Raising Feldspar to a Higher Level
Extending the Support for Digital Signal Processing Functions
in Feldspar

Master of Science Thesis in the Programme Foundations of Computing —
Algorithms, Languages, and Logic

KARIN KEIJZER

Chalmers University of Technology

University of Gothenburg

Department of Computer Science and Engineering
Goteborg, Sweden, June 2010

The Author grants to Chalmers University of Technology and University of Gothenburg
the non-exclusive right to publish the Work electronically and in a non-commercial
purpose make it accessible on the Internet.

The Author warrants that she is the author to the Work, and warrants that the Work does
not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a
publisher or a company), acknowledge the third party about this agreement. If the Author
has signed a copyright agreement with a third party regarding the Work, the Author
warrants hereby that she has obtained any necessary permission from this third party to let
Chalmers University of Technology and University of Gothenburg store the Work
electronically and make it accessible on the Internet.

Raising Feldspar to a Higher Level
Extending the Support for Digital Signal Processing Functions in Feldspar

Karin Keijzer

© Karin Keijzer, June 2010.

Supervisor: Emil Axelsson
Examiner: Mary Sheeran

Chalmers University of Technology

University of Gothenburg

Department of Computer Science and Engineering
SE-412 96 Goteborg

Sweden

Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
Goteborg, Sweden June 2010

Contents

il

10
10
11
11
12
14
14
16
17

19

v

50

53

60

60

63
63
64
65
66
68
69
71

73

75
1)
76
77

83

Chapter 1

Introduction

Baseband telecommunication systems need more processing power every day, and
single core systems have a hard time to deal with the processing requests from
the users. Therefore, more and more systems are replaced by multi-core or multi-
processor systems. These systems need adapted applications to optimize usage of
the cores and processors. On top of the need for more processing power, most code
for digital signal processing applications is currently hand written and optimized
in low level C code. Writing this code for various hardware platforms is a time-
consuming process.

Feldspar [I] is a domain specific language (DSL) for digital signal processing (DSP)
initially designed with baseband telecommunication systems in mind. Feldspar
is a strongly typed high level functional language which during compilation is
translated to hardware specific C code via an intermediate core language. Because
it is a high level functional language it raises the level of abstraction of the code for
programmers. In short, digital signal processing systems perform operations, i.e.
functions, on continuous data streams, which can often be represented as functions
on finite-sized vectors or arrays[2]. Feldspar programs are able to use these vectors
and in many cases the compiler can optimize the code written for these vectors.
In this thesis I will investigate raising the level of abstraction for implementing
digital signal processing functions. More specifically, I will design and implement
general helper functions for filters and filter-like functions; and I will design and
implement a matrix module for transforms like the Fourier transform.

The language Feldspar is a fairly young language; and I was one of the first to
implement digital signal processing functions in it. As a result of Feldspar being
a new language, it has changed several times during my thesis. For example one
of the larger change included the vector module. Before there were two different
kind of vectors, parallel and sequential, where there is currently only one kind of

CHAPTER 1. INTRODUCTION 2

vector. Also the vectors had type level sizes which means that the length of the
vector was defined in the type. The changes to the current version of vectors made
programming in Feldspar easier; however, it also meant that I had to rewrite my
examples and other Feldspar code from time to time.

During this thesis I also contributed to a paper sent to MEMOCODE 2010,
Feldspar: A Domain Specific Language for Digital Signal Processing algorithms
[M]. Tt was very nice to get such an opportunity. For the paper I worked on ex-

amples and on the case study about matrices in Feldspar. This case study is also
included in Chapter of this thesis.

In this thesis some prior knowledge of functional programming, more specifically
Haskell, is expected. A good introduction to Haskell is given by Hutton [3].

Outline Chapter [2 provides background information about domain specific lan-
guages, digital signal processing, and digital signal processing functions. Next,
Feldspar is introduced briefly in Chapter Chapter M gives a short summary
about the case studies I have worked on during this thesis, after which Chapters
Bl 6 and [describe them in more detail. After that, in Chapter B I will discuss
some related work which has been done in the area of domain specific languages
and digital signal processing. I will end this thesis with a conclusion in Chapter Q.

Chapter 2

Background

This chapter contains general background information on domain specific lan-
guages, digital signal processing, baseband processing, and the digital signal pro-
cessing functions used in this thesis.

2.1 Domain Specific Languages

Domain specific languages (DSLs) are programming languages designed and opti-
mized for a specific domain. As a result of being designed for a specific domain
DSLs offer often more expressiveness and are easier to use in their domain than a
general purpose programming language such as C, Java, or Haskell [4].

Examples of well known DSLs are SQL, a language to add, change, and retrieve
information from databases; VHDL, a hardware description language; and I¥TEX,
a document markup language.

In this thesis I will use the domain specific language Feldspar which is designed
for digital signal processing with baseband telecommunication systems in mind.

2.2 Digital Signal Processing

Digital signal processing (DSP) encompasses the analysis, representation, and
modification of digital signals. The signals in DSP are represented as discrete-
time signals which contain equally spaced discrete samples synchronous to the
original analog signal [2]. We will not consider continuous signals in this thesis.

CHAPTER 2. BACKGROUND 4

2.2.1 Digital Signal Processing Domains

Signals in digital signal processing can be evaluated in several domaind]. Examples
of these domains are the time domain, frequency domain, autocorrelation domain,
and wavelet domain. Each domain has different characteristics, and depending on
the domain of the signal it is possible to capture different aspects of the signal. In
the next paragraphs a short overview of the time and frequency domains is given.

Time domain In the time domain, a signal is represented as a function over
time. The three most basic operations which can be applied to signals in the time-
domain are scaling, delay, and addition. Scaling multiplies the input signal with
a constant value, a delay operation delays the input signal, and addition adds a
constant value or another signal to the input signal [2]. Below is the Feldspar code
of a scale, delay and add function shown. Note that this code could as well be
Haskell code.

-— Multiply the signal zs by a constant
scale ¢ xs = map (* c) xs

-— Delay the signal zs by c
delay c¢ xs = replicate c 0 ++ xs

-—- Add a constant c to the signal zs
add ¢ xs = map (+ c) xs

These basic operations are used to build more complex signal processing opera-
tions, like filters. Filters are used to capture specific characteristics of the signal.
For example how a signal changes over time. Examples of different filters are finite
impulse response and infinite impulse response filters. A more detailed discussion
on filters is provided in Section

Frequency domain The frequency domain shows the magnitude and the phase
component of each frequency used in a signal. Furthermore, in this domain, filters
can be used to capture specific information such as the frequency and phase of
a signal. The Fourier transform transforms a signal from the time domain to a
signal in the frequency domain [5]. The signal can be transformed back to the
time domain using the inverse Fourier transform. A mathematical description of
the discrete Fourier transform is given in section 2.4]

IThe word domain is here used in a different context from that in Section 211

CHAPTER 2. BACKGROUND 5

2.2.2 Filters

In digital signal processing a filter removes unwanted information from a signal. In
this thesis only discrete time filters are used. Below two important types of filters
are explained, namely the finite impulse response filter and the infinite impulse
response filter.

The finite impulse response filter (FIR) is a type of digital filter which after
an impulse converges to zero in a finite number of steps [5]. This is in contrast to
infinite impulse response filter which does not converge to zero. Examples of FIR
filters are Moving Average and lowpass filters [6].

The infinite impulse response filter (IIR) is a type of digital filter which,
contrary to a FIR filter, does not converge to zero when applied to an impulse [5].
This is because an IIR filter uses the previous input and output values as feed-
forward and feedback. In this thesis I will use the term feed-forward for reusing
previous input values, thus when iterating over a vector and the current index is
n (and the next input is n + 1) with the term previous input values I mean the
indices 0 to n — 1 of the input vector. Examples of IIR filters are Chebyshev filter,
Butterworth filter, and the Bessel filter [5] [6].

2.3 Baseband Processing

Signal processing systems tend to have strict timing requirements, for example in
real-time signal processing applications like Internet voice and video applications
delays are undesirable. Telecom base-stations often have hardware and micropro-
cessors specifically designed for DSP operations. Digital signal processors perform
many mathematical operations in parallel and therefore have an instruction set
optimized for these calculations [7]. In this section, I will give a brief introduction
to baseband processing.

The radio frequency spectrum is a scarce resource; therefore researchers and engi-
neers are trying to improve the spectral efficiency of modulation methods. This is
done to increase the bandwidth such that more users simultaneously are able to
use the same frequencies and more data could be sent on the same frequencies [§].

Modulating a data signal with a carrier signal is varying the frequency, amplitude,
phase, and other components of the carrier signal such that the data is sent over
the carrier signal.

Baseband processing encompasses the modulation of digital bit-streams to fre-
quency signals before sending the data, and the recovery of the modulated signal
after receipt. During the transmission of the signal they are subject to interference,

CHAPTER 2. BACKGROUND 6

noise, impairments, etc. Consequently, error correction algorithms are needed to
recover the original signal [§].

Improving the spectral efficiency also introduces a significant amount of complex-
ity to baseband processing on top of the fundamental challenges and computations
of radio wave propagation. Two of the problems which occur during the trans-
mission are multi-path propagation and transmission errors. The first one occurs
when a signal reaches the destination using several paths, for example when a
signal reflects on objects between the sender and the receiver. There are many
reasons transmission errors occur, one of them is noise. Noise is an unwanted
signal combined with the data signal sent by the sender. Noise can, for exam-
ple, come from lightning or from interference with other signals. After receiving
a signal, several processing tasks need to be performed: channel coding including
turbo and convolutional codes, but also synchronization, channel estimation and
equalization. For more information on baseband processing, refer to [§].

2.4 Digital Signal Processing Functions

In this thesis, several common digital signal processing functions are used as ex-
amples and implemented in Feldspar. In the next paragraphs, I will give short
descriptions of them.

2.4.1 Filters

Moving average (MA) is a type of finite impulse response filter which is used to
analyze data points by creating a series of averages of the input. [5]

y[n] = Z b; x[n — i (2.1)

Where z[n] is the input vector, b; are the filter coefficients, P is the filter order,
and y[n| is the output vector. Figure] shows the Moving Average model [6].
Below is a short explanation of the symbols used in Figures 2.1} 2.2l and 2.3]

In the Figures 21 and 22 x; and y; represent the input and output vector of
the filter. The values a,, and b, are the filter coefficients, as shown in Equations
21 and 22 The symbols &) and D represent multiplication and addition of the
input values. As last, the symbol @ represents a delay in the signal. In addition
to the symbols explained above, the turbo encoder (Figure 23] also has a switch
(shown as two crossing arrows, a solid and a dashed arrow). This switch connects

CHAPTER 2. BACKGROUND 7

Figure 2.1: Moving average model.

the solid lines whenever there are new input values; however, when there are no
more input values and there are still values in the delay components, the switch
connects the dashed line to the system.

Autoregressive model (AR) is a type of infinite impulse response filter that
attempts to predict the output values y[n] based on the previous outputs. The
output value depends on the current input value (z[n]) and previous output values

(yln —1],y[n—2],...,y[0]). [A]

a; yln — i (2.2)

M@

i=1

Where z[n] is the input vector, a; are the filter coefficients, @ is the filter order,
and y[n] is the output vector. Figure shows the Autoregressive model [0].

Autoregressive moving average model (ARMA) is a combination of AR and
MA, and therefore a type of infinite impulse response filter. [5]

y[n]:Zb [n — 1] Za]y n—j (2.3)

Where z[n] is the input vector, b; are the feed-forward filter coefficients, P is the
feed-forward filter order, a; are the feedback filter coefficients, @) is the feedback
filter order, and y[n| is the output vector.

CHAPTER 2. BACKGROUND 8

Figure 2.2: Autoregressive model.

Turbo code is not a filter but a high-performance error correction code used in
3G mobile telephone standards. [9]

Turbo coding consists of two parts, encoding of the signal before sending, and
decoding of the received signal. In this report I will only use and implement the
Turbo encoder.

The Turbo encoder, shown in Figure 23] receives one input vector and returns
three output vectors. The first output vector z; is equal to the input vector. The
second output vector z; is a combination of the input and intermediate values.
The last output vector zj, is basically the same as the second output vector, except
before computing it the input vector is interleaved [J]. Interleaving a vector is re-
arranging the elements in a non-contiguous way such that two succeeding elements
are not next to each other after interleaving the vector.

2.4.2 Transforms

The transforms considered in this thesis are as follows:

The discrete Fourier transform (DFT) transforms a signal from the time do-
main into the frequency domain [5]:

y[n] = zlk] e X p=0, .. N—-1 (2.4)

CHAPTER 2. BACKGROUND 9

Xk
1 AN,
P P
Xk
» ! LF\ »
Ry A R, W
A) 4
: MNe
y T DA
Interleaver T A Z,§
N Nl
X,
[N ;f\ » «
RPN, B R B
A b 4
. M
NP

Figure 2.3: Turbo encoder.

The input x[n] and output y[n] are finite sequences where the input consists of real
valued numbers and the output of complex valued numbers, and N is the number
of input values. The naive implementation has a runtime complexity of O(n?).

The fast Fourier transform (FFT) is an efficient algorithm to compute the DFT
which takes O(nlogn) instead of O(n?) arithmetical operations. A well known
algorithm is the Cooley-Tukey algorithm [10].

The discrete cosine transform (DCT) is a function similar to the DFT, but
using only real numbers. The DCT is used in many signal and image processing
applications. There are several variants of the DCT, the most common it the

type-11 DCT [11]:

yln] :Nz_:la;[k] cos l% (k+%) n} n=0, ..,N—1 (2.5)

k=0

Where y[n] are the output values and z[n] are the input values.
The Walsh-Hadamard transform (WHT) is a generalized Fourier transform,

using only real numbers [12]:

N—

yln] =Y k] ()™ n=0, .. ,N-1 (2.6)

k=0

[y

Where n - k is the bitwise dot product of n and k, x[n| are the input values, y[n]
are the output values.

Chapter 3

Feldspar

Feldspar [I], 13] is a domain specific language (DSL) for digital signal processing
(DSP), designed with baseband telecommunication systems in mind. Feldspar is
developed in a joint research project between Ericsson, Chalmers University of
Technology (Géteborg, Sweden), and Eotvos Lorand University (Budapest, Hun-
gary).

Feldspar is a strongly typed high level functional language which raises the level of
abstraction for programmers. The aim is to provide the same style of programming
as used in Haskell with the opportunity to allow compilation to efficient hardware
specific C code. To make the compilation to efficient code possible, Feldspar is
more restrictive than Haskell.

This chapter provides a short introduction to Feldspar. First the language Feldspar
is described: how is it used, what does it look like, and what are the results. After
that, an extension to Feldspar, the vector module, is discussed. This chapter ends
with showing matrices in Feldspar.

3.1 Using Feldspar

Feldspar is a functional language which allows the user to use a data-flow style of
programming, where the output of a computation is described as several transfor-
mations of the input. Programs can be built up from simple reusable components
which leads to short and readable programs.

Feldspar can be found at [14].

10

CHAPTER 3. FELDSPAR 11

i Feldspar code i

\\
\\
\\
Front-end |
/ Manual
o
/optimization

E Core-language code

[Back-end]<—i Target system ;
i Target specific code E

Figure 3.1: Compilation flow of Feldspar programs.

3.1.1 Compilation

The Feldspar compiler consists of two parts: the front end which transforms a
Feldspar program into the core language code (Section B.13]), and the back end
which compiles the core language code into code optimized for the desired target
platform (Section B.I.4). The front end is a collection of Feldspar modules imple-
menting functions like for and map. For convenience I will call the front end also
a compiler in this thesis since it transforms Feldspar code into core language code.
A high-level overview of the Feldspar compilation flow is given in Figure Bl

3.1.2 Feldspar

Below is a simple example of a Feldspar program which computes the sum of
squares of the numbers 1 to n, and next to it, on the right side, is the same
program written in Haskell.

Feldspar: Haskell:
sumSq :: Data Int -> Data Int sumSq :: Int -> Int
sumSq n = sum (map square (1...n)) | sumSq n = sum (map square [1..n])
where where
square X = X*X square X = X*X

The first line of code defines the type of the function, namely given a parameter of
type integer it produces an integer as output. The type of the integers in Feldspar
is not Int as in Haskell but Data Int. The type Data a is the Feldspar version of
the type a in Haskell. Feldspar is embedded in Haskell, which means that you can
still use Haskell types, functions and variables in the Feldspar code. However the
Haskell code needs to be removed during the compilation to core language code.

CHAPTER 3. FELDSPAR 12

In Chapter [l a short example will be shown how to remove Haskell variables.

The function (...), used in the code above, produces a list of numbers from 1
to n. After that the function square is applied to each element of the generated
list using the function map. The function square returns the square of the input
value. Finally the program adds up all the elements in the list of squares using
the function sum. The Feldspar code can be evaluated using the GHCi prompt like
Haskell:

*Main> eval (sumSq 10)
385

*Main> eval (sumSq 20)
2870

The next section will discuss the core language of Feldspar.

3.1.3 Core language

The core language code can be produced, from a program written in Feldspar,
using the function printCore. The core language code can for example be used to
analyze the efficiency of the generated code. In this section, some important core
language constructs are shown and core language code, generated from Feldspar
code, is explained.

An important constuct in the core language code is the while-loop. The while-
loop in the core language takes as arguments two functions and an initial state.
The first function, cont, is the continuation condition that takes the current state
and returns a boolean indicating whether to continue or not. The second function,
body, is the body of the loop. It takes the current state and returns the next
state.

while :: Storable a =>

(Data a -> Data Bool) -> (Data a -> Data a) -> Data a —-> Data a

When the Feldspar program sumSq, from previous section, is compiled to core
language code, the core language code contains a while-loop.

*Main> printCore sumSq
program vO = v11_1

where
v2 =v0 - 1
v3 =v2 + 1
vd =v3 - 1

(v11_0,v11_1) = while cont body (0,0)
where

CHAPTER 3. FELDSPAR 13

cont (v1_0,v1_1) = vb
where
vb = v1_0 <= v4
body (v6_0,v6_1) = (v7,v10)

where
v7 =v6_0 + 1
v8 = v6_0 + 1
v9 = v8 * v8

vli0 = v6_1 + v9

The core language code generated by the compiler is actually correct Haskell code
and can be interpreted, given suitable helper functions. The syntax of the core lan-
guage is easy to understand and reasoning about the efficiency is straightforward.
The core language code can be translated relatively easily to C.

The generated code, from the sumSq program, contains several variable assign-
ments and one C-style while loop. The while loop loops over the indices of the
input vector. Inside the loop, variable v5 contains the continuation condition,
variable v7 contains the index of the while loop, variable v9 contains the value of
the list at the current index squared, and variable v10 contains the total sum of
the squared values.

Next to the while-loop, there are two other important core language constructs:
ifThenElse and parallel.

The conditional expression ifThenElse takes a boolean condition, a then branch,
an else branch, and a value which is the input to the then or else branch (de-
pending on the value of the condition).

ifThenElse :: (Storable a, Storable b) =>
Data Bool -> (Data a -> Data b) -> (Data a -> Data b) -> Data a —->
Data b

The parallel construct produces an array. As first argument it takes the size of
the final array and as second argument a function which, given the index of the
array, computes the value of the element. Using the parallel loop construct, it is
possible to compute each element of the array independently of the other elements,
for example in parallel. Currently the parallel construct is still computed sequen-
tially; however, this construct opens the possibility to be computed in parallel in
the future.

parallel :: Storable a =>
Data Int -> (Data Int -> Data a) -> Data [a]

CHAPTER 3. FELDSPAR 14

3.1.4 C Code

The core language code from previous section can be compiled to platform depen-
dent C code. Currently the only backend implemented for Feldspar transforms
core language code to C99 code. Below is an example of the Feldspar program
sumSq compiled to C99 using the icompile’ function.

*Main> icompile’ sumSq "sumSq" defaultOptions
#include "feldspar.h"

void sumSq(signed int varO, signed int * out)

{
signed int varl11_0;
varll_0 = 0;
(x out) = 0;
{
while((var11_0 <= (((var0 - 1) + 1) - 1)))
{
signed int var6_0;
signed int vars$;
var6_0 = varll_O0;
var11_0 = (var6_0 + 1);
var8 = (var6_0 + 1);
(*x out) = ((x out) + (var8 * var8));
}
}
}

In this thesis I will only use the generated core language code and not the generated
C code. For more information about the generated C code and the Feldspar
compiler refer [15].

3.2 Vectors

Digital signal processing functions mostly perform operations on streams of values.
To handle these streams of values, Feldspar has a vector module. The function
sumSq, from the previous sections, already used a vector, namely the function
(...) generates a vector.

The vector module provides symbolic vectors which are to some extent comparable

CHAPTER 3. FELDSPAR 15

to lists in Haskell. The vector module provides a higher level of programming
offering functions like map and fold. This makes it in many cases unnecessary to
use the low level core language loops like while and parallel.

A symbolic vector is constructed using the function indexed. indexed takes an
integer length and an indexing function, and it produces a vector. The indexing
function returns the value from the symbolic vector given the index.

indexed :: Data Length -> (Data Ix -> a) -> Vector a

This function is very similar to the parallel in the core language. However
indexed never actually creates the vector in memory it just passes the arguments
to the vector constructor Indexed.

The function indexed stores the length and the indexing function in the construc-
tor Indexed. This way it is possible to to pattern match on symbolic vectors and
modify the components, length and indexing function. For example, the func-
tion squareList (shown below) squares each element of the list xs using pattern
matching. It pattern matches on the Indexed constructor and replaces the current
indexing function ixf with a new indexing function (square . ixf).

xs :: Vector (Data Int)
xs = indexed 5 (%*2)

square :: Data Int -> Data Int
square X = X*X

squarelList :: Vector (Data Int) -> Vector (Data Int)
squarelist (Indexed sz ixf) = Indexed sz (square . ixf)

The function squareList only modifies the function component of the symbolic
vector: there is no real vector involved.

In this thesis I will often use the type DVector a, this is equal to the type Vector
(Data a).

The Feldspar interpreter and compiler can also be used on programs containing
vectors.

*Main> eval (squarelist xs)
(5,[0,4,16,36,64])

*Main> printCore (squarelist xs)
program = (5,v4)
where
v4d = parallel 5 ixf
where

CHAPTER 3. FELDSPAR 16

ixf vl = v3

where
v2 = vl *x 2
v3 = v2 * v2

The result of the eval function is a pair containing the length of the resulting
list and the core representation of the list. The core language code contains only
a single parallel loop which computes the values of the output vector using its
indices. For each value in the vector the index is multiplied by two and then
squared.

Instead of using the knowledge about the underlying system of the vector module,
for instance to perform pattern matching on vectors, a higher level of programming
can be used to achieve the same results. For instance the higher order function
map applies a function to each element of a vector.

squareList2 :: Vector (Data Int)

squarelList2 = map square (indexed 5 (%*2))

The generated core language of squareList?2 is exactly the same as the core lan-
guage code of squareList xs.

*Main> eval squarelist2

(5,[0,4,16,36,64])

*Main> printCore squarelList2
program = (5,v4)

where
v4d = parallel 5 ixf
where
ixf vl = v3
where
v2 = vl x 2
v3 = v2 *x v2
3.2.1 Fusion

As seen in the generated code above, there is only one loop, while the Feldspar
code would suggest there should be two loops: one loop that creates the initial
vector and another that squares each element of the initial vector.

The Feldspar frontend can in many cases fuse structures, like these loops which are
created by functions, into a single structure. This way it is possible to write efficient

CHAPTER 3. FELDSPAR 17

programs without thinking about the underlying structure. In the generated code
of squareList2 the initial list indexed 5 (*2) is never created.

However when fusion is undesired, the function memorize can be used to avoid
fusion. For example, below the core language code of squareList3 is shown where
the list indexed 5 (*2), from the previous example, is replaced by memorize $
indexed 5 (*2).

squareList3 :: Vector (Data Int)
squareList3 = map square (memorize $ indexed 5 (*2))

*Main> eval squareList3
(5,[0,4,16,36,64])

*Main> printCore squarelist3
program = (5,v7)
where
v4d = parallel 5 ixf
where
ixf v2 = v3

where
v3 = v2 *x 2
v7 = parallel 5 ixf
where

ixf vl = v6
where
vb =v4d ! vl
v6 = vb *x vb

The function memorize forces the computation of the initial vector indexed 5
(*2) and stores the result in v4. After that the vector stored in v4 is used to
compute the square or each element.

3.3 Matrices

Using the vector module from previous section it is possible to implement matrices
in Feldspar. A matrix can be represented as a nested vector. To construct a matrix
the indexed function from the vector module can be reused to make a similar
constructor for matrices, indexedMat.

-- Matriz
type Matrix a = Vector (DVector a)

CHAPTER 3. FELDSPAR 18

-- Create a Matriz given the width, height, and indexing function.
indexedMat :: Data Int -> Data Int ->
(Data Int -> Data Int -> Data a) -> Matrix a
indexedMat m n idx = indexed m (\k -> indexed n (\1 -> idx k 1))

In this thesis, only a few basic matrix operations are used. The most important
is matrix-vector multiplication. Matrix-vector multiplication can be implemented
as a scalar product of each row of the matrix with the input vector.

-— Matriz vector multiplication
(**) :: (Numeric a) => Matrix a -> DVector a -> DVector a
(**) mat vec = map (scalarProd vec) mat

Next chapter introduces the case studies [have been working on during this thesis.

Chapter 4

Case Studies

Feldspar is a fairly new language and there are not many modules and functions
available specifically designed for the digital signal processing domain. To figure
out what functions are needed for digital signal processing and what modules
to add to Feldspar I started to implement two different types of digital signal
processing functions, namely filters and transforms.

4.1 Filters

First I focused on digital signal processing filters. They are used to filter data
for specific characteristics. Filters often reuse previous input and output values to
compute the next value.

Figure [4.1] explains the terms previous input values and previous output values 1
use in this thesis.

To compute a filter like function a general function, like map, which loops over

current input value current output value
previous input values | next input value previous output values
—— A~ —— A
x[0], x[1], ..., x[n-1], x[n], X[n+1] ... y[0], y[1], ..., y[n-1], y[n]
Funtion

Figure 4.1: The previous input values are the values in the input vector x at indices
0 ton—1. The current input value is at index n. Previous computed output values
are the values in the output vector y at indices 0 to n — 1. Note that the value of
the current output value y[n] is unknown until it is actually computed.

19

CHAPTER 4. CASE STUDIES 20

the input vector is required. However, there are currently no general functions in
Feldspar which are capable of providing both previous input and previous output
values which are needed in many filters. The function map does not provide access
to previous computed output values. Therefore I tried to design a combinator. A
combinator is a Feldspar function which often replaces syntactic structures from
other languages. This combinator should be broad enough such that many digital
signal processing functions are able to use it and at the same time the generated
core language code should be efficient. A function using the combinator should
generate code which is comparable to the digital signal processing function specific
code in complexity and evaluation time. Chapter [l describes the work I have done
in this area.

4.2 Transforms

Another interesting kind of digital signal processing functions are transforms. A
transform maps a function or a signal from one domain into another domain, for
instance the discrete Fourier transform transforms a signal from the time domain
into the frequency domain. First, I will mention known algorithms for computing
transforms, after that, a more mathematical approach is investigated.

4.2.1 Known Algorithms

For the transforms I used there are two different kind of algorithms, a naive im-
plementation which takes roughly O(n?) operations to compute, and a fast imple-
mentation which requires O(nlogn) operations.

As will be shown in Chapter [l the naive implementations of the transforms are
fairly straight forward. However, the fast implementations, which are in the most
cases recursive, bare problems. Feldspar does not support recursion, which means
that many efficient recursive algorithms should be implemented in an iterative
manner or the core language code should be unrolled at compile time. Chap-
ter [6] describes some important transforms and their possible implementations in
Feldspar.

4.2.2 Algebraic Descriptions

Another project in the area of digital signal processing is the Spiral project [11].
Spiral makes efficient, high-level implementations for transforms possible using
the Signal Processing Language (SPL). Most efficient algorithms for transforms

CHAPTER 4. CASE STUDIES 21

are based on their recursive algebraic descriptions. In SPL these recursive descrip-
tions are used to implement transforms maintaining the mathematical structure

(Chapter [7]).

These mathematical descriptions for transforms look promising, they have a high
level mathematical structure and they compute the result efficient like the fast
implementations of transforms. Chapter [[investigates these algebraic descriptions
for transforms and introduces a matrix module for Feldspar based on them. The
goal of this module is to implement the transforms using an algebraic style and
generate efficient code.

Chapter 5

Combinators for Feldspar

A combinator is a general function which provides a higher level of abstraction for
the programmer. This can for example be achieved when the combinator intro-
duces a syntactic structure from another language to Feldspar. An example of such
a combinator in Feldspar is the function while (Chapter B.13). Another example
of a combinator is the function fold in Feldspar. This function does not introduce
syntactic structure from another language to Feldspar, however it simplifies certain
sequences of operations. The function fold applies a binary function to the state
and each value of an input list, passing the state from left to right, reducing the
list to a single value, namely the final state: e.g. fold (+) 7 (1...5) results in
the sum of the values 1 to 5 plus the initial value 7.

In this chapter I will design and implement several combinators for filters and
other filter-like digital signal processing functions. Implementing filters and filter-
like functions should be straightforward for experts in the digital signal processing
domain using these combinators. First, I will discuss a combinator which provides
feedforward, a function which uses previous input values (Figure 1)) to compute
the next output value. Next, a combinator which provides feedback, a function
which uses previous computed output values to compute the next output value,
is discussed. Finally, combinators which provide both, feedforward and feedback,
are explored.

5.1 Feedforward Combinators

A feedforward combinator is a function which reuses previous input values, see
Figure 1] to compute an output value. A good example of a function which
needs a feedforward combinator is the Moving Average (MA) filter (Equation 2.1]).

22

CHAPTER 5. COMBINATORS FOR FELDSPAR 23

XS ¢
acc_»f
Yoy Yy Yoy

ysSs

A 4
—h
A
—h

Figure 5.1: mapAccum: given the input list xs, the accumulator acc, and the
function £ compute for each input value the output value using the function £ and
the current accumulator acc.

Code Block 1 Implementation of the MA filter using the mapAccum combinator.

maA :: (Numeric a) => DVector a -> DVector a -> DVector a
maA xs bs = snd $ mapAccum fun acc xs
where

acc = 0 -— the accumulator is used as counter here.

m = length bs -— the length of the filter coefficient sequence

fun iEnd _ = let subVecX = ((take (min m (iEnd+1))) .

(drop (max O (iEnd+1-m)))) xs
in (iEnd+1, scalarProd bs (reverse subVecX))

The MA filter computes for each output value a scalar product of the coefficients
vector (b;) with a part of the input vector (z[n — P] to x[n]). This means that we
need a function which is able to loop over a vector and has access to the current
and previous input values (z[n — P] to x[n]).

A feedforward combinator suitable for the MA filter is mapAccum. mapAccum has
the same functionality as the mapAccumL function in Haskell; this function behaves
like a combination of map and fold. It applies a user defined function to each
element of the input list and in addition passes an accumulating parameter from
the beginning to the end. At the end the combinator returns the output list and
the final accumulator (Figure [B1]). Below is the type signature of the mapAccum
combinator, the Feldspar code this combinator can be found in Appendix [Al

mapAccum :: (Storable a, Computable acc, Storable b) =>
(acc -> Data a -> (acc, Data b)) -> acc -> Vector (Data a) ->
(acc, Vector (Data b))

Code block [l shows an implementation of the MA filter using the mapAccum com-
binator. The accumulator is used to keep track of the current index of the output
vector, and the function fun yields the scalar product of the filter coefficient se-
quence and the reversed input starting at the current index.

CHAPTER 5. COMBINATORS FOR FELDSPAR 24

Code Block 2 Implementation of the MA filter using the functions map and
tails.

maM :: (Numeric a) => DVector a -> DVector a —-> DVector a
maM xs bs = map (scalarProd bs) xsTails
where

n = length xs
m = length bs
xsTails = map (reverse . (take m))
(take n $ tails $ replicate (m-1) O ++ xs)

As one could anticipate, the core language code of maA (Appendix [B.I) produced
by the compiler contains two nested while loops. The outer loop loops over the
elements of the input list, and the inner loop represents the scalar product of two
vectors, the coefficient vector b; and the input values z[n — P] to x[n].

In case of the MA filter the mapAccum combinator might not be the best solution.
The combinator does not give direct access to the previous input values in the user
defined function, e.g. these values are not a parameter of the user defined function.

Another way to implement the MA filter is to use the functions map and tails
(Code block 2). When compiled this results also in two nested loops in the core
language (Appendix[B.2)). However, this time the outer loop is a parallel construct.
An advantage of a parallel loop is that it can be parallelized, though the current
version of Feldspar does not support parallel code yet. Currently everything is
computed sequentially.

To test the equality and correctness of both implementations, maA and maM, some
important examples can be checked by hand against the definition (Equation 2.T])
and MATLAB [16] implementations. After that QuickCheck [I7] was used for
further testing. Below, the result of both implementations applied the same input,
the QuickCheck property, and one test-run of the QuickCheck property are shown.

*Test> eval $ maA (O ... 9) (vector [1,5,2,4,3])
(10,[0,1,7,15,27,42,57,72,87,102])
*Test> eval $ maM (O ... 9) (vector [1,5,2,4,3])

(10,[0,1,7,15,27,42,57,72,87,102])

-— QuickCheck property to check the equality of maA and maM
maQC :: [Int] -> [Int] -> Property
maQC xs bs = (P.length xs) P.> (P.length bs) ==> (maA’ P.== maM’)

where
maA’ = eval $ maA (vector xs) (vector bs)
maM’ = eval $ maM (vector xs) (vector bs)

CHAPTER 5. COMBINATORS FOR FELDSPAR 25

*Test> quickCheck maQC
+++ 0K, passed 100 tests.

The mapAccum combinator is not ideal yet, the implementation of MA using map
and tails (Code block Pl gives better results than the implementation using
mapAccum (Code block [[). The Feldspar code of maM is more straightforward and
the generated core language code is more efficient. Later in this Chapter I will show
another implementation of the MA filter, maLoop, using a different combinator.
The function maLoop is not better than maM when looking at the generated core
language code; however, the Feldspar code is even more straightforward than maM.

For now, the mapAccum combinator does not seem promising. The reason for this is
that there are several other function which provide a structure to iterate over the
input vector (e.g. map and for). The only thing we used the combinator for, in maA,
was to store the index. Next Section will discuss functions which need feedback,
thus in each iteration the function has to reuse previous computed output values.

5.2 Feedback Combinators

In contrast to the feedforward combinator a feedback combinator provides access to
the previous computed output values. A good example of a digital signal processing
function which uses feedback is the Autoregressive (AR) model (Equation 2.2]).
AR reuses previous computed output values to compute the next output value. A
common way to access previous computed values is recursion; however, this is not
possible in Feldspar. The core language, to which Feldspar code is translated, does
not support run-time recursion. Therefore the combinator should provide access
to the previous computed values.

When using the mapAccum combinator, from the previous section, to implement
AR, the previous computed output values have to be stored in the accumulator
such that they can be accessed in later iterations. This means that the accumulator
acts like a buffer where, during each iteration, a new value is added to the front
and the last value is removed. It is not possible to generate efficient code from
a function using the accumulator of the mapAccum as a buffer. When a vector,
which changes every iteration, is stored in the accumulator, the whole vector has
to be rewritten in memory each iteration. Therefore we need a combinator which
keeps track of the previously computed values and which generates efficient core
language code.

The first approach to provide access to values computed in previous iterations is
the combinator feedbackLoop. This combinator has a user defined function body
and an integer, which represents the length, as arguments and returns a list of

CHAPTER 5. COMBINATORS FOR FELDSPAR 26

Code Block 3 AR implemented using the feedbackLoop combinator.

arFeedLoop :: (Numeric a) => DVector a -> DVector a -> DVector a
arFeedLoop xs as = feedbackLoop body $ length xs
where

body = \ys i -> (xs ! i) - (scalarProd as $ reverse $ take i ys)

xTest> eval $ arFeedLoop (0 ... 9) (replicate 5 1)
(10’[0’1’1’1’1’1’1’2’2’2])

output values. The function body computes, given the output values of previous
iterations (the value at the current index is undefined) and the current index, the
new output value. Similar to a for-loop, the feedbackLoop iterates over a list using
indices, but additionally the feedbackLoop also has access to previous computed
output values which are given as a parameter to the user defined function body.
The code for feedbackLoop can be found in Appendix [Al

feedbackLoop :: (Storable y) =>
(DVector y -> Data Int -> Data y) -> Data Int -> DVector y

Code block Bl shows an implementation of the AR model using the feedbackLoop.
In this implementation, the function body represents the equation of the current
input value minus the scalar product of the previous output values and the coeffi-
cient vector. Code block [3 also contains the evaluation of arFeedLoop applied to
example input.

Compilation of the code in Code Block [to the core language yields the result
as depicted in Appendix [B.4. The resulting code contains two nested loops as
one would expect; the outer loop iterates over the input vector and the inner loop
computes the scalar product.

The first two sections of this Chapter have shown that it is possible to reuse
previous input values like in the MA and that it is possible to reuse previous output
values like in the AR. The next step is to do both, feedforward and feedback, in a
single combinator.

5.3 Feedforward and Feedback Combinators

A good example of a function containing feedforward and feedback is the autore-
gressive moving average (ARMA) model which is a combination of AR and MA
and uses both, previous input values and previous output values (Equation 23]).

In the previous section we have seen how AR can be conveniently implemented

CHAPTER 5. COMBINATORS FOR FELDSPAR 27

Code Block 4 ARMA implemented using the ffLoop combinator.

arma :: (Numeric a) => DVector a -> DVector a -> DVector a -> DVector a
arma inputxs bs as = ffLoop body inputxs
where

body = \ys xs -> (scalarProd bs xs) - (scalarProd as (tail ys))

with the feedbackLoop. Similarly, it is possible to implement the feedback part
of ARMA with this combinator. The accumulator of the feedbackLoop can be
used to store the current index of the iteration. With this index the feedforward
part of ARMA can be implemented similar to the implementation of MA using
the mapAccum combinator. As explained above it is possible to use the previous
combinator to implement ARMA it is not as straightforward as we want to achieve
with combinators.

To make the implementation of the ARMA easier a new combinator called £fLoop
is designed. This combinator provides access to the previous input values and
previous computed output values. The ffLoop combinator has a function body
and the input vector as arguments. The function body is a user defined function
which has a vector with the previous output values ys and a vector with the current
and the previous input values xs as arguments; and the function body returns a
new output value as result. In the user defined function body the arguments ys
and xs are reversed: this means that the head of xs is the current input value and
the head of ys is undefined since it is computed in the current iteration. Below is
the type definition of the ffLoop combinator. The code for £fLoop can be found
in Appendix [Al

ffloop :: (Storable y) =>
(DVector y -> DVector x -> Data y) -> DVector x -> DVector y

ARMA can be implemented fairly easily using ffLoop as shown in Code block
. Furthermore, the other filters used in this Chapter, MA and AR, can also be
implemented using the ffLoop combinator (Code Block). Their Feldspar code is
more straightforward than the code using the feedbackLoop or mapAccum combi-
nators; without loosing efficiency in the generated core language code (Appendix
B.3 and B.3)) compared to the core language code generated by the the previous
implementations (Appendix [B.1l and [B.4)).

CHAPTER 5. COMBINATORS FOR FELDSPAR 28

Code Block 5 MA and AR implemented using the ffLoop combinator.

ma xs bs = ffLoop body xs
where
body _ xs = (scalarProd bs xs)

ar xs as = ffLoop body xs
where
body ys xs = head xs - (scalarProd as $ tail ys)

5.4 Generalization

The combinator ffLoop, discussed in the previous Section, allows straightforward
implementation and the generation of efficient code for several filters. However,
this combinator is not very general: it can only be used when feedforward or
feedback is required. Storing other accumulating values during the computation
is not possible.

The Turbo encoder (Section 24T and Figure 23] is an example where the £fLoop
is not sufficient. During the computation of two of the three output vectors of the
turbo encoder, intermediate values have to be stored.

A more general combinator is the streamState combinator. This combinator is
very similar to the £ffLoop, however in the user defined function there is a big
difference. The user defined function of streamState has access to a user defined
buffer instead of the previous computed output values. This buffer represents a
vector of finite length. Each iteration a new element is added to the buffer, and
the last element is removed from the buffer.

streamState :: (Storable b, Storable c) =>
(DVector a -> DVector b -> (Data c, Data b)) —>
DVector b -> DVector a -> (DVector c, DVector b)

The combinator streamState has three arguments: the first argument is a user
defined function, the second argument is an initial buffer, and the last argument is
the input vector. At the end, the combinator returns the output vector containing
the result of each iteration and the final buffer. The user defined function has two
arguments, namely the previous input values and the buffer, and it returns a tuple
containing a new output value and a new element for the buffer.

Similar to ffLoop, streamState iterates over the input list and provides access
to previous input values. However, the function in streamState does not have
direct access to the previous computed output values, but they can be stored in
the buffer when needed. The code for streamState can be found in Appendix [Al

CHAPTER 5. COMBINATORS FOR FELDSPAR 29

Code Block 6 ARMA implemented using the streamState combinator.

armaStream :: (Numeric a) => DVector a -> DVector a -> DVector a -> DVector a
armaStream xs bs as = fst $ streamState body initBuf xs
where
initBuf = replicate (length as) O -- initiate the buffer with Os
body xs ys = (newY, newY) -- (new output, new buffer value)
where
newY = (scalarProd bs xs) - (scalarProd as (reverse ys))

To check the efficiency of the core language code generated by a function using
the streamState combinator, I implemented ARMA using this combinator (Code
block [f)) and compared the resulting core language code (Appendix [B.7) to the
core language code of arma (Appendix [B.6]).

When comparing the complexity (counting the number of iterations of the loops)
both combinators perform similar. They both have a large while-loop containing
two small loops computing the two scalar products. However the core language
code using the streamState combinator has one extra loop in the beginning,
initializing the buffer, and some extra (constant time) operations, which handle
the circular buffer in streamState.

5.5 Conclusion

Whenever a DSP function does not use feedback, a simple combinator like map
usually suffices. However, when feedback is required, designing a good combinator
gets significantly more complicated because the combinator has to provide access
to previous computed output values and still generate efficient code.

In this Chapter, we have explored several combinators: mapAccum, feedbackLoop,
ffLoop, and streamState. The combinators ffLoop and streamState seem the
most efficient and applicable for filter like functions. They raise the level of abstrac-
tion with straightforward implementation of the filters and they generate efficient
core language code. However, they are still not perfect. When using the ffLoop
combinator it is not possible to use a user defined accumulator (or buffer), and on
the other hand, the combinator streamstate lets the user define a buffer, however
this is only one buffer and we might need more buffers or accumulating values.

An ideal combinator for DSP functions would be one which iterates over the input
vector using a user defined function and returns the output vector. One of the
arguments to the user defined function should be a list of buffers which could for
example contain the previous input and output values. One could even consider

CHAPTER 5. COMBINATORS FOR FELDSPAR 30

that the combinator should return several output vectors, which is required for
example in the turbo encoder.

The correctness of the implementations used in this chapter, is checked by compar-
ing the results, of Feldspar functions, with the results generated by MATLAB [16].
After that, QuickCheck is used to test if the different implementations, used in this
chapter, generate the same result. Appendix [C] shows some of these QuickCheck
properties.

Chapter 6

Transforms

Transforms are important in digital signal processing; they transform signals into
signals with other properties. The algorithms describing the transforms can be put
in two categories, naive implementations and fast implementations. DSP systems
often have limited resources which means that the fast implementations have pref-
erence above the naive implementations; although, there is one problem: many of
the fast transforms are written recursively and Feldspar does not support run-time
recursion. This means that recursive functions need to be written iteratively or
the recursive function should be unrolled at compile time. The latter we will call
compile time recursion in this thesis.

After a short introduction to compile time recursion, this chapter will describe
several implementations of DSP transforms in Feldspar.

Compile Time Recursion A simple example of compile time recursion is shown
in the function myExpo. It represents a recursive implementation of the exponen-
tiation function. myExpo raises the value x to the power of n.

myExpo :: Int -> Data Int -> Data Int
myExpo 0 x = 1
myExpo n x = x * (myExpo (n Prelude.- 1) x)

The type signature at the first line contains both Haskell and Feldspar parameters.
The first parameter n is a Haskell variable, which means that the value should be
known at compile-time such that the code can be unrolled. The core language
code of the function myExpo, where in this case the variable n has been replaced
by the value 8, is a short iterative program:

*xCode> printCore $ myExpo 8
program vO = v8

31

CHAPTER 6. TRANSFORMS 32

where
vl
v2
v3
v
v5
v6
v7
v8

The number

vO
vO
v0
vO
vO
vO
vO
vO

1

vl
v2
v3
vad
vb
v6
v7

¥ XK X X X X ¥ ¥

of lines of the core language code increases linearly with the value

of the exponent. A slightly more efficient implementation, in lines of code and in
the number of computations, of the exponentiation function is mySmartExpo. It
generates between logn + 1 and 2logn + 1 lines of code, where n is the value of
the exponent.

mySmartExpo ::

Int -> Data Int -> Data Int

mySmartExpo 0 x =1
mySmartExpo n x | even n =y * y

| oddn =y *xy * x

where y = mySmartExpo (Prelude.div n 2) x

*xCode> printCore $ mySmartExpo 8
program vO = v4

where

vl
v2
v3
va

1 *x vO

vl

* vl

v2 * v2
v3 * v3

6.1 Fourier Transform

6.1.1 Discrete Fourier Transform

The discrete Fourier transform (DFT), Equation 24 transforms a signal from the
time domain into the frequency domain, thereby revealing the frequencies and
their phase used in the input signal. Below is a naive implementation of the DFT

in Feldspa.

LAt the time of writing the complex numbers were not part of Feldspar. Therefor I used an
experimental module similar to the complex numbers module in Haskell.

CHAPTER 6. TRANSFORMS 33

—-— The Discrete Fourter Transform.
dft :: DVector RealNum -> DVector ComplexReal
dft xs = map sumFun $ map intToReal (0...(1n-1))
where
In = length xs
- sumFun k = Y (ex x, (k*n))
sumFun k = sum $ zipWith ex xs (map ((*k) . intToReal) (0...(1n-1)))

-—exx, kn = x 4<eiﬁﬂk"
n n

ex xn kn = mkPolar xn (-2 * (floatToReal pi) * kn / (intToReal 1n))

This implementation of the DFT is very close to its mathematical formula (Equa-
tion [Z4]). Line 3 of the code iterates over the indices of the output vector. The
function sumFun, on line 6, represents the sum of the equation and sums over xs
and its indices using the function ex. Function ex computes a complex value given
the current index in the output vector, the current index in the input vector, and
the current value of the input vector.

The discrete Fourier transform can also be represented as a matrix vector multipli-
cation y = Mx where y is the result vector of the multiplication of the transform
matrix M with the input vector x [I1]. The mathematical Equation is defined as
follows:

—2mikl

DFTn:[e g } 0<kl<n

Below the Feldspar implementation of the DFT using this matrix description.

dftm :: DVector ComplexReal -> DVector ComplexReal
dftm xs = mat ** xs
where
n = length xs
mat = indexedMat n n (\k 1 -> twiddle n (k*1))

twiddle :: Data Int -> Data Int -> Data ComplexReal
twiddle n m = mkPolar 1 (-2 * (floatToReal pi) *
(intToReal m) / (intToReal n))

In this implementation the transform matrix M is represented by mat and it is
multiplied with the input vector xs. The transform matrix is constructed using
the function indexedMat with the size of the input vector and the twiddle factor,
wkl = e%m, as indexing function.

Both naive implementations above generate core language code (Appendix [D])
which use O(n?) operations. A more efficient algorithm, the Cooley—Tukey algo-
rithm, is shown in the next section.

11

13

15

17

19

21

23

25

27

29

31

33

CHAPTER 6. TRANSFORMS 34

6.1.2 Fast Fourier Transform

A fast Fourier transform (FFT) is an efficient algorithm for computing the discrete
Fourier transform. The FFT uses O(nlogn) instead of O(n?) operations as the
DFT. The Cooley-Tukey algorithm is a recursive FFT algorithm. Below is an
implementation in Feldspar which uses compile time recursion.

-- Radiz-2 Recursive FFT implementation of the Cooley-Tukey algorithm.
-— The length of the input vector zs, namely n, should be known at
-— compile time and n should be a power of 2.

fft :: Int -> DVector RealNum -> DVector ComplexReal

fft n xs = ffth n (map (\r -> r [+| 0) xs)

-— Helperfunction for the FFT using complex numbers.
ffth :: Int -> DVector ComplexReal -> DVector ComplexReal
ffth 1 xs = replicate 1 $ head xs
ffth n xs = (memorize . uncurry (++) . unzip) $
zipWith btfly evenl (zipWith (*) oddl exs)

where
nVal value n
-— ffth of the even indexed elements
evenl = ffth (Prelude.div n 2) $ getEven xs
-— ffth of the odd indexed elements
oddl = ffth (Prelude.div n 2) $ get0dd xs
twiddle factors k=0,..., % -1
exs = (map (expVal . intToReal) (0...(mnVal ‘div‘ 2 - 1)))

727rik

-- expVal k =e N
expVal k = mkPolar 1 (-2 * (floatToReal pi) * k / (intToReal nVal))

-— Butterfly
btfly :: (Numeric a) => Data a -> Data a -> (Data a, Data a)
btfly x y = (x+y, x-y)

-— Return the even indexed elements of the input vector.
getEven :: DVector a -> DVector a
getEven xs = indexed ((length xs) ‘div‘ 2) (\i -> xs ! (i*2))

-— Return the odd indexed elements of the input vector.
-— Note: the length of the list should be even.
getOdd :: DVector a -> DVector a
get0dd xs = indexed ((length xs) ‘div‘ 2) (\i -> xs ! (i*2+1))

CHAPTER 6. TRANSFORMS 35

Figure 6.1: Butterfly network

x[0] y[0]

yI3]

yI4]

yIs]

y16]

yl[7]
Figure 6.2: Fast Fourier Transform of size 8: showing the butterfly operations.

This implementation contains of several functions: £ft is the main function which
calls ffth with the complex valued input vector and returns the result, ffth is the
recursive helper function which performs the actual computations, btfly repre-
sents the butterfly operation (Figure[6.1]), getEven and get0dd return respectively
the even and the odd indexed elements from a given list. The recursive helper func-
tion £fth first computes recursively the FFT of the even and odd indexed elements
after which it combines the results using the butterfly operation. Figure shows
how the FFT of size 8 is build up out of butterfly operations.

The function memorize is used to store the intermediate result vectors in memory.
Without this function the intermediate results are recomputed every time they are
needed which is not very efficient (Section B.2.T]).

The core language code generated from the function fft has a complexity of
O(nlogn) when we look at the loops and count their iterations which is as we
expected. Appendix [D.3] shows the core language code for the FFT of size 8.

CHAPTER 6. TRANSFORMS 36

However the compiler currently produces lots of code: each loop contains an if
statement with a butterfly operation and the computation of its twiddle factor.
Since the loops are all fairly similar this is a point which should be considered for
optimization.

In Lava [I8] (Chapter []) a slightly different approach for implementing the FFT
is chosen. They have introduced several combinators which take care of splitting
up the input vector, before going into the recursive steps, and putting the results
back together, after computing the recursive steps. A similar approach should
be possible in Feldspar, however I chose to keep my implementation as close as
possible to the Cooley—Tukey algorithm.

6.2 Discrete Cosine Transform

6.2.1 Discrete Cosine Transform

The discrete cosine transform (DCT), Equation 23] is a transform like the DFT
however it uses only real valued numbers. The DCT can be represented as a matrix
vector multiplication y = Mz where y is the result vector of the multiplication of
the transform matrix M with the input vector x [I1]. The transform matrix of the

DCT-II is defined as follows:

k(2l+ 1)m
n

DCT-II = lcos] 0<Ekl<n
where k and [represent the row and column of the matrix and n the length of the
input vector.

Below is an implementation of the DCT-II using matrix vector multiplication in
Feldspar.

-— Discrete Cosine Transform type-II
dct2 :: (DVector Float) -> (DVector Float)
dct2 xn = mat ** xn

where
n = length xs
mat = indexedMat nn (\k 1 -> dct2nkl n k 1)

-— Helper function defining all the wvalues in the DCT-2n matriz
dct2nkl :: Data Int -> Data Int -> Data Int -> Data Float
dct2nkl n k 1 = cos ((k> *(2*1’ +1)*pi)/(2*n’))
where
(n’,k’,1’) = (intToFloat n, intToFloat k, intToFloat 1)

CHAPTER 6. TRANSFORMS 37

In this implementation xn is the input vector and mat is the transform matrix.
The transform matrix is constructed using the function indexedMat with the size
of the input vector and the indexing function dct2nkl. dct2nkl returns a value
in the transform matrix given the size of the matrix, the row, and the column.

The matrix multiplication description of the DCT looks intuitive, short, and func-
tions well as a specification. However, the disadvantage is that it takes O(n?)
operations to compute.

6.2.2 Fast Cosine Transform

A more efficient implementation of the DCT, using O(nlogn) operations, can for
example be achieved by looking at the algebraic structure of the transform matrix.
An interesting project about this is the Spiral project [II]. In Chapter [T will
present the algebraic structure of transform matrices and the Spiral project.

There are also other efficient algorithms for computing the DCT: for instance the
Fast Cosine Transform (FCT) or using the FFT. The FCT algorithms are recursive
which means that they need to be implemented using compile time recursion. I
have not implemented an FCT algorithm or an algorithm computing the DCT
using the FFT in Feldspar.

6.3 Walsh—Hadamard transform

6.3.1 Walsh—Hadamard transform

The Walsh-Hadamard transform (WHT), Equation [Z0] is a generalized Fourier
transform. The transform matrix is build out of size-2 DFTs and contains only the
values 1 and —1. A straight forward way of implementing the WHT in Feldspar is
to first generate the transform matrix and then multiply it with the input vector,
as was done with the DCT above.

-- Walsh-Hadamard transform
wht :: DVector Float -> DVector Float
wht xs = mat ** xs
where
n = length xs
mat = indexedMat n n (\k 1 -> intToFloat ((-1)~(countbwa k 1)))
countbwa k 1 = bitCount $ k .&. 1

CHAPTER 6. TRANSFORMS 38

In this implementation, xs is the input vector and mat is the transform matrix
which depends on the size of the input vector. The function countbwa computes
a bitwise-and and counts the number of ones in the result.

Here the matrix multiplication description of the WHT looks again very intuitive,
but the generated code contains 2 loops. The outer loop is a parallel construct and
the inner loop is a while loop. This means that this implementation uses O(n?)
operations to compute the result.

6.3.2 Fast Walsh—Hadamard transform

The Fast Walsh-Hadamard transform (FWHT) is an efficient algorithm to com-
pute the WHT. Tt computes the WHT in O(nlogn) operations instead of O(n?)
as in the naive implementation (shown above).

-- Fast Walsh-Hadamard transform
fwht :: Int -> DVector Float -> DVector Float
fwht 1 xs = replicate 1 $ head xs
fwht n xs = (memorize . uncurry (++) . unzip) $ zipWith btfly front back
where
nVal = value n -- Haskell wnt to Feldspar int
fwht (P.div n 2) $ take (nVal ‘div‘ 2) xs
fwht (P.div n 2) $§ drop (nVal ‘div‘ 2) xs

front
back

-— Butterfly
btfly :: (Numeric a) => Data a -> Data a -> (Data a, Data a)
btfly x y = (x+y, x-y)

The FWHT function in Feldspar is a compile time recursive function from which
the size of the input vector should be known at compile-time such that the compiler
can unroll the function. The size of the input vector should also be a power of two.
In the recursive step the input vector is divided into halves after which the WHT of
each half is computed. The halves, front and back, are put back together using
the butterfly operation as done in the FFT. The core language code generated
from the fwht uses O(nlogn) operations as expected from a fast algorithm.

Since the WHT has a nice algebraic structure, being built out of size-2 DFTs, it
is also possible to implement an efficient algorithm based on this property [12].

n
A

WHTy. = WHT, ® ... @ WHT,

Here the WHT transform matrix of size 2" is consists of n — 1 tensor products
(®) of the WHTy, where WHT, is equal to DFTy [12]. For matrices the tensor

CHAPTER 6. TRANSFORMS 39

product is usually called the Kronecker product. In Chapter [will explain what
a tensor product is.

6.4 Conclusion

As seen from the three different transforms mentioned in this Chapter the naive
implementations have high level mathematical structures. However, they are not
efficient when it comes to the number of operations the core language code per-
forms, which is O(n?). On the contrary the fast algorithms, shown above, are effi-
cient. The core language code generated performs O(nlogn) operations, however
here the high level mathematical structure is not visible anymore. Next Chap-
ter presents transforms written as recursive matrices. These transform matrices
have a high level mathematical description and should still generate efficient core
language code.

Chapter 7

Matrices

Fast algorithms for computing transforms, like the FE'T (Chapter [B]), are based on
the mathematical formulas of the transforms. However the mathematical structure
in the implementation of these algorithms is not easy to recognize. Therefore we
want to write these transforms using high level mathematical constructs, while at
the same time allowing the generation of efficient code.

The formulas of the transforms, given in Chapter [24] can be rewritten as recursive
matrix factorizations. Table [Il contains the matrix descriptions of the transforms
used in this report. These algebraic descriptions come from [11], [12], and [19].

The bold font indicates the transform matrices, for example the DFT of size n
is shown as DFT,,. The transform matrices can be recursively broken down into
transforms of smaller sizes, generic matrices, and symbols; which are connected
using matrix operations like multiplication (AB or A- B), direct sum (A® B), and
tensor product (or Kronecker product for matrices) (A ® B). The last two matrix
operations are defined by:

A
A@B:{ B]’ and

A® B = [ay,B], where A= [a,].

The lower left and the upper right quadrant of the direct sum matrix contain only
zeros. Table 2 contain the descriptions of the generic matrices and symbols used
in the recursive descriptions of transforms. When an element in a matrix is not
defined the value is zero.

The next section describes SPL, the Signal Processing Language of the Spiral
project [I1]. The section thereafter will show the matrix module T designed for
Feldspar. Using this matrix module it is possible to express the algebraic transform

40

CHAPTER 7. MATRICES 41

Table 1 Algebraic descriptions of transforms.

DFT, = (DFT, ® I,,,) T" (I, ® DFT,,) L}, n=km

DFT2 - F2
DCT-2, = L" (DCT-2,, ® DCT-4,,) (F; ® I,,,) (I, ® J,), n=2m
DCT-2, = diag(1,1/v?2) F,

1
COS —/———
DCT-4, = Jy Rysnjs "
WHT, = (WHT, ® I,,) (I, ® WHT,,), n=2m

WHT2 - F2

descriptions in Feldspar. This Chapter will end by showing several implementa-
tions of transforms in Feldspar and a short conclusion.

7.1 Spiral

Spiral [I1] is a project for automatic generation and code optimization of DSP
algorithms for various hardware platforms. In Spiral the mathematical formulas
are represented in the language SPL [20]. Below I will shortly discuss SPL, but
I will not go into other parts of the Spiral project, for more information refer to
[11].

SPL [20] is a language for describing matrix factorizations; in particular it can
be used for describing the transforms shown in Table [l SPL expressions consists

of generic matrices, symbols, and transforms; and may involve several matrix
operations including composition, direct sum, and tensor product.

Table [3] contains the algebraic description of the DFT s and the corresponding
SPL program [11].

Algorithms for the SPL language are captured and generated by rules. There are
two types of rules in Spiral: breakdown rules and manipulation rules. A breakdown
rule defines how a transform can be decomposed into a product of smaller matrices.
An example of a breakdown rule is:

DCT-2, = L; (DCT-2, ® DCT-4,) (F, ® Jy) (I, & Jy)

CHAPTER 7. MATRICES 42

Table 2 Generic matrices and symbols used in the transforms in Table [1l

I, = The identity matrix of size n x n.
Jn = The row-reversed identity matrix of
size n X n.
diag(ao, . .., a,_1) = Diagonal matrix: a,...,a,_1 are

the diagonal entries of the matrix.

diag(tw20, ... w0
twil o ,twgg—l)'l,
T = o (Twiddle matriz)
gl /R D (n/k)y
twh = e 2rki/n (Twiddle factor)
L} = z% +j—jk+i st (Stride perm. matriz)
0<i<k,
n
0<j<—
= 2
o -
1 1
1 1
1
11 .
F, = 1 —1 (Butterfly matriz)
R, = cosa sina } (Rotation matriz)
| —sina cosa

CHAPTER 7. MATRICES 43

Table 3 The algebraic description of the DFT4 and the corresponding SPL
program

DFT ;s = (DFT, ® L) T;° (I, ® DFT,) L}°,
DFT, = (DFT, ® I,) Ty (I, ® DFT,) L;

(define F4

(compose (tensor (F 2) (I 2)) (T 4 2) (tensor (I 2) (F 2)) (L 4 2)))
#subname fft16

(compose (tensor F4 (I 4)) (T 16 4) (temnsor (I 4) F4) (L 16 4))

A manipulation rule defines how a SPL formula, which does not contain any trans-
forms, can be manipulated in a different SPL formula, for example resulting in less
computations. An example of a manipulation rule is:

LA = (L @ Iy) (I ® L™

These rules are used to optimize the SPL formulas in the implementation and code
optimization level of Spiral, more information about how these rules are used can

be found in [I1].

7.2 Feldspar Matrix Module

The idea of using high level algebraic descriptions of transforms in combination
with the generation of efficient core language code is appealing. Therefore I de-
signed a matrix module for Feldspar which allows the writing of the algebraic
descriptions of transforms in Feldspar and simultaneously the generation of effi-
cient code.

A matrix in this new matrix module has type Matr a where a represents the type
of the values in the matrix. For example the type of a can be integer Int, float
Float, or complex ComplexReal.

Based on the algebraic descriptions, shown in Table[I] the following seven matrices
were identified for implementation:

e The identity matrix ([,) : IdMatr h w
where h and w are the height and width of the matrix.

CHAPTER 7. MATRICES 44

e The row-reversed identity matrix (J,): JdMatr h w
where h and w are the height and width of the matrix.

e The diagonal matrix (diag(ag,...,a,-1)): Diag h w xs
where h and w are the height and width of the matrix and xs contains the
values of the diagonal.

e The result of a tensor product (A ® B): Tensor h w A B
where h and w are the height and width of the matrix; and A and B are the
arguments of the tensor product.

e The result of a direct sum (A @ B): DirectSum h w A B
where h and w are the height and width of the matrix; and A and B are the
arguments of the direct sum.

e The result of a matrix multiplication (A - B): Compose h w A B
where h and w are the height and width of the matrix; and A and B are the
matrices which are multiplied.

e A general matrix: IndexedMatr h w ix
where h and w are the height and width of the matrix; and ix is the index-
ing function of the matrix. The function ix is comparable to the function
indexedMat explained in Section [6.2.1]

For each of the matrices above there is a function to construct the matrix.

idMatr :: (Numeric a) => Data Int -> Matr a

jdMatr :: (Numeric a) => Data Int -> Matr a

diagMatr :: (Numeric a) => DVector a -> Matr a

tensor :: (Numeric a) => Matr a -> Matr a -> Matr a
directSum :: (Numeric a) => Matr a -> Matr a -> Matr a
compose :: (Numeric a) => Matr a -> Matr a -> Matr a
indexedMatr :: (Numeric a) =>

Data Int -> Data Int -> (Data Int -> Data Int -> Data a) -> Matr a

Using these functions it is possible to construct the algebraic transform matrices
from Table [l given that the transform specific symbols, like 7}" and L}, are
implemented.

However this matrix module does not compute anything yet, it just makes it
possible to represent the transform matrices in Feldspar. To compute a transform,
the corresponding transform matrix should be multiplied with the input vector.
The function (*x) is a generic function which multiplies matrices (M, = M,M,),
multiplies vectors (a = xy), and multiplies a matrice with a vector (y = Mx)

CHAPTER 7. MATRICES 45

and (y = xM). In this thesis the transforms are written as a multiplication of a
transform matrix with an input vector (y = Mz); therefore, I will only use the
function mulMatrVec which is a specific instance of (*x) for computing y = M.

mulMatrVec :: (Numeric a) => Matr a -> DVector a -> DVector a

To multiply the transform matrix with the input vector efficiently we need to
use the structure of the transform matrix. Instead of first computing the complete
transform matrix and multiplying the result with the input vector, the input vector
should first be multiplied with the components of the transform matrix after which
their results are combined into the output vector. By first multiplying the input
vector with the components of the transform matrix and then combining the result,
less operations are performed in total.

Each type of matrix has different properties; and therefore a different way of
multiplying a matrix with a vector. For example multiplying the identity matrix
with the input vector results in an output vector which is identical to the input
vector. Applendix [E] shows the implementation of the Matr module including a
short explanation of the mulMatrVec function for each of the different matrices.

Now, transform matrices can be expressed in Feldspar and transforms, the trans-
form matrix multiplied with the input vector, can be evaluated. Moreover, core
language code can be generated from transforms. In the next section I will show
the implementations of the transforms in Table [l in Feldspar.

7.3 Transforms in Feldspar

In this section I will implement the transforms, shown in Table [Il using the new
matrix module in Feldspar.
7.3.1 Discrete Fourier Transform

In Feldspar the DFT is a direct translation from the algebraic formula. The DFT
breaks recursively down into smaller instances of the DFT, the identity matrix,
the twiddle matrix, and the stride permutation matrix.

DFT, = (DFT, ® I,,) 7" (I, ® DFT,,) L, n=km

—-— The discrete Fourter transform
dfts :: Int -> (DVector ComplexReal) -> (DVector ComplexReal)

CHAPTER 7. MATRICES 46

dfts n xn = (dftn n) ** xn

-— The discrete Fourier transform matriz

dftn :: Int -> Matr ComplexReal

dftn 2 = f2c

dftn n = compose
(compose (tensor (dftn kh) (idMatr mf)) (twiddleMatr nf mf))
(compose (tensor (idMatr kf) (dftn mh)) (strideMatrc nf kf))

where
nf = value n

mh = n ‘Prelude.div‘ kh
mf = nf ‘div‘ kf

kh = 2

kf = value kh

The function dfts multiplies the transform matrix, generated by the function
dftn, with the input vector xn. The function dftn is a compile time recursive
function and therefor the size of the input vector should be known at compile
time. The implementations of the stride permutation matrix (L}}), twiddle matrix
(T7%), and the DFT of size two (F3) can be found in Appendix [E.1]

7.3.2 Discrete Cosine Transform

The DCT-2 breaks recursively down into the DCT-2, the DCT-4, the stride per-
mutation matrix, the size two DFT, the identity matrix, and the row-reversed
identity matrix. Next to the recursive description of the DCT-2 we also need
the recursive description of the DCT-4. The DCT-4 breaks down into the DCT-
2, the bi-diagonal matrix (S,,), and the diagonal matrix, where the diagonal is

represented by the function d[k] = —.
COSs “In_

DCT-2, = L" (DCT-2,, ® DCT-4,)) (F; @ I,,) (In ® Jy), n=2m
1
COS I

-- Discrete Cosine Transform type 2.
dct2s :: Int -> (DVector Float) —-> (DVector Float)
dct2s n xn = (dct2n n) ** xn

-— Discrete Cosine Transform matriz type 2.

CHAPTER 7. MATRICES 47

dct2n :: Int -> Matr Float
dct2n 2 = compose (diagMatr (vector [1,1/(Prelude.sqrt 2)]1)) (£2)
dct2n n = compose
(compose (strideMatr nf mf) (directSum (dct2n mh) (dct4n mh)))
(compose (tensor f2 (idMatr mf)) (directSum (idMatr mf) (jdMatr mf)))
where

nf = value n
mf = nf ‘div‘ 2
mh n ‘Prelude.div‘ 2

The function dct2s represents the transform; it multiplies the transform matrix
with the input vector xn. The transform matrix is generated by the function
dct2n. Appendix [[.2 contains the implementation of the stride permutation ma-
trix (strideMatr) and the size two DCT (£2).

-- Discrete Cosine Transform type 4.
dct4s :: Int -> (DVector Float) -> (DVector Float)
dct4s n xn = (dct4n n) ** xn

-— Discrete Cosine Transform matriz type 4.
dct4n :: Int -> Matr Float
dctdn 2 = compose (jdMatr 2) (rotateMatr)
dct4n n = compose (sDiagn nf) (compose (dct2n n) (diagMatr diagvec))

where
nf = value n
fnf = intToFloat nf
fi = intToFloat i

diagvec = indexed nf $ \i -> 1/(2 * cos(((2xfi+1)*pi)/(4*(fnf))))

The implementation of the type 4 DCT is similar to the previous implementations
of transforms. It has a function dct4s which represents the transform and it has
a compile time recursive function dct4n which represents the transform matrix.
The implementations of the functions sDiagn and rotateMatr, respectively repre-
senting the bi-diagonal matrix and the rotation matrix, can be found in Appendix
.2l

7.3.3 Walsh—Hadamard transform

For the Walsh-Hadamard transform I found several algebraic descriptions [11], [12]:

CHAPTER 7. MATRICES 48

WHT, = (WHT, ® I,,) (I, ® WHT,,), n =2m (7.1)

WHT,. = [[(Iy1 ® WHT; ® Ipni) (7.2)
=1

WHT,. = WHT, ® ... @ WHT, (7.3)

For my implementation of the WHT in Feldspar I used Equation [Tl because the
structure is the most straight forward when using the new matrix module. Equa-
tions and require matrix operations on more than two matrices while the
operations implemented, compose and tensor, are binary. Below the implemen-
tation of the WHT from Equation [Z.1l

whts :: Int -> DVector Float -> DVector Float
whts n xn = (whtn n) ** xn

whtn :: Int -> Matr Float
whtn 2 = f2
whtn n = compose (tensor (whtn 2) (idMatr mf))
(tensor (idMatr 2) (whtn mh))
where
mf = (value n) ‘div‘ 2
mh = n ‘Prelude.div® 2

In this implementation the function whts represents the transform, this function
multiplies the transform matrix with the input vector. The transform matrix is
generated by the function whtn and consists of the multiplication of two tensor
products.

7.4 Conclusion

As shown in the previous sections, transforms can be written as recursive matrices
and can be implemented in Feldspar using the same structure as mathematical
formulas.

The core language code generated from the transforms in Table [is currently
not as efficient as we would expect: the runtime complexity is O(n?) instead of
O(nlogn). Due to the short amount of time I have been working on this matrix
module and these transforms I have not found the exact problem yet. However
there are currently several points where the problem might be and which can be
improved.

CHAPTER 7. MATRICES 49

First, The function mulMatrVec of the matrix module contains already nineteen
different cases (Applendix[E]), but these can be split up even more or be generalized.
Also the implementation of some cases can be improved. Second, The breakdown
rules used in the SPL language from Spiral [IT] are not implemented. These rules
provide directions to break down the individual symbols (Table 2)), used in the
transform matrices, to even smaller instances. In the current implementations of
the transforms inefficient implementations are used for the symbols. For exam-
ple the implementation of the stride permutation matrix strideMatrc (Appendix
[ELT)). As last, Feldspar is not very domain specific yet and some functions are not
optimized for the use of vectors and matrices.

The general idea of writing transforms in Feldspar using their high level math-
ematical structure is promising, as shown in the Spiral project [I1] and in this
Chapter. However, the current implementation of the matrix module does not
give the efficiency of the fast algorithms (O(nlogn)). As mentioned above there
are several points which could improve this.

Chapter 8

Related Work

In this section I will briefly go into other languages and concepts designed for DSP
systems.

Lava is a programming language to assist circuit designers in specifying, de-
signing, verifying, and implementing hardware [I8]. It consists of a collection of
Haskell modules. In [I8] the authors describe how to implement the fast Fourier
transform (FFT) using Lava after which it can be translated to VHDL, which is a
hardware description language. They describe how different elements of the FFT
algorithm could be implemented separately and in the end compose these basic
elements to the FFT. A Lava like approach to implementing the FFT in Feldspar
should also be possible, however in this thesis the implementation of the FFT is
as close as possible to the Cooley-Tukey algorithm.

Bjesse [21I] has implemented a DSP library for a radar application in the func-
tional language Haskell during his master thesis. Radar applications usually have
high data-rates and much noise which demand much processing power. Bjesse
proposes that annotations should be provided to aid the transformation system
such that the code could be divided onto distributed architectures. To improve
speed of the programs and to make it use less memory, he also uses deforestation.
Deforestation is removing or simplifying the intermediate result lists between two
functions like fusion in Feldspar. Bjesse does not mention how to translate from
Haskell to an imperative language or platform specific system. The code in his
thesis uses recursion which makes it harder to apply in Feldspar since Feldspar
does not have recursion.

50

CHAPTER 8. RELATED WORK o1

SequencelL Sequencel. [22] is a Turing-complete, high level, general purpose
language with a single data structure, the sequence. Sequencel. declares an in-
tended solution to the problem and repeatedly applies a “Normalize-Transpose-
Distribute” operation to functions and operators to discover the missing procedural
aspects of the solution. These missing aspects could for instance be a conversion
between two types. It is an automatic approach for handling calculations without
looking at their types.

Sequencel. is not a domain specific language like Feldspar. The idea of not both-
ering about the types of the arguments when you apply operations on them, but
let the system figure it out, gives the idea of a higher level of programming. In
this thesis a similar approach is taken with the (**) function (Chapter [7). This
function multiplies two matrices, two vectors, and matrices with vectors. However,
Feldspar does not change the arguments of the function to fit the function, like in
SequencelL, but for each case a different function is applied to the arguments.

Spiral Spiral [I1] is a project for automatic generation of DSP code for hardware
platforms. SPL the signal processing language from Spiral exploits the mathemat-
ical structure of transform algorithms to generate high performance code. In the
Spiral project several rules, breakdown and manipulation rules, are used to gen-
erate efficient code. Next to these rules it also uses a feedback-optimizer, which
uses search and learning techniques, to optimize code for a given platform.

In Spiral the mathematical formulas are represented in the language SPL [20]. SPL
is a convenient language for describing matrix operations including composition,
direct sum, and tensor product. The SPL optimizer reduces the total number of
calculations used in matrix operations compared to the naive way of calculating
the same operations. In this thesis I implemented a matrix module which allows
efficient implementations of the transforms described in the Spiral project. More
about this in Chapter [1

Realtime Signal Processing - Dataflow, Visual, and Functional Pro-
gramming Reekie 23] provides a framework for programming real-time signal
processing systems. The framework has three components: a high-level textual
language: Haskell, a visual language: visual Haskell, and the data flow process
network model of computation. In chapter 5 (Static Process Networks) Reekie de-
scribes data types and functions which capture the key operations for vectors and
streams. Using these types and functions he implements several digital signal pro-
cessing functions. Many functions used are defined recursively which make them
less convenient for Feldspar, however some nice ideas for combinators (Chapter [)
are shown.

CHAPTER 8. RELATED WORK 52

Embedded MATLAB [24] is a subset of the MATLAB language which is
a weakly dynamically typed but high-level programming language. Embedded
MATLAB generates efficient and readable C code for prototyping and deploying
embedded systems, and accelerating of fixed-point algorithms. In this thesis I have
used MATLAB to test the correctness of some of the functions implemented.

The Haskell DSP library [25] is a collection of Haskell modules containing
digital signal processing functions. Many of the digital signal processing functions
used in this thesis are also available in the Haskell DSP library. However, both
implementations are rather different. Two of those reasons are that Feldspar does
not have recursion and in this thesis the focus was not to implement those DSP
function, but to provide helper functions to make implementing DSP functions
easier. The implementations in the Haskell DSP library helped me to understand
the functions and design helper functions.

Chapter 9

Conclusion

Currently, much of the code developed for digital signal processing systems is
written in a low-level language like C. Writing efficient, platform dependent code
in such a language is a time consuming and error prone process. The relatively
new programming language Feldspar developed by Ericsson, Chalmers University
of Technology, and Eo6tvos Lorand University, has been introduced as a solution
to this problem. Feldspar allows programmers to develop code for digital signal
processing systems in a high-level, functional programming language similar to
Haskel. Programs written in Feldspar are compiled via an intermediate language,
the core language, into platform specific code.

The programming language Feldspar is still in its infancy; its current version offers
only basic functionality. This thesis describes the design and implementation of
two new additions to Feldspar: combinators (Chapter [Bl) and the matrix module
(Chapter [[). The combinators are designed to make the implementation of filter-
like digital signal processing functions straightforward for domain experts. The
matrix module allows high level mathematical implementation for transforms.

To implement filters, for digital signal processing, such that the compiler generates
efficient code, Chapter 5 proposes several combinators. A combinator is a generic
helper function which simplifies the implementation of filter-like functions. From
a general perspective, the combinators take a vector and a user defined function
as input; and return the output vector. The user defined function can be seen
as the body of a loop: it is applied to each element of the input vector. Three
types of combinators are distinguished in Chapter Bt a feedforward combinator,
a feedback combinator, and a general combinator which provides both, feedfor-
ward and feedback. From the discussion in Sections B.3] B4, and 5.3, it follows
that the general combinators are the most versatile ones, offering intuitive and effi-
cient implementation possibilities for a wide variety of functions, including Moving

53

CHAPTER 9. CONCLUSION 54

Average, Autoregressive model, and Autoregesive Moving Average.

For future work on filters, it would be interesting to implement the filters as matrix
multiplications like the transforms in this thesis. For example the MA filter can
be implemented by multiplying a filter matrix with the input vector, where each
row of the filter matrix contains a shifted version of the filter coefficients.

Chapter [describes how transforms, like the discrete Fourier transform, can be
implemented in Feldspar. Several implementations of important transforms, such
as the discrete Fourier transform (Section [6.1), the discrete Cosine transform (Sec-
tion [6.2)), and the Walsh-Hadamard transform (Section [63]), are described. For
each transform, respectively a naive and a fast implementation is provided. One of
the challenges encountered during the implementation of transforms in Feldspar, is
the lack of support for recursion in Feldspar. The latter is due to the fact that the
core language of Feldspar does not support recursion. There are two solutions to
circumvent this problem, namely implement the algorithms in a iterative manner
and unrolling the recursion at compile time. In this thesis the latter one is used.

The naive implementations of the transforms are similar to their mathematical
representations and allow high level representations in Feldspar. The transforms
are implemented as matrix multiplications where the transform is represented by
a matrix which is multiplied with the input vector. The fast recursive imple-
mentations achieve the same outcomes as their naive counterparts, but they are
significantly more efficient when it comes to the number of computations required
to compute the transform. Both solutions have clear disadvantages, the naive
implementations are not very efficient and the fast implementations do not have
a very high level structure and generate lots of code. Consequently, a trade-off
between respectively code efficiency, generated code size, and readability has to be
made when using these algorithms. An alternative solution to these algorithms is
shown in Chapter [7

After we have seen two different implementations of several transforms in Chapter
6 we would like to achieve the best of both, the nice mathematical structure of
the naive implementations and the efficient core language code generated by the
fast implementations. In the Spiral project [I1] the authors have shown that it is
possible to write high level recursive transform matrices, in their SPL language,
and generate efficient code (using O(nlogn) operations). To make this possible in
Feldspar section 7.3 introduces a matrix module which can be used to implement
these recursive matrix factorizations. The transforms written using the matrix
module have a high level structure and the original mathematical formulas are
easily recognizable. However, currently the core language code generated from
these transforms is not as efficient as we expected. The core language code gener-
ated by Feldspar uses O(n?) instead of O(nlogn) operations. Section [7.4] discusses

CHAPTER 9. CONCLUSION 55

several possible problems in the current version of the matrix module and in the
implementations of the transforms. It would be interesting to see if these problems
can be solved in the future. In general the implementation of the matrix module
can be optimized by using more efficient Feldspar functions and improving the im-
plementation of the matrix-vector-multiplication function. Also the manipulation
and breakdown rules described in Spiral [IT] can be used to improve the efficiency
of the transform specific implementations. During this thesis I was also not able
to test the implementations of the DFT and the DCT using QuickCheck. The
reason for this is that the results of those functions contain Floats with a certain
rounding error. It would be nice to see a generic way to use QuickCheck on these
transforms.

In short, both approaches, described in this thesis, raise the level of abstraction
and make programming in Feldspar easier for domain experts.

Acknowledgements

In this Section I would like thank all of those who have generously supported and
contributed to the development of this thesis, especially my supervisor Emil and
my examiner Mary. They created the opportunity of working on this project and
giving me the help and support I needed during my thesis.

Of course I cannot forget Joris. I want to thank you for supporting me, reading my
work carefully and giving helpful comments such that I could improve my work.

I would also like to thank the baseband research group from Ericsson for providing
a nice working space and answers for all the questions I had about digital signal
processing.

The Feldspar project is funded by Ericsson, Vetenskapsradet, the Swedish Foun-
dation for Strategic Research and the Hungarian National Development Agency.

56

Bibliography

1]

E. Axelsson, K. Claessen, G. Dévai, Z. Horvath, K. Keijzer, B. Lyckegard,
A. Persson, M. Sheeran, J. Svenningsson, and A. Vajda, “Feldspar: A domain
specific language for digital signal processing algorithms,” in Proc. FEighth
ACM/IEEE International Conference on Formal Methods and Models for
Codesign, MEMOCODE. 1EEE, 2010.

S. K. K. Mitra, Digital Signal Processing: A Computer-Based Approach,
2nd ed. McGraw-Hill Higher Education, 2000, pp. 1-9, 41-49.

G. Hutton, Programming in Haskell. Cambridge University Press, jan 2007.

M. Mernik, J. Heering, and A. M. Sloane, “When and how to develop domain-
specific languages,” ACM Comput. Surv., vol. 37, no. 4, pp. 316-344, 2005.

P. Grant, B. Mulgrew, and J. Thompson, Digital Signal Processing: Concepts
& Applications. Palgrave Macmillan, 2003, pp. 39-53, 109-112, 126-135,
150152, 240-252, 267-272.

J. G. Proakis and D. G. Manolakis, Digital Signal Processing: Principles,
Algorithms, and Applications. Macmillan Publishing Company, 1992, ch. 2,
pp- 102 — 107.

“Introduction to DSP,” May 2010. [Online]. Available: http://www.bores.
com/courses/intro/index.htm

D. Liu, A. Nilsson, E. Tell, D. Wu, and J. Eilert, “Bridging dream and reality:
programmable baseband processors for software-defined radio,” Comm. Mayg.,
vol. 47, no. 9, pp. 134-140, 2009.

M. C. Valenti and J. Sun, “The UMTS turbo code and an efficient decoder
implementation suitable for software-defined radios,” International Journal
of Wireless Information Networks, vol. 8, no. 4, pp. 203-215, October 2001.

o7

http://www.bores.com/courses/intro/index.htm
http://www.bores.com/courses/intro/index.htm

BIBLIOGRAPHY o8

[10]

[11]

[12]

[13]

[14]
[15]

[16]
[17]

[18]

[19]

[20]

J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation
of complex fourier series,” Mathematics of Computation, vol. 19, no. 90, pp.
297-301, 1965. [Online]. Available: http://dx.doi.org/10.2307/2003354

M. Piischel, J. M. F. Moura, J. Johnson, D. Padua, M. Veloso, B. Singer,
J. Xiong, F. Franchetti, A. Gacic, Y. Voronenko, K. Chen, R. W. Johnson,
and N. Rizzolo, “SPIRAL: Code generation for DSP transforms,” Proceed-
ings of the IEEE, special issue on “Program Generation, Optimization, and
Adaptation”, vol. 93, no. 2, pp. 232— 275, 2005.

J. Johnson and M. Piischel, “In search of the optimal walsh-hadamard trans-
form,” in Proceedings of the International Conference on Acoustics, Speech,
and Signal Processing, 2000, pp. 3347-3350.

“Users guide to the Feldspar language,” May 2010. [On-
line]. Available: http://feldspar.inf.elte.hu/feldspar/documents/language/
FeldsparLanguage.html

“Feldspar,” May 2010. [Online]. Available: http://feldspar.inf.elte.hu/

G. Dévai, M. Tejfel, Z. Gera, G. Pali, G. Nagy, Z. Horvath, E. Axelsson,
M. Sheeran, A. Vajda, B. Lyckegard, and A. Persson, “Efficient Code Gener-
ation from the High-level Domain-specific Language Feldspar for DSPs,” in
Proc. ODES-8: 8th Workshop on Optimizations for DSP and Embedded Sys-
tems, assoc. with IEEE/ACM International Symposium on Code Generation
and Optimization (CGO), 2010.

“MATLAB,” June 2010. [Online]. Available: http://www.mathworks.com/

J. Hughes, “QuickCheck: An automatic testing tool for haskell,” June
2010. [Online]. Available: http://www.cse.chalmers.se/~rjmh/QuickCheck/
manual.html

P. Bjesse, K. Claessen, M. Sheeran, and S. Singh, “Lava: hardware design in
Haskell,” in ICFP ’98: Proceedings of the third ACM SIGPLAN international
conference on Functional programming. New York, NY, USA: ACM, 1998,
pp. 174-184.

M. Piischel and J. M. F. Moura, “Algebraic signal processing theory,” CoRR,
vol. abs/cs/0612077, 2006.

J. Xiong, J. Johnson, R. W. Johnson, and D. Padua, “SPL: A language
and compiler for DSP algorithms,” in Programming Languages Design and
Implementation (PLDI), 2001, pp. 298-308.

http://dx.doi.org/10.2307/2003354
http://feldspar.inf.elte.hu/feldspar/documents/language/FeldsparLanguage.html
http://feldspar.inf.elte.hu/feldspar/documents/language/FeldsparLanguage.html
http://feldspar.inf.elte.hu/
http://www.mathworks.com/
http://www.cse.chalmers.se/~rjmh/QuickCheck/manual.html
http://www.cse.chalmers.se/~rjmh/QuickCheck/manual.html

BIBLIOGRAPHY 29

[21]

[22]

[23]

[24]

[25]

P. Bjesse, “Specification of signal processing programs in a pure functional lan-
guage and comilation to distributed architectures,” Master’s thesis, Chalmers
University of Technology, 1997.

D. E. Cooke, J. N. Rushton, B. Nemanich, R. G. Watson, and P. Andersen,
“Normalize, transpose, and distribute: An automatic approach for handling
nonscalars,” ACM Trans. Program. Lang. Syst., vol. 30, no. 2, pp. 1-49, 2008.

H. J. Reekie, “Realtime signal processing: Dataflow, visual, and functional
programming,” Ph.D. dissertation, University of Technology at Sydney, 1995.
[Online]. Available: http://citeseerx.ist.psu.eu/viewdoc/summary?doi=10.1.
1.27.8657

The MathWorks Inc., “Embedded MATLAB™ getting started guide,”
March 2010. [Online]. Available: http://www.mathworks.com/access/
helpdesk/help/toolbox/eml/

“Haskell DSP libraries,” April 2010. [Online]. Available: http://haskelldsp.

sourceforge.net /

http://citeseerx.ist.psu.eu/viewdoc/summary?doi=10.1.1.27.8657
http://citeseerx.ist.psu.eu/viewdoc/summary?doi=10.1.1.27.8657
http://www.mathworks.com/access/helpdesk/help/toolbox/eml/
http://www.mathworks.com/access/helpdesk/help/toolbox/eml/
http://haskelldsp.sourceforge.net/
http://haskelldsp.sourceforge.net/

Appendix A

Combinators

module Combinators where

import qualified Prelude
import Feldspar
import Feldspar.Range

-- Given the input list xs, the accumulator acc, and the function f compute
-- for each input value the output value using the function f and the current
-- accumulator acc.
mapAccum :: (Storable a, Computable acc, Storable b)
=> (acc -> Data a -> (acc, Data b))
-> acc -> Vector (Data a) -> (acc, Vector (Data b))
mapAccum f init vecA = (final,vecB)
where
(vecB,final) = unfoldVec (length vecA) init $ \i acc ->
let (acc’,b) = f acc (vecA!i) in (b,acc’)

-— A loop which takes a function body, and an int end.
-- Body takes a list of previous calculated y, and the current indexr and
-- produces the new y.
-— loop produces a list of output values of the function body.
feedbackLoop :: (Storable y) =>
(DVector y -> Data Int -> Data y) -> Data Int -> DVector y
feedbackLoop body leng = unfreezeVector leng ys’

where
end = leng - 1
ys = array ((mapMonotonic fromInteger $ dataSize leng) :> universal) []
ys’ = for 0 end ys (\i ys’’ ->

setIx ys’’ i (body (unfreezeVector leng ys’’) 1i))

60

APPENDIX A. COMBINATORS 61

-- ffLoop takes a
-- - function which takes the previous calculated ys (ys is reversed of
- which the head ts undefined since it is the element which is currently
- calculated), the previous zs, reversed with current = as head, and it
- produces the new y.
-- - list of input values: zs,
-- and it produces a list of ys.
ffLoop :: (Storable y) =>
(DVector y -> DVector x -> Data y) -> DVector x -> DVector y
fflLoop body xs = unfreezeVector n ys

where
n = length xs
ys = for 0 (length xs - 1) (ys’) forBody
ys’ = array ((mapMonotonic fromInteger $ dataSize n) :> universal) []
forBody i ys’’ = setlx ys’’ i yNew
where

yNew = body (reverse $ take (i+1) $
unfreezeVector n ys’’) (reverse $ take (i+l) xs)

-— loop %s similar to ffLoop except it has a state like mapAccum.
loop :: (Storable y, Computable a) =>
(DVector y -> DVector x -> a -> (Data y, a)) -> a —-> DVector x -> DVector y
loop body state xs = unfreezeVector n ys

where
n = length xs
ys’ = array ((mapMonotonic fromInteger $ dataSize n) :> universal) []

ys = fst § for O (length xs - 1) (ys’,state) forBody
forBody = \i (ys’’,state’) ->
let (yNew,stateNew) = (body (reverse $ take (i+1) $
unfreezeVector n ys’’) (reverse $ take (i+l) xs) state)
in (setIx ys’’ i yNew, stateNew)

streamState :: (Storable b, Storable c)

=> (DVector a -> DVector b -> (Data c, Data b))

-> DVector b -> DVector a -> (DVector c, DVector b)
streamState f initBuf inp =

(unfreezeVector n finOutArr, unfreezeVector m finBuf)
where

n = length inp

m = length initBuf

initOutArr = array ((mapMonotonic fromInteger $

dataSize n) :> universal) []
(finOutArr,finBuf) = for 0 (n - 1) (initOutArr, freezeVector initBuf) body
where
body i (arr,buf) = (arr’,buf’)
where

APPENDIX A. COMBINATORS

cycle
bufV
(c,b)
arr’
buf’

permute (_ j -> (j + (i‘mod‘m)) ‘mod‘ m)
cycle $ unfreezeVector m buf

f (reverse $ take (i+1) inp) bufV

setlx arr i ¢

setIx buf (i‘mod‘m) b

62

Appendix B

Core Language Code Filters

B.1 Core Language Code of maA

*PrintCodes> printCoreMaA

program ((v0_0_0,v0_0_1),(v0_1_0,v0_1_1)) = (v0_0_0,v49)

where
v3 = v0_0_0 - 1
v46 = []
(v47_0,(v47_1_0,v47_1_1)) =
where
cont (v2_0,(v2_1_0,v2_1_1))
where

vd = v2_0 <= v3
body (v5_0,(v5_1_0,v5_1_1))
where
v6 =
vi2 =
vi3 =
v1b
v16é
where
thenBranch vi11l
elseBranch v14
v17 = v0_0_0 - v16
v19 v1i7 > 0
v20
where
thenBranch v10
elseBranch v18
v23 = vb_1_1 + 1
v25 v23 < v0_1_0
v26

vb_0 + 1
vb_1_1 + 1
vi2 - vO_1_0
vi3 > 0

0

0

= v13

= vi7

while

cont body (0, (v46,0))

va

(v6, (v44,v4b))

if v15 then thenBranch () else elseBranch ()

if v19 then thenBranch () else elseBranch ()

if v25 then thenBranch () else elseBranch ()

63

APPENDIX B. CORE LANGUAGE CODE FILTERS

where
thenBranch v22 = v23
elseBranch v24 = v0_1_0

v27 = v20 < v26
v28 = if v27 then thenBranch () else elseBranch ()
where
thenBranch v9 = v20
elseBranch v21 = v26
v30 = v28 < v0_1_0
v31 = if v30 then thenBranch () else elseBranch ()
where
thenBranch v8 = v28
elseBranch v29 = v0_1_0
v32 = v31 - 1

v37 = v28 - 1
(v43_0,v43_1) = while cont body (0,0)
where
cont (v7_0,v7_1) = v33
where

v33 = v7_0 <= v32
body (v34_0,v34_1) = (v35,v42)
where

v35 = v34_0 + 1
v36 = vO_1_1 ! v34_0
v38 = v37 - v34_0
v39 = v38 + v16
v40 = v0_0_1 ! v39
v4dl = v36 * v40
v42 = v34_1 + v4l

vdd = setIx (v5_1_0,v5_0,v43_1)

v45 vb_1_1 + 1

v49 = parallel v0_0_0 ixf
where
ixf vl = v48
where
v48 = v47_1_0 ! vi

B.2 Core Language Code of maM

*PrintCodes> printCoreMaM
program ((v0_0_0,v0_0_1),(v0_1_0,v0_1_1)) = (v7,v40)
where

v2 = v0_1_0 -1
v3 = v2 + v0_0_0
vd = v3 + 1

ve = v4 < v0_0_0
v7 = if v6 then thenBranch () else elseBranch ()
where

64

APPENDIX B. CORE LANGUAGE CODE FILTERS

thenBranch vl = v4
elseBranch v5 = v0_0_0
v40 = parallel v7 ixf

where
ixf v8 = v39_1
where
vli3 = v3 - v8
vlis = v13 > 0
vi6 = if v15 then thenBranch () else elseBranch ()

where
thenBranch v12 = v13
elseBranch v14 0
vli8 = v16 < v0_1_0
v19 = if v18 then thenBranch () else elseBranch ()
where
thenBranch v1l = v16
elseBranch v17 v0_1_0
v21 = v19 < v0_1_0
v22 if v21 then thenBranch () else elseBranch ()
where
thenBranch v10 = v19
elseBranch v20 v0_1_0
v23 = v22 - 1
v32 = v19 - 1
(v39_0,v39_1) = while cont body (0,0)
where
cont (v9_0,v9_1) = v24
where
v24 = v9_0 <= v23
body (v25_0,v25_1) = (v26,v38)
where
v26 = v25_0 + 1
v27 = v0_1_1 ! v25_0
v33 = v32 - v25_0
v34 = v33 + v8
v35 = v34 < v2
v36 = if v35 then thenBranch v34 else elseBranch v34
where
thenBranch v28
elseBranch v29

0
v31

where

v30 v29 - v2

v31 v0_0_1 ! v30
v27 * v36
v25_1 + v37

v37
v38

B.3 Core Language Code of ma

APPENDIX B. CORE LANGUAGE CODE FILTERS 66

*PrintCodes> printCoreMa
program ((v0_0_0,v0_0_1),(v0_1_0,v0_1_1)) = (v0_0_0,v32)

where
v3 = v0_0_0 - 1
v29 = []
(v30_0,(v30_1_0,v30_1_1)) = while cont body (0, (v29,()))
where
cont (v2_0,(v2_1_0,v2_1_1)) = v4

where
vd = v2_0 <= v3
body (v5_0,(v5_1_0,v5_1_1))
where
ve = vb_0 + 1
vil = v6_0 + 1

(v6, (v28,()))

vli2 = v0_0_0 < vi1
v13 = if v12 then thenBranch () else elseBranch ()
where

thenBranch v9 = v0_0_0
elseBranch v10 = vi1l
vl5 = v13 < v0_1_0
v16 = if v15 then thenBranch () else elseBranch ()
where
thenBranch v8 = v13
elseBranch vi14 = v0_1_0
vi7 = v16 - 1
v22 = v13 - 1
(v27_0,v27_1) = while cont body (0,0)
where
cont (v7_0,v7_1) = v18
where
v1i8 = v7_0 <= v17
body (v19_0,v19_1) = (v20,v26)
where
v20 = v19_0 + 1
v21 = vO_1_1 ! v19_0
v23 = v22 - v19_0
v24 = v0_0_1 ! v23
v25 = v21 *x v24
v26 = v19_1 + v25
v28 = setIx (v5_1_0,v5_0,v27_1)
v32 = parallel v0_0_0 ixf
where
ixf vl = v31
where
v31l = v30_1_0 ! vi

B.4 Core Language Code of arFeedLoop

APPENDIX B. CORE LANGUAGE CODE FILTERS 67

*PrintCodes> printCoreArFeedLoop
program ((v0_0_0,v0_0_1),(v0_1_0,v0_1_1)) = (v0_0_0,v33)

where
v3 = v0_0_0 - 1
v30 = []
(v31_0,v31_1) = while cont body (0,v30)
where
cont (v2_0,v2_1) = v4

where
vd = v2_0 <= v3
body (v5_0,v5_1) = (v6,v29)
where
ve = vb_0 + 1
v7 = v0_0_1 ! v5_0
v1i2 = v0_0_0 < v5_0
v13 = if v12 then thenBranch () else elseBranch ()
where
thenBranch v10 = v0_0_0
elseBranch vi11
vl5 = v13 < v0_1_0
v16 = if v15 then thenBranch () else elseBranch ()
where
thenBranch v9 = v13
elseBranch vi14 = v0_1_0
vi7 = v16 - 1
v22 = v13 - 1
(v27_0,v27_1) = while cont body (0,0)
where
cont (v8_0,v8_1) = v18
where
v18 = v8_0 <= v17
body (v19_0,v19_1) = (v20,v26)
where
v20 = v19_0 + 1
v21 = vO_1_1 ! v19_0
v23 = v22 - v19_0
v24 = vb5_1 ! v23
v25 = v21 *x v24
v26 = v19_1 + v25
v28 = v7 - v27_1
v29 = setIx (v5_1,v5_0,v28)
v33 = parallel v0_0_0 ixf
where
ixf vl = v32
where
v32 = v31_1 ! vi

Il
<
o
o

APPENDIX B. CORE LANGUAGE CODE FILTERS 68

B.5 Core Language Code

*PrintCodes> printCoreArLoop
program ((v0_0_0,v0_0_1),(v0_1_0,v0_1_1)) =
where
v3 = v0_0_0 - 1

of arLoop

(v0_0_0,v47)

vad = []
(v45_0,(v45_1_0,v45_1_1)) = while cont body (0, (v44,()))
where
cont (v2_0,(v2_1_0,v2_1_1)) = v4
where

vd = v2_0 <= v3
body (v5_0,(v5_1_0,v5_1_1))
where
ve = vb6_0 + 1

v = vb_0 + 1
v10 = v0_0_0 < v9
vil = if v10 then thenBranch ()
where
thenBranch v7 = v0_0_0
elseBranch v8 v9
vi2 = vil - 1
vi3 = v12 - 0
vi4 = v0_0_1 ! v13
v20 = v5_0 + 1
v21 = v0_0_0 < v20
v22 = if v21 then thenBranch ()
where
thenBranch v18
elseBranch v19
v23 = v22 - 1

v0_0_0
v20

v25 = v23 > 0
v26 = if v25 then thenBranch ()
where

thenBranch v17 = v23
elseBranch v24 0
v28 = v26 < v0O_1_0
v29 = if v28 then thenBranch ()
where
thenBranch v16 = v26
elseBranch v27 v0_1_0
v30 = v29 - 1
v3b = v22 - 1

(v41_0,v41_1) = while cont body
where
cont (v15_0,v15_1) = v31
where

v31l = v15_0 <= v30

(v6, (v43,()))

else elseBranch ()

else elseBranch ()

else elseBranch ()

else elseBranch ()

(0,0)

APPENDIX B. CORE LANGUAGE CODE FILTERS

body (v32_0,v32_1) = (v33,v40)
where

v33 = v32_0 + 1
v34 = v0_1_1 ! v32_0
v36 = v32_0 + 1
v37 = v35 - v36
v38 = vb_1_0 ! v37
v39 = v34 *x v38
v40 = v32_1 + v39

v42 = vi14 - v41_1

v43 setIx (v5_1_0,v5_0,v42)

v47 = parallel v0_0_0 ixf
where
ixf vl = v46
where
v46 = v45_1_0 ! vi

B.6 Core Language Code of arma

*PrintCodes> printCoreArmal.oop
program ((v0_0_0,v0_0_1),(v0_1_0,v0_1_1),(v0_2_0,v0_2_1)) = (v0_0_0,v60)
where
v3 = v0_0_0 - 1

v57 = []
(v58_0, (v58_1_0,v58_1_1)) = while cont body (0, (v57,()))
where
cont (v2_0,(v2_1_0,v2_1_1)) = v4
where

vd = v2_0 <= v3
body (v5_0,(v5_1_0,v5_1_1))
where
ve = vb6_0 + 1
vil = v6_0 + 1

(v6, (v66,()))

vli2 = v0_0_0 < vi11
v13 = if v12 then thenBranch () else elseBranch ()
where

thenBranch v9 = v0_0_0
elseBranch v10 = vi1l
vl5 = v13 < v0_1_0
v16 = if v15 then thenBranch () else elseBranch ()
where
thenBranch v8 = v13
elseBranch v14 = v0_1_0
v1i7 = v1i6 - 1
v22 = v13 - 1
(v27_0,v27_1) = while cont body (0,0)
where
cont (v7_0,v7_1) = v18

APPENDIX B. CORE LANGUAGE CODE FILTERS 70

where
v18 = v7_0 <= v17
body (v19_0,v19_1) = (v20,v26)
where
v20 = v19_0 + 1

v21l = vO_1_1 ! v19_0
v23 = v22 - v19_0
v24 = vO_0_1 ! v23
v25 = v21 *x v24
v26 = v19_1 + v25
v33 = v6_0 + 1
v34 = v0_0_0 < v33
v35 = if v34 then thenBranch () else elseBranch ()
where

thenBranch v31 = v0_0_0
elseBranch v32 v33
v36 = v35 - 1

v38 = v36 > 0
v39 = if v38 then thenBranch () else elseBranch ()
where

thenBranch v30 = v36
elseBranch v37 0
vdl = v39 < v0_2_0
v42 = if v41 then thenBranch () else elseBranch ()
where
thenBranch v29 = v39

elseBranch v40 = v0_2_0
v43 = v42 - 1
v48 = v35 - 1
(v64_0,v54_1) = while cont body (0,0)
where
cont (v28_0,v28_1) = v44
where

vd4d = v28_0 <= v43
body (v45_0,v45_1) = (v46,v53)
where
vd6 = v45_0 + 1
v4a7 = v0_2_1 ! v45_0

v49 = v45_0 + 1
vb0 = v48 - v49
vbl = v6_1_0 ! vb0
vb2 = v47 * vb1

vb3 = v45_1 + v52
vb5 = v27_1 - vb4_1
vb6 = setIx (v5_1_0,v5_0,v55)
v60 = parallel v0_0_0 ixf
where
ixf vl = vb9
where

APPENDIX B. CORE LANGUAGE CODE FILTERS

vb9 = vb68_1_0 ! vi1

B.7 Core Language Code of armaStream

*PrintCodes> printCoreArmaStream
program ((v0_0_0,v0_0_1),(v0_1_0,v0_1_1),(v0_2_0,v0_2_1)) = (v0_0_0,v65)
where
v3 = v0_0_0 - 1
v29 0
v35 = vO
0
0

Il
<

vdd = v
v4AT = v
v60 = []
v62 = parallel v0_2_0 ixf
where
ixf v6l = 0
(v63_0,(v63_1_0,v63_1_1)) = while cont body (0, (v60,v62))
where
cont (v2_0,(v2_1_0,v2_1_1))
where
vd = v2_0 <= v3
body (v5_0,(v5_1_0,v5_1_1))
where
ve = vb_0 + 1
vil = v5_0 + 1

va

(v6, (v57,v59))

vi2 = v0_0_0 < vi1l
v13 = if v12 then thenBranch () else elseBranch ()
where

thenBranch v9 = v0_0_0
elseBranch v10 = vi1l
vl5 = v13 < v0_1_0
vi6 = if v15 then thenBranch () else elseBranch ()
where
thenBranch v8 = v13
elseBranch v14 = v0_1_0
vi7 = v16 - 1
v22 = v13 - 1
(v27_0,v27_1) = while cont body (0,0)
where
cont (v7_0,v7_1) = v18
where
v1l8 = v7_0 <= v17
body (v19_0,v19_1) = (v20,v26)
where
v20 = v19_0 + 1
v21l = vO_1_1 ! v19_0
v23 = v22 - v19_0
v24 = v0_0_1 ! v23

71

APPENDIX B. CORE LANGUAGE CODE FILTERS

v25 = v21 *x v24

v26 = v19_1 + v25
v37 = rem (v5
(v55_0,vb5_1)

_0,v0_2_0)
= while cont body (0,0)

where
cont (v28_0,v28_1) = v30
where
v30 = v28_0 <= v29
body (v31_0,v31_1) = (v32,v54)
where
v32 = v31_0 + 1
v33 = v0_2_1 ! v31_0
v36 = v35 - v31_0
v38 = v36 + v37
v39 = rem (v38,v0_2_0)
v40 = v39 + v0_2_0
v42 = v39 /=0
v43 = v38 > 0
v45 = v43 && véd
v46 = v38 < 0
v48 = v46 && vAT
v49 = v45 || v48
vb0 = v42 && v49
vb51 = if v50 then thenBranch () else elseBranch ()
where
thenBranch v34 = v40
elseBranch v41 = v39
vb2 = vb_1_1 ! vb1
vb3 = v33 * vb2
vb4d = v31_1 + vb3
vb6 = v27_1 - vb5_1
vb7 = setIx (v5_1_0,v5_0,v56)

v68 = rem (v5_0,v0_2_0)
vb9 = setIx (v5_1_1,v58,v56)
v65 = parallel v0_0_0 ixf

where
ixf vl = v64
where

ve4 = v63_1_0 ! vi

72

Appendix C

QuickCheck

Below are the QuickCheck properties used to check the equality of the different
implementations of the filters.

module TestFilters where

import qualified Prelude as P
import Feldspar
import Test.QuickCheck hiding (vector)

import Filters

—-— Compare the implementations of MA
-- maLoop, mad, and maM
maQC :: [Int] -> [Int] -> Property
maQC xs bs = (P.length xs) P.> (P.length bs) ==
(mal’ P.== maA’) P.&& (mal’ P.== maM’)

where
mal’ = eval $ maLoop (vector xs) (vector bs)
mahA’ = eval $ maA (vector xs) (vector bs)
maM’ = eval $ maM (vector xs) (vector bs)

-- Compare the implementations of AR
-- arLoop, arFeedLoop, and arMapAcc
arQC :: [Int] -> [Int] -> Property
arQC xs as = (P.length xs) P.> (P.length as) ==
(arL’ P.== arA’) P.&& (arL’ P.== arF’)

where
arA’ = eval $ arMapAcc (vector xs) (vector as)
arF’ = eval $ arFeedLoop (vector xs) (vector as)
arl’ = eval $ arLoop (vector xs) (vector as)

-- Compare the implementations of ARMA

73

APPENDIX C. QUICKCHECK

-- armalLoop and armaStream
armaQC :: [Int] -> [Int] -> [Int] -> Property
armaQC xs bs as = ((P.length xs) P.> (P.length as)) P.&&
((P.length xs) P.> (P.length bs)) ==

(armal.’ P.== armaS’)
where
armal’ = eval $ armaloop (vector xs) (vector bs) (vector as)
armaS’ = eval $ armaStream (vector xs) (vector bs) (vector as)

74

Appendix D

Core Language Code Transforms

D.1 Core Language Code of dft

program (v0_0,v0_1) = (v3,v40)

where
vli=v0_0 -1
v2 =vl -0
v3 =v2 + 1
v7 = v0_0 - 1
v8 = v7 - 0
v = v8 + 1

vil = v9 < v0_0
v12 = if v11 then thenBranch () else elseBranch ()
where
thenBranch v6 = v9
elseBranch v10 = v0_0
vi3 = v12 - 1
v18 = floatToReal 0.0
v19 = floatToReal 2.0
v20 = floatToReal 3.1415927
v21 = mul_RealNum (v19,v20)
v30 = intToFloat vO0_0
v31 = floatToReal v30
v36 = floatToReal 0.0
v37 = floatToReal 0.0
v38 = mkComplexReal (v36,v37)
v40 = parallel v3 ixf

where
ixf v4 = v39_1
where
v22 = v4 + 0
v23 = intToFloat v22

1)

APPENDIX D. CORE LANGUAGE CODE TRANSFORMS

v24 = floatToReal v23
v25 = mul_RealNum (v21,v24)
(v39_0,v39_1) = while cont body (0,v38)
where
cont (v5_0,v5_1) = vi14
where
v14d = v5_0 <= v13
body (v15_0,v15_1) = (v16,v35)
where
vi6é = v15_0 + 1
v1i7 = vO_1 ! v15_0
v26 = v1i5_0 + O
v27 = intToFloat v26
v28 = floatToReal v27
v29 = mul_RealNum (v25,v28)
v32 = div_RealNum (v29,v31)
v33 = sub_RealNum (v18,v32)
v34 = mkPolar_ComplexReal (v17,v33)
v35 = add_ComplexReal (v15_1,v34)

D.2 Core Language Code of dftm

program (v0_0,v0_1) = (v0_0,v28)

where
v3 =v0_0 - 1
v8 = floatToReal 1.0
v9 = floatToReal 0.0

v10 = floatToReal 2.0

v1l = floatToReal 3.1415927
v12 = mul_RealNum (v10,vi1)
v17 = intToFloat vO0_0

v18 = floatToReal v17

v24 = floatToReal 0.0

v25 = floatToReal 0.0

v26 = mkComplexReal (v24,v25)
v28 = parallel v0_0O ixf

where
ixf vl = v27_1
where
(v27_0,v27_1) = while cont body (0,v26)
where
cont (v2_0,v2_1) = v4
where

vd = v2_0 <= v3
body (v5_0,v5_1) = (v6,v23)
where
ve = vb_0 + 1
v7 = v0_1 ! v5_0

76

APPENDIX D. CORE LANGUAGE CODE TRANSFORMS

D.3 Core Language Code of the function fft

vi3 =
vid =
v1lb =
vi6é =
vi9 =
v20 =
v21 =
v22 =
v23 =

vl * v5_0

intToFloat v13

floatToReal v14

mul_RealNum (v12,v15)
div_RealNum (v16,v18)
sub_RealNum (v9,v19)
mkPolar_ComplexReal (v8,v20)
mul_ComplexReal (v7,v21)
add_ComplexReal (v5_1,v22)

7

Below is the core language code of the function £ft for an input vector of size 8.

The Feldspar code contained compile time recursion which is unrolled here.

program (v0_0,v0_1) = (8,v252)

v43 = if v42 then thenBranch v6 else elseBranch v6

v27

loat vi18

oReal v19

alNum (v17,v20)

alNum (v21,v22)

alNum (v14,v23)
r_ComplexReal (v13,v24)
mplexReal (v12,v25)
mplexReal (v10,v26)

1

0

loat v32

oReal v33
alNum (v30,v34)

where
v8 = v0_1 ! O
v9 = floatToReal 0.0
v10 = mkComplexReal (v8,v9)
vil = v0_1 ! 4
v12 = mkComplexReal (v11,v9)
v13 = floatToReal 1.0
v14 = floatToReal 0.0
v15 = floatToReal 2.0
v16 = floatToReal 3.1415927
v17 = mul_RealNum (v15,v16)
v22 = floatToReal 2.0
v29 = floatToReal 3.1415927
v30 = mul_RealNum (v15,v29)
v36 = floatToReal 2.0
v44 = parallel 2 ixf
where
ixf v6 = v43
where
v42 = v6 < 1
where
thenBranch v7 =
where
vi8 = v7 + 0
v19 = intToF
v20 = floatT
v21 = mul_Re
v23 = div_Re
v24 = sub_Re
v25 = mkPola:
v26 = mul_Co!
v27 = add_Co:
elseBranch v28 = v41
where
v31l = v28 -
v32 = v31 +
v33 = intToF
v34 = floatT
v35 = mul_Re
v37 = div_Re

alNum (v35,v36)

APPENDIX D. CORE LANGUAGE CODE TRANSFORMS

v38 = sub_RealNum (v14,v37)
v39 = mkPolar_ComplexReal (v13,v38)
v40 = mul_ComplexReal (v12,v39)
v41l = sub_ComplexReal (v10,v40)
v48 = vO_1 ! 2
v49 = mkComplexReal (v48,v9)
vb0 = v0_1 ! 6
v61 = mkComplexReal (v50,v9)
vb2 = floatToReal 3.1415927
v53 = mul_RealNum (v15,v52)
vb8 = floatToReal 2.0
v65 = floatToReal 3.1415927
v66 = mul_RealNum (v15,v65)
v72 = floatToReal 2.0
v80 = parallel 2 ixf
where
ixf v46 = v79
where
v78 = v46 < 1
v79 = if v78 then thenBranch v46 else elseBranch v46
where
thenBranch v47 = v63
where
vb4 = v47 + 0
vb5 = intToFloat vb4
v66 = floatToReal vb5
v57 = mul_RealNum (v53,v56)
v59 = div_RealNum (v57,v58)
v60 = sub_RealNum (v14,v59)
v61 = mkPolar_ComplexReal (v13,v60)
v62 = mul_ComplexReal (v51,v61)
v63 = add_ComplexReal (v49,v62)
elseBranch v64 = v77
where
ve7 = v64 - 1
v68 = v67 + 0
v69 = intToFloat v68
v70 = floatToReal v69
v71 = mul_RealNum (v66,v70)
v73 = div_RealNum (v71,v72)
v74 = sub_RealNum (v14,v73)
v75 = mkPolar_ComplexReal (v13,v74)
v76 = mul_ComplexReal (v51,v75)
v77 = sub_ComplexReal (v49,v76)
v82 = floatToReal 3.1415927
v83 = mul_RealNum (v15,v82)
v88 = floatToReal 4.0
v98 = floatToReal 3.1415927
v99 = mul_RealNum (v15,v98)
v104 = floatToReal 4.0
v112 = parallel 4 ixf
where
ixf v4 = viil
where
v110 = v4 < 2
v1i1ll = if v110 then thenBranch v4 else elseBranch v4
where
thenBranch v5 = v93
where
v4b = v44 ! vb
v81l = v80 ! vb
v84 = v5 + 0

78

APPENDIX D. CORE LANGUAGE CODE TRANSFORMS

v85
v86
v87
v89
v90
vo1l
v92
v93

intToFloat v84

floatToReal v85

mul_RealNum (v83,v86)
div_RealNum (v87,v88)
sub_RealNum (v14,v89)
mkPolar_ComplexReal (v13,v90)
mul_ComplexReal (v81,v91)
add_ComplexReal (v45,v92)

elseBranch v94 = v109

where
v9b = v94 - 2
v96 = v44 ! v95
v97 = v80 ! v95
v100 = v95 + O
v101 = intToFloat v100
v102 = floatToReal v101
v103 = mul_RealNum (v99,v102)
v105 = div_RealNum (v103,v104)
v106 = sub_RealNum (v14,v105)
v107 = mkPolar_ComplexReal (v13,v106)
v108 = mul_ComplexReal (v97,v107)
v109 = sub_ComplexReal (v96,v108)
vi18 = v0o_1 ! 1
v119 = mkComplexReal (v118,v9)
v1i20 = vO_1 ! 5
v121 = mkComplexReal (v120,v9)
v122 = floatToReal 3.1415927
v123 = mul_RealNum (vi15,v122)
v128 = floatToReal 2.0
v135 = floatToReal 3.1415927
v136 = mul_RealNum (v15,v135)
v142 = floatToReal 2.0
v150 = parallel 2 ixf
where
ixf v116 = v149
where
v148 = v116 < 1
v149 = if v148 then thenBranch v116 else elseBranch v116
where
thenBranch v117 = v133
where
v124 = v117 + O
v125 = intToFloat v124
v126 = floatToReal v125
v127 = mul_RealNum (v123,v126)
v129 = div_RealNum (v127,v128)
v130 = sub_RealNum (v14,v129)
v131 = mkPolar_ComplexReal (v13,v130)
v132 = mul_ComplexReal (v121,v131)
v133 = add_ComplexReal (v119,v132)
elseBranch v134 = v147
where
v137 = v134 - 1
v138 = v137 + 0O
v139 = intToFloat v138
v140 = floatToReal v139
v141 = mul_RealNum (v136,v140)
v143 = div_RealNum (v141,v142)
v144 = sub_RealNum (v14,v143)
v145 = mkPolar_ComplexReal (v13,v144)
v146 = mul_ComplexReal (v121,v145)
v147 = sub_ComplexReal (v119,v146)

79

APPENDIX D. CORE LANGUAGE CODE TRANSFORMS

vi64 = vO_1 ! 3
v155 = mkComplexReal (v154,v9)
v166 = vO_1 ! 7
v157 = mkComplexReal (v156,v9)
v1568 = floatToReal 3.1415927
v159 = mul_RealNum (v15,v158)
v164 = floatToReal 2.0
v171 = floatToReal 3.1415927
v172 = mul_RealNum (v15,v171)
v178 = floatToReal 2.0
v186 = parallel 2 ixf
where
ixf v152 = v185
where
vi84 = v152 < 1
v185 = if v184 then thenBranch v152 else elseBranch v152
where
thenBranch v153 = v169
where
v160 = v153 + 0
v161 = intToFloat v160
v162 = floatToReal v161
v163 = mul_RealNum (v159,v162)
v165 = div_RealNum (v163,v164)
v166 = sub_RealNum (v14,v165)
v167 = mkPolar_ComplexReal (v13,v166)
v168 = mul_ComplexReal (v157,v167)
v169 = add_ComplexReal (v155,v168)
elseBranch v170 = v183
where
v173 = v170 - 1
vi74 = v173 + 0
v175 = intToFloat v174
v176 = floatToReal v175
v177 = mul_RealNum (v172,v176)
v179 = div_RealNum (v177,v178)
v180 = sub_RealNum (v14,v179)
v181 = mkPolar_ComplexReal (v13,v180)
v182 = mul_ComplexReal (v157,v181)
v183 = sub_ComplexReal (v155,v182)
v188 = floatToReal 3.1415927
v189 = mul_RealNum (v15,v188)
v194 = floatToReal 4.0
v204 = floatToReal 3.1415927
v205 = mul_RealNum (v15,v204)
v210 = floatToReal 4.0
v218 = parallel 4 ixf
where
ixf v114 = v217
where
v216 = v114 < 2
v217 = if v216 then thenBranch v114 else elseBranch vi114
where
thenBranch v115 = v199
where

v1i51 = v150 ! v115

v187 = v186 ! v115

v190 = v115 + 0

v191 = intToFloat v190

v192 = floatToReal v191

v193 = mul_RealNum (v189,v192)
v195 = div_RealNum (v193,v194)

80

APPENDIX D. CORE LANGUAGE CODE TRANSFORMS

v196 = sub_RealNum (v14,v195)
v197 = mkPolar_ComplexReal (v13,v196)
v198 = mul_ComplexReal (v187,v197)
v199 = add_ComplexReal (v151,v198)
elseBranch v200 = v215
where
v201 = v200 - 2
v202 = v150 ! v201
v203 = v186 ! v201
v206 = v201 + 0
v207 = intToFloat v206
v208 = floatToReal v207
v209 = mul_RealNum (v205,v208)
v211 = div_RealNum (v209,v210)
v212 = sub_RealNum (v14,v211)
v213 = mkPolar_ComplexReal (v13,v212)
v214 = mul_ComplexReal (v203,v213)
v215 = sub_ComplexReal (v202,v214)

v220 = floatToReal 3.1415927
v221 = mul_RealNum (v15,v220)
v226 = floatToReal 8.0
v236 = floatToReal 3.1415927
v237 = mul_RealNum (v15,v236)
v242 = floatToReal 8.0
v250 = parallel 8 ixf
where
ixf v2 = v249
where
v248 = v2 < 4
v249 = if v248 then thenBranch v2 else elseBranch v2
where
thenBranch v3 = v231
where

v113 = v112 ! v3
v219 = v218 ! v3
v222 = v3 + 0
v223 = intToFloat v222
v224 = floatToReal v223
v225 = mul_RealNum (v221,v224)
v227 = div_RealNum (v225,v226)
v228 = sub_RealNum (v14,v227)
v229 = mkPolar_ComplexReal (v13,v228)
v230 = mul_ComplexReal (v219,v229)
v231 = add_ComplexReal (v113,v230)

elseBranch v232 = v247

where

v233 = v232 - 4
v234 = v112 ! v233
v235 = v218 ! v233
v238 = v233 + 0O
v239 = intToFloat v238
v240 = floatToReal v239
v241 = mul_RealNum (v237,v240)
v243 = div_RealNum (v241,v242)
v244 = sub_RealNum (v14,v243)
v245 = mkPolar_ComplexReal (v13,v244)
v246 = mul_ComplexReal (v235,v245)
v247 = sub_ComplexReal (v234,v246)

v252 = parallel 8 ixf
where

ix

f vl = v251
where

81

APPENDIX D. CORE LANGUAGE CODE TRANSFORMS

v251 = v250 ! vi

82

Appendix E

Implementation of the Matr
Module

module Matr where

import qualified Prelude
import Feldspar hiding ((*%))
import MissingFunc

{__

Matr is an effictent matriz module inspired by the Spiral project.

Note the core language code generated using this module does mot provide the

efficiency which it should.

- tmplementation of mulMatrVec could be improved

- tmplementation of Transform specific symbols (Like stride permutation)
should be improved

Karin Keijzer 2010

--}
data Matr a =
IndexedMatr (Data Length) (Data Length)
(Data Ix -> Data Ix -> Data a) -- hetght width indexzfunction
Ident (Data Length) (Data Length) -- height width
Jdent (Data Length) (Data Length) -- height width
Diag (Data Length) (Data Length) (DVector a) -- height width diag

Tensor (Data Length) (Data Length) (Matr a) (Matr a) -- height width 1l r
DirectSum (Data Length) (Data Length) (Matr a) (Matr a) -- hetght width 1 r
Compose (Data Length) (Data Length) (Matr a) (Matr a) -- height width 1 7

83

APPENDIX E. IMPLEMENTATION OF THE MATR MODULE 84

-- Creates a Matr out of a Matric
matrixToMatr :: (Numeric a) => Matrix a -> Matr a
matrixToMatr xss = IndexedMatr (length xss) (length $ head xss) ixf
where
ixf kl=xss!k!1

-- Create a matriz given a function and the hetght and width
indexedMatr :: (Numeric a) =>

Data Int -> Data Int -> (Data Ix -> Data Ix -> Data a) -> Matr a
indexedMatr h w idx = IndexedMatr h w idx

-- Create a Identity matrixz of size n*n
idMatr :: (Numeric a) => Data Int -> Matr a
idMatr n = Ident n n

-- Create a Identity matrixz of size n*n
jdMatr :: (Numeric a) => Data Int -> Matr a
jdMatr n = Jdent n n

-- Create a diagonal matriz of size (length zs)*(length zs).
—-— The diagonal contains the wvalues of s.

diagMatr :: (Numeric a) => DVector a -> Matr a

diagMatr xs = Diag (length xs) (length xs) xs

-- Create a Tensor matrixz of the matrices a and b
tensor :: (Numeric a) => Matr a -> Matr a -> Matr a
tensor a b = Tensor k1 a b
where
k = (height a) * (height b)
1 = (width a) * (width b)

-- Create a DirectSum matrixz of the matrices a and b

directSum :: (Numeric a) => Matr a -> Matr a -> Matr a
directSum a b = DirectSum k 1 a b
where

k = (height a) + (height b)
1 = (width a) + (width b)

-- Create a matriz by multiplying two matrices
compose :: (Numeric a) => Matr a -> Matr a -> Matr a
compose a b = Compose (height a) (width b) a b

-- Gives the height of a matriz
height :: Matr a -> Data Int
height (IndexedMatr h w ix) = h

APPENDIX E. IMPLEMENTATION OF THE MATR MODULE 85

height (Ident h w) = h
height (Jdent h w) = h
height (Diag h w v) = h
height (Tensor h w a b) = h
height (DirectSum h w a b) = h
height (Compose h w a b) = h

-- Gives the width of a matriz
width :: Matr a -> Data Int
width (IndexedMatr h w ix) = w
width (Ident h w) W

width (Jdent h w) W

width (Diag h w v) = w

width (Tensor h w a b) = w
width (DirectSum h w a b) = w
width (Compose h w a b) = w

-- chops a vector in pieces of length x
chop :: Data Int -> DVector a -> Vector (DVector a)
chop x vec = indexed (div (length vec) x) $ \k ->
indexed x $ \1 ->
vec ! (k*xx + 1)

-- scale multiplies a vector with a constant

scale :: (Numeric a) => DVector a -> Data a -> DVector a
scale vec ¢ = map (* c) vec

—-- Transposes a Matric

transposeMatr :: (Numeric a) => Matr a -> Matr a

transposeMatr (IndexedMatr h w ix) = IndexedMatr w h (\k 1 -> ix 1 k)
transposeMatr (Ident h w) = Ident w h

transposeMatr (Jdent h w) = Jdent w h

transposeMatr (Diag h w v) = Diag w h v

transposeMatr (Tensor h w a b) = Tensor w h (transposeMatr a)

(transposeMatr b)
transposeMatr (DirectSum h w a b) = DirectSum w h (transposeMatr a)

(transposeMatr b)
transposeMatr (Compose h w a b) = Compose w h (transposeMatr b)

(transposeMatr a)

-— Matr ** Matr
instance (Numeric a) => Mul (Matr a) (Matr a)
where
type Prod (Matr a) (Matr a) = (Matr a)
(*x) = mulMatrMatr

APPENDIX E. IMPLEMENTATION OF THE MATR MODULE 86

-— Matr ** Vector
instance (Numeric a) => Mul (Matr a) (DVector a)
where
type Prod (Matr a) (DVector a) = (DVector a)
(*%) = mulMatrVec

-— Vector ** Matr
instance (Numeric a) => Mul (DVector a) (Matr a)
where
type Prod (DVector a) (Matr a) = (DVector a)
(xx) = mulVecMatr

mulMatrVec :: (Numeric a) => Matr a -> DVector a -> DVector a

-- Multiply each row of the matrixz with the input wvector.
mulMatrVec (IndexedMatr h w ix) vec =
memorize $ map (\k -> scalarProd vec (indexed w (ix k))) (0...(h-1))

-- Input vector remains unchanged.
mulMatrVec (Ident h w) vec = vec

-- Input vector is reversed.
mulMatrVec (Jdent h w) vec = reverse vec

-- Element-wise multiplication of diagonal vector and the input vector.
mulMatrVec (Diag h w v) vec = memorize $ zipWith (*) v vec

-— First multiply matriz B with the input vector and after that multiply the
-- result with matriz A.
-- (AB)x = A(Bx)
mulMatrVec (Compose h w a b) vec =
memorize $ mulMatrVec a (mulMatrVec b vec)

-— Multiply matriz a with the first part of the input vector and multiply
-— matriz b with the second part of the vector after that concatenate the
-- result vectors.

- [A 5 } (z++y) = (Az)++(By)

mulMatrVec (DirectSum h w a b) vec = memorize $
(mulMatrVec a (take wa vec)) ++ (mulMatrVec b (drop wa vec))
where
wa = width a

-- Cut the input vector in pieces and multiply matriz b with each piece and
-- concatenate the result.

APPENDIX E. IMPLEMENTATION OF THE MATR MODULE 87

B

B
--I1,®B= . (x++y++.. ++2) = (Bx)++(By)++. . ++(Bz)

B
mulMatrVec (Tensor h w (Ident ih iw) b) vec =
memorize $ flatten $ map (mulMatrVec b) (chop (width b) vec)

-- Cut the input vector in pieces, reverse the pieces, and multiply matrixz b
-— with each piece and concatenate the result.
mulMatrVec (Tensor h w (Jdent ih iw) b) vec =
memorize $ flatten $
map (mulMatrVec b) (reverse $ chop (width b) vec)

-- Cut the input vector in pieces, for each row of the matriz:
-—- multiply each element of the row with one piece of the input vector and
-- sum the result such that each row of the matrixz gives one output value.
mulMatrVec (Tensor h w (IndexedMatr ah aw ix) (Ident ih iw)) vec =
memorize $ flatten $ map (\k-> map sum (transpose $
zipWith scale (chop iw vec) (indexed w (ix k)))) (0...(ah-1))

-- Cut the input vector in pieces and scale each piece with an element from
-- the diagonal vector. After scaling the pieces are concatenated into one
-- wvector.
mulMatrVec (Tensor h w (Diag ah aw v) (Ident ih iw)) vec =
memorize $ flatten $ zipWith scale (chop iw vec) v

-- Cut the input vector in two pieces, where the first half has the length
-- (the width matriz a multiplied with the width of the identity matriz),
-- after that multiply the first part with the temsor product of matriz a
-- and the tdentity matriz; and multiply the second part with the tensor
-- product of matriz b and the identity matriz.
mulMatrVec (Tensor h w (DirectSum ah aw a b) i@(Ident ih iw)) vec =
memorize $ (mulMatrVec (tensor a i) (take halfvec vec)) ++
(mulMatrVec (tensor b i) (drop halfvec vec))
where
halfvec = (width a) * iw
-- Cut the input vector in pieces then multiply a vector containing the zth
-—- elements of each piece with row = of the matriz.
-- After that reorder and flatten the result.
mulMatrVec (Tensor h w t@(Tensor ah aw a b) (Ident ih iw)) vec =
memorize $ flatten $ transpose $
map (mulMatrVec t) (transpose (chop iw vec))
-— Cut the input vector in pieces then multiply a vector containing the zth
-- elements of each piece with row = of the matriz.
-- After that reorder and flatten the result.
mulMatrVec (Tensor h w c@(Compose ah aw a b) (Ident ih iw)) vec =

APPENDIX E. IMPLEMENTATION OF THE MATR MODULE 88

memorize $ flatten $ transpose $
map (mulMatrVec c) (transpose (chop iw vec))

-- Cut the input vector in pieces and reverse each piece, for each row of
-— the matriz: multiply each element of the row with one piece of the input
-- vector and sum the result such that each row of the matriz gives one
-- output value.
mulMatrVec (Tensor h w (IndexedMatr ah aw ix) (Jdent ih iw)) vec =
memorize $ flatten $ map (\k-> map sum (transpose $ zipWith
scale (map reverse $ chop iw vec) (indexed w (ix k)))) (0...(ah-1))

-- Cut the input vector in pieces, reverse the elements of each piece, and
-- scale each piece with an element from the diagonal vector. After scaling
-- the pieces are concatenated into one wvector.
mulMatrVec (Tensor h w (Diag ah aw v) (Jdent ih iw)) vec =
memorize $ flatten $ zipWith scale (map reverse $ chop iw vec) v

-- Cut the input vector in two pieces, where the first half has the length
-- (the width matriz a multiplied with the width of the row-reversed
-- tdentity matriz), after that multiply the first part with the tensor
-- product of matriz a and the row-reversed identity matriz; and multiply
-- the second part with the tensor product of matriz b and the identity
-- matric.
mulMatrVec (Tensor h w (DirectSum ah aw a b) j@(Jdent ih iw)) vec =
memorize $ (mulMatrVec (tensor a j) (take halfvec vec)) ++
(mulMatrVec (tensor b j) (drop halfvec vec))
where
halfvec = (width a) * iw

-- Cut the input vector in pieces and reverse the order of the elements of
-- each piece then multiply a vector containing the 2" elements of
-- each ptece with row = of the matriz. After that reorder and flatten the
-- result.
mulMatrVec (Tensor h w t@(Tensor ah aw a b) (Jdent ih iw)) vec =
memorize $ flatten $ transpose $ map (mulMatrVec t)

(transpose (map reverse $ chop iw vec))

-- Cut the input vector in pieces and reverse the order of the elements of
-- each piece then multiply a vector containing the 2" elements of
-- each ptece with row = of the matrixz. After that reorder and flatten the
-- result.
mulMatrVec (Tensor h w c@(Compose ah aw a b) (Jdent ih iw)) vec =
memorize $ flatten $ transpose $ map (mulMatrVec c)

(transpose (map reverse $ chop iw vec))

-- General temsor matrixz multiplied with a vector.

-- Cut the input vector in pieces; multiply matrixz B with each piece

-- resulting in a vector Y containing the result vectors (Y can thus be seen
-- as a matriz). After that multiply matriz A with each column of Y. At the

APPENDIX E. IMPLEMENTATION OF THE MATR MODULE 89

-- end concatenate the results.
mulMatrVec (Tensor h w a b) vec = memorize $ flatten $ transpose $
map (mulMatrVec a) (transpose $ map (mulMatrVec b)
(chop (width b) vec))

-— Vector ** Matriz
mulVecMatr :: (Numeric a) => DVector a -> Matr a -> DVector a
mulVecMatr vec mat = mulMatrVec (transposeMatr mat) vec

-— Matriz ** Matriz
mulMatrMatr :: (Numeric a) => Matr a -> Matr a -> Matr a
mulMatrMatr a b = compose a b

-- Transforms a Matr into a Matrixz (nested vectors)

matrToMatrix :: (Numeric a) => Matr a -> Matrix a

matrToMatrix (IndexedMatr h w ix) = indexedMat h w ix

matrToMatrix (Ident h w) = indexedMat h w (\k 1 > (k == 1) 7 (1,0))
matrToMatrix (Jdent h w) = indexedMat h w (\k 1 -> (h-k-1 == 1) ? (1,0))
matrToMatrix (Diag h w v) = indexedMat h w (\k 1 -> (k == 1) ? (v ! k,0))
matrToMatrix (Compose h w a b) = (matrToMatrix a) ** (matrToMatrix b)

matrToMatrix (Tensor h w a b) = indexedMat h w idxfun
where
n = height a
m = width a
s = height b
t = width b
a’ = matrToMatrix a

b’ = matrToMatrix b
idxfun k 1 = ((a’ ! y1) ! x1) * ((b> ! y2) ! x2)

where
x1 =1 ‘div‘ t
yl = k ‘div‘ s
x2 =1 ‘mod‘ t
y2 = k ‘mod‘ s

matrToMatrix (DirectSum h w a b) = indexedMat h w idxfun
where
n = height a
m = width a
= height b
width b
a’ = matrToMatrix a

(3]
nn

APPENDIX E. IMPLEMENTATION OF THE MATR MODULE 90

b’ = matrToMatrix b

idxfun k 1 = (?) ((k < n) & (1 < m)) -- <nrange of mat a
((d> ' k) !' 1,
(?) ((k >=n) && (1 >=m)) -- inrange of mat b
(' (kn)) ! (I-m),
0)) -- not in a not in b

-— Transforms a Matr into a Matr of type IndexedMatr
matrToIxMatr :: (Numeric a) => Matr a -> Matr a
matrToIxMatr (IndexedMatr h w ix) = IndexedMatr h w ix
matrToIxMatr (Ident h w) = IndexedMatr h w (\k 1 -> (k == 1) ? (1,0))
matrToIxMatr (Jdent h w) = IndexedMatr h w (\k 1 -> (h-k-1 == 1) ? (1,0))
matrToIxMatr (Diag h w v) = IndexedMatr h w (\k 1 -> (k ==1) ? (v ! k,0))
matrToIxMatr (Compose h w a b) = IndexedMatr h w (\k 1 ->

scalarProd (indexed wa $ idxa k) (indexed hb $ (\x y -> idxb y x) 1))

where
(IndexedMatr ha wa idxa) = matrToIxMatr a
(IndexedMatr hb wb idxb) matrToIxMatr b

matrToIxMatr (Tensor h w a b) = IndexedMatr h w idxfun
where
(IndexedMatr _ _ idxa) = matrToIxMatr a

(IndexedMatr s t idxb) = matrToIxMatr b
idxfun k 1 = (idxa y1 x1) * (idxb y2 x2)

where
x1 =1 ‘div‘ t
yl = k ‘div‘ s
x2 =1 ‘mod‘ t
y2 = k ‘mod‘ s

matrToIxMatr (DirectSum h w a b) = IndexedMatr h w idxfun

where
(IndexedMatr n m idxa) = matrToIxMatr a
(IndexedMatr _ _ idxb) = matrToIxMatr b
idxfun k 1 = (?) ((k < n) & (1 < m)) -- <nrange of mat a
(idxa k 1,
(?) ((x >=n) & (1 >= m)) -- inrange of mat b

(idxb (k-n) (1-m),
0)) -- not in a not in b

Appendix F

Transforms in Feldspar

F.1 Discrete Fourier Transform

DFT, = (DFT, ® I,,) T" (I, ® DFT,,) L}, n=km
DFT2 - F2

-- Main DFT function.
dfts :: Int -> (DVector ComplexReal) -> (DVector ComplexReal)
dfts n xn = (dftn n) ** xn

-- DFT transform matriz
dftn :: Int -> Matr ComplexReal
dftn 2 = f2c
dftn n = compose
(compose (tensor (dftn kh) (idMatr mf)) (twiddleMatr nf mf))
(compose (tensor (idMatr kf) (dftn mh)) (strideMatrc nf kf))

where
nf = value n
mh = n ‘Prelude.div‘ kh
mf = nf ‘div‘ kf
kh = 2
kf = value kh

-— DFT of size 2 (with complexr numbers)
f2c¢ :: Matr ComplexReal
f2¢ = indexedMatr 2 2 (\k 1 -> ((k+1) < 2) ? (1 |+| 0,-1 [+] 0))

-- Stride permutation matriz Lmn

91

APPENDIX F. TRANSFORMS IN FELDSPAR

strideMatrc :: Data Int -> Data Int -> Matr ComplexReal
strideMatrc n m = indexedMatr n n ix
where
ix k 1 = (k==n-1) 7
((k==1) 2 (1 [+] 0,0 [+] 0)
, ((k*m) ‘mod‘ (n - 1))==1) 7 (1 |+| 0,0 [+] 0))

-- Twiddle matric
twiddleMatr :: Data Int -> Data Int -> Matr ComplexReal
twiddleMatr n m =
diagMatr ((flatten . map
(\k -> map (\1 -> twiddle n (1x*k)) (0...(m-1))))
(0...(n ‘div‘ m-1)))

-- Twiddle factor
twiddle :: Data Int -> Data Int -> Data ComplexReal

twiddle n m = mkPolar 1 (-2 * rpi * rm / rn) —— e 2™"/N
where
rpi = floatToReal pi
rm = intToReal m
rn = intToReal n

F.2 Discrete Cosine Transform

The discrete cosine transform type two.

DCT-2, = L, (DCT-2,, ® DCT-4,,) (F, ® I,) (I, ® Jn),
DCT-2, = diag(1,1/v?2) F,

dct2s :: Int -> (DVector Float) -> (DVector Float)
dct2s n xn = (dct2n n) ** xn

—-- Discrete Cosine Transform type 2.
dct2n :: Int -> Matr Float
dct2n 2 = compose (diagMatr (vector [1,1/(Prelude.sqrt 2)])) (£2)
dct2n n = compose
(compose (strideMatr nf mf) (directSum (dct2n mh) (dcté4n mh)))

(compose (tensor f2 (idMatr mf)) (directSum (idMatr mf) (jdMatr mf)))

where
nf value n
mf = nf ‘div‘ 2
mh = n ‘Prelude.div‘ 2

92

APPENDIX F. TRANSFORMS IN FELDSPAR

-— DFT of size 2
£f2 :: (Numeric a) => Matr a
f2 = matrixToMatr $ matrix [[1,1],[1,-1]]

-- Stride permutation matriz Lmn

strideMatr :: (Numeric a) => Data Int -> Data Int -> Matr a
strideMatr n m = indexedMatr n n ix
where

ix k 1 = (k==n-1) 7
((k==1) 7 (1,0), (((k*m) ‘mod‘ (n - 1))==1) ? (1,0))

The discrete cosine transform type four.

DCT-4; = Jo Risns "

dctds :: Int -> (DVector Float) -> (DVector Float)
dct4s n xn = (dct4n n) ** xn

—-- Discrete Cosine Transform type 4.

dct4n :: Int -> Matr Float

dctd4n 2 = compose (jdMatr 2) (rotateMatr)

dctd4n n = compose (sDiagn nf) (compose (dct2n n) (diagMatr diagvec))

where
nf = value n
fnf = intToFloat nf
fi = intToFloat i

diagvec = indexed nf $ \i -> 1/(2 * cos(((2*fi+1)*pi)/(4*(fnf))))

-- Bi-diagonal matriz Sn
sDiagn :: (Numeric a) => Data Int -> Matr a
sDiagn n = indexedMatr n n (\k 1 -> ((k == 1) || ((k+1) == 1)) ? (1,0))

-— Rotation Matriz
rotateMatr :: Matr Float
rotateMatr =
matrixToMatr $
(replicate 1 ((replicate 1 (cosa)) ++ (replicate 1 (sina)))) ++
(replicate 1 ((replicate 1 (- sina)) ++ (replicate 1 (cosa))))
where
a = 13%pi/8
cosa = cos a
sina = sin a

93

	Raising Feldspar to a Higher Level

	Contents

	1. Introduction
	2. Background
	Domain Specific Languages
	Digital Signal Processing
	Digital Signal Processing Domains
	Filters

	Baseband Processing
	Digital Signal Processing Functions
	Filters
	Transforms

	3. Feldspar
	Using Feldspar
	Compilation
	Feldspar
	Core language
	C Code

	Vectors
	Fusion

	Matrices

	4. Case Studies
	Filters
	Transforms
	Known Algorithms
	Algebraic Descriptions

	5. Combinators for Feldspar
	Feedforward Combinators
	Feedback Combinators
	Feedforward and Feedback Combinators
	Generalization
	Conclusion

	6. Transforms
	Fourier Transform
	Discrete Fourier Transform
	Fast Fourier Transform

	Discrete Cosine Transform
	Discrete Cosine Transform
	Fast Cosine Transform

	Walsh–Hadamard transform
	Walsh–Hadamard transform
	Fast Walsh–Hadamard transform

	Conclusion

	7. Matrices
	Spiral
	Feldspar Matrix Module
	Transforms in Feldspar
	Discrete Fourier Transform
	Discrete Cosine Transform
	Walsh–Hadamard transform

	Conclusion

	8. Related Work
	9. Conclusion
	Acknowledgements
	Appendices
	A. Combinators
	B. Core Language Code Filters
	Core Language Code of maA
	Core Language Code of maM
	Core Language Code of ma
	Core Language Code of arFeedLoop
	Core Language Code of arLoop
	Core Language Code of arma
	Core Language Code of armaStream

	C. QuickCheck
	D. Core Language Code Transforms
	Core Language Code of dft
	Core Language Code of dftm
	Core Language Code of the function fft

	E. Implementation of the Matr Module
	F. Transforms in Feldspar
	Discrete Fourier Transform
	Discrete Cosine Transform

