key exchange
The key exchange procedure will occur during the association time. It will also happen before
authentication, in order to have the identities exchanged during the association procedure.
The exchange of the keys is based on a Diffie-Hellman procedure. The two entities being involved in the
protocol, i.e. the AP and the MT, exchange their public DH values and, starting from them, they will work
out the keys used for encryption.
The encryption keys, also denoted as Session Secret Keys (SSKs), are valid only for one session, and may
be refreshed during one session. They are known only to the AP and the specific MT. In order to exchange
encrypted multicast and broadcast data, AP and MTs of the same cell share common keys, univocally
identified by an ID. These keys are exchanged first at association time (distributed by the AP) and even
during the session in order to refresh them.

2.3.2 Encryption
The HIPERLAN 2 standard considers two different encryption algorithms, which is possible to choose
between the DES algorithm and the triple DES algorithm. The encryption keys are derived from operations
made on the DH keys exchanged before; the actual encryption operations start as soon as the AP and MT
have exchanged and calculated their keys.
In order to increase the effectiveness of the algorithm, HIPERLAN 2 makes use of the Output FeedBack
(OFB) operation mode (Figure 10), and for this reason an Initialization Vector (IV) is needed. The seed
for the IVs, i.e. the value starting from which the IVs are generated, are periodically sent to the MTs in the
RBCH logical channel, starting from association time as soon as the DH values have been exchanged and
before encryption actually starts. To obtain the IVs, a function cycles stepwise in order to produce a set of
non-repeating values; every LCH is encrypted with a different IV.

Application of IEEE 802.1X in HIPERLAN type 2

Part 1: IEEE 802.1X and related protocols 17

Figure 10: DES OFB mode.

2.3.3 Authentication
The HIPERLAN 2 standard allows two different authentication mechanisms, which are negotiated at
association time:

• Pre-shared key based.
• RSA signature based.

Regardless of the authentication mechanism being used, the scheme is always based on challenge and
response. After having decided which mechanism to use at the beginning of the association phase, the MT
receives a challenge from the AP, and sends back a response, together with a new challenge, in order to
perform mutual authentication. The AP decides about the correctness of the response sent by the MT and
works out its response to the received challenge. Then it is the MT’s turn to decide whether the AP has
successfully authenticated.
In the pre-shared key mechanism, the response is calculated by applying the MD5 algorithm [MD5] and the
HMAC [HMAC] algorithm to the authentication string given by the concatenation of the challenge, the DH
public values, the list of the proposed authentication/encryption mechanisms and the selected mechanism.
The keys being used are pre-shared, long term, authentication key, known both to the AP and to the MT.
HIPERLAN 2 does not specify how such keys are distributed between the entities being involved in the
authentication procedure. Such keys are not supposed to be transferred on the HIPERLAN 2 network and
are not the keys exchanged with the DH procedure, which are used only for encryption. This kind of
mechanism suits to environments with a limited number of MTs, without key distribution problems.

Application of IEEE 802.1X in HIPERLAN type 2

18 Part 1: IEEE 802.1X and related protocols

The RSA signature based mechanism calculates the challenge as a signature of the authentication string as
described in the previous paragraph, using the private key of the entity working out the response. The
HIPERLAN 2 standard does not specify which binding should exist between a public key, necessary to
decide about the correctness of the signature, and the entity being authenticated. A digital certificate seems
to be the best solution, but this will be implementation dependent, since it is not specified how this should
happen. There are three different key lengths that are allowed in this mechanism: 512, 768 or 1024 bits.

Application of IEEE 802.1X in HIPERLAN type 2

Part 1: IEEE 802.1X and related protocols 19

3. IEEE 802.1X
This chapter gives a detailed description of the IEEE 802.1X Port Based Network Access Control standard,
in which the draft in use is the version 11, released on March 27th, 2001.

3.1 General concepts and Architectural framework
The aim of IEEE 802.1X [8021X9], known as Port based Network Access Control, is to provide a means
of authenticating devices attached to a LAN port, that has point-to-point characteristics, and preventing
unauthorized devices to have access to the services available on that network, by making use of the physical
access characteristics of IEEE 802 LAN infrastructures. A port is a single point of attachment to the LAN
infrastructure.
The typical environment of such a protocol is a public LAN infrastructure or a corporation LAN, where
users can be physically connected or create associations (in case of wireless LANs) thus obtaining access to
resources and services, which might be available. Ad-hoc networks may also need to perform
authentication, in order to determine a trusted network; all entities, in this case, should be able to ask for
and perform the authentication function and to be authenticated as well.
The access point to the network, called Authenticator, asks the device that is willing to have access to the
network services, called the Supplicant, to authenticate itself. The authentication function occurs usually in
another system, called the Authentication Server, likely to be a RADIUS server. The authenticator, i.e. the
access point, is not requested to understand the nature of the authentication information exchanged between
supplicant and authentication server; it simply controls the state of its port. For additional features like
encryption features negotiation and key-exchange, this might be a problem. In certain circumstances, the
authenticator must understand the information, which it actually simply forwards to the authentication
server during the protocol exchange.
The typical architecture framework of an environment based on IEEE 802.1X may be depicted as in Figure
11.

Figure 11: General architecture of an IEEE 802.1X system.

A wireless station, i.e. the supplicant, wishes to use the services offered by a wireless LAN infrastructure
through an Access Point (AP), which gives access to the LAN. To achieve this, it creates an association
with the AP and asks, or typically will be asked, to perform authentication. The AP will act as an
authenticator; i.e. it will be the point where authentication is requested. The authentication function, as

Application of IEEE 802.1X in HIPERLAN type 2

20 Part 1: IEEE 802.1X and related protocols

previously hinted at, will be performed by an authentication server, which will usually be located on another
machine. A typical situation is to have a RADIUS server acting as an authentication server, and the
RADIUS server accessing an Active Directory, using the Lightweight Directory Access Protocol
(LDAP) to retrieve information in order to perform the authentication function (using LDAP to access
Active Directory for information is a solution for Windows 2000 environments, it cannot be called a typical
situation). The authenticator will control the access status of its port basing on the outcome of the
authentication process.
The effect of the IEEE 802.1X is to create two distinct points of access to the point of attachment of the
authenticator’s system, as illustrated in Figure 12 and Figure 13.
• The uncontrolled port: Is the point of access, through which PDUs can pass without being blocked;

this access point is usually used to transmit authentication information. This is needed since the mobile
terminal has not access to the network and it would otherwise be impossible for it to exchange
authentication information with the authentication server.

• The controlled port: is the second point of access, which allows information to flow through it only
when its status is authorized.

Both ports are to be considered as part of the same point of attachment; furthermore, any frame received on
the physical port will be available on both the controlled and the uncontrolled port.

Figure 12: Authorized state (Source: [8021X11]).

Figure 13: Unauthorized state (Source: [8021X11]).

The controlled port is set to an unauthorized state before starting operation, and as soon as a device is
attached to the port, the AP asks for authentication. With a successful process, the state of the port will be
set to authorized. The state of the controlled port can be controlled externally by management operations
and can be forced to be unconditionally authorized or unauthorized (that is without considering the result of
the authentication function), or can be set according of the outcome of the authentication operations.

Application of IEEE 802.1X in HIPERLAN type 2

Part 1: IEEE 802.1X and related protocols 21

The control performed over the frames passing through the port may be executed only for frames flowing in
one direction, i.e. incoming frames, or flowing in both directions. This allows relaxing the access control in
order to send out diagnostic or management packets. There are different scenarios in which this feature can
be quite useful and prevent different facilities to be completely disabled.

3.2 Packet format and Protocol exchange
IEEE 802.1X defines the encapsulation technique that allows to transport Extensible Authentication
Protocol (EAP) [EAP] packets between a supplicant and an authenticator through LAN environment. This
technique is known as EAP over LAN (EAPOL). In the following description, the encapsulation technique
into IEEE 802.3 frames will be described as an example, but other kinds of encapsulation will be quite
similar. A typical format of the packet will be like in Figure 14.
There are currently five different types of packets:

• EAP packet. This packet encapsulates an EAP packet used to perform authentication.

• EAPOL-Start packet. It is sent by the supplicant to indicate that it wishes to be authenticated.

• EAPOL-Logoff packet. Sent by supplicant to indicate that it is willing to terminate the current
session.

• EAPOL-Encapsulated-AFS-Alert packet. Used for traffic like SNMP traps. The format is not
defined.

• EAPOL-Key packet. Sent by the authenticator to the supplicant in order to send an encryption
key.

EAPOL-Start and EAPOL-Logoff packets don’t contain any packet body. They are used by the
supplicant to indicate that it is willing to start or end a session. The format of the EAPOL-
Encapsulated-AFS-Alert packets is not specified in the protocol: it depends on the type of the packet
actually being sent.

Packet body

Packet body

 length

Application of IEEE 802.1X in HIPERLAN type 2

22 Part 1: IEEE 802.1X and related protocols

Figure 14: EAPOL packet format.

The EAPOL-Key packet contains a descriptor of a key to be used for encryption, authentication or
signature. It is used by the authenticator to send information about a key to the supplicant or by the
supplicant to send a key to the authenticator.
The format of the EAP packet is depicted in Figure 17.
To start the protocol exchange the authenticator will send an EAP-Request/Identity packet, and an
association is established between a wireless station and an access point. Then the supplicant replies by
sending an EAP-Response/Identity packet, by which it communicates its credentials to the authenticator.
There may be times that the supplicant starts the protocol by sending an EAPOL-Start to the authenticator,
who then replies with an EAP-Request/Identity packet..
The authenticator forwards this packet to the authentication server, usually a RADIUS server, who replies
by sending a challenge or by asking the supplicant to provide a password or something else to confirm its
identity. This phase is strictly dependent on what authentication mechanism will be used by the entities
being involved in the process. The current version of EAP defines three different authentication schemes,
MD5 [MD5] challenge, One Time Password [OTP] and Generic Token Card, but it will probably be
enhanced with different and stronger mechanism. A typical protocol exchange by using One Time Password
is illustrated in Figure 15.
The forwarding task performed by the authenticator, may be either achieved by encapsulating EAP packets
into RADIUS packets exploiting the EAP RADIUS extensions (see Chapter 5), or by extracting the
information out of the packet and putting them into normal RADIUS attributes. The first solution allows a
simplification of the authenticator (or better of the Backend authentication state machine, as depicted in
Section 3.5) but needs the RADIUS server to support the EAP-extensions. The second solution needs the
authenticator (backend authentication) to extract the information from an EAP-Response packet and to
prepare a RADIUS packet, but allows dealing with a normal RADIUS server.
When the supplicant wishes to end the session and close the connection, it sends an EAPOL-Logoff packet
to signal the authenticator and in this case the port should be set to unauthorized, in order to avoid attacks
that might be exploit to an open authenticated session.
If the authentication process fails, the authentication server sends an EAP-Failure packet to the
authenticator, who forwards it to the supplicant and keeps the controlled port in the unauthorized state. All
the decisions made by the authenticator are based on the outcome of the authenticator server. If the it is the
RADIUS server, as it likely to be, the authenticator will look only the RADIUS return code, neglecting the
EAP packet that might be included in the response.
Since IEEE 802.1X is to be considered a link-level security protocol, it has to deal with retransmission, as
the underlying protocol may not reliably guarantee the deliverance of the frames. IEEE 802.1X states that
the authenticator is in charge of the retransmission of frames. If the authenticator does not receive the
response to a request it has sent, it must retransmit the request. A supplicant, on the other hand, has to send
a response every time it receives a request, even if a response has already been sent. The supplicant
retransmits only EAPOL-Start packets. EAPOL-Logoff Packet is never retransmitted. It has to be pointed
out that a typical LAN environment has an error-rate that is usually quite low; wireless LAN might indeed
have a lower reliability.
It may happen that either the authenticator or the supplicant is not capable of authentication. The protocol
has been designed in a way to deal with such situations. If the supplicant does not support authentication it
will not respond to the authenticator’s EAP-Request/Identity packet; the authenticator will retransmit but
the port will never be released. If the authenticator does not support authentication, the supplicant will send
EAPOL-Start packets and never receive an answer. After a certain amount of times it has retransmitted its
packet, it will assume that the authenticator does not support authentication and starts to send higher level
traffic, considering the port set to the authorized state.

Application of IEEE 802.1X in HIPERLAN type 2

Part 1: IEEE 802.1X and related protocols 23

Figure 15: IEEE 802.1X basic protocol exchange.

3.3 Implementation issues
In order to have a clear idea about how the different parts of a security system based on IEEE 802.1X
should fit each other, it is worth to define roughly which modules should be present and how they should
communicate. Figure 16 depicts this architecture.

Figure 16: Software architecture.

The IEEE 802.1X module sends messages over the network through the user access point of the network
interface and may set administrative variables through the control access point. This is very important in the

Application of IEEE 802.1X in HIPERLAN type 2

24 Part 1: IEEE 802.1X and related protocols

case of the authenticator, because it needs to have control over the network interface in order to deny access
to the supplicant, if authentication fails. It communicates also with the EAP module and, indirectly, with
the EAP extensions module: they will be responsible for the EAP conversation.
The DHCP module has access to the network interface and may even be triggered by the IEEE 802.1X
module: this is the case that the DHCP module should receive a timeout error message, because
authentication took too long and DHCP packets couldn’t flow through the network.
This architecture is quite general and can be applied to both the supplicant and the authenticator. The
DHCP module needs to be triggered in the supplicant to send a request again, if it has failed because
authentication has not yet completed. Furthermore, the IEEE 802.1X needs to have a strong control over the
network interface in the case of the authenticator.
The standard specifies nine different state machines that model the behavior of the IEEE 802.1X protocol.
Not all of them should be present in a system: it depends on what functionality that system wishes to
implement. The state machines are:

• The Port Timers state machine.
• The Authenticator PAE state machine
• The Authenticator Key Transmit state machine
• The Supplicant Key Transmit state machine
• The Reauthentication Timer state machine
• The Backend authentication state machine
• The Controlled Directions state machine
• The Supplicant PAE state machine
• The Key Receive state machine

The Port Timers state machine is in charge of decrementing every second their value until they arrive zero.
They are set, read, and initialized by the different state machines.
The Authenticator state machine’s role is to enforce authentication by sending EAP-Request/Identity to the
supplicant and to realise the function to set the status of the controlled port according to the outcome of the
authentication exchange. It has to perform the access control function.
The Authenticator Key Transmit and the Supplicant Key Transmit state machines are in charge to send a
key to the supplicant or to the authenticator if such a key is available.
The Reauthentication Timer state machines is in charge to check if the reauthentication timer expired,
which means that the supplicant needs to reauthenticate. This timer is usually set to an initial value of 3600
seconds, but can be set to other values according to local policies.
The Backend Authentication state machine is responsible with communicating with the authentication
server and is located on the same system as the authenticator state machine. It forwards responses to the
authentication server and receives requests from it. Its presence allows the separation of the authentication
function from the authenticator.
The Controlled Directions state machine is responsible to ensure the correct values of the parameters that
regulate if control should be performed only on incoming packets or on packets flowing in both directions.
It actually does not make sense to control only outgoing traffic.
The Supplicant state machine communicates with the authenticator state machine and waits for a response.
It may happen that a supplicant starts to send packets before having received the response of the
authentication process. If the access point does not support authentication, this turns out to be a gain of
time.
The Key Receive state machine is in charge of receiving a key and processing it. The standard does not
specify how to process a key. It is system and implementation dependent.
The standard defines a set of managed objects and management functions on such objects. The aim is to
provide for facilities that support the planning, organization, supervision, control, protection, and security of
communication resources, and account for their use. It also defines a single Management Information
Base (MIB) module, containing the managed objects, divided into groups, and their relationships with
variables, parameters and counters defined together with the state machines.

Application of IEEE 802.1X in HIPERLAN type 2

Part 1: IEEE 802.1X and related protocols 25

3.4 Deployment of IEEE 802.1X in wireless LANs
IEEE 802.1X was designed to perform network access control on a port basis, i.e. on connection that has
point-to-point characteristics. Some of these issues are discussed briefly as the following:
• A wired point-to-point connection has an implicit degree of security given by the nature of the

connection itself and it happens namely on a cable or on a port, that is a means with well defined
boundaries, where a certain degree of “work” is needed in order to eavesdrop the communication. A
wireless connection, instead, does not have such features; consequently a communication can be easily
eavesdropped by someone who has the right tools to do this.

• The use of individual MAC addresses in a wireless LAN, which is actually a shared medium network,
allows its deployment in such environment. The IEEE 802.1X protocol exchange is anyhow not
confidentiality-protected, nor are the EAP messages exchanged between the parties. This arises the
necessity to use a secure association between supplicant and authenticator, in order to thwart
eavesdropping and to enhance the communication at least with the degree of security that is proper to a
normal wired point-to-point connection.

• The protection of the communication between the authenticator and the authentication server is an issue
that is not within the scope of IEEE 802.1X, but is dependent on the protocol between them. If using a
RADIUS server, a security association is supposed to exist between them, through the existence of a
secret shared by them. Not the whole messages are protected however, but only the password or some
other confidential information; integrity is guaranteed also. In order to protect the whole
communication between authenticator and authentication server, it is advisable to transmit information
on a secure association, for instance by using IPSEC.

Application of IEEE 802.1X in HIPERLAN type 2

Part 1: IEEE 802.1X and related protocols 27

4 EAP
The Extensible Authentication Protocol (EAP) [EAP] was designed to enhance the Point-to-Point
Protocol (PPP) with additional authentication features. It is an extensible protocol, which means that it can
always be enriched with new and stronger authentication mechanisms.
Although EAP was initially designed to be used on PPP connections, IEEE 802.1X uses it in order to
exchange authentication information in a LAN environment. A typical EAP protocol exchange can be
extracted from Figure 15.
The packet format is shown in Figure 17.

Figure 17: EAP packet format.

The code field includes information about the kind of packet, an identifier aids in matching requests and
responses, a length field and a data field, who’s content depends on the code field.
A packet can be a Request, a Response, a Success packet or a Failure packet. Requests and responses
can be of different types, as specified in the Type field, which is given by the first byte of the data field.
An Identity packet is used as a request to ask for identification or as a response to state an entity’s identity.
A Notification packet is used to convey a displayable message from the authenticator to the supplicant; it is
intended to provide an acknowledgement of notification of some event.
The NAK packet is only used in response packets to indicate that the desirable authentication mechanism is
unacceptable.
The other defined kinds of request or response packet specify authentication information depending on the
mechanism being used.
A Success or Failure packet is sent to indicate the success or the failure of the authentication process and
does not contain any body.

4.1 EAP-TLS
Transport Level Security (TLS) provides for mutual authentication and key exchange between two end
points. EAP-TLS [EAPTLS] represents an extension to EAP: it defines further authentication mechanism, a
protocol exchange in order to achieve authentication, security features negotiation, and a way to use it in an
EAP compliant manner.

Application of IEEE 802.1X in HIPERLAN type 2

28 Part 1: IEEE 802.1X and related protocols

It can therefore be used within 802.1X since it doesn’t require any modification to the current framework of
the protocol. EAP-TLS is the result of the moving of the security protocol TLS, designed to be placed on
top of a transport protocol, towards the link layer, within EAP to enhance it with additional features, thus
not being obliged to design a complete new security suite.
TLS is a layered protocol and the protocol architecture is depicted in Figure 18. The TLS Record Protocol
is the lower layer and it takes messages from the higher level protocols that need to be transmitted,
fragments the data into manageable blocks, optionally compresses the data, applies a MAC, encrypts and
transmits the result. The received data will be submitted to the reverting process. In order to achieve this,
the TLS Record Protocols provide for a standard encapsulation of the data being passed from the higher
levels.

Figure 18: TLS Protocol architecture.

Every connection is characterized by a Connection State, which represents the operating environment of
the TLS protocol. The connection state is made up of the security parameters, the compression state (the
state of the current compression algorithm), the cipher state (the current state of the cipher algorithms), the
MAC secrets and the sequence number (used to match different messages). At the beginning of the
operations, there are no algorithms defined; this means that the current connection state does specify a
NULL value for each of them. The TLS handshake protocol entities will proceed with a negotiation phase
in order to set the values of the pending connection states. At the end of the operations the TLS change
cipher spec protocol will send a message in order to fire the transition from the current state to the pending
state. If any error occurs, the TLS alert protocol will send a message to handle them.
Once a connection state has been established, all the messages sent by the application level will be handled
in order to be securely transmitted over the connection established by the TLS protocol.
EAP-TLS arises from the necessity to enhance EAP with additional features like mutual authentication, key
exchange and cryptography parameters negotiation. TLS provides for such features but on top of a reliable
transport protocol, like TCP.

Application of IEEE 802.1X in HIPERLAN type 2

Part 1: IEEE 802.1X and related protocols 29

The efforts spent for EAP-TLS has as a result the definition of a new EAP message type, the EAP-TLS
message, in order to carry TLS messages on a link level protocol; the adaptation of the TLS protocol
exchange to the EAP protocol exchange in order to make them compatible, and the definition of a
fragmentation and a retransmission mechanism.
In order to allow a normal TLS protocol exchange in an EAP protocol exchange, and consequently in a
802.1X protocol exchange, every message sent from the TLS client (supplicant) to the TLS server
(authentication server) is encapsulated in an EAP/Response/EAP-TLS message while the messages from the
TLS server to the TLS client are sent in an EAP/Request/EAP-TLS message. There is one very important
issue to note: the TLS conversation happens between the 802.1X supplicant (TLS client) and the 802.1X
authentication server (TLS server). The 802.1X authenticator acts only as an entity needing the supplicant
to authenticate itself but does not participate at all in the conversation and may even not understand what
kind of messages it merely forwards.
Since the MTU of the link level may be less than the maximum size of a TLS message (2^14 bytes),
although it is not probable that a TLS message will be greater than a few kilobytes, it is necessary to define
a fragmentation mechanism to face this problem; a very simple way to fragment EAP-TLS messages is
provided by the protocol
A typical EAP-TLS protocol exchange is illustrated in Figure 19.

Figure 19: EAP-TLS protocol exchange.

As soon as an association has been established between the mobile terminal and the access point, the mobile
terminal needs to be authenticated before allowing it to have access to the network. For this purpose the
authenticator, i.e. the access point sends an EAP-Request/Identity to the supplicant, i.e. the mobile terminal.
The supplicant will respond with an EAP-Response/Identity packet to the authenticator, which forwards the
response to the authentication server.
The EAP server will then start the TLS negotiation phase by sending an EAP-TLS/Start packet to the EAP
client and the conversation will proceed between what will typically be a RADIUS server, from now on

Application of IEEE 802.1X in HIPERLAN type 2

30 Part 1: IEEE 802.1X and related protocols

called (according to the EAP-TLS definition) EAP server (authentication server), and the EAP client
(supplicant). The authenticator will act as a pass-through server, forwarding and encapsulating EAP packets
and is not required, to understand or being able to interpret the information, which it is dealing with. This
will create some problems in designing a complete system based on 802.1X and EAP-TLS.

4.2 EAP-GSS and other extensions
EAP-GSS [EAPGSS] represents a further extension to the EAP protocol in order to make it support the
different mechanisms that are available to those developers that use the Generic Security Service-
Application Programming Interface, GSS-API [GSSAPI]. It is currently still at a draft level; therefore
modifications of it should be expected in future releases.
The general concept behind it is exactly the same as the one behind EAP-TLS, i.e. to take a well-known
negotiation protocol, in this case the Simple and Protected GSS-API Negotiation Mechanism (SPNEGO)
[SPNEGO], and to place it into the framework of the EAP protocol. A new EAP type is defined for this
purpose: the EAP-GSS type, which is assigned the value 14.
EAP-GSS provides for mutual authentication, cryptographic features negotiation and keys-exchange
protocol, according to those mechanisms that are available to GSS-API programmers.
The negotiation is based upon the exchange of security tokens, which contain information about the
available encryption and signing algorithms, or the parameters of a chosen algorithm. It needs a way to
guarantee the reliable delivery of the messages that are sent during the negotiation as well as a
fragmentation support. In order to have an effective network access control, it is even here necessary that
the access point is kept informed of the outcome of the authentication exchange (as usual), of the key
exchanged and of the mechanisms that have been negotiated between EAP-client and EAP-server. It is
assumed that the EAP-server, i.e. the RADIUS server, will negotiate encryption algorithms that are
supported by the access point.
As the saving of one round trip time may be significant, EAP-GSS tries to send the tokens containing the
security parameters of the preferred authentication mechanism together with the negotiation token, sent at
the beginning. If the EAP server will accept the client’s preferred method, one round trip time is saved.
A basic protocol exchange can be seen in Figure 20. In its basic form, it appears actually to be more simple
then EAP-TLS. The format of the message is nonetheless quite complex as well. The messages sent to
negotiate the security features are integrity protected if the preferred mechanism supports integrity
protection.

Figure 20: EAP-GSS protocol exchange.

Application of IEEE 802.1X in HIPERLAN type 2

Part 1: IEEE 802.1X and related protocols 31

The negotiation protocol allows furthermore to avoid completely the negotiation if the two communicating
are willing to resume an old session with the previously defined security features. This is exactly what
happens in EAP-TLS, which has the same feature; even in this case, this depends on the amount of time
elapsed from the first or the last time that session was established or resumed.

Application of IEEE 802.1X in HIPERLAN type 2

Part 1: IEEE 802.1X and related protocols 33

5 Radius

The original aim of the RADIUS [RAD] was to develop a protocol that could carry authentication,
authorization and configuration information between a Network Access Server (NAS) that desires to
authenticate its links, and a shared authentication server. A typical environment is therefore made up of a
network with many points of attachments (NAS), users that attach to the network through the NAS and
willing to have access to the network, and a shared authentication server where information about the access
features of the users can be retrieved.

5.1 Radius’s general features
Radius defines a protocol for exchanging information between the NAS (RADIUS client) and an
authentication server (RADIUS server) but it does not specify under which condition the authenticating
peer, i.e. the entity wishing to access the network, should be granted access. Furthermore, it is not
concerned with the communication between the NAS and the authenticating peer.
As hinted at in the previous paragraph, the RADIUS protocol is based on a client-server model: the NAS
acts as a RADIUS client while the shared authentication server acts as a RADIUS server. It is also possible
to have proxy RADIUS servers, which forward requests to other servers. The authentication of the
communication between RADIUS server and the RADIUS client and the encryption of password sent over
the network, are guaranteed by a shared secret, which is never transmitted over the network. The details are
not specified in the standard and are implementation dependent; how the authentication key, i.e. the shared
secret, is distributed depends on local policies.
One basic feature of the RADIUS standard is extensibility; it was designed in such a way that additional
information, not specified in the first release of the standard, may be transmitted between client and server.
This is achieved by defining attributes; each of them is characterized by an identifying code, a value and a
length field, which allows to have values of different length for the same attribute type.
RADIUS works on top of UDP as a transport protocol for simplicity’s sake. Indeed this simplifies the
realization of the server but implies some issues concerning retransmission of sent packets, timing and
storing of sent packets, before having received any response to them.

5.2 Basic operations
The RADIUS client is typically an access point to some network facilities, which wishes to know whether to
grant access to one of its users, being connected to one of its point of attachments. The client’s user submits
information such as user name, password and possible services that it wishes to have access to. The
RADIUS client sends a RADIUS Access-Request packet to the server, including the information submitted
by the user. Passwords sent on the network are encrypted and all the packets are integrity protected by an
Authenticator field included in the packet.
The RADIUS server receives the request and consults a database in order to retrieve information about the
user: password, services, further requirements to authenticate the user, limitations or constraints for the
user’s access to the network are usually retrieved. If the information submitted in the first request are
enough to grant access to the user, the server sends an Access-Accept packet; if there are conditions that
make the server to deny access, it sends an Access-Reject packet. Otherwise it may happen that the server
wants to challenge the client in order to verify further; in this case it sends an Access-Challenge packet,
which the client has to reply to with an Access-Request packet containing the response of the challenge in
the Password field.
If the server is not able to satisfy the request, it may forward it to another server, thus acting as a RADIUS
client; by doing this it may add proxy information in order to deal correctly with the response to its request;
such information should not be handled by other RADIUS entities.
It may also happen that a RADIUS server is temporarily unavailable; in this case, the NAS may submit the
request to other RADIUS server, if it knows any.

Application of IEEE 802.1X in HIPERLAN type 2

34 Part 1: IEEE 802.1X and related protocols

5.3 RADIUS packets
An overview of the RADIUS packet format is illustrated in Figure 21.

Figure 21: RADIUS packet format.

The Code field specifies which kind of RADIUS packet is being sent; the Identifier field aids in matching
requests to responds while the Length field indicates the length of the packet. The Authenticator field is
used to provide authentication, while the Attributes contain information concerning the user of the client,
which are necessary for the authentication process to succeed. Different kinds of RADIUS packet, identified
by the Code field are the following:

• Access-Request. This packet is sent to a RADIUS server and includes information, which are used to

determine if the client can be granted to have access to a specified NAS. It contains usually a user
name, a password, service type, which is requested, the NAS identifier, and other attributes to better
define the request.

• Access-Accept. It is sent by the RADIUS server to grant access to a user, after that authentication has
successfully completed. It may contain information of the services, which the user can have access to.

• Access-Reject. Used to deny access to a user. It may contain a reason.
• Access-Challenge. This packet is sent by the server if it wishes to authenticate the client’s user with a

challenge. It usually includes a message to be displayed and a random number used as a challenge. The
client has to reply to it, after the user has given a response, with a new Access-request packet.

• Accounting-Request.
• Accounting-Response. These kinds of packets are used if accounting options are active. They aim to

collect information for user accounting in order to permit billing or statistical analysis. The usage and
the attributes defined for RADIUS accounting are described in [RADAC] and [RADACT].

5.4 RADIUS attributes
This Section aims to give a brief and not exhaustive description of some RADIUS attributes, which are
usually included in packet being sent between client and server. The major aim of them is to convey
information that is necessary to authenticate users and to decide which types of service they may have
access to. They have been designed in such a way to be completely extensible without modifying the basic
protocol and often allow performing additional operations that were not considered at the beginning.

5.4.1 User related attributes
The most important attribute is probably the User-Name, which contains the name of the user, or more
generally, the name of the entity willing to access the network; quite often it is accompanied with the User-
Password attribute which indicates the password that the entity submitted to the client’s system. It may also
contain a response to a challenge issued by a server. This attribute is usually encrypted.

Application of IEEE 802.1X in HIPERLAN type 2

Part 1: IEEE 802.1X and related protocols 35

Other authentication schemes are also supported, such as CHAP; for this purpose, the CHAP-Password
attribute can be included in the list.

5.4.2 NAS related attributes
In order for the server to retrieve the correct information form the database it needs to know which NAS the
request came from (NAS-Identifier), its IP address (NAS-IP-Address), from which of its ports (NAS-
Port), or of which type the port was (NAS-Port-Type). The NAS may grant the user a limited number of
its ports (Port-Limit).

5.4.3 Service related attributes
Since the RADIUS server holds information about which services the user is allowed to have access to, or
the user will request to have access only to a reduced set of available services, the Service-Type attribute
included in the RADIUS packet. If included in a request packet, it should be considered as a hint or a
request; if included in a response from a server it should be considered as a must. More instances of the
same attribute type may be included in a packet. In case of a remote terminal service (login), it may specify
which host to connect to (Login-IP-Host), which service to connect to (Login-Service), and which TCP
port to connect to (Login-TCP-Port).
Other attributes specify information for callback services or LAT services. It is furthermore possible to
specify messages to be displayed to the user, routing or addressing information and vendor-specific
information (Vendor-Specific).

5.4.4 Session specific attributes
Certain services my be subject to time constraints, either as the maximum time to have access to the services
(Session-Timeout), or as the maximum time to be allowed to stay in an idle state (Idle-Timeout). If a
session terminates, it is possible to specify what action to take later (Termination-Action) or even a reason
of the conclusion of a session

5.5 RADIUS EAP extensions
RADIUS was designed to be an extensible protocol; this means that it is possible to define new attributes in
order to achieve new functions or to enhance and improve older ones. [RADEXT] defines new extensions
which compensate for many missing features, among which the support for Apple Remote Access Protocol
(ARAP), support for EAP and other features which might be useful in order to increase the manageability
of access control.
The EAP extensions represent a very important add-on in order to ease the integration of IEEE 802.1X and
the RADIUS protocol. How and why this is possible is described in Section 8.6.
Since EAP allows many different authentication schemes, this flexibility is moved into the RADIUS
protocol, thus improving further its already built-in extensibility feature. Through the use of EAP support a
number of authentication schemes may be added, including smart cards, kerberos, public key, one time
passwords, and others. This is achieved by adding two new attributes: EAP-Message and Message-
Authenticator. How these new attributes used for EAP support with in RADIUS is described in the
following sections:

5.5.1 EAP-Message
The EAP-Message allows to encapsulate a whole EAP message into a RADIUS packet, without modifying
its structure or adapting the EAP message. The RADIUS server will then send the EAP message to some
backend security server, which is likely to be placed on the same machine as the RADIUS server, as an
additional module. They might communicate through some proprietary protocol.
It may happen that some RADIUS server does not understand the new attributes. In order to overcome that
problem, and permit the packet to be proxied to another server, the NAS should copy the user name of an
EAP-Response/Identity packet into the user-name attribute of the RADIUS packet. If the RADIUS server
supports EAP extensions, it must respond with a RADIUS Access-Challenge packet containing an EAP-
Message attribute with a valid EAP packet. If the NAS receives a RADIUS Access-Accept or an Access-

Application of IEEE 802.1X in HIPERLAN type 2

36 Part 1: IEEE 802.1X and related protocols

Reject packet, it must send an EAP-Success or an EAP-Failure packet to its user. If the RADIUS server
does not support the EAP-Message attribute and no proxy operation is configured, the whole authentication
process will fail.
The RADIUS client is responsible for retransmission of packets both to the user (the authenticating peer)
and to the RADIUS server. [RADEXT] defines furthermore some facilities for fragmentation and
reassembling, since it may happen that an EAP packet does not fit entirely in the attribute.

5.5.2 Message-Authenticator
The RADIUS messages are not integrity protected, but only authenticated. It is therefore necessary to
provide the new extensions with integrity protection, in order to prevent any attacker to subvert the
RADIUS/EAP communication and send messages never generated by one of the communicating entities.
The Message-Authenticator attribute is used to protect all Access-Request, Access-Challenge, Access-
Accept, and Access-Reject packets containing an EAP message, but may be used even to protect other
authentication conversation. If this condition is not met or if the value of this attribute is different from the
expected one, the authentication process fails.
The Message-Authenticator attribute is used to sign the RADIUS packets in which it is contained. It is an
HMAC-MD5 checksum of the entire RADIUS packet, using the shared secret as the key. It is not needed
when the User-Password attribute is present but it is used to prevent other kinds of attacks, such as “rogue
server” attacks.

5.6 RADIUS and IEEE 802.1X
IEEE 802.1X defines a protocol exchange between an access point to some network and an entity that wants
to have access to that network. RADIUS defines a protocol for allowing a Network Access Server (NAS)
and a shared authentication server to communicate with each other. They can therefore work together for
authenticating and performing access control on devices that attach to a network and want to use the
services there available. This cooperation is further made easier since IEEE 802.1X defines an
encapsulation for EAP packets and RADIUS has defined its own EAP extensions.
A complete and working integration would therefore be based on IEEE 802.1X for the communication
between the wireless network access point and the mobile terminal and on RADIUS for the communication
between the access point and the authentication server. The access point can in this way be very simple,
since it simply has to encapsulate EAP packets in a RADIUS packet and forward them to the RADIUS
server.
It may however happen that the RADIUS server does not support the EAP extension. In this case, the
authenticator, for communicating successfully with the RADIUS server, should extract the information
contained in the EAP packet and insert them into a RADIUS packet.
[RAD8021X] provides some more detailed description about how RADIUS can be integrated in a system
that uses IEEE 802.1X, especially about the usage and the possible different meaning of the RADIUS
attributes.

Part 2: Application of IEEE 802.1X in
HIPERLAN 2

Part 2 illustrates the results that have been achieved while trying to solve the problem
of integrating the IEEE 802.1X authentication standard and an HIPERLAN/2-based
network:

• Chapter 6: Deals with Analysis and Methodology aspects that have been

considered while trying to solve the problem of integrating
IEEE 802.1X and HIPERLAN/2.

• Chapter 7: States about the IEEE 802.1X and HIPERLAN/2 from
a protocol point of view.
Chapter 8: Describes the modifications in the
HIPERLAN/2 need to be performed in order to integrate it
with IEEE 802.1X

• Chapter 9: How to deal with the Protocol exchange and authentication
 method.

• Chapter 10: Describes the requirements that the IEEE 802.1X software
module must meet in order to be housed and cooperate in the
HIPERLAN2 network

Application of IEEE 802.1X in HIPERLAN type 2

Part 2: Application of IEEE 802.1X in HIPERLAN/2 39

6 Analysis methodology
This brief Chapter tries to roughly describe the aspects that have been considered while trying to solve the
problem of integrating IEEE 802.1X and HIPERLAN/2, and why such aspects have been analyzed is
roughly described in this Chapter.
Four basic issues have been considered in high detail:
• The protocols.
• The operation.
• The protocol exchange and authentication methods.
• The software requirements and architecture.

6.1 The protocols
The HIPERLAN/2 standard defines a very detailed protocol architecture. Each layer or sublayer carries out
very specific tasks and defines an interface towards other sublayers within the HIPERLAN/2 standard or
towards other protocols outside the standard.
IEEE 802.1X is a network access control standard, which is supposed to operate at the link level (layer 2 of
the ISO/OSI protocol stack), but even to use its services (data transfer and indication of received data), thus
putting itself above layer 2. Its position within the protocol stack is roughly the same as protocols like ARP
or RARP, which belong formally to the link level but uses its services and whose Protocol Data Units
(PDUs) are encapsulated in PDUs of link level protocols.
These considerations raises the necessity to understand how IEEE 802.1X can be inserted (if it can be
inserted or rather put on top of it) in the HIPERLAN/2 protocol architecture and how it can collaborate with
it. How this analysis was performed and the achieved results are described in Chapter 7.

6.2 The operation
A station, willing to communicate within a wireless network, has first to perform a set of operations in order
to be allowed to send and receive data to other stations placed in the same radio cell or in other radio cells
or even on other networks and subnetworks. The HIPERLAN/2 standard defines a procedure which is
called association (look Chapter 2), which establishes a kind of link between the station and the access
point to the wireless network. The association procedure is made up of different stages, including
authentication; HIPERLAN/2 defines indeed its own authentication method.
It is necessary to decide how the operations included in the association procedure will work together with
the operation defined in the IEEE 802.1X standard.

6.3 The protocol exchange and the authentication methods
IEEE 802.1x defines a protocol exchange between the different parts involved in the authentication
operation. EAP encapsulated packets are sent between supplicant and authenticator, and between
authenticator and authentication server.
It is therefore quite important to have a clear picture of what happens when authentication is performed and
what the different possibilities are to perform such a task. Chapter 9 describes some of the possible protocol
exchanges, and proposes a method to perform mutual authentication based on certificates, but without using
the EAP-TLS extensions.

6.4 The software requirements
Since it is likely to have the IEEE 802.1X standard implemented in software, and part of the HIPERLAN/2
standard is implemented in software as well, it has been considered quite important to analyze the software
aspects..
Chapter 10 depicts some possible software architectures and configuration for both the MT and the AP that
could be used in order to integrate IEEE 802.1X and HIPERLAN/2

Application of IEEE 802.1X in HIPERLAN type 2

40 Part 2: Application of IEEE 802.1X in HIPERLAN/2

6.5 Why IEEE 802.1X and HIPERLAN/2
As pointed out in Chapter 2, HIPERLAN 2 defines its own authentication methods, which can actually be
considered quite strong and reliable. However, there are some reasons that make it convenient to use IEEE
802.1X as authentication method and as a means to perform access control in a HIPERLAN/2-based
network.
The main reason, on the engineering point of view, is that IEEE 802.1X allows the centralization of the
authentication function. The authentication methods designed for HIPERLAN 2 require that the
authentication function is performed in the AP. This implies that keys and/or certificates need to be stored
in the AP or that those information need to be retrieved from some other site, and then be worked out. The
computation happens anyway in the AP. This might be a problem in case of strong authentication methods,
since the AP, handling many MTs, should be as smooth as possible. Furthermore, updating information
would require to update all the APs installed in the network. By centralizing user information in another site
than the AP, it would be furthermore possible to perform policy-based operation and make decisions based
upon other criteria. The use of IEEE 802.1X in a HIPERLAN/2-based network allows to deal with user data
in a centralized way, and to free the AP from tasks that may be computation-intensive.
Nowadays many companies claim that they are able to release products supporting IEEE 802.1X by the
middle of the next year. The integration of this standard with HIPERLAN/2 would allow compatibility
between different products. Furthermore it seems that the next release of the Windows operating system will
support IEEE 802.1X as well; this would be quite important, since nowadays it is necessary to be
compatible with the Windows OS.
EAP has been designed to be extensible: new authentication schemas could be added just by defining a
protocol exchange and an EAP-type. Since IEEE 802.1X relies on EAP for performing authentication, the
integration of IEEE 802.1X into HIPERLAN/2 would allow extensibility in the authentication of such a
wireless network.

Application of IEEE 802.1X in HIPERLAN type 2

Part 2: Application of IEEE 802.1X in HIPERLAN/2 41

7 IEEE 802.1X and HIPERLAN/2: the protocols
This Chapter describes how IEEE 802.1X can be integrated from the point of view of the protocols, with
the HIPERLAN/2 standard. It does not define any software architecture, but it carries out a study based only
on the analysis of the official standards and documents.

7.1 IEEE 802.1X as a part of the HL/2 protocol architecture
HIPERLAN/2 defines different authentication protocols, based on pre-shared key or RSA private/public
keys. The standard defines exactly which kinds of messages have to be sent for each authentication method,
how long they are and how many. The MIB for HIPERLAN/2 defines five different authentication schemes:
• No authentication.
• Pre-shared-key authentication.
• RSA with 512-bits key.
• RSA with 768-bits key.
• RSA with 1024-bits key.
• Define a new MIB.
The HIPERLAN/2 protocol has been designed in such a way that management messages have always a
known size. The DLC-PDU has a length of 53 bytes and each message fits in that size. If bigger, is
transmitted above more than one DLC-PDU but even in this case, the total number of messages that need to
be sent is known because the global size is known. The IEEE 802.1X packet has not a fixed size: the length
of each message depends on the EAP type being used. The integration of the standards would result in a
useless complication of the HIPERLAN/2 standard or in a reduction of the IEEE 802.1X standard, which
would reduce its many useful features.
Furthermore, it may happen that a station, let’s say a laptop computer, is endowed with many network
connections, for instance a wireless LAN interface and an Ethernet interface, without performing routing or
bridging tasks. Each of these network accesses might need to authenticate by using IEEE 802.1X, and each
of them could use the same software module, thus saving development cost and resources on the machine.
The conclusion is that it is useless and too complicate to place IEEE 802.1X into the HIPERLAN/2
protocol stack: it is better to let them separated in order to exploit them better. How this can be done is
analyzed in the next Section.

7.2 Interaction between the HL/2 and IEEE 802.1X
This Section describes how the HL/2 protocol architecture can cooperate with IEEE 802.1X. In order to
make it clear, the description goes through the steps that have been performed during the analysis.

7.2.1 First Step: basic assumptions
The packet format for IEEE 802.1X has not a fixed length while the HIPERLAN/2 DLC-PDU has a length
of 53 bytes, 48.5 of them are exploitable to carry data. In order to allow IEEE 802.1x to send data across
the wireless network, it is necessary to use or define a convergence layer, which performs the task of
fragmenting and reassembling the packets, and of interfacing with the DLC sublayer. On the other hand, an
encapsulation for EAP packets into Ethernet frames is defined and the HL/2 standard comprises what is
called an Ethernet convergence layer. The conclusion is quite natural: using the HL/2 Ethernet convergence
layer as a way to send EAPOL packets over the wireless network.

In the following discussion, the term “Ethernet” is mainly used as a synonym to the term “IEEE 802.3”;
although this is formally not true, since the format of the packet is not the same, this has by now become a
common habit. All the concepts used now on, are referred to the IEEE 802 architecture, including IEEE
802.3 and IEEE 802.2

7.2.2 Second step: interface to the protocols
The IEEE 802.1X standard defines the primitives it is going to use in order to send data across the network:
they are DL_UNITDATA.request, to transmit a packet, and DL_UNITDATA.indication, to get an

Application of IEEE 802.1X in HIPERLAN type 2

42 Part 2: Application of IEEE 802.1X in HIPERLAN/2

indication when data is received. Such primitives require basically four parameters ([8023]): Source
address, destination address, Service Data Unit (SDU), i.e. the packet to be sent, and the reception status.
On the other hand, the HL/2 Ethernet SSCS (Service Specific Convergence Sublayer) offers two primitives
to the higher layers: DL_UNITDATA.request, to send data, and CL_UNITDATA.indication, to receive
data. It appears that the primitives match quite good, but there are many aspects to be considered, by
adapting a little bit the IEEE 802.1X implementation.
Second, but very important, is that the HL/2 Ethernet SSCS does not perform demultiplexing of packets.
When the sublayer receives a packet , it does not interpret the length/type field, and is thus not able to pass
the packet to the right protocol entity on the higher level. It simply takes the packet and passes it to some
overlying Ethernet level. This situation is illustrated in Figure 22.

Figure 22: Primitives and demultiplexing

In order to solve this problem the best way is to use the Logical Link Control (LLC) sublayer, which is a
part of the IEEE 802 standard, known as IEEE 802.2.

7.2.3 Third step: using LLC
The Logical Link Control (LLC) ([8022]), represents the upper sublayer of the link level, as defined in
the IEEE 802 LAN architecture. Briefly, it defines different type of services and different primitives for
each service; it performs demultiplexing of outgoing packets, and defines its own header to be appended to
a SDU passed to its Service Access Point (SAP). In order to be able to use the Ethernet type, as defined for
the Ethernet type 2 standard (also known as D-I-X), it is convenient to use the Sub Network Access
Protocol (SNAP) header, so not to rely on the LLC definition for the SAP addresses.
The LLC service type that seems to suit better to the needs of the IEEE 802.1X protocol, is the so-called
Type 1 Service, which is an unacknowledged delivery of data. Services offered by the other operation types,
like acknowledgment or connection-oriented delivery of data are not needed, because such services are
available in HIPERLAN/2. Two basic primitives are available: DL_UNITDATA.request, and
DL_UNITDATA.indication, which are actually the primitives needed by the IEEE 802.1X.

Application of IEEE 802.1X in HIPERLAN type 2

Part 2: Application of IEEE 802.1X in HIPERLAN/2 43

On the lower level, LLC requires basically three types of primitives: MA_UNITDATA.request,
MA_UNITDATA.indication and MA_UNITDATA_STATUS.indication.

7.2.4 Fourth step: completing the model
The LLC is supposed to communicate with an IEEE 802 MAC sublayer; the HL/2 Ethernet SSCS expects
as a SDU a packet, which is already complete. In a protocol view, provided in [HL2ETHSSCS], on top of
the HL/2 Ethernet SSCS a level called Ethernet/802.3 framing is placed. The conclusion is that between
the LLC sublayer and the HL/2 Ethernet SSCS, a kind of Reduced MAC level is needed, which performs
the functions of creating the final packet to be passed to the underlying layer, adding and checking the
length field, and matching the primitives of the underlying and overlying levels. The result is depicted in
Figure 23.

Figure 23: Protocol interaction between HL/2 and IEEE 802.1X.

The functions performed in the so-called Reduced MAC Layer can be extracted from [8023], where a
detailed schema of the IEEE 802.3 MAC protocol functions is included. Figure 24 illustrates it.

Application of IEEE 802.1X in HIPERLAN type 2

44 Part 2: Application of IEEE 802.1X in HIPERLAN/2

Figure 24: Reduced MAC layer (Source: [8023]).

7.2.5 Complete model
The complete model is that depicted in Figure 23. The IEEE 802.1X layer communicates with the LLC
sublayer through its primitives, DL_UNITDATA.request and DL_UNITDATA.indication in order to send
data or when it receives data. The reduced MAC level creates the complete Ethernet/IEEE 802.3 packet by
adding the addresses, length and padding; this is then passed to the HL/2 Ethernet SSCS as a parameter of
the CL_UNITDATA primitive.
When receiving a packet all heading information are removed by the layers that added them before, and the
IEEE 802.1X packet is then passed to the right layer as it was sent by its peer. How the packets are affected
by those steps is illustrated in Figure 25.

Application of IEEE 802.1X in HIPERLAN type 2

Part 2: Application of IEEE 802.1X in HIPERLAN/2 45

Figure 25: Flow of the IEEE 802.1X packet through the protocol stack

The model that has been so far presented represents how IEEE 802.1X can be integrated into HIPERLAN/2
from a protocol point of view. It does not consider any software issues or how such protocols are
implemented in a complete working system. This means that this study is completely theoretical and only
based on public and official standards.

Application of IEEE 802.1X in HIPERLAN type 2

Part 2: Application of IEEE 802.1X in HIPERLAN/2 47

8 IEEE 802.1X and HIPERLAN/2: the operation
This Chapter describes the modifications in the HIPERLAN/2 operation that need to be performed in order
to integrate it with IEEE 802.1X. The basic aim was not to change any standard specification, but to adapt
the operation in such a way to keep compliant with the standard.
The aspect of the standard that should be analyzed is the association procedure, since it decides what
features need to be negotiated, including authentication, encryption and key exchange.

8.1 The association procedure
The association procedure carries out a set of operations, which will define the basic settings of the
communications between the AP and the MT. During the association, the MT and the AP supporting IEEE
802.1X authentication negotiates that no authentication procedure will take place. On the other hand, they
need to negotiate encryption and proceed with a key-exchange procedure. The AP and MT will therefore
perform the following operations, within the normal association procedure:
• Negotiate for a suitable encryption algorithm.
• Negotiate for a suitable convergence layer, i.e. the Ethernet convergence layer.
• Perform a Diffie-Hellman key-exchange.
• Skip the native HL/2 authentication procedure.
• Complete the association.
• Start the IEEE 802.1X authentication
• If successful start the normal communication else disassociate.
Such behavior might be easily configured via management.
Furthermore, there is another issue about the key-exchange that needs to be briefly looked at. The Diffie-
Hellman protocol, used by HL/2, is subject to a man-in-the-middle attack, since the keys are exchanged
but no control is made over the identities of the partied being involved in the procedure. For this reason,
HL/2 links the Diffie-Hellman public value into the authentication procedure. The key-procedure is
actually only concluded when even authentication completed successfully. If the parties agree not to
authenticate but to use encryption, and hence to exchange keys, they have to be aware that they cannot rely
upon the identities of the parties. If authentication fails, the association has to be broken by disassociation
and the result of the key-exchange has to be considered invalid. This aspect has to be considered in both
the MT and the AP. It has to be noted anyway that the whole IEEE 802.1X exchange proceeds encrypted,
so no other entity than the two involved in the authentication exchange can interpret the information being
exchanged.

8.2 The controlled and uncontrolled port
One basic feature of IEEE 802.1X standard is the behavior of the point of attachment to the network, in
which each point of attachment is split up into two ports, the controlled port and the uncontrolled port.
Outgoing and incoming data are available on both the ports.
The controlled port is subject to the outcome of the authentication process. This means that data are allowed
to flow through it only if the port is in the authorized state. The uncontrolled port allows the flow of data
through it without any control. As the standard defines, IEEE 802.1X has the effect to model the point of
attachment in a two-port system; this means that are not physically two ports, but the system has to simulate
or reproduce the behavior of splitting up the access point to the network into two ports. This is actually one
of the most important issues while integrating HIPERLAN/2 and IEEE 802.1X. In order to simulate this
behavior, the possible management operations standardized by the HL/2 standard were analyzed first, and
then, after realizing that it was not possible to act through management, another solution has been found
out.

8.2.1 Management operations
In order to simulate the operations of the two ports, the management operations and available data were
supposed to allow a quite deep control over the normal HIPERLAN/2 operations concerning the association
procedure, the forwarding of packets and the prevention of such feature. More in detail, it was necessary to:

Application of IEEE 802.1X in HIPERLAN type 2

48 Part 2: Application of IEEE 802.1X in HIPERLAN/2

• To get complete information about the associations established at a certain time point (AP and MT).
• To be able to prevent packets to flow.
• To exert such a control in one or two directions.
• To exert such a control for different kind of packet.
• To know about disassociation, explicit or implicit.

8.2.2 Solution
The only feasible solution that allows implementing the mechanism of the double-port point of attachment
is to act on the driver, since the HIPERLAN/2 standard does not indicate how this could be achieved.
There are two solutions, both of them consisting in modifying in the driver the behavior that is done for
every single packet that it is received. The solutions are different from each other, depending on how the
data are treated in the driver, whether on an association-basis or a global basis. In the first case, the solution
is actually easier than in the second case.
8.2.2.1 A single thread for each association
If a single thread deals with only one association, then the behavior that the driver should observe is:

 for each incoming packet inc_packet{
 if (status!=authorized)

if(packet_type(inc_packet)!=allowed)
 block_packet();

}
 for each outgoing packet out_packet{
 if(status!=authorized)
 if(OperControlledPortDirections==Both)
 if(packet_type(out_packet)!=allowed)
 block_packet();
}

In this piece of pseudocode, inc_packet is the incoming packet, out_packet is the outgoing packet, status
indicates the state of the variable, packet_type() is a function that return the value allowed or not-allowed
depending if the type of packet is supposed is flow even if the port in unauthorized state, block_packet() is
the function that performs the blocking function.
8.2.2.2 One process for all associations
If only one single-threaded process deals with all the association, then the behavior of the network interface
driver is given by the following piece of code:

for each incoming packet inc_packet{
 ID = get_source_mac_id(inc_packet);
 if (status(ID) != authorized)

if(packet_type(inc_packet)!=allowed)
 block_packet();

}
 for each outgoing packet {

 ID = get_dest_mac_id(out_packet);
if(status(ID)!=authorized)

 if(OperControlledPortDirections(ID)==Both)
 if(packet_type(out_packet)!=allowed)
 block_packet();
}

In this case it is necessary to extract the MAC ID of the source of the packet (get_source_mac_id()) for
incoming packets the destination MAC ID (get_dest_mac_id()) for outgoing packets and then check the
status for the port corresponding to that association.

Application of IEEE 802.1X in HIPERLAN type 2

Part 2: Application of IEEE 802.1X in HIPERLAN/2 49

9 IEEE 802.1X and HIPERLAN/2: protocol exchange and
authentication methods
IEEE 802.1X makes use of EAP in order to perform authentication. This allows deploying several
authentication schemes, which are available. So far, there are four standardized EAP methods, namely
MD5, General Token Card, One-Time Password and EAP-TLS. MD5 is equivalent to the PPP Challenge
Handshake Authentication Protocol (CHAP) ([CHAP], [MD5]), General Token Cards and One-Time
Password are not further explained in [EAP], while EAP-TLS is described in [EAPTLS]. A further method
is described in [EAPGSS] but it is still at a draft level.
More methods might be added in order to meet particular conditions or requirements, or for keeping update
with new authentication technologies. In the case of wireless LANs (HIPERLAN/2 in this case), it can be
interesting to notice how strong the participation of the authenticator is in each different authentication
schema, since it will be the AP to play this role and it is usually supposed to be as small and simple as
possible.
At the beginning, basic issues about the authentication process and a brief survey of different authentication
exchanges is provided, without focusing on a particular authentication mechanism, but underlying different
degree of participation of the involved entities.

9.1 Authentication methods: basic issues
This Section depicts some basic issues about the authentication methods that should be used in a system
based on IEEE 802.1X and HIPERLAN/2.

9.1.1 Challenge-response
All the authentication mechanisms deployed in a wireless network should be based on a challenge-response
protocol, since this avoids the sending of passwords in clear, or even encrypted, on the network. The issue
is to send a challenge, which is a randomly generated number to the supplicant. The supplicant replies by
sending the challenge back encrypted or digested with some key-based digest algorithm. It can even send it
back together with the challenge in clear. Such methods are indeed based first on strong random-number
generation function and second, on an algorithm for which it is impossible (or at least very difficult) to work
out the key having an encrypted piece of data and the clear text.
The algorithms that can be used are MD5 (see [EAP], [MD5], [CHAP]), HMAC-MD5 ([MD5],
[HMACMD5]), RSA if using some public-key cryptography for authenticating. A token card-based system
follows the same rules.
What happens (after identities have been exchanged) is:
1. The Authenticator A sends a challenge C to the supplicant S.
2. S replies by sending a response R to A, where R=Enc(C, k). Enc () is the encryption function, and k is a

key. Such a key is algorithm dependent. It might be a shared symmetric key or a private key.
3. A sends the authentication outcome to S, which may be success or failure.
This example has considered only what happens between supplicant and authenticator, while the
intervention of an authentication server has been neglected.

9.1.2 Mutual authentication
In a corporation environment, the possibility to authenticate the network access point to the device willing
to attach to the network might not be so important, because of two reasons. First, the possibility to perform
a rogue-server attack is quite low, since the physical environment of a corporation is usually quite protected.
Second, a corporation network is supposed to have only one network provider; it is quite difficult to have
corporation environments with a provider different from the normal one. This issue is not very different in a
wireless network. Though the coverage of such a network might “go outside” the normal protected physical
environment, placing a rogue access point outside the corporation environment might not be difficult
because of the propagation conditions of a wireless network. An HIPERLAN/2 MT establishes an
association with the AP with the strongest signal. A rogue AP, placed outside a building, should transmit
with a very high power to overcome the difficult propagation conditions of a corporate building.

Application of IEEE 802.1X in HIPERLAN type 2

50 Part 2: Application of IEEE 802.1X in HIPERLAN/2

A public environment, or more generally an environment where public network access in available, is
instead quite easy to make “untrusted”. First, it would not be too difficult to create a faked access point;
with a wireless network, such operation is even easier. Second, such an environment could offer network
connection by many network operators. MT willing to establish a connection, could not base only the
network id, but should require authentication of the AP, in order to be sure.
In case of mutual authentication, the operations are the following:
1. A sends a challenge C1 to S.
2. S responds with R1=Enc1 (k1, C1) and sends a new challenge C2.
3. If S authenticated successfully, A responds with R2=Enc2 (k2, C2), otherwise sends an error message.
4. If A authenticates successfully, S sends an OK message.
5. A terminates the authentication conversation.
Enc1 () and Enc2 (), like k1 and k2 might be the same algorithms or have the same values, or might be
different. These are environment-independent features.
The actual communication happens between supplicant and authentication server, hence the mutual
authentication occurs between those two entities. However, this feature can be neglected by considering the
authenticator and the authentication server belonging to the same system. What happens, if observed from
the supplicant point of view, is that it authenticates the entity on the “other side”. It actually does not
perceive the presence of authenticator and authentication server, who might also be placed on the same
physical system. This feature is illustrated in Figure 26.
Since the native HIPERLAN/2 authentication mechanisms perform a mutual authentication, it is reasonable
to conclude that IEEE 802.1X deployed in a HL/2-based network should use an EAP method that
implements mutual authentication as well.

Figure 26: Mutual authentication.

Application of IEEE 802.1X in HIPERLAN type 2

Part 2: Application of IEEE 802.1X in HIPERLAN/2 51

9.2 Basic authentication schemas
Before the very first authentication, two entities being involved in the authentication process, meet,
physically or virtually, in order to exchange two authentication keys, to get a certificate, to receive a token
card or to register biometrics data. After the first contact, the normal authentication can proceed normally.
The authentication schema will always be based on a challenge-response mechanism, but no details about
the algorithms are provided here, since it does not change the protocol type. Mutual authentication has not
been considered either, though it would involve adding only one or to messages in the communication,
usually containing a further challenge and a further response.

9.2.1 Strong participation of the authenticator.
An example of authentication exchange involving a strong participation of the authenticator will here be
illustrated. The authenticator is in charge of sending an EAP-Request/Identity and an EAP-Request/OTP (or
some other EAP type) to the supplicant. The Authentication server is only in charge of authenticating and
authorizing the supplicant, but is not strongly involved in the protocol exchange. An example is given in
Figure 27. In this situation, the RADIUS server receives an Access-request packet, with the response given
as a password, and the challenge included as well. The RADIUS server will elaborate the challenge and the
response and check in its database for authorization.

Figure 27: Authentication schema with strong participation of the authenticator.

9.2.2 Less participation of the authenticator
In this case, the challenge is sent by the AS, forwarded by the authenticator. The response is sent by the
supplicant and forwarded to the authentication server by the authenticator. It is assumed that the RADIUS
server does not support the EAP extensions. This means that the authenticator has to extract information
from the EAP packet and create a new RADIUS packet. An example is given in Figure 28.

Application of IEEE 802.1X in HIPERLAN type 2

52 Part 2: Application of IEEE 802.1X in HIPERLAN/2

Figure 28: A different authentication schema.

9.2.3 Minimal participation of the authenticator
This authentication schema is characterized by the authentication server performing all the important
actions that concern with the authentication process. If the exchange of a key is comprised in the EAP
method, then the authenticator has obviously to deal with it, but it should be avoided to have the
authenticator to generate a key. For instance, using EAP-TLS, a key is shared by supplicant and
authentication server; such a key has been generated by those entities, which are both TLS-aware. In order
to let the authenticator know the key, this key could be transferred to it by the supplicant, using the EAOPL-
Key message or by the RADIUS authentication server, by including it in some attribute, mainly vendor-
specific attributes. Actually, the Microsoft vendor-specific attributes consider an attribute to exchange a key
between the NAS and the authentication server.
Such a schema looks more or less like the one illustrated in Figure 28, with the exception that all the
messages forwarded from the authenticator to authentication server are actually included in the EAP-
message attribute of a RADIUS message.
IEEE 802.1X was designed as an authentication standard and as a means to perform access control;
furthermore, the use of certain EAP types, may give the possibility to generate a key to be used for
encryption. Such a key might be exchanged within the EAP conversation or with the EAPOL-key message.

9.3 Authentication exchange
To use HIPERLAN/2 or some other kind of network does actually not make any difference in the protocol
exchange. This example makes use of the EAP method defined as “MD5” in [EAP], which is actually
equivalent to PPP-CHAP [CHAP]. The messages that are sent to the RADIUS server are EAP messages
encapsulated in a RADIUS message.
The assumptions that are made are the following:

Application of IEEE 802.1X in HIPERLAN type 2

Part 2: Application of IEEE 802.1X in HIPERLAN/2 53

• An association has been established between the MT and the AP. The MT acts as a supplicant while the
AP acts as authenticator. The authentication server is placed on a network reachable by the AP, but it is
not placed on the same system.

• Encryption is active: a pair of Diffie-Hellman has been exchanged and all the messages are exchanged
in an encrypted form.

• Authentication has not been performed during the association procedure.
• Packets are not allowed to be sent by the supplicant and, if the OperControlledPortDirections

parameter is set to Both, are not allowed to reach the supplicant either.
• The IEEE 802.1X layer is triggered to start operations.
The operations and the protocol exchange that are performed by the parties are described in detail; to
indicate a message from the MT to the AP, the following notation is used: MT->AP; a packet from the AP
to the authentication server is indicated as follows: AP->AS, and so on.
1. MT->AP:

EAPOL-Start packet.
2. AP->MT:

EAPOL-EAP packet encapsulating an EAP-Request/Identity packet.
3. MT->AP:

EAPOL-EAP packet encapsulating an EAP-Response/Identity packet; the identity is expressed in
some format understandable within the network.

4. AP->AS:
RADIUS packet of type Access-Request. The following attributes are included: User-Name, attributes
about the NAS (MAC-address, etc), EAP-message (which contains the EAP packet sent by the
supplicant), Message-authenticator.
The AS (Radius server) looks in its database, likely an Active Directory, for the user being
authenticated. A challenge is generated and sends back in the next step.

5. AS->AP:
Radius packet of type Access-Challenge, containing the following attributes: User-name, attributes
about the NAS, EAP-message, Message-authenticator; the challenge might be included in the Reply-
message attribute as well.

6. AP->MT:
EAPOL-EAP packet encapsulating an EAP-Request/MD5 packet. This is exactly the same EAP
packet encapsulated in the RADIUS packet sent previously from the AS to the AP. The EAP-
Request/MD5 packet contains the challenge.

7. MT->AP:
EAPOL-EAP packet encapsulating an EAP-Response/MD5 packet. Contains the response to the
previously sent challenge.

8. AP->AS:
RADIUS packet of type Access-Request. The following attributes are included: User-Name, attributes
about the NAS (MAC-address, etc), EAP-message (the one received from the MT), Message-
authenticator. The response sent by the MT is also included in the Password field.
The RADIUS server elaborates the received response and checks for authorization in the Active
Directory.

9. AS->AP:
RADIUS packet of type Access-Accept or of type Access-Reject, according to the outcome of the
authentication process and the authorization check. An EAP packet containing the result of the
authentication is also included in the RADIUS message. It might be EAP-Success or EAP-Failure.
Note that the authentication can be successful but the authorization might be denied, according to some
local policy, bound to that user. Configuration information might be included as well in some attributes

10. AP->MT:
EAPOL-EAP packet encapsulating an EAP-Success or EAP-Failure, depending on the authentication
outcome. Furthermore, the Authorization Result Code field of the packet is set to authorized or to
unauthorized, according to the outcome of the RADIUS server.

Application of IEEE 802.1X in HIPERLAN type 2

54 Part 2: Application of IEEE 802.1X in HIPERLAN/2

9.4 A certificate-based authentication method: a modest proposal

9.4.1 The protocol exchange
Only the communication path between supplicant and authenticator will be considered; it assumes that the
actual flow happens between supplicant and authentication server, where the authenticator acts as a pass-
through server, and the EAP messages to the authentication server are encapsulated in RADIUS packets.
Basically what happens, after that identities information has been exchanged, is:
1. The authenticator A sends an EAPOL-EAP packet, encapsulating an EAP-Request/New_method

packet, containing a challenge C1 to the supplicant S.
2. The supplicant S sends an EAPOL-EAP packet, encapsulating an EAP-Response/New_method,

containing a response R1 to the challenge C1 (R1=Enc (PrS ,C1), where PrS is the supplicant’s private
key), a new challenge C2, and, if needed, a certificate or a link to a certificate stored somewhere.

3. If the response sent by the S was correct, A replies with an EAPOL-EAP packet, encapsulating an
EAP-Request/New_method, containing a response to the new challenge (with R2=Enc (PrA ,C2),
where PrA is the authenticator’s private key), and if needed a certificate or a link to a certificate stored
somewhere. If the response sent by the authenticator was not correct, an EAP-Failure packet is
encapsulated in the EAPOL-EAP packet.

4. The supplicant acknowledges the authenticator, and gives an indication of the result of the
authenticator’s authentication.

5. If the authentication was successful on both part and if there is no reason to deny access to the
supplicant, the authenticator sends and EAPOL-EAP packet, encapsulating an EAP-Success packet,
otherwise and EAP-Failure packet.

9.4.2 The format of the EAP packet
In order to allow the previous protocol exchange, the packet format must allow to send different kinds of
data according to different situation.
The format here discussed is the one of the EAP-Request/New_method or EAP-Response/New_method,
and is illustrated in Figure 29. The first byte is a control byte and the fields have to be interpreted in the
following way:
CH: Indicates if the packet contains a challenge
RE: Indicates if the packet contains a response to a challenge previously sent.
REF: Indicates if the packet contains a reference to a certificate stored somewhere.
CE: Indicates if the packet contains a certificate.
SU: Indicates if the received response was successful. Sent by the supplicant or by the authenticator.
FA: Indicates if the received response was not successful. Sent by the supplicant.
The other fields may contain a challenge, a response, a reference to a certificate stored somewhere or a
certificate. The order is the same as indicated in the picture. If one of the fields is indicated as not present in
the control field, then it is missing. There will never be misinterpretations in the position of the fields.

Application of IEEE 802.1X in HIPERLAN type 2

Part 2: Application of IEEE 802.1X in HIPERLAN/2 55

Figure 29: Packet format of new method.

9.4.3 Issues
Many issues need to be discussed about this proposal, and will be discussed in the following sub sections:
• Link is not reachable.
• No network connection.
• The format of the packet.
• Certificate management and policy.
• Authentication server for the supplicant.
9.4.3.1 Link not reachable
It may anyway happen that a link is unreachable due to networks problem or because the referenced
certificate has been deleted. Since it is not possible to distinguish between different situations, in such a
situation the best solution seems to consider authentication unsuccessful and not to authenticate the user. In
certain situations, let’s say in closed network where the link references a certificate with local validity, if it
is possible to distinguish between reasons why the link is unreachable, a user might be successfully
authenticated and authorized. In this situation, reauthentication may occur with a shorter timeout.
9.4.3.2 No network connection
It may actually happen that it is not possible to reach a link to a certificate because a network connection
has not been granted yet.
What can happen is that the reference to the certificate is unreachable or that a CRL cannot be obtained for
that certificate; in this situation, the supplicant should acknowledge the authenticator and check the
credentials as soon as possible, i.e. when network access is available. The supplicant can try to verify the
authenticator’s credentials basing upon some certificate that has been retrieved previously, and checking
later for CRLs. A complete verification has to be done anyway before considering the process concluded
and proceeding to the normal transmission stage.
9.4.3.3 Format of the fields of the packet
As previously hinted at, a link to a certificate might have global validity or local validity within a network;
it may be expressed as URL or as an index in some local database. Furthermore, the format of the challenge
and of the response might depend on how strong the encryption algorithm is requested to be; the certificate
might be compliant with [X509] or [PKCS6]. It turns out that the format of the single fields must be
discussed further and in detail. One first suggestion could be to add a version field, in order to distinguish
between different formats.
9.4.3.4 Management and policy
Dealing with certificates implies a set of basic issues that so far has not been solved; such issues imply
storing certificates, how to deal with CRLs, the validity scope of such certificates, and so on. The general
solution is to come to a local assessment in order to deal with such problems and to be able to use
certificates, even if in a reduced scope.

Application of IEEE 802.1X in HIPERLAN type 2

56 Part 2: Application of IEEE 802.1X in HIPERLAN/2

9.4.3.5 Authentication server for the supplicant
In the case of mutual authentication, even if the authenticator leads the authentication conversation between
the two parts, the authenticator is being authenticated also by the supplicant. One issue is: “Do the
supplicant need an authentication server in order to authenticate the authenticator?”
In order not to complicate the situation it can be accepted that the supplicant authenticates the authenticator
on its own; this choice may be justified by the fact that only authentication is needed, while authorization,
access control or accounting are not needed.

Application of IEEE 802.1X in HIPERLAN type 2

Part 2: Application of IEEE 802.1X in HIPERLAN/2 57

10 The software requirements and architecture
This Chapter aims to describe the requirements that the IEEE 802.1X software module must meet in order
to be housed and cooperate in an HIPERLAN2 network, and to illustrate some possible architectures for
both MT and AP.

10.1 General issues
Since the best choice appeared to integrate IEEE 802.1X externally, it is now necessary to figure out what
kinds of software requirements need to be meet and some possible architecture.
The actors being involved are basically four: the HIPERLAN/2 network interface driver, the IEEE 802.1X
module, modules corresponding to higher levels and a control or interface module.
The interactions between the different modules are as follows. After a new association has been established,
the control module still prevents the transmission of other packets than management or authentication, and
starts the authentication operation by triggering the IEEE 802.1X module. After it has concluded, according
to its outcome, the control module will either allow the transmission or disassociate. During the operation,
some kinds of protocols (SNMP, AFS…) are allowed to flow, regardless of the authentication outcome. The
control module, besides interfacing the other modules and keeping control over the operation, might
perform other tasks such as buffering or delaying of data. The basic interactions are depicted in Figure 30.

Figure 30: Basic software architecture and interactions

An important issue that needs to be analyzed is regarding disassociation, which has not been considered in
the previous model. It may happen implicitly, in case of the loose of radio connection, or explicitly, if, for
instance, the user logs off. In case of implicit disassociation, this may happen if an MT_ALIVE procedure
terminates with concluding that the MT is not there any more. The interval, which establishes the frequency
of such procedure, called mt_alive_interval, which can be set by management operation, should be decided
with regard to security policies.

Application of IEEE 802.1X in HIPERLAN type 2

58 Part 2: Application of IEEE 802.1X in HIPERLAN/2

Another important aspect to consider regards reauthentication: when the reauthentication timer expires and
the authentication procedure is performed again, if the outcome is negative, the control model should be
informed, in order to allow it to prevent further transmission. It has anyway to be pointed out that, since the
transmission should be encrypted, it is quite easy to perform an open-session attack.

10.2 Software architecture on the MT-side
In this case, the accuracy on the AP must be much greater, because it is responsible to enforce
authorization, and, more generally, to grant a secure access to the network to authorized devices.
In an MT where more than one interface is available, the IEEE 802.1X should be designed in such a way to
be interface-independent. What should happen is that such a module is triggered each time an interface gets
up; this means that a new instantiation is created for each of them, as soon as that interfaces transits in the
active state. As soon as the process is over, the module might be deactivated or kept active in order to keep
a state of the active connection, which is anyway not requested. A basic architecture is depicted in Figure
31. The different interfaces are kept under control by an Interface controller. As soon as an interface starts
to be active, it triggers (T) the interface supervisor, which is interface dependent. The interface supervisor
(S) supervises the interfaces and starts the IEEE 802.1X module as soon as the startup processes have
completed. The interface controller is started at boot-time. The network supervisor keeps on checking all
the time in order to track changes in the network interface and act properly on the IEEE 802.1X module.
Furthermore, if the user logs off, then the IEEE 802.1X module has to send an EAPOL-Logoff message.

Figure 31: Basic software architecture.

After an association has been established, the IEEE 802.1X module, triggered at the right time, starts the
authentication process by sending an EAPOL–Start packet, according to the behavior of the state machine,
which expresses how the protocol should act. The point here is: How to know that an association has been
established and how to trigger the IEEE 802.1X module? There are basically two possibilities:

Application of IEEE 802.1X in HIPERLAN type 2

Part 2: Application of IEEE 802.1X in HIPERLAN/2 59

• Keep the control module spinning on some variables in the HL/2 network interface driver, likely the
management variables that are in charge of storing the information about active associations.

• Let the network interface driver trigger the control module that will further trigger the authentication
module in order to start

Before authentication has been successfully concluded, data are not supposed to be sent, since they might to
be lost because not accepted by the AP. What can happen is that data to be sent might be buffered before
being sent if authentication has not been concluded yet, be non-acknowledged, forcing higher levels to try
again later or simply discarded.
Another interesting issue is what happens with DHCP: it can be completely ignored, trusting in its own
retransmission features, or be triggered after successful authentication. In the first case the DHCP timer will
expire the first time, maybe a second time but then, when authentication has completed, it will get a reply.
In the second case, the DHCP client will send a request and get a reply as soon as network connection is
working.
According to what has been depicted in this Section, there can be two different software architectures for
the MT, which will be illustrated in the next two Subsections.

10.2.1 A simple software architecture for the MT
The basic feature of this model is given by its straightforwardness: it defines a reduces set of interaction
with the network interface driver, in order to ease the implementation and portability and no communication
with higher levels. Packets are allowed to be sent without any hindrances; if authentication has not
concluded yet or has concluded unsuccessfully, it is up the higher levels to realize that there is no network
connection.
There are two interactions with the HL/2 driver. The first one happens when association occurs: the IEEE
802.1X module is activated in order to deal with the authentication exchange, by the interface supervisor, if
present, or by the driver itself. In order to perform this, it is necessary to change one part of the HL/2
network driver, called the association manager. As soon as association is established, it has to send a signal
to the interface supervisor in order to start authentication.
The other kind of interaction happens at the end: if disassociation occurs, an EAPOL-Logoff packet should
be sent. This might be not so important, because it is mainly the AP that has to deal with this problem. It
would anyway be advisable to trigger the IEEE 802.1X module to send a notification of the disassociation
to the AP, or when the user starts the logoff procedure.
A particular situation happens when mutual authentication is active, because in this case the MT should not
send packets when the authenticator does not manage to authenticate successfully.
This basic architecture is illustrated in Figure 31.

Application of IEEE 802.1X in HIPERLAN type 2

60 Part 2: Application of IEEE 802.1X in HIPERLAN/2

Figure 31: A simple architecture for an MT

The figure illustrates also the relationship with the EAP module given by EAP APIs, which allow using the
services that are made available by the different EAP methods.

10.2.2 A complete architecture for the MT
This model is characterized by more complex interactions between the different part, which made up a
system based on IEEE 802.1X authentication and authorization. The interface supervisor is much bigger
and exerts a stronger control over the network interface driver; furthermore, it talks with the higher levels as
well. It keeps track as usual of new associations and disassociations but it also prevents packets to be sent if
authentication has not successfully completed; this feature might be very useful in case of mutual
authentication. If a higher layer wants to send data across the network but authentication or authorization
has not been completed yet, than the packets can be buffered until the network connection is perfectly
working; the higher layers do not note the difference. On the other hand, if authorization is denied, the data
that need to be sent can be non-acknowledged. In this way the system is more efficient but the
implementation of such a model is much more difficult and implies much more investigation. An example is
given in Figure 32.

Application of IEEE 802.1X in HIPERLAN type 2

Part 2: Application of IEEE 802.1X in HIPERLAN/2 61

Figure 32: A complex architecture for the MT.

10.3 Software architecture on the AP-side
On the side of the AP, the software requirements are much higher because it is up to the AP to enforce
authentication and access control and thus to prevent unauthorized devices to access the network and the
services there available. The AP represents the first point of attachment and thus the first “check-point”. In
order to let things work, it is necessary to exert a quite strong control over the AP operation, which are not
feasible through normal management operations, as seen in Chapter 8. How such control is exerted depends
on how the AP is actually implemented; this Section tries anyhow to point out some common issues and to
design a possible software architecture.
Basically the operations that should be performed are the following:
• An MT asks the AP to establish an association; the negotiation occurs as illustrated in Chapter 8:

negotiate encryption and Ethernet SSCS, perform exchange of keys.
• When the HL/2 association successfully completed, the AP should not consider the whole procedure as

done, i.e. the MT is not allowed yet to access the network. This means that the AP does not forward
packets coming from that MT, and sends to the MT only if the OperControlledPortDirections
parameter is set to In. Packets that are not forwarded are discarded, except the ones that are allowed by
some internal policy, like authentication. Furthermore, the MIB is not updated yet.

• The IEEE 802.1X module starts and performs authentication triggered by a control module, which is
necessary even in the AP, unless it has been opportunely modified. During the whole procedure, the
AP keeps on not allowing the MT to transmit.

• If the MT is authorized to access the network, the AP proceeds with the normal operation, otherwise a
disassociation procedure is started.

Application of IEEE 802.1X in HIPERLAN type 2

62 Part 2: Application of IEEE 802.1X in HIPERLAN/2

• During a session, the reauthentication keeps counting and as soon it expires, a new authentication
procedure starts; if it concludes unsuccessfully, the MT is disassociated, otherwise the session is kept
alive.

• Events like a received EAPOL-Logoff packet, an unsuccessful MT-Alive procedure, or a
disassociation for some reasons should be tracked.

It has to be noticed that the authorization status and the session timer should be kept alive for each
association, i.e. for each associated MAC-Id during the whole session. This means that in a situation of
maximum load, the AP has to keep track of up to 256 association, which is the maximum number of
associations allowed for each AP.
An example of possible architecture is depicted in Figure 33.

Figure 33: Basic architecture for an AP.

In this example, the IEEE 802.1X module communicates with a so-called connectivity module, whose aim is
to allow communication with the HL/2 module. The connectivity module can be considered divided into
two parts, one part which is dependant on how the IEEE 802.1X module has been defined, and one part
which is dependent on how the HL/2 has been designed.
Interface I defines how the connectivity module communicates with the IEEE 802.1X: it is given by a set of
signals between the two modules (creation of a new association, disassociation, outcome of the
authentication and authorization process) and a set of parameters for each signal (result of the authorization
process or the reauthentication process, MAC id, etc).
Information for each association might be stored in the AP, in the connectivity module or in the IEEE
802.1X module. Since the IEEE 802.1X defines a set of variables and timers for each port, i.e. for each
association, it seems reasonable to keep there much of the information. Other information might be kept in
the connectivity module, hence avoiding to complicate too much the HL/2 module.
Interface II performs the task to put the HL/2 module in communication with the connectivity module, i.e.
to look for new association and disassociation, and to watch for correct forwarding of packets.

Application of IEEE 802.1X in HIPERLAN type 2

Part 2: Application of IEEE 802.1X in HIPERLAN/2 63

It has to be noticed that even though the IEEE 802.1X module is unique within an AP system, it has to deal
with many associations. This means that a kind of multithreading architecture is needed, since many
associations may happen at the same time. It is up to the AP’s implementation how such a system is dealt
with, if to associate more than one MT at the same time in a concurrent way or to serialize them. A possible
architecture for the AP is given in Figure 34.

Figure 34: IEEE 802.1X architecture in the AP.

The basic server module waits to be triggered or to receive some event by the connectivity module, which
has been previously defined. If a new association is started, this module launches a new thread that will deal
with the new association. A table of all current threads is kept in the basic server module.
Each thread keeps information about the authentication status, the timers, the MAC-Id of the current
association. When required, a new thread is started to perform the authentication process; the result is then
stored in the launching thread. The authentication thread might finish when the procedure has concluded or
kept active, stuck in one of the states of the state machine, which is there implemented.

Part 3: Implementation and testing

This part depicts the basic features of the implementation that has been achieved. The
basic aim of the implementation was not to produce a commercial version of the
software, but to demonstrate and test the issues defined in the previous Chapter.

• Chapter 11: Depicts the basic issues of the implementation that has been
 carried out in order to demonstrate what has been discussed
 and analyzed in the previous part Implementation

• Chapter 12: The testing methodology and results are illustrated as well.

Application of IEEE 802.1X in HIPERLAN type 2

Part 3: Implementation and testing 67

11 The implementation
The actual implementation is slightly different, the software architectures that have been described for a
number of reasons. Since there are no HIPERLAN/2 products available yet, it is impossible to test the
prototype with such a network. For this reason the packets are sent on a normal Ethernet network. Also the
prototype does not really interact with the network interface: the authentication process does not start when
the interface goes up but a specific function of the prototype is called. On the AP side, this is even more
evident, since an AP was not available. Furthermore, the interface towards EAP is not complete, but it
supports only a set of basic functions. More details are given in Appendix B.

11.1 Basic features of the prototype
The prototype includes two basic parts, the supplicant and the authenticator. Both parts, which are more or
less correspondent to the "IEEE 802.1X modules" introduced in chapter 10, have been implemented as
normal Windows-style Dynamic Link Libraries, have a multithreaded structure.
The authenticator includes a RADIUS client in order to make use of an external authentication server for
performing the actual authentication function. The normal WINDOWS 2000 RADIUS server has been
used, which is included in the Internet Access Service (IAS), on eof the services made available in the
WINDOWS 2000 Server edition.
The different software architectures there presented, included always a sort of intermediate module, called
supervisor module or connectivity module, aiming to act as an interface between the IEEE 802.1X and the
network interface drivers. In the implementation such a module has not been carried out, for a number of
reasons due to the time to design and implement it was not enough and the aim of the thesis work was not to
implement a commercial prototype but something that could prove the basic features of IEEE 802.1X.
There was not the possibility to use a working HIPERLAN/2 network, since products are so far not
available yet. In order to let the prototype working, and to avoid to use the WINSOCK 2 interface, a sort of
intermediate driver has been used. Such a driver, used as a normal Windows-based Dynamic Link Library
(DLL), gives the possibility to send Ethernet packet on the network, without being obliged to cross the
complete protocol stack. This driver has been made available by the Software Development group, working
at Ericsson Enterprise.
The prototype has been implemented in C/C++. The functions that are needed by different classes or by the
main part of the prototype have not been encapsulated in a class implementation. On the other hand, the
functionality of the state machines used in the standard, and the functions used by them, have been
encapsulated in a class. So there is a class for each state machine, and they are instantiated in the main file.
The different parts of the prototype have both been implemented as DLLs, such binding them to the
Windows operating system. The prototype makes thus use of the WINAPI 32 for implementing
multithreading, namely the functions that allow to run a new thread, to synchronize access to shared
variables, to read in the register, to load a DLL or to make use of a COM object.
Each part of the prototype is dived in several files. Functions that are used by both modules and that have
access to global variables are grouped in the same file, while the functions that don't make use of global
symbols are included in a different file; the implementation of each class is given in separate files.
Furthermore, three different header files are used to define symbols used by both parts or by only one part.
The following files are included in both modules:
• 802_1Xv9.h. Contains the basic definitions for the IEEE 802.1X, version 9, standard
• timer.cpp. Contains the implementation of the timer class functionality.
• generalFunc.cpp. Contains the implementation of some functions that are needed across the various

files and that don’t make use of the global symbols defined for those systems, i.e. either the supplicant
system or the authenticator system.

• globalFunc.cpp. Contains the implementation of functions that are needed across the files and that
make use of global symbols. Its implementation changes a little bit between the supplicant’s and
authenticator’s system.

• Keyreceive.cpp. Contains the implementation of the Key Receive state machine, which is needed in
both the supplicant’s system and the authenticator’s system.

 The following files are included only in the supplicant’s system:

Application of IEEE 802.1X in HIPERLAN type 2

68 Part 3: Implementation and testing

• supplicant.h: Contains definitions of symbols and classes only needed in the supplicant’s system
• supplicant.cpp: Contains the implementation of the supplicant class.
• Maindll.cpp: Contains the functions exported by the IEEE 802.1X module implemented on the

supplicant’s system.
• eapFunction.cpp. Contains functions needed to interface with the EAP API on the supplicant’s system.
• supp_key_tran.cpp. Contains the implementation of the Supplicant Key Transmit state machine.
The following files are included in the authenticator module:
• Authenticator.h: Contains definitions and global symbols only needed in the authenticator’s system.
• Maindll.cpp. Contains functions exported by the IEEE 802.1X module implemented on the

authenticator’s system
• authenticator.cpp. Contains the implementation of the authenticator class.
• AuthKeytrans.cpp. Contains the implementation of the Authenticator Key Transmit state machine.
• Backend.cpp. Contains the implementation of the Backend Authentication state machine.
• ContrDir.cpp. Contains the implementation of the Controlled Directions state machine.
• Reauthen.cpp. Contains the implementation of the Reauthentication state machine.

11.2 The MT-side implementation
The implementation on the side of the MT looks basically like in Figure 35. The main DLL module
instantiates the objects corresponding to the different states machines and allocates the memory which is
shared with other functions and the various objects. The common memory area contains buffers that are
needed to transmit frames over the network, variables for the support of multithreading, variables for
allowing the different functions to communicate and those symbols declared global in the IEEE 802.1X
standard.

Figure 35: The MT-side implementation

All the functions and the class declarations are reported in Appendix B.

Application of IEEE 802.1X in HIPERLAN type 2

Part 3: Implementation and testing 69

The window 2000 OS supports EAP and in order to make use of EAP, the EAP APIs made available by
Microsoft have been used. However, such APIs are quite complex depending on the EAP method that has
been chosen. For A detailed description about how the EAP APIs have to be used is provided in Appendix
C.

11.3 The AP-side implementation
The implementation of the IEEE 802.1X module on the AP side is basically similar to that on the MT-side,
as Figure 36 depicts. The Main DLL module, as in the MT, is responsible for allocating resources,
exporting functions and instantiating the objects needed on the side of the authenticator's system.
Although the authenticator's system is not supposed to run on a Windows platform but on some kind of
embedded real time operating system, it has been implemented using the system calls typical of Windows
system, since it had to be tested on such a platform. As a consequence it has been implemented as a DLL,
even though this was not necessary.
Even in this case the software needs some adjustment, not done during the work for a lack of time. Its
architecture should be increased, management features should be added as well as the counters that keep
track of the state of the system and its behavior. The exact description of the files that make up the
authenticator's system is given in Appendix B.

Figure 36: The AP-side implementation.

In order to enforce authentication and obtain authorization information acts as a RADIUS client sending
RADIUS messages that obtain the EAP packet received from the supplicant. The client which was provided
by the company VIRCOM Inc., is a COM/Active X object that after have been installed on the system can
be easily be used with in the code. The EAP extensions is also adapted by the company developers and the
work become easier. After having instantiated an object and obtained a reference to the Idispatch interface,
it is necessary to open a request by providing the information about the user being authenticated and the
RADIUS server.

Application of IEEE 802.1X in HIPERLAN type 2

Part 3: Implementation and testing 71

12 Testing
Since the availability of time and hardware resources were limited, certain features have not been tried out.
The basic aim was to accomplish an elementary conversation between the authenticator Port Access Entity
(PAE), the supplicant PAE and the Authentication server, in order to understand how IEEE 802.1X
behaves and interacts within the environment that has been presented in Chapter 1.

12.1 The testbed
This Section describes the environment used for testing the implementation, from both the hardware and the
point of view of the software.
The system to be tested was made up of the following components:
• The supplicant’s system.
• The authenticator’s system.
• The authentication server.
• The users’ database.
The components are shown in Figure 37, together with their interactions.

Figure 37: The components of the testbed.

The supplicant’s system represents the entity to be authenticated; in an environment as described in
Section 1.4 it would be a mobile terminal requiring access to a network based on HIPERLAN/2. The
supplicant PAE, i.e. the part of the system dealing with the IEEE 802.1X protocol was completely
implemented from scratch, except EAP, which was provided by the Microsoft APIs. The system was
running on a Windows 2000 Server platform.
The authenticator’s system represents the entity enforcing authentication and controlling the status of the
point of attachment to the network. In a HIPERLAN/2-based network it would be the access point. The
authenticator’s system includes a RADIUS client supporting the EAP extensions; such client was provided

Application of IEEE 802.1X in HIPERLAN type 2

72 Part 3: Implementation and testing

by Vircom Inc, a Canadian software company. Even this system was running on a platform based on the
Windows 2000 operating system.
The authentication server was given by the Internet Authentication Service (IAS), which is a part of the
Windows 2000 Server operating system. It is a RADIUS compliant authentication server that supports the
EAP extensions. It is able to authenticate using either a local stored database or an Active Directory placed
somewhere in the Windows 2000 domain. The testing was based looking up for the users in an Active
Directory.
The users’ database was an Active Directory that stored the users of the system, their passwords and their
dial-in properties. The Radius server was configures to connect to it and enforce authentication of the users.
Since there was a lack of hardware equipment, all the components were placed on only two PCs, as showed
in Figure 38. Furthermore, the network that connected all the different components were not a wireless LAN
but a simple Ethernet based network.

Figure 38: The used testbed.

12.2 The testing methodology and results
Since the amount of available time was quite limited, the choice has been to start testing the most important
parts in order to get the system to work. Basically, what has been tested were the communication paths
between the main parts of the system, and roughly the behavior of the state machines.

12.2.1 The RADIUS communication
The first communication path to be tested was the RADIUS conversation between the authenticator and the
authentication server. In order to ease this task and limit the scope of the operation, a brief test program was
written, containing the setup operation of the RADIUS client, the opening of a new RADIUS request, the
adding of an EAP-message attribute to the request and the transmission of the request. At the beginning a
normal password-based method was used, to be sure that the RADIUS client and server were able to

Application of IEEE 802.1X in HIPERLAN type 2

Part 3: Implementation and testing 73

communicate and that the RADIUS server was able to look up the user in the Active Directory. Afterwards,
the scope was broadened to an authentication method based on EAP, first a simple EAP type based on the
transmission of a password in the EAP message (sample EAP method made available by Microsoft) and
then EAP-MD5; EAP-TLS was not tried out. The problem was basically to understand what kind of
attributes the RADIUS server expected in the first message, if an EAP-Request/Identity had to be included
or not. The answer was given by a carefully read of the related RFC and by trial, of course.
It turned out that it was necessary to include the RADIUS User-name attribute in each request sent to the
RADIUS client. The first request sent to the server was an Access-Request message, containing the name of
the user, some information about the RADIUS client (NAS-IP, NAS-identifier, NAS-port) and the service
required, namely Authenticate-only. Furthermore, it was necessary to include the EAP-Response/Identity
packet sent by the supplicant.
According to [RADEXT] it may happen that the NAS does not know the identity of the authenticate (as
called by that RFC) and does not even send an EAP-Request/Identity packet to the supplicant. In this
situation the NAS server sends a request to the RADIUS server containing no user name and an empty
EAP-message attribute inside. This approach frees the authenticator from sending the EAP-Request/Identity
message, which is instead sent by the RADIUS server and included in a Access-Challenge message. This
approach has been tried out also but it did not work since the Windows 2000 IAS server does not support
this feature. If guest-access was not allowed and EAP was set up as the authentication protocol, it was
necessary to include the user name attribute, which had to be copied by the authenticator from the EAP
packet into the RADIUS message, and an EAP-message attribute. In this situation the RADIUS server
replies with a Access-Challenge message, containing an EAP-message attribute. By using MD5 as EAP
type, the server replied with an EAP packet of type MD5 containing a challenge.

12.2.2 Communication between supplicant and authenticator
The other communication path to be tested was between the authenticator and the supplicant. This was
much more troublesome since the packet had to be sent over the Ethernet medium without crossing the
TCP/IP protocol stack. In order to achieve this, a test program was written as well as in the former case, in
order to isolate the functions related to the transmission of packets and perform a more effective
troubleshooting operation.
The solution was given by a so called Ethernet Gate, a DLL provided by the Software Development group;
the Ethernet Gate was able to communicate directly with the network interface driver, and was installed on
the system as an additional network protocol. It allowed to send packet by calling a simple function, and to
receive packets by registering a receiving function to the DLL. Such function, being part of the
authenticator’s and supplicant’s systems, was called by the Ethernet Gate each time a packet was received;
it had then to deal with the packet.
The main problem was to append the MAC destination and source addresses to the packet, since the
software that dealt with the transmission of the packets, used that information to send the packet and did not
accept the addresses as parameters.
Another problem that was met by testing the Ethernet Gate was to deal with the different conventions of
representing strings of bytes, i.e. big endian or little endian. It turned out that some data types used
throughout the system used different conventions than required, obliging to change many of the data types
or by adjusting them by hand each time.
After having tested the communication path, the results and corrected code was then applied to the
supplicant’s and the authenticator’s systems.

12.2.3 Testing of the state machines
As described in Chapter 11, both the supplicant’s system and the authenticator’s system have been
developed as normal DLL exporting a set of functions to be called by the module dealing with the interface
to the network driver. Since such a module was not implemented, a test program has been written, that
simulates the call sequence that is expected from the interface module. Such a test program loads the DLL,
and calls the functions exported by the DLL.
After having tried out the communication between supplicant and authenticator, and between RADIUS
client (authenticator) and RADIUS server (authentication server), the state machines have been tested using
the test program, described previously. Such a test program made first a call to the setup() function,

Application of IEEE 802.1X in HIPERLAN type 2

74 Part 3: Implementation and testing

contained in both systems. This allowed to test out if the allocation of the needed resources was
successfully. After that the function start() was called to observe the behavior of the state machines, that
were thus activated as threads, and at the end a call to the function stop() allowed to debug deallocation of
resources and shutting down of the systems. Other features were not tried out due to a lack of time.

12.2.4 Testing results: summary
As already pointed out, the testing session has been carried out in a quite limited amount of time, which
obliged to neglect many features and to focus on some basic issues that have been considered more
interesting, such as the communication between the RADIUS client and the RADIUS server, since the
RADIUS extensions for EAP are relatively new. Furthermore such feature represents a very important issue
in the whole system, because it allows to centralize authentication and authorization and to free the access
point from this task, which might be quite resource demanding.
On the other end it was very useful to look at the IEEE 802.1X protocol exchange between supplicant and
authenticator, and how the packets received by the authenticator from the supplicant and the authentication
server, were forwarded to the other part of the authentication exchange.
At the end of the testing phase, which actually represents only the early stage of a complete testing session,
the result was a working system with basic features, able to authenticate a user, i.e. the supplicant, through
the authenticator, by the authentication server. The used EAP method was EAP-MD5, a simple challenge-
response based authentication scheme that allowed nonetheless to appreciate the potentialities of a complete
commercial release.

Part 4: Conclusions and final remarks

This part contains the conclusions that have been drawn during the thesis work and
how and what can be done further to complete and continue this work. In particular,
there are certain aspects of the analysis that need to be further analyzed, the
implementation needs to be refined and the testing activity needs to be concluded.
Furthermore, this part includes references, bibliography and some appendixes that
deepen certain aspects of the thesis.

• Chapter 13: points out the achieved result and the conclusion later provides
some guidelines to continue this thesis work

Application of IEEE 802.1X in HIPERLAN type 2

Part 4: Conclusions and final remarks 77

13 Conclusions and final remarks

13.1 Summary
This master thesis aimed to analyze the IEEE 802.1X standard and to study the possibility to integrate it
with the standard for wireless networks known as HIPERLAN/2.
Part 1 of this report describes the main features of the IEEE 802.1X and of the HIPERLAN/2 standards;
furthermore, it provides an overview of other protocols and standards that may collaborate with IEEE
802.1X in enhancing with data-security a wireless network. More emphasis was laid upon those features
that were then further analyzed in this report, like security in HIPERLAN/2, the deployment of IEEE
802.1X in shared-media networks, the attacks that might be countered by using Port Based Network Access
Control in a network with a high number of point of attachments, and the protocol exchange that occurs
between the different parts of a system based on this standard.
Part 2 shows in a quite detailed way how IEEE 802.1X could be deployed within an HIPERLAN/2-based
network. It analyzes what happens with the protocols, proposing a solution for their interaction; it goes
through the operations that occur during the setup phase of HIPERLAN/2 and illustrates how they should be
adapted and modified. Furthermore, it looks inside the authentication protocols and schemes that might be
deployed and which of them fits better into a wireless network; a new certificate-based authentication
method is also proposed. Eventually a number of possible software architectures are depicted, which would
allow the usage of IEEE 802.1X in a system based on HIPERLAN/2.
Part 3 outlines the features of the implementation that has been achieved and how it has been tested. It has
been shown that the software architecture used within the system is not very far from the ones being
depicted in chapter 10 and that it could be easily adapted to one of them. In the case of the authenticator’s
system a bigger work should be performed, to adapt to the operating system adopted on an access point,
likely a real time embedded operating system, with support for multithreading.

13.2 Achieved results
The first part of this report, apart providing a technical overview of the different topics that were necessary
to carry out the work, has underlined some issues that were further deepened later on. It has pointed out that
it is necessary to pay some attention while deploying IEEE 802.1X in a wireless network, because
authentication information exchanged on a shared-medium LAN without being encrypted can easily be
snooped and used for some kind of attacks. On the other hand HIPERLAN/2 already includes its own
security features, which arose the questions whether it is really useful to enhance it further; the answer has
been provided in part two.
The discussion about EAP, and especially about EAP-TLS has underlined some issues of such an
authentication method, that make believe that its adoption within a wireless network is not the best solution;
Chapter 9 has suggested a simple authentication method that could be used as an alternative.
Part 2 analyzes in detail some aspects of the integration of HIPERLAN/2 and IEEE 802.1X. In particular it
suggests a solution on how to interface the protocol stack of HIPERLAN/2 and assigns a place to IEEE
802.1X within it, by defining how they should communicate. It has seen that it is necessary to lay down
some constraints in the association procedure of HIPERLAN/2, in order to allow a different kind of
authentication to take place instead of its native one, and that some changes should be performed in the
software performing the network functionary to be able to implement the behavior of the controlled and
uncontrolled ports on the AP side.
In the analysis of the different protocol exchanges and authentication method, it has been underlined that
because of the nature of the AP, usually a poor-endowed piece of hardware with small computational power
and memory, with a relatively smart operating system, the impact on it should be as small as possible. As a
consequence it is advisable to delegate much of the operations to the authentication server, which can be
arbitrarily powerful and scalable. Furthermore, the moving of authentication and authorization out from the
access point, allows for a more scalable solution in terms of number of users, access control policy,
adoption of certificate-based authentication methods, redundancy and hence reliability. In order to underline
the extensibility and flexibility of EAP, and as a consequence of IEEE 802.X, a new simple certificate-
based authentication method has been proposed, which provides only for authentication.

Application of IEEE 802.1X in HIPERLAN type 2

78 Part 4: Conclusions and final remarks

Another aspect that has been faced up concerned a possible software architecture to be implemented in the
AP and the MT. It turned out that the software adjustments to be done in the MT can also be very simple,
delegating to higher levels the task to deal with absence of any network connection. On the AP side instead,
which is in charge of enforcing access control to the network, it is instead necessary to design a very
accurate architecture to avoid any possibility to elude Port Based Network Access Control.
Part three, by describing the achieved implementation and explaining the test methodology, has underlined
some of the aspects that have already been pointed out in Part two. It has seen which aspects of the whole
system are particularly important and interesting, which aspects need to be analyzed further and in great
detail, and what needs to be developed further.
To conclude, this master thesis has demonstrated that it is possible to deploy IEEE 802.1X in a network that
allows wireless access using HIPERLAN/2. It has shown how this can be achieved, which modifications
should be applied to the systems and how a possible complete environment could look like. This last point
has been confirmed by the implementation that has been carried.

13.3 Future work
The task to study and analyze a standard like IEEE 802.1X, to propose a way to integrate it in a wireless
protocol and to implement a prototype to prove the statements made previously, is actually quite ambitious
and with a lot of aspects to consider and many points of view to keep in mind. Considering that a master
thesis has to be concluded in a limited and reduced amount of time, the natural consequence is that many
points are neglected or analyzed quite roughly.
Starting from the last point, namely the implementation, as already pointed out in Chapter 11, what has been
carried out needs to be revised and improved. First it needs to be adapted to the modern software
engineering concepts, then its design needs to be made smarter, and less resource consuming. Eventually it
needs to be tested in a complete and exhaustive manner.
Concerning the analysis of how Port Based Network Access Control can be deployed in HIPERLAN/2,
there are at least three aspects that could be deepened. First, a device accessing a wireless network using
HIPERLAN/2 is likely to be a mobile or a portable device; furthermore, such a network will probably have
more than one access point, allowing the mobile terminal to associate with different access points. In this
scenario, it would be quite interesting how IEEE 802.1X could behave or need to be adapted when a
handover from one cell to another happens.
Second, Chapter 4 has introduced EAP-TLS, as a means of enriching EAP with more sophisticated
features, such as security features negotiation, exchange of encryption keys, and certificate-based
authentication. How EAP-TLS would adapt to the HIPERLAN/2 security studies could be an area of big
interest.
Third, the Windows 2000 operating system has a support for the Kerberos authentication method, which
will probably be used as the main authentication scheme. Both EAP and RADIUS are able to support
Kerberos: EAP can be easily adapted to it, while there are already IETF Drafts documents ([RADKER])
proposing RADIUS extensions for allowing the usage of Kerberos within it. How Kerberos, IEEE 802.1X,
HIPERLAN/2 could fit together can be an interesting subject to analyze in detail.
Broadening the scope of this discussion, there are two other aspects about Port Based Network Access
Control that can be considered for a possible future work. The same discussion that has been faced up in
this thesis can be done for IEEE 802.11: how this wireless network standard would benefit from endowing
it with IEEE 802.1X and in which way this can be achieved, can be considered the subject for another
master thesis project.
On the other hand, only the corporation environment has been considered has a deployment area. Public
environments are likely going to have their breakthrough in the next years, but examples of working public
are already available. The security issues are quite different in this kind of environment and how IEEE
802.1X can affect and improve the security of such networks is another very interesting matter.

Application of IEEE 802.1X in HIPERLAN type 2

Part 4: Conclusions and final remarks 79

References

[8021X9] IEEE Draft P802.1X/D9, “Standards for Local and Metropolitan Area Networks: Port

based Network Access Control”, November 2000.

[HL2OV] ETSI TR 101 683, V1.1.1, “Broadband Radio Access Networks (BRAN); HIPERLAN

Type 2; System Overview”, February 2000.

[HL2PHY] ETSI TS 101 475, V1.1.1, “Broadband Radio Access Networks (BRAN); HIPERLAN

Type 2; Physical (PHY) layer”, April 2000.

[HL2DLC] ETSI TS 101 761-1, V1.1.1, “Broadband Radio Access Networks (BRAN); HIPERLAN

Type 2; Data Link Control (DLC) Layer; Part 1: Basic Data Transport Functions”, April
2000.

[HL2RLC] ETSI TS 101 761-2, V1.1.1, “Broadband Radio Access Networks (BRAN); HIPERLAN

Type 2; Data Link Control (DLC) layer; Part 2: Radio Link Control (RLC) sublayer”,
April 2000.

[HL2MAN] ETSI TS 101 762, V1.1.1, “Broadband Radio Access Networks (BRAN); HIPERLAN

Type 2; Network Management”, October 2000.

[HL2PBCL] ETSI TS 101 493-1, V1.1.1, “Broadband Radio Access Networks (BRAN); HIPERLAN

Type 2; Packet based Convergence Layer; Part 1: Common Part”, April 2000.

[HL2ETSSCS] ETSI TS 101 493-2, V1.1.1, “Broadband Radio Access Networks (BRAN); HIPERLAN

Type 2; Packet based Convergence Layer; Part 2; Ethernet Service Specific Convergence
Sublayer (SSCS)”, April 2000.

[HL2BUE] ETSI TS 101 761-3, V1.1.1, “Broadband Radio Access Networks (BRAN); HIPERLAN

Type 2; Data Link Control (DLC) Layer; Part 3: Profile for Business Environment”,
September 2000.

[80211] IEEE Std. 802.11,1997 Edition, “IEEE Standard for Wireless LAN Medium Access

Control (MAC) and Physical Layer (PHY) specifications”.

[8023] IEEE Std 802.3, 1998 Edition, “Information technology - Telecommunications and

Information exchange between systems - Local and metropolitan area networks - Specific
requirements - Part 3: Carrier sense multiple access with collision detection (CSMA/CD)
access method and physical layer specifications”.

[8022] IEEE Std 802.2, 1998 Edition, “Information technology - Telecommunications and

information exchange between systems - Local and metropolitan area networks - Specific
requirements - Part 2: Logical Link Control”.

[MD5] IETF RFC 1321, “The MD5 Message-Digest Algorithm”, R. Rivest, April 1992.

[CHAP] IETF RFC 1994, “PPP Challenge Handshake Authentication Protocol”, W. Simpson,

August 1996.

[HMAC] IETF RFC 2194, “HMAC”, H. Krawczyk, M. Bellare, R. Canetti, February 1997.

Application of IEEE 802.1X in HIPERLAN type 2

80 Part 4: Conclusions and final remarks

[HMACMD5] IETF RFC 2085, “HMAC-MD5 IP authentication with Replay Prevention”, M Oehler, R.
Glenn, February 1997.

[OTP] IETF RFC 2289, “A One-Time Password System”, N. Haller, C. Metz, P. Nesser, M.

Straw, February 1998.

[X509] CCITT Recommendation X.509, “The Directory - Authentication Framework”, 1988.

[PKCS6] RSA Technical Note, “PKCS #6: Extended-Certificate Syntax Standard, version 1.5”,

November 1, 1993.

[EAP] IETF RFC 2284, “PPP Extensible Authentication Protocol (EAP)”, L. Blunk, J.

Vollbrecht, March 1998.

[TLS] IETF RFC 2246, “The TLS Protocol Version 1.0”, T. Dierks, C. Allen, January 1999.

[EAPTLS] IETF RFC 2716, “PPP EAP TLS Authentication Protocol”, B. Aboba, D. Simon, October

1999.

[EAPGSS] IETF Draft < draft-aboba-pppext-eapgss-02.txt>, “EAP GSS Authentication Protocol”, B.

Aboba, 21 November 2000.

[SPNEGO] IETF RFC 2478, “The Simple and Protected GSS-API Negotiation Mechanism”, E.

Baize, D. Pinkas, December 1998.

[GSSAPI] IETF RFC 2743, “Generic Security Service Application Program Interface Version 2,

Update 1”, J. Lynn, January 2000.

[RAD] IETF RFC 2865, “Remote Authentication Dial In User Service (RADIUS)”, C. Rigney, S.

Willens, A. Rubens, W. Simpson, June 2000.

[RADEXT] IETF RFC 2869, “RADIUS Extensions”, C. Rigney, W. Willats, P. Calhoun, June 2000.

[RADAC] IETF RFC 2866, “RADIUS Accounting”, C. Rigney, June 2000.

[RADACT] IETF RFC 2867, “RADIUS Accounting Modifications for Tunnel Protocol Support”, G.

Zorn, B. Aboba, D. Mitton, June 2000.

[RAD8021X] IETF Internet Draft <draft-congdon-radius-8021x-02.txt>, “IEEE 802.1X RADIUS

Usage Guidelines”, Paul Congdon, Bernard Aboba, Tim Moore, Aswhin Palekar, Andrew
Smith, Glen Zorn, Dave Halasz, Andrea Li, Albert P. Young, John Roese, July 2000.

[RADKER] IETF Internet Draft <draft-kaushik-radius-sec-ext-05.txt >, “Radius Security Extensions

using Kerberos v5”, Kaushik Narayan, August 2000.

Application of IEEE 802.1X in HIPERLAN type 2

Part 4: Conclusions and final remarks 81

Tables of figures
Figure 1: A typical operating environment. ..5
Figure 2: A working operative environment. ..6
Figure 3: HIPERLAN 2 centralized mode...10
Figure 4: HIPERLAN 2 protocol Stack (Source: [HL2DLC]). ...11
Figure 5: HIPERLAN 2 MAC frame (Source: [HL2DLC]). ...12
Figure 6: Mapping of logical channel to transport channels (downlink) (Source: [HL2DLC]).13
Figure 7: Mapping of logical channels to transport channels (uplink) (Source: [HL2DLC])....................14
Figure 8: HIPERLAN 2 convergence layers. ..15
Figure 9: Packet based convergence layer (Source [HL2PBCL])..15
Figure 10: DES OFB mode. ..17
Figure 11: General architecture of an IEEE 802.1X system...19
Figure 12: Authorized state (Source: [8021X11]). ...20
Figure 13: Unauthorized state (Source: [8021X11])..20
Figure 14: EAPOL packet format. ..22
Figure 15: IEEE 802.1X basic protocol exchange..23
Figure 16: Software architecture. ...23
Figure 17: EAP packet format. ...27
Figure 18: TLS Protocol architecture. ..28
Figure 19: EAP-TLS protocol exchange. ..29
Figure 20: EAP-GSS protocol exchange...30
Figure 21: RADIUS packet format..34
Figure 22: Primitives and demultiplexing...42
Figure 23: Protocol interaction between HL/2 and IEEE 802.1X. ...43
Figure 24: Reduced MAC layer (Source: [8023]). ...44
Figure 25: Flow of the IEEE 802.1X packet through the protocol stack ..45
Figure 26: Mutual authentication. ..50
Figure 27: Authentication schema with strong participation of the authenticator.51
Figure 28: A different authentication schema. ..52
Figure 29: Packet format of new method. ...55
Figure 30: Basic software architecture and interactions..57
Figure 31: A simple architecture for an MT ...60
Figure 32: A complex architecture for the MT..61
Figure 33: Basic architecture for an AP. ..62
Figure 34: IEEE 802.1X architecture in the AP. ..63
Figure 35: The MT-side implementation...68
Figure 36: The AP-side implementation. ..69
Figure 37: The components of the testbed...71
Figure 38: The used testbed. ...72

Application of IEEE 802.1X in HIPERLAN type 2

Part 4: Conclusions and final remarks 83

Bibliography
“HiperLAN/2 – The Broadband Radio Transmission Technology Operating in the 5 Ghz Frequency Band”,
Version 1.0, Martin Johnsson, HiperLAN/2 Global Forum, 1999.

“HIPERLAN type 2 for broadband wireless communication”, Jamshid Khun-Jush, Göran Malmgren, Peter
Schramm, Johan Torsner, Ericsson Review No.2, 2000.

“Internet Security: Firewalls and beyond”, Rolf Oppliger, Communications of the ACM, May 1997/Vol 40.
No. 5.

“Security in Computing, ”, Charles P. Pfleeger, Second Edition, Prentice-Hall International, Inc, 1997.
ISBN: 0-13-185794-0.

“Windows 2000 Security Technical Overview”, White Paper, Microsoft Corporation, 2000.
www.microsoft.com/windows2000

“Active Directory Architecture”, White Paper, Microsoft Corporation, 2000.
www.microsoft.com/windows2000

“Internet Authentication Server for Windows 2000”, White Paper, Microsoft Corporation, June 9,2000.
www.microsoft.com/TechNet/win2000/ias.asp?a=printable

“Secure networking using Windows 2000 Distributed Security Services”, White Paper, Microsoft
Corporation, 2000.
www.microsoft.com/windows2000

“Securing Windows 2000 network resources”, Scenario Guide, Microsoft Corporation, 2000.

"Benefits of Wireless Networks", Jim Geier, 15 August 2000.
www.wireless-nets.com./whitepaper_wireless_benefits.htm

"State of the Wireless LAN Industry", Mack Sullivan 1998.
http://www.wlana.com/learn/stateind.htm

"Security white paper", 2000.
http://www.wlana.com/learn/security.htm

“Ethernet”, Marc Smith,
http://www-ee.eng.hawaii.edu/~msmith/XCoNET/Ethernet.htm

“Wireless wonders Coming your way”, Peter Rysavy, Network Magazine, May 1, 2000.
http://www.networkmagazine.com/article/NMG20000510S0024

“The wireless market: growth hinges on the right solution”, White Paper, Ricky Gradwohl, Tsantes &
Associates, Prepared for Radiata, Inc.

http://www.microsoft.com/windows2000
http://www.microsoft.com/windows2000
http://www.microsoft.com/TechNet/win2000/ias.asp?a=printable
http://www.microsoft.com/windows2000
http://www.wireless-nets.com./whitepaper_wireless_benefits.htm
http://www.wlana.com/learn/stateind.htm
http://www.wlana.com/learn/security.htm
http://www-ee.eng.hawaii.edu/~msmith/XCoNET/Ethernet.htm
http://www.networkmagazine.com/article/NMG20000510S0024

Application of IEEE 802.1X in HIPERLAN type 2

Part 4: Conclusions and final remarks 85

Appendix A: The authentication process
 The authentication process involves different entities: the Claimant, whose identity needs to be verified and
ensured; the Principal, i.e. the entity the claimant states to be and that has a set of rights and privileges; and
the Authenticator, i.e. the entity that requires and enforces authentication. The authentication function might
however involve another entity, i.e. the system that actually performs the verification. If authentication
concludes successfully, than the claimant turns out to be the principal and can therefore perform the
operation for which it has the rights and privileges. In the IEEE 802.1X standard, claimant and principal are
called the Supplicant, while the authentication function is performed by the Authentication Server.
Authentication, i.e. the process of verifying the claimant’s identity, can be based on three basic paradigms:
• Something you know.
• Something you have.
• Something you are.
The first paradigm, i.e. something you know, implies that the claimant knows a password or a key that the
principal is supposed to know. The second one implies the possession of a token card or a smart card that
only the principal can have; the third one corresponds to some biometrics method, like checking
fingerprints or retina pattern.
All three paradigms share a basic aspect: all three imply the knowledge of something not by one entity but
by at least two entities: the entity performing authentication needs to know that the principal knows, has or
is something. This implies one very important issue: before the first authentication, the principal and the
authenticating entity meet to establish this common knowledge; a first contact is needed to decide on
which basis an authentication should occur. Furthermore, this contact has to happen in an absolute safe
way.
The certification of a public key should happen in such a way also. If the entity being certified is an email
address, then the certification can happen remotely, through the e-mail itself, assuming that only the
authorized user has access to its email box. If the identity of a user has to be certified, then the binding of a
physical identity to a public key through a certificate must be performed by verifying the identity of the
user itself. In an authentication mechanism based on the use of public certificates, the authenticator needs
to get the claimant’s certificate, which has been signed by some certification authority.
In a corporation network, it may happen that a user, it might be a human user or not, wishing to have
access to the network, has no other access than the one for which it is asking access. This means that it has
first had a contact with a system administrator or someone/something else to establish the common
knowledge that is needed to authenticate. This first contact is usually a personal contact. This personal
contact is actually needed for every kind of authentication type, from a simple password-based
authentication method to a token card-based authentication method.
These issues become very important in case of public networks: how should such a personal contact
happen, especially if a user is going to spend a limited amount of time there. One solution is to use a public
network as a pass-through network, allowing a PPP tunnel to the user’s home network. In this case the
public network acts only as an access network and does not offer any service. If the services should be
added on the network, in this case something more is needed, for allowing authentication, accounting and
billing. A certificate-based authentication system could work quite well, but there are problems about how
to manage certificates, trust of certification authorities and legal issues concerning billing. Obviously the
user should have the certificate before accessing the networks, which might not be a trivial issue. A third
solution may consist in creating different levels of trust: in each level the user might have certain rights and
privileges, from only using the public network as a pass-through network to having complete access to all
the services there available.

Application of IEEE 802.1X in HIPERLAN type 2

Part 4: Conclusions and final remarks 87

Appendix B: Structure of the implementation
This appendix describes very briefly the different functions that have been implemented in the prototype. It
will not report all the code but only the aim of the various functions and the declaration of the classes.

B.1 Files common to both AP and MT

B.1.1 802_1Xv9.h
This files contains the basic declaration necessary for the implementation of the whole system. Format of an
EAPOL packet and of a key-descriptor, different enumeration variable types, global variables and timers,
port parameters, declaration of common classes, basic functions are all included here.

B.1.2 timer.cpp
Contains the implementation of the class performing the Port Timers state machine functionality, which is
needed in both the supplicant and the authenticator. It has been implemented in the same way as described
in the standard, although it could have been more effective if changed a little bit. The class has been
declared as follows:

class TIMER {
 typedef enum _TIMER_STATE {TICK, ONE_SECOND} TIMER_STATE;

 //PRIVATE SYMBOLS

 //variables
 HANDLE h_timer_sm,h_timer_tick; //handles to threads
 HANDLE h_timer_stop,h_tick_event,h_second;//handles to events
 TIMER_STATE state; //state

 //functions
 DWORD timer_sm(void);
 DWORD tick_gen(void);
 void dec(int* x);

 //friend functions
 friend DWORD __stdcall tick_start(void* pThreadParam);
 friend DWORD __stdcall sm_start(void* pThreadParam);

 //PUBLIC SYMBOLS
public:
 TIMER(void);
 ~TIMER(void);
 BOOL timer_start(void);
 void timer_stop(void);
};

B.1.3 generalFunc.cpp
Contains the implementation of some functions that are needed across the various files and that don’t make
use of the global symbols defined for that system, i.e. either the supplicant system or the authenticator
system.
• eapol_check_size(): This function returns the size in bytes of an EAPOL packet that has to be sent over

the network.
• save_buffer_and_send(): Takes the pointer of an EAPOL packet as a parameter, copies it in a

temporary buffer and calls the function that interfaces with the network, which is send_packet().
• errorfunc(): Deals with errors and sends a message to the user.

Application of IEEE 802.1X in HIPERLAN type 2

88 Part 4: Conclusions and final remarks

• send_packet(): Receives the length of the packet to be sent and a pointer to a buffer that stores the
packet as parameters; prepares the Ethernet packet adding the source and destination address and sends
it on the network.

• set_size_eap_input(): Returns the size of the EAP_INPUT structure used by the EAP API. It is
necessary to identify the version of the APIs being used.

• set_size_eap_info(): Same as the previous function but with the EAP_INFO structure.
• validate_EAPOL_packet(): Finds out if a received EAPOL packet is valid and can be accepted as such

by the PAEs. Checks the destination MAC address, the EAP Ethernet type and the EAPOL packet type.
• receive_packets(): This function is called by the network driver when an Ethernet frame is received. It

saves the frame, validates it and saves it, and eventually sets an event in order to let another function to
deal with the packet and perform the necessary actions.

B.1.4 globalFunc.cpp
Contains the implementation of functions that are needed across the files and that make use of global
symbols. Its implementation changes a little bit between the supplicant’s and authenticator’s system, but the
rationale behind them is the same.
• monitor_packets(): It’s a thread that listens for events that indicate that a new valid EAPOL frame has

been received. If it’s the case, it analyzes the packet, finds out which kind of packet it is, and sets the
necessary variables in the state machines.

• setup_interface(): Sets up and checks the state of the Ethernet interface.
• stop_interface(): Stops the Ethernet interface.

B.1.5 keyreceive.cpp
Contains the implementation of the Key Receive state machine, which is needed in both the supplicant’s
system and the authenticator’s system. It performs the operation of dealing with a received EAPOL-Key
packet and submits it to the right handler. Here its declaration:

class KEYRECEIVE {
 typedef enum _KEY_RECEIVE_STATE { NO_KEY_RECEIVE,KEY_RECEIVE}

 KEY_RECEIVE_STATE;

 KEY_RECEIVE_STATE state;
 P_KEY_DESCRIPTOR key; //Pointer to a received key
 HANDLE h_keyrx_sleep, h_keyrx_stop, h_keyrx_sm;

 void processKey(void);
 BOOL eval_glob_trans();
 void keyrx_sm(void);

friend DWORD __stdcall keyrx_start(void*pThreadparam);

public:
 BOOL rxKey;
 KEYRECEIVE(void);
 ~KEYRECEIVE(void);
};

B.2 Files only included in the MT
 The following files are included only in the supplicant’s system; they deal with the operation of the
supplicant PAE, including the interface towards the EAP module.

Application of IEEE 802.1X in HIPERLAN type 2

Part 4: Conclusions and final remarks 89

B.2.1 supplicant.h
This files contains definitions of symbols and declarations of classes only needed in the supplicant’s system.
It is includes in all the files that are necessary on the MT side, and defines what can be called as the
supplicant’s local environment.

B.2.2 supplicant.cpp
Contains the implementation of the class that performs the Supplicant state machine functionality, and of all
the functions that are necessary to its correct behavior, as defined in [8021X9]. Its declaration is the
following:

class SUPPLICANT {

typedef enum _SUPP_STATE { LOGOFF, DISCONNECTED,
CONNECTING,ACQUIRED, AUTHENTICATING, HELD, AUTHENTICATED}
SUPP_STATE;

 //PRIVATE VARIABLES USED IN THE SUPPLICANT CLASS

SUPP_STATE state; //indicates the current state
 BOOL logoffSent; //TRUE if a logoff message has been sent

int startCount; //counts the number of Start-packets being sent
 int previousId; //Id of the previously sent EAP packet
 HANDLE h_supp_stop, h_supp_sleep, h_supp_sm; //handles to threads

 friend DWORD __stdcall supp_state_mach_start(void* pThreadParam);

 //PRIVATE FUNCTIONS
 void txStart(void); //sends a Start packet
 void txLogoff(void); //sends a Logoff packet
 void txRspId(BYTE, BYTE); //sends an EAPOL/EAP-Resp/Id packet
 void txRspAuth(BYTE,BYTE); //sends an EAPOL/EAP (no Id) to Auth
 int supp_state_mach(void); //state machine
 BOOL eval_glob_trans(void); //evaluates global transitions

public:
 //PUBLIC VARIABLES
 BOOL userLogoff; //set TRUE if the user is logged off
 BOOL reqId; //set TRUE if an EAPOL/EAP-Req/Id is received
 BOOL reqAuth; //set TRUE if EAPOL/EAP different than Req/Id is
received
 BOOL eapSuccess; //set TRUE if EAPOL/EAP/Success is received
 BOOL eapFail; //set TRUE if EAOPOL/EAP/Failure is received

 //PUBLIC FUNCTIONS
 SUPPLICANT(void); //constructor
 ~SUPPLICANT (void); //destructor
 BOOL initializef(void); //initializing function

};

B.2.3 maindll.cpp
This files contains all the different functions exported by the IEEE 802.1X module, implemented on the
supplicant’s system. Such functions are then called by the entity that loads the DLL. In the implemented
system it will be the test program, that simulates the calls of the supervisor module.
• setup(): Prepares the supplicant’s system; resources are allocated by this function in order to check if

the authentication session can start.
• start(): Starts the authentication procedure, by activating the state machines.
• stop(): Stops the all the state machines implemented in the supplicant and deallocates resources.

Application of IEEE 802.1X in HIPERLAN type 2

90 Part 4: Conclusions and final remarks

• suspend(): Suspends temporarily the supplicant’s state machines.
• resume(): Resumes the state machines.
• logon(): Function that allows to set the value of the userLogoff variable, which indicates whether the

user is logged on or not.
• SetKeyTransEnabled(): Allows to enable or disable the possibility to transmit a key.
• KeyAvailable(): Called when a new key is available. The key-descriptor is stored locally and then

transmitted to the authenticator.
• SetPortEnabledParameter(): Used to change the value of the portEnabled parameter, which keeps

track of the operational state of the port.

B.2.4 eapFunction.cpp
Contains functions needed for the interface to EAP, by using the EAP APIs on the supplicant’s system.
They are used to look up in the registry and setup the EAP APIs.
• set_eap_input(): prepares the EapInput structure, which has to be passed to the EAP APIs in each call.
• readregister(): reads in the register and stores locally the parameter needed for the EAP type being

used.

B.2.5 supp_key_tran.cpp
Contains the implementation of the Supplicant Key Transmit state machine and the functions necessary for
its management. Its declaration is as follows:

class SUPPLICANT_KEY_TRANSMIT {

 typedef enum _SUPP_KEY_TRAN_STATE { NO_SUPP_KEY_TRANSMIT,
 SUPP_KEY_TRANSMIT} SUPP_KEY_TRAN_STATE;

 SUPP_KEY_TRAN_STATE state;

HANDLE h_supp_key_tran_sm, h_supp_key_tran_sleep,
h_supp_key_tran_stop;

BOOL eval_glob_trans(void);

 void supp_key_trans_sm();
 void txSuppKey(BYTE);

 friend DWORD __stdcall supp_key_tran_start(void *pThreadParam);

public:

 SUPPLICANT_KEY_TRANSMIT();
 ~SUPPLICANT_KEY_TRANSMIT();

 BOOL suppKeyAvailable;
};

B.3 Files only included in the AP
The following files are included in the authenticators module. They contain the functions necessary for its
correct behaviour.

B.3.1 authenticator.h
Contains definitions and global symbols only needed in the authenticator’s system. Furthermore it includes
the declaration of the various classes used throughout this system and of some variables needed by the
RADIUS client.

Application of IEEE 802.1X in HIPERLAN type 2

Part 4: Conclusions and final remarks 91

B.3.2 maindll.cpp
Contains functions exported by the IEEE 802.1X module implemented on the authenticator’s system. They
are called by the test program in order to simulate a normal behaviour of such a system.
• setup(): Setups the authenticator’s system by initializing variables and allocating resources.
• start(): Starts the authenticator’s state machines.
• stop(): Stops the state machines and allocates resources.
• keyAvailable(): Same function as in the supplicant’s system.
• SetDirection(): Called to set the value of the adminControlledDirection parameter, which indicates

what kind of control should be exerted over the controlled port, i.e. Both (blocking incoming and
outcoming traffic to and from that port) or In (blocking only incoming traffic to that port).

• SetPortEnabledParameter(): Same function as in the supplicant’s system.
• SetKeyTransEnabled(): Same function as in the supplicant’s system.
• GetAuthControlledPortStatus(): Function used to read the status of the controlled port, after the

authentication process has concluded.
• SetControlledPortControl(): Used to set the value of the ControlledPortControl parameter, in order

to set which kind of control has to be exerted over the controlled port, i.e. Auto (port status set
according to the authentication outcome), ForceAuthorized (port set to unconditionally to the
authorized state), or ForceUnauthorized (port set unconditionally to the unauthorized state).

• SetBridgeDetected(): Used to set the value of the bridgeDetected parameter.

B.3.3 authenticator.cpp
Contains the implementation of the Authenticator state machine functionality and of other functions that are
necessary for its correct behaviour. The class has been declared as follows:

class AUTHENTICATOR {

typedef enum _AUTHENTICATOR_STATE { INITIALIZED, HELD,
DISCONNECTED, CONNECTING, AUTHENTICATED, AUTHENTICATING,
ABORTING, FORCE_AUTH,FORCE_UNAUTH } AUTHENTICATOR_STATE;

 //PRIVATE VARIABLES USED IN THE AUTHENTICATOR CLASS

 AUTHENTICATOR_STATE state; //indicates the current state
 PORT_CONTROL portMode;
 int reAuthCount; //times the CONNECTING state is entered

 HANDLE h_auth_stop;
 HANDLE h_auth_sm;
 HANDLE h_auth_sleep;

 friend DWORD __stdcall auth_sm_start(void* pThreadParam);

 //PRIVATE FUNCTIONS
 void txCannedFail(BYTE); //sends a EAP/Failure to S
 void txCannedSuccess(BYTE); //sends a EAP/Success packet to S
 void txReqId(BYTE); //sends an EAP-Request/Identity to S
 void auth_sm(void); //state machine
 BOOL eval_glob_trans(void); //evaluates global transitions
 int latest_sent;

public:

 AUTHENTICATOR(void); //Constructor
 ~AUTHENTICATOR(void); //destructor
 BOOL inizializef(void);

 BOOL eapLogoff;

Application of IEEE 802.1X in HIPERLAN type 2

92 Part 4: Conclusions and final remarks

 BOOL eapStart;
 BOOL rxRespId;

};

B.3.4 authKeytrans.cpp
Contains the implementation of the Authenticator Key Transmit state machine, which deals with sending a
key-descriptor to the supplicant.

class AUTHENTICATOR_KEY_TRANSMIT {

 typedef enum _AUTH_KEY_TRAN_STATE { NO_KEY_TRANSMIT,

 KEY_TRANSMIT} AUTH_KEY_TRAN_STATE;

 AUTH_KEY_TRAN_STATE state;

HANDLE h_auth_key_tran_sm, h_auth_key_tran_sleep,
h_auth_key_tran_stop;

 BOOL eval_glob_trans(void);
 void auth_key_trans_sm();
 void txKey(BYTE);

 friend DWORD __stdcall auth_key_tran_start(void *pThreadParam);

public:

 AUTHENTICATOR_KEY_TRANSMIT(); //constructor
 ~AUTHENTICATOR_KEY_TRANSMIT(); //destructor

 BOOL keyAvailable;
};

B.3.5 backend.cpp
Contains the implementation of the Backend Authentication state machine and related functions, which
deals with the communication with the authentication server and the authentication function. The class has
been declared as follows:

class BACKEND {

typedef enum _BACKEND_STATE { INITIALIZED, IDLE, RESPONSE,
 SUCCEEDED, FAILED, TIMEOUT, REQUEST } BACKEND_STATE;

 //PRIVATE VARIABLES USED IN THE BACKEND CLASS

 BACKEND_STATE state; //indicates the current state

int reqCount;//numbers of EAP/Request packs sent without response
 HANDLE h_back_stop;
 HANDLE h_back_sm; //handles to threads
 HANDLE h_back_sleep;

friend DWORD __stdcall backend_state_mach_start(void*
pThreadParam);

 //PRIVATE FUNCTIONS
 void txReq(BYTE); //sends a EAP/Request packet to S
 void SendRespToServer(void); //sends a EAP/Response packet to AS
 void txSuccess(BYTE); //sends an EAP/Success Packet to S
 void txFail(BYTE); //sends an EAP/Fail Packet to S

Application of IEEE 802.1X in HIPERLAN type 2

Part 4: Conclusions and final remarks 93

 void abortAuth(void); //releases resources after authent.
 void backend_state_mach(void);//state machine
 void backtxCannedFail(BYTE); //sends an EAP/Failed pac. to S
 BOOL eval_glob_trans(void); //evaluates global transitions
 int latest_sent;

public:
 //PUBLIC FUNCTIONS
 BOOL aSuccess; //set TRUE if EAP/Sucess packet is received
 BOOL aFail; //set TRUE if EAP/Fail is received
 BOOL aReq; //set TRUE if EAP/Request is received from AS
 int idFromServer; //id of the most recent EAP pac. received
 BACKEND(void); //constructor
 ~BACKEND (void); //destructor
 BOOL initializef(void); //initializing function

 //PUBLIC VARIABLES
 BOOL rxResp; //set TRUE if EAP pack. is received from S.
};

B.3.6 contrDir.cpp
Contains the implementation of the Controlled Directions state machine and the functions needed for its
correct use.

class CONTROL_DIRECTIONS {

typedef enum _CONTR_DIR_STATE {FORCE_BOTH, IN_OR_BOTH}
CONTR_DIR_STATE;

 CONTR_DIR_STATE state;
 HANDLE h_con_dir_sleep, h_con_dir_stop, h_con_dir_sm;

 BOOL eval_glob_trans(void);
 void con_dir_sm();

 friend DWORD __stdcall con_dir_start(void* pThreadParam);

public:

 CONTROL_DIRECTIONS(void); //constructor
 ~CONTROL_DIRECTIONS (void); //destructor

 DIRECTIONS operControlledDirections;
};

B.3.7 reauthen.cpp
Contains the implementation of the Reauthentication state machine. The class has been declared as follows:

class REAUTHENTICATION {

typedef enum _REAUTH_STATE { INITIALIZED, REAUTHENTICATE}
REAUTH_STATE;

 REAUTH_STATE state;
 HANDLE h_reauth_sleep,h_reauth_stop,h_reauth_sm;

 BOOL eval_glob_trans();
 void reauth_sm(void);

Application of IEEE 802.1X in HIPERLAN type 2

94 Part 4: Conclusions and final remarks

friend DWORD __stdcall reauth_start_sm(void *pThreadParam);

public:
 REAUTHENTICATION(void); //constructor
 ~REAUTHENTICATION(void); //destructor
};

B.3.8 RADIUSfuncs.cpp
Contains the functions related to the RADIUS protocol and the communication with the RADIUS server as
well as the management of the ActiveX control that implements the client.
• RADIUS_setup(): Starts the RADIUS client, by instantiating a COM object, getting the pointers to its

interfaces and getting the methods that are needed later on.
• RADIUS_send_and_receive(): Prepares a RADIUS packet, encapsulates an EAP packet in it, sends it

to the server, retrieves the answer and saves the received EAP packet in a locally allocated memory
area..

Application of IEEE 802.1X in HIPERLAN type 2

Part 4: Conclusions and final remarks 95

Appendix C: The usage of the Microsoft EAP APIs
This appendix aims to give an overview about how the Microsoft EAP APIs have to be used in order to
establish and control an EAP protocol exchange. Assuming to have the rights to make use of such APIs, it is
possible to establish a complete EAP communication without ever building an EAP packet, except for the
packets used to request and state one’s identity, which have to be created manually. This is due to the fact
that such APIs were thought to be used by the RAS client and server, when requesting and granting access
to a remote network: in this situation the identity of the authenticate is known through a different channel.

C.1 Looking up in the registry
Before using the EAP APIs, the DLL corresponding to the desired EAP method, which implements the
authentication scheme that will be used, must be installed on the system. In order to know which EAP-types
are installed, it is possible to check the following registry keys:
HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\Rasman\PPP\EAP\<eap_type_id>, where
<eap_type_id> indicates the EAP-type assigned number. Having chosen one of the available methods, it is
necessary to retrieve some configuration information stored in the registry under the appropriate key. Many
EAP types might be available within the same DLL: for this reason each call to one of the methods
implemented in a DLL must include as a parameter the EAP-type number, which is referred in the call.

The information in the registry include the path of the DLL (Path) implementing the authentication scheme,
the friendly name of the EAP method (FriendlyName), if the programmer must call the standard Windows
user-name dialog or a specific UI for getting information about the user’s identity and password
(InvokeUsernameDialog and InvokePasswordDialog), and the path to the DLL that implements the user
interface if available (IdentityPath). Furthermore it might happen that the specific authentication method
requires preliminary configuration by the user before being used (RequireConfigUI); in this case a DLL
implements the interface for it and its path can be retrieved from the registry (ConfigUIPath); some
configuration data might be stored in the registry as well (DafaultData). If configuration is needed also on
the server side, then the registry stores the CLSID of the object implementing such an interface
(ConfigCLSID). For some EAP method, the user might be required to provide further information during
the authentication exchange; in this case the registry stores the path to the DLL that implements this
interactive UI (InteractiveUIPath). Finally, it is possible to know from the registry if the EAP method
supports encryption-keys exchange (MPPEEncryptionSupported) and if it can be used on standalone
Windows 2000 machines (StandaloneSupported) or if it needs an external authentication provider.

C.2 Setting up the EAP APIs
The DLL that implements an EAP-type exports basically only one method, RasEapGetInfo(), which allows
to retrieve information about the other methods that need to be called during the protocol exchange. The
function receives two parameters: the EAP-type number (dwEapTypeId), in order to distinguish between
different methods implemented in the same DLL and the pointer to a structure called PPP_EAP_INFO. This
structure will be filled in by the called method with the addresses of the methods later called by the user of
the EAP APIs. Such methods are: RasEapInitialize(), RasEapBegin(), RasEapEnd(), and
RasEapMakeMessage(). In case of error, an error code will be returned by the call, specifying the problem.

To start EAP, it is necessary to call the function RasEapInitialize(), which prepares the APIs. It receives the
EAP-type as a parameter and a flag stating if it is called to start or to stop the EAP APIs (fInitialize); this
function has indeed to be called at the beginning and at the end of the authentication session, to start and to
dismiss the API’s. Such function might not be implemented if no initialization operations are needed.

C.3 Configuration and start up
It might happen that on the client side an EAP method needs to be configured before being used the first
time. Such configuration information are not user-dependant but machine-dependant. If this is the case
(the registry variable RequireConfigUI is set to 1), a DLL stored on the system implements a method called
RasEapInvokeConfigUI(), which provides for the configuration UI. This method is not called by the

Application of IEEE 802.1X in HIPERLAN type 2

96 Part 4: Conclusions and final remarks

programmer using the EAP APIs but usually by the Dial-In Network Manager, provided by the Windows
2000 RAS client. These information are stored together with other system-dependant information by the
RAS manager and are retrieved before starting an EAP session. A programmer wishing to use an EAP
method that needs configuration information must retrieve and pass them to the APIs. In the achieved
implementation, this aspect has not been considered since the method used for testing purpose did not
require any previous settings; a complete implementation, wishing to use the EAP APIs made available by
the Windows OS, should deal with that aspect: it should be able to configure an EAP method, store the
configuration information and retrieve them when necessary. As an alternative, it is also possible to retrieve
the information from the RAS network manager or from the phone book, where they also might be stored.

In order to free the memory area allocated for the configuration information, the programmer has to call the
RasEapFreeMemory() method, implemented in the same DLL as the configuration UI; this should happen
after the information have been passed to the EAP APIs, i.e. after the call to RasEapBegin.

User-dependant information should instead be retrieved through the identity functions, described later on.
Furthermore, the EAP API’s might request the user (RAS manager or a programmer) to store further
information in the registry during the authentication exchange, by passing a pointer to it at the return from a
call to the function RasEapMakeMessage(), used in the protocol exchange and described in the next
Section.

Before starting a protocol exchange, it is necessary to retrieve user information. This might be
accomplished by calling the standard Windows user-name dialog (if the registry value InvokeUserDialog is
set to 1) or by invoking a method made available by the EAP DLL, called RasEapGetIdentity(), which
implements a customized user interface. Information retrieved in such a way should then be passed to the
EAP APIs; later the memory allocated in order to store them, should be freed by calling
RasEapFreeMemory(), as happens for configuration information. A pointer to the user information is
passed to the functions RasEapBegin() and RasEapMakeMessage().

In order to allow a successful EAP authentication, the APIs need some information that are passed to them
through the call RasEapBegin(). The protocol, i.e. the authentication method, allocates a buffer whose
pointer is then passed back to the caller, who has to store it and include it as a parameter at each call of the
method RasEapMakeMessage().The function receives furthermore a pointer to a structure of type
PPP_EAP_INPUT, containing information about the user (name, password if on the client’s side, if it’s the
client or the server side, etc), the expected EAP ID Code, and, if on the server’s side, a structure containing
a set of attributes, later needed for the connection. It is worth to point out again that the original aim of the
Windows EAP API’s was to be used for authentication by the RAS client and the RAS server, while
accessing a remote network, not by a common user or a programmer. For this reason certain aspects were
quite difficult to exploit or to use correctly.

C.4 Message Exchange
In order to state the EAP conversation, the function RasEapMakeMessage() must be called on both the
client’s and the server’s side. The function will be passed the last EAP message received from the other
party; the first call will contain an empty message, to start the conversation. On return from the call, the
caller will receive a structure of type PPP_EAP_OUTPUT, which will indicate the action that has to be
taken in order to go on with the conversation.

If a new EAP packet has to be sent to the other party, one of the following values will be returned:
EAP_ACTION_Send, EAP_ACTION_SendAndDone, EAP_ACTION_SendWithTimeout,
EAP_ACTION_SendWithTimeoutInteractive. The packet to be sent will be one of the members of the
PPP_EAP_OUTPUT structure. The authentication protocol returns also the expected ID of the next packet.
If the ID does not match, the packet has to be discarded.

If the action is either EAP_ACTION_SendAndDone or EAP_ACTION_Done the protocol exchange can be
considered concluded. The caller should also check the value of the dwAuthResultCode member for getting

Application of IEEE 802.1X in HIPERLAN type 2

Part 4: Conclusions and final remarks 97

the outcome of the authentication process. The authentication protocol may also return a structure
containing some attributes about the connection (pUserAttributes).

There are some situations in which the actual authentication is not performed by the EAP method but by
some external authentication provider. In this case, the RasEapMakeMessage() methods returns the value
EAP_ACTION_Authenticate, which triggers the call of an external authentication provider.

If the caller comes to know that authentication has successfully completed in some other way than through
the APIs, it will inform the APIs in the next call to the RasEapMakeMessage(). If the interactive UI has to
be called during the authentication exchange, a flag in the PPP_EAP_OUTPUT structure will be set.

At the end of the protocol exchange, when the outcome of the authentication exchange has been found out,
the function RasEapEnd() needs to be called, in order to allow the EAP APIs to free the allocated
resources.

	Examiner at Chalmers:		Prof. Arne Svensson
	Abstract
	Acknowledgement
	Table of contents
	I
	Introduction
	1.1 Wireless LANs
	1.2 Security
	1.3 Methodology and achieved results for the thesis work
	1.4 Typical operational environment

	2 HIPERLAN 2
	2.1 Overview
	2.2 Protocol architecture
	2.2.1 The Physical layer
	2.2.2 The DLC layer: basic data transport function
	2.2.3 The DLC layer: RLC sublayer
	2.2.4 The packet based convergence layer

	2.3 HIPERLAN 2 security features
	2.3.1 Key exchange
	2.3.2 Encryption
	2.3.3 Authentication

	I
	IEEE 802.1X
	3.1 General concepts and Architectural framework
	3.2 Packet format and Protocol exchange
	3.3 Implementation issues
	3.4 Deployment of IEEE 802.1X in wireless LANs

	4 EAP
	4.1 EAP-TLS
	4.2 EAP-GSS and other extensions

	5
	5 Radius
	5.1 Radius’s general features
	5.2 Basic operations
	5.3 RADIUS packets
	5.4 RADIUS attributes
	5.4.1 User related attributes
	5.4.2 NAS related attributes
	5.4.3 Service related attributes
	5.4.4 Session specific attributes

	5.5 RADIUS EAP extensions
	5.5.1 EAP-Message
	5.5.2 Message-Authenticator

	5.6 RADIUS and IEEE 802.1X

	6 Analysis methodology
	6.1 The protocols
	6.2 The operation
	6.3 The protocol exchange and the authentication methods
	6.4 The software requirements
	6.5 Why IEEE 802.1X and HIPERLAN/2

	7 IEEE 802.1X and HIPERLAN/2: the protocols
	7.1 IEEE 802.1X as a part of the HL/2 protocol architecture
	7.2 Interaction between the HL/2 and IEEE 802.1X
	7.2.1 First Step: basic assumptions
	7.2.2 Second step: interface to the protocols
	7.2.3 Third step: using LLC
	7.2.4 Fourth step: completing the model
	7.2.5 Complete model

	8 IEEE 802.1X and HIPERLAN/2: the operation
	8.1 The association procedure
	8.2 The controlled and uncontrolled port
	8.2.1 Management operations
	8.2.2 Solution
	8.2.2.1 A single thread for each association
	8.2.2.2 One process for all associations

	9 IEEE 802.1X and HIPERLAN/2: protocol exchange and authentication methods
	9.1 Authentication methods: basic issues
	9.1.1 Challenge-response
	9.1.2 Mutual authentication

	9.2 Basic authentication schemas
	9.2.1 Strong participation of the authenticator.
	9.2.2 Less participation of the authenticator
	9.2.3 Minimal participation of the authenticator

	9.3 Authentication exchange
	9.4 A certificate-based authentication method: a modest proposal
	9.4.1 The protocol exchange
	9.4.2 The format of the EAP packet
	9.4.3 Issues
	9.4.3.1 Link not reachable
	9.4.3.2 No network connection
	9.4.3.3 Format of the fields of the packet
	9.4.3.4 Management and policy
	9.4.3.5 Authentication server for the supplicant

	10 The software requirements and architecture
	10.1 General issues
	10.2 Software architecture on the MT-side
	10.2.1 A simple software architecture for the MT
	10.2.2 A complete architecture for the MT

	10.3 Software architecture on the AP-side

	11 The implementation
	11.1 Basic features of the prototype
	11.2 The MT-side implementation
	11.3 The AP-side implementation

	12 Testing
	12.1 The testbed
	12.2 The testing methodology and results
	12.2.1 The RADIUS communication
	12.2.2 Communication between supplicant and authenticator
	12.2.3 Testing of the state machines
	12.2.4 Testing results: summary

	13 Conclusions and final remarks
	13.1 Summary
	13.2 Achieved results
	13.3 Future work

	References
	Tables of figures
	B
	Bibliography
	Appendix A: The authentication process
	Appendix B: Structure of the implementation
	B.1 Files common to both AP and MT
	B.1.1 802_1Xv9.h
	B.1.2 timer.cpp
	B.1.3 generalFunc.cpp
	B.1.4 globalFunc.cpp
	B.1.5 keyreceive.cpp

	B.2 Files only included in the MT
	B.2.1 supplicant.h
	B.2.2 supplicant.cpp
	B.2.3 maindll.cpp
	B.2.4 eapFunction.cpp
	B.2.5 supp_key_tran.cpp

	B.3 Files only included in the AP
	B.3.1 authenticator.h
	B.3.2 maindll.cpp
	B.3.3 authenticator.cpp
	B.3.4 authKeytrans.cpp
	B.3.5 backend.cpp
	B.3.6 contrDir.cpp
	B.3.7 reauthen.cpp
	B.3.8 RADIUSfuncs.cpp

	Appendix C: The usage of the Microsoft EAP APIs
	C.1 Looking up in the registry
	C.2 Setting up the EAP APIs
	C.3 Configuration and start up
	C.4 Message Exchange

