
 

Chalmers University of Technology 

University of Gothenburg 

Department of Computer Science and Engineering 

Göteborg, Sweden, June 2014 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tissue-Specific Gene Expression Analysis 
A large-scale meta-analysis of gene expression pattern using microarray 

data 

Master of Science Thesis in Bioinformatics and Systems Biology 
 

 

 

JING GUO 



 

 

The Author grants to Chalmers University of Technology and University of Gothenburg  the 

non-exclusive right to publish the Work electronically and in a non-commercial purpose make it 

accessible on the Internet.  

The Author warrants that he/she is the author to the Work, and warrants that the Work does not 

contain text, pictures or other material that violates copyright law.  

 

The Author shall, when transferring the rights of the Work to a third party (for example a publisher 

or a company), acknowledge the third party about this agreement. If the Author has signed a 

copyright agreement with a third party regarding the Work, the Author warrants hereby that he/she 

has obtained any necessary permission from this third party to let Chalmers University of 

Technology and University of Gothenburg  store the Work electronically and make it accessible 

on the Internet. 
 

 

 

 

Tissue-Specific Gene Expression Analysis 

A large-scale meta-analysis of gene expression pattern using microarray data 

 
 

JING GUO 
 

© JING GUO, June 2014. 

 

Supervisors:  DANIEL DALEVI  

    MARCUS BJARELAND 

 

R&D Information  

AstraZeneca  

SE-431 83 Mölndal  

Sweden  

Telephone + 46 (0)31-776 1000 

 

Examiner:   OLLE NERMAN 

 

Chalmers University of Technology 

University of Gothenburg 

Department of Mathematical Science 

SE-412 96 Göteborg 

Sweden 

Telephone + 46 (0)31-772 1000 

 

Department of Mathematical Science 

Göteborg, Sweden June 2014 



1 

 

Abstract 

An important problem in the early phases of drug-discovery and disease prognosis is to distinguish 

between genes that are ubiquitously expressed and genes that are preferentially expressed in one or a few 

tissues. Although several data sources and methods have been published explicitly for this purpose, it is 

still not evident how to retrieve these genes and how much confidence we can put in the results. We 

therefore investigate current data with the aim of answering queries, such as: give me all genes that are 

preferentially expressed in e.g. liver. 

 

In this project we perform a meta-analysis on normal human tissues using a computational approach. Four 

large-scale microarray datasets across a broad range of normal human tissues were selected for the 

investigation of gene expression patterns. Methods from publications were implemented and tested on 

genes with known tissue-specificity. The parameters of the methods were optimized in an iterative 

procedure using these as training genes. Eventually we ended up using the Decision Function and 

ROKU-SPM – a method we modified and implemented. The results from separate datasets were combined 

using a rule-based score that represents the degree of specificity. Also, the coverage (indicating the 

presence of genes in the datasets) was used for assessing the confidence of the results. In total we 

produced a list of 27523 genes annotated with score and coverage. Among these, 1955 were predicted 

specific with the highest possible score.   

 

The results were evaluated using three external databases: TiSGeD (microarray data), TiGER (EST data) 

and HPA (protein expression data). The 117 top candidates of specific genes, with highest score and 

highest coverage, were compared to these databases. 96.5% of our predictions were supported by at least 

one of the databases and agreed better with the consensus than the others.  
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1 Introduction 

Target selection is the first step in pharmaceutical research and may open new paths to future development 

of drugs. Good quality of target selection will increase the success rate of drug discovery. A potential 

target can almost be anything that is related to the disease process [1]: small molecules, bioprocesses, 

pathways and network entities, etc. There are two common target selection procedures: the bioinformatics 

approach and the systems approach. The former aims at finding a druggable target among small molecules 

or proteins using computational methods, while latter uses clinical and in vivo information to analyze the 

pathways or networks and is less efficient on the large scale level and much more expensive. 

High-throughput biology in genomics and proteomics has dramatically created new possibilities for the 

bioinformatics approach. For example, large-scale analysis of human gene expression levels [2-4] can be 

used to improve target selection. It has been reported that genes with tissue-specific gene expression 

patterns are twice as likely to become drug targets compared to ubiquitously expressed genes [5]. 

Genome-wide expression profiling can be used to discover new disease genes and predict tissue specific 

expression patterns [6]. Among the more well-established approaches to study the transcriptome are: 

Microarrays, Expressed Sequence Tags (EST), Serial Analysis of Gene Expression (SAGE) and 

Massively Parallel Signature Sequencing (MPSS) technologies. Each of these has been used in the context 

of tissue-specificity.  

 

Microarray technology has become one of the most popular since its rise in the early 1990s and is also the 

data used in this project. It allows the simultaneous measurement of the expression of thousands of genes 

[8-10] and there are a great number of datasets freely available on the Internet (e.g. GEO [11], BioGPS 

[12], ArrayExpress [13], etc). The methods are also well developed and tested which provides a solid 

background for further studies. There are also numerous studies related to tissue specificity in various 

species and method development. Here are some examples: 

 

 In a study of 192 metabolic genes in fish, it was concluded that most of the differentially 

expressed genes among distinct tissues (76%) have a relationship to a distinct metabolic function 

[14]. 

 

 A compendium of normal human gene expression [15] identified 451 housekeeping genes and 

seven sets of tissue-selective genes among 19 different tissue types [16].  

 

 A comprehensive analysis using both microarray and network topology detected 2374 

housekeeping genes among 31 human tissues [5].  

 

 AIC (Akaike’s Information Criterion) is a non-threshold method using an outlier detection method 

to find tissue-specifically expressed genes [17].  

 

 Sprent’s non-parametric method, an outlier detection method, [18] was used to identify 2503 

tissue-specific genes among 36 normal human tissues. They also performed a comparative 

analysis of genes in the cancer status, reporting that the profile of gene expression was 

significantly associated with their expression in cancer tissues. 

 

 The ROKU method [19] uses both the Shannon entropy and a simplified AIC outlier detection 

method.  
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 There are also statistical methods such as the intersection-union test [20] and a Bayesian approach 

[2], where statistical models are applied to the raw data to quantify the degree of tissue-specificity.  

 

EST data (Expressed Sequence Tags [21]) is another well established data type that allows 

high-throughput analysis of expression patterns. It has relatively low quality but there are several methods 

and data sources available for EST:  

 

 TissueInfo [22], which is a knowledge-based method, reported an accuracy of 69% for identified 

tissue specificity against a set of 116 benchmark genes.  

 

 ExQuest [23] first maps the EST data into a target sequence using MegaBLAST, and then uses the 

library annotation to compute the specificity of the corresponding gene.  

 

 EST data are available in many public databases, such as Unigene, dbEST, etc.  
 

SAGE (Serial Analysis of Gene Expression) [24] data and MPSS (Massively Parallel Signature 

Sequencing) [25] are less common compared to the previous two technologies. Both of them suffer from 

high cost and low efficiency, and are not suitable for large-scale analysis. Here are a couple of methods 

using SAGE and MPSS data: 

 

 A method using SAGE data among 15 mouse tissues characterized constantly expressed genes 

with different expression levels and genes that are uniquely expressed in only one tissue [26].  

 

 A methods using 400 pairs of MPSS allelic tags identified different regulation modes between 

tran- and cis-effects of expression [27].  

 

 SAGE and MPSS data are available in Cancer Genome Anatomy Project (CGAP) [28] and 

Signature Sequencing data (the Ludwig Institute for Cancer Research) [25] respectively. 

 

Some methods can be used for several data types: 

 

 A method based on the Shannon entropy [29] can be applied to both microarray and EST data, 

which was used to discover the association between promoter features and tissue specificity.  

 

 Another method based on the Dixon test and the gap distance of expression levels [4] can be 

applied on all kinds of transcriptomic data and even on protein expression data types.  
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As introduced above, the studies of gene expression pattern have obtained significant achievements in 

fields of tissue expression, differential rate of polymorphism and disease association etc. [30]. The study 

can be performed in different perspectives. For example, comparison of genes expressed in liver and lung; 

differences between normal thyroid and cancer thyroid tissues; the expression patterns of cell lines. 

 

To clarify the scope of this project, first we present the definition of four types of gene expression patterns 

[2]:  

 

1. A gene (e.g. CYP2C9) that is only expressed in one particular tissue [22] .  

2. A gene (e.g. BDH1) that is expressed approximately the same level at all tissues except one. 

3. A gene (e.g. CTRL) that is under or over expressed in a small group of tissues [17, 19]. 

4. A gene (e.g. CAPN10) that is ubiquitously expressed among all tissues [31]. 

 

 
Figure 1 Gene expression patterns. Up-left: type 1; up-right: type 2; down-left: type 3; down-right: type 4.  

X-axis: tissue in arbitrary order; Y-axis: the relative expression level for each tissue. 
 

The first and second types give the definition of tissue-specific genes. Type 1 is actually a special case of 

the second type. Type 3 is usually defined as tissue-selective [4], which in our project, only those with two 

selective tissues are discussed, i.e. 2-selective genes. For clarification, the term preferentially expressed 

genes is used for both specific and 2-selective genes. Type 4 is also referred to as Housekeeping genes 

(HK genes) [5, 31] in some of the published papers but we differentiate between the HK and ubiquitously 

expressed genes (the former is a special case of the latter). Additionally, it is also possible to have two 

stereotypical expression situations: up and down, also refers as over- and under- expressed respectively 

[19]. The up type has higher expression intensity in a particular tissue compared to other tissues.  
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There is a similar concept of differential expression that is also used in the study of gene expression 

patterns. Although there are a few exceptions in the previously published paper, differential expression 

refers to the comparison between normal and disease tissues, for instance, the difference in expression 

between normal lung and cancer lung tissues. It is not within the scope of this project.  

 

1.1 Objectives and organization  

The project aims to predict specific and 2-selective genes in human tissues. The first task of this project is 

to provide appropriate methods to identify specific expressions among target tissues. The methods can be 

tested in typical examples of real data, and then applied on large scale data retrieved from the available 

data sources. As there are different datasets providing gene expression data, differences between data 

sources may lead to distinct results. Thus another challenge of this project is to evaluate the results derived 

from separate datasets, combine them and make predictions based on all sources. 

  

This project is organized in the following procedure:  

 

1. Data selection: select the data type and appropriate datasets. 

2. Methods implementation: select or develop the detection methods on the data and implement 

them. 

3. Optimization of methods: optimize the parameters in each method for each dataset using 

benchmark genes; guarantee the best performance of the methods. 

4. Computation of the whole data in each datasets: applied the best methods on each datasets.  

5. Combing the results for each dataset: meta-analysis and the integration of the result. 

6. Evaluation of the result: compare the result with other tissue-specific databases. 

 

1.2 Contribution 

This project provides a meta-analysis on normal human tissues in a computational approach. Comparing 

to the previous studies of tissue-specific gene expression, which usually provide only one method on one 

dataset, this project optimized different methods (containing one derived method) based on the training of 

the parameters and the testing of the method performance, and then applied the selected methods on four 

large-scale datasets. The result from separate datasets are combined using a scoring algorithm, and a value 

of “coverage” indicating the presence of genes in this four datasets is also introduced for the confidence of 

the combined result. Finally, an integrated result containing 27523 genes is annotated with corresponding 

“score” and “coverage” indicating the level of specificity. 

 

1.3 Structure of the report (outline of thesis) 

 

This report consists of 5 parts: 

1. Introduction (above): provides the background and motivation of this project; 

2. Data: introduces the datasets that are used both for detection and analysis; 

3. Methods: describes the data sources and methods that have been applied, along with the optimization of 

method-parameters and a scoring strategy for the integration of results; 

4. Results: presents the results that are obtained by using the optimized methods on each data source, and 

introduces a method for the integration of results; 

5. Conclusion and discussion: concludes a discussion of the possible aspects for the future work. 
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2 Data  

This section gives a description of datasets and databases that have been used in this project. Generally, 

four large-scale microarray datasets are used for the analysis of gene expression pattern (Section 2.1). 

Three small sets of genes with known property of specificity are used for the training and testing of 

methods (Section 2.2.1). Three databases with preferentially expressed genes are used for evaluation of 

the results (Section 2.2.2).  

 

2.1  Microarray data in use 

The large scale genetics that has been tremendously developed in recent years enables the availability of 

millions of microarray data among all kinds of tissues, cell lines in normal or disease state. The selection 

of data becomes a crucial problem of this project. However, the idea of providing a general view of 

tissue-specific gene expression among normal human tissues narrows down the candidate data to a small 

group. 

 

We choose four large scale datasets across a broad range of human tissues from three data sources (see 

Table 1). Two of them are the raw data with replicated tissue samples and absolute expression level and 

the other two are normalized expression level. 

 

BioGPS is an online gene portal that can retrieve gene expression pattern and annotated information [12]. 

The data is downloadable through the Internet [32] and has a reference to GSE1133 in GEO. The datasets 

are, however, not identical (see below). The BioGPS data was used by GNF (Genomics Institute of the 

Novartis Research Foundation) [33] for the analysis of gene expression in human. 

 

GEO (Gene Expression Omnibus) is a free database where a large amount of high throughput data 

(mainly microarray) are archived[11]. The database provides full annotations of the stored datasets and 

allows users to upload or download both the raw data and the annotations in an easy manner. The data are 

provided by different teams from all over the world and most of them are samples of particular sets of 

tissues, e.g. normal lung tissues and cancer lung tissues. There are few datasets that contain expression 

data from tissues of the whole human body. Among these, we selected the two datasets containing the 

largest number of probesets and the broadest range of tissues: 

 

GDS3113: “Various normal tissues” [1]. This dataset has 32878 probesets across 96 tissues with 3 

replicate samples for each tissue. The data are not normalized and have a relatively high norisy level. 

 

GDS596: “Large-scale analysis of the human transcriptome (HG-U133A)” [Su AI, et al., 2004]. This 

dataset is also provided by GNF group (The Genomics Institute of the Novartis Research Foundation, 

which is the team supports the BioGPS database), with the same reference to GSE1133 in GEO. This 

indicates that the annotations of these two datasets are identical. However, the data from these two 

sources are completely different. The BioGPS data have been normalized by MAS5 and have 84 

separate tissue samples. And GDS596 is raw data without any normalization and has 158 tissues 

samples with 2 replicate samples for each tissue. The data might come out from similar experiment, 

however, it is reasonable to study both since it is a good comparison for the preprocessed and 

non-preprocessed microarray data and a fair test of the methods.  
 

 

GeAZr is a dataset licensed from GeneLogic by AstraZeneca. It consists of expression data from different 

donors but from the same tissue type (all determined as "normal" by pathologist) which were grouped and 
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averaged. It contains 44928 human genes expressed across 100 normal tissues, with complete data of type 

HG-U133 a and b. 

 
Table 1 A summary of the selected datasets with some additional facts. 

DATA SOURCES NUMBER OF 
PROBESETS 

NUMBER OF 
TISSUES 

DATA TYPE DATA NOISY LEVEL 

BioGPS 22283 84 HG-U133a 2004-03-19 Low 

GDS596 22283 79 HG-U133a 2004-03-19 High 

GeAZr 44928 100 HG-U133a, HG-U133b 2008-09-19 Low 

GDS3113 32878 32 ABI Human Genome Survey 
Microarray 

2007-06-04 High 

 

As shown in Figure 2, data from BioGPS and GeAZr are less noisy than the data from GDS596 and 

GDS3113. However, as we want to bring in as many datasets as possible, we still keep these two datasets, 

and improve the result by modifying our methods.  

 

 
Figure 2 The expression distribution for gene NOV in four datasets.  

2.2 Data for evaluation 

To evaluate the methods used for the detection of specific genes, we choose three sets of genes with 

known specificity; and to evaluate the result of this project, three databases containing different types of 

expression information are used for comparison.  

2.2.1 Standard genes 

In order to optimize the parameters, 26 specific/selective genes are used for the training of the methods. 

These genes, referred to as “training set” (see in Table 8), are chosen from the supplemental information 
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of HugeIndex.org [16], under ‘brain’, ‘kidney’, ‘liver’, ‘lung’, ‘muscle’, ‘prostate’ and ‘vulva’ specific 

tabs. 

 

Another two sets of standard genes, testing set 1 (see Table 9) and testing set 2 (see in Table 10), are 

chosen from the same sources to evaluate the result of each method. The data of testing set 1 is chosen 

from the liver-specific tab and testing set 2 is chosen from the ‘housekeeping’ group.  

 

All the data of these standard genes are different and independent from the data for use in Section 2.1.   

2.2.2 Databases for result comparison 

There are a few databases available online and provide tissue-specific gene information. In this project, 

three databases representing three different kinds of data types are used for the comparison of our 

predicted result.  The result of comparison is listed in Section 4.5. 

 

TiSGeD (Tissue-specific Genes Databases) [34] uses microarray data and a statistic SPM to measure the 

specificity of genes. 123125 gene expression profiles across 107 human tissues, 67 mouse tissues and 30 

rat tissues are measured in this database. Some literature records of tissue-specific genes are added in the 

database. An SPM cutoff is required to distinguish the specific genes from ubiquitously expressed genes. 

SPM is also discussed in this project (see Section 3.1.1).  

 

TiGER (Tissue-specific Gene Expression and Regulation) [35] is a web database that gives a 

comprehensive  information of human gene specificity using three types of data: the gene expression 

profile (EST), a combinational gene regulation (based on transcription factor binding sites) and 

cis-regulatory module (CRM). For the comparison of our predicted result, only the record from gene 

expression profile is used. It is also a good example for a comparison of EST data and Microarray data.  

 

HPA (Human Protein Atlas) [36] uses high-resolution images to show protein expression profiles in 46 

normal tissue, 20 cancer types, and 47 cell lines for human species. The gene-centric manner of HPA 

enables the comparison of proteomics data (antibody) and the genomic data (microarray). The expression 

intensity is marked as “level of antibody staining” with Strong, Moderate, Weak and Negative levels. 

Only genes marked with “Strong” are considered as specific/selective in this project. And only the 46 

normal human tissues are used for comparison.  

 
Table 2 Some facts about TiSGeD, TiGER and HPA. 

DATABASES DATA TYPE SPECIES NUMBER OF RECORDS EXPRESSION PROFILE 

TiSGeD Microarray, 
Literature record 

Human, Mouse, Rat 123125 probsets 107 human tissues,  
67 mouse tissues,  

30 rat tissues 

TiGER EST, TF, CRM Human 19526 Unigene, 7341 TF pairs, 6232 
CRMs for 2130 RefSeq genes 

30 tissues 

HPA Antibody Human >700 antibodies 46 normal human tissue,  
20 cancer types,  

47 cell lines 
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3 Methods 

This section introduces the main methods that are used in this project. Section 3.1 illustrates three 

established and one derived methods that are used for detecting specific genes. Section 3.2 describes the 

optimization of the methods in Section 3.1. Section 3.3 states a preliminary step before the meta-analysis, 

which is the vocabulary mapping among different data sources. And Section 3.4 explains the algorithm for 

integrating the result of all four datasets by calculating a combined score and coverage. Section 3.5 gives 

the details for the implementation of the methods in the previous sections.  

 

3.1 The detection of preferentially expressed genes  

 

In this section we derive a new method and describe known methods from the literature.  

 

3.1.1 ROKU-SPM 

ROKU and SPM are two methods that have been used to identify preferentially expressed genes. Both of 

them show advantage in certain situations, however, we define a new method ROKU-SPM by integrating 

these two methods which has a better performance in more general cases.  

 

3.1.1.1 SPM 

TiSGeD database [34] proposed a SPM method, which uses an SPM value (Specificity Measurement) to 

measure the specificity of each tissue in one gene. The SPM value is calculated as “the ratio of vector ’s 

scalar projection in the direction of vector  against the length of ”. As the projection can be 

calculated in many manners (absolute value, squared value, etc.), we use a squared projection in our 

method, which results in this formula: 

 

 ,  

 

 stands for the value of gene  on tissue , where  is the total number of tissues 

expressed in gene x, and  is the expression intensity of a gene in tissue t. The maximum value of 

 is 1, which indicates the most specificity on tissue . Contrarily, the minimum value of  

is 0, which indicates  is not expressed at all. 

 

Here we present an example for the calculation of SPM for gene CYP2C9: 

 

TISSUE Liver Appendix Nerve CNS ... Total 

SPM 0.99258 0.00016 0.00005 0.00005 … 1 

 

In this case, the liver is detected as specific using the cutoff . 
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3.1.1.2 ROKU 

Generally, the ROKU method [19] uses Shannon Entropy to measures the specificity of a gene expression, 

and an outlier detection method to identify the specific tissues if any exits.  

 

Before calculating the Shannon Entropy, a one-step Tukey’s biweight ( ), is used to improve robustness 

of the expression data:   

 

, 

 

where  is the expression intensity of gene x in tissue t.  

 

The Shannon entropy is calculated as 

 

,  

 

where  is the total number of tissues,  is the relative expression of  for tissue , defined as  

 

 . 

 

If  is lower than a criteria, then gene is identified specific. A simplified AIC method [37] will be 

used to detect the outliers, which in our case are those specific tissues.  

 

The AIC (Akaike’s Information Criterion) [38] uses an equally treatment to all outliers, regardless of the 

number of outlier, the level of significance or the masking effects, which provides a good solution for the 

unbiased analysis of expressed tissues. To reduce the complexity of computation, Ueda [37] provide a 

simplified outlier detection method by using a statistic : 

 

, 

 

where  is the estimated standard deviation,  is the number of outlier candidates ( , 

 is the total number of observations (tissues in our case). For a set of observations,  is calculated 

for all combinations of , where the smallest  indicates the best option of outliers.  

 

3.1.1.3 A Modified method: ROKU-SPM 

Although there are good examples, the actual results of ROKU and SPM were not performing sufficiently 

on most of the training data compared to the other methods. In general, there are two problems:  

 
1) For the ROKU method, there are cases where the entropies are incredibly low while a large number of 

outliers are detected.    

2) When the data is noisy (GDS raw data), the difference between the entropy of specific and 

non-specific genes is hardly detectable. Similarly, for the SPM method, the SPM value of the specific 

tissue is not remarkable different to the other non-specific tissues.  

 

For example, to illustrate the problems, we look at the probeset 214421_x_at for gene CYP2C9. The 

figure below shows the expression distribution in BioGPS (left) and GDS596 (right). In BioGPS, although 

low entropy (0.527) and high SPM (0.99) supporting specificity for Liver, which is also easily caught by 

eye-browsing, the outlier detection method gives us 6 specific tissues (i.e. Problem 1). In GDS596, on the 



13 

 

other hand, we have high entropy (5.75) and low SPM (0.02) for Liver, this gene can hardly be identified 

as specific based on either the Entropy or SPM. The outlier detection method, however, correctly 

identifies Liver as a specific tissue (i.e. Problem 2).   

 

 

 

One may argue that if the AIC based outlier detection method does not return appropriate number of 

specific tissues, why do not use another outlier detection method instead? This problem has been 

discussed by the provider of ROKU method, Koji Kadota, in another paper [39] by evaluating two outlier 

detection methods for microarray data. The AIC based method shows dominant advantage over the 

Sprent’s non-parametric method [18], which to some extent answers this question.  

 

To solve these two problems, we propose an improved method, which combines ROKU and SPM method, 

to resolve the two issues above. It is referred as ROKU-SPM method in this report. In this method, the 

SPM value is introduced as a parameter to the ROKU method, and it is used to classify the specific, 2- 

selective and ubiquitously expressed groups. The procedure of this method is shown in Figure 4. 

 

A preferentially expressed gene must satisfy the following requirements: 

  
1. The entropy is lower than  - the Entropy 

threshold.  

2. The outlier with the largest value is greater  

– the first SPM threshold.  

 

Similarly, the requirements for 2-selective genes: 

 
1. The entropy is lower than . 

2. The outlier with the 2
nd

 largest value is greater 

 – the second SPM threshold 

Figure 3 Expression distribution of gene CYP2C9 (214421_x_at) from BioGPS (left) and GDS596 (right). 

Figure 4 Flow chart of ROKU-SPM method 
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3.1.2 Decision function 

This method gives a deterministic parameter ( ) for gene specificity based on gap and a significance 

probability ( ). The  indicates the absolute difference between the intensities of two tissues; the 

significance probability (sp) is calculated by a Dixon test:  

 
 

where  is the Dixon critical statistic,  is the total number of tissues,   is the standard 

statistical  distribution with  degrees of freedom.  

 

One of the advantages of this method is that it takes the confidences of data sources into consideration, by 

using a adjusted value of : 

 

 
 

where  is the confidence level of sources (tissue sample in microarray data), and  is a parameter based 

on . 

However, tissue samples with replicates are considered to be equally trustable (GDS3113 and GDS596) 

and tissues without replicates does not really have this issue of confidence. So in this project, an uniform 

confidence level ( ) are used in practice.   

 

The indicator of gene specificity is calculated by a decision function:  

 

 
 

where  and  are the variant of the gap and sp:  

 

, 

and 

 

 
 

 and  are independent parameters chosen empirically by the 

authors of the original paper.  
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3.1.3 Bayesian approach 

The Bayes factor [2] is used to measure the support for two hypotheses: 

 

 
 

where  denotes the expression level of tissue  in one gene, and  is the number of total tissues. And   

 

 . 

 

 states that the expression level of tissue 1 is larger than in the other tissues, which means that tissue 1 

is specific for this gene.  

 

In their modelling approach, a priori distributions under H1 and H2 are postulated from a joint model a 

priori distribution by conditioning on the hypothesis. This leads to a Bayes factor BF12 which is the ratio 

of the a priori and a posteriori odds of H1 (odds of H1 = ratio of the proababilities of hypothesis H1 and 

H2). They further advocate that one can, and should, use natural non-informative a priori distributions, so 

that the calculations are essentially based on the likelihoods. And  implies that the support in 

the data for  is 6 times as large as the support for .  

 

We use the value of  as an index to measure the specificity of the gene on a certain tissue. And 

 is the only parameter that has been optimized in the training section. It is notable that this method 

can be only applied to the datasets with replicates, which are GDS596 and GDS3113. 

 

The application of this method is available in both R and matlab package[40], provided by the author of 

this method [2]. We consider it as a reliable source and use their implementation without further 

modification.  
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3.2 Optimization of parameters 

 

The goal of the optimization process is to find the best parameters for each method on each datasets. An 

optimization function is introduced to quantify the performance and applied on the training gene set. The 

ideal result is that the method detected all training genes as one-specific or two-selective with correct 

tissues.  

 

There are 3 parameters to be optimized in ROKU-SPM ( , , ), 4 in Decision function 

( , , ) and 1 in Bayesian approach ( ). 

3.2.1 Optimization function 

A simple score ( ) is used for evaluating the performance of a method ( ) on the training data: 

 

, 

 

where  is a parameter vector and  is the number of tissues identified by method  given  and a 

gene  from the training set . For each  of method ( ), one score  is obtained. The function 

has a minimum s if the method identifies one or two tissues for each of the genes. Therefore, we regard 

the vector  that minimizes  as the best parameter set.  

3.2.2 Training the parameters 

The 26 training genes are used in this process. The similarity between the actual result and the expected 

result is measured by the optimization function in Section 2.5.  

 

The procedure of training:  

 
1) Constrain each parameter to an interval according to the distribution of the parameter itself. For 

example, the entropy of BioGPS data is between 0.045 and 6.110 (the first quantile, 25%, is 
4.444). As we assume that the proportion of specific genes among all genes is no larger than 25%, 
we use the range from 0.045 to 4.444 as our preset scope to optimize. The same principle is 
applied to other parameters. 

 
2) Run loops to estimate the combination of parameters. This step is repeated several times 

beginning with large steps on the whole interval to find approximate values. Then we use smaller 
steps to fine prune the parameters over specific intervals around those approximate values.  

 

The parameters after training are listed in Table 7. 
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3.3 Vocabulary mapping 

 

The four different data sources have their own tissue vocabularies each, namely BioGPS with 84 tissues, 

GDS596 with 79 tissues, GeAZr with 100 tissues, and GDS3113 with 31 tissues (see Table 1). Although 

many of the tissues are shared in all datasets, it is necessary to reorganize the tissue terms to make them 

more comparable for the calculation of the combined score. In our approach we remove tissues that are 

out of interest (fetal tissues and cell lines) and group tissues that are functionally or literary similar. The 

list of tissues before and after grouping is shown in Table 3, and more detailed grouping information for 

each dataset is listed in the Appendix. 
 
 

The principle of tissue grouping is to maximize the similarity of category in each dataset base on 

biological knowledge, so that the results from each method/dataset pair can be universally comparable. It 

is more focused on the literal similarity than biological sense. However, the taxonomy of tissues is 

arguable from distinct aspects. For example, should the ‘Cerebellum’ be classified under ‘CNS’? The 

opinion may vary from different interests: for a general view of human tissue, the cerebellum is part of 

CNS; while for a particular scope of nerve system, probably the cerebellum should be individually 

analyzed. But based on our principle above, since the “cerebellum” exists in 3 datasets (i.e., BioGPS, 

GDS596 and GeAZr) out of 4, it is more reasonable to keep it separated from CNS. The same issues can 

be also applied to other tissues, and may become a potential interest in the future work. A further 

discussion of this issue will be enclosed in the Discussion Section. 
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Table 3:a Vocabulary Mapping. The grouping of functionally and literary similar tissues. The original term 

is mapped onto the new term. (part 1) 

 

 

 

 

New term Original term New term Original term 

CNS 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

Brain Nerve Nerve 

Frontal cortex Ciliary ganglion 

Occipital cortex Dorsal root ganglion 

Parietal lobe Superior cervical ganglion 

Amygdala Trigeminal ganglion 

Temporal lobe Pineal  Pineal night 

Prefrontal cortex Pineal day 

Temporal cortex Uterus Uterus 

Parietal cortex UterusCorpus 

Corpus callosum Testis Testis 

Locus ceruleus TestisSeminiferousTubule 

Caudate nucleus TestisGermCell 

Putamen TestisIntersitial 

Nucleus Accumbens TestisLeydigCell 

Globus pallidus Salivary gland Parotid gland 

Subthalamic nucleus Salivary gland 

Substantia nigra Vas deferens Vas deferens 

Medulla oblongata Articular surface of bone Articular surface of bone 

Nucleus basalis of Meynert Bone structure Bone structure 

Amygdaloid nucleus Meniscus of joint Meniscus of joint 

Hippocampus Tendon Tendon and tendon sheath 

Hypothalamus Soft tissue Soft tissues 

Pulvinar Omentum Omentum 

Thalamus Skeletal muscle Skeletal muscle 

Cingulate gyrus Smooth muscle Smooth muscle 

Cingulate cortex Spinal cord Spinal cord 

Caudatenucleus Placenta Placenta 

Olfactory bulb Bronchus Bronchus 

Pons Larynx Larynx 

Entorhinal cortex Lung Lung 

Pituitary gland Trachea Trachea 

Red nucleus Bladder Bladder 

White matter of occipital lobe Kidney Kidney 
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Table 4:b Vocabulary Mapping. (part 2) 

 

New term Original term New term Original term 

Cerebellum Cerebellum Ureter Ureter 

CerebellumPeduncles Urethra Urethra 

Vessel Aorta Mammary gland Mammary gland 

Artery UHR Universal Human Reference 

Abdominal aorta Skin Skin 

Ascending aorta Epididymis Epididymis 

Blood vessel Cardiac muscle Cardiac muscle 

Coronary artery Prostate Prostate 

Vein Seminal vesicle Seminal vesicle 

Heart Heart Vagina Vagina 

Left atrium Vulva Vulva 

Left ventricle Lymph node Lymph node 

Right atrium Spleen Spleen 

Right ventricle Thymus Thymus 

Bile Common bile duct Tonsil Tonsil 

Gallbladder Blood White blood cell 

Liver Hepatic duct Brest Brest 

Liver Esophagus Esophagus 

Pancreas Pancreas Rectum Rectum 

Pancreas Islet Stomach Stomach 

Small intestine Duodenum Tongue Tongue 

Ileum Thyroid Thyroid gland 

Jejunum Cervix Cervix 

Small intestine Endometrium Endometrium 

Adrenal Adrenal cortex Fallopian tube Fallopian tube 

Adrenal gland Myometrium Myometrium 

Adipocyte 

  

  

Perirenal fat Ovary Ovary 

Adipose tissue Appendix Appendix 

Adipose tissue of breast Colon Colon 
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3.4 Scoring strategy 

The four datasets used in this project are selected from different microarray databases with distinct 

platforms of probeset annotation. As the original data is recorded under probeset names, the first 

challenge of the result integration is the mapping from probesets to a uniform set of gene IDs (Section 

3.4.1). Then a general measurement of specificity for each gene is used across different datasets 

(Section 3.4.2). Two confidence indices are introduced to classify the integrated result, namely the 

coverage of sources (Section 3.4.2) and the score of specificity (section 3.4.3). 

3.4.1 Map probesets to genes.  

The general information of probesets from each dataset is listed in Table 4. 

 

Table 4 Mapping from probesets to genes. 

DATA SOURCES NUMBER OF  

PROBESETS 

NUMBER OF  

MAPPED GENES 

NUMBER OF UNMAPPED 

PROBESETS 

ANNOATTION SOURCE 

BioGPS 22283 13897  871  HGU133a.db (Bioconductor) 

GDS596 22283 13897  871  HGU133a.db (Bioconductor) 

GeAZr 44928 22771  4473  HGU133plus2.db (Bioconductor) 

GDS3113 32878  16649  16752 (Removed) GPL2986 (GEO) 

 

Data from BioGPS, GDS596 and GeAZr share the same annotation from Affymetrix HGU133, which 

is available in R packages (Bioconductor [41]). There is a small proportion in each of these 3 datasets 

that lack of annotated information. However, since the Affymetrix HGU133 data is one of the most 

frequently used microarray data and the unmapped probesets might also be comparable between these 

three datasets, we kept the records that are unable to be annotated by gene IDs and left them as record 

of genes (Figure 5).  

 

Data from GDS3113 use a particular annotation system from ABI Human Genome Survey 

Microarray, which is accessible in GEO platform GPL2986. There are 16752 out of 32878 probesets, 

which is more than half, do not have annotated information. They are not as valuable and comparable 

as HGU133 data since the GDS 3113 is the only dataset using this platform, and it will be problematic 

if we keep so much data without annotation, so we removed these 16752 for the integration analysis, 

and leave them to the future study.   

 

 
Figure 5 A demonstration of the mapping from probesets to gene symbol 
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3.4.2 The combination of method/dataset pairs 

After the mapping of the probesets, data from different sources are comparable by using gene 

symbols. The overlap of gene among four datasets is shown in Figure 6. BioGPS and GDS596 share 

exactly the same gene set, so they are represented by one ellipse (in purple). 

 

BioGPS and GDS596 share completely the same gene set (HGU133a, see Section 2.1); while GeAZr 

and GDS3113 both have large unique gene sets of their own.  

 

As an important confidence index for the cross dataset analysis, the concept “coverage” of a gene is 

defined as the amount of datasets that contain this gene. It is generally believed that with the same 

score, genes that have higher coverage is more convinced to be specific than those with lower 

coverage. The number of genes in each coverage is listed in Table 5. 

 

  

 

 

Table 5 Number of genes for each overage. 

  

 

 

 

 

 

 

 

 

 

 

Figure 6 The overlap of genes among datasets. 

 

 

 

 

 

 

COVERAGE NUBMER 

4 out of 4 9904 

3 out of 4 3768 

2 out of 4 2443 

1 out of 4 11408 

Total 27523 
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3.4.3 Scoring algorithm 

The scoring algorithm consists of 2 parts: an inner score  inside one dataset; and a total score 

 combining all datasets, where  refers to tissues that are detected specific. 

 

It is not rare that results of probesets from the same gene conflict to each other, and there is no 

universal rule to judge which is more accurate. In this case, we use a majority vote to capture as much 

information as we can: if more than half of the probesets indicates the same tissue as 

specific/2-selective, we regard the ubiquitously expressed probesets as non-informative. For example, 

if three out of five probesets are detected as liver specific, and the other two are not specific to any 

tissues, then we believe that there is enough evidence that this gene liver-specific, and give a full 

support with  to liver specificity.  

 

The score is calculated in the following steps (step 1 and 2 for inner score and step 3 for total score): 

 

1. If at least 50% of the probesets are either specific or 2-selective and contains the same tissue T, 
remove all probesets indicating ubiquitously expressed – we regard them as non-informative. 

 

2. If at least 50% of the remaining probesets are either specific for the same tissue ( ) or 2-selective 

for the same two tissues ( ), then ,  for that tissue, or  for 

the two tissues. Otherwise, , for each detected tissue, will be the average of the frequency of 

the tissue over the probesets. 

 

3. The total-score, , is the average over the inner-scores, hence constrained between 0 and 1, 

over all datasets. 
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Here we present two examples to explain the score algorithm:  

 

Example 1: VGLL1 

There are three probesets representing for the gene VGLL1 in BioGPS, GDS596 and GeAZr data, and 

one probeset in GDS3113. First, the inner score  is calculated for each data source separately. 

Both in BioGPS and GeAZr, two probesets out of three detect the gene as specific in Placenta, so the 

probesets 215730_at (marked with red circle) are regarded as non-informative (rule 1, original paper) 

and at least 50% of the remaining probesets indicate Placenta so the inner score will be one (rule 2, 

original paper). In GDS596, there are no non-informative probesets and no majority of tissues, so the 

score is obtained by averaging the result of each probeset (rule 2, original paper). In GDS3113, the 

inner-score is one (rule 2, original paper). Second, the total score  of a tissue is the average of 

the all inner scores. 

 

In conclusion: VGLL1 is predicted as Placenta-specific with high support, i.e. .   

 

Example 2: RAPGEF5  

The gene RAPGEF5 in BioGPS, GDS596 and GeAZr data has 2 probesets respectively, but none 

exists in GDS3113. The inner score in each data source is: BioGPS, one probesets out of two indicated 

that the gene is specific in spinal cord, so the probeset 204680_s_at (marked with red circle) is 

regarded as non-informative (rule 1, original paper). Similarly in GDS596 and GeAZr, RAPGEF is 

detected as 2-selective and the non-informative probesets are removed (rule 1, original paper) and the 

inner score obtained by the average (rule 2, original paper). Then, the total score is obtained by 

averaging the tissues scores among the 3 datasets.  
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In conclusion: RAPGEF5 is predicted as 2-selective for the tissues Spinal cord and CNS with 

medium-strong support, i.e. .  

3.5 Implementation of methods  

This section provides a browse of application of methods above, a more detailed instruction can be 

found in Appendix.  

3.5.1 R 

R is a free software environment for statistical computation and graphics[41]. Except for the various 

statistical functions in the core program, R has plentiful extension packages for disparate demands, 

e.g. the BayesianIUT package [40] for Bayesian method. Moreover, R has a user-friendly interface 

and simple syntax which enables user to define their own functions easily. The implementation of 

ROKU-SPM, Decision function and Optimization procedure is completed in R with self-defined 

functions (see Table 6).  

 

Table 6 The Implementation of methods in R and Perl. (ROKU-SPM, Decision, BF and Optimization are 

programmed in R; the vocabulary mapping and scoring algorithm are programmed in Perl). 

FUNCTION PARAMETERS OUTPUT SUB FUNCTIONS RUNING TIME 

ROKU-SPM entropy, spm1, spm2 number of 

specific tissues 

outlier, tukey-biweight, 

shannon.entropy, spm, 

medium 

Dtest d, g, s(min), s(max) number of 

specific tissues 

DECISION short 

BFsummary 

(Bayes Factor) 

BF BF value BF medium 

Tmap number of specific 

tissues, dataset 

number 

formatted output 

with names of 

specific tissues 

Names short 

Optimization scope, interval score matrix Opscore, Oploop long, repeatedly 

Vocabulary 

mapping 

four vocabularies one combined 

vocabulary 

read, map short 

Scoring algorithm result from four 

datsets 

combined result inner score medium 

total score short 
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Functions in R can be saved in separate files and invoked by the command “source”. Each sub 

function is an independent module and can be recalled in different functions. The detail of the sub 

functions are listed in the Appendix.  

 

ROKU-SPM uses the thresholds for , , and  as input parameters, and outputs 

the number of specific tissues with value 0, 1 and 2 indicating “ubiquitously expressed”, “specific” 

and “2-selective” respectively. The sub functions are used as module and sourced in the function 

“ROKU-SPM.R”. A formatted output can be created by the function “Tmap” with listed names, 

corresponding gene names number of specific tissues, names of specific tissues for each probeset (see 

figure below): 

 

 

Figure 7 The formatted output from R for BioGPS data using ROKU-SPM methods. The first 5 probesets 

are displayed in the figure: SP_NR is the number of specific tissues with maxim value of 2. TISSUE.1 and 

TISSUE.2 are the specific tissue names (using internal id in AstraZeneca).  

 

Similarly, the decision function (Dtest.R) has four parameters as input value and the number of 

specific tissues as output value. “DECISION.R” gives the output value for one gene and “Dtest.R” 

summaries the result for a whole input datasets. “Tmap” is also used for formatting the output.  

 

The output of the Bayesian method (BFsummary) is a little different, as it reports the BF value for 

each tissue in each gene, and only tissues with BF value above the input threshold are considered as 

specific.  

 

The optimization function is scored by function “Opscore.R”, and looped by “Oploop.R”. The method 

should start with a broad scope and large interval, and narrow down gradually. 

 

Additionally, two R packages, hgu133a.db and hgu133plus2.db, are used also in the mapping from 

probesets to gene symbols (see Section 3.4.1).  

 

3.5.2 Perl 

Perl is originally designed for text manipulation, and then broadened as a general purpose 

programming language. It is remarkably efficient in practice. The vocabulary mapping (Section 3.3), 

which is actually a text mining problem, and the scoring method for the combination of four 

method/dataset pairs (Section 3.4), which requires efficiency and text extraction, are implemented in 

Perl.  
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The inner score of the Scoring algorithm first remove the non-informative probesets (see Section 

3.4.3), then average the result of probesets for the same gene. The total score maps the genes from 

different datasets, marks them with “coverage”, and integrate them with an average score.  

 

Perl is also involved in the statistic for the analysis of results. For example, the statistic of specific 

tissue/tissue pairs among the 1955 most specific genes (Section 4.6).   
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4 Results 

4.1 Training and optimization  

We used the training set of 26 known specific/selective genes (see Section 2.2.1) to optimize the 

parameters of all method/dataset combinations. As the Bayesian Approach can be only applied to data 

with replicate samples (GD3113 and GDS596), there are 10 method/dataset pairs that have been 

optimized. As we mainly are interested in genes that are specific to one tissue or selective to no more 

than two tissues, an optimization function in Section 3.2.1is used to quantify the performance of 

parameter. The result of optimum parameters for each method on four datasets is listed in Table 7. In 

Table 8 we listed the identified tissues for the best parameters for all combinations method/dataset 

pairs. Grey color indicates the correct output. We saw that most methods performed well and in a few 

cases all methods could identify the correct tissue given by HugeIndex.org (tissue colored by grey). 

For example, the gene SFTPC was correctly identified as liver specific by all methods. Although there 

are cases like PMP22 that no method detect the correct tissue, in most cases, majority of the methods 

tend to report the same tissue.  

 

Table 7 The parameters chosen after optimization. 

 ROKU-SPM DECISION FUNCTION BF 

Entropy  SPM1  SPM2  d s (min) s (max)  g 

BioGPS  3.5 0.65 0.4 0.5  -4  -12  0.5 500 

GDS596  4.45 0.055 0.03 0.5  -1  -3  0.5 500 

GeAZr  4.93 0.41 0.25 0.5 -5  -14  0.5 500 

GDS3113  4.35 0.066 0.06 0.5 -1  -3  0.5 500 

Note: For the ROKU-SPM method, the thresholds for entropy, SPM1 and SPM2 are optimized; for the decision function method, the s, g and 

thresholds for d are optimized; for Bayes factor method, only the threshold for BF is optimized. 
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Table 8 Resulting tissues are shown when applying the chosen methods with the optimized set of 

parameters to the training data. ‘-‘ indicates that no specific tissue is identified, ‘/’ indicates that the gene 

is not in the dataset. The methods applied are ROKU-SPM (RS), Decision Function (DEC), and Bayes Factor 

(BF). GREY color shows that the detected result is exactly same as the HugeIndex database, and the RED 

color shows that the detected result is partially same as the HugeIndex database. 

Data BioGPS GDS596 GeAZr GDS3113 

Tissue Names Method RS DEC RS DEC BF RS DEC RS DEC BF 

Gene Detected tissues 

FXYD2 T1 T1 T1 T1 T1 T1,T2 T1 T1,T2 - T1 T1=Kidney,T2=Bile 

PAX8 T T - - - T T T T T T=Thyroid 

GPX3 - - - T T - - - - T T=Kidney 

AQP2 T1 T1 T1 T1 - T2 T2 T1 T1 T1 T1=Kidney, T2=Vasdeferens 

HABP2 T1 T1 T1 T1 T1 T1 T1 T1,T2 T1 - T1=Liver, T2=Bile 

SAA4 T1 T1 T1 T1 T1 T1 T1 T1,T2 T1 T1 T1=Liver, T2=UHR 

CPN2 T1 T1 - T1,T2 - T1 T1 T1 T1 T1 T=Liver,T2=Nerve 

ASGR1 T1 T1 T1 T1 T1 T1 T1 T1,T2 T1 T1 T1=Liver, T2=UHR 

LIPC T T T T - T T T T T T=Liver 

SFTPC T T T T T T T T T T T=Lung 

SFTPB T T T T - T T T T T T=Lung 

RNF5 T1 T1 - - - - T2 / / / T1=Heart,T2=Bile 

CLDN5 T T - T T - - - - T T=Lung 

PMP22 T1 - - - - - - - - T2 T1=CNS, T2=Spinal cord 

MYOC T1 - - - - T2,T3 - - - T1 
T1=Retina, T2=Tendon, 

T3=Meniscus of joint 

TPM1 T1 T1 - T1,T2 - T1,T2 - T1,T2 T1,T2 - T1=Heart,T2=Skeletal muscle 

MYH8 - - T4 - - T2,T3 - - T1 T1 
T1=Kidney, T2=Skeletal muscle, 

T3=Bone structure, T4=Nerve 

SGCA - T3 T1,T3 T1,T3 - T1 T1 T1,T2 T1,T2 - 
T1=Skeletal muscle, 

T2=Pancreas,T3=Heart 

KLK3 T1 T1 T1 T1 T1 T1 T1 T1,T2 T1,T2 T1 T1=Prostate,T2=Salivary gland 

ACPP T T T T T T T T T T T=Prostate 

MSMB T1 T1 T1,T2 T1,T2 - T1,T2 T2 T1,T2 T1,T2 T1 T1=Prostate, T2=Trachea 

FLNB - - - - - - - - - T T=Prostate 

KLK2 T T T T - T T T T T T=Prostate 

KRT10 T1 T1 T1 T1 T1 T1,T2 T1 / / / T1=Skin, T2=Vulva 

S100A7 T2 T2 T1,T2 T1,T2 T2 T1,T3 - T1,T3 T1 T1 T1=Tonsil, T2= Tongue,T3=Larynx 

LOR T T T T T T T T T T T=Skin 
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4.2 A clustering analysis 

To evaluate the similarity of the results, we clustered the result from each method/dataset pairs using a 

distance measurement. Additionally, we also added the databases (TiSGeD, TiGER and HPA) as 

external sources to be compared with. A standard hierarchical clustering was used with distance value 

( ) defined in a simple manner. For each gene, if the result is the same, the distance between 

them will be 0; if partially same (share at least one same tissue), then 0; and if not the same at all, the 

distance will be 1:  

  

 
 

Where k is the number of gene, and i, j stands for the methods. The total distance between two 

methods is the sum of distances for the training genes ( ). 

 

 . 

 

The distance matrix is formed by  and the R function hclust is used to perform the clustering 

(Figure 8). 

 

As shown in Figure 8, the result from the same dataset rather than the same method, trend to be 

clustered together. This to some extent infers that the data matters more than the methods, and one 

representative for each dataset would be sufficient to show the result. Thus a selection procedure is 

applied on the method/dataset pairs in the next Section and eventually one best method for each 

dataset is chosen to be used in the whole datasets. 

 

Additionally, the TiGER and HPA appears to be distant from the other ones. It is predictable because 

of the missing genes in their databases, and the different types of data they based on (EST and protein 

antibody).  
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Figure 8 Clustering on 26 training genes among different method/dataset pairs and the three databases 

(HPA, TiSGeD and TiGER). ‘BG’ is BioGPS dataset, ‘596’ is GDS596 dataset, ‘GZ’ is GeAZr dataset, ‘3113’ is 

GDS3113 dataset, ‘DEC’ is Decision Function method, ‘BF’ is Bayes Factor method. The red rounded 

rectangles indicate the selected method/dataset pairs based on their performance on the testing gene sets. 

 

4.3 The selection of methods for each data sources 

The parameters obtained from the training are also applied to the two testing gene sets (data in Section 

2.2.1). Table 9 shows the output from testing set 1 of 10 liver-specific genes and Table 10 shows the 

output from testing set 2 of 10 housekeeping genes (ubiquitously expressed genes).   

  

An error evaluation is employed on the results of two testing sets in Table 11, with four parameters: 

true positives (TP), true negatives (TN), false positives (FP) and false negatives (FN). TP and FN are 

derived from testing set 1, and TN and FP are derived from testing set 2, where TP+FN=10 and 

TN+FP=10. The best possible performance is TP=TN=10 where all true are found and all false are 

rejected. We selected the method that has best performance on each datasets based on these numbers, 
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which is ROKU-SPM for BioGPS (TP=6, TN=10, FP=0, FN=4) and GDS3113 (TP=10, TN=10, 

FP=0, FN=0) and decision function for GeAZr (TP=9, TN=10, FP=0, FN=1) and GDS596 (TP=3, 

TN=10, FP=0, FN=7). Since there is not much difference, it might be nature to ask why not use the 

same methods on all datasets. Well, on the small dataset of 10 genes, the slight difference might not 

causing problems, but on the whole data with tens of thousands genes, the difference will be 

significant. Besides, the use of different method may enrich the analysis and avoid the bias by 

applying only one method on all data.  

 

 

Table 9 Resulting tissues are shown when applying the chosen methods with the optimized set of 

parameters to the testing data 1 (liver-specific genes). ‘-‘ indicates that no specific tissue was 

identified. The methods applied are ROKU SPM (RS) and Decision Function (DEC). GREY color 

shows that the detected result is exactly same as the HugeIndex database, and the RED color shows 

that the detected result is partially same as the HugeIndex database. 

DATA BioGPS GDS596 GeAZr GDS3113 

Tissue Names Method RS DEC RS DEC BF RS DEC RS DEC BF 

Gene Detected tissues  

F12 T T T T T T T T T T T=Liver 

CYP2C18 T1 - - - 
 

T1,T2 - T1,T2 - T1 T1=Liver,T2=Small intestine 

CYP2C9 - - T3 T3 T3 - T1 T1,T2 T1 T1 
T1=Liver,T2=Small 

intestine,T3=Nerve 

ITIH2 T1 T1 - T1,T2 T1,T2 T T T1,T3 T1,T3 T1,T3 T1=Liver, T2=Nerve, T3 = UHR 

C8G T T T T T T T T T T T=Liver 

CYP3A7 - - T3 - - T T T1,T2 T1,T2 T1 
T1=Liver,T2=Small intestine, 

T3=Nerve 

TDO2 T T - - - T T T T T T=Liver 

CRP T2 T2 - - - T1 T1 T1 T1 T1 T1=Liver, T2=Pancreas 

MBL2 T T - - - T T T T - T=Liver 

MTP T2 T2 - - - T2 T1,T2 T1,T2 T1,T2 - T1=Liver,T2=Small intestine 
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Table 10 Resulting tissues are shown when applying the chosen methods with the optimized set of 

parameters to the testing data 1 (liver-specific genes). ‘-‘indicates that no specific tissue was identified. 

The methods applied are ROKU SPM (RS), and Decision Function (DEC). GREY color shows that the 

detected result is exactly same as the HugeIndex database. 

DATA BioGPS GDS596 GeAZr GDS3113 

Tissues Names Method RS DEC RS DEC BF RS DEC RS DEC BF 

Gene Detected tissues 

RPL29 - - - - - - - - - -  

H3F3B - - - - - - - - - T T=Testis 

RPS26 - - - - - - - - - -  

BAT1 - - - - - - - - - -  

SURF1 - - - - - - - - - T T=Salivary gland 

RPL8 - - - - T - - - - - T=Heart 

RPL38 - - - - - - - - - -  

COMT - T - - T - - - - - T=Liver 

RPS7 - - - - - - - - - -  

HSPB1 - - - - - - - - - T T=Placenta 

 

 

Table 11 Evaluation of Methods on testing dataset 1 and 2.  

Summary of the errors for all method/dataset pairs with optimized parameters on 2 testing dataset. The 

maximum number of true positives (TP), true negatives (TN), False positives (FP) and false negatives (FN) 

is ten, with TP+FN=10 and TN+FP=10. The best possible scenario is TP=TN=10 where all true are found 

and all false are rejected. The best methods are marked in GREEN. 

Method-Data TP TN FP FN 

BioGPS-RS 6 10 0 4 

BioGPS-DEC 5 9 1 5 

GDS596-RS 2 10 0 8 

GDS596-DEC 3 10 0 7 

GDS596-BF 3 8 2 7 

GeAZr-RS 8 10 0 2 

GeAZr-DEC 9 10 0 1 

GDS3113-RS 10 10 0 0 

GDS3113-DEC 9 10 0 1 

GDS3113-BF 8 7 3 2 
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4.4 Results summary 

The selected methods are applied on the whole datasets using optimized parameters. The Scoring 

algorithm is used to combine the result from four datasets. To illustrate the specificity in the future 

discussion, we classified specific or 2-selective genes by significance using the coverage and total 

score . The specific genes and 2-selective genes are reported separately in  

Table 12. 

 

The score for specific genes are marked in four levels:  

 

1)  Strong support with ; 

2)  High support with ; 

3)  Medium-high support with ;  

4)  Medium support with .  

 

The score for 2-selective genes are divided into two groups:  

 

1) Strong support: ;   

2) Medium support: . 



34 

 

 

Please note that the criteria of score are tentative and can be changed by different interests of 

researches. Actually, as the methods that have been on datasets are in a strict manner and one can put a 

high confidence on the detected specific genes even with lower score (i.e. ) . 

 

For a summary, there are 4554 specific genes and 598 2-selective genes detected under all coverage 

scope using the criteria that specificity greater than 0.5 and selectivity greater than 0.3.  

 

Table 12 Summary of results. Total indicates the number of genes for each level of coverage. 

Score 

 

Coverage 

Number of Specific Genes Number of 2-Selective Genes Total number of genes 

for each coverage 
1 0.8-1 0.5-0.8 0.5 0.5 >0.3 

4 of 4 117 148 510 592 6 39 9904 

3 of 4 59 11 113 32 1 123 3768 

2 of 4 91 3 63 503 39 3 2443 

1 of 4 1688 0 10 6 382 5 11408 

Summation 1955 162 696 1133 428 170 27523 
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4.5 Comparison with other databases 

As shown in Table 12, there are 117 genes detected as specific with strong support ( ), and 

45 genes as 2-selective (6 with strong support, , and 39 with medium-high 

support ) under the coverage of 4. As these results are supported by all 

methods and are detectable by every datasets individually, which are very strict criterion, they are the 

best candidates of specific/selective genes that we can have. These genes are used for the evaluation of 

the result and are compared with the results from TiSGeD, TiGER and HPA. Table 13 shows the 

comparison of the 117 specific genes, and Table 14 shows the comparison of 45 2-selective genes. 

 

Table 13 and 14 are colored by the degree of agreement between the predicted result and the 

databases. Those with GREY have exact match with our prediction, and those with RED have at least 

one matched tissue. It is easily captured by eye browsing that most of our predictions are supported at 

least one of these three databases. If we look at the performance of individual databases, TiSGeD has 

the most consistent results as we expected since they also use the microarray data; TiGER with EST 

data follows up; and HPA, which suffers a lot by missing expression data, has the least agreement with 

our prediction. Interestingly, there are cases where HPA and TiGER support our result while TiSGeD 

rejected. For example, NPHS2 is detected as ubiquitously expressed gene in TiSGeD while both HPA 

and TiGER report exact the same as our prediction with kidney-specific. The overlap for each 

database is shown in Figure 9 for 117 specific genes and Figure 10 for 45 2-selective genes. The fully 

agreement with our predictions is: 82% with TiSGeD, 75% with TiGER and only 30% with HPA (Fig. 

2). And if we extend the proportion to partial match, the number goes up to 91% with TiSGeD, 84% 

with TiGER and 64% with HPA. 

 

Similar to the specific genes, the overlap between our predicted results s and the results of the 

databases are shown in Figure 10. Fully agree means that both the predicted tissues must be exactly 

same. It is expected that this proportion (20% with TiGER, 31% with TiSGeD and 2% with HPA) is 

much lower than it for the 117 specific genes. But the percentage of partially agree (74% with TiGER, 

91% with TiSGeD and 90% for HPA) which requires at least one same tissue is equally good as in the 

specific group. 
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Table 13:a Comparison of Specific Genes. (part 1)  

Compare results of 117 specific genes with the best coverage and highest score to TiGER, TiSGeD 

and HPA. Grey shows the exact agreement in the corresponding database, red shows partially 

agreement, and absence and disagreement remain white. ‘/’ means the gene is not found in the 

database and ‘-‘ means this gene is not specific. 

 
Predicted TiGER TiSGeD HPA 

FDXR Adrenal Cervix Adrenal Many tissues with strong, Adrenal (Strong) 

CYP11B1 Adrenal / Adrenal No expression data 

HSD3B2 Adrenal - Adrenal No expression data 

DOCK3 CNS - CNS Many tissues with strong, CNS (Strong) 

CHN1 CNS - CNS Several tissues with strong, CNS (moderate) 

NRGN CNS CNS CNS Several tissues with strong, CNS (Strong) 

CCK CNS Placenta CNS Several tissues with strong, CNS (Strong) 

CACNG3 CNS CNS CNS No expression data 

LY6H CNS CNS CNS No expression data 

RGS4 CNS - CNS, Heart Many tissues with strong, CNS (Negative) 

NELL2 CNS Small intestine Lung Kidney (Strong) 

TNNT2 Heart Heart Heart Heart (Strong) 

MYL7 Heart Heart Heart Several tissues with strong, Heart (Strong) 

MYBPC3 Heart Heart Heart No expression data 

SLC4A3 Heart - Heart No expression data 

SLC12A1 Kidney Kidney Kidney Kidney (Strong) 

NPHS2 Kidney Kidney - Kidney (Strong) 

KL Kidney Kidney Kidney Several tissues with strong, Kidney (Strong) 

UMOD Kidney Kidney Kidney Several tissues with strong, Kidney (Strong) 

CLCNKB Kidney Kidney Kidney No expression data 

KCNJ1 Kidney Kidney Kidney Kidney (Strong), Testis (Strong) 

SLC12A3 Kidney Cervix, Kidney Kidney, Ovary Several tissues with strong, Kidney (Moderate) 

SLC34A1 Kidney Kidney Kidney No expression data 

CYP1A2 Liver / Liver Liver (Strong) 

CYP2A6 Liver Liver Liver Liver (Strong) 

F12 Liver Liver, Stomach Liver No tissues with strong 

SERPINA6 Liver Liver Liver Several tissues with strong, Liver (Moderate) 

SERPINF2 Liver Liver, Kidney Liver, Breast Several tissues with strong, Liver (Strong) 

SPP2 Liver Liver - No expression data 

SLC22A1 Liver Liver Liver Uterine Cervix (Strong), Liver (Moderate) 

C8G Liver Liver, Stomach Liver No expression data 

HPR Liver Liver Liver No expression data 

MAT1A Liver Liver Liver No expression data 

ITIH1 Liver Liver Liver No expression data 

AGXT Liver Liver Liver Liver (Strong), Testis (Strong) 

CYP2E1 Liver Liver Liver Liver (Strong) 

LIPC Liver Liver Liver, Colon No strong, Liver (Weak) 

CYP2C8 Liver Liver Liver Liver (Strong) 

HP Liver Liver - No Strong, Liver (Weak) 

MST1 Liver Liver Liver Gall bladder (Strong), Liver (Moderate) 
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Table 10:b Comparison of Specific Genes. (part 2) 

 
Predicted TiGER TiSGeD HPA 

AGT Liver Liver Liver CNS (Strong), Placenta (Strong), Liver (Moderate) 

APOC2 Liver Liver Liver No expression data 

SFTPC Lung Lung Lung Lung (Strong) 

SFTPB Lung Lung Lung Lung (Moderate) 

SFTPD Lung Lung Lung Lung (Strong) 

AGER Lung Lung Lung Several tissues with strong, Lung (Strong) 

IAPP Pancreas Pancreas Pancreas Pancreas (Strong) 

PSG2 Placenta Placenta Placenta No expression data 

PSG7 Placenta Placenta Placenta, Lung No expression data 

PSG4 Placenta Placenta Placenta No expression data 

GCM1 Placenta Placenta Placenta No expression data 

PLAC1 Placenta Placenta Placenta, Kidney No expression data 

PSG11 Placenta Placenta Placenta No expression data 

PSG5 Placenta Placenta Placenta, Lung No expression data 

LGALS14 Placenta Placenta Placenta No expression data 

PSG6 Placenta Placenta Placenta No expression data 

PSG9 Placenta Placenta Placenta, Breast No expression data 

CAPN6 Placenta Placenta Placenta Several tissues with strong, Placenta (Strong) 

PSG3 Placenta Placenta Ovary No expression data 

CYP19A1 Placenta Placenta Placenta Placenta (Strong) 

FCGR2B Placenta Blood Placenta Appendix (Strong), Placenta (Moderate) 

ADAM12 Placenta Placenta Placenta Several tissues with strong, Placenta (Strong) 

BMP1 Placenta Placenta Placenta Several tissues with strong, Placenta (Strong) 

HSD17B1 Placenta Placenta Placenta, Pancreas Placenta (Strong) 

CGB Placenta Placenta Placenta, Osteosarcoma Placenta (Strong), Epididymis (Strong) 

EBI3 Placenta Placenta Placenta Several tissues with strong, Testis (Moderate) 

KLK2 Prostate Prostate, Nerve Prostate Prostate (Strong) 

ACPP Prostate Prostate Prostate Prostate (Strong) 

CST4 Salivary gland Bladder, Colon Salivary gland No expression data 

TNNT3 Skeletal 

muscle 

Muscle Skeletal muscle Skeletal muscle (Strong) 

CASQ1 Skeletal 

muscle 

Larynx, Muscle Skeletal muscle Several tissues with strong, Skeletal muscle (Strong) 

ACTN3 Skeletal 

muscle 

Muscle Skeletal muscle / 

PYGM Skeletal 

muscle 

Muscle Skeletal muscle No expression data 

FHL3 Skeletal 

muscle 

Muscle Skeletal muscle No expression data 

TNNC2 Skeletal 

muscle 

Muscle Skeletal muscle, Thyroid No expression data 

MYF6 Skeletal 

muscle 

Muscle, Heart Skeletal muscle No expression data 

LOR  Skin / Skin No expression data 

AGTRL1 Spinal cord Heart / CNS (Strong)  
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Table 10:c Comparison of Specific Genes. (part 3) 

 

Predicted TiGER TiSGeD HPA 

CDKN3 Testis Bone   Testis Epididymis (Strong), Placenta (Strong) 

ADAM2 Testis Testis Testis Testis (Strong) 

INSL3 Testis Brain Testis Testis (Strong) 

ACTL7A Testis Testis Testis Testis (Moderate) 

PRM2 Testis Testis Testis Testis (Moderate) 

AKAP4 Testis Testis Testis Testis (Moderate) 

ACTL7B Testis Testis Testis Testis (Strong) 

TEX14 Testis Testis Testis Many tissues with strong, Testis (Moderate) 

C1orf14 Testis Testis Testis Many tissues with strong, Testis (Strong) 

BRDT Testis Testis Testis Many tissues with strong, Testis (Strong) 

CCIN Testis Testis Testis Several tissues with strong, Testis (Strong) 

APH1B Testis Testis Testis No expression data 

CCNA1 Testis Bone marrow, Testis Testis No expression data 

OAZ3 Testis Testis Testis No expression data 

CABYR Testis Testis Testis No expression data 

ODF1 Testis / Testis No expression data 

LDHC Testis Testis Testis No expression data 

ANKRD7 Testis Testis Testis No expression data 

TNP1 Testis Testis Testis No expression data 

CCT6B Testis Testis Testis No expression data 

DDX4 Testis Testis Testis No expression data 

C19orf36 Testis Testis / No expression data 

TCP11 Testis Testis Testis No expression data 

LOC81691 Testis Testis Testis / 

TPTE Testis Testis Testis No expression data 

KCNK4 Testis Testis - No expression data 

PHF7 Testis Testis Testis Testis (Strong) 

HSPA1L Testis Testis Testis No expression data 

SPA17 Testis Testis - Several tissues with strong, Testis (Strong) 

ODF2 Testis - Testis No strong, Testis (Weak) 

NXF3 Testis Testis, Ovary, Stomach Testis Several tissues with strong, Testis (Strong) 

PRSS16 Thymus - Thymus Pancreas (Strong), Stomach (Strong) 

CD1E Thymus Thymus Thymus No expression data 

TCF7 Thymus Thymus - Several tissues with strong, No Thymus 

CD3D Thymus - - Several tissues with strong, No Thymus 

DNTT Thymus / - No expression data 

TPO Thyroid - Thyroid Thyroid (Strong) 

SLC26A4 Thyroid - Thyroid No expression data 

TSHR Thyroid Ovary Thyroid Several tissues with strong, Thyroid (Strong) 
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Figure 9 Comparison for 117 specific genes: histogram shows how exactly the other database agrees with 

the predicted result. 

 

 

 

 

 

Figure 10 Comparison for 60 2-selective genes: Histogram shows how exactly the other database agrees 

with the predicted result. 
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Table 14:a Comparison of 2-selective Genes. (part 1) 

Comparing the result of 6 2-selective genes with highest score (first six in the table) and 39 selective genes 

with medium score in the best coverage with TiGER, TiSGeD and HPA. Grey shows the exact agreement in 

the corresponding database, red shows partially agreement, and absence and disagreement remain white. 

‘/’ means the gene is not found in the database and ‘-‘ means this gene is not specific. 

 PREDICTED 

TISSUES 

TIGER TISGED HPA 

UGT8 Spinal cord, CNS - Spinal cord, Colon, 

CNS 

CNS (Strong) 

SNAP25 Cerebellum, CNS CNS CNS CNS (Strong), Pancreas (Strong) 

TNNC1 Heart, Skeletal 

muscle 

Heart, 

Muscle 

Heart, Colon, Ovary Heart (Strong),Skeletal muscle (Strong) 

MYH7 Heart, Skeletal 

muscle 

Heart, 

Muscle 

Heart, Skeletal 

muscle 

Heart (Strong), Skeletal muscle (Strong) 

LRP2 Kidney, Thyroid Kidney Kidney, Thyroid Heart (Strong), Kidney(Strong), Thyroid (Strong), Adrenal 

(Strong) 

KNG1 Kidney, Liver Kidney, 

Liver 

Kidney Liver Kidney (Strong) 

DPYS Kidney, Liver Kidney, 

Liver 

Kidney, Liver Kidney (Strong), Liver (Moderate) 

RGN Liver, Adrenal Kidney Liver, Adrenal Liver (Strong), Adrenal (Strong), Testis (Strong) 

MYOM2 Heart, Skeletal 

muscle 

Heart, 

Muscle 

Heart Many tissues with strong, Heart (Strong), Skeletal Muscle 

(Strong) 

PVALB Cerebellum, CNS Kidney CNS, Cerebellum Parathyroid gland (Strong), Cerebellum (Strong) 

CGA Placenta, CNS Placenta Placenta,CNS, 

Salivary gland 

Placenta (Strong) 

GH1 Placenta, CNS CNS - Placenta (moderate) 

CSF3R Blood, Placenta Blood, 

Placenta 

Blood, Placenta Placenta (Strong) 

LPO Salivary gland, 

Trachea 

Blood, 

Muscle 

Salivary gland, 

Trachea 

Salivary gland (Strong) 

MYL3 Heart, Skeletal 

muscle 

Heart, 

Muscle 

Heart Several tissues with strong, Heart (Strong), Skeletal Muscle 

(Strong) 

MYL2 Heart, Skeletal 

muscle 

Heart, 

Muscle 

Heart Several tissues with strong, Heart (Strong), Skeletal Muscle 

(Strong) 

FBXO40 Heart, Skeletal 

muscle 

- Skeletal muscle Several tissues with strong, Heart (Moderate), Skeletal 

muscle (Moderate) 

ENPEP Kidney, Small 

intestine 

Kidney Kidney Several tissues with strong, Kidney (Strong), Small intestine 

(Strong) 

HPD Kidney, Liver Liver Liver Several tissues with strong, Liver (Strong) 
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Table 13:b Comparison of 2-selective Genes. (part 2) 

 PREDICTED TISSUES TIGER TISGED HPA 

MSMB Prostate, Trachea Prostate Prostate, Trachea Stomach (Strong), Bronchus (Strong), Prostate 

(Strong) 

ART3 Skeletal muscle, Testis Muscle, Testis Testis, Breast Testis(Strong) 

CLGN Heart, Testis Testis Testis Testis (Strong), Fallopian tube (Strong) 

SPRR1A Tongue, Tonsil Larynx, Tongue Colon, Tongue, 

Thymus, Trachea 

All Strong 

PGAM2 Heart, Skeletal muscle Muscle Heart No expression data 

GLYAT Kidney, Liver Kidney, Liver Kidney, Liver No expression data 

TM4SF5 Liver, Small intestine Kidney Liver No expression data 

REG3A Pancreas, Small intestine Stomach Pancreas No expression data 

CCL20 Tonsil, Liver Colon Tonsil No expression data 

PGLYRP1 Bone marrow, Blood / Bone marrow, 

Pancreas 

No expression data 

CLEC4M Liver, Lymph node Placenta Nerve No expression data 

PCSK1 Pancreas, CNS Pancreas Pancreas, CNS No expression data 

HSD3B1 Placenta, Adrenal Placenta Placenta, Adrenal No expression data 

AKR7A3 Liver, Small intestine Colon, Stomach Liver No expression data 

MOG CNS, Spinal cord CNS CNS, Spinal cord No Strong 

IGFBP1 Placenta, Liver Placenta Placenta Placenta (Strong), Liver (Weak) 

CLC  Bone marrow, Blood Bone marrow Bone marrow  No expression data 

PRB4 Trachea, Salivary  gland / / No expression data 

EDN3 Retina, Salivary gland Pancreas Salivary gland, CNS No expression data 

SULT2A1 Liver, Adrenal Liver Liver, Adrenal Several tissues with strong, Liver (Strong), 

Adrenal (Strong) 

TFDP2 Thymus, Testis  - -  Many tissues with strong, Testis (Strong) 

RYR2 Heart, CNS Heart  Heart Many tissues with strong, CNS (Strong), Heart 

(Moderate) 

KHK Liver, Kidney Liver Liver Liver (Strong), Kidney (Strong), Small intestine 

(Strong) 

GABRD Cerebellum, CNS CNS CNS, Cerebellum No expression data 

APOM Liver, Kidney Liver Liver No expression data 

CES2 Liver, Small intestine Liver  - Many tissues with Strong, Liver (Strong), Small 

intestine (Strong) 
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4.6 Specificity analysis from a tissue aspect 

We also analyzed which tissues are most frequently detected among the 1955 specific genes with 

strong support ( ), and 598 2-selective genes with both strong and medium support.  

 

The top 10 tissues (or tissue pairs) are shown in Figure 11 for specific gene and Figure 12 for 

2-selective genes. For specific genes, the testis is with about 25% the top candidate, followed by CNS, 

Bile, Trachea, Blood, Placenta, Liver, Salivary gland, Heart and Skeletal muscle.   

 

 

 

Figure 11 Top 10 most frequently occurred tissue among 1955 specific genes. 

 

To investigate the result from a tissue aspect, Table 15 also provides answers to the question that 

which genes are specifically expressed in a certain tissue. For example, there are 88 genes that are 

specific in liver with Strong support. The statistic in table 15, the answer are restrict to score=1 

regardless the value of coverage, while for the further study, researchers can define their interest on 

self-defined constraints on the score and coverage.  



43 

 

Table 15 The frequency of detected tissues among the 1955 specific genes. 

Tissue name Frequency Relative frequency 

Testis 494 0.2537 

CNS 230 0.1181 

Bile 110 0.0565 

Trachea 110 0.0565 

Blood 100 0.0514 

Placenta 98 0.0503 

Liver 88 0.0452 

Salivary gland 74 0.0380 

Heart 65 0.0334 

Skeletal muscle 62 0.0318 

Meniscus of joint 52 0.0267 

Kidney 47 0.0241 

Thymus 40 0.0205 

Vessel 31 0.0159 

Pancreas 29 0.0149 

Skin 28 0.0144 

Adrenal 27 0.0139 

Epididymis 25 0.0128 

Cerebellum 24 0.0123 

Articular surface of bone 23 0.0118 

Small intestine 22 0.0113 

Lung 21 0.0108 

Tonsil 20 0.0103 

Prostate 19 0.0098 

Thyroid 15 0.0077 

Fallopian tube 9 0.0046 

Retina 9 0.0046 

Smooth muscle 8 0.0041 

Spleen 7 0.0036 

Bone marrow 7 0.0036 

UHR 6 0.0031 

Bone structure 6 0.0031 

Ovary 6 0.0031 

Spinal cord 5 0.0026 

Stomach 5 0.0026 

Endometrium 4 0.0021 

Colon 3 0.0015 

Tongue 3 0.0015 

Uterus 3 0.0015 

Brest 2 0.0010 

Soft tissue 2 0.0010 

Urethra 2 0.0010 

Vas deferens 1 0.0005 

Ureter 1 0.0005 

Esophagus 1 0.0005 

Tendon 1 0.0005 

Vulva 1 0.0005 
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Interestingly, a large proportion of frequently detected tissue pairs (Table 16) seem to be functionally 

related. For example, the CNS (Central Nerve System) and spinal cord are both part of the nerve 

system; the skeletal muscle is similar to heart muscle; in some cases, the cerebellum can even be part 

of CNS; etc. This phenomenon can be discussed in various perspectives (See Section 5). 

 

Table 16 The frequency of pairs of detected tissues among the 598 2-selective genes. Only those with 

frequencies above five are shown. 

 

Tissue pairs Frequency Relative Frequency 

CNS & Spinal cord 59 0.0983 

Heart & Skeletal muscle 36 0.0600 

CNS & Cerebellum 26 0.0433 

Testis & Trachea 19 0.0317 

Kidney & Liver 16 0.0267 

Blood & Bone marrow 15 0.0250 

Meniscus of joint & Nerve 13 0.0217 

Liver & Small intestine 11 0.0183 

Skin & Vulva 11 0.0183 

Bile & Nerve 10 0.0167 

Skin & Tonsil 10 0.0167 

Blood & UHR 9 0.0150 

Salivary gland & Trachea 9 0.0150 

Testis & UHR 8 0.0133 

Bile & Pancreas 8 0.0133 

CNS & Testis 8 0.0133 

CNS & Nerve 7 0.0117 

CNS & Placenta 7 0.0117 

Nerve & Pineal 6 0.0100 

Bile & Salivary gland 6 0.0100 

 

There are 195 tissue pairs have been identified among the 598 2–selective genes, while only 48 

specific tissues in 1955 specific genes. The primary pair, CNS and spinal cord which only take about 

10% of the total frequency, (Figure 12) can still be account for a significant proportion among all 

tissues pairs, and the top 10 frequent pairs takes almost 40% out of total. The ‘Other’ (61%) is the 

summation of the 185 tissue pairs apart from the top 10 pairs.  
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Figure 12 Top 10 most frequently occurred tissue pairs among 598 2-selective genes. 
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5 Conclusion and discussion 

This project integrates the information of specificity from four large-scale datasets using the optimized 

methods after comparative analysis. The remarkable and unique features of this approach are the use 

of optimized method, the integration of different datasets, and the confidence indicator (score and 

coverage). The integrate result is compared with three external datasets which represent three types of 

expression data: the data from same kind (TiSGeD with microarray data), the data from similar 

technology (TiGER with EST data), and the proteomic data (HPA with antibody). The comparison 

confirmed the preciseness of the result, the advantage of comprehensive analysis, and the reliability of 

the prediction.   

 

During the optimization of the methods, a set of tissue-specific genes are used to evaluate the 

parameters (Section 3.2). One may argue that the data would be over-fitted by training on only specific 

genes. However, two sets of testing genes (testing set 2) are used to verify the quality of the method in 

a later stage, and a ubiquitously expressed gene set is included. The result in Table 10 confirmed that 

the ubiquitously expressed genes can be properly detected.  

 

To investigate the integrated results in Table 12, two parameters, the ‘coverage’ and the ‘score’, assess 

the reliability of the results. Obviously, genes with higher scores or coverage are more likely to be 

specific than those with lower values. However, it is more complicated to analyze genes with low 

support but high coverage or genes with high support but low coverage. The coverage is the existence 

of a particular gene in the four datasets, which is largely dependent on the enrichment of data sources. 

For example, GeAZr data almost doubled the number of genes in BioGPS and GDS596. Genes with 

‘coverage one’ are mostly from GeAZr data, or the probesets without annotated gene names. The 

coverage can be considered as an auxiliary mark. The score, which is the primary indicator of 

specificity, can be affected by the tissue vocabulary of each dataset and the quality of probesets for 

each gene. For instance, the tissue stomach is only included by GeAZr and GDS3113, the lack of this 

item in BioGPS and GDS596 can be the cause of low score for stomach specificity in genes like LIPF. 

On the other hand, as there are probesets of bad quality, the average algorithm, which treats each 

probeset equally, may produce noise to the final score. For example, if three out of five probesets of a 

same gene are specific in heart, and the other two, which are actually of bad quality, are specific in 

liver, the algorithm will give heart 0.6 instead of full score. In order to diminish the noisy level, we 

have improved the scoring algorithm by introducing the majority vote in the probesets (Section 3.4.3); 

however, as there is no authority for the quality of probeset, it is difficult to give an exact score in 

large scale level. The scoring algorithm in this project is experimental and aims to solve the problem 

in a simple manner. For the future work, methods using statistical model or machine learning 

approaches might be inspiring. 

 

The co-occurring 2-selective tissue pairs with related functions are not rare cases in Section 4.4 (Table 

17). To some extent, this has confirmed that gene is expected to express in functionally related tissues. 

This point gives a suggestion to the future work:  
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1. Examine the expression pattern among cell lines instead of separate tissues [42-43]. A gene that is 

functionally important to a particular cell type can be expressed across many tissues that contain 

this type of cells. In this case, the gene with a biological meaning of specificity probably cannot be 

detected as specific in any tissue. The detection of cell line specific genes might be a valuable 

complement in both functional biology and pharmaceutical development.  

2. To another extend of interest, the result of functional similarity of tissue pairs, is also an issue of 

vocabulary mapping. For example, should the CNS and cerebellum be grouped together or not? 

According to the principle of this project, since cerebellum occurs in three datasets out of four, it 

is more reasonable to keep it as an independent term. Contradictory, from the biological point of 

view, the cerebellum is a part of central nerve system, and in this case, these 2-selective genes are 

actually CNS-specific genes.  

 

The integration of result is basically achieved by averaging the results over four different 

dataset/method pairs. However, instead of this computational meta-analysis, an alternative approach 

can be started from integrating the microarray data in the probeset level before applying the detection 

methods. The advantage of this approach is obvious: more reliable expression data save of 

computational resources; no need of multiple methods; avoidance of the bias caused by the 

combination of results. This approach requires more expertise on large scale transcriptomic technology 

and profound biological knowledge. Further, it is not evident how to combine data obtained from 

different platforms.  

 

From the technologies perspective, RNA-Seq, a recently developed large-scale profiling method using 

deep-sequencing technology can provide a more precise, more efficient and less expensive 

measurement on the trancriptomic level [44]. A few studies have been performed on this new data type: 

an analysis across human and mouse tissue and cell lines reported approximately 8000 ubiquitously 

expressed genes [45]; another research on soybean trancriptome identified the most highly expressed 

and the legumes-specific genes [46], etc. Of course, as a technology in its early developing stage, 

RNA-seq has challenges to be conquered, such as the enrichment of data, the target of more complex 

trancriptomes, ect. However, it is expectable that this kind of new technology will play the main role 

in the future trancriptomes and provide significant benefits to the study of gene expressional 

specificity.  

 

In conclusion, this study can provide meaningful indication for the prediction of innovative drug 

targets, and a valuable reference to the other technologies of expression-pattern-relevant studies. 
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Appendix  

A - 1: The vocabulary mapping for BioGPS.  

New Term Original Term New Term Original Term 

Testis Testis Bone.marrow Bonemarrow 

TestisGermCell Kidney Kidney 

TestisIntersitial Ovary Ovary 

TestisLeydigCell Placenta Placenta 

TestisSeminiferousTubule Prostate Prostate 

Uterus Uterus Salivary.gland Salivarygland 

UterusCorpus Skin Skin 

Pineal pineal_day Spinal.cord Spinalcord 

pineal_night Thymus Thymus 

Pancreas Pancreas Tongue Tongue 

PancreaticIslet Tonsil Tonsil 

Skeletal.muscle SkeletalMuscle Trachea Trachea 

Smooth.muscle SmoothMuscle Blood WholeBlood 

Cardiac.myocytes CardiacMyocytes Colon colon 

Adrenal AdrenalCortex Retina retina 

Adrenalgland Small.intestine small_intestine 

Cerebellum Cerebellum Thyroid Thyroid 

CerebellumPeduncles Liver Liver 

CNS Caudatenucleus Lung Lung 

GlobusPallidus Lymph.node Lymphnode 

MedullaOblongata REMOVED CD105+_Endothelial 

OlfactoryBulb CD14+_Monocytes 

Pituitary CD19+_BCells(neg._sel.) 

Pons CD33+_Myeloid 

SubthalamicNucleus CD34+ 

Hypothalamus CD4+_Tcells 

Thalamus CD56+_NKCells 

Wholebrain CD71+_EarlyErythroid 

Amygdala CD8+_Tcells 

OlfactoryBulb BronchialEpithelialCells 

ParietalLobe BDCA4+_DentriticCells 

TemporalLobe FetalThyroid 

CingulateCortex Fetalbrain 

PrefrontalCortex Fetalliver 

Nerve CiliaryGanglion Fetallung 

DorsalRootGanglion Leukemia_chronicMyelogenousK-562 

SuperiorCervicalGanglion Leukemia_promyelocytic-HL-60 

TrigeminalGanglion Leukemialymphoblastic(MOLT-4) 

Heart Heart Lymphoma_burkitts(Daudi) 

AtrioventricularNode Lymphoma_burkitts(Raji) 

Adipocyte Adipocyte 721_B_lymphoblasts 

Appendix Appendix Colorectaladenocarcinoma 
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A-2: The vocabulary mapping for GDS596 

New Term Original Term New Term Original Term 

CNS Caudatenucleus Bonemarrow Bonemarrow 

GlobusPallidus Kidney Kidney 

MedullaOblongata Ovary Ovary 

OlfactoryBulb Placenta Placenta 

Pituitary Prostate Prostate 

Pons Salivary.gland Salivarygland 

SubthalamicNucleus Skin Skin 

Hypothalamus Spinal.cord Spinalcord 

Thalamus Thymus Thymus 

Wholebrain Tongue Tongue 

Amygdala Tonsil Tonsil 

Occipital lobe Trachea Trachea 

ParietalLobe Blood WholeBlood 

TemporalLobe Thyroid Thyroid 

CingulateCortex Liver Liver 

PrefrontalCortex Lung Lung 

Testis Testis Lymph.node Lymphnode 

TestisGermCell REMOVED CD105+_Endothelial 

TestisIntersitial CD14+_Monocytes 

TestisLeydigCell CD19+_BCells(neg._sel.) 

TestisSeminiferousTubule CD33+_Myeloid 

Uterus Uterus CD34+ 

UterusCorpus CD4+_Tcells 

Pancreas Pancreas CD56+_NKCells 

PancreaticIslet CD71+_EarlyErythroid 

Skeletal.muscle SkeletalMuscle CD8+_Tcells 

Smooth.muscle SmoothMuscle BronchialEpithelialCells 

Cardiac.myocytes CardiacMyocytes BDCA4+_DentriticCells 

Adrenal AdrenalCortex FetalThyroid 

Adrenalgland Fetalbrain 

Cerebellum Cerebellum Fetalliver 

CerebellumPeduncles Fetallung 

Nerve CiliaryGanglion Leukemia_chronicMyelogenousK-56

2 DorsalRootGanglion Leukemia_promyelocytic-HL-60 

SuperiorCervicalGanglion Leukemialymphoblastic(MOLT-4) 

TrigeminalGanglion Lymphoma_burkitts(Daudi) 

Heart Heart Lymphoma_burkitts(Raji) 

AtrioventricularNode 721_B_lymphoblasts 

Adipocyte Adipocyte Colorectaladenocarcinoma 

Appendix Appendix   
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A-3: The vocabulary mapping for GeAZr (part 1) 

New Term Original Term New Term Original Term 

Vessel Aorta Epididymis Epididymis 

Artery Prostate Prostate 

Abdominal aorta Seminal vesicle Seminal vesicle 

Ascending aorta Testis Testis 

Blood vessel Vas deferens Vas deferens 

Coronary artery Articular surface of bone Articular surface of bone 

Vein Bone structure Bone structure 

Heart Heart Meniscus of joint Meniscus of joint 

Left atrium Tendon Tendon and tendon sheath 

Left ventricle Soft tissue Soft tissues 

Right atrium Omentum Omentum 

Right ventricle Skeletal muscle Skeletal muscle 

Bile Common bile duct Smooth muscle Smooth muscle 

Gallbladder CNS Brain 

Liver Hepatic duct Frontal cortex 

Liver Occipital cortex 

Pancrea Pancreas Temporal cortex 

Salivary gland Parotid gland Parietal cortex 

Salivary gland Corpus callosum 

Appendix Appendix Locus ceruleus 

Colon Colon Caudate nucleus 

Small intestine Duodenum Putamen 

Ileum Nucleus Accumbens 

Jejunum Globus pallidus 

Small intestine Subthalamic nucleus 

Esophagus Esophagus Substantia nigra 

Rectum Rectum Medulla oblongata 

Stomach Stomach Nucleus basalis of Meynert 

Tongue Tongue Amygdaloid nucleus 

Adrenal Adrenal cortex Hippocampus 

Adrenal gland Hypothalamus 

Thyroid Thyroid gland Pulvinar 

Cervix Cervix Thalamus 

Endometrium Endometrium Cingulate gyrus 

Fallopian tube Fallopian tube Entorhinal cortex 

Myometrium Myometrium Pituitary gland 

Ovary Ovary Red nucleus 

Uterus Uterus White matter of occipital lobe 
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A-3: The vocabulary mapping for GeAZr (part 2) 

New Term Original Term New Term Original Term 

Vagina Vagina Cerebellum Cerebellum 

Vulva Vulva Nerve Nerve 

Lymph node Lymph node Spinal cord Spinal cord 

Spleen Spleen Placenta Placenta 

Thymus Thymus Bronchus Bronchus 

Tonsil Tonsil Larynx Larynx 

Blood White blood cell Lung Lung 

Adipocyte Perirenal fat Trachea Trachea 

Adipose tissue Bladder Bladder 

Adipose tissue of breast Kidney Kidney 

Brest Breast Ureter Ureter 

Skin Skin Urethra Urethra 
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A-3: The vocabulary mapping for GDS3113 

New Term Original Term 

Lung lung 

Liver liver 

UHR Universal.Human.Reference 

CNS brain 

Prostate prostate 

Skeletal.muscle skeletal.muscle 

Heart heart 

Spinal.cord spinal.cord 

Tonsil tonsil 

Trachea trachea 

Uterus uterus 

Small.intestine small.intestine 

Skin skin 

Ovary ovary 

Testis testis 

Pancreas pancreas 

Thymus thymus 

Kidney kidney 

Placenta placenta 

Thyroid thyroid 

Salivary.gland salivary.gland 

Colon colon 

Mammary.gland mammary.gland 

Spleen spleen 

Adrenal adrenal.gland 

Blood peripheral.blood.lymphocyte 

Bonemarrow bone.marrow 

Retina retina 

REMOVED fetal.liver 

fetal.brain 

fetal.thymus 

fetal.kidney 

  


