
Improving landfill monitoring programs
with the aid of geoelectrical - imaging techniques
and geographical information systems
Master’s Thesis in the Master Degree Programme, Civil Engineering

KEVIN HINE

Department of Civil and Environmental Engineering
Division of GeoEngineering
Engineering Geology Research Group
CHALMERS UNIVERSITY OF TECHNOLOGY
Göteborg, Sweden 2005
Master’s Thesis 2005:22

1

2 3

a f

a a

(a) Non-diagnosable automaton

1

2 3

a

b

f

b

(b) Diagnosable automaton

Diagnosis of Discrete Event
Systems

Mona Noori Hosseini

Supervisor: Bengt Lennartson

Department of Signal and System
Automation Group
CHALMERS UNIVERSITY OF TECHNOLOGY

Gothenburg, Sweden 2011
Master’s Thesis EX100/2011

Diagnosis of Discrete Event Systems

c© Mona Noori Hosseini, 2011

Master’s Thesis EX100/2011

Department of Signal and System
Chalmers University of Technology
SE-41296 Göteborg
Sweden

Tel. +46-(0)31 772 1000

Prepared With LATEX
Reproservice / Department of Signal and System
Göteborg, Sweden 2011

Abstract

In many applications where a Discrete Event System (DES) contains unobservable
events, determining whether certain unobservable or failure events have occurred
is of interest. This is the problem of failure diagnosis, which has attracted much
attention to this field. Earlier work on diagnosis have mainly based on ordinary
finite automata.

In this thesis, failure diagnosis of discrete event systems based on nondeter-
ministic Extended Finite Automaton (EFA) is studied to gain more compactness
and ease of implementation. For this purpose, the diagnosability test on Extended
Finite Automata (NEFAs) is performed. Moreover, guards and actions are replaced
by conditions, involving both the current and the next value of variables, which are
augmented to the transitions.

In this perspective, two computation tree logic (CTL) formulas are proposed
as proper specifications for the diagnosability verification. NuSMV, as a symbolic
model checker software tool, is then utilized to check the specification, in order to
verify the diagnosability of the synchronized NEFAs.

Keywords: Diagnosability, Failure diagnosis, Discrete event systems, Nondeter-
minism, Extended finite automata (EFAs)

Acknowledgements

First of all, I would like to acknowledge all the support from my supervisor, Prof.
Bengt Lennartson, who has always been the inspiration to carry on the research
with his encouragements and never left me alone either in the very hectic days
of the research or in the days that I was completely stuck facing many different
problems. Thank you for not letting me get discouraged by always emphasizing the
fact that we could handle the problems and reducing the stress during the whole
project period. Also, thank you for all your directions that really made the project
easy to deal with. It is pretty fruitful and fun working with you.

Special thanks to Alexey Voronov for his kind guidance to solve software prob-
lems. I wish to extend my warmest thanks to all professors and students that have
helped me in automation group at Chalmers University of Technology.

I want to thank my parents who always encourage me in life with all their sup-
port and love from the bottom of their hearts. Last but definitely not least, I would
also like to thank Behrooz for his love and support. Sitting beside you while doing
my thesis was one of the best experiences I had.

Mona Noori Hosseini, Göteborg 2011

Contents

Abstract 3

Acknowledgements 5

Contents i

1 INTRODUCTION 1

2 SYSTEMS 4
2.1 Introduction . 4

The Concept of System . 4
Continuous States . 5
Discrete States . 5

2.2 Discrete Event Systems . 6
Time-Driven and Event-Driven Systems 6

2.3 Conclusion . 6

3 AUTOMATA AND FORMAL LANGUAGES 8
3.1 Introduction . 8
3.2 Automata . 8

Nondeterministic Automata . 10
3.3 Formal Languages . 11

Set of All Strings . 12
Prefix closure . 12
Projection of Strings . 13
Inverse Projection . 13

3.4 Synchronous Composition . 14
3.5 Conclusion . 15

4 DIAGNOSABILITY AND FAILURE DIAGNOSIS 16
4.1 Introduction . 16

Diagnosability . 16

i

CONTENTS

4.2 Diagnoser . 19
Offline Diagnosis . 19
Online Diagnosis . 19
Reduced Diagnoser . 19
Decentralized Diagnosis . 20

4.3 Uncertain and Indeterminate Cycles 20
Uncertain Cycle . 20
Indeterminate Cycle . 20

4.4 Temporal Logic . 22
CTL Specifications . 24

4.5 Offline Diagnosis Algorithms . 25
Diagnosability Test Algorithm 1 . 25
Diagnosability Test Algorithm 2 (Rule-Based Model) 28

4.6 Online Diagnosis Algorithm . 31
4.7 Conclusion . 35

5 EXTENDED FINITE AUTOMATA 37
5.1 Introduction . 37
5.2 EFA . 37

Condition Predicates . 38
Transition Predicates . 39
Nondeterministic EFA . 40

5.3 Extended Full Synchronous Composition 40
5.4 Conclusion . 42

6 THE NUSMV MODEL CHECKER 43
6.1 Introduction . 43
6.2 Diagnosability Test on Ordinary Automaton 43
6.3 Synchronization of EFAs . 47

Algorithm 1_ Synchronization of EFAs 52
6.4 Diagnosability Test on Synchronization of EFAs 53

Algorithm 2_ Diagnosability Test Algorithm on the Synchronization
of EFAs . 57

6.5 Conclusion . 58

7 CONCLUSION 59

Bibliography 61

ii

1

INTRODUCTION

Many industrial systems are categorized as discrete event systems, where their
behavior is monitored by observing some system events, recordable by sensors.
These events are called observable events. On the other hand, there are also non-
recordable events in a system, normally denoted unobservable. The existence of
unobservable events adds ambiguity to the system, since executing unobservable
events means that the system cannot recognize in which state it is. Moreover,
among the unobservable events, some failures may happen, which are deviations
of the system from its normal or required behavior. Beside failure events, what is
called failure can also be visiting a wrong state or not fulfilling a desired specifica-
tion.

In many applications where a system contains unobservable events, determin-
ing whether certain unobservable or failure events have occurred is of interest. This
is the problem of failure diagnosis, which has attracted much attentions to this field.
Failure diagnosis is to determine the occurrence of a failure that has happened in
the past, through the observation of a bounded trace of observable events.

In this perspective, the notion of diagnosability is the ability to detect every
failure occurrence in a system. This notion is introduced in [1, 2], where necessary
and sufficient conditions for diagnosability and I-diagnosability are provided. The
notion of I-diagnosability indicates that a system is I-diagnosable if it is possible
to diagnose failures, not always, but whenever the failure events are followed by
certain observable indicator events that are associated with the failures. There, a
diagnoser needs to be completely constructed in order to test the diagnosability of
model. The proposed diagnosability algorithm has exponential complexity in the
number of states. In [1, 2], the concepts of uncertain and indeterminate cycles are
described as the basis for the diagnosability analysis of automata.

In [3], an integrated approach for control and diagnosis is presented, which is
called active diagnosis. Active diagnosis is an approach for design of diagnosable
systems by appropriate design of a system controller. On the other hand, the term
passive diagnosis implies the role of diagnoser as a simple observer of system be-

1

INTRODUCTION

havior for potential failures. In [4], a polynomial algorithm is proposed where, in
contrast to [1], there is no need to construct a diagnoser beforehand. Moreover, in
[5] the authors have extended the diagnosability test in [4] to rule-based models
where an online diagnosis algorithm is also introduced.

To motivate the importance of diagnosability analysis it is fruitful to explain
it through a real industrial example. Consider a motor vehicle whose wheels are
equipped with an Anti-lock Braking System (ABS). The main purpose in using ABS
is to prevent the wheels of the vehicle from locking up while braking. In modern
cars, each wheel has a local ABS which works independently from other wheels.
One of the failures which may occur in the system is the stuck-at-on failure. It
means that a sensor, that is responsible for activation of ABS, permanently observes
a locking condition on the wheel regardless of its actual condition. This causes ABS
to remain active even in the case that the wheel is not locked. The other failure
type which may be seen in an ABS is stuck-at-off failure, which means that a sensor
permanently observes a non-locking condition on the wheel regardless of its actual
condition. In this case ABS never become activated even in the case that the wheels
are locked. It is very crucial to be able to diagnose these two failure types, in order
to make a driving safe and to protect cars from slippering and accidents.

With this background, in [6], authors have investigated this issue and focused
on a brake-by-wire system combined with a high level brake function, ABS. They
worked on diagnosability analysis of a vehicle whose wheels are equipped with
an ABS. The behavior of the ABS is modeled by Petri Nets (PNs). Diagnosability
analysis has been performed using the method proposed in [7] where a verifier net
(VN) is computed and its reachability graph is analyzed. Using these techniques,
the failure occurrence in the model can be analyzed locally in a wheel and without
considering the wheel in interaction with other wheels. Moreover, it can be ana-
lyzed globally in order to check its diagnosability, which in both cases, locally and
globally, the stuck-at-on failure is diagnosable. The same algorithm is utilized for
cases with stuck-at-off failures which results in that stuck-at-off failures are merely
globally diagnosable, and it can not be diagnosed locally in each ABS of wheels.
Consequently, this failure diagnosis method enables us to distinguish whether a
failure has happened in accordance to the braking system of a motor vehicle.

The above mentioned results are mainly formulated in the ordinary automata
or petri net framework. This thesis implements Extended Finite Automaton (EFA)
introduced in [8]. Diagnosability test is extended on synchronization of an arbitrary
number of EFAs which are augmented with guards and actions on each transition.
In this work, instead of guard and action which were used by [8], a condition is
attached to each transition which conveys the same concept as in the ordinary EFA.

Furthermore, two computation tree logics (CTLs) are proposed as the proper
specifications for diagnosability verification. The two specifications are designed
based on the concept of indeterminate cycle which is described in Chapter 4. For
this purpose, the specifications are checked in all possible states of the model, in or-
der to see whether the model fulfills or violates the specifications. Thus, a suitable
software tool is required for diagnosability verification by testing the specification.

2

INTRODUCTION

NuSMV is a symbolic model-checker tool which is utilized to verify the specifica-
tion.

The advantage of this work is that the compactness of EFAs along with the
augmented condition relations and the nondeterminism help us to represent large
systems in a compact and understandable model. Moreover, it is very crucial to
verify the diagnosability of interacting systems and be able to diagnose failure oc-
currences while a systems is operating.

In this thesis, the notions of the system and specifically Discrete Event Systems
(DES) are described in the first chapter. The second chapter illustrates the basic
concepts for the rest of the work which are the definition of an ordinary automaton
and formal languages. In the third chapter, notion of diagnosability and failure di-
agnosis is expressed. Moreover, different diagnosability test algorithms and proper
temporal logic specifications for model verification are illustrated. The fifth chapter
starts by introducing EFAs, nondeterministic EFAs and synchronization of EFAs.
In the end, the sixth chapter includes four different NuSMV codes along with their
description and algorithms, which are implemented in different parts of the thesis.

3

2

SYSTEMS

2.1 Introduction

This chapter starts with the explanation of some notions and definitions which are
the building blocks of this work.

The Concept of System

System is one of the intuitive concepts that can be understood best by examples
rather than an exact definition. In general a system is defined as [9]:

i An aggregation or assemblage of things so combined by nature or man as to form
an integral or complex whole (Encyclopedia Americana).

ii A regularly interacting or interdependent group of items forming a unified whole
(Webster’s Dictionary).

iii A combination of components that act together to perform a function not possi-
ble with any of the individual parts (IEEE Standard Dictionary of Electrical and
Electronic Terms).

Based on the above definitions, it is deduced that a system consists of a function
and some interacting components. A system is influenced by inputs and the result-
ing behavior can be observed by its outputs. The function and system components
along with a set of measurable variables, associated with the system, represent a
model for the actual system. Systems can be classified in different categories and
groups. For instance, based on the characteristic of the internal behavior, systems
are categorized as static or dynamic systems. Static systems are memoryless and
can be represented by algebraic equations, in contrast to dynamic systems. The
outputs of dynamic systems are related to the past values of the inputs and the
input-output relation is described by differential equations. Dynamic systems are
more challenging from an analysis and complexity point of view.

4

Introduction SYSTEMS

These characteristics are valid for both continuous-time and discrete event sys-
tems. Note that continuous-time system inputs and outputs are signals, i.e., tem-
perature, position and voltage. In discrete event systems the inputs and outputs in-
clude both signals and discrete events. There are some differences between continuous-
time and discrete event systems and their signals and events, which are described
in the sequel.

Continuous States

The internal system behavior of a continuous-time dynamic systems is represented
by continuous state variables.

Linear time-invariant continuous-time dynamic systems can be described by
continuous-time state space models, as follows

ẋ(t) = f (x(t),u(t),t), x(t0) = x0

y(t) = g(x(t),u(t),t)
(2.1)

where (2.1) includes the set of state and output equations with initial conditions [9].
In continuous-state systems, the state variables can generally take on any real

value. The continuous-state models are reduced to the analysis of differential equa-
tions.

Discrete States

A system with discrete state space is assumed to change state only at discrete-time
instances tk, k = 1, 2, 3, Furthermore, the discrete state x, the input signal u,
and the output signal y are restricted to take values from countable discrete sets. An
example of such a set is the set of the non-negative integers. The dynamic behavior
of a discrete system is often simpler to visualize. The update of the state x at time
tk is determined by the state space model

x(t+k) = f (x(tk),u(tk),tk)

y(tk) = g(x(tk),u(tk),tk)
(2.2)

which is similar to (2.1), except for the derivative ẋ(t) that is replaced by x(t+k) =
limε→0x(tk + ε) , i.e. the state immediately after the discrete update at time tk [10].

Discrete-Time Systems

There are several reasons why we might want to use discrete time approach.

1. Any digital computer used as a component in a system operates in discrete-
time fashion, that is, it is equipped with an internal discrete-time clock. What-
ever variables the computer recognizes or controls are only evaluated at those
time instants corresponding to the clock ticks.

5

Discrete Event Systems SYSTEMS

2. Many differential equations of interest in the continuous-time models can
only be solved numerically by computers. Such computer-generated solu-
tions are actually discrete-time versions of continuous-time functions. There-
fore, dealing with discrete-time models is reasonable even if the ultimate so-
lutions are in continuous-time form anyway.

3. Digital control techniques, which are based on discrete-time models, often
provide considerable flexibility, speed and cost. This is because of advances
in digital hardware and computer technology.

4. Some systems, such as economic models based on data recorded, only at reg-
ular discrete intervals, are inherently discrete-time.

2.2 Discrete Event Systems

In cases where the state space can be represented by a discrete set and the state
transitions are observable at discrete points of time, these state transitions can be
associated with events in discrete event systems.

The Concept of Event

An event causes transitions from one state to another and they occur in a time
instant (zero time). In the rest of the text, a general event and a set of events are
represented by σ and Σ, respectively.

Time-Driven and Event-Driven Systems

In time-driven systems, the state continuously changes as time changes. In event-
driven systems, only the occurrence of asynchronously generated discrete events
forces instantaneous state transitions and the state remains unchanged between
event occurrences. Modeling and analysis of these systems are more complicated.

2.3 Conclusion

A Discrete Event System (DES) is a system where the state space is a discrete set
and the state transition mechanism is event-driven. The state of a DES changes
by the occurrence of asynchronous discrete events over time. Many technological
systems are discrete event systems.

Remark. Note that discrete event systems are not the same as discrete time
systems. Discrete event systems, are modeled in both discrete or continuous time,
the same as Continuous-Variable Dynamic Systems (CVDS). That is, discrete time
systems contain both the CVDS and the DES. Some examples of DES are queueing,
computer, manufacturing and traffic systems.

Finally, the systems on which the thesis concentrates are dynamic, time-invariant,
nonlinear (boolean type), discrete state, event driven systems. In the next chapter

6

Conclusion SYSTEMS

automata and a formal language are introduced as the main modeling approach for
DES along with different operations on such languages. Moreover, nondetermin-
istic automata and synchronous composition of automata are illustrated by exam-
ples.

7

3

AUTOMATA AND FORMAL
LANGUAGES

3.1 Introduction

In the previous chapter, the differences between DESs and CVDSs were described,
and it was illustrated that DESs are more appropriate for describing the behavior of
higher level systems. There are different modeling formalisms that are available for
DESs in comparison to continuous dynamic systems where differential equations is
the main modeling formalism. As the main modeling approach for DESs, automata
will be introduced in the following section, and a related framework that is formal
language will be described in Section 3.3.

3.2 Automata

An intuitive way to describe discrete event systems is to define an automaton
model. A deterministic finite state automaton A is a 4-tuple

A = 〈Q,Σ,T,qi〉 (3.1)

where

(i) Q = {q1,q2, . . . ,qn} is the finite set of states,

(ii) Σ =
{

σ1,σ2, . . . ,σp
}

is the finite set of events, which is the alphabet of the au-
tomaton,

(iii) T : Q× Σ× Q is the transition relation that projects the state to the next one
after the execution of the event, and

(iv) qi is the initial state.

8

Automata AUTOMATA AND FORMAL LANGUAGES

iq q
+

s
q

Figure 3.1: An automaton.

States

A state is the condition or situation of a system with regard to certain rules, policies
and physical laws that are applied to the system. In Fig. 3.1, q and q+ are two states
of the system.

Events

An event happens at a time instant which causes a change in the state of the system
(or staying in the current state). The events are atomic and cannot be interrupted.
Regarding the particular event-sensors used, some of the events are observed by
the interacting systems. Such a partial observation partitions the events into two
types of event;either they are observable or unobservable.

Observable events are trackable by the interacting system in a specific state and
it means that there is a sensor to record the state transition. The observable events
are typically commands issued from the controller, sensor recordings after the ex-
ecution of the controller commands, and also changes in the recordings of the sen-
sors [11].

Unobservable events are not recordable by the sensors and are not trackable.
Failure events which do not cause any immediate change in the sensor readings
and silent events are examples of unobservable events. Silent events, may cause a
change in the state of the system but are not observable by an outside observer.

Transition Function and Transition Relation

As illustrated in the Fig. 3.1, a transition function δ is q+ = δ(q,σ), which means
that for a state q ∈ Q and an event σ ∈ Σ, the next state is q+ ∈ Q. Moreover,

q
σ→ q+

denotes the relation T = 〈q,σ,q+〉.

Coding States by Integers and Transitions by Predicates

In (3.1) Q is the finite set of states, and can be coded by integers to obtain a more
compact model of the system. Considering that each state q is encoded by one or
more variables v, (3.1) can be rewritten as

A = 〈X,Σ,T,v0〉 (3.2)

where

9

Automata AUTOMATA AND FORMAL LANGUAGES

(i) 〈x1, . . . ,xn〉 ∈ X1 × · · · × Xn, where x is a state vector and Xi is the domain of
the state variable xi,

(ii) Σ =
{

σ1,σ2, . . . ,σp
}

is the finite set of events,

(iii) T : X× Σ× X → B is the transition predicate, and

(iv) x0 is the initial state.

Note that both the notions transition relation T : V×Σ×V and transition predi-
cate T : V × Σ×V → B are used in the text interchangeably. As mentioned before,
the focus of this thesis is on nondeterministic EFAs, where the nondeterministic
part needs utilizing transition relations, and the EFA part needs to define condi-
tions which are predicates on the variables.

Example 3.1

Figure 3.2 represents a buffer, where each of its states are coded by two variables,
v = 〈v1,v2〉, where v1 ∈ {0,1,2} and v2 ∈ {0,1}.

This form of representation by coding enables us to have an equation-based
model or a logical model of the system that is more closely related to the evrification
tool NuSMV, which is used in this thesis for verification of diagnosability. The
logical model of Fig. 3.2 is

Event a: v+1 = v1 + 1 if v1 < 2.

Event b:

{
v+1 = v1 − 1

v+2 = v2 + 1
if v1 > 0, v2 < 1.

Event c: v+2 = v2 − 1 if v2 > 0.

The above logical model of transitions is also coded by predicates in the following.
The predicate representation is used more in the next chapters.

Ta : σ = a ∧ v1 < 2∧ v+1 = v1 + 1

Tb : σ = b ∧ v1 > 0∧ v2 < 1∧ v+1 = v1 − 1∧ v+2 = v2 + 1

Tc : σ = c ∧ v2 > 0∧ v+2 = v2 − 1

Nondeterministic Automata

A discrete event system can be modeled as a deterministic automaton as in Fig. 3.3(a),
where only one outgoing transition is enabled for each event. Since there is a
unique outgoing transition for each event, the transition relation for determinis-
tic automata is also a function.

10

Formal Languages AUTOMATA AND FORMAL LANGUAGES

a

bc

1,10,1

0,0 1,0 2,0

a

bc

Figure 3.2: A buffer example.

1

2 3

a

a

b
b

(a) A deterministic automaton

1

2 3

a

a

a

b

b

(b) A nondeterministic automa-
ton

Figure 3.3: An example of (a) a deterministic and (b) a nondeterministic automaton.

On the other hand, a nondeterministic automaton allows multiple outgoing
transitions for a single event, starting from a specific state as in Fig. 3.3(b). Therefore
the transition relation is T : V×Σ× 2V , where 2V is the power set of V, which is the

set of all subsets of V, e.g., 1
b→{1,2} as in Fig. 3.3(b). Moreover, a nondeterministic

automaton may have more than one initial state which can nondeterministically be
chosen. As it is shown in the Fig. 3.3(b), both states 1 and 3 are initial states.

3.3 Formal Languages

As described before, the event set Σ is an alphabet and sequences of events of the
alphabet form words or strings of events. In the literature, the term trace is also used.
If there is a string with no events, it is called an empty string and is shown by ε.
The Language of an automaton is the set of all traces that can be executed and is
represented by L(A). The number of events in a string, indicates the length of the
string, counting the multiple occurrences of the same event, and it is shown by |s|,
where s is a string.

11

Formal Languages AUTOMATA AND FORMAL LANGUAGES

a b c

(a) L(A) = {ε,a,ab,abc}

a

b

c

(b) L(A) = {ε,a,b,ac,bc}

Figure 3.4: Two Simple automata.

Example 3.2

Let Σ = {a,b,c} be the set of events. The language of A can have different el-
ements based on the structure of the automaton. In Fig. 3.4(a) the language is
L(A) = {ε,a,ab,abc}, while in Fig. 3.4(b) we have L(A) = {ε,a,b,ac,bc} representing
an alternative choice between the event a or b.

Set of All Strings

The set of all strings is constructed by concatenating the alphabet of the automaton
including the empty string ε and is shown by Σ∗. Thus, Concatenation is to build
strings and languages from an event set Σ. The set of all strings for both automata in
Fig. 3.4 is Σ∗ = {ε,a,b,c,aa,ab,ac,ba,bb,bc,ca,cb,cc,aaa,aab,aac,aba,abb,abc, . . .}. Note
that Σ∗ is infinite.

Prefix closure

Before explaining the prefix closure operation on languages, it is better to define
some terminologies on strings. They are described as follows. Consider there is a
string abc = s, where a, b and c are also strings that belong to Σ.

• a is a prefix of s,

• a, b and c are substrings of s, and

• c is a suffix of s.

Now, consider L ⊆ Σ∗, then the prefix closure of the language L is denoted by
L̄ and consists all of the prefixes all of strings in L.

L̄ = {s ∈ Σ∗ : (∃a ∈ Σ∗) [sa ∈ L]} (3.3)

12

Formal Languages AUTOMATA AND FORMAL LANGUAGES

In general, L ⊆ L̄, but if L = L̄, L is called prefix closed.

Projection of Strings

Projection of a string is denoted by the symbol P, and it is a mapping from a set Σl
to a smaller set of events Σs, where Σs ⊂ Σl . Thus it is

P : Σ∗l → Σ∗s

where

P(ε) := ε

P(σ) :=

{
σ i f σ ∈ Σs

ε i f σ ∈ Σl\Σs

P(sσ) := P(s)P(σ) f or s ∈ Σ∗l , σ ∈ Σl

(3.4)

Example 3.3

Consider the event set Σl = {a,b, f } with a and b as observable events and f as
a failure event which is an unobservable event. The projection P is defined as an
observer (defined in the next chapter), which maps the event set to the observable
event set Σs = {a,b}. Take the language as

L = { f ,a f , f f b, f ab,a f b, f ab f ba} ⊂ Σ∗l . (3.5)

Since the projection of this language P(L) is generated by taking the projection of
the involved strings in L, we obtain

P(L) = {ε,a,b,ab,abba}.

Inverse Projection

The inverse projection P−1 : Σ∗s → 2Σ∗s is defined as follows

P−1(t) := {s ∈ Σ∗l : P(s) = t}

where 2Σ∗s denotes the power set of Σ∗s which is the set of all subsets of Σ∗s . The
extension of the projection and the inverse projection on the languages are

P(L) := {t ∈ Σ∗s : (∃s ∈ L)[P(s) = t]}

and for Ls ⊆ Σ∗s

P−1(Ls) := {s ∈ Σ∗l : (∃t ∈ Ls)[P(s) = t]}.

Note that in general, P−1[P(L)] 6= L for a given language L ⊆ Σ∗l .

13

Synchronous Composition AUTOMATA AND FORMAL LANGUAGES

Example 3.4

Consider the event sets Σs and Σ` in example 3.3 and the language in (3.5). Here
are some examples on the inverse projection.

P−1({ε}) = { f }∗

P−1({a}) = { f }∗{a}{ f }∗

P−1({bba}) = { f }∗{b}{ f }∗{b}{ f }∗{a}{ f }∗.

(3.6)

Once again note that P(P−1(L)) = L, while P−1(P(L)) 6= L.

3.4 Synchronous Composition

Synchronous composition is the interaction between two automata with the events
in their alphabets. Consider A =

〈
QA,ΣA,TA,qA

i
〉

and B =
〈

QB,ΣB,TB,qB
i
〉

as the
two automata where we are interested in their interaction. Their synchronous com-
position is

A ‖ B =
〈

QA ×QB,ΣA ∪ ΣB,T,
〈

qA
i ,qB

i

〉
,QA

m ×QB
m

〉
(3.7)

with the transition relation T defined as

(
〈

q(A‖B)
〉

σ→
〈

q(A‖B)+
〉
) =


(qA σ→ qA+)× (qB σ→ qB+) σ ∈ ΣA ∩ ΣB

(qA σ→ qA+)×
{

qB} σ ∈ ΣA\ΣB{
qA}× (qB σ→ qB+) σ ∈ ΣB\ΣA

(3.8)

where qi is the initial state and Qm is a marked state. Marked state is a desired state
that must be reachable. Typically a marked state is a state where a task has been
completed.

Example 3.5

In Fig. 3.5 the synchronous composition between two automata A and B is shown
for the two cases when ΣB = ΣA = {a,b,c} and ΣB = {a,c}. The automaton B
is given without marked states, which means that both states are assumed to be
marked. The cross product QA

m × QB
m = {1} × {1,2} = {〈1,1〉 , 〈1,2〉}, where only

the first state 〈1,1〉 is reachable. For simplicity, the brackets <> are excluded in the
notations of the states in Fig. 3.6. As can be seen in Fig. 3.6(a), only the event a can be
executed in both automata. Then, since event b is in the language of both automata,
and it is blocked (prevented from executing) in automaton B, it is blocked in their
synchronization as well. On the other hand, for the case that b /∈ ΣB, all events are
allowed to be executed, as shown in Fig. 3.6(b).

14

Conclusion AUTOMATA AND FORMAL LANGUAGES

a
1 2 3

b
c

A

(a) Automaton A

a
1 2 c

B

(b) Automaton B

Figure 3.5: Automata A and B which are considered for synchronization.

a
11 22

(a) b ∈ ΣB

a
11

b
c22 32

(b) b /∈ ΣB

Figure 3.6: The synchronous composition between the automata A and B with two
different alphabets for B, where in (a) b ∈ ΣB and (b) b /∈ ΣB.

3.5 Conclusion

In this chapter the automaton was presented as a modeling formalism for DES.
Moreover, the coding of states by integers and transitions by predicates was briefly
introduced. This modeling formalism will be used in the next chapters. The coding
of states by integers makes it easier to introduce states, or locations in EFAs, as
integer sets. Furthermore, in the NuSMV implementation this coding by integers
and predicates, make the implementation easier and reduces the complexity.

Nondeterminism in automata was introduced in this chapter, which this con-
cept is added also to the EFAs in the following chapters. Furthermore, the interac-
tion of two automata was introduced as the synchronous composition. In the next
chapter, a projected synchronous composition is also introduced which is a part
of diagnosability test algorithm and is different from the normal synchronization
from the unobservable event synchronization aspect. Formal languages are also in-
troduced, and some specific notions, specially the projection and its inverse. These
notions are important when diagnosers are defined.

15

4

DIAGNOSABILITY AND FAILURE
DIAGNOSIS

4.1 Introduction

In many applications where the system contains unobservable events, we may be
interested in determining whether certain unobservable events have occurred in
the system. This is the problem of event diagnosis. If multiple failures need to
be diagnosed, we can either build one diagnoser for each failure or build a single
diagnoser that simultaneously tracks all failure events of interest.

In this chapter the concept of diagnosability is explained and two algorithms are
presented for testing the diagnosability property. These algorithms are based on the
concept of indeterminate cycles, which is also described in this chapter. Moreover,
after verifying the diagnosability of the system, an online diagnosis algorithm is
illustrated, which can diagnose failures by tracking the reachable states of the sys-
tem. This algorithm can also be used for non-diagnosable automata where some
but not all the failures are diagnosable.

Note that the diagnosability test is possible by verifying the states of the sys-
tem, which can be done by a model-checker. A model-checker can verify the diag-
nosability of the system by checking the considered specific specification. In this
chapter, two CTL specifications are proposed for diagnosability test. This is closely
related to a verification procedure suggested in [5].

Diagnosability

To start this section, it is fruitful to explain diagnosability by two simple examples
as shown in Fig. 4.1. The events a and b are observable while f is an unobservable
event that is also a failure. In Fig. 4.1(a), observing event a, it is not clear whether
the transition containing a failure is executed or not, since both transitions have
the same language {ε,a,aa,aaa, . . .}. Thus, the failure occurrence can not be distin-

16

Introduction DIAGNOSABILITY AND FAILURE DIAGNOSIS

1

2 3

a f

a a

(a) Non-diagnosable automaton

1

2 3

a

b

f

b

(b) Diagnosable automaton

Figure 4.1: Diagnosability in automata

guished and therefore, the automaton is non-diagnosable. On the other hand, in
Fig. 4.1(b), two different languages (sets of strings) starting from the initial state
can be distinguished, which are {ε,a,ab,abb,abbb, . . .} and {ε,b,bb,bbb, . . .}. There-
fore, observing the two different languages, one can distinguish if a failure has
happened. In other words, as soon as the event b is observed without observing a
before, we know that the failure f has happened.

Diagnosability is the ability to deduce about the past occurrence of unobserv-
able failure events from a bounded number of observable events. In [5], an event
observation projection for diagnosis is defined where the event set is mapped to a
smaller event set only containing observable events. Therefore, after projecting the
event set, only observable events are seen, and the automaton can be interpreted
as an observer. In [3], this method is called passive diagnosis, while the integrated
method where observation is integrated in a control strategy is called active diag-
nosis.

Definition 4.1- Event observation projection

In passive diagnosis, the event observation projection, called observation mask in
[5], is a mapping from the original event set Σ to the smaller observable event set
Σo ⊆ Σ, i.e., P : ∑ → ∑o ∪ {ε} that can be extended to ∑∗, so we have s ∈ ∑∗,
σ ∈ ∑: P (sσ) = P (s) P (σ), with P (ε) = ε and P (σ) = ε for all σ ∈ ∑. Here, ∑
denotes an unobservable event set.

Considering the language of the system to be live1, without any cycle of un-
observable events, the notion of diagnosability is as follows; if s is a trace in the
language of automaton L(A) ending with an Fi type failure, and m is a sufficiently
long trace obtained by extending s, then every trace w that is observation equiva-
lent to m , i.e., P(w) = P(m), should contain an Fi type failure. It is formulated in
Definition 4.2.

1The liveness assumption is made for simplicity. Live languages are normally defined as the
languages which do not have terminating strings, or in other words, have no deadlock [1].

17

Introduction DIAGNOSABILITY AND FAILURE DIAGNOSIS

a b f c u
d

c
u f

Figure 4.2: Diagnosability in automata

Failure Assignment Function

Failure assignment function is a mapping from the original event set Σ to either 0
or F .

ψ : Σ→ F ∪ {0}

where F = {Fi,i = 1, . . . ,m}. It means that if σ ∈ Σ is not a failure event it is
projected to 0. Otherwise it is projected to the Fi type failure set where it belongs
to. For instance, in Fig. 4.1(a), Σ = {a, f } where a is not a failure, and it is projected
to 0, while f is a failure event and it is projected to F .

Definition 4.2- Diagnosability

With respect to the event observation projection introduced in Definition 4.1 and
the failure assignment function ψ : Σ → F ∪ {0}, a prefix-closed language L is
diagnosable if the following formula holds.

(∀Fi ∈ F)(∃ni ∈N)(∀s ∈ L, ψ(s f) = Fi)(∀m = st ∈ L, ‖t‖ ≥ ni)

⇒ (∀w ∈ L, P(w) = P(m))(∃r ∈ pr({w}), ψ(r f) = Fi) (4.1)

Here, s f and r f are the last events in traces s and r respectively, pr({w}) is the set
of all prefixes of w. A system is called diagnosable if its language L is diagnosable.

Example 4.1

In Fig. 4.2, consider the upper trace as m = st, where s = ab f with the last event as
failure f , and t = cud which is the extension of s and includes u as an unobservable
event. The projection P over the trace is P(m) = abcd. There is only one additional
trace w = abuc f d, that has the same projection as m, i.e., P(m) = P(w) = abcd.
Considering the set of prefixes of w, pr{w} = {ε,a,ab,abu,abuc,abuc f ,abuc f d}, it is
seen that there exists a trace r = abuc f , which ends in a failure event. Therefore,
following Definition 4.2, the automaton depicted in Fig. 4.2 is diagnosable.

Observer

The observer is an automaton that is constructed based on the original automaton,
where the states of the observer represent the set of possible states the system can be

18

Diagnoser DIAGNOSABILITY AND FAILURE DIAGNOSIS

in after the execution of a trace of observable events. An observer has no knowledge
about the executed unobservable events in the sequence of events executed by the
system. The diagnoser is a refined type of observer.

4.2 Diagnoser

Offline verification of the diagnosability property of a system is a demand to get a
diagnoser. Moreover, online detection and isolation of the failure while the system
is operating is the main purpose for implementing the diagnoser [1].

Offline Diagnosis

When the whole system, i.e. states and events including failures are considered to
perform the diagnosability test algorithm, the method is called offline diagnosis.
In this case, after implementing a projection, an observer automaton with added
failure states is obtained as a diagnoser. Offline diagnoser is different from online
diagnoser from the implementation point of view.

In the sequel, there is a failure label F which is augmented to each state of a
diagnoser; F = 0 means σ of the ingoing transition is not a failure event and also
means no failure has occurred so far, whereas F = 1 implies that a failure has
occurred. As soon as F becomes 1, it keeps its value for the rest of the trace. For
example, in Fig. 4.1(a) and 4.1(b), state 3 can be augmented with F = 1, which
implies that the ingoing transition contains a failure.

Online Diagnosis

In this case, the failure diagnosis is performed by tracking the current state of the
diagnoser in response to the observable events executed by the system. Imple-
menting this technique, it is guaranteed to detect every failure within a bounded
delay after the occurrence, indeed, after checking that the diagnosability test holds.
However, even if the diagnosability test does not hold, the diagnoser may diagnose
some of the failure types [5].

The difference between offline and online diagnoser is that in an online ver-
sion the whole diagnoser is not generated, the projection is generated only for the
specific trace that is generated by the system.

Reduced Diagnoser

This diagnoser is constructed by removing any state of the offline diagnoser that
is either impossible or where the diagnoser is certain that a fault has previously
occurred. Therefore, any feasible sequence that is not executable in the reduced
diagnoser automaton indicates that a failure must have occurred in the past [5].

19

Uncertain and Indeterminate Cycles DIAGNOSABILITY AND FAILURE DIAGNOSIS

Decentralized Diagnosis

Assume that the system has a set of observable events where in each local diagnoser
only some of them are observable. Generally, this means that each diagnoser can
diagnose one or more failures based on its observed event trace. To work properly,
each failure must be diagnosed in at least one diagnoser, and the other diagnosers
would remain in indeterminate cycle, which is explained in the following section,
upon the occurrence of the string containing that failure. This method is also called
codiagnosability [9].

4.3 Uncertain and Indeterminate Cycles

Uncertain Cycle

Consider automaton G1 and its diagnoser D1 in Fig. 4.3 with f as failure event and
F as a label to indicate failure occurrence by being equal to 1, otherwise 0. The
associated labels are propagated with states following certain rules for label propa-
gation which indicates that as soon as F becomes equal to 1, it keeps its value. As it
is seen in D1, there is a loop with a single event a in the initial state which includes
different failure labels. This state is called uncertain state. Generally, an uncertain
state in a diagnoser includes states of corresponding system carrying both F = 0
and F = 1 labels. Uncertain cycle is a loop where all states are uncertain.

It can be seen in Fig. 4.3 that the diagnoser D1 only contains one uncertain cycle
corresponding to one cycle in G1 with label F = 0. Thus automaton G1 is diagnos-
able since there is no other a loop in G1 including F = 1. Therefore, traversing in
loop a in D1 does not violate the ability to diagnose the failure because there is no
ambiguity in inverse projection from loop a in D1 to loop(s) a in G1.

In other words, to recognize whether an automaton is diagnosable or not, it
is necessary to consider both the system and its diagnoser. First, find an uncer-
tain cycle in diagnoser D1 as in Fig. 4.3. Then, check corresponding cycles in the
system G1 which are the inverse projection of that cycle in D1. If there is a cycle
in G1 merely with either labels F = 0 or F = 1, the corresponding cycle in D1 is
called uncertain cycle, and the system is diagnosable. In Fig. 4.4 the diagnoser de-
picted in Fig. 4.4(b) does not contain any uncertain cycle and the system depicted
in Fig. 4.4(a) is diagnosable.

Otherwise, if the inverse projection from D2 to G2, results in two cycles, one
containing F = 0 and the other one F = 1, the cycle in the diagnoser D2 is called
indeterminate cycle and the automaton is non-diagnosable, which is described in
the following.

Indeterminate Cycle

In general, a cycle in a diagnoser is called an indeterminate cycle, if two cycles in
the system automaton G, one with label F = 0 and the other one with F = 1, can be

20

Uncertain and Indeterminate Cycles DIAGNOSABILITY AND FAILURE DIAGNOSIS

1

2

b

f

G1

a

(a) The diagnosable sys-
tem G1

b

D1

(1,F=0), (2,F=1)

(2,F=1)

b
a

(b) The diagnoser D1

Figure 4.3: Example of a system with a cycle of uncertain states in its diagnoser D1.

1

2

a,b

f

G2

(a) The diagnosable au-
tomaton G2

a,b

D2

(1,F=0), (2,F=1)

(2,F=1)

a,b

(b) The diagnoser D2

Figure 4.4: Example of a system with no cycle of uncertain states in its diagnoser D2.

associated with a cycle of uncertain states in D. By definition, the presence of an in-
determinate cycle implies a violation of diagnosability. The diagnoser in Fig. 4.5(b),
has one uncertain cycle a which corresponds to two similar cycles in G3 depicted
in Fig. 4.5(a). As mentioned above, there is an ambiguity in projecting back from
the uncertain cycle in D3 to the corresponding cycles in G3 and the diagnoser can
not distinguish whether the system is cycling in the state 1 or 2. Therefore, the
diagnoser contains an indeterminate cycle, and the system is not diagnosable.

Consequently, searching for any cycle of uncertain states in the diagnoser, and
checking whether it is indeterminate, is a handy method to find out the diagnos-
ability of automata before performing any further task. The algorithms explained
in Section 4.5 are based on this concept.

Remark

Consider Fig. 4.6 and 4.7, where both of them contain an uncertain cycle b in the
diagnoser which is depicted in Fig. 4.6(b) and 4.7(b) observing identical diagnosers.

21

Temporal Logic DIAGNOSABILITY AND FAILURE DIAGNOSIS

1

2

a,b

a

f

G3

(a) The non-diagnosable
system G3

a,b

a

D3

(1,F=0), (2,F=1)

(2,F=1)

b

(b) The diagnoser D3

Figure 4.5: Example of a system with an indeterminate cycle in its diagnoser D3.

By looking solely at the diagnosers one may conclude that both systems have the
same behavior and both are diagnosable because there is an exiting transition c
from the uncertain state which leads to a certain state with label F = 1. But this is
wrong, since the diagnoser depicted in Fig. 4.6(b) has uncertain states and the sys-
tem is diagnosable while the diagnoser in Fig. 4.7(b) includes indeterminate cycle
and the system is non-diagnosable.

These examples show the importance of considering both diagnoser and system
together; although diagnosers may be identical but their corresponding systems
may behave differently.

4.4 Temporal Logic

To be able to apply an online diagnoser for a discrete event system, it is necessary to
know that the system is diagnosable. One of the approaches that is used to verify
this property is the model-based approach, in which the system and the specifi-
cation are represented by a model M for an appropriate logic and a formula Φ,
respectively. Model-checking is based on temporal logic. The verification method
checks whetherM satisfies Φ, (writtenM � Φ). This can be done automatically
for finite state models.

There are particularly two often used logics, the linear-temporal logic (LTL) where
time is linear, and the computation-tree logic (CTL) where time is branching. Tempo-
ral logic implements temporal quantifiers, which in CTL are expressed in pairs.
In CTL, as well as the temporal operators U, F, G and X of LTL there are also
quantifiers A (universal quantifier) and E (existential quantifier) which express “all
paths” and “exists a path”, respectively [12]. Furthermore, G is the universal quan-
tifier and F is the existential quantifiers, ranging over the states along a particular path.
Moreover, X is read as next and U is read as until.

To implement the diagnosability test algorithm for finding out whether there
exist indeterminate cycles in xi = ((x1

i , f 1
i),(x2

i , f 2
i)), i = 1, 2, . . . , n, two CTL model

22

Temporal Logic DIAGNOSABILITY AND FAILURE DIAGNOSIS

a

1

2

f

3

b

5 4

c
b

a f

G4

(a) The diagnosable system G4

b

(1,F=0), (3,F=1) (2,F=0), (4,F=1), (5,F=1)

(5,F=1)
c

c

a

D4

(b) The diagnoser D4

Figure 4.6: Example of a system with a cycle of uncertain states in its diagnoser D4.

checking formulas are used as specification. The formulas are related to each other
based on de Morgan rules.

¬EF(Φ) ≡ AG(¬Φ)

¬AF(Φ) ≡ EG(¬Φ).
(4.2)

Based on (4.2), the two formulas EFEG(Φ) and AGAF(Φ) are the negation of each
other, which is shown in the following equivalences.

EFEG(¬Φ) ≡ EF(¬AFΦ) ≡ ¬AG AFΦ. (4.3)

Assume that f 1
i and f 2

i are the failure labels that are augmented to each state of
the automaton and its copy, respectively.

When EF EG (f 1
i 6= f 2

i) becomes true, it means that there is an indetermi-
nate cycle, and then the system is non-diagnosable. It means that the negation
AG AF (f 1

i = f 2
i) is true when the system is diagnosable. These CTL specifications

are now further mentioned.

23

Temporal Logic DIAGNOSABILITY AND FAILURE DIAGNOSIS

a

1

2

f

3

b

5 4

b
a f

G5

c

(a) The non-diagnosable system G5

b

(1,F=0), (3,F=1) (2,F=0), (4,F=1), (5,F=1)

(4,F=1)
c

c

a

D5

(b) the diagnoser D5

Figure 4.7: Example of a system with an indeterminate cycle in its diagnoser D5.

CTL Specifications

Let M = (X,→ ,L) be a model for CTL, where x in X a state of the model, Φ a
CTL formula and L the language. The relation M,x � Φ is defined by structural
induction in Φ. Here, the two relations that are used for diagnosability verification
are described:

1. M,x � EF EG Φ, where Φ : f 1
i 6= f 2

i , holds iff there is a path x1 → x2 →
x3 → · · · , where x1 equals x, and for at least one trace starting from x, we
haveM,xi � Φ for all i ≥ k. Mnemonically: there exists a computation path
initializing in x such that Φ holds globally in all future states along at least
one path after a limited number of states have been passed or in other words,
in at least one path Φ will eventually be permanently true.

Figure 4.8 indicates that Φ is not true in the initial state, according to the
concept that Φ conveys. Moreover, it illustrates a “minimal” way of satisfying
the formula, i.e., the existence of only one trace is enough for the specification
to be evaluated as true. Φ can switch between true and false but, after a
limited number of steps it must always be true in at least one trace.

2. M,x � AG AF Φ, where Φ : f 1
i = f 2

i , holds iff for all paths x1 → x2 → x3 →

24

Offline Diagnosis Algorithms DIAGNOSABILITY AND FAILURE DIAGNOSIS

F

M

M

M M M
F

Figure 4.8: A system whose starting state satisfies EF EG Φ. The states marked with Φ
are evaluated as true.

· · · , where x1 equals x, and all xi along the path, we have M,xi � Φ for all
i ≥ k. Mnemonically: for all computation paths beginning from x, there will
be some future states where Φ holds infinitely often. Note that “along the
path” includes the path’s initial state.

4.5 Offline Diagnosis Algorithms

Diagnosability Test Algorithm 1

In [4], a polynomial algorithm is proposed to perform diagnosability test without
constructing a diagnoser, in contrast to the approach introduced in [1] which tests
diagnosability by constructing the diagnoser resulting in exponential complexity.
The polynomial algorithm is as follows:

1. Refine the state set Q by augmenting the mapped states using P with the
set of failure types along certain paths from q0 to q, using the failure as-
signment function ψ to obtain a nondeterministic finite state automaton Ao.
Qo = {(q, f)|q ∈ Q1 ∪ {qo}, f ⊆ F} is the finite set of states, where Q1 =
{q+ ∈ Q|∃(q,σ,q+) ∈ T with P(σ) 6= ε} are the states of A that are reachable
by an observable transition.

25

Offline Diagnosis Algorithms DIAGNOSABILITY AND FAILURE DIAGNOSIS

F

M

M

M

M

M

F

F

F

F

F F

F

F

F F

F

F

Figure 4.9: A system whose starting state satisfies AG AF Φ. The states marked with
Φ are evaluated as true.

2. Compute the strict composition of the automaton Ao with itself, Ad = (Ao ‖
Ao). The steps 1 and 2 generate the projected synchronous composition of two
copies of the refined A.

3. Check Ad to find whether there exists, a cycle of states, qi = ((q1
i , f 1

i),(q
2
i , f 2

i)),
i = 1, 2, . . . , n, where the failure types assigned to each state of Ad (q1

i and q2
i)

are different, i.e, f 1
i 6= f 2

i . Then the automaton is not diagnosable. Otherwise,
the automaton is diagnosable.

In summary, this method checks the diagnosability of the system only by check-
ing each state of Ad, to find out whether it has any cycle containing two non-
identical failure types. In the case that such cycles can be found, the system is
reported as non-diagnosable. The last step can be performed in another way; delet-
ing all qi states in Ad except states that include two different f 1

i and f 2
i labels, and

check whether the remainder graph contains a cycle or not. This method originates
from the concept of indeterminate cycles, which is explained in Section 4.3.

26

Offline Diagnosis Algorithms DIAGNOSABILITY AND FAILURE DIAGNOSIS

a
1 2 3 4

1
f

2
f

u

b

A

(a) The system automaton A.

b

b

a

b
(1,N) (2,N)

(4, =1, =1)
1
F

2
F

(4, =1)
2
F

b
o
A

(b) The diagram of Ao.

b

b

b

ba b
(1,N), (1,N) (2,N), (2,N)

b

2
F

2
F

(4, =1, =1), (4, =1)
1
F

2
F

2
F

2
F

2
F

(4, =1, =1), (4, =1, =1)
1
F

2
F

1
F

2
F

(4, =1), (4, =1)

(4, =1), (4, =1, =1)
1
F

b

b

d
A

(c) The diagram of Ad.

Figure 4.10: Diagnosability test approach where (a) is the system automaton, (b) is the
refined observer, and (c) is the automaton which is resulted from Ad = (Ao ‖ Ao).

Note that this test gives an overall insight about the diagnosability of the sys-
tem. In other words, it does not show the event trace that has led to a failure but
merely checks whether the system is diagnosable.

Example 4.2

Consider the automaton in Fig. 4.10(a). From the first step of the algorithm, Ao can
be derived from A, which is shown in Fig. 4.10(b). Note that here N denotes that no
failure has happened in both automata. Figure 4.10(c) shows the strict composition
of Ao with itself Ad = (Ao ‖ Ao) which is described in step 2 in the algorithm.
Performing step 3 in the algorithm, there are self loops where the labels in each
state are not the same. Hence, the automaton is not diagnosable. In case F1 = F2 in
Fig. 4.10(c) and deleting the redundant states, the resulting automaton is diagnos-
able.

27

Offline Diagnosis Algorithms DIAGNOSABILITY AND FAILURE DIAGNOSIS

b

a

b(1,N), (3,F)

bo
A

(2,N)

(3,F)

(a) The observer Ao.

a
a

(1,N), (3,F)

o
A

(2,N), (3,F)

(b) The observer Ao.

Figure 4.11: Diagnosability test approach where (a) is the refined observer of the au-
tomaton in Fig. 4.1(a), and (b) is the refined observer of the automaton in Fig. 4.1(b).

Example 4.3

In this example, the diagnosability test is implemented on the two automata de-
picted in Fig. 4.1. Here, only Ao of both automata are depicted, because in both
automata the structure of Ao and Ad are the same. As it is seen in Fig. 4.11(a), the
automaton has two loops on non-ambiguous states, which is also the case in the
synchronized automaton Ad. Therefore, the automaton in Fig. 4.11(a), is diagnos-
able. However, the automaton which its Ao is depicted in Fig. 4.11(b), has a loop
on an ambiguous state in Ad as well. Thus, it is non-diagnosable.

Diagnosability Test Algorithm 2 (Rule-Based Model)

This method introduced in [5] is the generalization of the diagnosability test pre-
sented in [4], which was described in the previous algorithm, since it is a more
computational oriented approach. In the same as in algorithm 1, it is assumed that
there is no cycle of unobservable events in A and a binary valued variable F is
presented which indicates whether a failure occurred in the past or not. The state
transition is presented using a set of rules, which is also called a guard relation in
this rule-based model. It is as follows

Tσ : Gσ(q)⇒ q
σ→ q+ (4.4)

where σ ∈ Σ is an event, Gσ(q) is the enabling condition predicate or the guard. The
above statement is enabled if Gσ(q) holds, then the state variables may be updated
to the new values and a state transition occurs. F is equal 1 when the failure event
occurs and once it becomes 1, it remains at this value. Moreover, a faulty-state
predicate is also defined as B(q) = B((v,F)) := [F = 1]. With this B(q) and the
extended rule-based predicate, the algorithm is described in the following

28

Offline Diagnosis Algorithms DIAGNOSABILITY AND FAILURE DIAGNOSIS

1. Augment the state set variables with F so that the state variable will be q =
(v,F). Then extend the rule-based model to include the new q. Thus, the
initial state is given by the predicate I(q) := I(v) ∧ [F = 0]

2. Perform the projected synchronous composition of augmented A with its copy.
For the copy of A use variable p instead of q. Considering the event occur-
rence rule,

∀(σ,σ′) ∈ [(Σε × Σε)− {ε,ε}], s.t. P(σ) = P(σ′)

where Σε = Σ ∪ {ε}, the synchronization is as follows


Gσ(q) ∧ Gσ′(p)⇒ (q,p)→ (q+,p+) P(σ) = P(σ′) 6= ε

Gσ(q)⇒ (q,p)→ (q+,p) P(σ) = ε

Gσ′(p)⇒ (q,p)→ (q,p+) P(σ′) = ε

(4.5)

Thus, when σ is observable, a synchronized transition is occurred and when
it is unobservable an asynchronous transition occurs only in one of the au-
tomata.

3. Use a model-checking logic to check whether there exists an ambiguous cy-
cle in the synchronized automata or not. In our case a CTL specification for
diagnosability verification is proposed in (4.3) which here results in the spec-
ification.

¬[EF EG(q = q0 ∧ p = p0 ∧ B(q0) ∧ ¬B(p0))]. (4.6)

As it is explained in (4.3), the above specification is equal to

[AG AF¬(q = q0 ∧ p = p0 ∧ B(q0) ∧ ¬B(p0))].

If the above formula holds for the synchronized automata, the model is di-
agnosable. Otherwise, it means that there exists a pair of event traces in the
model, one containing a failure and the other one containing no failure.

An LTL specification for diagnosability based on the above specification is
formulated as

∀q0,p0[GF¬(q = q0 ∧ p = p0 ∧ B(q0) ∧ ¬B(p0))],

where we remind that LTL is based on the quantifier “for all”.

In [5], specification in first order LTL is introduced in the following

∃q0,p0[EGF(q = q0 ∧ p = p0 ∧ B(q0) ∧ ¬B(p0))].

Since this specification is not available in NuSMV, the CTL specification in-
troduced in this thesis is implemented.

29

Offline Diagnosis Algorithms DIAGNOSABILITY AND FAILURE DIAGNOSIS

11

a

a

f

22

a

13

31 33

g

g

f

32

a

23

a

a

a

(a) The projected synchronous composition of the non-
diagnosable automaton in Fig. 4.1(a)

11

a

b

f

22

b

13

31 33

g

g

f

(b) The projected synchronous composition of the di-
agnosable automaton in Fig. 4.1(b)

Figure 4.12: The projected synchronous composition of (a) the automaton in Fig. 4.1(a),
(b) the automaton in Fig. 4.1(b).

Example 4.4

In this example the projected synchronous composition is illustrated for both the
non-diagnosable and the diagnosable automata depicted in Fig. 4.1(a) and Fig. 4.1(b),
respectively. For simplicity, the states of the synchronized automaton are coded by
integers and for instance, state 〈1,3〉 is depicted as 13. Moreover, events a and b are
observable events and f and g are unobservable events. The unobservable event g
belongs to the copy of the automaton corresponding to the event f , to enable us to
illustrate the interleaving behavior of the projected synchronous composition for
the unobservable events. Note that states 23 and 32 of the automaton in Fig. 4.12(a)
have different values for B(q). Thus, (4.6) does not hold for the two states which
means that the automaton is not diagnosable, while (4.6) holds for the synchronized
automaton in Fig. 4.12(b).

30

Online Diagnosis Algorithm DIAGNOSABILITY AND FAILURE DIAGNOSIS

32 41 5
ba 1

u
2
u

Figure 4.13: The considered automaton for the Example 4.3.

4.6 Online Diagnosis Algorithm

The online diagnosis algorithm which is introduced in [5] can be implemented,
even in the case that the system is not diagnosable. In this case some failures are
missed to report. There are some notations which are used in the algorithm for-
mulation. For this purpose a predicate Nk(q) is defined, which shows the possible
next states following the occurrence of the kth observable event. f r implies the
set of forward one-step reachable states, meaning the next states after occurrence
of a transition. f r∗ is the symbol of forward reachability, and denotes the set of
states which are reachable from a specific state by executing zero or more transi-
tions. Moreover, P−1 (ε) is the inverse projection, with P as the defined projection,
and indicates the unobservable events that are projected to ε. Similarly, P−1 (δ)
indicates the observable events.

• Initial step:
N0 (q) = f r∗P−1(ε) [I (q)] (4.7)

Starting from the initial state I (q), N0 (q) checks for the possible forward
reachable states through strings of unobservable events before the next ob-
servable event. In other words, N0 (q) consists of a set of states reached by
zero or more unobservable events starting from I (q).

• Iteration step:
Nk+1 (q) = f r∗P−1(ε)

[
f rP−1(δ) (Nk (q))

]
(4.8)

In this step, the inner part,
[

f rP−1(δ) (Nk (q))
]
, is the set of one-step forward

reachable states, starting from the states in Nk (q) and following all the single
observable events (P−1(δ) = σ). Then starting from the inner part, f r∗ is all
the zero or more reachable states following the occurrence of unobservable
events.

In summary, in each iteration, the algorithm checks for the next single ob-
servable event and updates the state set upon occurrence of that event. Then,
starting from the updated state set, it checks for zero or more unobservable
events and updates the state set by executing the events. This algorithm iter-
ates as long as it introduces a predicate that have not been visited before. An
example is illustrated in the sequel.

Example 4.5

To clarify the algorithm, f r and f r∗ are illustrated in the Fig. 4.13. Here I(q) = [1],
P−1(ε) = {u1,u2} and P−1(δ) = {a,b}. As it is shown in (4.9), there is no transition

31

Online Diagnosis Algorithm DIAGNOSABILITY AND FAILURE DIAGNOSIS

with unobservable event starting from the initial state. Thus, I(q) and N0 (q) are
the same.

N0 (q) = f r∗P−1(ε) [I (q)] = f r∗{u1,u2}[1] = [1] (4.9)

In the iteration step, the inner part of (4.8) is

f rp−1(δ)(Nk(q)) = f ra(N0(q)) = f ra([1]) = [2] (4.10)

and hence, N1 (q) is

N1 (q) = f r∗P−1(ε)[2] = f r∗{u1,u2}[2] = [2,3,4]. (4.11)

As the next iteration step, to calculate the reachable states in N2 (q), the inner
part of (4.8) is

f rp−1(δ)(Nk(q)) = f rb(N1(q)) = f rb([2,3,4]) = [5]

and since there is no unobservable event initiating from state 5, N2 (q) is

N2 (q) = f r∗P−1(ε)[5] = f r∗{u1,u2}[5] = [5].

Note

In each iteration, the state set is checked regarding two aspects;

1. The possibility of occurrence of event strings according to the system lan-
guage, i.e., the event strings should be a subset of the prefix closure of the
system language. In each iteration the algorithm is performed for all observ-
able events, regardless of their occurrence possibility. Then, removing the
impossible event strings and their corresponding states from the state set, the
next possible state set is achieved.

2. The faulty state predicate is considered B (q). Based on this, three different
interpretations “ambiguous”, “no failure” and “a failure has occurred in the
past”, can be the result. For each achieved state set during the iteration, if the
predicate

false 6= Nk (q)→ B (q)

holds, it means that a failure has occurred in the past. Moreover,

false 6= Nk (q)→ ¬B (q)

means that no failure has occurred so far and otherwise, it is ambiguous.

32

Online Diagnosis Algorithm DIAGNOSABILITY AND FAILURE DIAGNOSIS

1

3

4

2

5

76

1
u

2
u

3
u

1
s

2
s

3
s

1
u

(a)

1

3

4

2

5

76

1
u

2
u

3
u

1
s

2
s

3
s

1
u

(b)

1

3

4

2

5

76

1
u

2
u

3
u

1
s

2
s

3
s

1
u

(c)

1

3

4

2

5

76

1
u

2
u

3
u

1
s

2
s

3
s

1
u

(d)

1

3

4

2

5

76

1
u

2
u

3
u

1
s

2
s

3
s

1
u

(e)

1

3

4

2

5

76

1
u

2
u

3
u

1
s

2
s

3
s

1
u

(f)

Figure 4.14: Online diagnosis.

Example 4.6

Equations (4.7) and (4.8) are illustrated in Fig. 4.14. σ1, σ2 and σ3 are observable
events, and u1, u2 and u3 are unobservable events. Figure 4.14(a) shows the au-
tomaton where the algorithm of online diagnosis is performed. Starting from the
initial state and following (4.7), states 1, 2, 3 and 4 are possible forward reachable
states where the corresponding transitions are depicted in Fig. 4.14(b) by thick ar-
rows. In Fig. 4.14(c), (4.8) is applied on the reached states from the previous step.
In this step only single observable events are considered which are shown in thick
arrows. The transitions belonging to the previous step are shown in dotted arrows.
States 5 and 6 are reached in this step. In Fig. 4.14(d), starting from state 6, only
state 7 is reachable by an unobservable event. Note that Fig. 4.14(c) depicts the in-
ner part of (4.8), while Fig. 4.14(d) depicts the outer part. Furthermore, Figs. 4.14(c)
and 4.14(d) together show one iteration step of the algorithm. Thus, in this step,
states 6 and 7, and state 5 are reached upon occurrence of the observable events σ1
and σ2, respectively. Fig. 4.14(e) depicts the next iteration of the algorithm which
starts based on the reached states in the previous step. Although in Fig. 4.14(f) all
the states are reached, the algorithm continues iterating because the paths leading
to the same states may differ. Therefore, the algorithm iterates as long as it intro-
duces new states. Remember that states are augmented with labels, which may
have different values based on the path towards them.

Example 4.7

Here is another example of implementing the online diagnosability method [5] on
the automaton in the Fig. 4.15. In this automaton the observable event set is {a,b,c},

33

Online Diagnosis Algorithm DIAGNOSABILITY AND FAILURE DIAGNOSIS

1

2 3 4

5 6 7

u
v a

b

c

f
a c

b

Figure 4.15: The considered automaton for the Example (4.7).

the unobservable event set is { f ,u,v} and f is a failure event. Note that although
there is a cycle of uncertain states in the diagnoser, the uncertain states are asso-
ciated only with the cycle 1, 2, 3, 4, 1 in the system automaton which all of them
are labeled F = 0 in the cycle of uncertain states. Thus, the system is diagnosable.
In (4.12), the possible initial states are shown with different values for F.

k = 0

N0(q) = [1,F = 0] ∨ [2,F = 0] ∨ [3,F = 0] ∨ [5,F = 1]
(4.12)

Based on the states obtained in (4.12), two observable events can be executed
which are shown in (4.13). For the other observable event c, N1(q) predicate is
false. Observing event b, implies that a failure has occurred because all labels are
F = 1. However, observing event a, the diagnoser is still ambiguous.

k = 1
a→ N1(q) = [4,F = 0] ∨ [6,F = 1]

b→ N1(q) = [1,F = 1] ∨ [2,F = 1] ∨ [3,F = 1] ∨ [5,F = 1]

c→ N1(q) = False

(4.13)

Since in (4.13) two N1(q) predicates were obtained for a and b, all observable
events for each of the two predicates should be checked. In (4.14), the a → c event
trace is still ambiguous but both predicates obtained from the event traces b → a
and b→ b are certain that a failure has occurred previously. As it is seen, the b→ b
event trace has the same predicate as b event trace. Thus, we will not go further on
this event trace in the following steps.

k = 2

a→
{

c → N2(q) = [1,F = 0] ∨ [2,F = 0] ∨ [3,F = 0] ∨ [5,F = 1] ∨ [7,F = 1]

a,b → N2(q) = False

b→


a → N2(q) = [4,F = 1] ∨ [6,F = 1]

b→ N2(q) = [1,F = 1] ∨ [2,F = 1] ∨ [3,F = 1]∨ [5,F = 1] = N1(q)

c → N2(q) = False
(4.14)

34

Conclusion DIAGNOSABILITY AND FAILURE DIAGNOSIS

In (4.15), although the two new predicates imply that a failure has occurred, the
iteration should be continued until reaching no new predicates.

k = 3
a→ c→


a → N3(q) = [4,F = 0] ∨ [6,F = 1] = N1(q)

b→ N3(q) = [1,F = 1] ∨ [2,F = 1] ∨ [3,F = 1]∨ [5,F = 1] ∨ [7,F = 1]

c→ N3(q) = False

b→ a→
{

c→ N3(q) = [1,F = 1] ∨ [2,F = 1] ∨ [3,F = 1]∨ [7,F = 1]

a,b→ N3(q) = False
(4.15)

In (4.16), the algorithm stops checking the event trace a → c → b because both
predicates were seen before, then it remains traversing the trace b→ a→ c.

k = 4

a→ c→ b→


a→ N4(q) = [4,F = 1] ∨ [6,F = 1] = N2(q)

b→ N4(q) = [1,F = 1] ∨ [2,F = 1] ∨ [3,F = 1] ∨ [5,F = 1]

∨[7,F = 1] = N3(q)

c→ N4(q) = False

b→ a→ c→


a→ N4(q) = [4,F = 1] ∨ [1,F = 1]

b→ N4(q) = [7,F = 1]

c→ N4(q) = False
(4.16)

The step (4.17) is the last step, and all the predicates imply that a failure has
occurred some time in the past.

k = 5
b→ a→ c→ a→


c → N5(q) = [1,F = 1] ∨ [2,F = 1] ∨ [3,F = 1] ∨ [5,F = 1] = N1(q)

b→ N5(q) = [7,F = 1] = N4(q)

a→ N5(q) = False

b→ a→ c→ b→
{

b→ N5(q) = [7,F = 1] = N4(q)

a,c→ N5(q) = False
(4.17)

4.7 Conclusion

In this chapter, diagnosability, failure diagnosis and diagnoser notions were ex-
plained. The concepts of uncertain and indeterminate cycles were described, which
are the main notions in diagnosability test algorithms. Then two diagnosability

35

Conclusion DIAGNOSABILITY AND FAILURE DIAGNOSIS

tests along with a n online diagnosis algorithm were illustrated. In this perspec-
tive, temporal logic is explained and two CTL specifications for model checking
were proposed. These concepts and algorithms are applied on the EFA and syn-
chronization of EFAs in the next chapter, which are implemented in the NuSMV
software described in chapter 6.

36

5

EXTENDED FINITE AUTOMATA

5.1 Introduction

To make the ordinary automaton more powerful in representing the system and
make the model more compact Extended Finite Automaton (EFA) is introduced.
EFAs enable adding different concepts to the model, for instance, time, time delay
or logic conditions. An EFA is an ordinary automaton that is augmented by vari-
ables. In the definition of an EFA introduced in [8], guard expressions and action
functions are defined as they are associated to the transitions. A guard predicate
can enable its corresponding transition, if and only if it is evaluated to true. Then,
the transition is executed and the variables of the action function are updated. Here,
instead of guards and actions, condition relations are defined which include both
guards and actions. The following section describes this in more details.

5.2 EFA

An extended finite-state automaton E is a 6-tuple

E = 〈X,Σ,C,T,I,M〉

where

(i) xi ∈ Xi is a state variable and X = X1 × . . .× Xn is the domain of definition
of an n-tuple of state variables; this domain can also be divided as X = L×
V ×F , where L is the set of locations which are local variables, V is the set of
global variables, and F is the set of failure states,

(ii) Σ = {σ1, . . . ,σm} is a non-empty set of events,

(iii) C = {Cσ1 , . . . ,Cσm} : X × X → B is the set of condition predicates, including
both the variables and their updated values,

37

EFA EXTENDED FINITE AUTOMATA

(iv) T = {Tσ1 , . . . ,Tσm} : X× Σ× C× X → B is the transition predicate,

(v) I : X → B is the predicates on initial states, and

(vi) M : X → B is the predicates on marked states.

In the following the 6-tuple E is presented in more details.

Example 5.1

For n = 2, the predicate of initial states can be expressed e.g. as

I : x1 = 0∧ x2 = 2,

and the predicate of marked states as

M : x1 = 1,

which means that x1 = 1 and all possible values of x2 are accepted as marked states.

Condition Predicates

A condition Cσ(x,x+) is a predicate over the variables which includes the vari-
able and its updated value. For nondeterministic EFAs, with nσ transitions over
event σ, the condition is the disjunction of all conditions over the transitions as
shown in (5.1). The transitions may start from one state or different states, where
Cσ,j(x,x+) : X× X → B and j = 1, . . . ,nσ.

Cσ(x,x+) =
nσ∨

j=1

Cσ,j(x,x+). (5.1)

Index Set

The index set is defined as a set containing the indices of the variables which are
not updated by the implicit actions in the conditions.

Introduce the notion

x+ξ,i =
〈

x+1 , . . . ,x+i−1,ξ,x+i+1, . . . ,x+n
〉

,

then the index set is

Ω(Cσ,j) = {i|∃x+[Cσ,j(⊥,x+ξ,i)]} (5.2)

where i ∈ {1, . . . ,n}.
The symbol ξ represents implicit action in the condition that do not update

the value of variable. When Cσ,j involves a condition on x+i then Cσ,j(x,x+ξi
) =

Cσ,j(x,x+), while Cσ,j(x,x+ξi
) = Cσ,j(x,x+) when there is no condition on x+i . In

other words, if x+i = ξ, it means that the Cσ,j(x,x+ξi
) = Cσ,j(x,x+) and x+i is not

updated.
If there is no condition on x+ in Cσ,j(x,x+), it is considered as x+ = Ξ, which

implies that in the specific transition no variable is updated.

38

EFA EXTENDED FINITE AUTOMATA

Example 5.2

The following index sets are presented to illustrate (5.2) intuitively. Then

Ω(x2 = 0∧ x+1 = 1) = {2},
Ω(x1 = 1∧ x2 = 0) = {1,2},
Ω(x+1 = 0∧ x+2 = 1) = ∅.

Example 5.4

Consider the following condition relation which is depicted in Fig. 5.1(a).

Cσ(x,x+) := l = 0∧ l+ = 1∧ (v+1 = 1∨ v+1 = 2∨ v+1 = 3∨ v+2 = 1)

where X = I3× I1 for In = {0,1, . . . ,n}. The above condition can be handled as two
expressions

Cσ,1 := (1 6 v+1 6 3) ∧ l = 0∧ l+ = 1

Cσ,2 := v+2 = 1∧ l = 0∧ l+ = 1.

Therefore, as shown in Fig. 5.1(b), it can be rewritten as

Cσ(x,x+) = Cσ,1 ∨ Cσ,2.

It gives again

Ω(Cσ,1(x,x+)) = {2}
Ω(Cσ,2(x,x+)) = {1}

for all x and x+ as illustrated in Fig. 5.1(c).

Transition Predicates

Transition predicate is

T(x,x+) =
nσ∨

j=1

Tσ,j(x,x+) (5.3)

where Tσ(x,x+) : X× X → B and Tσ,j(x,x+) is

Tσ,j(x,x+) = Cσ,j(x,x+) ∧
i∈Ω(Cσ,j)

x+i = xi ∧ e = σ (5.4)

The transition predicate in (5.3) is a set of disjunction of conjunctive clauses
which contains the current values of the implicit actions, along with all conditions
that are found on a specific event. In (5.4), Cj(x,x+) must be true for some (x,x+),
since otherwise the transition can not be executed.

The difference between the transition predicate in (5.3) and the condition in (5.1)
is the conjunctive part in (5.4), which keeps the current value of xi as the updating
value for x+i for those i that belongs to the index set.

39

Extended Full Synchronous Composition EXTENDED FINITE AUTOMATA

0l =

1l =

1 1 1 2
1 2 3 1v v v v

+ + + +
= Ú = Ú = Ú =s

(a) Cσ(x,x+)

0l =

1l =

1 2
1 3 1v v

+ +
£ £ Ú =s

(b) Cσ(x,x+)

0l 

1l 

2 1v 11 3v   

(c) C̃σ,1 ∨ C̃σ,2

Figure 5.1: (a), (b) Two different representations of the condition predicate Cσ(x,x+) :=
v+1 = 1 ∨ v+1 = 2 ∨ v+1 = 3 ∨ v+2 = 1, (c) Two separated condition predicates C̃σ,1 :=
1 ≤ v+1 ≤ 3 or C̃σ,2 := v+2 = 1.

Nondeterministic EFA

In deterministic EFAs, at most one transition is enabled at any time. On the con-
trary, nondeterministic EFAs allow multiple possible transitions. This notion is ex-
plained in the following example. In other words, if ∃x, Cσ,j1(x,x+) for some σ ∈ Σ,
and more than one value of x+ is possible then that transition is nondeterministic.

Example 5.5

Consider Fig. 5.2 as an EFA, the σ-transition from location l = 1 to l = 2 is possible
for the variable v ∈ {0,1,2,3}, and the σ-transition from location l = 1 to l = 3 is
possible for the variable v ∈ {2,3,4}. If v is in the common range, i.e., v ∈ {2,3}, the
EFA is nondeterministic, because from the initial state l = 1, two transitions can
be executed and the next state is ambiguous and would be nondeterministically
chosen between one of the locations l = 2 or l = 3. On the other hand, if v ∈ {0,1,4}
only one of the σ-transitions is enabled, and in this case, the EFA is deterministic.

5.3 Extended Full Synchronous Composition

Let E1 ‖ E2 =
〈

X,Σ1 ∪ Σ2,C,T,I1 ∧ I2,M1 ∧M2〉 be the Extended Full Synchronous
Composition (EFSC) of two EFAs, where

(i) X is the extended finite set of states containing both global and local variables.

40

Extended Full Synchronous Composition EXTENDED FINITE AUTOMATA

{ }0,1,2,3vÎ

{ }2,3,4vÎ

1l =

2l =

3l =

s

s

Figure 5.2: A nondeterministic EFA.

(ii) Σ = Σ1 ∪ Σ2 is the union of all events of the two EFAs.

(iii) The elements in C are defined as

Cσ,j =


C1

σ,j1 ∧ C2
σ,j2 σ ∈ Σ1 ∩ Σ2

C1
σ,j1 σ ∈ Σ1\Σ2

C2
σ,j2 σ ∈ Σ1\Σ2

(5.5)

where C1
σ,j1 ∈ C1, C2

σ,j2 ∈ C2, and j1 = 1, . . . ,n1
σ and j2 = 1, . . . ,n2

σ.

(iv) T is the set of transition predicates defined according to (5.3) and (5.4).

(v) I(x) = I1(x) ∧ I2(x) is the conjunctive set of predicates on initial states.

(vi) M(x) = M1(x) ∧M2(x) is the conjunctive set of predicates on marked states.

The transition relation is the combination of all conditions, attached to corre-
sponding transitions of event σ, along with the variables for which there is no up-
dating condition. Observe that the transition relation depends on C and not Tk.
When for some i in x+i there is no condition on x+i , they are not updated and keep
their current value.

In the conflicting case, where the conditions on a variable explicitly try to up-
date it to different values, the variable is not updated. In other words, no transition
is executed and it is another interpretation of “keep current value”. The following
example shows it clearly.

Example 5.6

There are three EFAs in Fig. 5.3 for which the transition relation of their synchro-
nization E1 ‖ E2 ‖ E3 is written below. Domains of the variables are v1 ∈ {0,1,2,3},
v2 ∈ {0,1} and v3 ∈ {0,1,2,3}. Following equation (5.3), Tσ(x,x+) for each event is

Ta : (l1 = 0∧ l3 = 0∧ l+1 = 1∧ l+2 = l2 ∧ l+3 = 1)∧
(v1 = 0∧ v+1 = 1∧ v+2 = v2 ∧ v+3 = v3),

41

Conclusion EXTENDED FINITE AUTOMATA

1
0l =

1 1
0 2 1 3v v

+
£ £ Ù £ £

3 3
1 2v v

+ +
= Ú =

2 3
1 3v v

+ +
= Ú =

1 1
0 1v v

+
= Ù =

1
E

2
E

3
E

2
0v =

1
1l =

1
2l =

2
0l =

2
1l =

3
0l =

3
1l =

3
2l =

a

b c

b a

Figure 5.3: Three EFAs considered for synchronization.

Tb : ((l1 = 1∧ l2 = 0∧ l+1 = 2∧ l+2 = 1∧ l+3 = l3)∨
((v2 = 0∧ v+1 = v1 ∧ v+2 = 1∧ v+3 = v3)∨
(v2 = 0∧ v+1 = v1 ∧ v+2 = v2 ∧ v+3 = 1)),

Tc : (l3 = 1∧ l+1 = l1 ∧ l+2 = l2 ∧ l+3 = 2)∨
(v+1 = v1 ∧ v+2 = v2 ∧ (v+3 = 1∨ v+3 = 2)).

As an example, based on the EFAs in Fig. 5.3, the transitions on event a ∈ Σ1 ∩
Σ3 can be executed merely when both variables are updating to the same value as
in C1

a ∧ C3
a , i.e., v+1 = 1. Otherwise, there is a conflict and the synchronization stops

in its initial state.

5.4 Conclusion

In this chapter automata extended with variables are introduced as extended finite
automata (EFAs). Different parts of its 6-tuple were explained through expressive
examples. Nondeterministic EFA was also illustrated through examples where dif-
ferent conjunctive or disjunctive predicates in conditions augmented to transitions
were shown. Moreover, extended full synchronous composition in EFAs was ex-
plained by an example.

42

6

THE NUSMV MODEL CHECKER

6.1 Introduction

Verifying the satisfaction of a CTL formula φ, by a system A, is known as model-
checking, while verifying the existence of a system A such that it satisfies a given
formula is known as satisfiability problem. NuSMV is a model-checker software
tool that verifies the formula provided each state variable has a bounded domain
and is originated from the extension and reimplementation of SMV.

NuSMV has different capabilities to represent synchronous and asynchronous
Finite State Machines (FSMs), and also to analyze specifications expressed by CTL
or LTL, using SAT-based and Binary Decision Diagram-based (BDD-based) model
checking techniques. The specification represents the behavior of the FSM as indi-
cated by “possible next state” relations. The possible next states and transitions are
determined using the values of variables and the updates of the variables, respec-
tively. A specification is represented by the main sections; VAR, ASSIGN and CTL (or
LTL) expressions [13], [14].

In this chapter a diagnosability test algorithm is implemented on both ordi-
nary automaton and EFAs. For the former, the algorithm is presented in one main
module and also with sub-modules. For the later, synchronization of three nonde-
terministic EFAs is presented and then the diagnosability algorithm is applied on
the synchronization of NEFAs as another example. The code can be implemented
on an arbitrary number of EFAs. Moreover, two algorithms for the two later imple-
mentations are presented.

6.2 Diagnosability Test on Ordinary Automaton

The diagnosability test algorithm 2 described in the Section 4.5 is implemented
on the automaton in the Fig. 4.1(b). The considered CTL specification is based on
the temporal logic definition for failure diagnosis, which is described in the Sec-
tion 4.4. As it is expected for a diagnosable automaton, the SPEC EF EG (F1!=F2)

43

Diagnosability Test on Ordinary Automaton THE NUSMV MODEL CHECKER

and SPEC AG AF (F1=F2) are false and true, respectively. Two NuSMV codes
are presented for this algorithm which are implemented on the same automaton
depicted in Fig. 4.1(b).

Diagnosability Test on Ordinary Automaton with One Main Module

The first code only contains a main module where the algorithm is implemented
sequentially, i.e., variable and transition definition of the automaton and its copy,
synchronization of them, specifying the next values to variables and verifying the
specification.

In the code, all the variables are defined in the VAR section. IVAR shows the in-
put variables, i.e. the events. In DEFINE part, each transition of each automaton
is named. Remember that in the diagnosability test algorithm 2, the automaton
should be projected synchronized with a copy of itself. Therefore, two similar au-
tomata with different variables are defined here. TRANS performs the synchroniza-
tion, followed by the new value assignments, and in the end, SPEC comes which
verifies the specification.

NuSMV Code

MODULE main

VAR

v : 1..3;

w : 1..3;

F1 : 0..1;

F2 : 0..1;

IVAR

event : {a,b,f,g};

INIT

v=1 & w=1 & F1=0 & F2=0;

DEFINE

tv1 := v=1 & (event=a);

tv2 := v=1 & (event=f);

tv3 := v=2 & (event=b);

tv4 := v=3 & (event=b);

tv5 := (event=g);

tw1 := w=1 & (event=a);

tw2 := w=1 & (event=g);

tw3 := w=2 & (event=b);

tw4 := w=3 & (event=b);

tw5 := (event=f);

44

Diagnosability Test on Ordinary Automaton THE NUSMV MODEL CHECKER

TRANS

((tv1) xor (tv2) xor (tv3) xor (tv4) xor (tv5)) &
((tw1) xor (tw2) xor (tw3) xor (tw4) xor (tw5)) &
((tv1 xor tv3) & (tw1 xor tw3)) xor ((tv4 & tw4)) xor ((tv2 xor tw2));

DEFINE

next_v := case

tv1 | tv3 : 2;

tv2 | tv4 : 3;

TRUE : v;

esac;

next_w := case

tw1 | tw3 : 2;

tw2 | tw4 : 3;

TRUE : w;

esac;

next_F1 := case

tv2 : 1;

TRUE : F1;

esac;

next_F2 := case

tw2 : 1;

TRUE : F2;

esac;

TRANS

next(v) = next_v & next(w) = next_w &
next(F1) = next_F1 & next(F2) = next_F2;

SPEC

AG AF (F1=F2)

Diagnosability Test on Ordinary Automaton with Two Modules

The second code, contains two modules, where the automaton depicted in Fig. 4.1(b)
is defined in the module automaton, and the projected synchronization is defined
in the module main. The projected synchronization is performed by the help of
int_leav input variable, which stands for the “interleaving” behavior. It chooses
the value 1 or 2, arbitrarily, and implies either the transition with unobservable
event of the first automaton should be executed or the transition with unobserv-
able event of the second one. This means that the unobservable events are not
executed synchronously. SigmaO and SigmaU represent the observable and unob-
servable events, respectively.

45

Diagnosability Test on Ordinary Automaton THE NUSMV MODEL CHECKER

NuSMV Code

MODULE automaton(q,Fa,event,int_leav,k12)

DEFINE

SigmaO:={a,b};
SigmaU:={f};
t1 := q=1 & (event=a);

t2 := q=1 & (event=f) & int_leav=k12;

t3 := q=2 & (event=b);

t4 := q=3 & (event=b);

t0 := !(event in SigmaO | event in SigmaU & int_leav=k12);

next_l:=case

t1 | t3 : 2;

t2 | t4 : 3;

t0 : q;

TRUE : -1;

esac;

next_F := case

t2 : 1;

TRUE : Fa;

esac;

MODULE main

VAR

F1 : 0..1;

F2 : 0..1;

l1 : 1..3;

l2 : 1..3;

G1 : automaton(l1,F1,event,int_leav,1);

G2 : automaton(l2,F2,event,int_leav,2);

IVAR

event : {a,b,f};
int_leav : {1,2};

INIT

l1=1 & l2=1 & F1=0 & F2=0 ;

TRANS

next(l1)=G1.next_l & G1.next_l!=-1 &
next(l2)=G2.next_l & G2.next_l!=-1 &
next(F1)=G1.next_F & next(F2)=G2.next_F;

46

Synchronization of EFAs THE NUSMV MODEL CHECKER

SPEC

AG AF (F1=F2)

6.3 Synchronization of EFAs

This section is on the synchronization of nondeterministic EFAs where an arbitrary
number of EFAs can be synchronized. As an example, the EFAs in Fig. 5.3 are syn-
chronized which are defined in EFA1, EFA2 and EFA3 modules. To be more precise,
module EFA3 will be explained, which represents EFA E3 in Fig. 5.3 with a slight
change in the guard condition of the second transition where a condition on loca-
tion of E1 is added. Figure 6.1, shows the EFA representation of module EFA3.
Note that 1 ≤ v+1 ≤ 3 in the a-transition, is the compact form for representing three
transitions, where their difference is in the next possible value of v1, which non-
deterministically can be assigned. Moreover, in the three transitions v+2 = ξ and
v+3 = ξ. It is also the same for the c-transition. To be able to distinguish which tran-
sition is executed and what value should be assigned to the variable, an indicator
m is defined in the code for such nondeterministic transitions.

After defining the transitions, the next location and also the next value of vari-
ables are assigned. In the DEFINE conditions, TRUE means “otherwise”, which holds
when all other conditions are false. Here ξ, which means the variable “does not
care” about its next value, is represented by −1. Note that, the −1 in the TRUE con-
dition of the location definition (next_l) is used only to make the case condition
exhaustive and here it does not convey the meaning of ξ.

Note that actual parameters of a module can potentially be instances of other
modules. Therefore, parameters of modules allow access to the components of
other module instances, as in the example, an instance of the module synch is
passed to the sub-module synchnv. In the module main, e.g., s2 which is the syn-
chronization of EFA1 and EFA2, and is the input to the next synch function to be
synchronized with EFA3, is declared to be an instance of the module synch. synch
declares three instances of the module synchnv. Every instance of the synchnv

module has a defined nv which specifies the conditions for updating to the next
synchronous value. Thus, a synchnv needs access to the parent synch to access all
the synchnv in the synch.

In the module synchnv, it checks different conditions that may happen during
synchronization. Starting from the first condition, keepv checks whether a variable
is equal to ξ in all automata or not. If it is true, the current value should be kept.
Note that this condition is the only one that is checked globally in the main module.
It considers all automata at the same time, while other conditions are considered
locally in the synchnv module.

Consider automata E1 and E3 which have event a in their alphabet. In E1 when
event a is executed it updates the value of v1 to 1, while in E3 when event a is ex-
ecuted it updates the value of v1 nondeterministically to 1, 2 or 3. By definition,
in synchronization, when event a is executed the variable will be updated nonde-
terministically to the conjunction of the values indicated in each transition. This

47

Synchronization of EFAs THE NUSMV MODEL CHECKER

1 1
0 2 1 3v v

+
£ £ Ù £ £

3 3 1
1 2 2v v l

+ +
= Ú = Ù =

3
E

3
0l =

3
1l =

3
2l =

c

a

0

1

2

2

Figure 6.1: Automaton representation of the module EFA3.

definition is shown in the condition

nvE1! = −1 & nvE2! = −1 & nvE1 = nvE2 : nvE1;

which indicates that if the actions in both EFAs are not equal to ξ, and are equal to
each other, one of them will be kept as the next value for the variable. Otherwise if
neither of them are equal to ξ and both try to update the variable to different val-
ues, a conflict happens. Thus, the condition mentioned above explicitly performs
conjunction on the updating conditions.

NuSMV Code

MODULE EFA1(l,v1,v2,v3,e)

DEFINE

t1:= l=0 & e=a & v1=0;

t2:= l=1 & e=b & v2=0;

t0:= !(e in {a,b});
next_l:= case

t1 : 1;

t2 : 2;

t0 : l;

TRUE : -1;

esac;

next_v1.nv := case

t1 : 1;

TRUE : -1;

esac;

next_v2.nv := -1;

next_v3.nv := -1;

48

Synchronization of EFAs THE NUSMV MODEL CHECKER

MODULE EFA2(l,v1,v2,v3,e)

IVAR

m : {0,1};

DEFINE

t10:= l=0 & e=b & m=0;

t11:= l=0 & e=b & m=1;

t0:= !(e in {b});

next_l:= case

t10 xor t11 : 1;

t0 : l;

TRUE : -1;

esac;

next_v1.nv := -1;

next_v2.nv := case

t10 : 1;

TRUE : -1;

esac;

next_v3.nv := case

t11 : 3;

TRUE : -1;

esac;

MODULE EFA3(l,l1,v1,v2,v3,e)

IVAR

m : {0,1,2};

DEFINE

t10:= l=0 & e=a & (v1=0 | v1=1 | v1=2) & m=0;

t11:= l=0 & e=a & (v1=0 | v1=1 | v1=2) & m=1;

t12:= l=0 & e=a & (v1=0 | v1=1 | v1=2) & m=2;

t20:= l=1 & e=c & l1=2 & m=0;

t21:= l=1 & e=c & l1=2 & m=1;

t0:= !(e in {a,c});

next_l:= case

t10 | t11 | t12 : 1;

t20 | t21 : 2;

t0 : l;

TRUE : -1;

esac;

49

Synchronization of EFAs THE NUSMV MODEL CHECKER

next_v1.nv := case

t10 : 1;

t11 : 2;

t12 : 3;

TRUE : -1;

esac;

next_v2.nv := -1;

next_v3.nv := case

t20 : 1;

t21 : 2;

TRUE : -1;

esac;

MODULE synchnv(nvE1,nvE2,keepv,v)

DEFINE

nv := case

keepv : v;

nvE1!=-1 & nvE2!= -1 & nvE1 = nvE2 : nvE1;

nvE1 =-1 & nvE2!= -1 : nvE2;

nvE1!=-1 & nvE2 = -1 : nvE1;

TRUE : -1;

esac;

MODULE synch(E1,E2,keepv1,keepv2,keepv3,v1,v2,v3)

VAR

next_v1 : synchnv(E1.next_v1.nv,E2.next_v1.nv,keepv1,v1);

next_v2 : synchnv(E1.next_v2.nv,E2.next_v2.nv,keepv2,v2);

next_v3 : synchnv(E1.next_v3.nv,E2.next_v3.nv,keepv3,v3);

MODULE main

VAR

v1 : 0..3;

v2 : 0..1;

v3 : 0..3;

l1 : {0,1,2};
l2 : {0,1};
l3 : {0,1,2};
E1 : EFA1 (l1,v1,v2,v3,e);

E2 : EFA2 (l2,v1,v2,v3,e);

E3 : EFA3 (l3,l1,v1,v2,v3,e);

s2 : synch (E1,E2,keep_v1,keep_v2,keep_v3,v1,v2,v3);

50

Synchronization of EFAs THE NUSMV MODEL CHECKER

s3 : synch (s2,E3,keep_v1,keep_v2,keep_v3,v1,v2,v3);

IVAR

e : {a,b,c};

INIT

v1=0 & v2=0 & v3=0 & l1=0 & l2=0 & l3=0;

DEFINE

keep_v1 := E1.next_v1.nv=-1 & E2.next_v1.nv=-1 & E3.next_v1.nv=-1;

keep_v2 := E1.next_v2.nv=-1 & E2.next_v2.nv=-1 & E3.next_v2.nv=-1;

keep_v3 := E1.next_v3.nv=-1 & E2.next_v3.nv=-1 & E3.next_v3.nv=-1;

TRANS

next(l1)=E1.next_l & next(l2)=E2.next_l & next(l3)=E3.next_l &
E1.next_l!=-1 & E2.next_l!=-1 & E3.next_l!=-1 &
next(v1)=s3.next_v1.nv & next(v2)=s3.next_v2.nv & next(v3)=s3.next_v3.nv;

51

Synchronization of EFAs THE NUSMV MODEL CHECKER

Algorithm 1_ Synchronization of EFAs

————————————————————————————————————–

I. MODULE EFAi = (li,v1, . . . ,vJ ,e)

(For i = 1, . . . ,I, where I and J are number of EFAs and variables, respectively.

1. Define locally partial transition relations, including source location, event
and guard conditions. (If the transition is nondeterministic, add indica-
tor m for each distinct transition.)

t := (l = source location)& (e = event)& (guard predicate);

2. ∀ vj, l in each EFA define locally target locations (next_l), and variables
updated values (next_vj) in case condition assignments.

II. MODULE synchnv (E1.next_v, E2.next_v, keep_v, v)

1. Define synchronization based on its definition for EFAs in Section (5.3) .

III. MODULE synch (E1, E2, keep_vj, vj)

1. Define globally a next value for each variable, based on their current
values in the two synchronizing EFAs. ∀ j,

next_vj = synchnv(E1.next_vj, E2.next_vj, keep_vj, vj)

IV. MODULE main

1. Define all li, vj, Ei, S2, and Si+1, as well as event set and, initial values.

Ei = EFAi(li,v1, . . . ,vJ ,e)

S2 = synch(E1,E2,v1, . . . ,vJ ,keep_v1, . . . ,keep_vJ)

Si+1 = synch(Si,Ei+1,v1, . . . ,vJ ,keep_v1, . . . ,keep_vJ)

(6.1)

2. ∀ j, define

keep_vj :=
I∧

i=1

(Ei.next_vj = −1)

3. ∀ vj, li, define globally total combined transition relations.

I∧
i=1

(next(li) = Ei.next_l)&
J∧

j=1

(next(vj) = SI .next_vj)

Note that the guard conditions in each automaton can be on both global vari-
ables and local locations of other automata. In this case, in (6.1) the required local
variables of the other automata should also be entered in Ei.

52

Diagnosability Test on Synchronization of EFAs THE NUSMV MODEL CHECKER

1
0l =

1
0v =

1
E

1
1v

+
=

1
1l =

1
2l =

a

f

f

(a) EFA1

2
0v =

2
1 3v

+
£ £

2
0l =

2
1l =

2
2l =

f

a

b

2
E

(b) EFA2

Figure 6.2: The two automata considered for synchronization.

6.4 Diagnosability Test on Synchronization of EFAs

In this section, two EFAs are synchronized, and the diagnosability test is performed
on the synchronization. The two EFAs are depicted in Fig. 6.2. This code is for syn-
chronization of two EFAs with two global variables, but it can be extended to a
number of EFAs with more variables. Here, the same as the second diagnosabil-
ity test code on ordinary automata, int_leav variable is defined to indicate the
interleaving behavior in synchronization of transitions with unobservable events.

Module main includes all global variables, locations and failure variables, as
well as two instances of the synchronization of EFAs and its copy, which are ob-
tained through EFAtot. EFAtot declares instances of the modules synch and also
EFA1 and EFA2. Module synch declares two instances of module synchnv, because
in this example there are two variables. Every instance of the synchnv module has
a defined nv, which specifies the conditions for updating to the next synchronous
value. A synchnv needs access to the parent synch to access all synchnv in the
synch. Therefore, module main is a parent for module EFAtot, module EFAtot is a
parent for EFA1, EFA2 and synch, and module synch is a parent for synchnv.

NuSMV Code

MODULE EFA1(l,v1,v2,Fa,e,int_leav,k12)

DEFINE

SigmaO := {a};
SigmaU := {f};
t1 := l=0 & e=a & v1=0;

t2 := l=1 & e=f & int_leav = k12;

t3 := l=2 & e=f & int_leav = k12;

53

Diagnosability Test on Synchronization of EFAs THE NUSMV MODEL CHECKER

t0 := !(e in SigmaO | e in SigmaU & int_leav=k12);

next_l := case

t1 : 1;

t2 : 2;

t3 : 2;

t0 : l;

TRUE : -1;

esac;

next_v1.nv := case

t2 : 1;

TRUE : -1;

esac;

next_v2.nv := -1;

next_F := case

t2 : 1;

TRUE : Fa;

esac;

MODULE EFA2(l,v1,v2,Fa,e,int_leav,k12)

IVAR m : {0,1,2};

DEFINE

SigmaO := {a,b};
SigmaU := {f};
t1 := l=0 & e=a & v2=0;

t20 := l=1 & e=f & int_leav=k12 & m=0;

t21 := l=1 & e=f & int_leav=k12 & m=1;

t22 := l=1 & e=f & int_leav=k12 & m=2;

t3 := l=2 & e=b;

t0 := !(e in SigmaO | e in SigmaU & int_leav=k12);

next_l := case

t1 : 1;

t20 | t21 | t22 : 2;

t3 : 2;

t0 : l;

TRUE : -1;

esac;

next_v1.nv := -1;

next_v2.nv := case

t20 : 1;

t21 : 2;

54

Diagnosability Test on Synchronization of EFAs THE NUSMV MODEL CHECKER

t22 : 3;

TRUE : -1;

esac;

next_F := case

t20 | t21 | t22 : 1;

TRUE : Fa;

esac;

MODULE synchnv(nvE1,nvE2,v,keepv)

DEFINE

nv := case

keepv : v;

nvE1!=-1 & nvE2!=-1 & nvE1=nvE2 : nvE1;

nvE1 =-1 & nvE2!=-1 : nvE2;

nvE1!=-1 & nvE2 =-1 : nvE1;

TRUE : -1;

esac;

MODULE synch(E1,E2,v1,keepv1,v2,keepv2)

VAR

next_v1 : synchnv(E1.next_v1.nv,E2.next_v1.nv,v1,keepv1);

next_v2 : synchnv(E1.next_v2.nv,E2.next_v2.nv,v2,keepv2);

MODULE EFAtot(l1,l2,v1,v2,Fa,e,int_leav,k12)

VAR

E1 : EFA1(l1,v1,v2,Fa,e,int_leav,k12);

E2 : EFA2(l2,v1,v2,Fa,e,int_leav,k12);

SE : synch(E1,E2,v1,keep_v1,v2,keep_v2);

DEFINE

keep_v1 := E1.next_v1.nv=-1 & E2.next_v1.nv=-1;

keep_v2 := E1.next_v2.nv=-1 & E2.next_v2.nv=-1;

Faa:= case

E1.next_F=0 & E2.next_F=0 : 0;

TRUE : 1;

esac;

TRANS

next(l1)=E1.next_l & E1.next_l!=-1 &
next(l2)=E2.next_l & E2.next_l!=-1 &
next(v1)=SE.next_v1.nv & next(v2)=SE.next_v2.nv & next(Fa)= Faa;

55

Diagnosability Test on Synchronization of EFAs THE NUSMV MODEL CHECKER

MODULE main

VAR

l11 : 0..2;

l12 : 0..2;

v11 : 0..1;

v12 : 0..3;

F1 : 0..1;

l21 : 0..2;

l22 : 0..2;

v21 : 0..1;

v22 : 0..3;

F2 : 0..1;

Etot1 : EFAtot(l11,l12,v11,v12,F1,e,int_leav,1);

Etot2 : EFAtot(l21,l22,v21,v22,F2,e,int_leav,2);

IVAR

e : {a,b,f};
int_leav : {1,2};

INIT

l11=0 & l12=0 & v11=0 & v12=0 & F1=0 &
l21=0 & l22=0 & v21=0 & v22=0 & F2=0;

SPEC AG AF (F1 = F2)

56

Diagnosability Test on Synchronization of EFAs THE NUSMV MODEL CHECKER

Algorithm 2_ Diagnosability Test Algorithm on the Synchronization of
EFAs

————————————————————————————————————–

I. MODULE EFAi = (li,v1, . . . ,vJ ,Fa,e,int_leav,k12)

(For i = 1, . . . ,I, where I and J are number of EFAs and variables, respectively.

II. MODULE synchnv (E1.next_v, E2.next_v, keep_v, v)

1. Define synchronization based on its definition for EFAs.

III. MODULE synch (E1, E2, keep_vj, vj)

1. Define globally a next value for each variable, based on their current
values in the two synchronizing EFAs. ∀ j,

next_vj = synchnv(E1.next_vj, E2.next_vj, keep_vj, vj)

IV. MODULE EFAtot(l1, . . . ,l I ,v1, . . . ,vJ ,Fa,e,int_leav,k12)

1. Define variables to declare each EFA sub-module and their synchroniza-
tion. ∀i, j,

Ei = EFAi(li,v1, . . . ,vJ ,Fa,e,int_leav,k12)

S2 = synch(E1,E2,v1, . . . ,vJ ,keep_v1, . . . ,keep_vJ)

Si+1 = synch(Si,Ei+1,v1, . . . ,vJ ,keep_v1, . . . ,keep_vJ)

2. ∀ j, define

keep_vj :=
I∧

i=1

(Ei.next_vj = −1)

3. Define globally failure propagation (Faa) in the synchronization of EFAs.

4. ∀ vj, li, Fa, define globally total combined transition relations.

I∧
i=1

(next(li) = Ei.next_l)&
J∧

j=1

(next(vj) = SI .next_vj)& (next(Fa) = Faa)

V. MODULE main

1. ∀ i, j, k, define lki, vkj, Fk, (k = 1,2), as well as events and initial values.

2. Define two sub-modules Etot1 and Etot2. ∀ k,

Etotk = EFAtot(lk1, . . . ,lkI ,vk1, . . . ,vkJ ,Fk,e,int_leav,k)

57

Conclusion THE NUSMV MODEL CHECKER

3. Define globally total transition relation for all combined locations and
fault states.∧

i,k

(next(lki) = Etotk.Ei.next_l)&
∧
k

(next(Fk) = Etotk.Faa)

4. Verify the model by the CTL specification
AG AF (f 1

i = f 2
i).

6.5 Conclusion

This chapter was started with a NuSMV code which implemented diagnosability
analysis on an ordinary automaton with two different types of implementation, one
implementing the whole code in one module, and the other one implementing it
in two modules. Moreover, synchronization on an arbitrary number of nondeter-
ministic EFAs was implemented using NuSMV code. Also, diagnosability analysis
was implemented using NuSMV code where a diagnosability test was performed
on the synchronization of two EFAs.

Finally, two algorithms based on the implementation were introduced, where
one was on the synchronization of EFAs and the other one was on diagnosability
test on the synchronization of EFAs.

58

7

CONCLUSION

This thesis is on diagnosability notion and failure diagnosis of discrete event sys-
tems. It starts with the definition of ordinary automata and formal languages where
some fundamental notions for this work such as prefix closure, projection and in-
verse projection are illustrated. These notions are the building blocks of the diag-
nosability test algorithm and the online failure diagnosis algorithm, which were
illustrated with examples through the text. Furthermore, to increase the compact-
ness of the model EFA (Extended Finite Automaton) is expressed with condition
relations augmented to it. To be more general the implemented EFAs are nondeter-
ministic EFAs.

In this perspective, a diagnosability test algorithm is applied on the synchro-
nization of an arbitrary number of nondeterministic EFAs. For this purpose, the
nondeterministic EFAs are synchronized and then the diagnosability test is per-
formed on the synchronization. For diagnosability verification on the synchroniza-
tion of EFAs, two CTL specifications are proposed which are implemented in the
NuSMV model-checker software tool.

The advantage of this work is that the compactness of EFAs along with the
augmented condition relations and the nondeterminism help us to represent large
systems in a compact and understandable model. Moreover, these models are more
similar to real industrial systems where it is very crucial to verify the diagnosability
of interacting systems and be able to diagnose failure occurrences while systems are
operating.

59

Bibliography

[1] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, D. Teneketzis, Di-
agnosability of discrete-event systems, IEEE Transactions on Automatic Con-
trol 40 (9) (1995) 1555 –1575.

[2] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, D. Teneketzis, Fail-
ure diagnosis using discrete-event models, IEEE Transactions on Control Sys-
tems Technology 4 (2) (1996) 105 –124.

[3] M. Sampath, S. Lafortune, D. Teneketzis, Active diagnosis of discrete-event
systems, IEEE Transactions on Automatic Control 43 (7) (1998) 908 –929.

[4] S. Jiang, Z. Huang, V. Chandra, R. Kumar, A polynomial algorithm for test-
ing diagnosability of discrete-event systems, IEEE Transactions on Automatic
Control 46 (8) (2001) 1318 –1321.

[5] Z. Huang, S. Bhattacharyya, R. Kumar, S. Jiang, V. Chandra, Diagnosis of
discrete-event systems in rules-based model using first-order linear temporal
logic, Asian Journal of Control (2008) 1–9.

[6] M. Cabasino, A. Giua, C. Seatzu, A. Solinas, K. Zedda, Fault diagnosis of an
abs system using petri nets, in: IEEE Conference on Automation Science and
Engineering, 2011, pp. 594 –599.

[7] M. Cabasino, A. Giua, S. Lafortune, C. Seatzu, Diagnosability analysis of un-
bounded petri nets, in: 48th IEEE Conference on Decision and Control, 2009,
pp. 1267 –1272.

[8] M. Skoldstam, K. Akesson, M. Fabian, Modeling of discrete event systems
using finite automata with variables, in: 46th IEEE Conference on Decision
and Control, 2007, pp. 3387–3392.

[9] C. G. Cassandras, S. Lafortune, Introduction to discrete event systems,
Springer Science+Business Media, 2008.

60

BIBLIOGRAPHY

[10] B. Lennartson, Lecture notes on introduction to discrete event systems, De-
partment of signals and systems, Chalmers University of Technology, 2009.

[11] S. Lafortune, D. Teneketzis, M. Sampath, R. Sengupta, K. Sinnamohideen, Fail-
ure diagnosis of dynamic systems: an approach based on discrete event sys-
tems, in: American Control Conference, Vol. 3, 2001, pp. 2058 –2071.

[12] M. Huth, M. Ryan, Logic in Computer Science, Modelling and reasoning about
systems, Cambridge University Press, 2009.

[13] A. Cimatti, E. M. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, Nusmv 2:
An opensourse tool for symbolic model checking, in: International Conference
on Computer-Aided Verification, Vol. 2404/2002, 2002, pp. 359–364.

[14] P. Arcaini, A. Gargantini, E. Riccobene, A model advisor for nusmv specifica-
tions, Innovations in Systems and Software Engineering 7 (2) (2011) 97–107.

61

	Abstract
	Acknowledgements
	Contents
	Introduction
	Systems
	Introduction
	The Concept of System
	Continuous States
	Discrete States

	Discrete Event Systems
	Time-Driven and Event-Driven Systems

	Conclusion

	Automata and Formal Languages
	Introduction
	Automata
	Nondeterministic Automata

	Formal Languages
	Set of All Strings
	Prefix closure
	Projection of Strings
	Inverse Projection

	Synchronous Composition
	Conclusion

	Diagnosability and Failure Diagnosis
	Introduction
	Diagnosability

	Diagnoser
	Offline Diagnosis
	Online Diagnosis
	Reduced Diagnoser
	Decentralized Diagnosis

	Uncertain and Indeterminate Cycles
	Uncertain Cycle
	Indeterminate Cycle

	Temporal Logic
	CTL Specifications

	Offline Diagnosis Algorithms
	Diagnosability Test Algorithm 1
	Diagnosability Test Algorithm 2 (Rule-Based Model)

	Online Diagnosis Algorithm
	Conclusion

	Extended Finite Automata
	Introduction
	EFA
	Condition Predicates
	Transition Predicates
	Nondeterministic EFA

	Extended Full Synchronous Composition
	Conclusion

	The NuSMV Model Checker
	Introduction
	Diagnosability Test on Ordinary Automaton
	Synchronization of EFAs
	Algorithm 1_ Synchronization of EFAs

	Diagnosability Test on Synchronization of EFAs
	Algorithm 2_ Diagnosability Test Algorithm on the Synchronization of EFAs

	Conclusion

	Conclusion
	 Bibliography

