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Abstract
In development of radar tools, for example machine learning for target classification
and simulation of processing chains, there is a need for large amounts of complex-
valued data recorded under real conditions by a radar. However, large and properly
labelled data sets of this kind are time consuming and expensive to collect. Currently
such applications instead use simulated data, or smaller sets of real recorded data,
limiting the development of new applications.
In this thesis, we investigate the possibility to utilise Generative Adversarial Nets
(GANs) to extend existing radar data sets in order to get out of this low data
regime. Existing techniques are combined and further developed for generating
complex-valued radar data, with analysis of the quality of the generated data and
its relevance. We conclude that in this context, GANs could be used to extend
existing radar data sets, though more work is needed to make it perfectly realistic,
which is non-trivial.

Keywords: neural networks, generative adversarial networks, radar, machine learn-
ing, complex valued
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Notation

This section describes the meaning of certain mathematical notations used in the
paper.

Notation Description

E
x∼p(x)

[f(x)] Expected value of a function of random vector x distributed as p(x)

〈L〉 Arithmetic mean of a series, shorthand for 1
N

N∑
i=1

L(i)

‖ · ‖2 The `2-norm, or Euclidean norm, of a vector

‖ · ‖F The Frobenius norm of a matrix

∇xf Gradient of f with respect to the elements of x, i.e.
[ ∂f
∂x1

∂f
∂x2

. . . ∂f
∂xn

]T

x̄ An overbar denotes a generated version of a value

x̂ A circumflex denotes either a combination of real and generated
values, or that whether the value is generated or not is unknown
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1
Introduction

Data is more important than ever, and collecting large amounts of it is crucial for
many applications. It has become vital not only to record the data, but to have
it labelled, and possibly even generate new data from existing data sets. This is
especially true for radar data, where it might be both difficult and expensive to
record enough data of the desired type, using the desired type of radar. Generative
Adversarial Nets (GANs) have, primarily for images, proven to be able to solve
exactly this problem; to generate new images from smaller data sets with desired
attributes. This thesis report will investigate the possibility of using this technique
to generate realistic raw radar video data.

1.1 Background
Radar technology is used extensively in aeronautics, marine, and military appli-
cations for detection of objects along with determining their distance from, and
velocity relative to the radar. Radio signals are transmitted from the radar and are
reflected off of some object, whose position and velocity can be determined through
the characteristics of the reflected signal. The raw data that a radar module outputs
is generally represented as complex values when converted to a digital signal and is
signal-processed and data-processed in multiple ways to transform the information
into something a human can more easily understand.

In times where the type of object is unknown, machine learning algorithms can be
utilised in order to properly classify the radar detection. This is usually done on
processed data using e.g. the movements of the object, though in theory it should
be possible to do on raw data as well. A machine learning system like this would be
able to faster classify detected objects, without having to wait for signal and data
processing to be complete. Though this processing is fast, any time gain in defensive
applications is highly valuable as it can allow for more detected objects, or more
time to act. This requires large data sets for training the models.

However when working with radar data, one is often working in a low data regime,
where the size of the data sets is generally too small for such models. Thus training
of machine learning algorithms and testing of every processing step in the chain
of processing algorithms can be difficult, especially when wanting to test a specific
kind of object detection or scenario. As not every possible scenario happens often
enough for it to be feasible to record, and since e.g. recording from an aeroplane is

1



1. Introduction

expensive, there is a need both to extend existing data sets and to develop specific
scenarios. Therefore these extensions and scenarios have to be generated in some
way, either through simulations or some other generative technique.

In 2014, Ian Goodfellow et al. introduced a novel technique for generating sam-
ples from a known distribution of data points using a method they dubbed GAN
[1]. This method is based on two neural networks, the generator network and the
discriminator network, who compete against each other during training. The gener-
ator learns to, from some noise vector in what is called latent space, generate data
points that look like the known real data points, and the discriminator learns to
discriminate between real and fake data points. The aim with this competition is
to train such a good generator that the neither the discriminator, nor a human or
any computer, can separate the generated data from the known. The technique has
been used successfully for generating images, and should in principle work for radar
data as well.

1.2 Aim
The aim of this master’s thesis is to investigate the possibility to use Generative
Adversarial Networks to generate raw radar video data, and to build a foundation
on which it would be possible to use these networks in existing applications.

The research questions of the thesis are as follows:

• Can GANs be used to generate radar data from a specification?

• Is the data generated of such quality that it can be used to test real radar
application software?

• Is the data generated of such quality that it can be used to train other machine
learning applications?

The work delivers the following:

• An overview of current research with regard to GAN.

• A demo of a GAN that can produce raw radar data.

• Suggestions on how to proceed, either with further studies or industrialisation
of the work done

1.3 Scope
In this thesis project, we will limit the scope to generating smaller cut-outs from
real radar data. Specifically, the generated data will be of fixed length, and only a
subset of relevant discrete range intervals will be generated. However, this should
pose no problem to later integrating this into simulations by simply dropping these
generated cutouts into place where the simulation engineer requires them to be.

2



1. Introduction

The implemented GAN should be able to generate several different classes of objects,
such as jets, propeller planes, and helicopters, but do not need to take any other
conditions in account. Also, the aim is not to create the best GAN possible to
generate radar data, but simply to prove that it is possible. This means that the
most advanced implementations of GANs will not be used.

1.4 Previous work
The focus of much of the previous work regarding GAN has been to generate images
of different kinds. One of the first improvements made to Goodfellow’s original GAN
was when Mirza and Osindero developed a conditional GAN [2], that for example
can generate a specific number in the MNIST database of handwritten digits [3]. In
2015 Radford et al. made a Deep Convolutional GAN, with improved performance
compared to the original version [4]. Multiple solutions were developed the following
year, which efficiently translate a picture to the noise vector used as input to generate
that specific picture. This inference function was trained while training the GAN,
and the solutions were developed by Donahue et al. [5], and Dumoulin et al. [6].
Techniques to improve the networks were also suggested by Salismans et al. the
same year [7].

To improve the robustness of the training, Arjosky et al. made use of minimising the
Wasserstein distance [8]. Gulrajani et al. later improved this idea by using gradient
penalty instead of weight clipping [9].

To apply neural networks to complex-valued data (which the raw radar data is
usually represented as) one can either separate the real and imaginary parts of
the data and run through a regular real-valued neural network or implement true
complex-valued networks. The first option is more similar to real-valued solutions
and therefore have a simpler implementation, but the options are not intuitively
equivalent. A paper by Guberman [10] compare the two solutions and show equal
or better performance of the split real-valued variant in experiments. The paper
also gives a walk-through of the necessary complex calculus and building blocks
necessary for implementing such networks.

There are previous papers for using GAN to generate raw complex-valued radar
data. One notable example is [11] by Sun et al., where the authors generated Po-
larimetric Synthetic Aperture Radar (PolSAR) data using a complex-valued GAN.
They also solve the problem of complex-valued neural networks by re-implementing
the building blocks of neural networks based on the algebraic properties of com-
plex numbers. However, as SAR is a different radar technology compared to the
ground-based systems used in this thesis, the solutions for SAR are as such not
quite applicable to our work. SAR data is more similar to photographs than the
radar video data used in this work.
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2
Theory

2.1 Neural nets
We begin this chapter with a brief refresher of neural nets. For a more in-depth
understanding of this subject, we recommend [12]. Neural nets are a collection of
computational nodes and connections between them, meant to model neurons and
neural connections in the brain.

2.1.1 Classical
The standard, dense, feed-forward neural net consists of a number of neural layers.
Each layer contains neurons that take inputs from the neurons of the previous layer
and outputs the results of their computation to the neurons of the next layer. This
is done by taking a weighted sum of the previous layer’s outputs and then applying
some sort of nonlinear function on it, called an activation function. Layers between
the input layer and the output layer are called hidden layers. Figure 2.1 shows a
diagram of this structure.

x y

Flow

Figure 2.1: A standard feed-forward neural net with a hidden layer. Input is x
and output is y, and each circle is a neuron.
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2. Theory

This structure has been shown to perform well in e.g. classification tasks, where the
input is some unlabelled data sample vector one wishes to automatically classify.
This is achieved by algorithmically tweaking the weights of the weighted sums that
the neurons compute such that the net performs classification well on a known,
already labelled data set. Stochastic gradient descent is the standard algorithm
for this, which updates the weights such that the value of an objective function is
minimised, though other algorithms for this exist.

2.1.2 Convolutional
The convolutional neural net differs from the classical neural net. Instead of neurons
that take weighted sums of every neuron from the previous layers, the convolutional
neural net has small kernels that are convolved over the input – taking small, lo-
calised weighted sums over all positions on the input and constructs a feature map.
Figure 2.2 shows a diagram of this. The feature maps learn to detect local features of
the input. Kernel convolution can then be performed on the resulting feature maps,
creating more feature maps in a deeper layer. Generally speaking, the more layers,
the more complex features the net can learn. Usually a convolutional neural net has
some final layer or layers that are standard dense neural layers that represent the
output of the net. These neurons could for example give a specific output pattern
if a dog is detected in an image.

Input

Feature maps

Figure 2.2: A convolutional neural net with three layers of feature maps.

Note that the kernels are not simple two-dimensional matrices, but also have a depth
dimension equal to the depth of the layer being convolved over. Thus a 5× 5 kernel
convolved over a layer with 10 feature maps is actually a 5× 5× 10 kernel.

Other than these structural and conceptual changes to the architecture, convolu-
tional neural nets are trained in the same manner as the classic dense feed-forward
neural nets, algorithmically minimising the objective function until a local minimum
is reached.
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2. Theory

2.2 Generative Adversarial Nets and variants
The concept of GAN was first introduced in 2014 by Ian Goodfellow et al. in [1]. In
this class of neural network architectures, two networks are pitted against each other
where one learns to generate fake data that looks like samples of a prior distribution,
while the other learns how to distinguish between real and generated samples. The
generative network (G) samples a latent noise vector z from some high-dimensional
latent space Z ⊆ Rn according to some distribution pz (often an isotropic Gaussian
or uniform hypercube), and outputs sample that should look similar to samples from
the true sample space X . As such G can be viewed as a (differentiable) function:

G : Z → X̄ (2.1)

The hope is that G will generate a generated sample space X̄ that is very similar
to the real data space X . The discriminator (D) then looks at a generated or real
sample and outputs the probability that they are real. In other words, D is a
function:

D : X̂ → [0, 1] (2.2)
D(x̂) ≈ P (x̂ ∈ X ) (2.3)

where X̂ = X ∪X̄ . Figure 2.3 shows a conceptual overview of the architecture. Dur-
ing training, one can imagine there being a “switchbox” between the two networks
such that the discriminator network is randomly fed either a true data sample or a
generated one.

The output of the discriminator network D is during training fed back to G as well
as D, such that G will learn to minimise the probability of D classifying samples
correctly and D will learn to maximise this probability. Thus the two networks are
competing in a minimax game with value function V (G,D) [1]:

min
G

max
D

V (G,D) = min
G

max
D

E
x∼pdata

[logD(x)] + E
x̄∼px̄

[1− logD(x̄)] (2.4)

where x̄ = G(z), and the distribution px̄ is implicitly defined as the latent distribu-
tion pz after going through the generator. This sort of notation is used throughout
this paper for brevity. The loss is a version of the log-loss, which is related to the
standard (binary) cross-entropy loss often used in machine learning applications.

The authors show in [1] that this will lead to a generator network which learns to
produce a distribution in such a way that the Jensen-Shannon divergence between
the true and generated data distributions is minimised. The Jensen-Shannon di-
vergence is a measure of how similar two probability distributions are, having a
minimum of zero when two distributions are exactly equal, and is therefore a good
measure to minimise when implementing a GAN.

As the only purpose of the discriminator is to validate whether a sample is real or
generated, it is usually discarded after training. There is rarely any use of confirming
the realism of samples outside of GAN training, and only the generator is needed
to create new data.

7
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Instead of a feed-forward network like in the original implementation, Radford et
al. instead made use of convolutional nets in their Deep Convolutional GAN [4].
The discriminator is in that implementation a convolutional network, while the
generator makes use of transposed convolution, which is a kind of convolution that
creates output images with larger dimensions than the input. Another possible
solution is to simply up-sample the data in the generator each layer (duplicating
each data point, e.g. scaling one pixel to several) followed by convolution, which
gives a similar result.

Z z G(z) D(x̂)
P (x̂ ∈ X )

x̂x̄

X

x

Figure 2.3: Diagram of GAN architecture. Z is the latent space, X the set of
training data, G(z) the generator and D(x̂) the discriminator. The output P (x̂ ∈
X ) is the discriminator’s certainty of x̂ being drawn from the training set.

2.2.1 Convergence
The minimax game between the generator and the discriminator, can also be viewed
as a zero-sum game without cooperation. This means the optimum of the GAN
would be a Nash equilibrium, an equilibrium where neither the generator, nor the
discriminator has an action that improves its utility [13]. It has been proven that
every game with a finite number of players and action profiles has at least one Nash
equilibrium (proof can be found, for example, in Chapter 3 of [14]).

Unfortunately, due to its structure, this does not apply to GANs in general, as
discussed in e.g. [13]. Thus there is no guarantee for the GAN to converge to an
optimal equilibrium, further investigated by for example Goodfellow in [15]. There
might still exist equilibrium points, and possibly even global optima, but there is
no guarantee for it. One example of this, which is a common problem in GANs is
calledmode collapse, when the generator learns to generate one or a few modes of the
data distribution which the discriminator thinks are real, and therefore sticks with
generating only those. The discriminator on the other hand, might be restricted by
step size etc. and is unable to break free from this local optimum. Consequently,
GANs are heavily dependent on their many hyper-parameters to gain stability in
this non-converging behaviour, meaning that developing GANs is highly non-trivial.

8
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2.2.2 Conditional GAN
While GANs are a useful tool to generate data similar to a known distribution, in
its original form the GAN generator network does not know what it is generating,
only that it looks like it is sampled from the true data distribution. Since we in
this work wish to generate different kinds of radar images based on some conditions,
the generator needs to be able to be told exactly what to generate. A method
for conditioning the generator and discriminator on extra information such as class
labels was introduced in [2]. Along with a latent vector or data sample, an attribute
vector from some attribute space Y is drawn. Attributes are embedded in some layer
into both the generator and the discriminator. The discriminator then learns not
only to determine whether a sample is generated or not, but whether it matches the
attributes. Training on the discriminator output, the generator updates not only to
generate more realistic samples, but samples more closely related to the attributes.
The mappings thus instead look like Equations (2.5) and (2.6).

G : Z × Y → X̄ (2.5)
D : X̂ × Y → [0, 1] (2.6)

In this version the minimax game is simply given by Equation (2.7) [2].

min
G

max
D

V (G,D) = min
G

max
D

E
x∼pdata

[logD(x|y)] + E
x̄∼px̄

[1− logD(x̄|y)] (2.7)

In practice, y can be implemented as a one-hot encoded vector.

2.2.3 Wasserstein GAN
In a standard GAN, the discriminator is often defined to learn to output values
close to 0 for generated samples and values close to 1 for true samples. That is,
it learns to approximately output P (x̂ ∈ X ). The specific values are arbitrary of
course, but they are bounded. However this poses a problem: if the generator finds
some sample x̄ to generate that will always fool the discriminator, learning for the
generator stops, as it will learn to always generate that specific sample. This is
the mode collapse phenomenon described in Section 2.2.1, and is a very common
problem when training GANs.

A variant called Wasserstein GAN (WGAN) was proposed in [8] which rather than
minimizing the Jensen-Shannon divergence instead minimises the so-called Earth-
Mover/Wasserstein-1 distance. In essence, if one imagines two probability distribu-
tions as piles of dirt, the Wasserstein distance is the amount of dirt and the distance
one would have to move it to transform one pile into the other. In [8] it is explained
and proven why it is more sensible to minimise this weaker metric than the stronger
Jensen-Shannon divergence.

In practice, this means that the output of the discriminator is linear and unbounded
instead of some bounded non-linearity function. The Wasserstein discriminator has
the goal of instead separating the values of what it classifies as true or generated
samples. For example it might try to assign negative values to real samples and
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positive values to fake samples, then learning to output larger magnitudes the more
sure it is of its classification. This forces the generator to get out of mode collapse,
as when training progresses, the outputs of real samples will grow in magnitude,
and the generator has to learn to generalise and create diverse samples to keep up.

The difference in mapping compared to a standard GAN lies only in the discrimi-
nator:

D : X̂ → R (2.8)

The WGAN networks are competing in a slightly different minimax game with a
value function that looks like follows:

min
G

max
D

V (G,D) = min
G

max
D

E
x∼pdata

[D(x)]− E
x̄∼px̄

[D(x̄)] (2.9)

In [8], the authors suggested clipping the weights of the discriminator to stay in a
small interval such as [−0.2, 0.2] in order to keep the parameters in a compact space.
However,they also admit to this being a poor solution to enforce constraints. An
improvement to the Wasserstein GAN was introduced in [9], which instead added a
penalty to the loss of the discriminator based on the gradient norm of the discrimi-
nator, giving the minimax game in Equation (2.10).

min
G

max
D

V (G,D) = min
G

max
D

E
x∼pdata

[D(x)]− E
z∼pz

[D(x̄)] + λ E
x̂∼px̂

[(‖∇x̂D(x̂)‖2 − 1)2]

(2.10)

x̂ here is an interpolated vector between x and x̄. Given a number α ∈ [0, 1], x̂ =
αx+ (1−α)x̄. In essence, this will enforce a unit gradient norm along interpolation
lines between real and generated data. This gradient penalty has the effect of
stabilising training and avoiding the exploding/vanishing gradients problem. During
training, one wants this gradient penalty term to decrease to zero and/or stabilise
to indicate good and stable training.

2.2.4 Adversarially Learned Inference
In some cases, it might be useful to be able to both generate novel samples and to
modify real samples in some way, adding or removing attributes etc. A framework
for doing this was introduced by Dumoulin et al. in [6] known as Adversarially
Learned Inference (ALI) (the same idea can be found in [5] by Donahue et al, which
was developed independently). The paper achieves this by splitting the generator
into two networks called the encoder (Gz) and decoder (Gx). A conceptual diagram
can be seen in Figure 2.4. The decoder is the same as the standard GAN generator: a
mapping from the latent space to the data space, while the encoder learns to perform
the reverse mapping; that is, it maps data samples to latent space representations.
In short:

Gx : Z → X̄ (2.11)
Gz : X → Z̄ (2.12)

10
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The discriminator takes both the latent space and the samples from both the decoder
and the encoder, instead of just real and generated samples, i.e. real (or at least not
generated through machine learning) latent space with generated samples from the
decoder, and generated latent space with real samples from the encoder:

D : X̂ × Ẑ → [0, 1] (2.13)

Both the encoder and the decoder are then trying to convince the discriminator
that the output comes from the other net, while the aim of the discriminator is to
correctly determine which net generated what output. The minimax game is defined
as:

min
G

max
D

V (G,D) = min
G

max
D

E
x∼pdata

[logD(x, z̄)] + E
x̄∼px̄

[1− logD(x̄, z)] (2.14)

where x̄ = Gx(z), z̄ = Gz(x).

The reason one would prefer a solution with adversarially learned inference is because
other generative solutions (like variational auto-encoders or auto-regressive models)
can have drawbacks like smearing the output or needing excessive computational
power. Training an encoder similar to the encoder in ALI post-hoc on the other
hand does not give as good result. For details regarding this, see [6].

Z

Z̄

z x̄

z̄ x

Generator

Gx(z)

Gz(x)

X̄

X

Figure 2.4: Diagram of ALI generator. Z is the latent space and X the set of
training samples, and Z̄, X̄ are their generated counterparts. Gx is the decoder and
Gz is the encoder.

2.2.5 Evaluation metrics
To evaluate the data quality of data samples generated by a GAN, a good metric is
needed. There are many proposed evaluation metrics for GANs, but they all have
some sort of drawback, intractability, or areas where they are not applicable. An
overview of a lot of quantitative and some qualitative metrics can be found in [16].

One big problem with GANs is that there is no robust way to – beyond visual
inspection – determine whether or not the generated data is actually any good. Two
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of the most common metrics in evaluating the performance of GANs are Inception
Score [7] and the Fréchet Inception Distance [17], however they have some problems
and have received some criticism, as they depend on the Inception model, trained
on the ImageNet database, and could therefore give misleading results when applied
outside this data set [18].

2.3 Radar theory
Most people are familiar with the general concept of radar, though not the details.
In this section we will go through the basics of how radar works so that the reader
may better appreciate where and how the complex numbers come into play in the
problem. Most of the information in this section comes from [19], which is an
excellent resource for the inner workings of radar.

2.3.1 Basics
At the most basic level, a radar is simply a radio transmitter and receiver. Pulses of
radio waves are transmitted and the radar then listens for the echoes of these waves
as they hit some object. This makes radar a powerful tool for object detection no
matter the weather or time of day. If the radio waves are transmitted in narrow
directed beams, the radar can determine direction and by measuring the time be-
tween transmission and reception, range can be determined. Given a few successive
echoes of the same object, its velocity can be determined by exploiting the Doppler
effect. The Doppler effect is the name of the phenomenon where waves emitted or
reflected from a moving object will experience a shift in frequency depending on if
the object is moving towards or away from the observer.

Without any sort of reference, the received radio waves of course have little meaning.
At the transmitting/receiving end there is therefore a reference frequency generator
with which the received signals are compared. Using this reference signal, any phase
or frequency shifts can be detected and used in calculations to determine the velocity
of any objects in the radar detection volume.

2.3.2 Phasors
A phasor is simply a rotating vector which can entirely represent a sinusoidal sig-
nal. The norm of the phasor is set equal to the peak amplitude of the signal, and
the rotation speed of it is set to the frequency of the signal such that the phasor
completes as many full revolutions per second as the represented signal’s frequency.
Figure 2.5 shows an example of a phasor. Looking at the projection of the phasor on
the y-axis, it becomes clear how it represents a sinusoidal signal, as the projection
at time t is equal to A sin(ωt+ φ).

At the radar transmitter, the reflected signal is compared to the reference signal to
determine its relative phase, denoted φ in Figure 2.5. The frequency of the phasor
is then determined through comparing the phase of subsequent signals.
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y

x

A

φ

ω = dφ

dt

Figure 2.5: A phasor representing a signal with amplitude A, some phase φ, and
frequency ω.

At this point it should be clear why complex numbers are used in the context of
radar. Several pulses in complex polar form can represent a phasor completely.

2.3.2.1 IQ-representation

Complex numbers – and therefore phasors – can also be represented in rectangular
form. The phasor is split up into its two axes: the in-phase (I) axis and the in-
quadrature (Q) axis. Figure 2.6 shows these components of the phasor. When the
phasor has a Q-component of 0 and a positive I-component, the received signal is
in phase with the reference signal. An I-component of 0 means the received signal
either lags or leads the reference signal by π

2 radians.

y

x

A

φ

ω = dφ

dt

I

Q

Figure 2.6: A phasor representing a signal with amplitude A, some phase φ, and
frequency ω, with its I and Q components displayed.
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The main advantage of IQ-representation is that when utilising digital Doppler filter-
ing, having two signals corresponding to in-phase and in-quadrature enables distin-
guishing of the direction of the Doppler shift (away from or towards the transmitter).
The data which we are using in this work is represented in IQ-format for this reason.

2.3.3 Pulse compression
For practical reasons, the pulses sent out by a radar are not of constant frequency.
Instead they are coded in some way in order to increase both range and velocity
resolution. One common way is chirping, where the frequency of the pulse increases
linearly with time, starting from some base frequency. However chirps are harder
to represent with phasors, and one would have to know the exact transmission set-
tings of the radar in order to be able to interpret them. To combat this, giving a
more universal representation of the signal regardless of transmission mode, pulse
compression is utilised. Figure 2.7 shows how a chirp is pulse compressed, which
converts it to a sinusoidal signal of constant frequency that is more readily repre-
sented by phasors and for which knowledge of the transmission mode is not needed.
This works by delaying parts of the wavefront based on its frequency, resulting in
a single frequency, short duration pulse with a higher amplitude than the received
frequency-modulated chirp.

PC

Figure 2.7: Pulse compression works by delaying the received chirp wavefront
based on frequency.

The data that has been recorded for this thesis and which is to be generated is
pulse compressed, precisely because this makes the data more generic and applicable
regardless of radar type or settings.

2.3.4 Azimuth, altitude, range
As a rotating ground-based radar sweeps across the hemispherical detection volume,
sending out pulses, it records the reflections in a three-dimensional array. The
dimensions correspond to azimuth, altitude, and range. Though in this work they
will instead be called pulses, lobes, and range. The intuition behind this is simply
that the radar sends out signal pulses as it sweeps through the angles of azimuth,
and the altitude dimension is divided up into sections for which the established
nomenclature is lobes. For a rotating radar, the pulse where an object is first

14



2. Theory

detected also gives the direction towards the object. However for both stationary
and rotating radars, the pulse also gives the time when an object was detected, as
the pulses are transmitted in discrete time steps. Figure 2.8 shows how the detection
volume is divided up. Note that the figure has very few sectors of azimuth for clarity.
An actual radar detection volume is of much higher resolution, with much smaller
azimuth sectors.

Lobe 1

Lobe 2
Lobe 3
Lobe 4

(a) Side view showing lobes.

Pulse

Range

(b) Top view showing azimuth
and range.

Figure 2.8: Side and top view of a radar detection volume of a theoretical rotat-
ing ground-based radar with 4 lobes, 12 pulses per rotation denoting the direction
towards detected objects, and 3 range bins.

A simpler intuition for this is that the radar records a complex-valued matrix for
each lobe in the detection volume, with a width representing the number of pulses
or time steps, and the height of the matrix representing the range. Range intervals
are discretised into bins. Each element of the matrix is then a phasor, in IQ-
representation. See Figure 2.9, which shows an example of what the phasors would
look like for a detected stationary object. For a moving object, the phase of the
central phasors would over time rotate at a rate related to the object’s velocity. In
order to make this representation more meaningful, signal processing is utilised on
the raw data.

Figure 2.9: Example of a matrix of received phasors showing a stationary object
in the central range bin. Each column is a sample, and each row is a range bin.
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2.3.5 The Fourier transform
As radar technology deals with both time series and waveforms, the Fourier trans-
form becomes highly relevant to determine the shift in frequency due to the radial
velocity of an object. Recall the general form of the Fourier transform and its inverse:

X(ω) =
∫ ∞
−∞

x(t)e−jωt dt (2.15)

x(t) = 1
2π

∫ ∞
−∞

X(ω)ejωt dω (2.16)

This transform is applied to the received IQ-data on each range bin over the pulse
dimension to obtain a range-Doppler plot. Figure 2.10 exemplifies the change in
representation that follows applying the transform. Of course, the data being dis-
crete samples of the continuous signals involved, the discrete Fourier transform is
used instead:

Xk =
N−1∑
n=0

xne
− j2π

N
kn (2.17)

xk = 1
N

N−1∑
n=0

Xne
j2π
N
kn (2.18)

Note that the output of the Fourier transform (X(ω) or Xk) is complex-valued. The
exact interpretation of the resulting Doppler frequency bins are dependent on the
parameters governing the specific transmission mode of the radar, but in general
correspond to the reflector’s radial velocity with respect to the radar transmitter.

FFT

R
an

ge

Pulse (time)

R
ange

Frequency

Figure 2.10: FFT is applied over time in each range bin and lobe separately.

To give a concrete example, Figure 2.11 shows a simulated raw radar image and
the amplitude of its Fast Fourier Transform (FFT) representation. The simulation
is entirely fictional and its numerical parameters and results are not representative
of any specific real radar system. In this simulated example, an “object” has been
placed around range bin 10, which was detected between pulses 5 and 25 with an
amplitude only slightly higher than the background noise. Taking the Fourier trans-
form over each range bin gives a single blip in the range-Doppler plot, representing
the object’s velocity.
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(a) Amplitude data. (b) Phase data.

(c) Amplitude data in frequency domain.

Figure 2.11: Simulated object with coherent phase. Fourier phase is discarded as
it does not contain visible patterns relevant for this thesis.

No further processing has been done on this, which is usually done in real radar
applications, as this example is only to demonstrate the relevance of the Fourier
transform and what a typical radar detection looks like in both time and frequency
space.

2.3.6 Phase coherence
A sinusoidal signal has not only an amplitude and frequency, but also a phase. When
transmitting radar pulses, it is important to take care to make sure that the phase is
coherent, that is, that every transmitted pulse is separated by an integer number of
wavelengths. Failure to do so will cause problems with calculating the Doppler shift
of the received signal, and thus by extension calculating the velocity of the detected
object. In 2.11 it can be seen that where the object is located in the raw data, the
phase of the complex numbers changes smoothly, and the Fourier-transformed plot
shows a distinct blip in a specific Doppler channel.
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However, if the simulated object is instead given a completely random phase at each
point, calculating the velocity of it breaks down. In Figure 2.12 this is shown. The
object becomes smeared in Fourier space and thus it is impossible to ascertain the
exact velocity of it.

(a) Amplitude data. (b) Phase data.

(c) Amplitude data in frequency domain.

Figure 2.12: Simulated object with incoherent phase.

This gives a clear view of what the generated raw data should look like with regard
to both amplitude and phase to be considered realistic. A realistic sample of video
data should contain an object somewhere with amplitude larger than the background
noise, and whose phase is coherent. Indeed, this is characteristic of the recorded data
contained in our data set. Alternatively, the plot of the Fourier-transformed data
should contain some clear spike in amplitude around a range bin with limited spread
in the Doppler dimension. For examples of real data characteristics, see Appendix B.
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The concept of phase could be discussed from an inverted point of view as well, i.e
having a clear spike in the Doppler transformed amplitude, and then applying the
inverse Fourier transform. It is then necessary for the time domain phase to show the
coherence with the time domain amplitude, as described above. But if one simply
applies the Fourier transform on an amplitude with clear spike, and a random phase,
this necessary coherence does not emerge, which is shown in Figure 2.13. This means
that if generating data in the frequency domain, it is necessary either for the network
to learn the relation between the amplitude and the phase (or have it strictly built
in to the network), or be able to generate a phase post hoc from an earlier generated
amplitude.

It can be noted that it is possible to generate a phase from amplitude when using
e.g. Short-Time Fourier Transform (STFT)[20], a technique based on the Fourier
transform. However, phase generation from amplitude is out of the scope of this
thesis.
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(a) Simulated amplitude data in fre-
quency domain.

(b) Random phase data in frequency do-
main.

(c) Amplitude data in time domain, in-
verse Fourier transformed from simu-
lated data.

(d) Phase data in time domain, in-
verse Fourier transformed from simu-
lated data.

Figure 2.13: Simulated amplitude with random phase in frequency domain, show-
ing incoherent phase in time domain.
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Methods

3.1 Timeline
The first weeks of the project were dedicated to literature studies and smaller exper-
iments with GAN to generate handwritten digits from the MNIST data set, along
with radar studies. After that, work on generating processed radar data of drones
and birds was done in order to see if GAN could be used for generating something
that originated from raw radar data, the results of which can be seen in Chapter 4.
This was the prestudy.

Once this was done, we turned our attention to the raw radar data and used the
knowledge gained thus far to construct a GAN for generating these raw radar images.
Herein lies the bulk of the project and what we base our conclusions on. Note that
we use the word “raw” although this is not strictly true. The data that has been
recorded and which should be generated is pulse compressed, though still raw in the
sense that no further signal or data processing has been done on it. This makes the
data more generic, as the properties of truly raw radar data are entirely dependent
on the type of radar and its transmission settings.

3.2 Equipment
The work was done using both raw and processed IQ-data recorded from a ground-
based radar. Neural networks were trained on a dedicated GPU-server at SAAB
containing Nvidia RTX Quadro GPU:s.

For building the neural networks, the framework Tensorflow [21] was used for com-
putations and specifically the Python library Keras.

3.3 Network architecture experiments
The study started by examining if there were any previous network architectures
that were themselves suitable for generating the radar data. Since the data points
are essentially pictures, the initial hypothesis was that one or more of the networks
described in Section 2.2 would work well on the data.
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3.3.1 CWALI
Based on the previously mentioned experiments we developed a hybrid model which
we have dubbed Conditional Wasserstein Adversarially Learned Inference (CWALI).
As the name implies, it is a hybrid of Wasserstein GAN [8, 9], ALI [6], and CGAN
[2]. This combination was chosen as we needed the conditionality, wanted to avoid
mode collapse, and wanted to have the option to generate latent noise from data
samples. Thus the model is built up from three different convolutional networks:
the encoder, the decoder, and the discriminator, where the loss function is based on
Wasserstein loss with gradient penalty. Mappings are defined according to

Gx : Y × Z → X̄
Gz : X × Y → Z̄

D : X̂ × Y × Ẑ → R

The resulting minimax game which our network plays is therefore a combination of
Equations (2.7), (2.10) and (2.14) with the following value function:

E
x∼pdata

[D(x,y, z̄)]− E
z∼pz

[D(x̄,y, z)] + λ E
x̂∼px̂

[(‖∇x̂D(x̂,y, ẑ)‖2 − 1)2] (3.1)

where x̄ = Gx(z), z̄ = Gz(x), and x̂ is an interpolation sample between and x and
an x̄. The loss function is Wasserstein with gradient penalty, where the discrimi-
nator takes in an image, conditions, and a latent noise vector. Rather than using
standard stochastic gradient descent in the weight updates, we elected to use the
Adam optimiser [22], as this optimiser is commonly used in other GAN applications.
This optimiser differs from gradient descent in that the learning rate is adapted dur-
ing training. The training looks much like the one proposed in [9]. Note that x̄ uses
the same y as the x it is compared to in the gradient penalty step (line 6-7).

Algorithm 1: CWALI training procedure.
Input: m – Size of minibatch
Input: nd – Number of times discriminator is updated per training step
Input: α, β1, β2 – Learning rate and Adam optimiser parameters

1 while Gx, Gz not converged do
2 for t = 1..nd do
3 for i = 1..m do
4 Sample data x ∈ X , class y ∈ Y , latent vector z ∈ Z, random

number ε ∼ U [0, 1]
5 x̄← Gx(y, z)
6 x̂← εx̄ + (1− ε)x
7 L(i) ← D(x̄,y, z)−D(x,y, z̄) +λ(‖∇x̂ D(x̂,y, ẑ)‖2 − 1)2

8 end
9 D ← Adam(∇D〈L〉, D, α, β1, β2)

10 end
11 Sample batch of latents {z(i)}mi=1 ⊂ Z and data {x(i)}mi=1 ⊂ X
12 Gx ←Adam(∇Gx〈−D(Gx(z))〉, Gx, α, β1, β2)
13 Gz ←Adam(∇Gz〈−D(Gz(x))〉, Gz, α, β1, β2)
14 end
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The possibility to train a separate network for every specific class exists, instead of
using a conditional GAN. This might even be the correct choice when having very few
classes. But if the aim is to generate data from a more complex description – which
in the radar context could be speed, distance, position etc. – the number of classes,
and therefore networks, would grow to an unmanageable size. This makes the design
choice of having separate networks for each class unfeasible, and a conditional GAN
is used in this thesis.

3.3.2 Layers and activation
Although a variety of combination of hidden layers was tried, they were all based
upon a general layout, which will now be described. The decoder (which in a more
traditional GAN is called the generator) consists of three layers of upsampling and
convolution, with the number of feature maps halved each successive layer, apart
from the output layer which always had two output channels. The hidden layers
have Rectified Linear Unit (ReLU) as activation function. Each layer also has batch
normalisation. After the final convolution layer, a cropping layer exist to take the
range bin dimension down to 21, as other solutions for upsampling to reach 21 would
have meant only one upsampling step. The last part of the net splits up the two
channels that have been generated so far and runs them through different activation
functions, which has the effect of generating an amplitude and a phase for all our
complex numbers. The amplitude part is simply run through a ReLU function, as
amplitudes are strictly non-negative but potentially unbounded. The phase part is
run through a scaled hyperbolic tangent function, which is bounded between −π
and π, generating a proper phase. With these two combined, the generator finally
outputs a complex-valued matrix. Figure 3.1 shows a diagram of this structure.

Latent vector Class vector

Concatenation

3 × {Upsampling + Conv.}

Cropping

π × tanh(·)ReLU
Output

Amplitude Phase

Inputs

Figure 3.1: Diagram of our CWALI model’s decoder.
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The discriminator and the encoder both consist of four convolution layers, with
leaky ReLU as activation function. At each layer the dimensions are halved, and
the number of feature maps are doubled. Diagrams of these two networks can be
seen in Figures 3.2 and 3.3. Initially, the number of feature maps of the first layer in
the networks were set to 32 for the generator, and 16 for the discriminator and the
encoder, as it was similar to the network used for images in the prestudy. However,
this was soon increased considerably, to 256 feature maps for the generator, and
64 for the discriminator and encoder. More details about the network layers and
parameters can be found in Appendix A.

Sample

4 × Conv.

Flatten
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Figure 3.2: Diagram of our CWALI model’s discriminator.
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Figure 3.3: Diagram of our CWALI model’s encoder.
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3.4 Data set
The data used to train the networks were annotated recordings in IQ-format. De-
tected objects in the recordings were extracted from the recording by discarding
irrelevant noise around them. These cut-outs made up the training data set, mean-
ing each sample on IQ-form consisted of complex numbers in a matrix of 36 pulses
by 21 range bins. To get even clearer training samples, only detections with a clear
Doppler detection were selected, and to improve the data even further, k-means
clustering (which clusters data such that the distances from the mean within clus-
ters are minimised) was applied, and the cluster with the clearest Doppler detections
was selected. The result was a training data set consisting of around 15000 samples
of object detections, together with the class of the object. The classes of this data
set were jet planes, propeller planes, helicopters, drones, and birds.

The data in the prestudy was based on a similar data set, but processed further.
Two different classes of images were in the data set: drones and birds. They are
called images in the literal sense: they were .jpg-files, which were constructed from
radar data, but were not in and of themselves radar data. Constructing these images
was done by picking out the column on the Doppler axis of a plot where the object
is located, and appending it to an image consisting of just such columns from every
plot in the sequence. This creates an image consisting of range bins and extracted
Doppler channels over time.

3.5 Preprocessing
As mentioned previously the data was saved in rectangular IQ-format. One problem
with this in machine learning contexts is that the numbers can be potentially very
large in both the positive and negative directions of both axes. Thus, we instead
convert this data to polar form and train the nets to generate the phase and loga-
rithm of the amplitude plus one in order to improve numerics. The generated data
can then be converted back to IQ form by exponentiating the amplitude, subtracting
one, and converting from polar to rectangular complex form according to standard
methods. In the data the amplitudes were in the range [0, 106]. Using logarithms
gives a range of [0, 14], a more natural range for the neural network output layer.

Algorithm 2: Conversion between log-amp and IQ before and after training.
Result: Generated IQ-data

1 A← |IQ|, φ← arg(IQ) // IQ-data to polar form
2 A← ln (A+ 1)
3 (A, φ)← train(A, φ) // Train nets
4 A← exp (A)− 1 // Exponentiate generated amplitude
5 IQ← A(cosφ+ i sinφ) // Convert to rectangular form

The reason for the addition and subtraction of unity is again for the sake of numerics.
Since the amplitude of a complex number is in the range of [0,∞) and lim

x→0
ln x = −∞

the net would have to generate potentially very large negative values. Adding one to
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the amplitude before the logarithm gives a function range that is more manageable.
The equivalence can be easily seen through

x ∈ [0,∞)
x̂ = x+ 1 ∈ [1,∞)
x̄ = ln x̂ ∈ [0,∞)

exp (x̄)− 1 = x̂− 1 = x

Using data on polar form in the network suggests the use of different activation
functions for the amplitude and the phase in the output layer of the generator. As
the phase is bounded between −π and π, hyperbolic tangent (tanh) multiplied with
π was used as activation function for the output layer of the phase. The amplitude
is only limited on the lower side (to zero), so ReLU was used for the output layer of
the amplitude. Alternatively, one could use a linear activation function here, letting
the network learn to only output positive numbers for the amplitude. However,
since amplitude is defined to be non-negative there is not much reason for doing so.

To make the data more natural to find patterns in, it is Fourier transformed in
the radar signal processing chain. To make use of the same idea, a variant of the
network training on Fourier transformed data was also used. The data outputted in
this variant was therefore also in the frequency domain, but as the Fourier transform
is invertible, raw data in time domain can easily be retrieved. See Algorithm 3.
Note that the radar plots have a large mean value, meaning the lowest frequencies
will give a high amplitude in the Fourier transformed plots. Since the discrete
Fourier transform assumes periodicity, this effect also bleeds over into the highest
frequencies, however these problems are disregarded in this thesis.

As patterns are more noticeable in frequency domain for amplitude plots , and time
domain for phase plots, training on data from both domains might make the network
learn more, and generate more realistic data. An additional algorithm, similar to
Algorithm 3 was therefore tried, where the input data was Fourier transformed,
but inverse transformed before inputted into the discriminator together with the
frequency domain data.

Furthermore, a version trained only on the Fourier amplitudes was also examined.

Algorithm 3: Conversion between log-amp and IQ, with Fourier transform,
before and after training.
Result: Generated IQ-data

1 z ← F(IQ) // Fourier transform IQ-data
2 A← |z|, φ← arg(z) // Convert to polar form
3 A← ln (A+ 1)
4 (A, φ)← train(A, φ) // Train nets
5 A← exp (A)− 1 // Exponentiate generated amplitude
6 z ← A(cosφ+ i sinφ) // Convert to rectangular form
7 IQ← F−1(z) // Inverse Fourier transform generated data
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3.6 Evaluation
Evaluation of this GAN is necessarily more qualitative than quantitative, as there do
not exist machine learning models that are pretrained on complex-valued radar data,
so the most common evaluation metrics – Inception Score and Fréchet Inception
Distance – are not applicable as such, given the criticisms and potential problems
that have been pointed out with these measures. In order to have some quantitative
measure of performance, we have chosen (squared) Maximum Mean Discrepancy
(MMD) as a measure of how good the GAN-generated samples are. This measure is
computationally simple and requires no separate pretrained model, as it compares
generated samples directly with samples from the data distribution and computes
their dissimilarity. The implementation used is the one in [23] for an unbiased
estimator of the MMD.

Given a characteristic kernel function k(·, ·) which measures similarity of two sam-
ples, the MMD between two distributions P and Q is given by

Mk(P,Q) = E
x,x′∼P

[k(x,x′)]− 2 E
x∼P,y∼Q

[k(x,y)] + E
y,y′∼Q

[k(y,y′)] (3.2)

In practice we of course only have access to a finite number of samples for each
distribution, so given sample sets X = {x1...xm} ∼ P and Y = {y1...yn} ∼ Q, the
unbiased population estimator for this is given by

M̂k(X, Y ) = 1(
m
2

) m∑
i 6=j

k(xi,xj)−
2
mn

m∑
i=1

n∑
j=1

k(xi,yj) + 1(
n
2

) n∑
i 6=j

k(yi,yj) (3.3)

For the characteristic kernel function, we used the rational quadratic kernel:

kα(x,x′) =
(

1 + ‖x− x′‖2
2

2α

)−α
(3.4)

However since we want to check the similarity of images/matrices, we instead use
the Frobenius norm, rather than the L2 norm used for vector-valued samples. The
value for α we use is 0.5, such that the kernel simplifies to

k(x,x′) =
(
1 + ‖x− x′‖F 2)− 1

2 = 1√
1 + ‖x− x′‖F 2

(3.5)

This has a maximum of 1 when the two matrices are exactly equal and decreases
towards 0 the larger the Frobenius norm of their difference gets. This gives Equa-
tion (3.2) a value of zero when the two distributions are equal, and larger values for
distributions that are different. Thus if we generate distributions that are similar
to the data, Equation (3.3) should give a small value. However it should be noted
that this is purely a quantitative measure, and gives no indication of qualitative
performance.

Furthermore, we also check the generated samples using a neural net trained by
a separate group of thesis students at SAAB using the same data for a different
project, which achieved 83% validation accuracy and 90% test accuracy. This net
was however only trained on two of the five classes of objects we generate and
therefore gives an incomplete picture of the performance of our model.
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4.1 Processed data experiments

We created the predecessor of CWALI during the prestudy phase of the project,
which was given the task of generating images similar to the ones in the data set.
The validation of these generated images was done by an existing classification
network trained at SAAB on these kinds of images. The network in question was
trained on images of three classes: drones, birds, and noise. Since our GAN had
not been trained to generate noise, this did cause some issues. However, the results
were still promising. In Table 4.1, the confusion matrix of the classification network
can be seen. The rows correspond to what our GAN was asked to generate, and
the columns to what the classification network classified the images as. Our GAN
generated 512 examples of each image.

Drone Bird Noise

Drone 512 0 0
Bird 23 351 138
Noise - - -

Table 4.1: Confusion matrix of classification network. Rows represent the gen-
erated class and columns represent what the classification network classified the
samples as. E.g. 23 generated birds were classified as drones.

As the confusion matrix shows, our GAN managed to entirely fool the classification
network when it came to generating drones, but had a bit more trouble generating
birds, since it had not been trained on noise and thus could not distinguish between
birds and noise. It is not surprising that it is harder to distinguish birds and noise
than any other combination, as birds in general give a weaker radar reflection, and
therefore inherently resemble noise. In Table 4.2, the average confidence of the
classification network is shown, along with how many times it misclassified each
class.
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Confidence # of misclassifications

Drone 99.95% 0
Bird 75.65% 161

Table 4.2: Confidence of classification network, given 512 examples of each class.

Clearly this GAN was able to well generate novel samples from the given image data
set. A comparison between the training data set and generated data can be seen
in Figure 4.1. This result is perhaps not very surprising; as GANs have been used
extensively in the field of machine learning to generate image data with great success.
This result thus aligns with other research results regarding GANs, and showcases
the strength of this generative technique when it comes to generating images; as
these images are not typical photographs. However these processed images were not
the main aim of the project to generate.

(a) Generated samples. (b) Training samples.

Figure 4.1: Comparison of training data and generated data from prestudy. Above
each image is the classification and confidence given by the classification network.
For generated samples, images generated as drones are in odd columns, and birds
in even.
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4.2 Raw data
The results from generating raw data are split into plots of training metrics together
with visual inspection of the result, and other kinds of more data-driven analysis
of the results of the best performing networks. The amplitudes of certain figures of
this chapter have been redacted as they are deemed confidential.

4.2.1 Training and generation
When instead investigating the raw, complex valued video data, the first experiments
were conducted with the naïve approach of training on IQ-data in time domain (i.e.
no preprocessing) and with in principle the same design as the architecture that
rendered good results in the prestudy. Unfortunately the results were not good, as
seen in Figure 4.2. There are no objects, and there are clear signs of mode collapse.

Figure 4.2: A selection of range-Doppler plots, displaying amplitude in frequency
domain, from generated data. Narrow network trained on IQ-data. No clear objects
visible. Amplitudes redacted.

As the networks in the prestudy were rather narrow (as in having few feature maps
each layer), making the networks wider was also tested. This improved results, as
seen in Figure 4.3. There are areas with higher amplitude, although the appearance
does not resemble real data; the objects are for example more smeared out in the
range dimension. As this wider type of networks anyway seemed to improve the
result, that architecture was kept for the following experiments.

It can also be noted that there are signs of phase coherence in the time domain visible
in Figure 4.4, meaning the network is able to handle the connection between the
amplitude and the phase. It could be clearer, and the existence of some coherence
with a decently generated Doppler amplitude is expected, as the data was generated
in the time domain; the time domain phase contain necessary information for the
frequency domain amplitude, as explained in Section 2.3.6.
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Figure 4.3: A selection of range-Doppler plots, displaying amplitude in frequency
domain, from generated data. Wide network trained on IQ-data. Objects vaguely
visible. Amplitudes redacted.

Figure 4.4: A selection of range-pulse plots, displaying amplitude and phase in
time domain, from generated data. Wide network trained on IQ-data. Some phase
coherence at objects can be noted. Amplitudes redacted.
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One difference from the prestudy using images can now be noted; images have a
known range of possible values, which the IQ-data does not have. The images in the
prestudy were for example in the range [0,255] (and rescaled to be between [-1,1]),
while the IQ-values are in the range [−105, 105]. This makes the plots for loss and
penalty (see Figure 4.5) harder to analyse, as they also take very large numbers,
and it also possibly makes it harder for the networks to learn. The decrease in loss
and penalty was also less than hoped for, neither going to zero nor stabilising as
discussed in Section 2.2.3.
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Figure 4.5: Metrics of a wide network trained for, and generating, data on rectan-
gular form.

The natural step was then to limit the data using input data on polar form and
using the logarithm of the amplitude. This gives more reasonable dynamics of the
networks, but the generated result is not ideal. The objects in the frequency domain
amplitude, shown in Figure 4.6, are smeared in the Doppler channel dimension,
coming from the time domain amplitude not being smooth enough. Also, the phase
shows little coherence in the time domain, which can be seen in Figure 4.7. The
aim of having metrics on a more manageable level was on the other hand fulfilled,
as seen in Figure 4.8

When instead training (and generating) Fourier transformed data, the results were
more promising, at least by visual inspection, see Figure 4.9. The metrics also show
a reasonable behaviour when training, with diminishing loss and penalty until it
does not change, as seen in Figures 4.10 and 4.11. The accuracy in Figure 4.12
shows a behaviour where the generator is successively improving in comparison to
the other nets. Accuracy is defined for the discriminator as average percentage of
correct classifications, while accuracy for the generator is the average percentage of
generated samples that were classified as real.
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Figure 4.6: A selection of range-Doppler plots, displaying amplitude in frequency
domain, from generated data. Network trained on polar data with logarithmic
amplitude. Objects vaguely visible, but smeared in Doppler channel dimension.
Amplitudes redacted.

Figure 4.7: A selection of range-pulse plots, displaying amplitude and phase in
time domain, from generated data. Network trained on polar data with logarithmic
amplitude. Little to no phase coherence at objects. Amplitudes redacted.
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Figure 4.8: Metrics of a network trained for, and generating, data on polar form
with logarithmic amplitude.
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Figure 4.9: A selection of range-Doppler plots, displaying amplitude in frequency
domain, from generated data. Network trained on Fourier transformed data with
logarithmic amplitude as input. Clear objects visible in almost all plots. Amplitudes
redacted.
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Figure 4.10: Metrics of a network trained on, and generating, Fourier transformed
data on polar form. Only first 60 epochs for readability.
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Figure 4.11: Metrics of a network trained on, and generating, Fourier transformed
data on polar form. First 60 training epochs omitted for readability.
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The results when using the version where the discriminator takes both time and
frequency domain data as input show no major difference in the plots compared to
the version that only uses frequency domain data. See Figure 4.13 for the frequency
domain plot of the amplitude. Possibly the phase coherence is slightly improved,
but only marginally, compare Figure 4.14 and Figure 4.15.

When discarding the phase in the training, seen in Figure 4.16, the objects appear
to be clearer and more realistic. However, as the phase inherently is absent in this
model, it was not possible to analyse this network further.

Figure 4.13: A selection of range-Doppler plots, displaying amplitude in frequency
domain, from generated data. Network trained on time domain data, as well as
Fourier transformed data with logarithmic amplitude as input. Objects clearly vis-
ible in almost all plots. Amplitudes redacted.

Figure 4.14: A selection of range-pulse plots, amplitude and phase in time domain,
from generated data. Network trained on Fourier transformed data, with logarith-
mic amplitude as input. Mostly visible coherence in phase at objects. Amplitudes
redacted.
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Figure 4.15: A selection of range-pulse plots, amplitude and phase in time domain,
from generated data. Network trained on time domain data as well as Fourier
transformed data, with logarithmic amplitude as input. Mostly visible coherence in
phase at objects. Amplitudes redacted.

Figure 4.16: A selection of range-Doppler plots, displaying amplitude in frequency
domain, from generated data. Network trained on, and generating, Fourier trans-
formed data with logarithmic amplitude without phase. Objects very clearly visible
in almost all plots. Amplitudes redacted.
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4.2.2 Qualitative evaluation results
In the end, it seems the CWALI model was able to generate decent-looking radar
images, at least by visual inspection. The frequency domain plots often show a clear
object with a reasonable amplitude. Shuffling these examples, a human would have
difficulty distinguishing real from fake. An uncurated collection of frequency domain
amplitude plots of both real and generated samples can be found in Appendix B.
However it seems that most classes look very similar, which is most likely due to
the k-means filtering, which extracted samples that had clear objects in them. The
difference in the data set without k-means filtering can also be seen in Appendix B.

4.2.3 Quantitative evaluation results
Although good quantitative metrics are hard to find, some examples are given in
the following sections.

4.2.3.1 Maximum mean discrepancy

Sampling 500 real examples of every class and generating an equal amount, an
estimate of the maximum mean discrepancy can be calculated and seen in Table 4.3.
This maximum mean discrepancy estimate has used the rational quadratic kernel
with α = 0.5 as described in Section 3.6.

Data set Jet Propeller Helicopter Drone Bird

k-means 4.6 · 10−4 3.9 · 10−5 1.0 · 10−5 2.3 · 10−4 2.4 · 10−4

Full data 9.8 · 10−4 6.8 · 10−5 6.3 · 10−5 2.9 · 10−4 9.5 · 10−5

Table 4.3: Maximum mean discrepancy between the data set and generated sam-
ples of each class.

As the table shows, our model manages to generate samples with very low MMD for
every class compared with the training data, indeed if one takes the MMD between
the data sets and completely random data or between classes in the training data, the
results are a couple of orders of magnitude larger. However, comparing classes in the
generated data gives similar values as in Table 4.3. Calculating the MMD between
the given data set and a set of random complex matrices with elements of similar
magnitude consistently gave an MMD of around 2. This gives some quantitative
measure of how well the model manages to generate samples. One can also see the
difference the use of k-means clustering makes; for almost all classes the generated
and training data showed more similarities.

4.2.3.2 Classification network

Using the neural net trained by another group of thesis workers, as described in
Section 3.6, by generating 1000 images of jets and 1000 images of helicopters, the
results in Table 4.4 were obtained.
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Class Correctly classified

Jet 82.7%
Helicopter 15.7%

Table 4.4: Correct classifications by neural net.

Keep in mind that “correct” here means that the neural net classified the samples
as what we told our model to generate. As the table shows, CWALI manages pretty
well with generating jets according to the neural net. However the generation of
helicopters seems to be a bit lacking.
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In this thesis we developed a novel hybrid generative adversarial network dubbed
CWALI, which has shown good success in generating processed radar data. When
generating raw radar video data, which was the goal of the project, the results were
less impressive. Still, it managed to generate somewhat realistic data, and this shows
the potential of utilising GAN in this application. Here follows a discussion of the
results, with suggestions for possible improvements, together with a conclusion of
the thesis.

5.1 Architecture
The architectures of the networks used in the thesis, both in terms of input and out-
put data, and underlying variant of the GAN concept can be discussed at length,
with the foundation of the results shown in the previous chapter. Primarily the
aspects of quality and feasibility of using the architectures in contexts radar appli-
cations are in focus in the following sections.

5.1.1 Input and output data
The results show that what type of data the network takes as input has large impact
on the quality of the generation, and that the progression of preprocessing solutions
was crucial. Taking an identical approach as to images was not possible; the results
were very bad. But just increasing the size of the network gave clear improvements.
Switching to polar form changed the output and the dynamics, but not necessarily
the quality. Still this was a step in the right direction, and when training on Fourier
transformed data, the quality clearly improved. Surprisingly, using more information
in the form of training the discriminator on data in both time and frequency domain
did not improve the quality. Intuitively this should help the network learn more
patterns, but this was not the case. Possibly, the network needed to be larger
for it to be able to make use of all this information. The image-like architecture
only generating amplitude data predictably performed well, but was in principle out
of this projects scope, which was to generate time domain raw radar data. As the
amplitude data was in frequency domain, and there was no phase, it was not possible
to convert to time domain data. It can be noted as an interesting observation for
future applications, though.
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To conclude the discussion regarding the data, an architecture using and generating
data on polar form, with logarithmic amplitude, in frequency domain seem to be
the best option for generating raw radar data, although combining the domains, or
only generating phase show some potential.

5.1.2 GAN technique
Regarding the general GAN architecture used in this thesis, called CWALI, it showed
relatively good potential in generating realistic radar data, but as it is not the most
advanced implementation of a GAN, it is likely that it could be improved. Also, there
were no theoretical indications as to why using ALI – the concept of using a third
network to generate latent vectors from images – is the best choice (as the inference
of latent space was not used in this work), but merely empirical indications of it
performing slightly better. This technique could in principle be discarded, though
we kept it in our model as it did show better results. That Wasserstein GANs have
good performance is well known (as well as tested in the prestudy), and is therefore
most certainly a good choice in this context.

As the aim of the thesis was to generate data from a description, some kind of condi-
tional GAN was needed, but here the results show clear room for improvement; the
network did not learn well enough to separate the different types of objects, shown
both with MMD and the classifying network. Of course it might be so that MMD
is not the perfect metric, and that the classification network is a neural network,
with all that that entails. Still, it is an indication of that the conditionality of the
network should be improved. Considering that the network in the prestudy man-
aged to handle the different classes well, this should not be an impossible problem
to solve, but as of now the generated radar data does not follow the conditions well
enough. To have a conditional network should still be a better solution than to have
separate networks for each class, at least if the aim is to add more labels in the
future.For this limited application though, separate networks could be of interest.
On the subject of MMD, it also shows that the generated data is rather similar to
the training data, which confirms what could be seen visually.

There exist even more advanced GAN architectures that generate more impressive
results when in the realm of images, and which could possibly do so with radar
data as well. This would also be interesting to investigate further, but to fit a more
complicated architecture as foundation for this thesis was not feasible, as it was
not known what would be necessary to change to achieve good performance for the
radar data.

As the aim was to prove the concept of generating radar data using GANs and
not necessarily to do it perfectly, the chosen architecture was for this application
sufficient. A more complicated architecture would most certainly have made it
harder to implement the changes required for the move from images to radar data.
Applying a more sophisticated base architecture could improve the quality though,
and at least some improvement in the area of conditionality is needed to make radar
data generating GANs a useful tool.
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5.2 Convergence and hyper-parameters
Although the generated data is not at the same level as recorded data, the better
example show that it is not impossible to somewhat realistic raw radar video data
using GAN. The reason the result is not more satisfying could be the integral problem
of convergence of GANs, i.e. the minimax game does not necessarily have a Nash
equilibrium or global optimum. Even if it did, the training is unstable and heavily
dependent on hyper-parameters, and the number of hyper-parameters is not small.

As the aim of this thesis was not to find the optimal radar data generating method,
but to prove the concept of generating radar data using GAN (which in itself is a
challenge), the focus was never to investigate every possible combination of param-
eters and networks. Some different variants of hyper-parameters, such as learning
rate, width of networks were tested, and what is described in this thesis is a de-
cent baseline of those variants, but having a wider network might for example give
better result, at the expense of training time, and when testing many different ar-
chitectures, training time is a limiting factor. Also, tweaking hyper-parameters on a
complex and stochastic system like a GAN requires tests of many different combina-
tion of parameters, as well as averaging of the results, which is out of this project’s
scope. Rather, working solutions from other contexts (mainly images) were used as
heavy inspiration when developing the networks for complex-valued radar data, but
what is a good and stable setup, with convergent training for images might not be
the same setup in the application of this thesis; as GANs are as sensitive as they
are, it is even quite likely. For example, the selection of Adam as optimiser might
give good results for images, but possibly not for radar data. Still, a not too small
portion of the generated data shows good potential. It is therefore reasonable to
believe that the concept is good, although the perfect network or combination of
parameters has not been found. This could very well be investigated further.

5.3 The phase problem
The phase contains a lot of information, although it is not necessarily easy to analyse,
and is usually discarded halfway through the signal processing of a radar. An object
is clearly marked (especially in frequency domain) in the amplitude plot, but not in
the phase plot. It seems like it is easier to find and generate the relevant patterns
in the amplitude than in the phase, which also the results in Section 4.2.1 suggest.
When only training on and generating amplitudes, at least through visual inspection,
the results are noticeably improved. This is not surprising, as a plot with only
amplitudes is very similar in structure to an image with only one channel, which
a GAN should be able to handle well, and even the network used in the prestudy
had good results when generating images (with three channels). This suggests the
network had difficulty learning the amplitude/phase relationship, but as it clearly
manages to generate a phase with coherent patterns at the generated object when
converting to time domain, it has some success.

Not being able to generate phase well can be a serious issue if the aim is to generate

43



5. Discussion

realistic data. How much information that might be lost in a badly generated phase
has not been investigated in this thesis, but that is somewhat beside the point; if
the phase does not match what is seen in reality, the generated data is not realistic.

This leads to how one might try to solve this issue, and there are a couple of possible
solutions. First of all, the solution to the problem of complex numbers and neural
networks has in this thesis been to use real numbered networks and hope that they
will learn the relations between the channels. Developing a true complex-valued
network could be a solution to better preserve the dynamics of the data, but as there
exist no libraries etc. for complex numbers in common machine learning softwares,
this has to be created separately, which is time consuming. Another possible solution
might be to simply only generate the amplitude with a GAN, and with some other
technique generate the phase from the amplitude. As such techniques of this kind
exist, it could be possible to develop a solution for this context as well.

5.4 Lack of evaluation metrics
As most evaluation metrics depend on pre-trained models trained on different data
sets, none of these are entirely applicable to our models. Using a model trained on
pictures of objects to evaluate whether our GAN can generate radar data will not
provide a relevant metric. There is the option of transfer learning of course, and
modifying the input and output layers of the inception model before retraining it
to classify radar data, but this is also problematic for the same reasons why the
Inception Score and Fréchet Inception Distance aren’t applicable, as radar video
data is quite different from the images contained in the ImageNet database and
other similar machine learning training data sets.

The classic method of evaluating neural nets, to keep held out validation and test
data sets also does not map cleanly onto GANs, as the generator implicitly learns
from the data set supplied at training, and keeping some data samples away from
the training introduces the risk of the generator potentially not learning to generate
certain modes of the data distribution.

For these reasons, the only meaningful evaluation metrics were to classify generated
images using classification nets trained on the same data, created by another group
of thesis students at SAAB. The results of these evaluations gives the best possible
insight other than visual inspection into whether or not the generated data seems
realistic or not. Though this method of evaluation is also questionable as it gives no
indication of whether or not the generator has got stuck in mode collapse, meaning
one still has to resort to visual inspection of the generated data to verify that it
is diverse. In our case, this is indeed the case and the generator seems to not be
stuck in mode collapse. In short, there is a great need within the field of GANs for
generalised and robust evaluation metrics, which at the time of writing is lacking.

The fact that the best evaluation metric for GANs in general is visual inspection
is a serious concern when dealing with radar data. It is easy to see if an image is
realistic or not, but it is not as simple with raw radar video. If generated data is to
be used a certain application, it has to be possible to see whether the data actually
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is what is expected, and that is a non-trivial problem when it is not possible for a
human to look at it and make a decision. The same problem occurs when expanding
data sets, as the number of samples is likely to reach a size so large that humans
can not verify the quality. This could make it impossible to use GANs as a practical
tool.

5.5 Conclusion
Generative adversarial networks is a powerful generative technique, but it suffers
from great training instability and lacks rigorous evaluation metrics. As such, it
is difficult to find proper parameters which will generate any given type of data.
This thesis show that it is possible to generate raw, realistic radar video data, but
that the quality is not high enough for it to be usable in a product as of now. For
generating images on the other hand the technique is more mature, and could be
used to e.g. expand data sets of already processed radar data. If the aim is to
expand a data set, and specifically to generate more samples of classes with very
few samples, it is crucial that the quality of the generated data is high, and that the
generated samples of a certain class matches real data. This is rarely the case with
GANs in general, and certainly not in this radar application. Also, as long as there
is no efficient way to evaluate whether the generated data is what was expected, of
the quality expected, it is difficult to find a use case for the technique, despite its
potential.

5.6 Future work
If GANs are to be used in radar-based applications, generating the fully complex-
valued raw data is not the best approach. However, if one would instead generate
only the amplitudes of the raw data and from this reconstruct a coherent phase, the
data might actually start looking realistic. We did not implement this sort of phase
retrieval due to time constraints. Also, the conditionality of the data generation
should be improved, or at least analysed further, for this technique to be a useful
tool. Even further investigation in finding good hyper-parameters could improve the
performance significantly in such unstable architectures as GANs.

Another option is to instead of generating raw video, to generate at least somewhat
signal-processed video. This would reduce the parameter space and might be easier
and more stable to implement than trying to generate the raw video.

Our GAN only generates short-time, short-distance cutouts from a single lobe of
the radar data. Expanding to generating the full height of the detection volume
would be a natural extension to this work, such that the GAN would generate a 3D
detection volume.

45



5. Discussion

46



Bibliography

[1] Ian J. Goodfellow et al. Generative Adversarial Networks. 2014. arXiv: 1406.
2661 [stat.ML].

[2] Mehdi Mirza and Simon Osindero. Conditional Generative Adversarial Nets.
2014. arXiv: 1411.1784 [cs.LG].

[3] Yann LeCunn. The MNIST database of handwritten digits. http://yann.
lecun.com/exdb/mnist/. Accessed: 2020-03-18. 1998.

[4] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised Representa-
tion Learning with Deep Convolutional Generative Adversarial Networks. 2015.
arXiv: 1511.06434 [cs.LG].

[5] Jeff Donahue, Philipp Krähenbühl, and Trevor Darrell. Adversarial Feature
Learning. 2016. arXiv: 1605.09782 [cs.LG].

[6] Vincent Dumoulin et al. Adversarially Learned Inference. 2016. arXiv: 1606.
00704 [stat.ML].

[7] Tim Salimans et al. Improved Techniques for Training GANs. 2016. arXiv:
1606.03498 [cs.LG].

[8] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein GAN.
2017. arXiv: 1701.07875 [stat.ML].

[9] Ishaan Gulrajani et al. Improved Training of Wasserstein GANs. 2017. arXiv:
1704.00028 [cs.LG].

[10] Nitzan Guberman. On Complex Valued Convolutional Neural Networks. 2016.
arXiv: 1602.09046 [cs.NE].

[11] Qigong Sun et al. Semi-supervised Complex-valued GAN for Polarimetric SAR
Image Classification. 2019. arXiv: 1906.03605 [eess.IV].

[12] Bernhard Mehlig. Lecture Notes – Artificial Neural Networks. Accessed: 2020-
01-21. 2019. url: http://physics.gu.se/~frtbm/joomla/media/mydocs/
ann.pdf.

[13] Farzan Farnia and Asuman Ozdaglar. GANs May Have No Nash Equilibria.
2020. arXiv: 2002.09124 [cs.LG].

[14] Y. Shoham and K. Leyton-Brown. Multiagent Systems: Algorithmic, Game-
Theoretic, and Logical Foundations. Cambridge University Press, 2008. isbn:
9781139475242.

[15] Ian Goodfellow. NIPS 2016 Tutorial: Generative Adversarial Networks. 2016.
arXiv: 2016.00160 [cs.LG].

[16] Ali Borji. Pros and Cons of GAN Evaluation Measures. 2018. arXiv: 1802.
03446 [cs.CV].

47

https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1411.1784
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://arxiv.org/abs/1511.06434
https://arxiv.org/abs/1605.09782
https://arxiv.org/abs/1606.00704
https://arxiv.org/abs/1606.00704
https://arxiv.org/abs/1606.03498
https://arxiv.org/abs/1701.07875
https://arxiv.org/abs/1704.00028
https://arxiv.org/abs/1602.09046
https://arxiv.org/abs/1906.03605
http://physics.gu.se/~frtbm/joomla/media/mydocs/ann.pdf
http://physics.gu.se/~frtbm/joomla/media/mydocs/ann.pdf
https://arxiv.org/abs/2002.09124
https://arxiv.org/abs/2016.00160
https://arxiv.org/abs/1802.03446
https://arxiv.org/abs/1802.03446


Bibliography

[17] Martin Heusel et al. GANs Trained by a Two Time-Scale Update Rule Con-
verge to a Local Nash Equilibrium. 2017. arXiv: 1706.08500 [cs.LG].

[18] Shane Barratt and Rishi Sharma. A Note on the Inception Score. 2018. arXiv:
1801.01973 [stat.ML].

[19] George W. Stimson. Introduction to airborne radar. 2nd ed. SciTech, 1998.
[20] Andrés Marafioti et al. Adversarial Generation of Time-Frequency Features

with application in audio synthesis. 2019. arXiv: 1902.04072 [cs.SD].
[21] Martín Abadi et al. TensorFlow: Large-Scale Machine Learning on Hetero-

geneous Systems. Software available from tensorflow.org. 2015. url: https:
//www.tensorflow.org/.

[22] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimiza-
tion. 2014. arXiv: 1412.6980 [cs.LG].

[23] Arthur Gretton et al. “A Kernel Two-Sample Test”. In: Journal of Machine
Learning Research 13.25 (2012), pp. 723–773. url: http : / / jmlr . org /
papers/v13/gretton12a.html.

48

https://arxiv.org/abs/1706.08500
https://arxiv.org/abs/1801.01973
https://arxiv.org/abs/1902.04072
https://www.tensorflow.org/
https://www.tensorflow.org/
https://arxiv.org/abs/1412.6980
http://jmlr.org/papers/v13/gretton12a.html
http://jmlr.org/papers/v13/gretton12a.html


A
CWALI architecture

This appendix contains the layer structure of the three adversarial nets of polar
form CWALI. The tables generally denote the shape of the output that is fed into
the next layer using a tuple of numbers, representing the size of each dimension of
the output. Output dimension inbetween layers is not fixed and varies depending
on layer type, and while the tables show every layer, the progression is not strictly
linear from top to bottom as the output channels of some layers can be split and
processed separately. See Section 3.3.2 for figures.

A.1 Discriminator

Table A.1 shows the structure of the CWALI discriminator. The slope value of the
leaky ReLU activation function is in all layers set to 0.2, and the kernel and stride
size where applicable is equal, as this gave the best results.

Layer Type Activation Kernel size Strides Output shape

1 Input (Image) – – – (36,21,2)
2 2D Convolution Leaky ReLU (5,5) (2,2) (18,11,64)
3 2D Convolution Leaky ReLU (5,5) (2,2) (9,6,128)
4 2D Convolution Leaky ReLU (5,5) (2,2) (5,3,256)
5 2D Convolution Leaky ReLU (5,5) (2,2) (3,2,512)
6 Flatten – – – (3072,)
7 Input (Latent) – – – (100,)
8 Input (Class) – – – (5,)
9 Concatenation – – – (3177,)
10 Dense Linear – – (1,)

Table A.1: Layer-by-layer description of the CWALI discriminator.

Layers 6-8 are independent of each other, and get concatenated by layer 9 before
being fed into layer 10. To supplement the table, a diagram of the architecture can
also be found in Figure 3.2
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A. CWALI architecture

A.2 Decoder
Table A.2 shows the structure of the CWALI decoder. See Figure 3.1 for a diagram.

Layer Type Activation Kernel size Strides Output shape

1 Input (Latent) – – – (100,)
2 Input (Class) – – – (5,)
3 Concatenation – – – (105,)
4 Dense ReLU – – (2304,)
5 Reshape – – – (3,3,256)
6 2D Upsampling – – (3,2) (9,6,256)
7 2D Convolution ReLU (5,5) (1,1) (9,6,128)
8 Batch Norm. – – – (9,6,128)
9 2D Upsampling – – (2,2) (18,12,128)
10 2D Convolution ReLU (5,5) (1,1) (18,12,64)
11 Batch Norm. – – – (18,12,64)
12 2D Upsampling – – (2,2) (36,24,64)
13 2D Convolution None (5,5) (1,1) (36,24,2)
14 2D Cropping – – – (36,21,2)
15 Activation ReLU – – (36,21)
16 Activation π×Tanh – – (36,21)
17 Stack – – – (36,21,2)

Table A.2: Layer-by-layer description of the CWALI decoder.

A.3 Encoder
Finally, the encoder, which encodes samples to latent space. It is very similar to
the discriminator, save for the inputs and an activation function. Table A.3 and
Figure 3.3 describe this final net.

Layer Type Activation Kernel size Strides Output shape

1 Input (Image) – – – (36,21,2)
2 2D Convolution Leaky ReLU (5,5) (2,2) (18,11,64)
3 2D Convolution Leaky ReLU (5,5) (2,2) (9,6,128)
4 2D Convolution Leaky ReLU (5,5) (2,2) (5,3,256)
5 2D Convolution Leaky ReLU (5,5) (2,2) (3,2,512)
6 Flatten – – – (3072,)
7 Input (Class) – – – (5,)
8 Concatenation – – – (3077,)
9 Dense Tanh – – (100,)

Table A.3: Layer-by-layer description of the CWALI encoder.
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B
Data comparisons

This section contains amplitude plots of FFT-processed data.

Figure B.1: Example of 100 plots of jets from the training dataset.
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Figure B.2: Example of 100 plots of generated jets.
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Figure B.3: Example of 100 plots of jets from the training dataset before k-means
filtering.
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Figure B.4: Example of 100 plots of propeller planes from the training dataset.
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Figure B.5: Example of 100 plots of generated propeller planes.
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Figure B.6: Example of 100 plots of propeller planes from the training dataset
before k-means filtering.
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Figure B.7: Example of 100 plots of helicopters from the training dataset.
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Figure B.8: Example of 100 plots of generated helicopters.
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Figure B.9: Example of 100 plots of helicopters from the training dataset before
k-means filtering.
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Figure B.10: Example of 100 plots of drones from the training dataset.
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Figure B.11: Example of 100 plots of generated drones.
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Figure B.12: Example of 100 plots of drones from the training dataset before
k-means filtering.
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Figure B.13: Example of 100 plots of birds from the training dataset.
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Figure B.14: Example of 100 plots of generated birds.
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B. Data comparisons

Figure B.15: Example of 100 plots of birds from the training dataset before k-
means filtering.
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