Thesis for the Degree of Master of Science in Physics

R-symmetry Charges Of Monopole
Operators

Joel Lindkvist

Fundamental Physics
Chalmers University of Technology
October 2010



R-symmetry Charges Of Monopole Operators
Joel Lindkvist

(© Joel Lindkvist, 2010

Department of Fundamental Physics
Chalmers University of Technology
SE-412 96 Goteborg, Sweden
Telephone + 46 (0)31-772 1000

Chalmers Reproservice
Goteborg, Sweden 2010



R-symmetry Charges Of Monopole Operators

Joel Lindkvist
Department of Fundamental Physics
Chalmers University of Technology
SE-412 96 Goteborg, Sweden

Abstract

M-theory is an attempt to unify the different 10-dimensional superstring
theories in a single framework. In this 11-dimensional theory the strings be-
come two-dimensional objects called M2-branes. The interactions of these
branes are not very well understood at a fundamental level. At low ener-
gies, however, a three-dimensional superconformal field theory known as the
ABJM theory has been conjectured to describe the world-volume dynamics of
multiple M2-branes.

We introduce monopole operators in three-dimensional field theories and
calculate the R-symmetry charges of such operators in N/ = 3 Chern-Simons
Yang-Mills theory. This theory reduces to the ABJM theory in the IR, but
our calculations are performed in the UV. Results for the ABJM case can be
obtained by flowing to the IR, if the quantities involved are constant along
the RG flow. Monopole operators with vanishing R-charges are needed in the
ABJM theory, both for supersymmetry enhancement and for matching the
spectrum with the dual gravity theory.

To describe the monopole operators we use the radial quantization method,
allowing us to indirectly study the operators by looking at monopole states.
We start by calculating the abelian R-charges carried by our monopole vacuum
state. This is done by a normal ordering computation and proves that there
exist monopoles with vanishing R-charge. Since the abelian charge can change
along the RG flow, however, this does not prove anything for the ABJM the-
ory. The non-abelian SU(2)g-charges are calculated by studying the collective
coordinate parametrizing our monopole vacuum state. These charges are also
found to be vanishing, and since non-abelian representations cannot change
continuously the result is valid in the IR (ABJM) limit as well. As a part of
our computations we also derive explicit expressions for the monopole spinor
harmonics, defined as eigenspinors of the Dirac operator on a sphere around
a magnetic monopole.

Keywords:
Monopole operator, ABJM, BLG, R-charge, superconformal field theory, Chern-
Simons theory, M-theory
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Introduction

In the history of theoretical physics, unifications has always been of great im-
portance. In unifying two different concepts under a single theoretical frame-
work, a closer understanding of the laws of nature is obtained. Earlier exam-
ples of great unifying theories are electromagnetism and Einstein’s theory of
special relativity. The task that now lies ahead for physicists is to unify the
strong and electroweak interactions, currently best described by the standard
model of particle physics, with gravity, which is described by a completely
different theory; general relativity.

In trying to describe the fundamental laws of nature, the main guiding prin-
ciple is that of symmetries. A theory is symmetric under a specific set of
transformations if these transformations leave the theory, often expressed by
its action, invariant. The continuous symmetries of a theory can be divided
into two classes; spacetime symmetries and internal symmetries. The former
are symmetries affecting spacetime, such as translations, rotations and Lorentz
boosts. In this class of symmetries we also find conformal symmetry and su-
persymmetry, which will be introduced below. The internal symmetries, on
the other hand, reflect a redundance in the way we describe the theory math-
ematically. The so-called gauge symmetries, which in field theories transform
different fields into each other, are extremely common in modern physics. Of-
ten, most of the properties of a theory follow directly from its symmetries.

The standard model is formulated in the framework of quantum field the-
ory (QFT), where elementary particles are described as quantum excitations
of fields. Quantum field theories are enormously widespread in fundamental
physics and show up in many other contexts as well. For an introductory text
on QFT, see [19].

Despite the big success of the standard model to describe the strong and
electroweak interactions, it suffers from several problems. First, there are
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some “minor” ones concerning fine-tuning and the so-called hierarchy problem.
These can be solved by introducing the concept of supersymmetry (SUSY); a
symmetry between bosons and fermions. Most physicists believe that SUSY
exists in nature, even though no experimental evidence has been found so far.
For an introduction on the subject, see [3].

The major problem of the standard model, however, is that it does not include
gravity. Supersymmetrical quantum field theories of gravity (supergravity)
have been studied since the 1970:s and was for a while considered as poten-
tial candidates for a "theory of everything”. These theories met a number of
problems though, excluding them as alternatives for a fundamental theory. In-
stead, the 1980:s saw the rise of string theory as the main candidate. In string
theory, the fundamental objects are not point particles, but vibrating one-
dimensional strings. Interestingly, only string theories with supersymmetry
(superstring theories) seem to be without inconsistencies. After a while, five
separate superstring theories emerged, each one being 10-dimensional. Later,
in the mid 1990:s, it was suggested by Edward Witten that these theories are
different limits of an underlying more fundamental theory called M-theory [25].
In M-theory, the world is 11-dimensional and the strings in superstring theory
become two-dimensional membranes called M2-branes. It was also found that
11-dimensional supergravity can be seen as a low-energy limit of M-theory,
which revived the interest in this "dead” field.

To this day, M-theory is still poorly understood. Many leading physicists
believe that completely new mathematics is required to correctly describe the
theory at a fundamental level. Nevertheless, certain aspects and limits of the
theory are possible to study via superstring- and supergravity theories. Also, a
special class of quantum field theories known as conformal field theories (CFT)
can describe the world-volume dynamics of strings and branes in certain cases.

In the late 1990:s, the so-called AdS/CFT-correspondence was suggested by
Juan Maldacena [16]. This turned out to be an important breakthrough in
theoretical physics and offered a completely new way of looking at things.
Maldacena conjectured that superstring- and supergravity theories defined on
Anti-de Sitter (AdS) spaces are actually dual (equivalent) to supersymmet-
ric and conformal (superconformal) field theories on the boundaries of these
spaces. Since then, many dualities of this kind has been found and new aspects
of string- and M-theory can be studied via conformal field theories. Needless
to say, this has increased the importance of CFT in fundamental physics. The
AdS/CFT-correspondance can also be used the other way around. Many sys-
tems in condensed matter theory, for instance, that are described by CFT can
now be studied using methods from string theory.

The concern of this thesis is a superconformal field theory known as the ABJM
theory, which is proposed to describe the world-volume dynamics of multiple
M2-branes. The ABJM theory is manifestly N/ = 6 supersymmetric. For
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certain choices of parameters, however, it is conjectured to describe M2-brane
configurations with N' = 8 supersymmetry. Thus, if the ABJM theory is a cor-
rect world-volume theory of M2-branes, the supersymmetry must be enhanced
for these choices of parameters. That this really is the case has been explicitly
proven using momnopole operators. These must exist inherently in the theory
and have certain properties for the SUSY enhancement mechanism to work
out. The main subject of this thesis is to prove the existence of monopole op-
erators with the desired properties in the ABJM theory. Most of the content
in the thesis is based on the arguments and calculations made in [7], and no
new results are presented.

1.1 Outline

In chapter 2, we introduce superconformal field theories and give the details of
the BLG and the ABJM theory. We also describe a mechanism of supersym-
metry enhancement in the ABJM theory and briefly explain the importance
of monopole operators in this context.

In chapter 3, we introduce N' = 3 Chern-Simons Yang-Mills theory as a UV
completion to ABJM and rewrite it in the radial quantization formulation. We
also define monopole operators in gauge theories and proceed to find a classical
BPS monopole background solution to our theory.

In the first part of chapter 4, we consider a special case of the monopole
background and calculate its U(1)g charge. This is done by normal ordering
the charge operator derived from the R-symmetry Noether current. In the
second part of chapter 4, we instead look at the general monopole background
and calculate the SU(2)r charge. This is done by quantizing the collective
coordinate that parametrizes the background.

In chapter 5, we summarize what we have done and comment on our
results.
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Superconformal Field Theories

The spacetime symmetry group of the standard model is the Poincaré group,
containing translations and Lorentz transformations. As mentioned in the
previous chapter, other important spacetime symmetries are supersymmetry
and conformal symmetry. A field theory possessing both these kinds of sym-
metries, in addition to the Poincaré symmetries, is called a superconformal
field theory. In fact, it can be shown that the superconformal algebra is the
largest possible spacetime symmetry algebra of a quantum field theory [12].
With supersymmetry also comes R-symmetry, which is a symmetry rotating
the different supersymmetry generators (supercharges) into one another. R-
symmetry is a central concept in this thesis.

Conformal transformations are defined as transformations preserving an-
gles. They can be divided into scaling transformations (dilatations) and special
conformal transformations.

Conformal symmetry is not consistent with the existence of massive par-
ticles, which is why a theory like the standard model cannot be conformally
invariant. Nevertheless, as hinted in the previous section and as explained be-
low, CFT is very important in modern physics. In condensed matter physics,
Euclidian two-dimensional CFT:s are used to describe critical point phenom-
ena. In addition, a special class of three-dimensional gauge theories known
as Chern-Simons theories are important in the description of phenomena that
has to do with topological order. In a Chern-Simons theory, the gauge field
dynamics is given by the Chern-Simons form

k/tr A/\dA—i—gA/\A/\A (2.1)
4 3

where the integer parameter k is called the Chern-Simons level.

In string theory, two-dimensional conformal field theories are known to
arise on the world-sheet of strings. In superstring theory, the world-sheet
dynamics is described by superconformal field theory.
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Recently, three-dimensional superconformal Chern-Simons theories were
suggested to describe the world-volume dynamics of coincident M2-branes.
These specific theories are known as the BLG and the ABJM theory and will
be described in the subsequent sections. Most of this thesis is concerned with
properties of the ABJM theory.

2.1 BLG

In 2007, a world-volume theory for stacks of multiple M2-branes was found by
Bagger and Lambert [4,5] and separately by Gustavsson [10] (BLG). The BLG
theory is an A/ = 8 superconformal Chern-Simons theory based on an algebraic
structure called a three-algebra, with a basis 7% and a totally antisymmetric
triple product:

[T, T, T° = fob, 1. (2.2)

There is also a symmetric trace-form allowing us to raise and lower three-
algebra indices. Analogously to the Jacobi identity for ordinary Lie algebras,
the three-algebra generators obey a fundamental identity. Expressed in the
structure constants this identity reads

fabcgfefgd _ 3fef[agfb<3]9d’ (2.3)

which equivalently can be written as

f[abcg e]fgd =0 (24)
or
fab[cgfd]efg — _de[agfb]efg' (25)

Furthermore, one can show that the structure constants are totally antisym-
metric:

fabcd — f[ade}‘ (26)

For a specific realization of the three-algebra, related to the Lie algebra SO(4),
it was later shown in [24] that it is possible to rewrite the theory as an ordi-
nary SU(2)xSU(2) gauge theory, without any reference to the three-algebra
structure constants. This realization, however, seems to be the only finite-
dimensional one, which means that the BLG theory can only describe stacks
of two M2-branes. As a solution to this problem, Aharony, Bergman, Jafferies
and Maldacena (ABJM) were led to formulate another world-volume theory
for stacks of M2-branes. The ABJM theory is described in section

2.1.1 Field Content and Lagrangian

The original BLG theory consists of two dynamical fields, the scalar X i, and
the spinor V¥,, and an auxiliary gauge field Auab. Here, u, v,... are flat indices
on the 2 + 1-dimensional world-volume, i, j,... are SO(8) R-symmetry vector
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indices and a, b,... are three-algebra indices. The SO(8) spinor indices and
the world-volume spinor indices are not explicitly written out. To construct
a Lagrangian one also needs a basic gauge field A which is related to the
auxiliary gauge field by

nab?
A,uab = Aucddeab- (27)
The BLG Lagrangian is
1 4 . P P
L= —3(DuX"™)(DIX,) + %\I’“’y“DH\IJa - i\ybr”XQXﬂdqfa fpabed

2

1 -
-V + 58/”/)\ <A,uab8yA)\ab + 3

Auab[lubc[l)\ca> (28)
with the potential
1 C o
Vo= e X X0, XXX X, (2.9)
The covariant derivative is defined by

Dy X" =9, X" + A% X" (2.10)

SUSY transformation rules

The Lagranian (2.8]) is invariant under the following SUSY transformations:

SX = ety (2.11)
) ) 1 . -

00" = DuX"MTle+ X XT XF I Ee frete (2.12)

SA% = iEX Ty, Tafe,. (2.13)

An explicit verification of this invariance is carried out in Appendix

2.2 ABJM

As mentioned in section the underlying algebraic structure of the BLG
theory is so restrictive that it has only one realization. This realization is
related to the gauge group SO(4) = SU(2) x SU(2), which limits the BLG
theory to describe stacks of two M2-branes. We also mentioned that the BLG
theory can be rewritten as an ordinary gauge theory with gauge group SU(2) x
SU(2), without any reference to the three-algebra. As a generalization to
this, Aharony, Bergman, Jafferis and Maldacena (ABJM) constructed a theory
based on gauge group U(N) x U(N), describing the world-volume dynamics of
N M2-branes [2]. For this to work out, however, they had to reduce the
number of manifest supersymmetries from N' = 8 to N' = 6. Later, Bagger
and Lambert proved that it is possible to reformulate the ABJM theory in
terms of a three-algebra with a less restrictive structure than their original
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one [6]. Yet another formulation of the theory was given in [18], relating it to
Jordan triple systems.

The original ABJM theory contains two Chern-Simons terms with opposite
levels k and —k. Thus, 1/k is the coupling parameter of the theory. In
fact, for level k, the theory is conjectured to describe M2 branes in an R®/Z,
background. A stack of M2 branes on R® or R®/Zy has N/ = 8 supersymmetry
which means that the number of supersymmetries is expected be enhanced
in ABJM theory with £ = 1,2. For the special case of gauge group SU(2) x
SU(2), it was shown in [22] that one actually gets enhanced supersymmetry.
In fact, the resulting theory is identical to the BLG theory. For the ABJM
theory to correctly describe multiple M2-branes of any number, however, the
supersymmetry must be enhanced for all permissible choices of gauge groups.
That this really is the case was explicitly proven in [11]. The proof relies
heavily on the existence of certain monopole operators in the theory. A brief
explanation of the role these operators play is given in section [2.2.2]

2.2.1 Details of the ABJM Theory

Below, we give the details of the ABJM theory as formulated in [18]. The
Chern-Simons level in this case is k = 1, which means that the theory describes
M2-branes in an R® background.
The four-index structure constants are written as
/ abcd =f [ab}cd =f ab[cd] . (2.14)
Fields with upper and lower gauge indices are treated as objects in differ-

ent vector spaces and, correspondingly, there is no metric to raise and lower
indices. Furthermore, the structure constants obey the fundamental identity

fa[bdc fe}dgh = bed[g fadh}c (215>
and
(fabcd)* = deab (216)

under complex conjugation.

The dynamical fields in the theory are the scalars Z4_, the spinors ¥ Aa
and their complex conjugates Z ,* and U4 Here, upper(lower) capital indices
are (anti-)fundamental SU(4) R-symmetry indices. The basic gauge field A, 7,

and the auxiliary gauge field fl““b are related by
Ay = "% A0 (2.17)
The ABJM Lagrangian is
L= —(DuZ%)(D'Z,") — 04 D,V y,
—i [ g AN 4 2B 4 2 f P AN g, 7B 74

1 - 1 = 5 a5
_ieABCDfabcd \I/AC\I/BdZCa ZDb _ §EABCchd . \I’AC\IIBdZCaZDb

a

1 2
-V + 56“1/)\ ( abcd Audbal/A)\ca + § bdgc fgfae Ap,abAych)\ef> (218)
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where the potential is given by

9 _
V= gTCDBdTCDBda (2.19)
YPpy=fq26,2% Z5° + fabcdé[CB ZP, 25, 72,°. (2.20)
The covariant derivative is
D, Z4, = 0,2%, — 2% A}, (2.21)
DuZp" = 0,2," + A, %2, (2.22)
D#\I’Bd == aM\Ide - \IIBdA/Lad' (223)

SUSY transformation rules

The SUSY transformation rules for the scalar and spinor fields are:

674, = ie Py, (2.24)
Wy =*DuZ%eap + [0 2925 Zpecn — [0 20 2% Zc e ap,
(2.25)
where the transformation parameters eA? and e Ap obey
1
e §€ABCDECD, (2.26)
1
€AB = §6ABCD€CD, (2.27)
and
AP = (e4p)". (2.28)

In Appendix we explicitly show that the ABJM Lagrangian is invariant

under (221)-@29).

2.2.2 SUSY Enhancement and Monopole Operators

As said above, the supersymmetry in the ABJM theory must be enhanced to
N =8 for k = 1,2. This was proven in [11], where the authors could write the
action in an SO(8)g invariant form, identify an extra N' = 2 supersymmetry
and show that it closes with the original N/ = 6 algebra. This was done
by considering, in addition to the original ABJM fields, fields with a different
index structure. As an example, recall from section[2.2.1]that the ABJM scalar
field and its complex conjugate has index structure Z Aa and Z 4@ respectively.
For the SUSY enhancement to work out, however, fields with index structure
Z4% and Z 4, must also exist in the theory. In other words, we need a way
to raise or lower gauge indices without changing the R-symmetry properties.
This is the role of the monopole operators. In [11] the authors use monopole
operators W2 with two gauge indices. By attaching these operators to the
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original ABJM fields, one obtains fields with the desired index structure. Of
course, the monopole operators must transform trivially under R-symmetry.
In addition, their scaling dimension must be zero, since otherwise scalar or
spinor fields with different index structures would have different dimensions.
The question of whether there really, inherently in the ABJM theory, exist
monopole operators with these properties will be the topic for the rest of this
thesis.

As a side note, monopole operators are also important in the verification
of the conjectured AdS/CFT duality between ABJM theory and M-theory on
AdS4 X S7 / Zk.



N = 3 Chern-Simons Yang-Mills
Theory

The goal of this chapter and the next is to prove the existence of monopole
operators with certain properties in the ABJM theory. These operators should
transform non-trivially under gauge transformations, be R-symmetry singlets
and have vanishing scaling dimension. By the superconformal algebra, the
scaling dimension of the operators is actually related to the R-symmetry
charges. If the R-symmetry charges of the operators can be shown to van-
ish, this is also true for the scaling dimensions. Therefore, the most important
issue in this thesis is to calculate the R-symmetry charges of the monopole
operators.

The charges can, in a weakly coupled theory, be calculated using perturbation
theory. The coupling constant of the ABJM theory is 1/k, so for large Chern-
Simons level perturbation theory can be used. The problem is, however, that
we are interested in the case of small k-values (kK = 1,2 to be more specific),
in which case the theory is strongly coupled. The solution to this problem is
to add a Yang-Mills term to the action, introducing another coupling constant
g. Adding the Yang-Mills term one must also add additional dynamical fields
to the theory in order to preserve some amount of supersymmetry, and the
result of all this is an N/ = 3 Chern-Simons Yang-Mills theory [7]. In the
IR, where g is divergent, this theory reduces to the N' = 6 ABJM theory. In
the UV, on the other hand, the theory is weakly coupled and it is possible
to use perturbation theory. Thus, values of quantities that are unaffected
by the renormalization flow can be computed in the UV and still be valid
in the ABJM (IR) limit. Since a non-abelian representation cannot change
continuously, the non-abelian R-symmetry charge is such a quantity.

11
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3.1 Field Content and Lagrangian

The N/ = 3 Chern-Simons Yang-Mills theory contains two gauge fields A,
and /Al#, corresponding to the two gauge groups. These fields form two gauge
multiplets together with the scalar fields ¢ and aAﬁ and the spinor fields x,,
X4; Xo and X4, all transforming in the adjoint representation of the two gauge
groups. In addition, we have two types of chiral multiplets. The first one
contains the scalars Z4 and the spinors ¢4 in the fundamental and anti-
fundamental of the two gauge groups respectively. The other type of chiral
multiplet is formed by the scalar W4 and the spinor w4, transforming in the
anti-fundamental representation of the first gauge group and the fundamental
representation of the second one. Here, A, B, ... are SU(Ny) flavour indicesH
The gauge indices are not explicitly written out.

To make the R-symmetry manifest, we arrange the above scalar and spinor
fields into SU(2) g multiplets. First, we have the doublets

x = (7). (31)
X = (&) 32
anc?
¢ie = ( g;e://t) : (3.3)
h= (2000 3.

The adjoint scalars can be written as ¢f = gbi(oi) (and similar for ¢), where
i is an SU(2)g vector index. Finally, the adjoint fermions are grouped as

—im/4 o a—im/d
b — <>§Z:em/i X em//4> | (3.5)
R R (36)
The complex conjugates of the adjoint fields are
(68)" = &) = cace™y, (3.7)
(AP)* = =X = —€acerar”. (3.8)

"We will keep the number of flavours N ¢ in the computations arbitrary. The ABJM
theory has Ny = 2.

2The bars refer to the ordinary spacetime Dirac conjugate

3Here, (0:)§ denotes either a Pauli matrix or a transposed Pauli matrix, depending on the
context. The SU(2)r indices of the fields are always placed as in -, Pauli matrices
are written as (0;),” and their transposes as (0;)%. These conventions will, in every given
context, make clear which set of matrices we are dealing with.
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We can now write down the action for the N/ = 3 Chern-Simons Yang-Mills
theory. The kinetic part is given byﬁ

1 27
Skin = /de tr |:—292F/WFNV + ket <AM8VA)\ + SZAMAVA)\> —
1 uv w4 A 26 5 4 4
—gF F — K€ A0 AN + gAﬂA,,AA
—DMXTD“X + ngﬂf
1 1 1 - - 1 N
502 Dndi D" 0u = 5r°g° )00 — 5 3 Dudh D0 — 5°6 040,

2 9 Aabp)‘ab - *Z)\abAba - 7)\ab,p)\ab - Z)\ab)\ba:| (39)

and the interaction part by
Sw = [date[-ngX[opX" + ng? X 30X] - iglofe” - i)
"‘Eac)\CbXafg . eacAcbngl B €a05\6bnga + €aCXT5\cb§b
K Ko~ oap » 1 .
59100 0] + G0k 90 — 53 ihanlol, AT + fmab[qsb X

[

§ 1 a 1 2a ]
~ L (Xoxty - L (XToiX)? - S(XXTagel - 5 (XX

4
1 A am oA
—XLa¢bXA“¢b+ [qbb,cbdnas ¢?]+872[¢z,¢2][¢2,¢§] - (3.10)

The covariant derivative is
DX =0, X +iA, X —iXA,. (3.11)
It can be verified that the action given by (3.9 and (3.10]) is invariant under
the following N' = 3 SUSY transformations, with variation parameter €,:
)
6A, = —Egamxzb

1

) {
5}\ab — 56MV)\ij,y/\é_ab _ Zp¢2€ac + §[¢>g,¢§]€ad

)
+rg2ig2e + gZi X X Te? — %(XXT)&:“IJ

5y = —gcbxuiaggcdxd

N i A

5A, = —ieamvb

R 1 R R A
SN = ie“VAFHV’y,\aab—i-i@(bgaac—i— %[ 2, 651

P02
+Kg ’qub ac g2i6ch;[Xa+ %(XTX)gab

4k = k/4m, where k is the Chern-Simons level



14 Chapter 3: N/ = 3 Chern-Simons Yang-Mills Theory

Spp = —gcbﬁcuéagacdi“l

0XAY = —igpeht

5X,T4a = —i€Lb€2

ot = PXNel + ppeeX e+ Xy

6511& = @XLbSZ—HEngXLngd)Z. (3.12)

In the IR, we see that the kinetic terms for all the adjoint fields vanish from
the action. Thus, these fields become auxiliary and can be integrated out. The
Yang-Mills terms vanish in the IR as well, and it can be shown that the theory
reduces to the ordinary ABJM theory in the Ny = 2 case, if one regroups the
fields in an appropriate way [7].

3.1.1 Radial Quantization

In all three-dimensional conformal field theories, there is a one-to-one corre-
spondence between local operators in the theory formulated on R3, and states
in the theory formulated on R x S?. This is called the operator-state corre-
spondence and the formulation of the theory on R x S? is called the radial
quantization picture [8,/9]. In this thesis, we are interested in the properties
of certain operators in a conformal field theory on RY2. If we transform the
theory to R3, we can then use the operator-state correspondence and study
states in the radial quantization picture to learn about the operators. The
remaining part of this section will be devoted to transforming our action given
by and from R%? to R x S2.

The first step is to perform a Wick rotation by defining 2® = i2°, making
the signature Euclidian. Next, we change to polar coordinates (r,6,¢) and
introduce a new dimensionless radial variable 7, by defining r = 7. These
operations result in a theory on R x S? where the radial direction is considered
to be the (Euclidian) time direction. Some details of the manifold R x S?, as
well as our Dirac matrix conventions, are given in Appendix [B] In addition
to the coordinate transformations we also perform Weyl rescalings of all the
fields in the theory. These rescalings are defined by

0

B = dimBIT R (3.13)

where B is an old field on R? with mass dimension dim(B) and B is the new
one on R x §2. The coupling constant ¢ turns into

g=e"?g. (3.14)

The above transformations will render all the coordinates and fields of the
theory dimensionless. Moreover, the theory we started with is not conformally
invariant, which means that the action will change under the Weyl rescalings.
We are ultimately, however, only interested the IR limit of the theory, where
it reduces to ABJM. In this limit, the theory is conformally invariant and the
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rescalings will not affect our results. Before the Weyl rescalings we will also
redefine the adjoint fermions as A — g\ (and similar for the hatted field) to
put them in a form more suitable for perturbation theory. The resulting action
after performing all these manipulations is given byﬁ

1 21
Siin = / drdSytr [QZF””‘"FW — ire™"k (AmanAk+ ;AmAnAk> -
g

R R 2% A a4
1
+D,, XD X + ZXT X —igtpe
1
5 DndiD" 0} + m 27680% + —=3 D iDL + n 252 d0dh

: 1 U N
+%/\“b27))\ab RGP g + %/\“b@/\ab n 252g2mbxba] (3.15)

for the kinetic part and
St = / drd tr [@2Xg¢gxb — KGPXGLX] + i€l ppet + icodhe]
—GeacA X AE + GePNBE X + GeaeAPE X — Ger X[ A
K KA ~p oA 7 z
— 50800 Be) — G A108 BE) + S Aabl6s AT — S Aab [0, A
g e 9 o 2, 1 N t\ 2a 2b
+Z(XU¢X) +Z(X 0iX) +§(XX )¢b¢a+§(XX ) Db Da

4] 010G — 168, dalloh, o8] — 5. lidn. 6| (3.16)

for the interactions. The derivative is of course, in addition to gauge covariant,
also geometrically covariant:

DX =V X +iAnX —iX Ay, (3.17)

where V,,, for the manifold R x S? is calculated in Appendix [B| Finally, the
SUSY transformations (3.12)) turn into:

i
§Am = fé’sa,ﬁmw
5Aab — ;?emnkF n’)/kg _Tp¢b ac_i(bcygac %[ lé’¢§]€ad

FRGIGE™ + GiX X e® — %(XXT )eab

685 = —Gea + Sopear
A id )
0Am = _Egsab'Ym)\ab

5We have dropped all tildes from the fields
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A i i 2 iy o
5/\ab — ﬁfmnkan’Ykgab"i_Ep(bggac"i_?g(bcygac"i_E[¢za¢§]€ad

FRGIGE™ — i XT X + %(XTX)sab

685 = —gea + Soeah
sXAr = —igpet
5Xila = —ibe€Z
1 A
o¢ht = PXNef + XNVl + ¢ X+ X el
1 N
0h, = PXlyeo+ g X, Veq + hei X, + X eio. (3.18)

3.2 Monopole Operators

In this section, we define monopole operators in U(N) gauge theories and
describe briefly how to find an appropriate classical monopole solution (i e
field configuration) to our N/ = 3 Chern-Simons Yang-Mills theory. This
classical solution will be the basis for our quantum mechanical computations
in the next chapter.

In a U(1) gauge theory on R3, as is well known, a magnetic monopole
is a gauge field configuration with a field strength singularity in a point in
space, leading to a magnetic flux through a sphere surrounding that point.
A monopole operator is defined as an operator that, if inserted at a specific
point, creates such a singularity and flux. In addition, the monopole operator
specifies the behaviour of the matter fields close to the insertion point. In the
U(1) case, the gauge potential leading to a field strength singularity in the
origin is given by

Ay = q(£1 — cos¥), (3.19)

where ¢ is the magnetic charge and where the upper (lower) sign is for the
northern (southern) hemisphere. The possible values of the magnetic charge
are constrained by the Dirac quantization condition.

By the operator-state correspondence, a monopole operator with magnetic
charge ¢ is mapped to a state on S? xR with flux ¢ through the sphere [9]. Also,
the presence of a Chern-Simons term in the theory affects the effective charge
of the monopole. By integrating the Chern-Simons term over the sphere, one
obtains a state with charge kq, where k is the Chern-Simons level. Thus,
the monopole operator is effectively described by a state on S? x R with flux
kq |14]. For us, this means that the properties we find for the monopole field
configurations (which are our vacuum states) in the radially quantized theory
can be considered properties of the monopole operators themselves.

As discussed in [13] and [14], the above definition of monopole operators
can be generalized to U(N) gauge theories. In this case, the operator creates
a singularity in a U(1) subgroup of U(N). To be more specific, one chooses
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a homomorphism U(1)—U(N) specifying the embedding of U(1) into U(N).
The non-abelian monopole is defined as the image of the ordinary U(1) singu-
larity under this homomorphism. The homomorphism will in general take an
abelian Lie algebra element (like the magnetic charge) to the diagonal matrix
H = diag(qi1,q2,-.-,qn), where g; are integers. This matrix labels the non-
abelian monopole operator and in fact, the integers ¢; can be shown to define
a highest weight representation of U(N). Thus, the choice of ¢; specifying the
embedding of U(1) into U(N) determines how the non-abelian monopole op-
erator transforms under gauge transformations. By choosing different sets of
integers one obtains monopole operators in different gauge representations.
The non-abelian generalization of is simply given by

Ay = H(£1 — cos¥). (3.20)

Also, analogously to the abelian case, a Chern-Simons term affects the effective
charges and thus the possible representations. For Chern-Simons level k, the
monopole operator transforms in the highest weight representation given by
kH = diag(kqi, kqa, ..., kqn ).

To summarize, a monopole operator inserted at a specific point in space
creates a gauge field strength singularity and specifies the field configuration
for the matter fields close to the insertion point. Properties of these fields con-
figurations in the radial quantization picture, such as gauge- or R-symmetry
representations, correspond to properties of the operators themselves.

In |14], monopole operators in U(N)xU(N) gauge theories were described,
which of course is the case of interest in this thesis. The behaviour of the two
gauge potentials A and Ais specified by the two diagonal matrices H and H,
whose entries satisfy the constraint ¥;q; = ¥;¢;.

A special class of monopoles are the BPSﬂ monopoles. A BPS monopole
is defined as a monopole field configuration that saturates the so-called Bogo-
molny bound; a lower bound on the mass [23]. A BPS monopole also preserves
the supersymmetry of the theory. Since our ultimate goal is to calculate R-
symmetry charges of monopole operators, our monopole field configuration
must be supersymmetry preserving. Thus, we will focus on BPS monopoles.

3.2.1 BPS Solution

A classical BPS monopole solution to our N' = 3 Chern-Simons Yang-Mills the-
ory was found in [7]. For some field configuration to be a valid BPS monopole,
two conditions must be met. First, it has to satisfy the equations of motion
for the theory; and second, the SUSY transformations must still leave
the action invariant. The starting point is the gauge field configuration
defined on R3, which will not change when going to R x S? since it is already
dimensionless. By requiring the SUSY variations for the fermions to vanish
one obtains the conditions A,, = A,, and gZ)l = —¢; = nHn;(7), where n? = 1,

5Bogomolny-Prasad-Sommerfeld
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and n = +1 corresponds to BPS and anti-BPS monopoles respectivelym One
also obtains expectation values for the bifundamental scalar fields and it can
be shown that all these field configurations satisfy the equations of motion.

Let us now suppose that we want to do perturbation theory around these
classical expectation values. To get the action in a form suitable for that, the
gauge fields and the adjoint scalar fields must be rescaled by a factor of g.
This means that the quantum fluctuations are of order g. The expectation
values, on the other hand, are of order unity. Since all the computations will
be carried out in the UV, where g is small, our expectation values for the
gauge fields and adjoint scalars can be treated as a classical background. For
the bifundamental scalar, no rescaling is needed to make the action suitable
for perturbation theory. Thus, the classical solution is of the same order of
magnitude as the quantum fluctuations and cannot be treated as a background
in the UV.

To summarize, a classical BPS monopole solution to the N = 3 Chern-
Simons Yang-Mills theory is given by the field configuration

Ay = Ay=H(+1 - cos) (3.21)
¢i = —¢i = —nHni(r), (3.22)
where 1 = 1 corresponds to a BPS monopole and n = —1 to an anti-BPS

monopole. In the next chapter, this field configuration will be treated as a
classical background. We will examine the R-symmetry properties of the back-
ground since, by the operator-state correspondence, there must exist monopole
operators with the same properties.

7An anti-BPS monopole is a BPS monopole with opposite magnetic charge.



R-symmetry Charges

In the previous chapter, we found that there is a classical BPS monopole so-
lution to our A = 3 Chern-Simons Yang-Mills theory, where the expectation
values of the gauge fields and adjoint scalars are given by (3.21]) and (3.22)).
These expectation values are of a different order of magnitude than the quan-
tum fluctuations and can in the following be treated as a classical background.
The background preserves the supersymmetry and R-symmetry of the theory.

In this chapter, we will compute the R-symmetry charges of the back-
ground induced by fermionic fluctuations. In section we consider a static
background that breaks the R-symmetry from SU(2) to U(1). Of course, we
can only calculate abelian R-symmetry charges in this way and these can
change continuously under the renormalization flow. Therefore, we also need
to consider the full SU(2)g-preserving background, allowing us to calculate
non-abelian charges. This is done in section Since we in the rest of the
thesis will work with a theory on R x S?, we have collected some geometrical
considerations of this manifold in Appendix [B}

4.1 U(1)g

In this section, we consider a special case of the BPS monopole background

(3.21) and (3.22)) given by
Ay = Ay = H(+1—cosb) (4.1)
bi = —¢i=-—nHds,
where we arbitrarily have selected the SU(2)g direction to be i = 3. Our task
is now to calculate the U(1)r charge of this background. The idea is to con-
sider all the non-background fields in the theory and compute the total charge

operator. This operator will consist of a vacuum term and the field fluctu-
ations, where the vacuum term corresponds to the charge of the monopole

19
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background and thus of the monopole operator that inserts the background.
To begin with, we will make the calculations for an abelian toy model, con-
taining only one fermion. The results of this calculation can then easily be
generalized and applied to the N’ = 3 Chern-Simons Yang-Mills theory.

4.1.1 Toy Model

Let us start with an abelian gauge theory on R x S? containing one fermion
(T, 2) with equation of motion

DY +nqyp = 0. (4.3)

The Dirac operator is given by

P =V +id, (4.4)

where A is a monopole gauge field configuration of the form with H = q.
The mass term in the Dirac equation will later be shown to emerge from the
coupling to a background scalar of the form with H = q.

Let us now proceed to calculate the R-symmetry charges in this theory.
Assume that the charge operator is given by

Q1= /dmpw. (4.5)

To avoid divergences that might occur at 7 = 0 we will use point-splitting.

Thus, we set:
Ql(ﬁ)—/deT <T+§,Q)¢<T—§, ) (4.6)

where 8 > 0. After the calculations, we will obtain our result in the limit
8 —0.

Instead of we could equally well have defined our R-symmetry charge
operator as

Qo= — / dQ T, (4.7)

In most cases in quantum field theory, the charge operators consist of fluctu-
ation terms and an infinite normal ordering constant. This normal ordering
constant is simply dropped, and in this way one sets the charge of the vacuum
to zero. In our case, however, the vacuum charge is precisely the quantity we
are interested in since it corresponds to the charge of the monopole background
and, thus, we expect to see a finite normal ordering constant. Q1 and @9 will
in general give different values for the normal ordering term and, therefore,
we redefine the charge operator as their averageE] The point-splitted version
of our charge operator is now given by

o = [aa ot (r+5.0) v (r-5.0) v (r+5.0) v (r- 5.0)].
(4.8)

!See [8] for a discussion about this.
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Our next step is to solve the Dirac equation and insert the solution
into the expression for the charge . To solve the equation, we first expand
¥ (7,§) in monopole spinor harmonics. These are defined as eigenspinors of
the Dirac operator on a sphere around a magnetic monopole, and in Appendix
[C] we derive the explicit expressions for these spinors, as well as some of their
properties. As seen from , the monopole spinor harmonics form a com-
plete set of spinors on S?, which means that we can use them to expand a
general spinor. We write the expansion as follows

jme

where the 7-dependent w—functions are operator coefficients. Next, we insert
this expression into the Dirac equation (4.3):

0 = (P+n9y(r,Q)
= (Ps+7"0-+n9)(1,9Q)
= Z 'yT¢m Tqm + Z (ZAa TZ]m o E ( )Tij>

jme
A0g > (T + 10> W50 (T) T (4.10)
m Jjme

Here, a dot denotes a derivative with respect to 7. Now, using (C.81)), we have
the following equation

sign(q)Ym (1) + nghm (1) = 0, (4.11)
with solution
Y (T) = ce T (4.12)
for some operator ¢,,. In the same way, we use (C.79) to obtain
TS 5, (T) + 055+ ngf, (7) = 0, (4.13)

which we also can write as

()~ Conom 37 )(ED). am

This system of coupled ﬁrst order ODE:s can be rewritten as the following
uncoupled second order ODE:s

+ B35, =0, (4.15)
where we have defined
Ej = /D, +na)(in;, +na)
= \/ AL A +ing(Af +45) + ¢

= @i - a1

1
= j+3 (4.16)
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We write the solution to (4.15)) for e = + as

1 —E;T GT

for some operators c;,, and d}m. Taking the 7-derivative of this expression

and using (4.14]) now yields

Vi (T) = = =, (7)

ZA ¢ T4
iAT +nq E;

79 J —FE; f E;
=T Ejzﬂ(—cjme Tt dje ’T>

i/ (2] + )2 —4¢2 + 209 1
V(25 +1)% —4¢7 + nq7<cjme_ ]-T_d;_meEﬂ)

25 +1 V2

1 2 2 2 _ .
V2 23231 +Z'\/1_ <2j4qu> (came™7 = d},,eP7) . (419

Before we insert (4.18)) and (4.17) into the expansion we streamline the nota-
tion a bit by defining

+ + _
u o= o= (4.19)
B _ 1 2nq . 2¢ \°

T = = 1-— . 4.20
g ERRVCA T ES (2j+1) (420)

The expansion (4.9) can now be written

ZC e-ﬂlf]ITTO + Z [C]mu P RTINS T} T;m. (4.21)

jm J
jme

Since 7 is related to ordinary time by 7 = it, this is an ordinary oscillator ex-
pansion with positive and negative frequency modes. For the non-zero modes,
we interpret E; as the energy, c¢j,, and d;,;, as annihilation operators and c}m

and d}m as creation operators. For the zero modes we have to be a bit more
careful since there is a difference between the BPS and the anti-BPS case. In
the BPS case (n = 1), the zero mode is a positive frequency mode and ¢,
is an annihilation operator. In the anti-BPS case (n = —1), we must instead
interpret it as a creation operator. The operators satisfy (for an appropriate
normalization of ) the following anticommutation relations

{Cmac;[n/} = Omm’ (422)
N T (4.23)
{djm dlyy} = 8O- (4.24)
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Furthermore, when we take the Hermitian conjugate of (4.21) we must also
change the sign of 7. This follows because, if we Wick rotate back to ordinary
time, there is a factor of ¢ in the exponentials. Thus, we have

ZC erllryio 4 3 [ e 4 djvice Eﬂ} T (4.25)

jme

We are now finally ready to calculate Q(53) by inserting (4.21] and into
. We use the orthogonality of the monopole spinor harmomcs and
(C.83) to perform the integral over €2, simply trading it for deltas that turn
the double sums into simple sums. This results in the following expression:

1 1 , _
Q(/B) — 5 Zcincmenlqlﬁ 4 5 Z [C;ijm!u;lzeEjﬁ 4 djde |,UE‘2 E;pB
jme
TdT xe, e 2E;T €, %€ \—2E;T

+Cjp Uy V57T + djmCimusvsTe }

1 , .
-3 Z e 11— 23 {ijczm‘uj‘ae_w +df dj |05 €57
m

jme
+Cimdjmujvite” 2B 4 djm jmujev;:eQE T} . (4.26)

The first step in simplifying this expression is to evaluate the e-sums. We
easily see that Z |u€|2 |v5]2 =1 and ZUE ;© = ujv; = 0. Then, we set

6 =0 and arrive at

1 1
Q= 3 Z(cincm — cmcjn) + 3 Z [c}mcjm — ijc}m — d;mdjm + djmd}m .

(4.27)
We can now normal order all the terms and calculate the vacuum charge. For

the non-zero modes we have the normal ordered part

Q1= [chtim = dlyudlim - (4.28)

jm

Because of the sign difference between the terms, the normal ordering con-
stants cancel and we get no contribution to the vacuum charge from these
terms. Turning to the zero mode terms, we have two different cases. In the
BPS case, the normal ordered term is

=> chem (4.29)

and the normal ordering constant

21—— (27 +1) = —|q]. (4.30)
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In the anti-BPS case, the roles of ¢,, and cin are switched and the sign of the
charge is reversed. Thus, the final expression for the vacuum charge is

Qo = —nldq|. (4.31)

Our result is the monopole background charge induced by a fermion
in our abelian toy model. Before we apply this result to our Chern-Simons
Yang-Mills theory, we should of course also examine whether a scalar gives
rise to a similar vacuum charge. However, it was shown in [§] that this is not
the case due to their symmetric spectrum. As shown in Appendix[C] the non-
zero mode eigenspinors of the Dirac operator are paired; the two eigenspinors
for each j and m have the same eigenvalue with opposite sign. This is the
reason why the non-zero mode contributions to the normal ordering constant
cancel. The zero mode state, however, is unpaired and no cancellation takes
place. The corresponding spectrum for a scalar is symmetric and has no such
unpaired states, which means that all its contributions to the vacuum charge
cancel.

4.1.2 Applications to N = 3 Chern-Simons Yang-Mills Theory

Let us now apply the results of the previous section to the Chern-Simons
Yang-Mills theory we are interested in. With the background scalar field
configuration (3.22), the theory is invariant under SU(2)g transformations.
We can write these transformations as

§B® =il BY (4.32)
6B, = —ic) By, (4.33)

The fermion part of the associated Noether current J™ is given by

25T = 2t [€ha ™™ = Lherr™A = Lhacr ™A = Ty ™A = T
(4.34)

When we consider the static background (4.2]), the symmetry is broken to

U(1)g. Since we have chosen the i = 3 SU(2)g direction, the U(1)g current

is given by setting el = (03)f in (4.34). Changing back to the original fields,

the U(1)g current can now be written

Aca’)/m ACb

m a m 1
7 (o [ghamet - ]

1 1. N 1. N
_iAaCVm)\bC _ 5)\Ca,ym)\cb _ 2)\ac,7m)\bc:|

=tr [£L1Vm5A1 - gjqﬂmgm — Ay

FA227™ A% = Ay AN + ;\22’Ym5\22]
=tr [way" @ = (A" + X0V Xo — XoVNo + X0V R — KoV X0
=tr [—@ay"w? = a7t + 2% X0 + 2X07 " X0 ) - (4.35)
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In the last step, we have flipped three of the fermion bilinears. The conserved
U(1)g charge is now given by

QR = / aQ Jr
= / dQtr [~way"w? = (a7 ¢ + 22X Xo + 2X6) Xo
_ / a9 tr [—who = CLet + 2o + 28000 (4.36)
Let us now turn to the equations of motion. For the background given by

and (4.2), and when g — 0, the Euler-Lagrange equations for the fermions
yield

Per —nH(03)5, €M) = 0 (4.37)
P, +nlH(os)h. €l = 0 (4.38)
DA+ n[H(03)2,A] = 0 (4.39)
PA® + n[H(o3)8, A = 0, (4.40)
implying
Pwa+nH,wa] = 0 (4.41)
P+ [H ¢ = 0 (4.42)
@Xa+77[H7Xa] =0 (4.43)
PXo +nlH,xs] = 0. (4.44)

Our next step is to relate these equations to the Dirac equation in our toy
model. Writing out the gauge indices explicitly, the gauge group generator
H = diag(qi,...,qn) can be written as H,s = ¢0,s. Since there is a well
defined commutator between H and the fermion fields, these must carry two
gauge indices as well. For a generic fermion 1, we now have

[Ha ¢]rs = QT(Srt¢ts - djrtQt(sts = (QT - QS)Q/)rs- (445)

In the monopole background given by (3.21)), the Dirac operator corresponding
to the covariant derivative (3.17) is

Py = Vi +iy?H(E£1l — cosf)yp — iy H(£1 — cosb)
= Yo +iy?(£1 — cos O)[H, o). (4.46)

Using (4.45)), we see that each fermion matrix element 1,5 separately satisfies
the equation of motion

Yibrs + i7¢(il — COs 9)((]7“ - QS)d}rs + 77(‘]1“ - q$)¢rs =0, (4'47)

which is of the same form as the Dirac equation (4.3]) in our abelian toy model
with ¢ = ¢ — gs.
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Let us now compare our charge to the charge operator that
was the starting point in our abelian model. Inside the trace, there are 4—2N;
terms of the same form as the one in . Moreover, taking the trace amounts
to summing over all fermion matrix elements v,5. Since, in addition, each such
matrix element satisfies the Dirac equation , we can directly apply our
toy model result to the N' = 3 Chern-Simons Yang-Mills theory. Thus,
our final result for the U(1)g charge of the BPS monopole background is given
by

N
Q=—n(4—2Np) > lgr —gs|. (4.48)
r,s=1
In the above computation, we did not include the (non-background) bosons
of the theory. As briefly commented at the end of the previous section, their
contribution to the vacuum charge vanish due to the symmetric spectrum.
We see that there are two ways to make identically vanish. One
is to set g = g5 for all r and s, but this strongly limits the possible gauge
representations of the monopole (remember that the ¢:s define a highest weight
representation of the gauge group U(N)). The other way is to set the number of
flavours, Ny, equal to two. The ABJM theory, where our ultimate interest lies,
has precisely this number of flavours. It is important to remember, however,
that the above computations were carried out in the UV. Flowing to the
IR (ABJM) limit could in principle change the value of the U(1)g charge.
Thus, we cannot be completely sure that the ABJM theory really allows for a
monopole background with vanishing R-symmetry charge and arbitrary gauge
representations. To be able to draw this conclusion, we must calculate non-
abelian R-symmetry charges. This is the topic of the next section.

4.2 SU(2)x

In the previous section we considered the background field configuration spec-
ified by and . Here, the non-zero vacuum expectation values had
one degree of freedom; the U(1)r phase. This phase is a simple example of
a collective coordinate. In general, a collective coordinate is a parameter de-
scribing the zero modes of a system. For instance, let us suppose we want
to find static quantum fluctuations around a classical (zero-mode) solution
of some system. If the system possesses a symmetry in a given coordinate
x, the zero-mode states will be ”spread out” in the corresponding direction.
Therefore, to really find quantum states that are localized around the classical
solution, one has to separate out the z-dependence from the problem. This
results in a new problem involving all the other coordinates, and by solving
this problem the true localized quantum states can be found. The only role
of = is to parameterize the space of zero-mode states. For a more thorough
discussion about collective coordinates, see [20].

In this thesis, however, we are interested in finding properties of the clas-
sical background solution itself. For this purpose, we can use the fact that
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the collective coordinate fully parameterizes the background; the properties
of the collective coordinate corresponds to the properties of the background
itself. As noted above, the background considered in the previous section was
described by a U(1)g collective coordinate. In this section, we instead con-
sider the full SU(2)g-conserving background given by (3.21)) and (3.22). The
collective coordinate parametrizing this background is the unit vector n;(7) in
the SU(2) g moduli space. Our task is now to determine the possible SU(2)r
charges of n;(7).

A simple interpretation of our collective coordinate is that of a particle
moving on a unit sphere. In this interpretation, the SU(2)g charge of n;(7)
corresponds to the angular momentum of the particle. If there were no interac-
tions between the background scalar and the other fields in the Chern-Simons
Yang-Mills theory, the collective coordinate would behave as a free particle on
a sphere. Since any angular momentum representation is possible for a free
particle, we could in this case easily find a background with vanishing SU(2)r
charge. What makes things more complicated is that there are interactions
between the background scalar and the other fields. Thus, the collective co-
ordinate is described by a particle subject to constraints that could possibly
change the allowed SU(2) g representations. To find out the details of this, we
will compute the effective action I'(n), describing the effects of the interac-
tion terms on the collective coordinate. This action can then be used to draw
conclusions about the SU(2)g properties of n;(7).

In the UV, where § — 0, the surviving interaction terms in contain-
ing n;(7) are

— in€ly (1) [H, €4 — iniday(07)[H, A — iniAap(00) P [H, A7), (4.49)

Since these terms contain the fermions of the theory, we also need to include
the fermion kinetic terms. Thus, the part of the action (3.15) and (3.16) we

will consider is

§= [arde [~igh, pet — ing () H. €V

1

oA PA? — %ni)\ab(ai)bc[Ha %]

D |

+%j\abp5‘ab - %nij‘ab(ai)bc[Hv j\aC] . (450)

By integrating out the fermions one obtains the effective action I'(n) for the
collective coordinate:

o T — / (e [d€][dN][dA] e (4.51)

Before we do this explicitly, we will consider a toy model action that we easily
can generalize to (4.50), much like we did in the U(1)g case.
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4.2.1 Toy Model

Let us first study the following action, containing the fermion SU(2)g doublet
P(r):
S= / dr [~ o — iqni(r)ud (o) | (4.52)

In this simple example, the fermion has no spatial dependence. We will show
later, however, that the results obtained for can easily be generalized to
a case with spatial dependence by using the properties of the monopole spinor
harmonics. The effective action is given by the following expression

['(n) = —Indet (i0; — igni(7)o;), (4.53)

where det (i0; — ign;(7)o;) is a functional determinant of the operator acting
on the fermionf] In the definition of a functional determinant of an operator,
the operator itself is treated as a matrix. In the general case, this matrix might
have a lot of different indices in different ”spaces”. Also, if the operator is a
function of some continuous variable, this variable is treated as an additional
(diagonal) index. To calculate the determinant one can use the following
matrix identity

Indet M = trln M. (4.54)

Using (4.54)) on a functional determinant, the trace operation corresponds,
of course, to taking the ordinary trace of all the indices and integrating over
all the continuous variables. Applied to our toy model, (4.54)) yields

I'(n) = —trln (i0; — ign,(7)0;) . (4.55)

Here, the trace operation amounts to taking the ordinary SU(2)g trace and
integrating over 7. Before we do that, however, some further manipulations
are in order.

We will not compute the action exactly; rather, we will write it in a
way that tells us something about the SU(2)r representations of the collective
coordinate. To proceed we take n;(7) to be quasi-static, which enables us to
expand the action in n;. The general form of such an expansion is:

I'(n) = / dr [—Veff(n) +in;Ai(n) + %hijij(n) T+ (4.56)

where Vig(n) is the effective potential and A;(n) and B;;j(n) are arbitrary
functions. In our particle-on-a-sphere picture of the collective coordinate, the
first order term represents a coupling to an electromagnetic field with vector
potential A;(n). The presence of such a term can affect the possible values
of the angular momentum of the particle. What we will do next is to expand
and compare it to (£.56)). If we find A;(n) to be non-zero, the collective

2Note that the relative sign between the terms in the determinant has changed. This is
because we use Pauli matrices in (4.53)) and transposed Pauli matrices in (4.52).
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coordinate is properly described by a particle in an electromagnetic field. The
form of A;(n) will then determine the possible angular momentum values of
the particle and thus the allowed SU(2)gr representations for the collective
coordinate.

Since the action does not contain 7n;(7) explicitly, some additional
manipulations are in order before we can carry out the expansion. We begin
by writing the collective coordinate in a form that makes the quasi-staticity
more explicit:

Here, the constant part 7; obeys 72 = 1 and the 7-dependent part 7; is a
small fluctuation. This allows us to expand our expressions in the fluctuation,
around n;. Separately expanding each term of in this way, we have to
second order in the fluctuations

1
[(n) = / dr |:_‘/eﬁ3(ﬁ) — 1;0;Ver(n) — iﬁiﬁjaiajveﬁ?(ﬁ)
. . 1. .

When we expand the logarithm in , the result will be of the form .
Remembering that our task is to determine A;(n), we will concentrate on
finding the unique second order term where one of the two n;-factors is a
T-derivative. Since the coefficient of the corresponding term in the general
expansion is 0; A;(n), this will enable us to say something about A;(n). Before
we carry out the expansion, let us streamline the expressions a bit by defining

m; = qn;, m; = qn; and yh = m;o;. The action (4.55) can now be Writtenﬂ

_ 1
87_77%

I'(n) = —trln (10, — ith — ith) = —trln (id; —igh) — trln (]1 ﬁl)

(4.59)

Here, all the 7-dependece is in the second term. Expanding the logarithm in
its Taylor series, we can pick out the second order term:

1 1 1 1 [0+ oy +
F<2)(n>:2tr|:87—_%ma7—_%m:|:2tr|:872—_7,zl2 872.—771?2 ] (4.60)

To be able to find the terms in (4.60)) with exactly one derivative of 7, we will
use the following identity

(-1)¥[9%,[6%, ..., 0%, ¢]...]]
0 k

1

ezt (4.61)

1
70(25:
2 _ 52
0 m P

3The identity In AB = In A 4 In B holds only when the operators A and B commute.
Otherwise, the extra terms can be calculated using the Baker-Hausdorff formula. The oper-
ators in do not commute, but since everything is inside the trace the identity holds
anyway. The trace of a commutator is always zero, which can be proven directly by using
the linearity and cyclicity.
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It is also important to remember that the ordering of the slashed m:s matters,
since they contain Pauli matrices. We start by using with ¢ = 7. Since
we are interested in the terms with one first order derivative only, we can
immediately throw away the terms with a second order derivative or with two
first order derivatives. The only surviving terms areﬁ

1

1

—1n2)2
Applying O + 7 to this expression now gives us

0- -f—ﬁl
82

1 : 1

T

0- 1
3 0-
@ =2y "Gz

Next, we calculate the square of (4.63)), again throwing away terms of the
wrong order:

— 29 (4.63)

_2%

(Zn) = gyt [ +777177182 Q}+

gy g g iy
82 .0,
W GE e~ mﬂ *
1 . 1 O 1
gy gy iy
82 .
gy W+
. 2
_zm@?_a 72 [ﬁz828 —i—ﬁzﬁz ]_
%m( O |+ |
= mmﬁ + m%mw
. 3
i s — M
. O 82
+mﬁ1W 2ﬁl7ﬁﬁlﬁ
. 3
+%%%W 277””71(82 n2)?

4In the following, we will use the equality signs in a rather sloppy way. It is to be
understood that we throw away the uninteresting terms.
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Collecting all these terms yields
0 +777z L 0 o3
() =t 200 (G2 2 D )

+ fn,-mjfhk(az-akaj +oj0r0; + UijUi)
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9,

— QTOnZ'TLanonkml(UZ‘UjUkUl + 2Ji010k0j)m.
T

(4.65)

Let us now take the SU(2) g trace of this expression, making use of the following
Pauli matrix identities:

troo; = 25@‘ (466)
trosoj0, = 2i€ijk (467)
trojojoro; = 2(0i50k — dikdji + 0udjk)- (4.68)

Inserting the result into (4.60]), we obtain our expression for the second order
terms in the expansion with exactly one derivative:

2 ~ a§+m28 . 3 ~ ° ].
F(Q,l) (n) = —3tr mlmlm —tr Ezjkmlm]mkm
s 9
—6 tr (2mm i — mamgm )ﬁ (4.69)

At this stage, the only part of the trace still to be performed is the 7-
integration. We see that, in all the terms in , the 7-dependent part
is separated from the differential operators. These two parts can be inte-
grated separately. We also note that the first and third terms are actually
total derivatives that will not survive the integration. Thus, we are left with
the second term only. To integrate the operator part, we insert two complete
sets of energy states. To see these steps more clearly we switch to bra-ket
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notation, and view m as the 7-representation of the operator A. We
rewrite the integral as

/ d(a_lm) / dr (7] A7)
_ / ir / duods (o) (w] A|) (/]7)

_ / dwda | ) ALy 5o — w)

2
dw
= /27r (w]A|w) , (4.70)

where we in the second step have used

1
/ dr (o/[7) () = (/) = 56/ — w). (4.71)
0
To explicitly write the operator A in the w-basis, we recognize 0, to be the
energy operator. Therefore, (w|A|w) is obtained by simply setting 9, = —iw.
Now that we know how to handle the integration of the differential operator,
let us return to (4.69). Writing out the trace integrals, we arrive at

. Lo~ . dw 1
1—‘(271)(??,) = — /dT Eijkmz‘m]‘mk/zﬂ_ m

7: 2 - mk
= _Z dr eijkmimj7|m’3

i i~ TOLk

Let us now return to the general expansion (4.58]). The term we are interested
in can be written as

o) = i / dr nin;0; Ai(h) = % / dr (if0j Ai(R) + 17,0, A;(1))
- 1 / dr fisii; (A () — 9, Ay(R)) (4.73)

where we in the last step have integrated one of the terms by parts, obtaining
a minus sign. Comparing (4.73)) and (4.72) we can now conclude:

This equation is nothing less than the field strength for a magnetic monopole
of charge sign ¢/2, with A;(n) as the corresponding gauge potential. Thus, the
above analysis shows that the toy model collective coordinate can be properly
described by a particle on a sphere around a magnetic monopole. It is im-
portant to realize that this monopole is not related to our original spacetime
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monopole. The fact that there exists a monopole also in the SU(2)z mod-
uli space is a pure coincidence. We can, however, use what we have already
learned about magnetic monopoles to draw an important conclusion for the
collective coordinate. In Appendix [C] we studied a fermion in a monopole
background and learned that the angular momentum eigenvalues are bounded
from below by the monopole charge (see ) Applying this to our particle
analogy of the collective coordinate, we draw the conclusion that the possible
SU(2) g representations are bounded from below.

The above analysis was done for the simple toy model action , that
has no spatial dependence. Before we can apply our results to the N' = 3
Chern-Simons Yang-Mills theory, we need to generalize this toy model a bit.
Instead of , let us consider the following action

§= [ardn [-awipor — iani(r)elo) ] (1.75)

where the fermion is space dependent. We can expand the fermion in monopole
spinor harmonics like we did in the previous section (see eq. (4.9)). Inserting

the expansion into (4.75)) and using (C.79)), (C.81)), (C.82) and ((C.83) we arrive

a

S = Z /dT [—WL@#Jm — isign (Q)qniﬁnffﬂﬁm}

Y / dr [ 05, + A5 05,, — a5, | (4.76)
Jjme

Starting with the zero mode terms it is apparent that, for each m, we have
essentially the previously considered case . The only difference is the
sign g-factor in the second term, which simply can be absorbed into n;. Thus,
the right hand side of our previous result is multiplied by this factor,
removing the previous sign g-dependence. With the sum over m giving a factor
of 2j + 1 = 2|q|, the total contribution from the zero modes is

0;A;(n) — 0; Ai(n) = rq\el-jk“%’g. (4.77)
Next, we turn to the non-zero modes. In this case, we cannot immediately
use our results from the simpler model, since the action is of a different form.
Let us start with the effective action written as a functional determinant.
Since different jm-modes do not mix, we can consider each one of these modes
separately. For fixed values of j and m we have

I'(n) = —Indet (_A_ZPT_ inh _A;O_ 277h>
B 107 —AT —ih
= —trln <—A+—im 6. ) (4.78)

®We have suppressed the SU(2)r doublet indices to avoid cluttered notation.
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The matrix in this expression mixes the ¢ = £ components in . In
addition to what we considered in the simpler model, the functional de-
terminant should now also be taken with respect to this matrix. Defining
A =A% =—-A" we have

I(n) = _mn[(_gaji% Aigfm%(—? i _ém

_ —trln(_Aia_Ti% Ag%)
i N S|
_ _tr1n<_Am_Tiﬁl AE%
( 0, —iA —h

i — —0r ><0 ﬁb)

02 — 2 — A2 w0

—trln

—trln |1 —

The second one of these logarithms can be expanded, just like in the previous
case. The following calculations will be very similar to those for the simpler
model, the only real difference being the extra matrix structure that mixes
the e = & components. In each step, we throw away the uninteresting terms.
The second order term in the expansion is

F(Z) (’)’L) = tr

([ =0, —iA — 9 2
iA— ﬁl _aT 0 ﬁL
52 —in? — A mo0
L[ (it = i) (s — 2
- 1 : e R G B
2 < —(h + 10r) grrxz — 2 ATy
2

(0 + 1) e — 2 Ay ) (4.79)

(iA =) (mm - 2771@345)#2)2)

When we square the matrix in (4.79)) only the diagonal elements of the resulting
matrix M need to be computed, since the trace is the sum of these elements.
The first element is

| ) . o, ’
My, = [(—ZA — 1) <7ﬁ53 2 — A2 _2771(82 —1h? — A2)2>}

- ) . o, ’
+ |:(ﬁl+ﬁla'r)872_ 7 A? +2m(ag — 1?2 —AQ)Z] (

4.80)
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and the second one

Mo = 80 (g g —sp)|

) 1 . 0. 2
+ [(ﬁz + 77137)63 — A T 27/%(03 e A2)2} . (4.81)

The only difference between these elements is the sign of A. Thus, we imme-
diately see that after computing the squares, all terms with A and 7/ mixed
will cancel. The surviving terms are

. 9, | o,
My + My = —2A? [—477”%(82 —m2— A28 Qmm(ﬁg —h? — A2)3]
) . . Or
—8%7%77”71 (872. . 7‘;12 _ AQ)S - 4ﬁlﬁlﬁlﬁl (872_ — ﬁlQ — A2)3
. 5, - o,
2 [%%(872. —m2— A?)Q + ﬁlﬁl(a?_ —mh?2 — A2)2
: 02 : 0r
27N (83 2 — A2)3 — i (a% —m2 = A2)2
. 02 : 0z

Our next step is to take the SU(2)g trace of (4.82). Using (4.66]) and (4.68))

we arrive at

1 L 0r
Lonn) = 3 tr [24mimi (02— 2 — A?)p
—24rnmrigemy (3i50k — Sikdji + 6udjk)
+ 4, Or +2 % (4.83)
v (872. —m2— A2)2 (872. —m2 = A2)3 <

All these terms are total derivatives that do not survive the 7-integration,
and this means that the non-zero modes give no contribution to the final
result. To understand the mechanism behind this, we take a look at
and again. The terms with three m:s are the only ones that survive
the 7T-integration. These terms do, however, cancel because of the mentioned
sign difference between A" and A~, which in turn is due to the pairing of the
Dirac operator eigenvalues. We found that exactly the same mechanism is at
work in the U(1)g case (see (4.28)).

To sum things up, we have found that the toy model collective coordinate
n;(7) with action can be described by a particle on a sphere around a
monopole with charge |g|.

4.2.2 Applications to N = 3 Chern-Simons Yang-Mills Theory

In the previous section, we found that the collective coordinate n;(7) in the
toy model (4.75)) could be properly described by a particle on a sphere around
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a magnetic monopole with charge |g|. Let us now apply this result to our
N = 3 Chern-Simons Yang-Mills theory. Returning to , we note that
we can handle the gauge indices in the same way as we did in the U(1)g case
(see ) Thus, starting with the £¢4-part, we see that each fermion matrix
element &,.s is of the same form as the toy model with ¢ = ¢ — gs.
Summing over the gauge- and flavour indices, the total contribution to the
monopole charge from these terms becomes Ny anv s |lar — asl-

Next, we consider the A®-terms. Summing over a, this part of the action
becomes

S = / drdQ tr [+;)\1b22)\1b - %ni)\lb(ai)bc[H, L]
Jr%&b@)\% - %ni)\Qb(Ui)bc[Hv )\26]]

= / drdQtr [—;(Alb)*w”’ + fni(xlb)*(a,-)bc[ﬂ, ALl

2
0PN 4 (0 007, (1.8)
where we have used Ay, = —(A%)* (see (3.8))). These terms are almost of the

same form as the £4-part of , the only difference being the sign of the
term containing the commutator, which is simply absorbed into the monopole
charge. Since we have two expressions of this form, both with a factor of %
in front, the total contribution from the A\®-terms to the monopole charge
is — Ziv <1 |¢r — ¢s|. Performing the same analysis for the ;\“b—terms, we get
exactly the same result. Thus, the total contrubution to the monopole charge
in the SU(2)z moduli space, from all the terms in is

N
Quon = (Nf —=2) Y lgr — qsl- (4.85)

r,s=1

Now, let us recall that the possible SU(2)r representations of the collective
coordinate n;(7) in our N’ = 3 Chern-Simons Yang-Mills theory is bounded
from below by Qmon. Since n;(7) parametrizes the (spacetime) monopole
background, we can draw the conclusion that we must set Qon = 0 to allow for
BPS monopole configurations with vanishing SU(2) g charge. This puts us in
exactly the same situation as in the U(1)p case. We could either set ¢, —gs = 0
for all r and s (which strongly limits the possible gauge representations of the
monopole) or set Ny = 2. As said before, the number of flavours in the ABJM
theory is two. In the U(1)g case we could not draw any conclusions about the
ABJM theory, since all the computations were performed in the UV and the
abelian charge can change in the RG flow to the ABJM limit. Now that we
have found monopoles with vanishing SU(2)g charge in the UV, however, we
can really be sure that these also exist in the ABJM theory, since the RG flow
cannot change a non-abelian representation.
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Before we discuss our results, let us summarize what we have done in this
thesis. The ultimate purpose of the calculations was to prove the existence
of monopole operators with certain properties in the ABJM theory. These
operators should transform non-trivially under gauge transformations and be
R-symmetry singlets. The coupling parameter of the ABJM theory is the
Chern-Simons level k, and since we were specifically interested in the cases of
k = 1,2 we had a strongly coupled theory, making it difficult to perform the
calculations of the R-symmetry charges. The way to deal with this problem
was to consider an extended theory that reduces to ABJM in the IR limit.
Another coupling parameter g was introduced by adding a Yang-Mills term to
the action. This enabled us to perform the calculations in the UV, where g is
small, and then flow to the IR limit. To be completely sure that our results
were valid in the IR, however, we had to calculate a non-abelian charge, which
is protected under the RG flow. Because of this, our extended theory had to
preserve at least N’ = 3 supersymmetry.

To study monopole operators in our N' = 3 Chern-Simons Yang-Mills
theory, we used the radial-quantization method and transformed our theory
from RY? to R x S2. This allowed us to study properties of monopole field
configurations to learn about the operators themselves. The next step was
to find a classical monopole solution to our theory. In order to preserve the
supersymmetry allowing us to calculate non-abelian R-charges, this had to be
a BPS monopole everywhere along the RG flow. For this to work out, we had
to give background expectation values to the adjoint scalars, in addition to
those assigned to the gauge fields.

Having found a classical BPS monopole background to our Chern-Simons
Yang-Mills theory, we could go to the far UV and perform our quantum me-
chanical computations there, with the goal of finding expressions for the R-
symmetry charges of the monopole background. First, we considered a special
case of our BPS monopole, with the R-symmetry broken from SU(2) to U(1).

37
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Calculating the R-charge operator and normal ordering the terms, we found
that the charge of the vacuum itself (corresponding to the monopole back-
ground field configuration) is given by (4.48). This result told us that the
R-charge is vanishing when the number of flavours equals two, but not in the
general case. Thus, we found that the ABJM theory has precisely the right
number of flavours for the charge to vanish, but we could not be sure that our
result was correct in the IR (ABJM) limit, since we had calculated an abelian
charge.

Next, we considered the full SUSY-preserving monopole background and
computed the corresponding SU(2)r charges. This was done in a completely
different manner than in the U(1)r case, by calculating the effective action
for the collective coordinate parameterizing the background. We found that
the collective coordinate, in the SU(2)r moduli space, could be described by
a particle on a sphere around a magnetic monopole whose charge is given
by . Since the angular momentum values of a particle in a monopole
background is bounded from below by the monopole charge, we could by our
particle analogy conclude that the R-charge of the collective coordinate, and
thus of the monopole background, also is bounded by from below. Thus,
we arrived at the same conclusion as in the U(1)g case; there are monopoles
with vanishing R-charge in the ABJM theory, but not in the general case.

In both the abelian and the non-abelian case, we found that the R-charge
of the monopole background is induced by the fermions in the theory. Without
the coupling between the fermions and the background scalar, the R-charge of
the monopole would vanish identically. The adjoint fermions give a significant
contribution to the charge, but in the IR limit they are non-dynamical and
can be integrated out. This arises the question of how one would obtain the
same result directly by computations in the ABJM theory.

The whole argument in this thesis was based on the fact that we could find
a UV completion to the original theory that preserves enough supersymmetry
for the R-symmetry to be non-abelian. This method works for several other
theories as well, but what if the UV completion theory has less than three
supersymmetries, making it impossible to calculate a non-abelian R-charge?
One could in that case, of course, calculate the U(1) g charge. Unless one finds
a way to make sure that the abelian R-charge is constant along the RG flow,
however, it would be difficult to determine it in the IR theory.

5.1 Towards a Deeper Understanding of the Monopole
Operators

Monopole operators in three-dimensional conformal field theories have been
extensively studied the last decade, mostly in connection to AdS/CFT du-
alities. These operators are, however, not very well understood at a basic
level. In this thesis, and in most other contexts, the monopole operators are
described in the radial quantization picture, using the operator-state corre-
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spondence. To understand the operators better, and thus make it easier to
prove the conjectured dualities, one would instead like to find explicit expres-
sions for them directly in the R3-theory. However, monopole operators create
topological quantum numbers and cannot be expressed as polynomials in the
fundamental fields. To solve this problem, it was suggested in [8] that a paper
by Mandelstam [|17] can serve as a model. In this paper, the author constructs
solition creating operators in the two-dimensional sine-Gordon model, express-
ing these in the fundamental fields of the theory. To do something similar in
three-dimensional CFT':s, however, is much more difficult.

Some steps towards an explicit description of the operators have been
taken. In [15], the authors studied the SUSY enhancement mechanism in
an ABJM-like theory and could from this derive a non-trivial condition for
the monopole operators. This was taken one step further in [21], where the
authors once again studied monopole operators through their role in SUSY
enhancement, this time in an A/ = 6 superspace formulation of ABJM. First,
they assumed that the operators are covariantly constant, and proved that this
can only be true in the U(2) xU(2)- (or SU(2) x SU(2))-case. In this case, they
really found an explicit expression. This expression had not the properties of
a "proper” monopole operator though, from which they concluded that the
SUSY in the NV = 2 case is "kinematically” enhanced rather than topologically
enhancedE] Relaxing the covariant consistency condition, they could derive a
system of constraints satisfied by monopole operators in the general U(N) X
U(N)-case. It is unclear whether these conditions fully specify the operators.

1This should come as no surprise, since N=2 essentially is the BLG case, where the N’ = 8
SUSY is already manifest
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Proofs of SUSY Invariance

A.1 BLG Lagrangian

In this section we explicitly show that the BLG Lagrangian is invariant
under SUSY transformations (2.11)-(2.13)). Starting from and
only, we will be able to derive .

In section we give some details about the Dirac matrices in the
theory and derive the Fierz identities. The variation of the Lagrangian and
the cancellation of terms is carried out in sections [A.1.2] and [A.1.3]

A.1.1 Dirac Matrices

The BLG theory contains spacetime SO(2,1) Dirac matrices as well as SO(8)
R-symmetry Dirac matrices. Below, we give details about these matrices and
derive some important identities.

S0(2.1)

We use the following gamma matrices:

0 1 0 1 1 0
0 _ 1_ 2 _
These matrices obey the anticommutation relations
{77} =2 (A.2)

with the metric n*¥ = diag(—1, 1, 1). Our choice of charge conjugation matrix

C must satisfy
CIyHC = (=) (A.3)

It is easily checked that C = —4 satisfies (A.3). The spinors in the theory
obey the Majorana condition ¥ = U7(C.
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The matrices

o~ (10 1V (10 o (0 -1

are all symmetric and together with the antisymmetric matrix C they span
the space of real 2 x 2-matrices. We can use the symmetry of these matrices
to flip fermion bilinears, for example:
Uiy, = Uy Oy 0,

= (U, 7oy uy)T

= —U,T(CcymTy,

= —0(Cy),

= —UyyH . (A.5)
The extra minus sign in the second step comes from interchanging the fermions.

In the same way we can also prove Wiy y" Wy = Wy’ y* ¥ and similar iden-
tities for other bilinears. Finally, for future reference, we note that

Y = ey, (A.6)

where v#¥ is the antisymmetrized product of gamma matrices.

SO(8)

For the SO(8) Dirac matrices we will not give explicit realizations, since it
suffices to make some statements about their (anti-)symmetry properties. The
SO(8)-matrices obey the Dirac algebra:

{I, 19} = 26%, (A7)

Since the metric is just a delta we do not have to care about the position of
the SO(8) vector indices, and we will write them upstairs all the time. If I' is
chosen to be antisymmetric we see that C' = § satisfies the condition

CriC = (-1 (A.8)

The antisymmetry of I'* also implies (anti-)symmetries for the different
antisymmetrized products of gamma matrices. A list of these, together with
C and I', is displayed below. The number of independent matrices of each
kind is shown to the right.

C=9¢ Symmetric 1
I Antisymmetric

I Antisymmetric 28
[k Symmetric 56
[kl Symmetric 70
[iskim Antisymmetric 56

[iklmn - Antisymmetric 28
[iktmnp Qymmetric 8

I Symmetric 1
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Here, we have defined I'? = T'T2I3T4T5TOT T8, The (anti-)symmetry of these
matrices has to be accounted for when we flip fermion bilinears like we did in
the previous section.

In total, there are 136 symmetric and 120 antisymmetric independent ma-
trices. This equals the number of independent symmetric and antisymmetric
16 x 16-matrices, which means that our set of antisymmetrized gamma matrix
products spans the set of real 16 x 16-matrices. Thus, our gamma matrices
must be of size 16 x 16. We can, however, effectively view them as 8 x 8
blocks, carrying dotted or undotted indices depending on their position in the
16 x 16 matrix. The first 8 row- and column indices are undotted, and the last
8 dotted. If we define C to have two indices of the same kind and I'* to have
one index of each kind, the index structure of the other matrices will follow.
More about this when we derive the Fierz identities.

To compare different products of gamma matrices, it is often necessary to
rewrite them as a sum of terms that are symmetric and antisymmetric in the
different vector indices. Below, we derive a couple of such identities that are
needed later.

First, consider I"IV*. Of course, each term in the expansion has to be
antisymmetric in j and k, but ¢ will be symmetric to 7 and k£ in one of the
terms and antisymmetric in the other. Thus, we have:

Tk = o9k 4 pgtliTHl (A.9)
for some coefficients a and b. Setting (7, j, k) = (1, 1,2) gives
rrirz — b%(éulﬂ _ st
=T1? = %bFQ =b=2. (A.10)

In a similar manner, we can set (7,7, k) = (1,2,3) to obtain a = 1. Thus, we
conclude:

ririk = 1k 4 95Tk, (A.11)
Next, consider T¥"™T% The expansion can be written:

Setting (k,l,m,i,7) = (1,2,3,4,5) yields a = 1. To determine b, we set
(k,l,m,i,7) = (3,2,1,1,4), which gives

b

rorer 5(5[13F421] - 5ﬁ>,F121])
b

= E(a}r%,g] — 01T%53)

=b = 6. (A.13)
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Finally, we set (k,l,m,i,7) = (3,2,1,1,2) to obtain
c
I = il = 5(6[13531“1} — 65305T))

c
= E(—Csigrrﬂ — 056,T'3)
=c = —6. (A.14)
Inserting these coefficients gives the expansion
rRmp = PR G5 T — 66T (A.15)

Fierz identities

Since the products of - and I'-matrices span the space of 2 x 2-matrices and
16 x 16-matrices respectively, we can use tensor products of these matrices as
basis elements in an expansion of an arbitrary matrix in the theory.

To expand a general matrix, one would have to use all possible combina-
tions of basis elements for the 2 x 2-matrices and the 16 x 16-matrices. For
our purpuses, however, it is sufficient to expand a matrix of the form \Iléall'gb,
where A, B are (undotted) SO(8) matrix indices and «, /5 are SO(2,1) matrix
indices. If there is an imposed antisymmetry in ¢ and b, the number of terms
in the expansion will be reduced. Only terms that are symmetric in both AB
and af, or antisymmetric in both these pairs of indices, will survive.

Also, in this special case, we expand a matrix with two undotted SO(8)
indices, which means that the expansion will contain no matrix with dotted
and undotted indices mixed (a matrix in the top right or bottom left block
of the 16 x 16-matrix). Now, we are left with all matrices in the basis that
have two indices of the same kind, but we only need half of these to expand
a matrix in the top left block (which corresponds to both indices undotted).
We can obtain these matrices by using the projection operator %(1 +T19). The
table in the previous section strongly hints that the different sets of matrices
(except T'% kil ) can be grouped pairwise. For example, I'"/ and ' kimn would be
similar sets of matrices, projected into different blocks of the 16 x 16-matrix.
As it turns out, the projection operators %(1 + 1Y) and %(1 —TY) project out
I and T'kmn respectively . When it comes to T%* half of the matrices are
projected into the top left block, and we define

g 1 .
gkl — S+ I L (A.16)

In total, we now have 28 antisymmetric matrices 'Y and 35+1=36 symmetric
matrices (T’ Tigkl and (). Thus, this set spans the set of real 8 x 8-matrices, as
expected.

Taking all the above circumstances into account, we can now write down
the expansion:

a id _ id AB _ ~
Yt UE =a (C7Y) (M) + 0u(1C 1) 5 C4P

. .1 AB
+ A (O )y (T (A.17)
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where we have put a tilde on the SO(8) charge conjugation matrix to distin-
guish it from the SO(2,1) one. Let us now determine the coefficients. First,
we multiply (A.17) by C3(I'*) 4. The left hand side is:
vAwg ety = BT (A.18)
and the right hand side
aij(c—l)aﬁ(rij)ABCaﬁ(Fkl)AB - ad9tr [C(C—l)T} tr [(Fz])(rkl)T}

= a¥(=2)(~u [(r)(r)])
= a¥(=2)(207tr [1gxs]]

= —32@”6,3
= —32d". (A.19)
This means that we have ¢ = —LWeTW WP Multiplying by (Cy)*PCup
gives on the left hand side
VA wE (O )P Cyp = Ty TP (A.20)

and on the right hand side

bu(v’*C’_l)aBCN'AB(Cvl’)O‘BCN'AB = bytr [y*CTICY ] tr [CN’}
= 8bytr [y"~"]
= 8bu(n"tr [Lax2))
= 160", (A.21)
which implies b, = %\i’ayﬂ\I’b.

Finally, we multipl;i the expansion by (C"y”)o"8 (I mnpa) ap- In the same
way as before, we get \I’av”F+m”pq\I’b on the left hand side. The right hand
side is

.. ..., AB
M (PO (T 9H) (0P (070 4
. . T
— d?ujkltl" h/,u,yy] tr [F+z]kl (F""mnpq) }
» 1 »
— 2duzgkltr |:2(1 +F9)Fz]klrmnpq:|

= @M (14 T%) (A6, + TOeHmnen)|
— dvz]kl(4l5%§lpq + eijklmnpq)tr []]-16><16]

= 32 41gVmP (A.22)

which gives dﬁkl = 321.4! \Ifafyul“ﬂjkl\l/b. The expansion 1) can now be
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written:
a 1 STLA Y] — ij\AB
VAR = (T (C) ()
1=, _ ~
15 (TP (71C 7)1, CAF
Lo rijklgby (o p—1 +ijkinAB
ot (B, M) (o) Ry (4 93)

A.1.2 Variation of the Lagrangian

In this section we vary the BLG Lagrangian (2.8) with respect to the SUSY

variations

sX = jertwe,

. ) 1 . . .
SO = DHX“W“I”H—EXZbXJCX’“dF”kebed“.

First, we note that taking the conjugate of (A.25|) gives us

SU”

Furthermore,

and

5(D, v

= (0uy)TC
. 1 g T

= (D,LX%“F% + g XXX e bed“> C
. . 1 . . y

— DMXWGT (Fz)T(,y,u)TC + 6)(zb)(]c)(lcdg(rwmk)becda
A A 1 . . g

— DMXZaﬁT(—FZ)(—C’YM) + ngbX]CXkdEFZkabcda
o 1 . . y

— DMXzaEFz,y;t + éXsz]CXkdgrwkbeda.

the transformation of the covariant derivative is

0(DuX™) = Du(0X") + (64,%)X"
= el D, + (54,%) X"

= Dyu(60) + (64,%,)¥"

Kinetic terms

The kinetic term for the scalar field is

1 . .
»Cscalar = _5 (DMXW) (D'LLXZQ).

. ) 1 . . . -
D# <DVXm7VFZ€ + 6x2bX]CXdeljk6fbcda> + (5Auab

(A.26)

(A.27)

(A.28)

Yol

(A.29)
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Varying this term we get
5£scalar = _(D#Xia)(s(DuXia)
— (D*X7,) (iEFiDN\IJ“ + (MM%)X“)
= i(D"DuX'a)el" W — (D X7,)(0A4,%)X™,  (A.30)

where we in the second step we have integrated by parts, obtaining an addi-
tional minus sign in the first term.
The Dirac term is given by:

i
ﬁDirac = i\Ila’yuDlt\Ila (Agl)
and its variation by

6 LDire = (6\ffa)'y“DH\IJa+%\il“v“6(DM\Ila)

i
2
- %(DyXi“)Ey’Tify”D“\I/a T
+1Z—2Xiij (XF eriik phedanpy

o . 1 g
+5 9D, <DVXZQ7”F% + XX XR e beda)

i 2o pisi
+5 (04, 0) O

_ —%(DuDyXi“)éfy”Fify“\I/a

+%X%Xj XF ek frediakp, W,

—%(DuDyXia)Efy”Pify“\I/a
+%X%Xj XF ek frediakp, W,
+%@“7“(5A#“b)qu

= —i(D,D, X"y Ty T,

L XXX gk fedn D,

i _ -
+5 W (04, 0)
= —i(D"D, X")el"V, — i(D,D, X" )&y T ¥, (A.32)
T o
+6X’bXJCXkdeI‘”k fredanip v, (A.33)
i - -
+§\1:“7#(5Auab)\11b. (A.34)

In the second step, we have integrated by parts in the first term and flipped
the third term. In the last step we have used v*~+* = nH*¥ + ~¥H.



48 Appendix A: Proofs of SUSY Invariance

Adding 0 Lgcalar and 0 Lpirac together we see that the terms with contracted
derivatives cancel, and we are left with

5£scalar + 5£Dirae = _Z'(D/,LDwa)g’YVMFi\I/a + (A35)
+éXibe (X ek phedasnpy g4 (A.36)

+%@a~yﬂ(5ﬁwb)qﬁ _ (A.37)

—(DFX")(6A,,,) X 7. (A.38)

Chern-Simons term

The Chern-Simons term is given by
1 2
Los = 55#”* ( FOUA Oy Ay + 3 £ fIP A AvcaAne f> (A.39)
It is easiest to vary the two parts of the CS-term separately. Thus we have:

1
oLLs = 5<25W* f“deAWb&,AACd>
1 abed _pv
= §f e ((6Auab) v Apea + ApabOu (6 Ayq))

= [UIA(§ AL ) Ou Ay eq (A.40)

and

1
6[’2CS =0 (35'uy>\f0dag fefgbAuabAuchAef>

1
:ggﬂu)\fcdag fefgb ((5Ayab)Aych)\ef
+ A,uab((SAucd)A)\ef + A,uabAucd((sAAef)>

1 v cda e abe e efc ra
:ggﬂ A((SA)\ab)Auchuef (f dgf fgb+f bgfdgf+f fgf bgd>.

(A.41)

Yukawa term

The Yukawa term is

ﬁYukawa = _i@brinichd\Ijafade‘ (A42)
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Varying this gives

5£Yukawa = - (5@b)rinichd\IIafade

RIS

Kl

DI X X 4(80,) fobed
) \ileij (5Xic)de\I’afade
‘ U, X1, (5X7 4)W, fabed
) (5\le)rinichd\I’afade

@brij (5Xic)de\I,afabcd

1 L .
DMXkbéfk'y“ + 6Xk:eleXmg€Fklmfefgb> szXzCX]d\IIafabcd

i

oI (i€l W) X g0, f20

= — &P T, X X 4D, Xy fabed (A.43)

i

12
1 . _ )

+ 5 (W) (WL W) X7 g fabed, (A.45)

N = DN =0 D =0 N =D | | o |

XiCdeXkeleXmggrklmFij\I/afef‘gbfade (A44>

Potential term

We have 1
V= EfadefefngiankacXierkag' (A46)

Since the product of scalar fields is symmetric under a <> e, b <> f and c <> ¢
the variation is

1 ) . S
OV = o0 £, (07 )X XM X0 2
+ X (6XT ) XE X XT X+ X X (6 X7 ) X X7 kag). (A.47)

Also, the product of structure constants f2°?f¢f9  is symmetric under a, e
b, f and a,e <> ¢, g. Thus, we can simplify (A.47)) to

1 . . . .
5V = 5(5XZQ)XJkacXZeX]kagfadefefgd
- %griijxkcxiexj s XE W, pobed pela (A.48)

A.1.3 Cancellation of Terms

In this section, we show that all the terms from the variation in the previous
section cancel.
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Two-derivative terms
The two derivative part of the kinetic terms can be rewritten:
—i(D, D, X" ey T,
= (DD, X" )ey"' T,
— (waXi“ + 4,90, X" 4+ 9,(A,%X™) + A#“cflycbxib) Ty Tie
= i (4,50, X7 + (A, X" + 4,0, X" + 4,7 4,5 X7 ) Uy T
= i (0, A AL) X
= et (@Lflya’b + /Nl“acflycb) X @, y\Te
— ek (8“Al,cd £ 4 Ao Ay fO, ffgcb) X4 Ty Dle, (A.49)
where we in the last step used .

Let us now compare ({A.49) to the variation of the Chern-Simons term. It
is easily seen that ([A.40) will cancel against the first term in (A.49) if we set

5A>\ab = —iXib\i/a"y)\FiE. (A50)

Using the fundamental identity for the structure constants, we can also show
that (A.41)) cancels against the second term in (A.49)) for this choice of §Axgp.

We can rewrite (A.50]) as

0A, % = ieX Iy, U g fo0,. (A.51)
Equation (A.51)) is the transformation rule of the gauge field required for SUSY
invariance of the Lagrangian.

One-derivative terms

From the kinetic terms we have
éXiijchdEFijkbeda')”uD#\I/a — éDy,(Xiijchd)EFijk’yquabeda
_ %(DMXib)XjCXkdEFijk’y“‘lla fbeda
:%(D#Xib)xjcxkdgrij’wq/a Fobed (A 52)
and
— (DFXG)(0A, %) X" = —(DMX',)(ieXF Try, Wq fo) X ™
= —i(DuX') X1 X" @y fedob
—i(Dp X ) X'y XF eyt fobe
= (D, X)X XF ek 5y, foed . (A.53)
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The contribution from the Yukawa term is
—%EF’TW U, X1 X7 4D, XF, fobed

(D, X)) X7 X e rik g, fabed, (A.54)

v
2
Adding all these terms together, we arrive at
. . 1 1 . .
i(Dy X ) X7 XF gyt (Fké” + 5rwk — 2rzrﬂk> W, fobed, (A.55)
The expression inside the parenthesis can be rewritten using (A.11):
kel 4 lfijk — lf‘ifjk = Tk 4 1Fijk — E(Fijk + 26i[ij])
2 2 2 2
= TIksY — §ilipkl, (A.56)
Since we have an imposed antisymmetry in j and k from the scalar fields
outside the parenthesis, these two terms cancel.
Terms without derivatives

From the kinetic terms we have

i ~ i o
SV (04, %)W" = S Wan”(ieX D Wafl,) 0"
1. - :
= X' (WaA W) U [, (AT)
and from the potential
5V = _%EF"XJ'kacXierkag\I’afadefefgd

— _§XJkaCXzeXJkagEFz\Ijafabcdfefgd

1

= —5XiijcheleXngFkéin\I/a fabed el (A.58)
The contributions from the Yukawa term are
_ %XichkaeleXmggrklmFij w, fefo, obed
= —%XiijCXkeXl X erMmyid g, pabed pefg (A.59)
and

1 _ .. .
5 (ETi W) (BT W) X7 g fabed, (A.60)

Here, we can identify two types of terms. (A.57) and (A.60) are products of
fermion bilinears and we will have to use the Fierz identities to make them
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cancel. (A.58]) and (A.59) are more straightforward, so let us start with these.
The sum of the two terms is

— %XZbXJCX’fCXl P XM E (r’fa”éﬂm + 6rklmr”> W, fobedgels ,  (A.61)

Using (A.15) and the imposed antisymmetries we can rewrite the expression
inside the parenthesis as

59

[lm

1kl" L . 1kl" .
Dy + gTH™ + 04Ty = 0Dy = A 05Ty (A.62)
Let us first concentrate on the I*"™_term. Since we have a total antisymmetry
in all the vector indices, we have a total antisymmetry also in bcefg. Thus, the
product of structure constants in ({A.61]) vanishes by the fundamental identity

(2.4). Next, we turn to the §
antisymmetry in the corresponding indices can be written §**T7/ implying
a symmetry in be and an antisymmetry in c¢fg. Now, using the fundamental
identity (2.3)), we can show this term to vanish.

[[zfj}lm}—term, which because of the imposed

Fierzing the remaining terms

Let us finally turn to the terms containing products of fermion bilinears. They
are:

1 . _ ) 1 - .
—§X1c(‘1’a7“‘1’b)(Erz’m‘l’d)f(:dab + §(€Fi‘1’c)(‘1’brw‘l’a)Xdeade
1 ./ - .. ) _ .

= §XJC<(\IlaF”\I/b)(€FZ\Ild) — (\Izaw\lfb)(%rhyd)) fabed, (A.63)

If we write out the SO(8) (A4, B,...) and SO(2,1) (a, f, ...) matrix indices ex-
plicitly, the first term in the parenthesis is

‘I’ﬁaCO‘B(Fij)AB‘I’,eBb€§cC”5(Fi)CD‘I’(%' (A.64)

Let us now expand U2 \IléDd using 1) Inserting the expansion into the

aa
above expression yields

(= g5 (@), 4

32 (a7, Vo) (#C 1), 5CHP
1 U Tklmn - +klmn\ AP ~ap (i i

+ o5 (Tl ) (O (g (O R ) 0B (1) g Wh S O (0 o

1

= (TR OO COP (T o (—TFY P

(Fij)AB‘I’ﬁBb
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1 - L
+ — (Vo Wa) (YT T 0y

16
+ ﬁ(\ifﬂur*klmnqxd)(Efy“rir*“mnrii U,). (A.65)
In the same way, the second term in the parenthesis of can be written
V3, (Cy) P Cap U5 (Crp) (1) o p W5 (A.66)
and by similar calculations we can rewrite this as
- %(@ar’flmd)(gyﬂﬂrﬂ'rkl\pb)
b1 (W) (e T,
+ gy (Taw I ) (e TITT ). (A6T)

Adding all these terms together we arrive at

(\T]al—‘ij \I/b)(gFZ\I/d) (A68)
— (T T) (7, 1V ) (A.69)
1 - o
= —ﬁ(marquzd)(erlr’“rwb) (A.70)
1 - o
g (T ) (@ T, (A7)
T g (Lol ) (e TR ) (A72)
1 - 4
5 (Tal W) (€, T T 0y (A.73)
1 - o
~ 16 (Yar Ya) (€77 T 0y) (A.74)
1 I *+kimn — v it klmn
—ag i (Tam L ) (€ TITTHI). (AT

To simplify this expression, we first need to calculate some additional identities
for products of gamma matrices. First, we note that v,7* = 3 and v,/"v* =
Yu(2nH — AHAY) = 29Y — 3yY = —+¥. Next, we insert ¢ = j into equation
A.11) to obtain I"T'"* = 7T'*. Using these identities, the terms and
A.74) above can now be rewritten

(W) T

1 _ .
—16 (Yo Ya) (€1 TV Ty

7 . .
= E(\Ija’yu\pd)(‘ﬂ/ FJ\IJb)

1 . .
"‘E(\I'a%/‘l’d)(g’yyrj‘l’b)

1 _ .
= (T, ¥a) (@ TV T). (A.76)
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Now consider I"I'*T'% | which we can rewrite as
ripkii  — FiFkl(FiFj — §id)
= (6I'" — 217 — 1'TM54
ATMI — TITk, (A.77)

Using this, the terms (A.70) and (A.73) can be rewritten as

1 - 4 g 1 - ,
—— (T, TP ) (T T T W) + ﬁ(\park’\pd)(mwrﬂr“wb)

= _%(@arklxpd)(aﬂklrﬂ' —TITH) @) + %(@arklwd)(gﬁrkl\yb)

- %(\Par“\yd)(e(rﬂrkl — THTI) W)

_ %@arklw(e(wkl Sl W Yl R 78

B g(@af’“\lfd)@(éjkfl)‘llb)

= _%(\i;ar’jqzd)(gr’\yb). (A.78)

Finally, consider terms (A.72)) and (A.75). We can write

rip kmnpii %(1 + TOpirkmn(pipd — §9)
= _%I“jrklmn _ %FjFQFklmn

= —pipkimn (A.79)
which gives us

1
32 -4l

1 ] .
_ ﬂ(\Ilafyyr+klmnqld)(gf}/y’YV'YHF]FJrklmn\Ijb)

1 - .
- _ o (\Ija’YpF+klmn\de) (€’yMF]F+klmn\I/b)

(\Tla,yul—\+klmn\l,d) (E,yuril—\+klmnrij \I/b)

m(‘i’a%ﬁklmn‘l’d)(EWVFjﬁklmn‘I’b)
— (A.80)
Thus, we have the result
(TaT W) (T ) — (Wary" ) (€7, 17 W) (A.81)
= ST ) - (BT EN)  (AS2)
which implies
(Wl W) (W) — (W' W) (€7, 170 ) = 0 (A.83)

This completes our proof that the BLG Lagrangian is invariant under trans-

formations (2.11)-(2.13]).
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A.2 ABJM Lagrangian

In this section, we prove that the ABJM Lagrangian (2.18) is invariant under
the SUSY transformations (2.24))-(12.25).

A.2.1 Dirac Matrices

The only Dirac matrices in the theory are the SO(2,1) ones. For these, we use
the same conventions as in the BLG theory (see (A.1))).

A.2.2 \Variation of the Lagrangian
Let us now vary ([2.18]) with respect to

674, = ieBuy,, (A.84)
Wpy = ’Y”DuZAdEAB + fabcd an ZP, Zp ecp — fabcd ZAa Zob Zc €eqp.
(A.85)

First, we write down the transformation rules for the complex conjugates Z e
and WB:

6249 = (624 )" = ie g 0P (A.86)
5\I/Bd — (5\IJBd)* _ 'YMDMZAdeAB + fcdab ZCQZDbZBceCD
—fed, 72,922 2C 1B, (A.87)

The covariant derivatives (2.21))-(2.23]) transform as

6(D#ZA(L) = D,U«(éZAa) - ZAb (5Apba) (A88)
5(DuZs") = Du(6Z,4") + (54,%) 24" (A.89)
5(Du‘1’3d) = Du(5‘I’Bd) - \IlBa((sA/,Lad)' (A.90)
Kinetic terms
The kinetic term for the scalar field is
Locatar = (D Z4,)(D*Z 4%). (A.91)

Varying this term yields

0 Localar = — 0(DZA V(DM Z ) — (D, ZA,)5(DHZ 4®)
= — &P (D, Vg, ) (D*Z,%) + 24 (54,0 (D" Z, )
— (DZ4,)ieap Dy WP — (DFZ7,)(0A,%) 24"
=i(D,D"Z e, +i(D, DM Z4) e, ¥ P
+ (64,24, D" 2,0 — Z," D' Z%,), (A.92)
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where we have integrated by parts in the last step.
The Dirac term is

LDirac = —1WA9 D, (A.93)

and the variation

OLbirae = — 1 (6977) 1D, W gy — iWPy"6 (D, W )
+i <DuZAd) Py D, Wy~
—if“ {ZCGZDbZBcﬁﬂD - ZAaZcbZCcEAB} Y DpV pg
— Py [Du (’YVDVZAdEAB + 422" Zp e
— 24,25, ZCCGAB) —¥p, (5121“%)}
=—9 (D,,DMZAd> EAB’y“’yV\IJBd —1 (DMDVZAd) \i’BdV“’YVGAB
~ i |26 2002 — 2,020 | 2 Dy
— iUPr e D, (29,25 2 ecn — 29, 2%, 2 e an]

+ i\IJBd’Y'u\I’Ba <5fiuad> . (A94)

Interaction terms

The third term in the Lagrangian is
£3 = _Z‘fade \T]Bd\I/BaZEbZEC (A95)
Varying this term gives
0Ly = —if"y | (00PN, 25, 25 + U (W) 25, 25
BNy (525,) Zp° + TP BQZEb(azEC)}

== if [V, 25, 2 + U, (527,) 2] + cc.

- _ Z-fade —(DHZAd)EAB’}/ﬂ + fedfg ZCfZDngeeﬁ'D

_fedfg ZAchgZCe ‘?AB} U, 252"
+ £ (UB N (EPF W ) Z ¢ + e, (A.96)

where c.c. denotes the complex conjugate.
The fourth term is

£4 == 2ifabcd LTJAd\IJBaZBbZAC (Ag?)
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and the variation
5,64 :2’1:fabcd |:((5‘I}Ad)\IIBaZBb ZAC + \I’Ad\I’Ba((SZBb)ZAC + C.C.
—ojfab [_ (D#ZDd> ePANp 4 fedfg ZCfZDgZA8 D
—f“q ZBfZCgZCeEBA] WAV
—2f (WA L V(@BPW ) Z 4 + coc.. (A.98)

For the fifth and sixth terms, £5 and Lg, we first note that £g = (£5)*. The

fifth term is .
7

5 €ABOD feb  wAegBlzC 7D, (A.99)

L5 =
and its variation

v
2
+@AC\I]Bd((SZCa)ZDb + \T/AC\I/BdZCa <5sz)

0Ls = — Zeapop [y [(94) 0520, 27, 1 BA(5wPh) 7€, 77,

= —ieapenf, [(5¢AC)‘I,BdZCa ZP, 1 GAegBd(57C 7P,

_ _iGABCDfade {_DMZECEEA,Y;L + fecfg ZE‘fZFgZAe eEF

— e, ZEf 79 zF EEA} yBlzC ZDb

+ eapop fe, (TAUBY (ECFw, V2P, (A.100)

Chern-Simons term

The Chern-Simons term is
1 2
»CCS = 56“”\ |: abcd AudbavAAca + g bdgc fgfae AuabAVchkef:| . (Al()l)

Varying the derivative part yields

1 v a C C
6LEs :QG” A [(5Audb)al/"4>\ ot Audbau(5f4,\ a):|

=t fab (6A#db)8l,AAca, (A.102)

where we, to rewrite the second term, have integrated by parts and used the
antisymmetry of the indices. Varying the non-derivative part gives us

1
5[’%5 :gewj)\fbdgc fgfae [(5Auab)Al/ch)\ef+

Auab((SAVCd)A)\ef + AuabAVcd((SA/\ef)] . (A103)
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To be able to further rewrite , we first use (2.15) to write
bdgc ffg 7fbd ff e fbdg(c ffga)6
—ff fd] fbdg Cffga e
g [ P £ P 10+ 7 55,
g [P P P £ P 0+ 7, 195, (A104)
Using this, we now have

e e [(6A, %) A, A ]

1 v e C a [ C
=3¢ et /\fb e (64 L)AL AN G (BAL )AL G AN
+(0A,%) A 4AN s + (5Aucb)AuadA>\ef]
1 v e a C C a e
26“ /\fb ffgae [(514“ f)Au p A\ — (514# d)Ay s AN f]
1
QEWAfb e [A, %A (0A ) + A5 (A, ) ANy - (A.105)

Using (A.105) in (A.103|) we arrive at

5‘6%5 = 6MVA.]Ebdgc fgfae (5A,uab)A1/CdA)\ef’ (A106)
which means that the total variation of the Chern-Simons term is

SLs = [ (5A 400 A + 17 94,0 (BA,7) A, 5445
=N (54,7, [aA vAPAC ] (A.107)

ettty oa

Scalar potential

The scalar potential is

2 _
V:*TCD dTCDBd

7fa dfe ZC ZD ZB ZBCZ fZ 9_|_ZC ZDbZE ZBCZ 95[0 }f
C

C
+25, 75, 559 2P, 2552 2,0 + 25,27 0 2P, 2 2, 06 2 |

abe abe

_ _ 3
*fa fe XCDBX;fcg*D + XCDEX(CJngE + XbegDX;:ﬂngD + 2XbefDX]%%F]

abe abe

_ 1 >
7fa ed XBCAXZJEC + §XCABXE£BQC 7 (A.108)
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where we have defined X45¢ = 74,758, 7€ and XS, = 7 ,*Zz*Z-°. Vary-

abc
ing (|A.108) yields

2 b e epg L 1 .
—0V = [ Y {5 (X ™) X5 + 50 (XG2P) Xifo | +cc.

abe abe

2 _
=3 FOafh X80 [2(625,) 29,24, + (524,) 2B, 25,
1 1 1
+3 (62°,) 24,25, + 3 (624,) 2¢,Z5, + 3 (625,) z¢, ZA,,] +c.c.
1
3
+fabfd fEdgc + fbacd fEdgf + fbegd fa'dcf:| + c.c.. (A.109)

v A B »C b d b d
XICLngC((SZ tl)Z bZ e [4fagd ecf+2f ecd afg

Let us now rewrite the expression inside the brackets using ([2.15)). We also note
that the part outside the brackets imposes a symmetry under the permutation
bf <> eg. Thus, we can write

4 badg fedcf —ofte, fadfg i badf edgc gt edgf _ bedg adcf
—9 bad[g fedc}f 13 fbadg fedcf 19 bed[c fadg]f e, fadfg 1 fbadf fedgc
-9 fe[bdf fa]dgC 43 badg edcf +9 fa[bdf fe]dcg — fbe, adfg + badf edgc
_ febdf fadgc — fe fbdgc 13 fbadg fedcf i fabdf fedcg

ae bd _ rbe ad + ba ed
df /- cg ded  fg af /- ge

:3fbadg fedcf +2 eadf fbdcg + 2fabdf fedcg + febdf fadgc _ fbedc fadfg
b
:3fbadg edcf + 4fa[df fe]dcg + febdf fadgc _ fbedc adfg
:3fbadg fedcf + 2fbedc fadgf _ 2fbedg fadcf + febdf fadgc _ fbedC fadfg
:3fbaclg edcf + 3fbedc fadgf + 3febdf fadgc : (AllO)

Inserting ({A.110)) into (A.109) we arrive at

gc
(A111)

Y A B ~C b d b d b d
OV = X80 (027,) 25,2 | PPy Fp [0 Y+ S

A.2.3 Cancellation of Terms

In this section, we systematically show that all the terms from the variation
in the previous section cancel.
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Two-derivative terms
From the scalar kinetic term and the Dirac term we have
i(D,D'Z e B g, +i(D,DFZA,)E, 5 TP
"y (DVDMZ Ad) By b — i (DD, Z4,) TPave
=i(D, D' Z ") PV g, +i(D, D' 24, )E 4, g 0P
—i (DVD#ZAd) ENB (Y + YU gy — i (DuDy Z4) WP + 41 )e 4
— (DVDMZAd) By i (DD, Z%,) UBye
—i (DMD,,Z Ad> APy o1 40 (DD Z4)) €4 gy WP
=il (DuDVZ Ad> APy Wy + e (DD Z%) Eapn TP (A112)

To proceed, let us calculate

D,D,Z*, =D, (8VZAd —ZA AP )
A b

_882(1 ( l/d) ,u,d+Z "le/c~ud
=0,0,2% = (0.7 )Ab_ baMAud
—(0,2%) AL+ 24 A0 AC,, (A.113)
which means that we have
DD, 2%, = ( 0u A+ AL AL d) (A.114)
and similarly
DDy 24" = (au,ai,,db + Audcfx,fb) 7,0, (A.115)

Using (A.114) and (A.115), our expression in (A.112) reduces to

i (C% Aydb n Audc Afb) ZAbgAB’YA‘I’Bd
+ ie‘“’)‘ZAb (—(%fl,,bd + Aybczzlucd> EapN TP

—jehA (BWZIV +ALAf a) (= Zg e By + 25,6451 W49) . (A.116)

c

Comparing (A.116]) to (A.107)), we see that the two-derivative terms cancel
provided that

0A," = iZ e PV gy — 1254 g W, (A.117)

which is the transformation rule of the gauge field required for SUSY invari-
ance.
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One-derivative terms

From the scalar kinetic term 6 Lgca1ar We have
(521“%,) (ZAQD“Z -z AbD“ZAa)
= <($Auab> ZAQD#ZAb + c.c.
=i f"%q <ch€BC’Y“‘I’Bc - chch’Y”‘I/Bd) Z4.DuZ," + cc.
=i [0 (2 €Oy W gy — 20" WP) 24, D2, ey (A1)
where we in the first step have used that (Viuab is imaginary, which is easily
seen from (2.17)) and (A.117). The contribution from the Dirac term is
—if (ZCGZDbZBcﬁﬂD - ZAaZcbZCcEAB> VDV gy
—if g WPND,, (26,27 Zg ecp — 27,2, 20 € )
=if”.q Dy (ZCCZDdZBagJD - ZACZCdZCaEAB) V'V
+if " gecpy' Du (29,27 Z°) WP
—if "y Dy (29,29 2c°) P
—=if" |2(DuZc°) Zp"27, &P + Z2c° 2" (Du2",) €7
— (DuZ4%) 2470 eAB _ 7 ¢ (Dchd) A
~2,Zc" (Du26,) &P |y,
+iecpy [ [2(Du2%,) 2% Z5° + 2,25, (D, Z5°) ] wP°
—if*geapy" [(DuZ?) 29, 2c°
+ZAa (D,UZCb) ZCC + ZAaZCb (DMZCC)] \IIBd
:ifabcd (DMZAC) |:2ZDdZBa EAD - ZCdZCa gAB + ZC’dZAa éCB} ’Y#\IJBb

+ ,L'fade (DMZAC) |:an ZDbEOD’)/u\I/Ad — Zoa ZAbECB"}’M\I/Bd} 4+ c.c..

(A.119)
The contribution from dL3 is
ifeb (DHZ Ad) By, 7P, 7° 1 c.c.
=—if®, (DuZ,°) eV 5, 25, Z % + c.c. (A.120)

and from 6Ly
— 2 (DHZDd) DAY, 7B, 7, + c.c.
=2if® ; (D, Z,°) eV 5, 25, Z 5" + c.c. (A.121)
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From §L5 and dLg, the contribution is

ieapep [y (DuZg°) e AruBize 7P 4 c.c.

:iEEBCDfade (DMZAC) EAE’y“\IdeZCa ZDb + c.c.. (A.122)
Putting all these contributions together yields

ifabcd (DHZAC) [gBC’Y”‘I’BbZCdZAa - EBC’Y’"L‘I’BdZCb ZAa

+ 28010, 7,075, — EBA U g, + E BN, 70974,
+ Eapy VM ZY, 2P, — ecpyUPIZC, 74, — eByr g, 25, 71
+2€A37“\I'EGZEbZBd + eEBCDEAEf)/“\IIBdZCaZDb + c.c.

=if*.y (DuZ4°) [_QEBC'VM\I’BdZCbZAa + Epe VA ZB, 76,
—i—eEBCDEAE'y“\I/BdZCaZDb] + c.c.. (A.123)

To show that the last three terms cancel, let us use a trick. Since the (anti-)
fundamental SU(4)p indices can take only four values, an antisymmetrized
expression with five such indices will be identically zero. Since the last term
in has five fundamental (upper) indices, we can try to rewrite it by
antisymmetrizing and explicitly writing out the different terms. Since we have
an imposed antisymmetry in FBCD, coming from egpcp, we only have to
write out one term for each position of the A-index. The other terms are
merely permutations of EBCD, giving us 4! copies of each term we write out.
Thus, we have

0 =eppep Byt wBizC 70— cppopelAypyBlzC zD
— eppepEB Bt uAlgC gzl _ eppopeCErgBlgA zD
— egpep Pyt wPiZC, 74,
=2eppope byt uBizC 7P+ 2%, pyuAlZC 7P, — dep ot uBizA 76

(A.124)

where we have used (2.27)) and the fact that we have an imposed antisymmetry
in ¢ and b coming from the structure constant. Now, inserting (A.124]) into
(A.123)), we easily see that the last one-derivative terms cancel.

Terms without derivatives
Let us start with the terms of the form Z%e). From L3 we have
eab  ped S B E -CD
=i f g [y X DL e 25 P Vg,

+ ’L'fabcd fedfg XIJ;‘gCCEZCe ZEbEAB\I’Ba +c.c., (A125)
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from L4

2ifabcd fedfg Xé’%:AZAe ZEbECD\I]Ea

—2ifb , fet, Xfge, 2C, 25BN, + cc., (A.126)
and from L5 and Lg
if 19 [ NP XGE R 28 2 epp Uy
—if19, f, ePOPX G 2 2 Ep Vg, + coc.
—ife, fed, ABCDZE gF, [gEF\IJBe)_(j’;?D — EEA\IIBe)_(;JgD] + c.c..
(A.127)

To further rewrite , we will use the same technique of cycling indices
as we did in (A.124)). For simplicity we denote €EF\I/BGXIZJ;€D by EFBACD.
Now, we will try to rewrite FEFBACD — EABFCD to a form where all the
terms have C'D in the first two index places, since this will make it possible
to use (2.27) in (A.127). Since five indices is enough to make the antisym-
metrization identically zero, we can let one of the six indices remain fixed
while cycling the others. Finally, before we perform the cycling, we also note
that we can make use of several antisymmetries. These are in the first two
indices, the last two indices and in ABCD. To begin with, we let B be fixed
and write

0=EFBACD — FABFCD — ECBAFD — EDBACF — AFBECD
— CFBAED — DFBACE + ACBEFD + CDBAEF + ADBECF

—EFBACD — 2EABFCD — 4ECBAFD + 2ACBEFD + CDBAEF,
(A.128)

which implies

EABFCD — EFBACD = —EABFCD — 4ECBAFD
+ ACBEFD + CDBAEF. (A.129)

Next, we let F' be fixed and write

0 =EABFCD — AEBFCD — BAEFCD — CABFED — DABFCE
—2EABFCD — BAEFCD — 2CABFED, (A.130)

implying
1
EABFCD = iBAEFCD + CABFED. (A.131)

Still keeping F' fixed, we also write

0 =2ECBAFD — BCEAFD — ACBEFD — DCBAFE, (A.132)
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which gives us
1 1 1
ECBAFD = iBCEAFD + §ACBEFD + §DCBAFE. (A.133)

Now, inserting (A.131)) and (A.133]) into (A.129)), we arrive at
EFABFCD — EFBACD

=— %BAEFCD — CABFED —2BCFEAFD

—2ACBEFD —2DCBAFFE
+2ACBEFD + CDBAEF
=—2BCFEAFD — CDABEF

— CABFED — %BAEFCD
=2CDFEABF + CDABEF

+CDBFEA+ %C’DEFAB. (A.134)

This is our desired result of the cycling. Inserting (A.134)) into (A.127)) and
using (2.27)) yields

ifabcd fedfg GABCDZE(Z ZFb [EEF\PBeXngD — gEA\I]BeX;fC"gD} + c.c.
= Z.fabcd fedfg ZEa ZFbgAB |:4\IIEeXszqF + Z\I]AengLgF
+2\IlBeX}c7’ngA + \IJEEX;'J}B} tc.c. (A135)

The last terms of type Z%e) are the ones coming from the scalar potential.
These are

— X80 (022) 25,20, | [y g + Fac g + Pl % | + e
(A.136)
Now that we have collected all the Z®ey-terms, we note that they are of two
different types. The first type has its 1-index contracted with one of the
e-indices, and thus contains a §Z. Collecting all these terms, we have

if e F, [XﬁgEZCeZEbEAB\PBa
—2X [ 28, 25 e P, — 2X [ 27, ZFbEAB\I/Be}
_ Xﬁx%c ( s ZAa) ZBb Zce [ badg edcf 4 bedc adgf I ebdf adgc] Lee
_ nggc ( 5 ZAa) ZBb ZCe [ fabfd fedcg 19 fbecd fadfg _9 fbegd fad - fbadg fedcf

_fbedc adgf _ ebdf adgc] +c.c. (A.137)
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The terms inside the brackets can be shown to cancel using (2.15) and the
symmetry under bf <+ eg from outside the brackets. The calculation goes as
follows:

b d b d b d b d
Pl g + 20" %y = 2% [ = [ag P = P ac Iy — I T e
=1, fa P £ Py £y — P £
-9 ad ba ed b(z ed

= d[gf af f " eq dg et

:2fa[e fb e ‘|‘fb fe _ fb fe
:faedf gc _ fad ed .+ fb ed _ fb ed
=0. (A.138)
Moving on to the remaining Z°ei-terms, we have

ifabcd edfg [ XEfC’gDZB ZEb€CD\IIBa + QXEngDZA ZE ﬂD\PEa

Ao, 2 g, Xy 2, O, ~ X1y 2|
—; X%@g)}c ZBe ZEb 6cD\I,B [ abcd ed .+ 2 fae bdfg

+2faefd fbdgc _ 4febfd fadgc _ fede fa ol

(A.139)

Again, we will show that the terms inside the brackets cancel, using the im-
posed antisymmetry in f <> g:

4 ebf ad .+ 2 d + 2 ea bdgc + ebdC adfg + abdc edfg
=41y o dle +4f“ fb ar t fe o f g+ FCacf
_4fa[e fb]d + 4f ffe + fe fa + fa fe
:2fae . 2fa e ed + 2fb ed 2fb ad + fe ad ‘|‘ fa edfg
b
=— 1% f@ +4f [“dffe o + 21" f”f + 1% f“
- _ fa e ed ‘I‘ 9 fa dc gf . 2fae bd . r +2fa dc fg + ebdc adfg
— fab fe _2fae fb ; +fe fa
c
d
_2f fe] -2 aedg bdcf
f _2 ae fbd

d[f gle dgJ cf

=0. (A.140)

Having cancelled all the Z%ei)-terms, only the ¢3eZ-terms remain. From the
Dirac term we have

(19,,) (54,)

— facdb (‘i/Dd”yu\I/Da> (gAB’Yu\I/AC) ZBb + c.c.
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=1 (@de“\IfDa) (AP, 4,) Z° + coc., (A.141)

from L3
F% (‘I’Bd‘I’Ba> (W) Zp° + cc.y (A.142)

from L4
=21y (UM, ) (PP ) 247 + e, (A.143)

and from L5 and Lg
Fely e P (U, U py) ((cp¥pa) Zp° + coc.
_ _ _ 1 - _ _
— (VY1) (Ecp¥Ea) Zg"+ 3 (P 4.¥34) (Ecp¥Yia) Zg"| +cc

= =2/ (Vaa¥p) (V) Zp" + [t (Vaa¥ ) (€7 Vp) Zp" + ey
(A.144)

_ fcd ABCD
- ab €

where we in the first step have cycled anti-fundamental (lower) SU(4) g indices.
In total, the ¥>eZ-terms are

FaZp [(gAB'YH\IJAb) (‘I’EdW‘I’EQ)
— (P ) (U, ) - 2 (AP W) (9,0,

S 25 |2 (@) (070, ) - (A FU) (0,,05)] +ce.
(A.145)

The only way to proceed from (|A.145)) is to perform Fierz expansions of the
fermion bilinears. This will not be nearly as messy as in the BLG theory,
since the only gamma matrices we have to deal with are the SO(2,1) ones.
The general expansion of a product of two fermions x!' and y? is

XaXj = a (Cil)ag + by (')’chl)aﬁ ; (A.146)

where a and b, are coefficients to be determined. Multiplying (A.146) with
C°8 the right hand side is

atr [CilCT] + b, tr [”y“C*lCT] = —2a (A.147)
and the left hand side —y'x2. This implies
1
a= §>zlx2. (A.148)

If we instead multiply with (Cy” )aﬂ the right hand side is
atr [C’TC'VV] + b, tr ['y“C*lC"y”] = b, tr [Y'9"] = by tr [n*] = 20" (A.149)

and the left hand side —y'v”x?, implying

1

by, = —§>lex2- (A.150)
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The general expansion ((A.146)) can now be written

1

(') (C71) 05— 5 (x®) (HC7Y) - (A.151)

XaX5 = 5

Let us now apply (A.151)) to (A.145). Starting with the bracket containing
two terms, we set y! = ¥, y? = Vs 3 = UBd and y* = VU 4, With these
definitions, we see that any expression inside the brackets is antisymmetric
under X2 > X4- Next, we write

(' x%) (F*x*) = xax3C? Bx;C° (A.152)
Using (A.151]) we can expand X%X§> obtaining

Xaxs = 5 (Cx") (C71) 45 (A.153)

N —

where we have used the antisymmetry mentioned above to make the second

term in the expansion vanish. Inserting into yields
() () =5 (Ex ) b e? (€71 55 (€7)
1

=-3 (v*x*) (x'x?). (A.154)

Using (A.154]) in the second bracket of (|A.145)), we can now easily see that

the two terms cancel.

Finally, let us turn to the bracket in (A.145) with three terms. Similarly

to the previous case, we define y! = 48, x? = Y 4ps 2 = UFd and y* = Ve,
and compute

(X'X*) (¥*x*) =xax3C*P x50
L B _
=— 5 (X'"%®)xixG (€T) " e (67
Ba

N

oy
1
+ 5 (Cwx®) xixg (1)
1 1
== 5 (W) (W) + 5 (W) (XY . (A155)

C (C7) 4y

Using (A.155) in (A.145]), we see that the terms in the first bracket cancel.
This completes our proof that the ABJM Lagrangian (2.18)) is invariant under

the SUSY transformations specified by (12.24])-(2.25)).
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Details of R x S2

B.1 Metric and Dirac Matrices

The metric on S? x R, with coordinates (7,6, ¢), is given by
G = Opel el = diag(1,1,sin%6) (B.1)

and the diagonal dreibeins by

el = diag(1,1,sin0). (B.2)
In the tangent frame, we use the Dirac matrices (7°,7!,7?) = (03,0, 0?),
1 o2

which means that we have (y7,+%,7?) = (03,0 ) in the coordinate frame.

’ sin @

B.2 Covariant Derivative

The spin connection w,,,, can be calculated as follows. First, since the torsion
vanishes, we have the condition

Ome® + w,,% el = 0. (B.3)
Multiplying this equation by eje* yields
ey Ocep +w, "y = 0. (B.4)
By lowering the a-index and antisymmetrizing in b and ¢ we arrive at
€ 0 na = W s (B.5)

where we also have used wpqp = —Wmpe. By manipulating (B.5) we can now
solve for Wy oq- Let us start by adding some suitable terms with renamed
indices to each side of the equation:

e[bnac] €na — e[cnﬁa] €nb + e[anab] Chne = _w[b,c]a + ""[c,a}b — (,L)[%b}c. (BG)
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The right hand side simplifies to

~Wib,ca + Wiealb — Wable =

= §(wb,ca + We,ba + Weab — Wa,cb — Wa be + wb,ac)

= —wb7ca. (B?)
Thus, we arive at the solution

_b
Ykea _ekwb,ca

1 b
= - iek(ebnacena - ecnabena - ecnaa Enb
+ eanacenb + 6anabenc - ebnaaenc)' (BS)

By setting k = 7 and k = 0 it is easily seen that w_,, and w,,, vanish for all
a and b. Setting k = ¢ gives

1
Woea = —562(63866(15@ — e20ueg + €LDce gz — e}f@aem)
1
= —5635(6%)6?67116@1 — e Omegn + eLe Omesn — e%’e?@mem). (B.9)

This expression is antisymmetric in ac, just as it should be. Setting ¢ = 0
clearly gives zero, which means that the only nonzero components of the spin
connection are:

Weig = —Wgo1 = —%(69 sinf + dgsinf) = — cos b. (B.10)

The covariant derivative acting on a spinor ¥ is

1
Vmw = (8m + zwmab’)/ab)wa (B'll)

with 1% = 5[y, 7"].



Monopole Spinor Harmonics

In this Appendix, we derive explicit expressions for the monopole spinor
harmonics. These are defined as eigenspinors of the Dirac operator on S?, in
a monopole background. We first prove that the spinors in question are also
angular momentum eigenspinors, which allows us to use the SU(2) algebra to
calculate them.

C.1 Dirac Operator

In an abelian gauge theory on R x S? with a magnetic monopole at the origin,
the Dirac operator is given by P = V + iA. Here, A is an abelian monopole
background of the form

Ap = q(£1 — cos¥), (C.1)

where ¢ is the magnetic charge and where the upper (lower) sign is for the
northern (southern) hemisphere. The Dirac operator on S? is given by

Ps =P -0, (C.2)

since the monopole gauge field has no component along the radial direction.
Explicitly we have

1 .
Ps = 10 ++%05+ Z’Y(b(wwﬂlz +wgn ) + 7% Ag

7

1
1 2 2 . 3 2
— _— -2 0 A
o 09 + sin@g 8¢+ 4511190 (—2icos o) + sin@a ¢
7

1 1
| L 2
= o (8@ + 5 cot 0) +o <sin08¢ + sin@Ad)) . (C.3)
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For later use, let us also calculate the square of the Dirac operator:

1 S |
2 - . 2
P = <09 t3 cot 9) + nZd (0p +iAy)
+io® 69+1(:0t9 L(8 +iAg)
2 sing ¢

.3 1 , 1
—io? o (0p +iAg) (89 + 3 cot 9>

1
= 02+ - cot’f —
07y 2sin26

. 3 cosf . i
— A ——0yA
+i0 < Sin29(a¢+z ¢)+Sin980 ¢>
1 1 1
4y i A )2
4sin 6 él—i_s,in2c9<8¢—i_Z 2

) cosf ) .
+io® (— 20 (0p +144) + zq) . (C.4)

+ cot 005 + 10(a¢,+m¢)2

sin?

= 03 + cot 00y —

C.2 Angular Momentum Operators

In flat R3, the orbital angular momentum of a fermion in the monopole back-

ground (C.1)) is given by [26]:

—

L=7x @+ fT)+q£. (C.5)
The Cartesian components of this vector, with p; = —i0;, are
Lo = —iy(0.+ A.) +iz(0, + A,) + qf (C.6)
Ly, = —iz(0p+ Ag) +ix(0, + AL) + q% (C.7)
L. = —iz(d,+ Ay +iy(0s + Ay) +q§. (C.8)

Expressing this in spherical coordinates yields

L, = —i(—singdy — cotfcospdy) — cot b cos pAy + gsinf cos ¢ (C.9)
L, = —i(cospdy — cotfsinpdy) — cot OsinpAy + gsinfsing (C.10)
L. = —idy+q. (C.11)

The total angular momentum operator J is given by adding the spin term
Thus, we have

g.
Jy = —i(—sin ¢dy — cot 8 cos ¢pdy) — cot O cos pAg + gsin b cos ¢ + % (C.12)
Jy = —i(cos 0y — cot O sin p0y) — cot O sin pAy + ¢ sinfsin ¢ + % (C.13)

J. = —idy + q+ % (C.14)
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and in the Cartan-Weyl basis [[]

Jr =J, £iJy
= — i(—sin ¢dy — cot @ cos p0y) — cot  cos p Ay + gsin b cos p£
+ (cos ¢p0y — cot O sin p0y) + i(— cot O sin pAy + ¢sinOsin @) + @
=(£ cos ¢ + isin ¢)dy + cot O(F sin ¢ + i cos ¢)0p—
— cot (cos ¢ £ isinp) Ay + gsinf(cos ¢ + isin ) + %
=eT (£ + cot 0(i0y — Ay) + gsin6) + # (C.15)
J.=— iy tq+ 2 (C.16)

2

Our next step is to transform these operators from flat R to the curved
manifold S? x R. The operators act on spinors and must therefore transform
accordingly. The transformation of a spinor when going from R? to S? x R
was derived in [1] and is given by

Y= Vi, (C.17)

where the unitary matrix V and its Hermitian conjugate is given by

iv29 1734 et cosg e % sing
V=e2"e2 = i¢ . 0 g ) (C18)

—€e28Sihs € 2 CoS3

2 2

t _loay _i72g e% cosg e_% sing
Vi=e 2% 27 = o Sy e o ]- (C.19)

—e2s8ing e 2 CoSg

The corresponding transformation of an operator S acting on the spinors is:
S — 8 =vsvt, (C.20)

Let us first apply this transformation to the three Pauli matrices:
i _ie . _io _io .
+ e cos% e 2 sm% 0 1 e 2 cosg —e 2 smg
VUlV = @ . 9 _i9 0 1 0 o . 9 ¢ 0
—e2sing e 2 cosg ez sing e? cos g
(4
2
0
2

i
. <62 COS
- 9 . 9
—e 2 Slni

- sin 6 cos ¢ cos f cos ¢ + isin ¢
~ \cosfcos¢p —ising —sin 6 cos ¢
= cosf cos po1 — sin ¢poo + sin 6 cos ¢og (C.21)

(IS
(‘Dl (D‘
NSNS

'Here, the + that distinguishes the two step operators is not to be confused with the =+
in J,, which has to do with the different expressions for the monopole background in the
northern and southern hemispheres.
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@ ) e 0
€2 cosg e sin 3
VU2V]L = i 2 ip %

e iy

. _ i _is
) <O z) (e 2 cos% —e 2 s1ng
. ip i¢
i 0 2 qin @ 5 )
5 e? sin 5 €2 cos 5
¢
2

i) _ .9 @ .9 id 0

. €2 COS € 2813 —€2 Sln 3 —€2 COS 5

= . . 2 _ 2 ) 2
¢ v . 9 _i 9 —i¢ 0 _i . g

—e€ 2 sin 5 € 2 COS 5 € 2 COs 5 —€ 2 sin 5

_ ( sin 0 sin ¢ cosfsin¢p — icosqb)

IS

cos fsin ¢ + i cos ¢ —sinfsin ¢
= cosfsin ¢oq + cos ¢pog + sin 6 sin pog (C.22)
id _t 0 ¢
VO'3VT _ e2 cosg e 2sing 1 0 e 2 cosy —e 2sing
¢ 9 i 9 0 —1 i 0 i 0
—ezsing e 2 cosg e2 sin e2 Cos g
i9 _i9 0 i i¢
e2 coss e 2sing e 2coss —e 2sing
= P 2 i) 2 i} 2 ip 2
—e2 sing e 2 cos g —e2 sing et 7 cos ?
_ cos@ —sind
~ \—sinf —cosf
= —sinfoy + cosfos. (C.23)

Also, it is easily seen that the partial derivatives of V1 are given by

oVl = VT(—7), (C.24)
o,V = (—%)V*. (C.25)

Using (C.21))-(IC.25)), it is now an easy task to calculate the transformation of

the angular momentum operators:

Jo=VJVvl = Vv <eii¢ (40 + cot 0(idy — Ag) + gsin ) + Vi

o1 tiog
2

= e (£0p + cot 0(idy — Ay) + qsind) +
+eti® (—?) + ieT? cot OV (—?) Vi

= e (£0p + cot 0(idy — Ay) + qsind) F

L 1 ,
:F%ei“i’ag + 5 cot Qeiz‘z’[— sin foq + cos o3| +

1
+§ [cos 0 cos poy — sin ¢poy + sin 6 cos pos| +

:l:% [cos O sin po1 + cos pog + sin O sin pos]
_ +ig o . 03
e (ﬂ:@g + cot 0(idp — Ayp) + gsinf + Teind sin0> ,  (C.26)

J=vovt = V(—@iﬁ%)VT:—ia¢iq+V(—%+%)vT
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The total angular momentum operators on S? x R are thus given by (C.26)
and ((C.27)). In the following, we drop the primes and denote the operators on
S%? xR by Jx and J,. Let us now verify that these operators satisfy the SU(2)
algebra:

[Jy,J-] = [ewS (89 +cot 0(i0y — Ag) + gsinb + ?19) )

( O + cot §(i0y — Ap) + qsinf + 75 n0>}
= [ema@, ie " cot 08(4 + [Og, — cot 0 Ay + gsin 6] + % [(99, 511119} +

+ [z cot Oei‘z’@d), —e*id’(%} — cot? 0 [ei‘z’%, e*w@d)]

. . 0. ,
+ i(— cot? 0Ay + qcosb) [e’¢0¢, e_“ﬁ] + z% s(i(r)ls 7 [ “‘58(75, e_zﬂ

+ [~ cot g, 0] — i cot? 0 [e%,e7%0, | — [~gsind, 3] -

; i 1 0r . .

2 sin

0 1
cos 19

1
= —1 0, t 00y — Oy — cot 00
sin? 6 o T cottdp Zsm 0 ¢~ oLV — n29
053

sin? 0

cosf cosf

0
+ 2icot? 004 F 2q cot? 6 + 2q +2qcosf + 03—
sin® 6 sin? sin” 6

) 1 9
=2 <_sin29 + cot 0> 0g
1 3
— 2 <COS€ F—5— tcoth— 0?522 — CoS 9>

— 03

sin26 ' sin%6 sin
— —2i0y +2q = 2.J., (C.28)
[Jzs I = [=i0g, J4] = T4, (C.29)
[z, J-] = [—i0g, J-] = —J_. (C.30)

Next, we evaluate the commutators with the Dirac operator (C.3):

Ds, J+] =i et? (g, cot 0] + oret [89, —cot A4 + gsin 6] +
1 oo cos 6
4 sin® 0

(- 1 1.
5¢ [0169, i ] T 2e ®0y [Dp, cot 0] +

000

o 25 (%90

02 . :El(j):| 1
—cot A 0 [
+sin9( c0 ¢ T qsimn ) 0p:© +281n20

. A 1A .
. j:zqﬁ a ¢ ‘]5 :|:ZQ5
oz [ v sin@] * 2sin20" 72, 3]

g 1 1 cos ¢ 1
=o€ — O0p — + +
! [ sin2f * 1 <:F sin?f  sin%@ 2sin? 0

+ o [ Dy, e iw’ae] + +ios—
S

[O'Qad,, Ugeiiﬂ
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{ . q
+———(£i+20,) — +1—cosf)| +
2sin? 9( 2 sin? 9( )}
tig |, tcosb i icosf i cos 0
+ 02" |+ - = - + = 0
2 [ 2sin20 sinf °  2sin2f @ sinf sinf sl

sin2 6 sin26  sin%46 sin26 = sin?

cos 0 . cos 1 . cos 0 1
F- Fig| t——= Fig|F——-+ ——=

=0

and trivially
[pS ) JZ] =0.

]

(C.31)

(C.32)

Since these commutators are zero, the angular momentum operators and the
Dirac operator on S? are simultaneously diagonalizable. Thus, the monopole
spinor harmonics are also angular momentum eigenspinors, and we can use all

the machinery of the SU(2) algebra to calculate them.
Finally, we calculate the Casimir operator J?:

1
J2=J% + RS

1 .
=— 95+ ¢ F 2iq0s + 3 {ew (ae + cot (idy — Ag) + gsind +

—i¢ [ a y 03
e (89+cot0(28¢ A¢)+qbln9+28in9)}

1, ,
— — 0%+ ¢* F 2000y — O + 5 {909, €7 cot0i0, — Ag) | +
1 : 1 T3
+5 (@0 asing) + 5 {on, 5 205
Ly , -
+§ {e¢cot9(z@¢—A¢)a—e ¢89}+
1. A
+ 3 {ew cot 0(i0y — Ag),e " cot 0(idy — A¢)}
+ L {eid’ cot B(idy — Ag),e”?gsin 9}
2 o
1, 6 O
Z )i 0, — —i¢_ Y3
+ 5 {e cot 0(i0y — Ay), e QSinQ} +
1 1. .
+ 3 {gsinf, -0y} + 5 {emq sin§, e~ cot 0(idy — Ad))} +

1. . . 1 . 03
+§{q81n6,q51n9}+§{qsm0, 2sin0}

1 I3 ¢ —i .
Ly o iy )
+2{2sin06 e P cot §(i0, o) ¢+

1 03 1( o3 . 1 03 03

N
+2{2sin9 b8 T2\ 2sme’ 1™ T 2\ 25im0 256
= — 03+ ¢* F 2iq0y — 0 — cot 00 + cot® (i0y — Ay)”

cosf

5105 — A¢)>

2 0(i0, — A
+ 2q cos §(i0y 6) + 03 (sin2

g3 )
2sin@/’

}
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1
+¢*sin? 0+ qo3 — ———
¢ s 173 4sin” 0
1 cos
= — 9 — cot 00 — >+ o 05 — A +
6 — COBT 4sin29+q 73 sin2(9(qu o) +4

+ cot? f (—8; + ¢*(£1 — cos 0)? — 2ig(E1 — cos0)9y)
— 835 T 2iq0y + 2q cos 0(i0s F q + qcos ) + ¢*sin? 0

0
— R —cot0Fy — ——— + ¢ 8P g, — A )
A +03(sin20(z¢ o) +a)+

+ (cot? 6 + 1) (idy — Ay)*

cos

2 . . o _
+q° +io3 <sin2 7 (0p +1Ay) zq)

1
=— 03 — cot 00y —
6 — COLU% 4sin% 6

1 .
— — 20(8¢+1A¢)2. (C.33)

S184

Comparing this expression to (C.4)) yields:

1
Jr= Pk~ 1+ i (C.34)

C.3 Eigenvalue Equations

Since the monopole spinor harmonics are angular momentum eigenspinors
they are, in addition to the monopole charge ¢, labelled by the SU(2) quantum
numbers j and m. We denote these spinors by T;,,. The eigenvalue equations
are

T X gjm = 30 + 1)L gjm (C.35)

L Ygjim = mYygim (C.36)
and

= 1PsYqjm = Agjm, (C.37)
which implies

@%qum = _AQqum- (C.38)

Due to ((C.34)), the eigenvalues A and j are related in the following way:

1 1
<J2 ~Ps— 5+ q2) Tyjm = (j(j 1)+ =24 q2> Yyjm =0,
(C.39)
which yields

1
A=25V/(25 F 12 - A (C.40)



78 Appendix C: Monopole Spinor Harmonics

This relation tells us that, for every value of ¢ and j, there are two different
eigenvalues of the Dirac operator. From now on, we denote these eigenvalues
by

1
A= +5V/(2) +1)% = 4¢? (C.41)

and their corresponding eigenspinors by chjmﬂ The relation (C.41)) gives us
a lower bound on j (and therefore on the size of the SU(2) representation),
namely:

, 1
j>lql - 5 (C.42)

The zero mode eigenspinor of the Dirac operator has angular momentum eigen-
value j = |g| — 1 and does not exist for ¢ = 0. Clearly, there is only one
independent zero mode eigenspinor.

C.4 Finding the Eigenspinors

Let us now go on to find the explicit expressions for the monopole spinor
harmonics. Using (C.36) and (C.27) we have

8¢TQJm = Z(m + Q)qumv (0.43)
which means that we can separate out the ¢-dependence in Ygj,,. Thus, we
write 0

; 0
Y gjm (0, ¢) = e (MFO? (0‘ ) C.44
where we have suppressed the ¢-, j-, and m-labels on the #-dependent two

component spinor and where () and () are two arbitrary functions.

C.4.1 Lowest Weight Eigenspinors

Our next step is to find the eigenspinors corresponding to the lowest SU(2)
weight m = —j. Applying the angular momentum step operators to this
spinor will then give us the complete set of eigenspinors. The lowest weight
eigenspinors obey the equation

J—Tq,—m,m(ea ¢) =0, (045>

which is the same as
—i¢ o . g3 _
e ( O + cot §(i0p — Ag) + qsinf + Teind sin&) Ty-mm(0,¢) =0. (C.46)

Inserting (C.44)) into this equation yields

e L s T8 gitmrae (@)
0=ce (8e+cot9(23¢ A¢)+qsme+23m9>e (B(H) ’
(C.47)

2A4j and Yg;m with suppressed & denotes either of the two eigenvalues or eigenspinors.
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which implies

0 = (—(‘39+qsin9+2;ilg+cot0(—A¢—miq))(

)

;) (C.48)

= (= i _93 _ _ o
= (89+qsm0+2sin9 cot O(m qcos@))<(

This equation can be put in a simpler form by making the variable substitution
x = cosf. Expressed in x the equation reads

— mx — l0' alx
<\/1 ~ 29, — 1 T/WQ 3) <b§x)>> —0, (C.49)

for two arbitrary functions a(x) and b(x). Due to the os-matrix we get different
equations for the upper and lower spinor components, namely:

mx—q—%

a(x) = .2 a(x) (C.50)
and
Y (z) = ml__i‘;j?b( ) (C.51)

Starting with (C.50]), we note that the equation is separable and we can write

1 -1

Integrating both sides gives
1 1
Ina = 1(1 —2m+2q)In(1 —z) + 1(_1 —2m —2q)In(1+4+z) + C,, (C.53)

where C,, is an integration constant (possibly dependent on q and m) that will
later be fixed by normalization. Finally, taking the exponent of (C.53)) yields
the solution

a(z) = Co(1 — ) 7172 420) (1 4 gy (-1-2m=20), (C.54)
In precicely the same way one also finds
b(x) = Cy(1 — z)a(T172mF20) (1 4 )7 (1-2m—29), (C.55)

Since x is a more convenient variable to work with, we will keep using it
throughout the calculations, rather than changing back to 6. Using expressions
(C.54) and (C.55|) we can write the lowest weight eigenspinor as

Co(1— )i(l 2m+2q)(1+m)i( 1—2m—2q)
Cb( o )i( 1— 2m+2q)(1+ )i(l —2m—2q) | -
(C.56)

Tqﬁm,m(x, Qb) = ei(m:Fq)d) (
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Now, all that remains is to fix the constants C, and Cjp. First, changing
variables to x in the eigenvalue equation of the Dirac operator (C.37)) and

inserting ((C.56)) gives us
( VI 220, + ﬁ> TE (56 +
o

=g O+ ia(EL = ) Ty (2, 0)
= AT TE (z, ). (C.57)

q,—m — q,—m,m

Let us look at the upper component of this equation:

C, <m1(—1 —2m +2¢)(1 —2)"'—
—ﬂi(l —2m—2¢)(1+z)" '+

1 x 7 . '
i T i ) )
(1 — x)%(—1—2m+2q)(1 + x)i(l—Qm—2q)
= Cailg (1 — 2)3(12mH20) (] 4 g)3(-1-2m=20) (C.58)

By dividing with v1 — 22(1 — x)%(_l_gmﬁq)(l )i(l 2m=24) we arrive at
Coilg—m(1 —x)

=C} <i(—1 +2m+2q)(1+ ) — i(l —2m —2q)(1 —x) + %x +m — qx> )
(C.59)

which simplifies to

Cy <m — % + q) = Cuilg—m.- (C.60)

Inserting the expressions (C.41) for A, _,, finally gives us

C, . [T—2m+2q
o TWit2m—2g (C.61)

for T (z,¢). Having determined the relationship between C, and Cj,

q,—m,m
we can fix the absolute value by normalization. The overall phase will still be

arbitrary. We normalize the spinors in the following way:

27
/ d¢/ e 2,0))! Yo (2, 0)sinfdo = 1. (C.62)

Insertmg ) into this equation, changing integration variables to x and

using ylelds
1
1 = 27ryca,2/ {(1_x)%(172m+2@(1+x)%(*172m72q)
-1

1—2m+2g

m(l — ﬂ?)%(7172m+2q)(1 + l‘)%(172m72q) dﬂ? (063)
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Evaluating the integral, we arrive at

(Ly1- ,/f_mmm
f VTG —m+aT(E —m—q)

which means that the lowest weight eigenspinors are, up to a total phase, given
by

|Cal = (C.64)

+
Tq,—m,m(‘r7 (z)) = X

q
VT = 2m = 2q(1 — z)3(1=2m+20) (1 4 z)3(-1-2m=29)
X
:Flm(l — x)%(_l_Qm"f‘ZQ)(l + m)%(l—ZTrL—Qq)
(C.65)

or expressed in j

TGt arGri-g VI

L VT 20 - x)i<l+2j+2q>(1 4 )3 (-1+2i-20)
FivT 27 F 2q(1 — 2) 11420120 (1 4 )3 (1425 -20) |~
(C.66)

C.4.2 Eigenspinors for General m

Having found the normalized lowest weight SU(2) eigenspinors, we now want
to generalize to other values of m by using the Ji-operator. In general, the
action of a step operator on an angular momentum eigenstate |7, m) is given

by
1

V0 =m)(G+m+1)

We obtain the general state |j, m) if we let Jy act on the lowest weight state
(j +m) times. Thus, we pick up an extra normalization factor of

‘j7m+1> =

Ty |3, m). (C.67)

1 _ | _G=m)
Vi) 25— 1) —m+1) x (j +m)! 2 +m)!

(C.68)

Next, we turn to the action of J; on the eigenspinors. Changing variables to

z in ((C.26) we have
— et [ _\/ 2 2 93
=e€ 1—220, + 10, +qx) + l—zs —— .
< %( s Fa+qr) +q Wi 2)

— X

(C.69)
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To avoid writing out the constant factors of ((C.66|) all the time, we define
i by
7]7

et(= J:F!I)¢Pq

1 . 10 q19i
_ st (-l i)
1 1,)1(—1+2]+2q (1 + 1:)1(1+2] 2q)

which we, by defining j., = 7 + a% + bq, further can streamline to

TFop _ igFae (1= o) F (o) s . (C.71)
" (1=2)3 (1 +2)%

Our task is now to generalize to any value of m. The ¢-dependent part
is easily handled. Because of the e*-factor in we see that applying J+
(j +m) times to changes the exponential part into e!(m¥09¢

Next, we turn to the more complicated x-dependent part. Our strategy
will be to apply Jy to a couple of times, until we can see a pattern and
make a qualified guess about the general form of Fjj,,. By induction, we will
then prove that our assumption is true.

A simple calculation shows that acting with J, on yields

(2jx +142¢)(1 )

P 1—2%)2
ot =) ((2jx—1+2q><1 )5

which can be rewritten as

_(1 _ xQ)% (EEI — ZIZ’)J‘_H‘(I + x)j;:)z 833(1 — x)]-i-%(l + .Qf)j:_—) '

PQ7]7_]+1 =

1 . .
1—- 1+ -)7292(1 — x)i++ (1 + 2)i—
((1 — )+ (1 + ) +*) 202(1 — )+ (1 4 x)i+-
(C.74)
As a generalization of (C.73]) and (C.74) to any value of m, we make the ansatz

FPyjm —(_1)j+m(1 - 372) X
y (((1 P (L a)io) T (L - a)i (L4 )
(1= 2)f=+ (14 2)7+-) 72 5™ (1 — )i+ (1 + )i+~
(_qyn (=) T () O ) (L)
(1—2) % (1+z) 2 &1 —a)+(1+a)+ )’

where we, analogously to j.5, have defined my, = m + a% + bg. Clearly,

(C.75) reduces to Py j_; in (C.71) for m = —j. Let us now act with J
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on ei(ijq)d’qum. The partial ¢-derivative brings down a factor of i(m F q)
from the exponential. Not writing out the exponential, we have for the upper
component

1
-1 —220, + m( mx—i—q—i—z)] X
X (~1)IT(1—2) T (L) 7 (L — a)t (14 )
=) -t ()T - (- a) )
x (L—a) 7 (L+a) 5 0 m(1 - x)++ (1 + 2)/--
(=1 1 — )i (1 —a) 2 (I4a2) 3

(1—2)++(1+z)—-

(=22 emz gt D)1 — 2) T (14 2) (1 — 2t (14 )

2
(m+1)_ _ (m+1

) . ) .
(L) = ™1 — a)i++ (1 + 2)——+

+ (=1)7 (1 - m2)_% <—mQ++(1 —x)+ %(1 +a)—mx+q+ ;)

(m+1) (m+1

( + :L’) 2)++*ag;+m+1(1 _ x)j++(1 + x)j,,.
(0.76)

:(71)j+m+1 (1 o :L‘)

:(71)j+m+1 (1 o :E)

In the same way, we can show that the lower component turns into

. (m+1)4 (m+1)_
(—1)mH 1 —2) 2 (1+a)

oIt mAL(] )it (1 4 z)it (C.77)

Thus, and are indeed of the same form as F,j,, in our ansatz
, with the m-value shifted by 1. This completes the proof that our
ansatz was correct.

Putting everything together, we are now ready to give the complete explicit
expressions for the monopole spinor harmonics:

(—=1)7™(3) ]H\/J +3 im0
INSCEETE

o VTFE =2 (l—a:) Lz (1+2)"
Fiv/I+ 27 + 2q (1—x)%(1+x)

Vit (1 4 z)-- > .
< — P (L )i
(C.78)

C.5 Some Useful Properties

In this section we record some useful properties of the monopole spinor har-
monics. It is immediately clear that the spinors satisfy

ATYE =TT (C.79)

qjm qjym
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As said before, there is only one independent zero mode eigenspinor for each
value of ¢ and m. We define this spinor by

1
YO = (T+. + sign(q) T ) : C.80
an =75 (Tam + 518 (DY jm il (C.80)
from which we directly can infer
’yTngm = sign(q)ngm. (C.81)
The spinors can also be shown to be orthogonal:
0 0 _
/ dQYN Y0 = S (C.82)
/ A Yy = 65850 (C.83)
Finally, we have the completeness relations
SO0 QTN (Q) + YT (T () = 82— ), (C.84)
m Jjme

which allows us to expand a general spinor on S? using the monopole spinor
harmonics.
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