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Trading performance for precision in a CRDT-based rate-limiting system
Andreas Henriksson & Svante Bennhage

Department of Computer Science and Engineering

Chalmers University of Technology and University of Gothenburg

Abstract

The past two decades have seen a rise in popularity of distributed cloud services,
where some service is replicated and thus made available from several nodes to
handle high loads of traffic and maintain operations at low latency. This rise in
popularity has increased the need for solutions that enable fair distribution and
limitation of these services’ resources among its users, one of which is referred to
as rate limiting. One of the rate-limiting solutions at Spotify, the company at
which this thesis was conducted, employs optimistic replication and uses replicated
counters to implement a token-bucket algorithm. The counters track the number of
approved requests for users, rate limit the user based on this number, and operate in
a conflict-free manner. The protocol for synchronizing nodes makes use of gossiping
to lazily propagate synchronization messages to keep the costs of communication
low. This solution strongly ties the system’s ability to accurately rate limit users to
the convergence rate between the replicated states.

A shortcoming of this solution is that users can exceed the limit by sending many
requests to multiple nodes within a short period. To address this shortcoming, this
thesis introduces and evaluates an alternative rate-limiting solution that enables the
system to monitor the frequencies of users’ requests continuously. These frequencies
are then used to synchronize data for users that could reach their limit sooner than
their states synchronize with gossiping. To determine the frequencies between users’
requests, the requests’ time of approval are stored as elements in a replicated queue.
To uphold the token-bucket algorithm using this queue, each element additionally
holds a timestamp of when the element should be removed. While storing the ap-
proval time of requests in a replicated queue caused the nodes to require more time
to converge, our experiments have shown that it does not influence the number of
approved requests, i.e., precision, in most cases. However, the precision could be
impacted when dealing with requests sent at a specific rate. To prevent degrada-
tion of the precision, the system’s parameters, for example, the rate at which nodes
synchronize and the number of nodes, have to be set with care. The solution was
shown to allow the rate-limiting system to enjoy the benefits of lazy synchronization
for users who should not be rate limited. The rate-limiting system was simultane-
ously able to synchronize faster for misbehaving users, resulting in higher precision,
at the cost of temporary increases to communication costs. Finally, the memory
consumption was reduced to 13.6 % of the previous solution’s memory usage when
dealing with traffic representative of Spotify’s system.

Keywords: rate limiting, gossip, precision, frequency, replicated queue, continuous
distributed monitoring, delta synchronization
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1

Introduction

The past decade has seen a massive rise in the popularity of cloud computing [11].
In essence, cloud computing is the use of one or more remotely located computers
as hosts for purposes such as servers, software, and applications. It is an attractive
alternative to using in-house computers as it allows for flexibility in terms of comput-
ing power, scalability, availability, and accessibility, among other things [12].

1.1 (Geo-replicated distributed systems

In order to provide highly available services through the cloud, users should not
have to rely on any individual data center or computer, i.e., node, for their use of
such services. For example, in applications where user data plays a vital role in
personalizing the user experience, having a single point of failure can leave users
without access to the application. An example of such an application is Spotify,
an audio streaming platform with 356 million monthly active users as of March 31,
2021 [1].

Cloud-based services often resort to geo-replication to scale with the increasing
worldwide use [13]. An illustration of a geo-replicated distributed system can be
seen in Figure 1.1. By replicating both data and computation across multiple data
centers, the services are made both highly available and have the impact of failures
reduced for users [13]. If a data center fails, users could still access the service else-
where as both their data and the service are replicated and accessible in another
location. For example, Spotify stores and replicates data about users’ interactions
with playlists and artists in order to personalize recommendations for music the user
may be interested in [20].

While geo-replication is an attractive option for scaling distributed systems, it is
not a seamless solution. The CAP theorem states that a distributed system cannot
uphold more than two of the three properties consistency, availability, and partition
tolerance at the same time [10]. These properties describe a distributed system’s
ability to maintain the same data on different nodes, serve requests at all times,
and function during times when nodes in the system cannot communicate with each
other. Since geo-distributed systems have a strong emphasis on maintaining high
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Figure 1.1: An illustration of a geo-replicated distributed system

availability, this coincides with the consistency of such a system. Thus, these systems
have to employ a consistency model® to synchronize the data stored on the replicas,
also referred to as their states.

Implementations of consistency models may vary significantly between systems, for
example, how frequently each node synchronizes, how many neighbors the nodes
synchronize with at a time, and how the neighbors to synchronize with are chosen.
Additionally, distributed and parallel systems are used for various purposes and
operate under different circumstances in terms of both scale and implementation.
As such, it is a natural conclusion that a single consistency model or implementation
thereof will not be optimal or even practical for every possible system. However, it
is common to use established consistency models as a guideline and modify them to
fit the specific system’s target in terms of availability versus consistency.

There are two major categories of approaches for achieving consistency in replicated
systems: strongly consistent replication [16] and optimistic replication [23]. For this
thesis, only the latter is of interest. The idea behind optimistic replication is to let
replicas serve users without first having to synchronize with the other replicas and
resolve any inconsistencies at a later time [23]. To this end, a consistency model
known as eventual consistency is important for the correctness of systems that utilize
this approach [24].

LA consistency model describes a strategy for reaching consistent states across nodes in dis-
tributed systems.

2
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The approach of optimistic replication attempts to maximize the performance and
availability of distributed systems. The systems that utilize this model are often
designed to resolve conflicts between replicas that arise due to asynchronous mod-
ifications to their states. Such conflicts typically have to be solved by reverting
replicas to some earlier state prior to the modifications which are then reapplied
in an order that does not incur any conflicts [26]. However, depending on how a
system is designed, one may utilize Conflict-Free Replicated Data Types (CRDTS).
CRDTs are a category of abstract data types whose operations do not cause conflicts
between replicas and are therefore able to utilize comparatively cheap consistency
models for synchronization between replicas.

Optimistic replication schemes often utilize gossip-based dissemination protocols,
sometimes simply referred to as gossiping, to slowly spread information between
replicas. It has seen use in large-scale distributed storage systems such as Cassandra
[17], and Dynamo [8], developed by Facebook and Amazon, respectively. Gossiping
typically operates by choosing targets for exchanging information at random. In
terms of spreading data in distributed systems, gossiping relies on similar proba-
bilities that can be observed in how epidemic diseases spread through populations

[14].

1.2 Rate limiting in distributed systems

The cloud infrastructure has massively increased the possibility to provide services to
large numbers of users in a scalable way. However, since the resources of such services
are shared between the users, there are plenty of reasons to limit the users’ access
to the resources. Examples of these reasons are prevention of resource starvation,
management of policies and quotas, and flow control [4]. Solutions to this problem
are broadly referred to as rate limiting and have historically been used for such
things as protection against denial-of-service attacks [27], brute-force attacks, and
limiting access to APIs [5].

With services transitioning to distributed infrastructures, it is only natural that
algorithms for rate limiting must be adapted for these circumstances. An example
of distributed rate limiting is presented by Raghavan et al. in [22], where a set of
distributed traffic rate limiters collaborate to keep the global bandwidth usage of
a cloud-based service below a global aggregate limit. One can naturally conclude
that in systems similar to this one, the convergence rate between the rate limiters
impacts the correctness of the rate limiting. Changes in bandwidth usage observed
by one rate limiter have to be delivered to the other rate limiters so that they may
increase or decrease the available bandwidth for the part of the service they are
responsible for. Otherwise, their decisions do not reflect the system state, and the
global limit could either be surpassed or not be utilized very well.

As previously mentioned, optimistic replication schemes often synchronize slowly to
reduce communication costs. On top of this, the efficiency of rate-limiting algorithms
relies on access to as much of the data used for rate limiting as possible, preferably
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as early as it is available. Thus, for systems that utilize both optimistic replication
and rate limiting, this is difficult to solve.

1.3 Background

Spotify has multiple backend services that respond to requests sent by users that
are using the Spotify product. For some of these backend services, their resources
are required to be fairly distributed among the users. To achieve fair distribution,
the requests to those services first have to be approved by a rate-limiting system. If
a user has sent too many requests within a too short time frame, the user’s requests
will be rejected.

In this thesis, a solution for performing rate limiting in a replicated manner was de-
signed and evaluated in collaboration with Spotify. This solution is heavily inspired
by one of the rate-limiting strategies used at Spotify, which uses CRDTs and an
optimistic replication scheme to maintain a high availability and low costs for the
synchronization of replicas. As a replicated rate-limiting system naturally relies on
the rate of convergence between replicas, the solution was designed with two goals
in mind. First, it was desired to preserve the same algorithm that this particular
strategy for rate limiting at Spotify uses. In addition to this, the solution was de-
sired to enable temporary increases of the convergence rate for the states of users
that are likely to quickly breach a limit. This decision is based on analysis of the
frequency users send their requests at and is done to prevent users from surpassing
the system limit by too great of a margin before being limited across all nodes.

The structure of the rest of the report is as follows. Chapter 2 explains central con-
cepts that appear throughout the report more in-depth. In Chapter 3, the strategy
mentioned above for rate limiting is described. The design of a system that adopts
this strategy acts as the baseline for the thesis, to which the proposed solution will be
compared. This chapter also describes the aim, problem statement, and limitations
of the thesis. Chapter 4 details the design and implementation of our solution. It
also explains how the proposed solution maintains the same rate-limiting algorithm
as Spotify’s system. On top of this, it describes the framework used for testing
and comparing our solution to the baseline, and the data sets used for evaluation.
Chapter 5 lists all the results with accompanying graphs for evaluation combined
with a discussion of the results. Chapter 6 presents ideas and solutions similar to
the one presented in this thesis. Finally, Chapter 7 concludes with a summary of
the report and a suggested future research direction.
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Preliminaries

The following section describes two core concepts that are later used in the thesis
more in-depth.

2.1 Conflict-free Replicated Data Types

Conflict-free Replicated Data Types, introduced by Shapiro et al. in [25], refer to
data types that are designed to provide strong eventual consistency in distributed
systems. Strong eventual consistency is an extension of eventual consistency, a form
of weak consistency commonly found in systems that replicate data. A system that
replicates objects is said to uphold eventual consistency if all replicas of an object
eventually converge to the same value [24].

In order for a distributed system to uphold strong eventual consistency, it has to
fulfill two criteria. First, it has to be eventually consistent. Secondly, it has to
guarantee that any two replicas that have delivered! the same updates have equiva-
lent states. When employing eventual consistency, replicas are typically allowed to
change their state independently, which can introduce conflicts between the replicas’
states. However, there is a difference between differing states and conflicting states.
Conflicts can arise when two or more states synchronize with each other. By having
the operations of a system employing specific semantics and mathematical rules,
conflicts can be avoided altogether.

At the time of this thesis, there are two types of CRDTs we know of, namely state-
based CRDTs and operation-based CRDTs. In simple terms, state-based CRDTs
synchronize by sending their states to each other and merging the local state with
the received one. Operation-based CRDTs synchronize by sending the operations
they performed on their local state to be performed on the states of every other
replica.

!A delivered update is an update part of the causal history of updates that have been applied
on a replica [25]
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2.1.1 Concurrency semantics

Abstract data types operate with well-defined behaviors according to their interfaces.
For example, a simple counter could be represented by an integer, which is hereafter
referred to as the state of the counter, and an addition operation. Consider an
execution of a program that continuously updates the state of the counter using
only the operation for addition. Addition is a commutative operation, meaning that
the result of this operation is not affected by the order of the elements it is performed

on.

Counter A Counter B Counter A Counter B
Count A: 0 Count A: 0
Count: 0 Count: 0 Count B: 0 Count B: 0
Counter A Counter B Counter A Counter B

4 Count: 4 Synchronize Count: 2 1o +4 SZEEE é 3 Synchronize 8332: é 2 )
Counter A Counter B Counter A Counter B
Count: 6 Count: 6 Count B: 2 Count B: 2
Counter A Counter B Counter A Counter B

14 Count: 10 | Synchronize Count: 9 13 +4 ggﬁﬁz g g Synchronize SZEEE é g 13
Counter A Counter B Counter A Counter B
. S Count B: 5 Count B: 5

44+24+4+3#19 4+2+4+3=13

(a) a single value (b) one value for each node

Figure 2.1: Two examples of concurrency semantics for a replicated counter

Now consider a counter with a state identical to the previously mentioned counter,
but instead replicated across two nodes A and B. Replicas A and B perform additions
on their respective states, individually from one another, and the state of the counter
is now represented by the sum of additions made on both A and B. Consider the
example of Figure 2.1. In (a), a single value is updated concurrently on the two
replicas. Since the state of the counter is the sum of all additions made on each
replica, it is apparent that a single value is not sufficient to maintain an accurate
sum of additions on all replicas past the first synchronization. Thus, the semantics
of a single instance of a counter do not naturally translate to a replicated counter.
In (b), the replicas instead hold a value for additions made on each replica. When
synchronizing with the other node, the sum of additions made on each node is shared
and updated. This way, each node can summarize the value of its local additions
and the additions made on the other node to calculate the correct sum of additions
to the counter.
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In the context of replicated data types, concurrency semantics refer to how con-
current alterations of replicated objects are dealt with in order for the states of
all replicas to converge. The concurrency semantics are thus crucial to both the
behavior and correctness of the data type. For most data types, there is not one
concurrency semantic that naturally is suitable over another — it has to be chosen
based on the application of the CRDT [21].

2.2 Token bucket algorithm

The token bucket algorithm emulates a physical bucket or dispenser and is often
used for regulating some form of traffic. The algorithm has been used for flow
access control in cloud storage [3], gateways for traffic control for micro-services
[19], and in network utility maximization problems [9], among other things. It is a
commonly used algorithm for rate limiting.

While the implementation of the algorithm can vary, the basic premise remains the
same and is shown in Figure 2.2. A bucket is used to hold up to a maximum number
of tokens. For as long as the bucket is not empty, tokens may be consumed and
traded for some resource or service. Thus, a request made to a bucket that is either
empty or does not contain enough tokens to pay for the requested service will be
denied, effectively rate limiting the sender of the request. Whenever the bucket is
not full, tokens are refilled according to some rate. The relation between the size
of the bucket and the rate at which it is refilled therefore defines the rate at which
tokens can be consumed from the bucket. Since the algorithm can be used in many
different contexts as mentioned above, the services and resources that the bucket
provides access to varies greatly depending on where it used. For example, a token
bucket could be used to limit the number of queries to a database.

The token bucket algorithm is effective at shaping traffic. Once a bucket is empty,
it will no longer permit any requests until it has been refilled with new tokens.
However, an essential property of the algorithm’s behavior is that it does not prevent
bursts of traffic. A full bucket can be consumed rapidly with no regard to how the
service which the tokens pay for is impacted.
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Attempt to refill
bucket

Incoming request

Yes
Is the bucket

full?

Do not refill

Yes
Is the bucket

empty?

Discard

Refill some
number
of tokens

Remove token(s)

and use for some .

service l

(a) Rate limiting (b) Refilling the bucket

Figure 2.2: An example of the token bucket algorithm
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System Model & Problem
Statement

This chapter first provides a detailed description of the existing system design and
describes an inherent flaw with the design. The aim and problem statement of the
thesis is then presented. Finally, the metrics that will be used in the evaluation are
introduced.

3.1 A token bucket design using counters

One of the methodologies for rate limiting at Spotify is to use a token bucket al-
gorithm, as described in Chapter 2. This section describes a system, hereinafter
referred to as the system, that employs the same algorithm and data structure for
rate limiting as Spotify’s system. The differences consist of minor performance
changes that will not be described for confidentiality reasons.

The system keeps track of how many requests each user has had approved so far
and the maximum number of requests each user is allowed to have approved until
the present time. It does this by assigning a token bucket for every user. Approving
a request consumes a token, which is removed from the bucket. A token bucket has
a limit for how many tokens it can hold at any time, and requests are denied if the
bucket is empty. It also has a rate at which tokens are refilled whenever the bucket
is not full. However, saying that the bucket is refilled with tokens is a simplification.
In reality, the act of refilling the bucket is represented by incrementing the limit
of the bucket, thus increasing the disparity between the limit and the number of
consumed tokens.

In the system, a token bucket is represented by three values: a value for the total
number of tokens removed from the bucket, hereinafter referred to as token counter,
another value for the maximum number of tokens a user is allowed to have consumed
up until the present time, hereinafter referred to as the limit, and a timestamp
of when the limit counter was last updated, hereinafter referred to as the refill
timestamp. Two parameters are used to alter these values: a refill rate, which
determines how many new tokens per time unit should be added to the limit, and a
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capacity, which determines how many tokens the bucket can hold.

Whenever a new request arrives, the system first determines if a request originates
from a new user or a user that already has a dedicated token bucket. As seen in
Listing 3.1 on lines 2-3, the system creates a new token bucket when the request
originates from a new user. The bucket is initialized with its limit set equal to the
value of the capacity parameter. In the latter case, the system instead determines
if and how much the user’s token bucket limit should be increased. It does this
by comparing the timestamp of when it was last refilled to the current time. The
difference between the two multiplied with the refill rate capped by the capacity
parameter yields the number of added tokens the user is allowed to consume.

After the bucket has been refilled by the calculated amount, the system checks if the
bucket is empty, which it does by asserting that the limit is not lower than or equal
to the number of consumed tokens. If the bucket is empty, the request is rejected.
In all other cases, a token is removed from the bucket through the consume method
before the request is accepted.
on received request:
if user is new:
user.token_bucket = new token_bucket(limit = config.capacity)
else:
user.token_bucket.refill ()

if user.token_bucket.is_empty():
reject request

user.token_bucket.consume ()
accept request

token_bucket:

refill ):
now = current_timestamp ()
delta_limit = (now - refill_timestamp) * config.refill_rate

if delta_limit > O:
limit += min(delta_limit, config.capacity)
refill_timestamp = now

Listing 3.1: Pseudo-code for receiving a request

To deal with the large scale of Spotify’s user base, the rate-limiting system is dis-
tributed and replicated, i.e., all nodes should be able to process any request from
any user. Processing requests on different nodes causes their states to diverge. To
achieve the goal of having high availability while having consistent states across
nodes, the system makes use of CRDTs. More specifically, the token counter is
represented as a map of node identifiers for the nodes that have processed consume
requests for this user. Each identifier maps to a value representing the number of
requests the respective node has accepted for this user. As shown in Listing 3.2,
consume requests increment the value for the local node by one. The total number
of approved requests consists of the sum of the map values.
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3. System Model & Problem Statement

token_bucket:
consume () :
token_counter[local_node_id] += 1

Listing 3.2: Pseudo-code for the consume method

To keep consistent states, nodes periodically update their neighbors with changes
to their state. To reduce the cost of synchronization and communication, the nodes
keep a delta state for each neighbor. The delta states of a node contain the part
of the state corresponding to the users that have consumed tokens since the node
last synchronized with its respective neighbors. A synchronization message contains
the delta state for a neighbor and is sent at a fixed interval. Once the message has
been sent, the delta state is then removed from the sender. Which node to update
is chosen according to flat gossiping, i.e., uniformly at random.

on received delta_state from sender:
updates = {}
for user, received_bucket in delta_state:
if user not in local_state:

local_state[user] = received_bucket
updates [user] = received_bucket
else:
local_bucket = local_state[user]
local_state[user] = local_bucket.merge(received_bucket)
if local_bucket != local_state[user]:
updates [user] = local_state[user]

for node not sender, delta_state in delta_states:
merge_updates (updates, delta_state)

Listing 3.3: Pseudo-code for receiving a delta state

token_bucket:
merge (other_bucket) :
merge_token_counter (other_bucket.token_counter)
merge_limit (other_bucket.limit,
other_bucket.refill_timestamp)

merge_token_counter (other_token_counter):
for node_id, node_value in other_token_counter:
if node_id in token_counter:
new_value max (token_counter [node_id], node_value)
else:
new_value = other_token_counter[node_id]
token_counter [node_id] = new_value

merge_limit(other_limit, other_refill_timestamp):
if other_limit > limit:
limit = other_limit
refill_timestamp = other_refill_timestamp (

Listing 3.4: Pseudo-code for merging two user states
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When a node receives a synchronization message, it is merged with the node’s local
state by iterating over the received delta state. The merged token counter for every
user will consist of the union of the local state and the delta state, as seen in
Listing 3.3. In the case of conflicting values for a node identifier, the resulting token
counter will keep the greatest value, which is shown in Listing 3.4 on line 10. The
limit and the refill timestamp are also merged, where the greatest limit and its
accompanying refill timestamp are kept, which is shown on lines 1618 in the same
listing.

Since the perception of time is used in multiple nodes, the decisions of the nodes
may vary if their clocks are too different. For this reason, synchronized clocks are
assumed.

After merging the state for a user, its token bucket is added to a map that holds
updates if the merge updated the token bucket. Once this process has been re-
peated for each user in the delta state, the map of updates is merged with the delta
state of every neighbor aside from the node that sent the initial synchronization
message.

3.1.1 The problem of exceeding the limit

The current system is designed such that rate limiting is performed ad hoc based
on the state of whichever node at which any request arrives. Any request that is
approved by any node causes the state of the node to diverge from every other node
in the network. Between the time of a node approving a request and the time at
which the neighbors are updated with information about this request, neighbors
operate as normal while unaware of the approval of this request. Consequently, a
node may approve enough requests for a user to reach their limit before the node is
made aware of requests the user has had approved by any other nodes. The result
is that users can exceed the limit when they are served by more than one node.
The more nodes the system consists of, the more a user can exceed its limit if many
nodes process its requests.

While gossiping is an option suited for reducing the communication cost, it does
so by trading a higher convergence rate by limiting the number of updates. This
trade-off worsens the problem of users exceeding the limit as the node states diverge
further from each other before they eventually synchronize.

3.2 Aim

The thesis aims to decrease the time it takes for a node in the distributed system
to make the same decision as a centralized system that performs the same task and
receives the same requests. This decrease should be accomplished while still mainly
relying on gossiping for disseminating information.

The goal mentioned above could be accomplished by making sure nodes have the
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most critical data sooner while not receiving all data as quickly. One way to decrease
the time is to make sure the convergence rate is high. As a result, rate-limiting
decisions across nodes would achieve higher precision. In this context, the precision
of a decision refers to if it is correct based on the user’s state of the entire system,
not only the local user state of a node. To improve the convergence rate, it might
be possible to make smarter decisions about which neighbor to synchronize with
compared to uniformly at random. Suppose such a decision is feasible and results
in each node sending an equal or larger number of updates on average with each
synchronization step. In that case, the improvement of such a decision can be
explained by the receiving neighbor having the same or more information sooner
than before. We hypothesize that if all nodes apply this rule, the whole network of
nodes will converge at a faster pace.

Another way is to give the system access to more nuanced data that could provide
information such as the frequency between user requests, allowing the system to
take action proactively.

Such an action could be to immediately update neighbors of a user’s state if the
frequency between this user’s requests is deemed suspicious. By prioritizing the
propagation of critical data, we aim to reduce the time between when the distinction
of suspicious behavior can be made and when the data has reached the neighbors.
Thus, the neighboring nodes would make informed decisions sooner than if the data
were to propagate through normal means. This reduction of latency could, in turn,
result in the user being rate-limited, for example, if the user has sent requests to
many other nodes simultaneously.

To summarize, it is desired to increase the overall convergence rate and give the sys-
tem the means of detecting specific user behavior to propagate critical information
quicker, specifically in those cases.

3.3 Problem statement

The information of how frequently a user has had requests approved in the recent
past can be represented by a queue holding the timestamps of when the requests
were approved. To maintain the same availability as the baseline, replicas of the
queue should not have to synchronize prior to adding timestamps to their local state,
and instead be allowed to immediately add them to the end of the local state. For
this reason, a timestamp’s order in a replica of the queue may have to be changed
when replicas are synchronized. We thus refer to the queue as relaxed, as the end
of the local state at one replica is not necessarily the end of the queue given the
timestamps of all replicas.

To realize the goal of a higher convergence rate and propagation of data related to
suspicious user behavior, the following questions should be answered:

Q1 How can a relaxed, distributed, and delta-synchronized queue holding the
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timestamps of the recently accepted requests per user be designed and imple-
mented as a means for both rate limiting and frequency analysis?

Q2 Is the precision affected by using the queue, where consumed tokens are rep-
resented as individual elements, compared to the baseline?

Q3 Compared to the baseline, how is the precision affected by identifying and
rapidly distributing potentially impactful data?

Q4 As opposed to the baseline, the queue enables nodes to determine how many
updates their neighbors are missing by counting the number of elements in
their delta states. Is the precision impacted by continuously synchronizing
with the neighbor that is considered most behind in updates?

Moreover, when these questions have been answered, the system’s performance will
be evaluated with these additions compared to the unmodified system in terms of
memory and bandwidth consumption and the convergence rate.

3.4 Limitations

This section describes the limitations that have been made for the project.

3.4.1 Upholding the definition of being a CRDT

This thesis is concerned with constructing a solution compatible with the system’s
way of propagating information using delta states. Therefore, proving whether the
queue conforms to the requirements of being a CRDT or not is out of the scope for
this thesis.

3.4.2 Proactive actions

Using frequency analysis, the nodes will be able to identify requests that have ar-
rived suspiciously close to each other. When this happens, there are two actions
a node could take. The first option is to propagate this information to the node’s
neighbors faster than by normal means. This option trades bandwidth for higher
precision.

The other option is for the node to estimate the overall number of consumed tokens
and possibly actively rate-limit the user even if the local limit has not been reached.
This option may result in false positives since users might send a few frequent
requests that happened to arrive at just one node. In that case, the node would end
up rate-limit the user incorrectly. On the other hand, this approach can potentially
react faster than simply waiting for the nodes to communicate first.

The thesis aims to investigate the feasibility of using a queue rather than counters
to perform rate limiting. For this reason, it is out of the scope to find the most
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accurate trigger rule. Instead, a rule that would ideally demonstrate the usefulness
of the queue without necessary being optimal will be used. As such, it is desired to
avoid any false positives since it otherwise might put the proposed design in a bad
light because of simple rules. For that reason, the action of propagating information
will be used as opposed to the one that prematurely rate-limits users.

3.5 Metrics

In this section, the metrics that will be used to evaluate the proposed changes are

described.

Number of correctly rejected requests

When evaluating the performance of the proposed changes, the number of correctly
rejected requests is ultimately what determines how much better they perform com-
pared to the existing design using counters.

Memory and bandwidth consumption

Aside from the metric mentioned above, it is desired to see how much higher memory
and bandwidth consumption is required for the queue to be used compared to the
design using counters.

Convergence time

When evaluating the deterministic gossip approach compared to the traditional
random gossip approach, it is desired to measure how long it takes for the two
cases to converge. It is also interesting to evaluate how the queue’s convergence
time compares to the design using counters.

15



3. System Model & Problem Statement

16



4

Methods

This chapter describes the process of fulfilling the aim of the thesis. Various design
choices for a relaxed distributed delta-synchronized queue, hereinafter referred to as
queue, used for rate limiting, are described and motivated. These design choices are
followed by implementation details of the queue and how it is used for both what
is referred to as Least Informed Neighbor First-gossiping and frequency analysis of
approved requests. Finally, the process of testing the queue for the metrics found
in Section 3.5 in order to evaluate its performance is described.

4.1 Queue design

To determine the frequency of accepted requests, the user state can be represented by
a queue holding the timestamps for when recently accepted requests were processed,
sorted in ascending order. As the queue is intended to be used for rate limiting as
well, the queue size can be used to determine how many requests have been accepted.
The queue size can be used to enforce a limit by comparing the size to the number
of requests allowed to be accepted until the present time, similar to the baseline.
However, in contrast to the baseline, which uses a fixed-sized map of integers to store
how many requests a user has had accepted, the queue could grow indefinitely large
as new elements are added. To prevent ever-growing user states while still enforcing
a limit on how many requests should be accepted within a time frame, elements
could reside in the queue for some time before being removed. Thus, removing an
element from the queue can be equated to allowing another request to be accepted.
Therefore, the limit can be enforced by the rate at which elements are removed from
the queue.

For the process of synchronizing the replicated queues, a user state in a received
delta state and the local user state of the receiving node could be merged, like
so: merge([1, 3, 5], [2, 4]1) — [1, 2, 3, 4, 5]. Asnodes will replicate the
same queue, a single node might receive the same element from multiple neighbors
as they synchronize. A problem with this is that multiple elements that stem from
the same request would account for more than one slot in the queue after merg-
ing two user states containing such duplicates. To avoid this problem, elements
with the same timestamp are assumed to stem from the same request, meaning du-
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plicated values are treated as the same element: merge([1, 2, 5], [2, 4]) —
[1, 2, 4, 5].

Treating duplicated timestamps as the same element could be problematic if the
time unit is not sufficiently small. This is because multiple requests from the same
user might be assigned the same timestamp. The result is that nodes would only
account for one of the multiple accepted requests after synchronizing, allowing the
user to use more resources than what is specified by the limit. As long as elements
are represented as a time unit with high resolution, such as milliseconds, the risk
of two different requests from the same user clashing is greatly reduced. Suppose
this would turn out to be a problem despite a high resolution. In that case, a
solution could be to assign a random identifier to every element, where the risk of
collision is close to non-existent. However, that would increase the required memory
consumption significantly.

Since the rate at which elements are removed from the queue dictates the rate at
which requests can be served, a suitable algorithm to enforce this rate had to be
used. The two following sections discuss two algorithms that were decided between.
The algorithms’ behaviors are described in terms of rate limiting and how the queue
needed to be adjusted to be compatible with each algorithm.

4.1.1 Sliding-log queue

An elementary approach to removing elements at a specific rate is to offset an
element’s removal to a constant value from its timestamp of inception into the queue.
This is the approach of the sliding log algorithm [7]. The sliding log algorithm
enforces a rate by first storing the timestamps for approved requests in a sliding
window!. New requests are then either approved or rejected based on whether or
not the average frequency between requests in the sliding window is lower or higher
than the enforced rate. The average frequency is obtained by dividing the delta
between the oldest timestamp in the window and the current time by the number
of elements in the window.

For illustration, consider the following queue: [1, 3, 4, 5]. If elements were to
live in the queue for five time units, the first element would be removed at all nodes
after timestamp 6. Following this, the element should also be cleared from any delta
state.

In an attempt for this design to grant at most the same amount of resources as the
design outlined in Section 3.1, the lifetime of elements in the queue could be set
according to Equation (4.1). In Figure 4.1, each request is represented as a dot with
a unique color and where a strike-through dot represents the freeing of the request’s
allocated space. In this figure, a capacity of 4 tokens and a refill rate of 1 token per

1A sliding window holds some number of elements. The window slides past elements according
to some criteria, such as elements having resided in the window for some period of time, which
leaves room for new elements in the window.
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second are used. It is shown that Equation (4.1) would allow both algorithms to
enforce the same rate given that new requests are received infinitely often.

capacity

s S (4.1)
refillRate

lifetime =

Sliding log | © o

o o 7 7
©c e e e

Token bucket

\/

Figure 4.1: The same amount of accepted requests for the sliding log and token
bucket algorithms given requests received infinitely often

While Figure 4.1 illustrates that the sliding-log algorithm can uphold the same rate
as the token-bucket algorithm, it also shows that the token-bucket algorithm will
approve different requests than the sliding-log algorithm. This is due to the token-
bucket algorithm removing elements at a constant rate rather than after a fixed time
from the elements’ inception, meaning that elements reside longer on average in the
sliding window compared to the token bucket. To illustrate this, recall the same
parameters as mentioned above that yield a lifetime of % = 4 seconds. It is apparent
that tokens will remain consumed for a longer period of time in the queue compared
to in the solution using counters.

Sliding log @O L= reject
S A S

Token bucket e o= - accept

| | | | y

\ \ \ \ ”

Time [s]

Figure 4.2: A difference of output between the sliding log and token bucket algo-
rithms

This implies that the queue will be full for a longer period, resulting in users possibly
having their requests rejected when the requests would otherwise be accepted if the
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design using counters was used. Using the values stated above, this difference is
shown in Figure 4.2. The figure shows that the queue will reject the request coming
in at timestamp 4, whereas the token bucket solution will not. This means that
given the same input, the two designs can produce different outputs. Additionally,
by observing Figure 4.2, the sliding-log algorithm rejects one request, whereas the
token-bucket algorithm rejects none. If this traffic is then repeated over and over
with long enough pauses in-between to let the queues become empty, the total
number of rejections for the sliding-log algorithm will grow faster than for the token-
bucket algorithm.

4.1.2 Token-bucket queue

The previous section showed that the sliding-log algorithm can reject more requests
than the token-bucket algorithm given the same traffic. It was therefore of interest
to evaluate how a design using the token-bucket algorithm would compare against
the design using the sliding-log algorithm. It is described in Section 4.1 that ele-
ments should be removed from the queue in order to prevent the state from growing
indefinitely. For the token-bucket algorithm, elements would be removed from the
queue at constant rate as the removal of an element equates to the refill of one token.
However, in order for this rate to be constant for every element starting from when a
user’s first request was approved, the initial timestamp should offset this rate. This
offset has to be preserved as the element that initiated it will eventually be removed.
For this reason, storing only the timestamps for when requests are approved is not
sufficient to uphold token-bucket behavior in a replicated queue.

An alternative design of a queue that uses the token-bucket algorithm is one where
the elements instead consist of two timestamps: a time-of-birth and a time-of-death.
When a new element is to be added to the queue, its time-of-birth is assigned to the
current system time. The queue is also sorted ascending based on this value. The
element’s time-of-death is set based on elements that are already in the queue. This
is shown in the following equation, where the variable Q denotes the queue:

1 .
now T ——— if Q= @
timeOfDeath = O+ e . . _ (4.2)
Q .last () .time0fDeath + TofillRate’ OtherWlse

According to Equation (4.2), elements have their time-of-death assigned to the time
until the next refill given that it is a user’s first approved request. Otherwise, the
time-of-death is assigned to one refill after the most recently added element in the
queue. Using this equation, elements will thus be removed according to a constant
rate as opposed to a fixed time from their inception.

In this design, specific elements are identified by their time-of-birth timestamp, simi-

lar to the sliding-log design. This means that two requests processed by two different
nodes but assigned the same timestamp will be considered the same element.
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By assessing Equation (4.2), an element’s time-of-death is thus relative to its posi-
tion in the queue. As the position may change with the introduction of elements
from other nodes, updating the time-of-death for elements accordingly is essential.
For that reason, the merge works similarly to the sliding-log design when receiving
a synchronization message from another node but with minor differences. One dif-
ference is that the time-of-death for each element is updated during a merge. This
process of updating elements’ time-of-death means that all elements succeeding the
first inserted element from a delta state get their time-of-death changed.

Another difference is when deciding which element should be placed first in the
queue when merging two queues. When two such candidate elements are deemed to
stem from the same request, i.e., having identical time-of-birth, the greatest time-
of-death dictates the instance that should be used. The greatest time-of-death is
used because that value comes from the node with more elements older than the
current element, resulting in the most accurate decisions.

To illustrate the outcome of a merge, consider the following example, where the refill
1

rate is 20"
merge ([{1, 21}, {3, 41}, {5, 61}], [{2, 22}, {4, 42}])
— [{1, 21}, {2, 41}, {3, 61}, {4, 81}, {5, 101}]

In this example, the element from the second queue with the time-of-birth 2, {2, 223},
is inserted at position 2 in the merged queue with an updated time-of-death. When
that happens, all succeeding elements from both input queues also have their time-
of-death updated when merged into the output queue. As previously mentioned,
this results in that all modified elements are added to the delta states of the node’s
neighbors. Adding all modified elements as opposed to just new ones implies that
this design will propagate more data than the sliding-log design, as the latter will
only propagate an element to every neighbor at most once.

This also means that elements that have been removed from one node might need
to be readded. This is because the element might have been added locally at one
node where it was assigned a low time-of-death and then propagated to another
node with a larger queue, thus updating the element with a higher time-of-death.
When this happens, the second node would propagate this intel to the first node. If
the first node already removed the element, it has to be readded.

4.1.3 Choosing a design

As previously mentioned, the goal of the thesis was to improve the rate limiting in
a system that makes use of gossiping and CRDTs. When evaluating the success of
the chosen design to compare with the baseline, the results are less open for inter-
pretation if the designs operate with equal behaviors. In the context of this thesis,
the behavior of a design is defined to be represented by which requests would be
rejected in a centralized application using the design. By this definition, injecting a
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set of requests with predetermined timestamps into the system will deterministically
decide which requests should be rejected. Consequently, if two designs provide equal
output given the same input, their behaviors are considered equal.

In the previous section, an example was shown where the sliding-log algorithm re-
jected a different amount of requests than the token-bucket algorithm given identical
requests. Suppose that the queue using the sliding-log algorithm was to be com-
pared with the baseline using the token-bucket algorithm. In that case, it would
have been difficult to conclude how the results were affected by the implementation
of the queue and how they were affected by the algorithm’s behavior. On the other
hand, the token-bucket queue uses the same algorithm as the baseline and only dif-
fers in terms of its implementation. For these two reasons, it was decided to evaluate
the token-bucket queue design.

4.2 A token-bucket queue system model

As explained in Section 4.1.3, it was decided to design a distributed and replicated
relaxed queue that preserves the rate-limiting behavior of the original system design.
The following sections describe the implementation of this system model in detail.
Section 4.2.1 describes how the token-bucket queue operates without frequency anal-
ysis or the new way of selecting neighbors to synchronize with. Section 4.2.2 moti-
vates how the implementation described in Section 4.2.1 upholds the behavior of a
token bucket, identical to that of the original system model, and a few other choices
in terms of the performance of the queue. Section 4.2.3 describes the extension of
frequency analysis, Section 4.2.4 describes the extension for deterministically choos-
ing which neighbor to synchronize with, and Section 4.2.5 describes the implications
of joint use of both extensions.

4.2.1 Plain token-bucket queue

On the highest level, the rate-limiting design using a token-bucket queue consists
of several instances of the same data structure, which is shown as the type alias
State in Figure 4.3. The state is a map, where each key is an ID for a user that
has sent at least one request, and the value is a queue, represented as a linked list,
that holds elements that represent requests that the system has approved. These
elements consist of two timestamps: one for when the request was approved and one
for when the element should be removed from the queue.

The state instances may use the same data structure, but their behaviors are cate-
gorized in two ways as they differ in what they are used for and how elements are
added to and removed from them. The first category is referred to as the local state
of a node. The local state is simply one instance of this data structure. The second
category is constituted of delta states which are used for synchronizing replicas of
the local state.

A node that receives a request first checks whether the user ID of the request exists

22



4. Methods

Replica

)

‘limit: int

‘refill_rate: int

‘neighbors: list<node_id: int>

)

‘1oca1_state: State

‘delta_states: map<node_id: int, delta_state: State>

Type aliases

‘State: map<userID: int, user_state: UserState> ‘

‘UserState: list<element: Element> ‘

‘Element: {time _of birth: int, time of death: int}‘

Figure 4.3: An illustration of what information a replica stores

in the local state. If the user ID already exists, any elements in that user state
with a time-of-death older than the current value of the system clock are removed
from the queue. This procedure is seen in Listing 4.1. The request is then approved
based on if the length of the queue that the key is mapped to is smaller than its
designated limit. If the key is not found in the local state, the request is approved,
and a key with a corresponding empty list is made for this user. In both scenarios,
where requests are approved, an element is created and put on the tail end of the
queue.

token_bucket_queue:

refill O):

while queue not empty and queue.head().time_of_death > now():
queue .remove_head ()

Listing 4.1: Pseudo-code for refilling a user state

Each node has a delta state for each neighbor. Elements that are added to the
local state through user requests are immediately added to the tail end of this user’s
queue in each delta state.

Replicas constantly strive for consistent local states, which is what the delta states
are used for. The contents of a delta state are occasionally delivered to the neighbor
the state is designated to. The neighbor then merges the contents with its local
state. The changes that result from a merge between a received delta state and a
local state, which will be covered in the following paragraphs, are then integrated
into each delta state on the receiving node.

Merging the local state of a node with a delta state is performed according to
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Listing 3.3, with the difference being the merge function of the user state. If a user
in the delta state does not exist in the local state, a key for the user is added, which
maps to the queue provided by the delta state. If the local state contains data for
the user, that data is merged with the corresponding data in the delta state. The
merging of two user states is similar to how the merge-sort algorithm merges two
lists — a comparison of the heads of two lists decides the next element that should be
moved to the resulting list. The following algorithm is used to determine the order
of the queue resulting from the merge:

token_bucket_queue:
merge (other_queue, into_local_state):
result = []
while local_queue not empty and other_queue not empty:
local_head = local_queue.head()
other_head other_queue.head ()
if into_local_state and
local_head.time_of_birth == other_head.time_of_birth:
result.append(
element_with_largest_time_of_death(local_head,
other_head)

)
local_queue.remove_head ()
other_queue.remove_head ()
else if local.head.time_of birth < other_head.time_of_birth:
result.append(local_head)
local_queue.remove_head ()
else:
result.append(other_head)
other_queue.remove_head ()

result.add_remaining_elements(local_queue)
result.add_remaining_elements (other_queue)
return result

Listing 4.2: Pseudo-code for merging two queue user states

According to lines 15-20 in Listing 4.2, the queue that results from a merge between
two user states will be sorted based on which element was added earliest to either of
the two nodes’ local states. Lines 7-14 show that it will also not contain duplicates
from both queues, as duplicate elements originating from different nodes are treated
as the same element. The exception to this case is when not merging a received
delta state into the local state, which will be explained shortly.
on merged head_element into result:
head_element.time_of_death = max(
result.last().time_of_death + 1 / config.refill_rate,
head_element.time_of_death

)
Listing 4.3: Pseudo-code for updating a merged element’s time-of-death

Apart from merging the two user states, two additional things are done during the
merge operation. One of the two is updating the elements’ time-of-death as they
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are merged into the new queue. This procedure is shown in Listing 4.3, where an
element’s time-of-death is updated based on the most recently merged element in
the queue, as long as the calculated value is not lower than the element’s current
time-of-death. The other is to keep track of which elements in the queue resulting
from the merge are new to the local state or have had their time-of-death updated
by the previously described action. Finally, after a user state has been merged, the
user state is refilled using the same refill method shown in Listing 4.1. If the refilled
user state is an empty queue, the entry in the state for the user is removed. The
entry would be removed regardless of whether the merge operation was carried out
on a local state or a delta state. The latter case will be explained in the following
paragraph.

After a delta state is merged with a node’s local state, the delta states for the
node’s neighbors are updated to reflect the newly updated local state. Instead of
merging each local delta state with the received delta state, the list of new and
updated elements for each user is instead merged with the delta states. In this
merge, elements that reside in both the list of updates and the delta state that
share the same time-of-birth should not be skipped. That is because all elements
in the list of updates are known to be new and originating from different nodes.
Hence, into_local_state in Listing 4.2 is used to control this behavior, as seen on
line 7. The merging of a local delta state and the list of updates is done for every
neighbor. To avoid sending the same information back to the sender, duplicates
between the sender’s delta state after merging the updates and the received delta
state are removed from the former. Finally, all delta states of the neighbors are
refilled according to Listing 4.1.

Since the local state is refilled after a merge with a received delta state, some user
states can be refilled even when the resulting list of updates does not contain any
elements for this user. Suppose there are no updates for a user. If that is the case,
this user’s state in the delta state would not be refilled as opposed to the local state.
For this reason, refilling is performed for all the users that were found in the initial
received delta state instead of after each merged user state in the delta states. This
is shown in Listing 4.4.
after merged received_delta_state:
for delta_state in delta_states:
for user, _ in received_delta_state:
delta_state[user].refill ()
Listing 4.4: Pseudo-code for refilling the user states in the delta states after
merging a received delta state

4.2.2 Motivating design choices

In Section 3.3, the question of how to design a relaxed distributed delta-synchronized
queue for timestamps of recently accepted requests was asked. As previously men-
tioned, the timestamps of accepted requests are used for frequency analysis to spread
urgent data, and the delta synchronization was the model of choice used to strive for
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consistent states among replicas. Combining these two staples in the design gives
rise to a few issues when nodes synchronize, impacting how well replicas converge
and, in turn, the correctness of the token-bucket behavior. The following section
describes how the design causes these issues, as well as how the algorithms surround-
ing the queue are designed to deal with the issues and thus maintain token-bucket
behavior. The importance of an element’s time-of-death is also explained.

As explained in Section 2.2, token bucket algorithms are typically used for limiting
some type of traffic and enforcing a maximum rate at which traffic can be served.
On a singular instance of the queue, this is enforced by simply comparing the size of
a user’s queue with the limit. Requests are rejected if the size of the queue is equal to
or greater than the limit. The act of approving and rejecting requests is, therefore,
quite simple, and a single instance of the queue would easily maintain token bucket
behavior. However, the most complicated part of the design was attempting to
treat requests the same regardless of which node handles a request, enabled by
maintaining consistent states across replicas.

First of all, there has to be a way to distinguish one request from another. If
not, the following problem may arise. Two instances of the same element could be
counted several times and recognized as different elements, effectively resulting in
one request consuming multiple tokens in a bucket. In the proposed design, there
are two scenarios where duplicate elements end up in a replica.

The first scenario is during synchronization between three or more nodes. Consider
Figure 4.4 with the three nodes A, B, and C. Node A has information about some
user and decides to exchange it with node B. After this information is merged with
node B’s state, node B exchanges the information with node C, which also merges
the information to its local state. If node C has yet to receive information about the
same user from node A, node C may send this information to A from which the data
originated. In this case, if identical elements are not treated as the same element,
the same request will end up occupying two slots in the queue, representing two
consumed tokens. This deviates from token-bucket behavior as one request should
only be able to consume one token.

The second scenario is, although unlikely, when two or more nodes approve requests
from the same user simultaneously. The timestamps in the implementation are
represented by UNIX time in milliseconds. Since two or more nodes can approve
a request on the same millisecond, the created elements will have identical time-
of-birth. Thus, approving two requests at two different nodes at the same time
effectively lets a user have two or more requests served for the price of one after the
nodes merge states.

The proposed solution was designed as a middle ground between these scenarios.
From the description of the merge function in Listing 4.2 and how the described
process of accepting new requests, the following can be gathered. Elements that
are originally approved at a node and return to the same node according to the
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Node A Node B Node C

(00:01, 00:04)

Node A Node B Node C
(00:01, 00:04) (00:01, 00:04)

Node A Node B Node C
(00:01, 00:04) (00:01, 00:04) (00:01, 00:04)

Node A
(00:01, 00:04),

A

(00:01, 00:07)

Figure 4.4: An illustration of the same request being accounted for twice when
two identical time-of-birth are not assumed to stem from the same request

first scenario will be compared to an identical element and thus not added to the
node’s local state. However, the proposed solution does not account for the second
scenario.

These two scenarios could be avoided altogether by employing some mechanism
for Globally Unique Identifiers (GUIDs). A comparison of two identical elements
could then guarantee that the elements are copies of each other. While this is a
good solution in theory, it was left out of the implementation for the following two
reasons. Firstly, it was suspected that this design would be heavier than the design
using counters in terms of memory usage. Secondly, as it is already unlikely to begin
with that the second scenario occurs, it was expected to have a negligible impact on
the precision.

As explained in the previous section, merging a node’s local state with a delta
state involves updating the time-of-death for elements that follow the first merged
element from the delta state. There exists a special case that is important to deal
with to uphold token-bucket behavior due to the continuous removal of elements.
Recall Equation (4.2), where an element’s time-of-death is calculated based on the
time-of-death of the element prior to this element in the queue. Depending on
the synchronization protocol and how frequently nodes synchronize, an element
can be removed from the local state and the delta states of the node that the
element originated from prior to being sent to every other node. Whenever this
happens, elements must not have their time-of-death recalculated to a lower value
when merging states with another node. Avoiding lowering the time-of-death is
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vital, as this essentially means disregarding the history of requests that collectively
has resulted in the element’s current time-of-death.

Current time Current time

Node A Node B Node A Node B
(00:00,00:03) | %% 1 (00:00, 00:03) 00:00, 00:03) | "% | (00:00, 00:03)
Node A Node B Node A Node B

00:00, 00:03 00:01 00:00, 00:03), 00:01
Eoo;m: 00:06%7 (00:01, 00:04) Eoo:oL 002063 (00:01, 00:04)
Node A Node B Node A Node B
(00:00, 00:03), | 00:02 | (00:01, 00:04), (00:00, 00:03), | 00:02 | (00:01, 00:04),
(00:01, 00:06) (00:02, 00:07) (00:01, 00:06) (00:02, 00:07)
Node A Node B Node A Node B
(00:01, 00:06), | 0:03 | (00:01, 00:04), (00:01, 00:06), | 0003 | (00:01, 00:04),
(00:03, 00:09) (00:02, 00:07) (00:03, 00:09) (00:02, 00:07)
Node B Node B
Synchronize (00:01, 00:06), Synchronize (00:01, 00:04),
> (()():()2, 00:09), > (00:02, ()():()7),
(00:03, 00:12) (00:03, 00:10)

(a) with max

(b) without max

Figure 4.5: An illustration of a scenario where max of an element’s current time-
of-death and a calculated value based on the previous element’s time-of-death makes
a difference

To understand how this can happen, consider Figure 4.5, where arrows represent
inbound requests. In (a), node A adds a number of elements, one of which is
removed prior to the synchronization with node B due to moving past its time-of-
death. The element removed from node A had an impact on its following elements,
as can be observed from timestamp 00:01 and onward. Both nodes approved a
request on timestamp 00:01, and the elements’ time-of-death differs as node B did
not approve of a request prior to this one. When node A synchronizes with node
B, they each have an element with time-of-birth equal to 00:01. In order to account
for the possibility of removed elements, the element whose time-of-death is greatest
is chosen according to Listing 4.3. If this was not the case, example (b) shows that
the first element from node A is disregarded. Disregarding this element means that
a request would be approved but never being counted toward the user’s limit.

Another reason for using the function in Listing 4.3 when merging two queues is be-
cause elements are only removed from the queue whenever a new request is approved
or after a merge between a local state and a delta state. The result is that for as long
as no new elements are either added or merged into the local state, elements may
reside in the queue past their time-of-death. Consider the merge between a local
state consisting solely of elements that have lived past their time-of-death, and a
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received delta state consisting of elements whose time-of-birth and time-of-death are
greater than those of the local state. Elements from the local state will be merged
into the new queue first, as each element in the local state has a time-of-birth lesser
than those of the delta state. Suppose the function from Listing 4.3 was not included
in the merging function. The elements would then be assigned new values for their
time-of-death following Equation (4.2), which could then lower the time-of-death for
these elements and thus deviate from the token-bucket behavior.

4.2.3 Frequency analysis

Frequency analysis of a user’s recent history is performed whenever the user has a
request accepted by a node. As described before, the node adds an element for this
request to the user’s part of the delta states of the node’s neighbors. Meanwhile, it
also computes the average frequency of the last few elements from the user in each
delta state. How many elements that are included in this computation is specified
by the window size parameter. The delta states where the user has fewer elements
than the window size are skipped. For the remaining delta states, the average
frequency of the elements in the window is calculated. If the average frequency
is higher than the so-called frequency threshold, all elements in the respective delta
state are propagated right away to the designated neighbor. This procedure is shown
in Listing 4.5.

on accepted request from user:

for node, delta_state in delta_states:

user_delta_state = delta_state[user]
user_delta_state.insert_first(request.to_element())

window_size = config.window_size
if length(user_delta_state) < window_size:
continue

earliest = user_delta_state[window_size].time_of_birth
latest = request.timestamp
if (latest - earliest) / window_size > config.freq_threshold:
send (user_delta_state, node)
Listing 4.5: Pseudo-code for analyzing the frequency of accepted requests after
accepting a new request

This procedure is the result of two design choices. The first design choice was
whether to perform the frequency analysis on the local state instead of the delta
states. The former would require only one comparison of a user’s recent history
compared to one per neighbor. However, doing so would mean that the node might
send propagation messages to its neighbors containing only one element if the node
accepts yet another frequent request. This approach was decided against to avoid
sending too many messages on the network. The chosen approach instead limits
each propagation message sent due to frequency analysis to the value of the window
size parameter.

The other design choice was if frequency analysis should also be performed when
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receiving a delta state from a neighbor sent through normal gossiping. Doing so
would make sure that important information would reach all neighbors faster than
the chosen approach. However, to avoid flooding the network with messages, it was
decided only to perform the analysis when accepting a new user request.

4.2.4 LINF-gossiping

What is referred to as Least Informed Neighbor First (LINF) is enabled by using
the queue. It is accomplished by every node keeping a map of its neighbors’ node
IDs and a respective value representing the number of updates queued for that
neighbor.

This map is updated whenever a request from a user is accepted. As shown in
Listing 4.6, the order of the priorities is unchanged since the value for every neighbor
is incremented by one.

on accepted request:

for node in mneighbors:
node_gossip_priorities[node] += 1

Listing 4.6: Pseudo-code for changes to the neighbor priorities map when accepting
a request

Another case where the map is updated is whenever a delta state is received from a
neighbor. The handling of this case is shown in Listing 4.7. The received delta state
is first merged with the node’s local state, yielding the updated elements. After
that, the priority value of every neighbor aside from the sender is incremented by
the difference of the number of elements in each respective delta state before and
after merging with the list of updates. This procedure is seen on lines 4-7. For the
sender, its value is instead recalculated by looking at how many elements are queued
in its corresponding delta state, which is shown on line 12.

on received delta_state from sender:
local_state, updates, _ = merge(local_state, delta_state)

for node not sender in neighbors:
delta_states[node], _, additions = merge(delta_states[node],
updates)
node_gossip_priorities[node] += additions

delta_states[sender] = remove_duplicates(merge(delta_states[sender],
updates),
delta_state)
node_gossip_priorities[sender] = delta_states[sender].sum_elements()

Listing 4.7: Pseudo-code for changes to the neighbor priorities map when receiving
a delta state

The final case where the map is updated is when it is time to synchronize with
another node. Which node to synchronize with is decided by iterating through the
map to find the node with the highest priority value. If multiple neighbors have
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equal priorities, the decision between them is made by randomly selecting one. The
selected node’s entry in the priority map is then set to zero.

4.2.5 Frequency analysis and LINF-gossiping combined

Propagating, and thus clearing, a part of a neighbor’s delta state should update the
neighbor’s priority of which node to gossip to next. For this reason, the priorities
for the neighbors that will receive the part of their delta states corresponding to
one user will be decremented by the number of elements that were sent. Listing 4.8
depicts the handling of this case.
after sent user_delta_state to neighbor:

node_gossip_priorities[neighbor] -= length(user_delta_state)
Listing 4.8: Pseudo-code for changes to the neighbor priorities map when sending
a delta state of one user with frequent requests

The receiving node will process the received user delta state in the same way as
shown in Listing 4.7, but with the difference being that only the single user is
present in the delta state.

4.3 Test setup

In this section, the framework used for evaluating the token-bucket queue is de-
scribed. The equipment and the parameters used and the data sets that constitute
the different tests are also explained.

4.3.1 Test framework

To evaluate a solution that would allow the system to decrease the number of incor-
rectly accepted requests from a global perspective, two implementation approaches
were identified.

The first option was to modify Spotify’s system with the proposed changes. Com-
pared to building a project from scratch, this approach would have given much for
free since it contains an implementation of the token-bucket counter design. How-
ever, the current system was built to be hosted on cloud services, making the process
of debugging, testing, and evaluating more complex compared to a solution that runs
locally on the same machine.

The other option was to build a simulation project from the ground instead. To
simulate a rate-limiting system that consists of multiple nodes, Erlang was a suitable
choice that allows cheap spawning of processes to act as the nodes on the same local
machine. To compare the proposed queue design to the token-bucket counter design,
this approach would have required implementations for both the proposed solution
and the token-bucket counter design. However, simulating a physically distributed
rate-limiting system would have enabled the evaluation to assume no node crashes or
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packet losses. In turn, this assumption would have made it easier to evaluate whether
using the queue is a feasible solution to the problem described in Section 3.3.

In favor of easier testability, it was decided to use the second option, i.e., building
a new project that aimed to simulate the system as described in Section 3.1 and
the proposed changes. Still, it was desired to use real data to evaluate the two
different designs in the simulation project. Data recorded on Spotify’s system could
be exported on the following form:

L
{
"user_id": "deadbeefdeadbeefdeadbeefdeadbeef",
"time": <13:47:02.382>
3,

The value that user_id maps to is a 32 character string of hexadecimal numbers, and
the corresponding value for time is a UNIX timestamp in milliseconds. Processing
such data required an Erlang module to be built that could read a file with recorded
requests and inject them into the simulation system. A test would then be made
up of a process, hereinafter referred to the injector, running the code of the module,
simulating the different users sending requests.

To achieve a realistic distribution of the requests among the nodes in the system, the
injector utilizes consistent hashing? to assign requests to the different nodes. The
node responsible for a request is determined by the hash of the request’s recorded
time multiplied by the user ID. The combination of both fields was used to disperse
the requests as much as possible. Simply using the user ID would yield all requests
for any user to be received by the same node. Moreover, only using the time field
would result in all requests within the same timestamp being received by the same
node, possibly inducing an uneven load in the system. However, the chosen combi-
nation means that all requests recorded at the same millisecond for the same user
are assigned to the same node.

The injector performs the task of injecting requests by first looking at the initial
entry in the data holding all the recorded requests. The node responsible for the
request is calculated and then synchronously contacted with a message containing
the user ID. Upon receiving a reply from the node with information of whether the
request was accepted or not, the injector stores this information before moving on
to the next entry.

One key element in a set of recorded requests is the timings between them. In an
attempt to recreate the same timings, the injector compares the next entry’s time

2In consistent hashing, some part of the input data is hashed. That output is then mapped to
the various available options.
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to the time of the entry that was just processed. The injector uses the difference
in time between them to determine how long it should sleep before processing the
subsequent request. Since sleeping is handled by an external scheduler that manages
multiple processes on a shared processing core, it is not guaranteed for a process to
be woken up at the exact desired time. Although it is guaranteed that a process will
sleep for at least until the desired time, in some cases, a sleeping process is woken
up slightly later than desired. For this reason, the injector stores how long it desires
to sleep along with a timestamp of the time just before sleeping. After waking
up, this allows the injector to become aware of any additional undesired slumber
duration and adjust the upcoming sleeping periods by this number. To account for
cases where multiple requests were recorded within the same millisecond, meaning
no sleeping in between them, this value is stored and used to adjust the next sleeping
period.

Since the call with the request to the node is made synchronously, the injector can
be delayed if the two solutions require different amounts of time when processing a
request. For this reason, the injector also measures the duration between when the
call to the node is sent and when the corresponding reply is received. This duration
is accumulated and used to offset the following sleeping periods combined with the
value that keeps track of any prolonged sleep.

The above-described procedure of the injector is then continued until the last request
for a specific test has been processed. When reaching that point, the injector waits
until the nodes have converged. It does so by periodically querying the delta states
and message input queues of all nodes. When all delta states and message input
queues are empty, no more updates are queued anywhere in the network. The test
is then considered to be completed, and all processes are thus terminated.

Since the injector keeps track of how many requests were rejected, the two solutions
can be compared in terms of this metric. In order to see how far from an ideal result
the solutions lie, their results can also be compared to that of a centralized system.
By executing the same test in such an environment, i.e., one where a single node
has access to all data for any user, a ground truth of the number of requests that
should be rejected will be retrieved.

To evaluate the solutions with regards to the memory and bandwidth metric, another
module that periodically monitors the node processes in these areas was built as
well.

Finally, to evaluate the convergence time, the memory and bandwidth data can be
used to see when the test system has converged. Since the gathering of such data
ceases when the test has been completed, it reveals how long it took for the system
to converge.
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4.3.2 Test equipment

The hardware used when executing the tests was a 6-core Intel Core i9 2.9 GHz CPU
with 16 GB 2400 MHz DDR4 memory. The operating system was macOS 10.15.7,
and the Erlang OTP version was 24 RC2.

4.3.3 Default parameters

When evaluating the proposed design, multiple variables influence the outcome of
the tests. Unless otherwise stated in the description of a test, a set of default
values is used. The ones that apply to both token bucket designs can be found in
Table 4.1. The capacity parameter is among these and has the same value as in
Spotify’s system. For confidentiality reasons, it is expressed as ¢ and other values
are described in terms of this variable. Parameters specific to the queue design can
instead be found in Table 4.2.

Parameter Value
Network topology | Fully connected
Number of nodes | 30

Gossip interval 300 ms
Capacity c
Refill-rate 0.001c tokens per second

Table 4.1: General default parameter values

Parameter Value

c
Number of nodes

Window size

Frequency threshold | 2400 ms

Table 4.2: Default parameter values specific to the queue

The value of the window size parameter was decided to be a node’s share of the ca-
pacity as if it would have been divided to the different nodes. This value was chosen
because if all nodes fill the bucket for a user to that point, the total limit across
the entire system has been filled. If that is the case, the nodes should propagate
this information to their neighbors to prevent overfilling. If the frequency between
these requests is deemed high, it is desired to propagate this information right away
instead of relying on the normal gossip interval.

The frequency threshold value was set based on the average frequency per user
within a sliding window of size equal to the window size parameter. The data used
when calculating this was requests from 10000 users that were not rate-limited but
sent the most requests during the chosen data duration of one hour. The reason for
using data from users that were not rate-limited but generated the most data was
because such data was deemed to be representative of data where our solution could
improve rate limiting. To avoid the cases where users had frequent traffic in chunks
with long periods without any requests sent in between, window frequencies below
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a certain threshold were discarded. This threshold was set to five seconds. The
average frequencies of all users were then averaged before rounding the outcome to
the closest hundred ms.

4.3.4 Test data

Multiple data sets were used to evaluate the metrics. Down below are descriptions
of them and motivations why they were chosen.

Data set A

First and foremost, data from users that were rate-limited by Spotify’s system was
extracted. The idea behind using data from such users is that the token-bucket
counter implementation should behave closely to that of Spotify’s system. It was
also desirable for the implemented counter and queue token-bucket designs to yield
the same number of rejections. To verify these two cases, the total number of
rejected requests for the different systems was measured on a data set spanning over
five minutes from 10 randomly selected users that had been rate-limited at least
once during the same period. In total, this data set contained 68.3c requests. The
number of requests per user varies, as is shown in Figure 4.6.

20c A

— —
[\ [
o o
1 1

Number of requests
o
o
1

4c 1

Oc -
1 2 3 4 5 6 7 8 9 10
User

Figure 4.6: The number of requests distributed among the 10 users in data set A

This data set was also used to see how much the solution for each respective research
question impacted the outcome individually regarding the number of rejections and
memory and bandwidth consumption.
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Data set B

To evaluate how much quicker the system would react with the proposed changes to
a substantial number of requests sent within a short time from the same user, three
smaller data sets were used. These three data sets each contained requests from a
single user over a shorter period. The period was set to be one minute. The idea
of using three data sets was to see whether the proposed changes performed better
or worse with different rates of requests. As such, the users were hand-picked based
on their amount of requests sent within this period, where it was desired for the
selected users to have a substantial difference in their rate of sending requests.

The lower bound of the number of requests was set to the capacity parameter in
addition to the number of refilled tokens during the one-minute duration. For this
reason, the first of the three chosen users was the one with its number of sent
requests closest to — yet above — this number. The second user was the one with
the largest number of requests within the period, whereas the third was the user
with the number of requests closest to the value in between the first two users.
The number of requests in each subset resulted in 1.1¢, 21.5¢, and 3.2¢, respectively.
These three subsets will be referred to as extreme, substantial and barely rate-limited
in descending order of their number of requests.

With the three subsets mentioned above, the two solutions were to be evaluated for
users who, on average, have a request rate higher than the refill rate. However, the
vast majority of users in the real system are users that are not rate-limited. It was
thus natural to evaluate the two solutions in this regard as well. For this reason, a
fourth subset was used where the request rate was lower than the refill rate. This
subset could have been extracted from the existing system. However, doing so would
include a risk of getting data where the request rate was temporarily higher than
the refill rate, thus leading to ambiguity in the results. For this reason, this subset
was fabricated, where all requests were given timestamps on a fixed interval slightly
faster than the refill rate. This fourth subset is referred to as not rate-limited and
spans over two minutes.

Data set C

While data set B evaluates the two solutions when handling traffic from users who
should and should not be rate-limited, the solutions were evaluated with one user
at a time. It was thus natural to evaluate the two solutions regarding the memory
and bandwidth metric on a data set that matches the distribution of traffic that
Spotify’s system is exposed to.

For this reason, a larger data set that spanned over a longer period and that con-
tained data from many randomly selected users was used. However, since the nodes
in the simulation system are represented as processes on the same machine, the
number of users in the data set was limited to 5000 in order to run the test with
limited memory and processing resources. Although this number is much lower than
the number of users Spotify’s system handles, the relation between the two solutions
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should remain the same despite the difference in the number of users.

This data set spanned over one hour. The 5000 users were selected to match the
same distribution of rate-limited users and non-rate-limited users Spotify’s system
handled in the same hour.

Data set D

The queue solution works by dropping old elements. To see if this could have a
negative impact where users could circumvent the desired limit given that the system
configuration was known, a fourth data set was fabricated. This data set contained
requests from a single user on a fixed interval slightly more frequently than the refill
rate. The larger capacity and refill rate, the longer duration would be required for
the user to exceed the limit in a centralized system. The test duration was set to
100 seconds. Some of the parameters were therefore changed, and their new values
are presented in Table 4.3. The request rate was set to one token every 0.9 seconds,
meaning the user would, in the long run, send a request 100 ms earlier than allowed
by a centralized system. Three different gossip intervals were used, resulting in one,
two, or three synchronization messages in-between any two adjacent requests.

Parameter Value

Gossip interval | 300 ms, 450 ms, 900 ms
Capacity )

Refill-rate 1 token per second

Table 4.3: Parameter values when testing using data set D
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Evaluation

In this chapter, results from the tests with the four data sets A, B, C, and D are
presented regarding the metrics described in Section 3.5. A discussion of these
results is also included.

5.1 Data set A

This section presents the results from tests using data set A. Section 5.1.1 includes a
comparison of the implemented token-bucket counter and Spotify’s system. A com-
parison of test runs with centralized systems running the token-bucket counter and
the token-bucket queue implementations is included in Section 5.1.2. Section 5.1.3
evaluates the impact of the queue’s two extensions.

5.1.1 The baseline compared to Spotify’s system

In Figure 5.1, the data set with 10 users that were rate-limited at least once during
a five-minute duration was used. Results averaged over 10 runs from the simulation
system running the implemented token-bucket counter were compared against the
recorded number of rejected requests from Spotify’s system. For this test, the pa-
rameter values were assigned to match the ones Spotify’s system is using, i.e., not
the ones presented in Table 4.1. In addition to the comparison between the two
systems, the graph also displays the total number of requests received per time unit
and the results of a run with a centralized setup, i.e., one that always will take the
correct decision. The closer a solution’s result lies to the result of the centralized
run, the greater precision the solution achieved.

Figure 5.1 shows that both distributed systems achieved similar results, even though
the simulation system performed slightly more accurately. To see how close the lines
of the two solutions lie to the centralized line, all points for each respective solution
were summed and then divided by the same value of the centralized run. This
calculation yielded that the baseline achieved 95.7 % of the number of rejections
of the centralized version, whereas Spotify’s system achieved 91.2 % in the same
metric. These numbers show that there is room for improvement.
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Figure 5.1: The implemented token-bucket counter versus Spotify’s system

5.1.2 Centralized counter compared to centralized queue

In the next test, the same data set was used. As opposed to the previous test, the
default parameters were instead used. Figure 5.2 shows of the number of rejects of
the token-bucket counter and the token-bucket queue in a centralized system. The
graph shows that the two implementations yielded nearly identical results. With
this information, it can be concluded that the designed and implemented queue
fulfills the desired token-bucket behavior when used in a centralized system.

5.1.3 Evaluating the two extensions of the queue

Recall research questions Q2, Q3, and Q4. To evaluate these questions, combina-
tions of the queue with and without the two extensions are tested using data set

A.

In Figure 5.3, the difference in the number of rejections for each solution compared
to the centralized system over time is shown. The ideal solution would always have
a difference equal to zero, meaning a low value is better than a high value. The
results are averaged over 10 iterations.

It is shown that the counter, the queue with LINF only, and the plain queue reacted
much slower than the queue using frequency analysis but that their differences to
the centralized system then decreased over time. Moreover, it is shown that LINF
decreases the precision when used in combination with frequency analysis. However,
without frequency analysis, LINF achieved roughly the same precision as the plain
queue.
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Figure 5.2: Centralized token-bucket counter versus centralized token-bucket
queue
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Figure 5.3: The difference of the number of rejected requests to the centralized
system averaged over 10 runs

The memory and bandwidth consumption for the same test is displayed in Figure 5.4.
In this and every other figure that displays the memory and bandwidth consumption,
the highest value for the counter solution is assigned 100 % on the y axis.
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By assessing Figure 5.4, the system using the counter implementation is seen to con-
verge at the five-minute mark, whereas the systems using the queue implementations
require at least another minute to converge.

LINF was shown to decrease the memory usage both with and without frequency
analysis. Compared to the plain queue and the queue used with frequency analysis,
LINF decreased the memory usage by 18.3 % and 24 % respectively.

As for the bandwidth consumption, LINF yielded in similar usage both when used
in conjunction with frequency analysis and without. Another thing to note is that
the difference in bandwidth consumption between the counter and the queue used
with only LINF was relatively small compared to that between the counter and
the queue used with frequency analysis. The queue with LINF used 31 % more
bandwidth than the counter, whereas the queue with frequency analysis used 243 %
more than the counter.
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Figure 5.4: A comparison of memory and bandwidth usage of the queue with all
combinations of extensions and the counter. Results are averaged over 10 runs.

In Section 3.2, it was hypothesized that a solution that enables the system to an-
alyze the frequencies of users’ requests to synchronize more eagerly would achieve
higher precision than the baseline. It was also hypothesized that this solution would
cause bursts in the usage of bandwidth. By assessing Figure 5.4 and Figure 5.3, it
can be concluded that both hypotheses are true. In the same section, it was also
hypothesized that prioritizing synchronization with the neighbor that is considered
most behind in updates would improve the precision of the queue. This result could
not be observed in Figure 5.3. However, Figure 5.4 shows an unexpected side-effect
of substantially reduced memory usage.
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5.2 Data set B

In this section, the results of the four subsets in data set B are presented — namely,
the data sets each containing requests from a single user with different request rates.
All results presented are averaged over 10 iterations of the same test. A combined
discussion of all the results is presented in Section 5.2.5.

5.2.1 Extreme

In Figure 5.5, the average number of rejects for both the counter and queue im-
plementations are shown from tests with 21.5¢ requests from a single user. Just as
before, the total number of requests received and the result of a centralized system
are seen in the same plot.
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Figure 5.5: A comparison of precision between the counter and the queue for
a rate-limited user generating an extreme amount of requests within one minute.
Results are averaged over 10 runs.

It is difficult to see where the centralized line lies. For this reason, the part where the
three systems start to rate-limit the user is zoomed in. In this view, it is shown that
the queue implementation reacted quicker than the implementation using counters
— the result of the former almost follows the centralized line.

In total, the counter implementation achieved 96.9 % of the result of the cen-
tralized version, where the corresponding value for the queue implementation was
99.7 %.

In Figure 5.6, the average memory and bandwidth consumption per node from the

43



5. Evaluation

same tests are shown. The figure reveals that the queue implementation used more
memory and bandwidth than the counter implementation. The ratio between the
area under the curves is 7.98 for the memory and 8.83 for the bandwidth consump-
tion. The queue implementation thus used 798 % more memory and 883 % more
bandwidth for this test.
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Figure 5.6: A comparison of memory and bandwidth usage between the counter
and the queue for a rate-limited user generating an extreme amount of requests
within one minute. Results are averaged over 10 runs.

By observing the graph that displays the bandwidth usage, it can also be seen that
the system using the counter implementation did not propagate any more messages
after the ten seconds mark. In contrast, the system using the queue implementation
propagated messages long after no new requests were received.

5.2.2 Substantial

Figure 5.7 shows the same information as Figure 5.5, but from tests with the data
containing 3.2c¢ requests from a single user.

It is again shown that the queue reacted quicker than the counter, although not as
quick as the centralized version. Additionally, an aspect that can be seen, which
was also visible in the previous test but not as easy to spot, is that the distributed
systems’ lines converged to the centralized system over time.

The counter solution achieved a precision of 96.4 % of the ground truth, whereas
the queue solution achieved 98.6 % in the same metric.

As for the bandwidth and memory metric evaluated in Figure 5.8, it is shown that
the difference between the two solutions was lower in this test compared to the
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Figure 5.7: A comparison of precision between the counter and the queue for a
rate-limited user generating a substantial amount of requests within one minute.
Results are averaged over 10 runs.
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Figure 5.8: A comparison of memory and bandwidth usage between the counter
and the queue for a rate-limited user generating a substantial amount of requests
within one minute. Results are averaged over 10 runs.

results shown in Figure 5.6. For the results described here, the ratio between the
curves yielded that the queue used 513 % more memory and 495 % more bandwidth
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than the counter.

It is also apparent that the counter solution did yet again stop propagating infor-
mation earlier than the last received request.

5.2.3 Barely rate-limited

Figure 5.9 displays the average precision when tests with data from a user with
1.1c requests were executed. Both solutions rejected requests towards the end, but
the graph shows that the queue achieved higher precision than the solution using
counters. The former achieved 80.0 % of the centralized system, whereas the latter
achieved 10.0 %.
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Figure 5.9: A comparison of precision between the counter and the queue for a
user that is barely rate-limited within one minute. Results are averaged over 10
runs.

In Figure 5.10, the memory and bandwidth usages for the same tests are shown.
These graphs follow the same pattern as the graphs from the two sections above
regarding the decreasing difference in memory and bandwidth consumption between
the two implementations. By calculating the ratio between the area under the curves,
the queue implementation used 427 % more memory and 215 % more bandwidth for
this test than the counter.
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Figure 5.10: A comparison of memory and bandwidth usage between the counter
and the queue for a user that is barely rate-limited within one minute. Results are
averaged over 10 runs.

5.2.4 Not rate-limited

This test was executed with fabricated data representing traffic from a user that
sends requests with a frequency lower than the refill rate. LINF-gossiping was
disabled in this test as the map of 30 nodes would influence the memory usage
disproportionately to the number of requests. At the same time, since there was
only going to be a few elements queued up in the delta states at once, any benefit
of using LINF-gossiping would have been diminutive.

Figure 5.11 is included for completeness. It shows that the number of requests
received is evenly distributed and that no solution rejects any request.

As for the memory and bandwidth consumption, it can in Figure 5.12 be seen that
the queue solution used slightly less memory and much less bandwidth than the
counter implementation. Dividing the areas under the curves with each other for
the respective graph yields that the queue solution used 10 % less memory and 77 %
less bandwidth than the solution using counters.

Moreover, it can also be seen that the queue yet again took longer to converge than
the counter, but that the period was greatly reduced from earlier tests.

Relating to the convergence time, the sudden drop in memory is due to the different
iterations that took longer to complete. When that happens, the remaining values
are divided by the total number of iterations, resulting in a low average. The queue’s
variance of convergence time can also be seen in the previous tests.
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Figure 5.11: The number of requests received and rejected for a not rate-limited
user generating few and evenly time-distributed requests within two minutes. Re-
sults are averaged over 10 runs.
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Figure 5.12: A comparison of memory and bandwidth usage between the counter
and the queue for a not rate-limited user generating few and evenly time-distributed
requests within one minute. Results are averaged over 10 runs.
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5.2.5 Discussion

From the results shown in Section 5.2.1 and Section 5.2.2, the counter solution was
seen to stop consuming bandwidth long before the last request had been received.
The sudden halt of bandwidth usage was due to the counter reacting too slowly to
the rapid influx of requests. When the nodes finally synchronized with each other,
they discovered that the limit had been exceeded by a great margin. As a result,
every following received request was rejected by any node. The nodes did thus not
queue any update to their neighbors, which explains the lack of bandwidth use after
this point.

The fact that the number of consumed tokens exceed the limit also explains why the
counter solution cuts down the distance to the centralized system over time. It can
reject all requests and thus catch up compared to the centralized system that will
allow new tokens to be consumed at the refill rate. This catching-up phase means
that a user that has consumed too many tokens has to wait a long time to use the
service again. Although this phase allows the counter to improve its final result, it
does not enforce the desired token-bucket behavior in this situation.

In the memory graphs from the tests using the data set B, the steep decreases in
memory of the queue imply that it has a wide variance in how long the system takes
to converge. This variance was never observed for the counter. However, that might
partly be because it reacted too slow in the previous tests and thus had a debt in
tokens as described above. When dealing with users that send few requests, shown
in Figure 5.12, the queue took longer to converge than the counter but did not
show a wide range of convergence times like it did in previous tests. This difference
was because the number of requests for the same user was significantly reduced,
thus minimizing the number of times the same element was queued for propagation.
Despite the queue requiring longer to converge, it still rate-limited users much more
similar to the centralized system as opposed to the counter.

All four memory graphs for the tests carried out with the data sets in B show that
the counter’s memory use over time in general increases or remains the same. It can
be seen that it sometimes temporarily decreases, which is due to some delta states
being cleared. However, the local state of a node will increase in size or remain the
same, depending on if new users send requests, thus leading to the memory curves
of the counter pointing upwards. This gradual increase in memory usage does not
apply to the queue to the same extent. Before the steep decreases in memory due to
different convergence times, the memory consumption decreases steadily the more
time that passes. This decrease is because old elements are cleared as new requests
or synchronization messages are received.

5.3 Data set C

Figure 5.13 shows the memory and bandwidth usages for the test executed with the
data set containing traffic from 5000 users over a duration of one hour.
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Figure 5.13: A comparison of memory and bandwidth usage between the counter
and the queue for requests from 5000 users within one hour

The queue solution used 86 % less memory than the solution using counters, whereas
the bandwidth usage for the queue was 0.0025 % more than the counter’s.

Figure 5.13 confirms that the counter increases its memory consumption substan-
tially more for every user than the queue. Still, the queue’s memory usage goes
upwards, albeit not as steep as the counter’s. However, this is due to new users
constantly allocating space, which can be concluded by assessing Figure 5.14.

5.4 Data set D

In Figure 5.15, the number of rejections for the queue solution when used with
different gossip intervals is shown. In this test, the requests are from a single user
and received on a frequency slightly higher than the refill rate. It is shown that the
longer the intervals are between gossip, the more delay in the response of rejections
if there is any response at all.

For the queue solution to even start rate limiting a user with such a request rate,
multiple adjacent elements must collide on the same node, meaning information
about the first request must be on the node that receives the second, and so on.
The opposite would be problematic as previous elements would be removed from
the system before the new elements are affected by them, possibly resulting in users
exceeding the desired limit without ever being noticed.

As the proposed solution does not guarantee that an element corresponding to a
request will be sent to all nodes before the element is considered dead, this becomes
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Figure 5.14: The number of users over time in data set C
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Figure 5.15: The number of rejections for data with requests at a slightly higher
frequency than the refill rate when using different gossip intervals

a probabilistic problem. Given the request rate of one every 0.9 seconds, the first
request is sent at the test’s inception and the second request 900 ms after. There
are two scenarios for a collision between the elements corresponding to the two first
requests. The first scenario is for a collision to happen immediately on the node
that receives the second request. For this to occur, the element corresponding to
the first request must be available on the node that will receive the second request
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for the new element to have the desired 100 ms extension to its time-of-death.

When the gossip interval is set to 300 ms, it means that the node receiving the first
request will be able to send that element to three of its neighbors. After the first
synchronization message at 300 ms, another node will also propagate this element
to one of its neighbors at 600 ms. At timestamp 900 ms, both neighbors who have
received this element through a synchronization message will propagate it another
time. This scenario is illustrated in Figure 5.16, where the circles represent nodes
and arrows the synchronization steps that take place at each respective timestamp.
In total, a gossip interval of 300 ms thus yields that eight nodes will have received the
update before any node in the system receives the second request. This is the best-
case scenario, where the fact that nodes can choose the same neighbor to propagate
to is disregarded. Out of 30 nodes in the system, this gives a probability of 27 %
for an immediate collision with the next request.

There is also a probability for collisions between the two elements after the second
element’s initial inception. Recall from Section 4.2.1 that nodes do not remove
elements from their delta states unless they either send a delta state to a neighbor
or refill their own delta states due to a merge with a received delta state. For
this reason, the nodes that hold elements that are considered dead will continue to
propagate these elements until either of these two cases occur. The second element
will also be propagated and can then collide with any of the nodes that still hold
the first element in their local state. In both of these cases, the time-of-death of the
second element will increase, which will then increase the probability of a collision
when the third request is inbound. Once a collision has occurred three times in a
row, the last element will have its time-of-death prolonged by 300 ms compared to
what the first clause would have assigned it in Equation (4.2). This extension to the
element’s time-of-death means that the element will live in the queue long enough
to be propagated during four rounds of gossip rather than three, as opposed to the
previous elements. This additional round of gossip implies that the probability of
a collision when receiving a new request increases as eight additional nodes now
have access to the last received element. As this continues to occur, elements will
gradually increase their probability of colliding with other previous elements. The
likelihood of losing data then grows increasingly improbable.

Using the gossip interval of 450 ms instead means that the receiving node will send
the element to two other neighbors. In total, this interval yields that at most four
nodes will have received the first element before the second request is received by the
system. Four nodes give a collision probability of 13 % for an immediate collision.
The numbers corresponding to the gossip interval of 900 ms become two nodes and
a probability of 7 % for an immediate collision.

The more nodes the system consists of, the more the probability for collisions de-

creases, meaning the relationship between the gossip interval and the number of
nodes requires more careful consideration than the solution using counters.
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Figure 5.16: The spread of an element with time-of-death 1000 ms and a gossip
interval of 300 ms

On the other hand, a possible solution to this problem is not to remove the last few
elements when refilling. Keeping a safe margin when refilling would make collisions
happen inevitable but at the cost of higher memory consumption. However, since
the queue solution uses much less memory than the solution using counters when
dealing with traffic from an average user, one can argue that an increase in memory
can be justified. How much extra memory would be required depends on how many
nodes the system consists of, the refill rate, and the gossip interval.

5.5 Final discussion

On the same theme as the closing discussion in Section 5.4, it is important to keep in
mind that the results shown in this chapter apply in the context of the parameters
used. How the proposed solution performs in other contexts is not evaluated in this
thesis. For example, it is unknown how the queue would perform compared to the
baseline in other network topologies than a fully connected one.

It can also be said that the baseline and the token-bucket queue have been compared
in a simulated distributed system on one machine. Evaluating them in a physically
distributed environment would introduce a few additional factors that could impact
the results. Examples of such factors are communication delays and node failures.
While it is not possible to make any claims on how the solutions would compare in
such a system, this can be speculated on by assessing the results of this chapter and
the implementations described in Chapter 3 and Chapter 4.

It is reasonable to believe that communication delays could impact the precision of
the token-bucket queue. As discussed in Section 5.4, the probability for colliding
elements are affected by how often nodes synchronize with each other, and these
collisions are an essential part of not losing information about approved requests.
However, the delay of synchronization messages would have to be large enough to
consistently miss out on synchronization rounds to have an impact. For example,
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if nodes synchronize every 200 ms and the communication delay is 250 ms, the
elements in each synchronization message would miss out on at most two rounds of
synchronization at each node it is sent to, compared to if there was no delay. The
counter would also miss out on synchronization rounds, but it is not susceptible to
losing data due to removing elements. The effects of communication delays may
seem as if they could impact the performance of the token-bucket queue. However,
we argue that since the main cause of this impact is that the rate at which nodes
send synchronization messages is no longer equal to the rate at which messages are
received, this could be mitigated by synchronizing more often. It is already argued
for in Section 5.4 that the token-bucket queue requires more careful consideration
of the gossip interval than the token-bucket counter. Synchronization delays would
thus be an additional parameter to consider when deciding a gossip interval.

In terms of node failures, we believe that the two solutions should not behave with
much difference. Any user data that has not already been propagated to any other
node will be lost, and any data sent to at least one node will be further distributed
through the system. However, the presence of node failures often requires dynamic
reintroduction of nodes, and a reintroduced node for a token-bucket counter would
likely catch up to the other nodes faster than a token-bucket queue would. The
counter will likely receive values close to the greatest value that each counter has
accumulated for its users with each synchronization message and thus require rela-
tively few messages to catch up with other counters. The queue, on the other hand,
would not catch up to the states of the other nodes before all elements that the
other nodes held prior to the reintroduction have been removed, unless all elements
have their time-of-death updated and thus sent to other nodes again. We would not
consider this as something that speaks against the use of the token-bucket queue
in a real-world system, as it could be solved by having the reintroduced node copy
the full state of another node. However, this procedure would be necessary to add
to the implementation of the queue solution, as the implementation described in
Chapter 4 does not account for the reintroduction of nodes.
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Related Work

In this thesis, we designed and evaluated a replicated token bucket for perform-
ing rate limiting in a distributed system. The idea of distributing observation of a
system’s state is not a new concept. The model of continuous distributed monitor-
ing is described by Graham Cormode as “a number of observers [that] each see a
stream of observations. Their goal is to work together to compute a function of the
union of their observations” [6]. This could describe a number of specific approaches
to observing and analyzing data, but the description encapsulates distributed rate
limiting quite well. Cormode also describes the difficulty of finding a balance be-
tween sharing observations too often or not often enough to obtain desirable results
without incurring heavy communication costs to justify the results. As the world
of distributed systems deals with data in many shapes and quantities, implementa-
tions following the continuous distributed monitoring-model have to be tailored to
the needs of the system that employs it.

One approach for performing distributed rate limiting is to distribute the rate lim-
iting across some number of nodes and continuously update a joint storage for data
that is utilized by each rate limiter globally across a system. This approach has seen
use in the prevention of distributed denial-of-service attacks in network switches.
Kim et al. [15] propose a solution for DNS amplification attacks, a type of dis-
tributed denial-of-service attack that targets a victim’s network bandwidth with
an overwhelming number of DNS requests. Their solution utilizes software-defined
networks as a medium for switches to maintain a database with the history of pre-
vious DNS messages. This is done to maintain a larger history than each individual
switch can maintain, and thus mitigate attacks that target multiple switches. This
approach to continuous distributed monitoring is feasible for the token bucket al-
gorithm. It is however more susceptible to failures in databases than our solution,
as it separates the rate limiting from the bulk of data that is used for it. Failures
would in turn allow more requests to be accepted as nodes have fewer options for
transmitting updates, and this could, in turn, lead to worse precision than what is
desirable.

Another approach is to divide the resources evenly between a number of rate limiters.

For example, if a token bucket with refill rate r and capacity c is distributed over
n nodes, each distributed part of the bucket could be given a refill rate of r/n and

95



6. Related Work

a capacity of ¢/n. Li et al. [18] designed a solution for distributed rate limiting in
a scalable real-time messaging platform by following this approach. This approach
seemingly requires traffic to be evenly distributed between nodes to fully utilize the
capacity of each bucket. However, their solution enables dynamic redistribution of
both capacity and refill rate between buckets to accommodate traffic when necessary.
While this approach is a feasible option for distributed rate limiting, it is not a good
fit for our problem. We had a heavy emphasis on the availability that our solution
provides, and dividing the total number of tokens each user can consume between
different nodes would be counterproductive.

A third approach is to replicate both the data used for rate limiting and the rate
limiting itself. Abu-Libdeh et al. have designed and evaluated Ajil [2], a distributed
rate-limiting protocol for data centers. Ajil consists of nodes, each responsible for
some part of the data center, that adjust the rate at which data is distributed
through multicast channels based on locally available information. The nodes ex-
change information about how much data is being distributed over the multicast
channels, and the adjustments to their sending rates are based on estimates of the
system’s total sending rates. This approach favors high availability, or rather main-
taining high utilization of a system’s communication channels and overwhelming
the system capacity as infrequently as possible. This protocol performs rate limit-
ing in a preemptive manner, as the allowed utilization of communication channels is
based on estimates of the system traffic. Thus, it suffers from false positives where
the utilization of communication channels would be reduced incorrectly. As stated
in Section 3.4.2, it was not desirable to introduce false positives for the solution
evaluated in this thesis. Therefore, a preemptive approach would not have been
ideal.
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Conclusion

In this thesis, a problem of the methodology used by one of the rate-limiting sys-
tems at Spotify was investigated. Rate-limiting systems employing the methodology
are vulnerable to users exploiting the fact that the systems are distributed among
multiple nodes that synchronize seldom. The thesis aimed to decrease the time it
takes for a node in such a distributed rate-limiting system to make the same decision
as a centralized system that performs the same task and receives the same set of
requests.

A relaxed, distributed, and delta-synchronized queue to be used specifically for
distributed rate limiting was designed, implemented, and evaluated. It was shown
that it enforces the same token-bucket behavior as the baseline that makes use of
CRDT counters. This queue was utilized to allow frequency analysis of user requests.
The frequency analysis allowed the system to detect users that approached the limit
of their token bucket abnormally fast and respond by synchronizing data for these
users faster than the nodes normally synchronize.

The queue solution was compared to the baseline with user traffic from one of the
rate-limiting systems used by Spotify. Compared to the baseline, the queue solution
could react quicker to users that generate large amounts of traffic and should be
rate limited. However, as a side-effect, the queue solution used substantially more
memory and bandwidth when dealing with such users. More specifically, it was
shown that the more traffic a user generates, the more memory and bandwidth it
made use of in contrast to the counter solution. Moreover, for users that do not
exceed the limit or are on the verge of doing so, which constitutes the vast majority
of users for this rate-limiting system at Spotify, the queue solution used only 13.6 %
of the baseline’s memory consumption, whereas similar amounts of bandwidth were
used.

On top of this, the queue solution took longer than the counter solution to converge
the more requests that the system received from a user. However, the longer con-

vergence time was shown not to influence the precision of the queue solution.

Moreover, it was shown that the queue solution requires more careful consideration
when assigning values to the different configuration parameters such as the gossip
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interval, the number of nodes, and the refill rate. While an evaluation of the pro-
posed solution deployed on a set of real servers was not carried out in this thesis,
which instead focused on the feasibility of the solution in a simulated environment,
an interesting future direction is to evaluate the queue in a physically distributed
environment.

To summarize, the proposed solution provides the system with the tool to combat

users that send many frequent requests to multiple nodes while also improving the
memory consumption substantially in the standard use case.
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