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ABSTRACT

This thesis focuses on the modeling and control of a robot arm which is used to
transfer energy from electrified tracks in the road to an electric vehicle. The consid-
ered robot arm is a highly constrained multi-body mechatronic device with 13 joints
but with only two degrees of freedom.

The control objective is to guarantee contact between the robot arm and the electri-
fied tracks whilst maintaining a low contact force. A low contact force is necessary
in order to reduce wearing of the the electrified tracks as well as the contact surface
of the robot arm, while loss of contact has to be avoided in order to prevent electrical
arcs.

A modeling and control framework is presented where a kinematic model is derived
and a dynamic model is formulated using the Lagrange method. Control algorithms
are proposed, including Impedance control and Force control with inner position
loop.

The proposed modeling and control framework has successfully been utilised to
model and control the interaction of a robot arm prototype with the electrified
tracks. The implemented interaction controllers managed to guarantee constant
contact between the robot arm and the electric tracks with a moderate contact
force, despite the problem of road unevenness.

This thesis is part of the research project Slide-in Electric Road System, the main
purpose of which is to study and evaluate the possibilities of using electrified roads
for both charging and propulsion of hybrid or fully electrified vehicles during driving.

Keywords: Robot arm, Lagrange mechanics, Exact linearisation, Motion control,
Interaction control, Electrified roads.
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1 INTRODUCTION

Vehicle electrification can be regarded as a large step towards a reduction of environ-
mental emissions and dependence of fossil fuel. However, the energy storage devices
available today, such as batteries, are expensive and have poor energy density. A
large energy storage would also lead to a high energy consumption due to its consid-
erable weight. Therefore, the high amount of energy that is required for propulsion
of a heavy vehicle is often not profitable to store within the vehicle. A possible so-
lution is to develop an electrified road system that can continuously transfer energy
from the road to the vehicle for propulsion and charging. Electrification of some
strategic sections of the road between cities would mean that most of the route
could be driven on electricity at low cost and weight of the vehicle. Conductively
transfering electricity from the road to the vehicle requires a mechatronic device
capable of compensating for the vehicles movement on the road whilst maintaining
continuous contact with the electrified tracks.

1.1 Background

This thesis is part of a research project, the main purpose of which is to study and
evaluate the possibilities of using electrified roads to charge hybrid or fully electrified
vehicles.

The research project is led by Volvo GTT and it involves many partners:

• Volvo GTT

• Scania

• Alstom

• Vattenfall

• Swedish Transport Administration

• Projektengagemang (Svenska Elvägar AB)

• Lund University

• KTH Royal Institute of Technology

• Chalmers University of Technology

• Örebro University

1



2 Chapter 1 Introduction

The project is partly funded by the Swedish Energy Agency through the program
Fordonsstrategisk Forskning och Innovation (FFI) (Viktoria Swedish ICT 2014).

A picture of the robot arm prototype mounted on a truck during testing can be seen
in Figure 1.1 below. Note that the two electric tracks are also present in the picture.

Figure 1.1. The robot arm shown in the circle, mounted on truck during testing.
The two parallel tracks below the robot arm are the electrified tracks. Image
from (Viktoria Swedish ICT 2014).

The robot arm should be mounted under the truck in a similar manner to Figure 1.2

𝑌 𝑋 

𝑍 

Figure 1.2. Conceptual side view of the robot arm mounted on a truck.
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1.2 Objective

The purpose of this thesis is to present a modeling and control framework for model-
ing and control of a mechatronic device, a robot arm, which can be seen in Figure 1.3.
The goal is to control the robot arm such that a constant contact is guaranteed be-
tween the contact surface of the arm and the electrified tracks whilst maintaining
a moderate contact force in order to reduce wearing of the the robot arm and the
electrified tracks.

Figure 1.3. CAD model of the robot arm. The dashed lines shows the two
axes of rotation representing the two degrees of freedom. The coordinate system
shows the orientation of the world frame, which shares orientation with the base
frame.

A crucial part of the control problem for the robot arm is the vertical control. Good
vertical control ensures that changes in height setpoint are followed quickly whilst
maintaining enough contact force to ensure good conductivity. If this is not the
case, there is a risk of electrical arcs between the road and the robot arm, which
can both be a fire hazard and also disturbing to other road users. The control
algorithm currently used by Volvo GTT does not perform as desired, with electric
arcs appearing as a result.



4 Chapter 1 Introduction

1.3 Contribution

This thesis contributes to the Slide-in Electric Road System project (Viktoria Swedish
ICT 2014) by presenting a systematic modeling and control framework based on the
current robot arm prototype. The Lagrange method is applied to formulate a dy-
namic model of the system. Four different operational space control algorithms
is implemented to control the vertical motion of the robot arm. By following the
methods described in this thesis, it should be possible to model future robot arm pro-
totypes and implement control algorithms on these with desired performance. Most
methods and notations used in this thesis are acquired from the book Modelling and
Control of Robot Manipulators (Sciavicco and Siciliano 2000).

The mathematical model is formulated using Wolfram Mathematica since the math-
ematical model is too large to deal with by hand. The controllers are implemented
and simulated using MATLAB Simulink.

1.4 Thesis outline

The layout of the report is as follows: Chapter 2 describes the mathematical mod-
eling of the robot arm. The mathematical model consists of expressions describing
the kinematics of the robot arm as well as expressions describing the dynamics of
the robot which are derived using the Lagrange method. The model of the system
is then used in Chapter 3, where four different control strategies for the robot arm
are implemented. The results from simulations of the implemented controllers are
shown in Chapter 4. Chapter 5 gives the concluding remarks of this thesis.



2 MODELING

This chapter covers the formulation of a model describing the kinematic and dynamic
properties of the robot arm.

2.1 The system

This thesis is based on a robot arm prototype developed by Örebro University
(Aldammad et al. 2014). The robot arm, as can be seen in Figure 1.3, is a robot
manipulator with two degrees of freedom. It rotates around the Z-axis of the base
frame and a horizontal axis attached to a joint which can be seen in the figure. The
motion is controlled by two electrical linear actuators.

The conductive area consists of four contact shoes which can be seen in Figure 2.1.
The left and right pair connects to two different electrified tracks respectively. Each
shoe is mounted with a spring to ensure good contact. Henceforth, when referring
to the end-effector, the contact shoes will be considered.

Figure 2.1. Close up of the contact shoes on the robot arm.

The robot arm is constructed in such a way that the orientation of the end-effector
with respect to the base is constant. This is achieved by having two different paral-
lelograms in the mechanical structure. One of the parallelograms lies in the vertical
plane, spanned by the Y - and Z-axes of the base frame. The other parallelogram
lies in a plane that is perpendicular to the previously mentioned plane, along the
length of the robot arm.

The robot arm can be seen as a closed kinematic chain of rigid links, connected
by different joints. The two types of joints that are present in the robot arm are
revolute and prismatic joints. These can be seen in Figure 2.2.

5



6 Chapter 2 Modeling

𝑞 𝑞 

(a) Revolute joints

𝑞 

(b) Prismatic joint

Figure 2.2. The two types of joints used in the system.

Each link, joint and attached coordinate frame is named using a systematic approach
which can be seen in Figure 2.3. The frame at each joint is defined with the Z-axis
as the axis of motion, i.e. an axis perpendicular to the attached link for the revolute
joint and an axis parallel with the attached link for prismatic joints.

𝑌𝑘  

𝑍𝑘  𝑋𝑘  

𝑌𝑘−1 
𝑍𝑘−1 

𝑋𝑘−1 

𝑙𝑘−1 
𝑙𝑘  

𝑌𝑘−2 

𝑍𝑘−2 

𝑋𝑘−2 

𝐽𝑘−1 𝐽𝑘  

𝐽𝑘+1 

Figure 2.3. Naming of frames, links and joints.

Henceforth, when referring to the X, Y, Z-axes without referring to a specific frame,
the base frame is always considered.

2.1.1 Simplifications

The robot arm has links and joints which, from a mechanical standpoint, give sta-
bility and durability but are redundant from a kinematic standpoint, i.e., the links
do not add to, or constrict, the range of motion of the robot arm. The system con-
sidered in this thesis is a simplified version of a prototype robot arm where several
redundant links of the robot arm have been removed.

The robot arm seen in Figure 1.3 can be simplified and abstracted to the schematics
seen in Figure 2.4 (Top view) and Figure 2.5 (Side view).
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𝑞1𝑡  
𝑞2𝑡  𝑞3𝑡  

𝑞1𝑖  𝑞2𝑖  

𝑞3𝑖  

𝑞1𝑗  
𝑞2𝑗  

𝑞3𝑗  

𝑗2  

𝑖2  

𝑡1  𝑡𝑐  

𝑡2  

𝑖1  

𝑗1  

𝑞4𝑗  𝑞5𝑗  

𝑞4𝑖  
𝑞5𝑖  

𝑗4  

𝑗5  

𝑖4  

𝑖5  

𝑋 

𝑌 𝑍 

Figure 2.4. Top view of the schematics for the system.

𝑞1𝑡  

𝑞2𝑡  

𝑞3𝑡  

𝑞1𝑖 , 𝑞1𝑗  

 

𝑡3𝑣  

𝑡1  

𝑡𝑐  

𝑡2  
𝑞2𝑖 , 𝑞2𝑗  

 

𝑞3𝑖 , 𝑞3𝑗  

 

𝑞4𝑖 , 𝑞4𝑗  

 

𝑞5𝑖 , 𝑞5𝑗  

 

𝑖2, 𝑗2  

 

𝑖1, 𝑗1  

 

𝑡3ℎ  

𝑌 𝑋 

𝑍 

Figure 2.5. Side view of the schematics for the system.

All joints of the abstracted system have been assigned a coordinate frame according
to Figure 2.3. This can be seen in Figure 2.6.

The system considered in this thesis has two actuated joints and 11 unactuated
joints in total, not taking the end-effector into consideration. This can be seen in
Figure 2.4.

The physical system is simplified further to reduce the complexity of the mathemat-
ical model. The robot arm can be divided into three different branches which will
be called branches i, j and t. This is illustrated in Figure 2.7. This denomination
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𝑌𝑏  

𝑋𝑏  

𝑍𝑏  

𝑋 

𝑌 𝑍 

𝑌𝑏𝑗  

𝑍𝑏𝑗  

𝑋𝑏𝑗  

𝑌1𝑗  𝑍1𝑗  

𝑋1𝑗  

𝑌2𝑗  

𝑍2𝑗  𝑋2𝑗  

𝑌3𝑗  

𝑍3𝑗  

𝑋3𝑗  

𝑌4𝑗  

𝑍4𝑗  

𝑋4𝑗  

𝑌2𝑡  

𝑍2𝑡  

𝑋2𝑡  

𝑌4𝑖  

𝑍4𝑖  

𝑋4𝑖  

𝑌1𝑡  

𝑍1𝑡  

𝑋1𝑡  

𝑌𝑒  

𝑋𝑒  

𝑍𝑒  

𝑌𝑏𝑖  

𝑍𝑏𝑖  

𝑋𝑏𝑖  𝑌1𝑖  𝑍1𝑖  

𝑋1𝑖  

𝑌2𝑖  

𝑍2𝑖  𝑋2𝑖  

𝑌3𝑖  
𝑍3𝑖  

𝑋3𝑖  

Figure 2.6. Placement and orientation of all the frames in the system.

will be used throughout the thesis for naming variables and links.

Branch i

Branch t

Branch j

𝑋 

𝑌 𝑍 

Figure 2.7. The abstracted robot arm divided into branches i, j and t.

Links i1, j1, i4, j4, i5 and j5 are considered to be of infinitesimal length and mass.
This means that the two joints in each pair of joints q1i and q2i, q4i and q5i, q1j
and q2j, q4j and q5j, are considered to be located at the same position. This is
illustrated in Figure 2.8 (Top view) and in Figure 2.9 (Side view). This implies
that links i4, j4, i5, j5 and the corresponding joint variables will neither affect the
kinematic nor the dynamic behaviour of branch i and j. This property will be
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exploited in Section 2.2 and Section 2.3.

𝑞1𝑡  

𝑞2𝑡  𝑞3𝑡  

𝑞1𝑖  
𝑞2𝑖  

𝑞3𝑖  

𝑞1𝑗  
𝑞2𝑗  

𝑞3𝑗  

𝑗2  

𝑖2  

𝑡1  𝑡𝑐  𝑡2  

𝑌 

𝑋 

𝑍 

Figure 2.8. Top view of the schematics for the simplified system.

𝑞1𝑡  

𝑞2𝑡  

𝑞3𝑡  

𝑞1𝑖 , 𝑞1𝑗  

 

𝑡3𝑣  

𝑡1  

𝑡𝑐  

𝑡2  

𝑞2𝑖 , 𝑞2𝑗  

 

𝑞3𝑖 , 𝑞3𝑗  

 

𝑖2, 𝑗2  

 

𝑡3ℎ  

𝑌 𝑋 

𝑍 

Figure 2.9. Side view of the schematics for the simplified system.

For the considered system, let q denote the vector of all joint variables, both unac-
tuated and actuated. Let qu denote the vector of all unactuated joint variables and
let qa denote the vector of the actuated joint variables, as presented below.

q =
[
q1i q2i q3i q1j q2j q3j q1t q2t q3t

]T
qu =

[
q1i q2i q1j q2j q1t q2t q3t

]T
qa =

[
q3i q3j

]T (2.1)
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2.2 Kinematics

This chapter describes how to find three different relations. First, the relation be-
tween the end-effector position and joint variables, the Direct kinematics. Second,
the relation between end-effector velocities and joint velocities, the Differential kine-
matics. The last part of this chapter covers the formulation of constraint equations
which describe the relationship between the unactuated joint variables and the ac-
tuated joint variables.

The first relation which describe the end-effector as a function of joint variables is

x = f 1(q), (2.2)

where x is the 6 × 1 vector that describes the position and orientation of the end-
effector in the following way

x =

[
pe
φ

]
, (2.3)

where pe is the 3× 1 coordinate vector and where φ is the 3× 1 vector

φ =
[
ϕ ϑ ψ

]T
, (2.4)

which describes the orientation of the end-effector with respect to the base frame.
pe and φ are depicted in Figure 2.11.

The relation between end-effector velocities and joint velocities is described by

ẋ = f 2(q, q̇). (2.5)

The last relation which describes how the joint variables depend on each other is
represented by

qu = qu(qa). (2.6)

These relationships will be used later on in order to obtain a reduced dynamical
model.

2.2.1 Direct kinematics

The first step of deriving a kinematic model for a system is to describe the end-
effector’s position and orientation with respect to the base frame as a function of
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the joint variables. This is achieved by first attaching a coordinate frame to every
joint in the system as seen in Figure 2.6. The next step is forming a rotation
matrix for each pair of consecutive frames k − 1 and k which describes the rotation
between these two frames. By also taking the translation between the two frames
into consideration, a transformation matrix can be formed as

Ak−1
k =

[
Rk−1
k pk−1k

0T 1

]
, (2.7)

where the columns of Rk−1
k (q) forms the rotation matrix describing frame k with

respect to the frame k−1 and pk−1k (q) describes the position of frame k with respect
to frame k − 1, i.e., the translation between the frames.

The direct kinematic equations for the robot arm will now be formulated for the
selection of links and joints visible in Figure 2.10.

𝑞1𝑖  

𝑞2𝑖  
𝑞3𝑖  

𝑖2  

𝑖1  

𝑌𝑏𝑖  

𝑍𝑏𝑖  

𝑋𝑏𝑖  𝑌1𝑖  𝑍1𝑖  

𝑋1𝑖  

𝑌2𝑖  

𝑍2𝑖  
𝑋2𝑖  

𝑌3𝑖  
𝑍3𝑖  

𝑋3𝑖  

𝑝1𝑖  𝑝2𝑖  

𝑝3𝑖  

𝑝4𝑖  

Figure 2.10. A selection of links, joints and their attached frames.

The transformation matrices describing the direct kinematic equations for the frames
visible in the figure can be seen below.

Abi
1i =


0 − sin q1i − cos q1i −i1 sin q1i
0 cos q1i − sin q1i i1 cos q1i
1 0 0 0
0 0 0 1



A1i
2i =


0 cos q2i − sin q2i −i2 sin q2i
0 sin q2i cos q2i i2 cos q2i
1 0 0 0
0 0 0 1



A2i
3i =


0 0 −1 0
0 1 0 0
1 0 0 q3i
0 0 0 1



.
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These matrices can then be multiplied together as

Abi
3i = A

bi
1iA

1i
2iA

2i
3i =

[
Rbi

3i pbi3i
0T 1

]
,

where Rbi
3i describes the orientation of frame 3i with respect to the base frame bi

and pbi3i describes the position of frame 3i with respect to the the base frame bi. This
leads to

pbi3i =

 (q3i + i2) sin q2i
cos q1i(i1 + (q3i + i2) cos q2i)
− sin q1i(i1 + (q3i + i2) cos q2i)

 . (2.8)

The transformation matrices for the rest of the robot arm are calculated in a similar
fashion but are not presented in this thesis due to their cumbersome size. All the
kinematic equations are available in the Wolfram Mathematica file associated with
this thesis (Skoog and Stenman 2014).

By multiplying a set of transformation matrices describing a path from the base
frame, b, to the frame attached to the end-effector, e, as shown in the example, a
resulting homogenous transformation matrix is obtained

T b
e =

[
Rb
e(q) pbe(q)
0T 1

]
=

[
Xb

e(q) Y b
e(q) Zb

e(q) pbe(q)
0 0 0 1

]
, (2.9)

where
[
Xb

e(q) Y b
e(q) Zb

e(q)
]
are the unit vectors and pbe(q) is the position vector of the

frame attached to end-effector with respect to the base frame. This is displayed
in Figure 2.11. More information regarding the general case can be found in Ap-
pendix A.1.4.

𝑌𝑏  

𝑍𝑏  

𝑋𝑏  𝑌𝑒  

𝑍𝑒  

𝜑 

𝜓 

𝜗 

𝑝𝑒  

𝑋𝑒  

Figure 2.11. Position and orientation of the frame attached to the end-effector.
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For the case of the robot arm, transformation matrices are derived for all frames
within the system. According to (A.12), the number of consecutive multiplications
required to formulate the end-effector transformation matrix is proportional to the
number of joints in the utilised chain of links. Therefore, since the t branch contains
the least amount of joints, the t branch is selected to describe the path between the
base frame and the frame attached to the end-effector (see Figure 2.8).

2.2.2 Differential kinematics

The differential kinematic equations describe the mapping between joint velocities
and linear and angular velocities of the frames attached to end-effector, links and
actuators. This relationship can be described by two different methods; by for-
mulation of both the Geometric Jacobian and the Analytical Jacobian. These two
methods are effectively describing the same relationship but in two different ways.
Both of these relations will be utilised when implementing control algorithms later
on during this thesis.

The first method is based on deriving a configuration dependant matrix called the
Geometric Jacobian, J , which is defined as

v =

[
ṗ
ω

]
=

[
JP (q)
JO(q)

]
q̇ = J(q)q̇, (2.10)

where JP corresponds to the mapping between joint velocities and linear velocity of
point p (see (A.23)) and JO corresponds to the mapping between joint velocities and
the angular velocity of point p, which can be referred to as the three-dimensional
vector ω (see (A.24)). The derivation of the Geomatrical Jacobian is discussed
further in Appendix A.1.5. For a constrained system, the velocity of the end-effector
will correspond to

v =

[
ṗ
ω

]
=

[
JP (q)
JO(q)

]
∂q

∂qa
q̇a = J(qa)q̇a. (2.11)

The Geometric Jacobian for the robot arm will now be formulated for the selection
of links and joints visible in Figure 2.10. The Geometric Jacobian can be used to
find the velocity of the end-point p3i and is described by

J (3i) =

[
zbi × (p3i − pbi) z1i × (p3i − p1i) z2i

zbi z1i 0

]
,
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which is

J (3i) =


0 (q3i + i2) cos q2i sin q2i

− sin q1i(i1 + (q3i + i2) cos q2i) − cos q1i(q3i + i2) sin q2i cos q1i cos q2i
− cos q1i(i1 + (q3i + i2) cos q2i) sin q1i(q3i + i2) sin q2i − sin q1i cos q2i

−1 0 0
0 − cos q1i 0
0 − sin q1i 0

 .

The second method of describing this mapping is by using a so-called Analytical
Jacobian, JA. If the orientation of the end-effector can be described by a mini-
mal representation, as explained in Appendix A.1.4, the Analytical Jacobian can
be obtained by differentiation of the direct kinematics function. It can be used in
the design of operational space control schemes and in describing the relation be-
tween forces applied to the end-effector and the resulting torques at the joints. The
Analytical Jacobian is expressed by

ẋ =

[
ṗ

φ̇

]
=

[
JP (q)
Jφ(q)

]
q̇ = JA(q)q̇, (2.12)

where JP corresponds to the mapping between the joint velocities and linear velocity
of point p and Jφ corresponds to the mapping between the joint velocities and
angular velocity of point p. JP and Jφ can be formulated as

JP (q) =
∂p

∂q
(2.13)

Jφ(q) =
∂φ

∂q
(2.14)

where φ is the vector of Euler Angels which describes the orientation of the frame
attached to the point p. This is described further in A.1.4. By time differentiation
of (2.12), the acceleration of point x can be expressed by

ẍ = JA(q)q̈ + J̇A(q, q̇)q̇, (2.15)

where

J̇A(q, q̇) =
∂2x

∂q2
q̇. (2.16)

For the case of a constrained system, the Analytical Jacobian is expressed by
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ẋ =

[
ṗ

φ̇

]
=

[
JP (q)
Jφ(q)

]
∂q

∂qa
q̇a = JA(qa)q̇a, (2.17)

and (2.15) becomes

ẍ = JA(qa)q̈a + J̇A(qa, q̇a)q̇a, (2.18)

where

J̇A(qa, q̇a) =

(
∂2x

∂q2

(
∂q

∂qa

)2

+
∂x

∂q

∂2q

∂q2a

)
q̇a. (2.19)

The Analytical Jacobian for the robot arm will now be formulated for the selection
of links and joints visible in Figure 2.10. The Analytical Jacobian can be used to
find the velocity of the end-point p3i and is described by

J
(3i)
P =

[
∂pbi

3i

∂q1i

∂pbi
3i

∂q2i

∂pbi
3i

∂q3i

]
,

where pbi3i is described by (2.8). Hence,

J
(3i)
P =

 0 (q3i + i2) cos q2i sin q2i
− sin q1i(i1 + (q3i + i2) cos q2i) − cos q1i(q3i + i2) sin q2i cos q1i cos q2i
− cos q1i(i1 + (q3i + i2) cos q2i) sin q1i(q3i + i2) sin q2i − sin q1i cos q2i

 .
Jφ is derived by expressing the previously obtained rotation matrix Rbi

3i as Euler
Angles (which is explained in A.1.4) by applying (A.16)-(A.19). This will give the
vector of Euler Angels, φ, which is differentiated with respect to the joint variables
to obtain Jφ.

Due to the design of the robot arm, with the two parallelograms previously men-
tioned in Subsection 2.1.1, the end-effector angular velocity around the X- and
Z-axes is equal to zero (see Figure 1.3). Since there are no revolute joints to en-
able rotation around the Y -axis of the robot arm, this leads to the angular velocity
around the Y -axis being zero. Therefore,

ω = 0

φ̇ = 0.
(2.20)

The fact that there are no rotation around the X,Y ,Z-axes of the robot arm leads
to the lower three rows of (2.11) and (2.17) are equal to zero.
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There exists a relationship between the Geometric Jacobian, J , and the Analytical
Jacobian, JA, which can be described by

J = T A(φ)JA, (2.21)

where

T A(φ) =

[
I 0
0 T (φ)

]
. (2.22)

For the case of this thesis, since the the lower three rows of J and JA are zero, (2.21)
is equal to

J = JA, (2.23)

regardless of the value of T (φ).

There are three ways to find the velocities of the end-effector since the expressions
can be derived by considering the structure and motion of any of the three branches
i, j or t. As explained in the last paragraph of Subsection 2.2.1, the Geometric Jaco-
bian and the Analytical Jacobian for end-effector velocity are derived with respect
to the t branch.

2.2.3 Constraints

Since the motion of the robot arm is constrained, mathematical expressions have to
be formulated which describes the motion of the unactuated joints as functions of
the actuated joints.

Each joint variable within a system generates one degree of motion. If the number
of degrees of freedom equals the number of degrees of motion, i.e., joint variables,
the system is unconstrained. If there are more degrees of motion than degrees of
freedom in a system, there exists a number of constraints that may be used to
eliminate superfluous joint variables. Suppose that the number of degrees of motion
is M and that the number of degrees of freedom is N and that M > N , there must
exist M −N constraints (Boström 2013). These may be on the form

fk(q1, . . . , qM , t) = 0, k = 1, . . . ,M −N (2.24)

which are called holonomic constraints since they are a function of joint variables
and time.
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The design of the robot arm allows rotation of the robot arm around the two axes
presented in Figure 1.3. The rotation around the vertical axis is described by the
joint variable q1t and the rotation around the lateral axis is described by the joint
variable q2t (see Figure 2.8). Since the robot arm has 13 joints, and therefore 13
degrees of motion, and one degree of freedom since only the vertical motion is con-
sidered, there must exist 13−1 = 12 constraints. However, due to the simplifications
and assumptions that are made (see Subsection 2.1.1), the number of joint variables
that affect the system are reduced by 4. Therefore, the number of constraints are
reduced to 8.

There are two methods to obtain constraint equations for a system. One way is
to determine the constraints in the operational space, i.e., describing points and
axes in space. The second method is to find trigonometric relations by examining
the joint space, i.e., analysing the geometry of the robot arm. The latter method
provides constraints that may be easier to solve than operational space constraints.
Therefore, joint space constraints are used in this thesis.

Operational space constraints

Consider the position and orientation (the coordinate frames) of two arbitrary points
in space. A position constraint can be formed if a relation between the two points can
be formulated, e.g., as a constant distance between these two points. An orientation
constraint can be formed if a relation between the coordinate frames of the two
points can be formed, e.g., if one or more axes of the two frames are parallel with
respect to each other.

By deriving direct kinematic expressions for the system depicted in Figure 2.6,
operational space constraints can be formulated. The transformation matrix T b

e

can be formulated by considering the structure and motion of any of the three
branches i, j or t. Since all three transformation matrices describe the position and
orientation of the end-effector, they are equivalent. Therefore, equality constraints
between these transformation matrices can be imposed.

Joint space constraints

By projecting the links and joints on two different planes, (one plane being where
the two prismatic joints reside and the other being the Y −Z-plane), trigonometrical
equations can be formed and used to calculate expressions for some joint variables.
This can be seen in Figure 2.12 and Figure 2.13.

Some constraints can be considered as trivial when examining the the mechanical
structure of the robot arm in the two-dimensional case,

q1i = q1j, q5i = q5j,
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𝑞2𝑖  

𝑞3𝑖  

𝑞2𝑗  

𝑞3𝑗  

𝑗2  

𝑖2  

𝑡2  

𝑥𝑏1  

𝑥𝑏1  

𝑢2  

𝑢1  

𝑡1 cos 𝑞1𝑖  𝑡𝑐 cos 𝑞𝑣6  

Figure 2.12. Top view for calculations of constraints. Projected in the plane of
the two pistons.

𝑞2𝑡  
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𝑞1𝑖 , 𝑞1𝑗  

 
𝑞3𝑖 cos 𝑞2𝑖  

𝑞3𝑗 cos 𝑞2𝑗  

 

𝑡1  

𝑡𝑐  

𝑡2  

𝑧𝑏1  

𝑖2 cos 𝑞2𝑖  

𝑗2 cos 𝑞2𝑗  

 

𝑙2  𝑙1  

𝑣1  

𝑣2  

𝑣3  

𝑣4  

𝑣5  

𝑣6 

Figure 2.13. Side view for calculations of constraints. Projected in the vertical
plane along the Y − Z axes.

seeing that there are no revolute joints that rotate about the longitudinal Y -axis.

Some auxiliary equations are introduced in order to derive the constraints. These,
together with the constraint equations, are presented below.

u1 = arccos

(
q23i + (2xb1)

2 − q23j
4q3ixb1

)
u2 = arccos

(
q23j + (2xb1)

2 − q23i
4q3jxb1

)
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q2i =
π

2
− u1 (2.25)

q2j =
π

2
− u2 (2.26)

l2 =
√
l21 + t21 − 2l1t1 cos v1

v1 = arcsin
zb1
l1

v2 = arctan

(
t1 −

√
l21 − z2b1
zb1

)
v3 =

π

2
− v2

v4 = arccos

(
(l22 + q3j cos q2j)

2 − t2c
2l2q3j cos q2j

)
v5 = arccos

(
(l22 + tc)

2 − (q3j cos q2j)
2

2l2tc

)
v6 = π − v4 − v5
q1i = v2 + v4 −

π

2
(2.27)

q1j = v2 + v4 −
π

2
(2.28)

q2t = π − v3 − v5 (2.29)

Two links have been removed that are vital for the kinematics of the robot arm.
Both of these links are part of the two parallelograms respectively, but seeing that
the thesis only focuses on the vertical motion, one of the parallelograms is ignored.
One of the parallelogram links can be removed by adding a very simple constraint
to ensure that the system behaves in the same way. This constraint is simply

q3t =
π

2
− q2t. (2.30)

This will ensure that the Z-axis of the frame attached to the end-effector is parallel
to the Z-axis of the base frame, thus the properties of the parallelogram are fulfilled.

As mentioned in Subsection 2.1.1, the sideways motion about the Z-axis of the robot
arm is assumed to be zero. Therefore, the displacement of the two actuators are
equal. Thus,

q3i = q3j (2.31)

which leads to

qa =
[
q3i
]
.
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Henceforth the actuated joint variable q3i will be referred to as qa, even though the
dimension of qa is one.

By solving the constraint equations presented above, for a reduced set of joint vari-
ables, an expression is obtained which describes the unactuated joint variables as a
function of the actuated joint variables. Thus, the desired relation shown in (2.6).

Recall the relations expressed by (2.2) and (2.5). The direct kinematic relation is
given by (2.9) and the differential kinematic relation is described by (2.10) and (2.12).

2.3 Dynamics

The objective of this section is to describe the dynamic properties of the robot arm.
This relation may be on the form

q̈ = f 3(q, q̇,u,h), (2.32)

which describes the acceleration of the joint variables. u is the actuator force and
h describes the forces and moments affecting the robot arm at the end-effector.

There are two common methods for derivation of a dynamical model of a robot arm;
Newton-Euler formulation and Lagrange formulation. The Newton-Euler formula-
tion employs the forces and moments acting on all the links of a robot arm to model
the dynamics of the system. Since the number of calculations required to formulate
a dynamical model is proportional to the number of links, the complexity rapidly
rises with an increasing number of links within a system.

The second method is the Lagrange formulation, which is the method used in this
thesis. The Lagrange method is a systematic approach that relies on the derivation
of potential and kinetic energies for a system to formulate a dynamic model.

2.3.1 Lagrange formulation

The Lagrangian is formulated as

L = T − U , (2.33)

where T is the total kinetic energy and U is the total potential energy of a system
that consists of n rigid links.

A dynamic model on the same form as (2.32) can be derived by formulating the
Lagrange’s equations according to
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d

dt

∂L
∂q̇k
− ∂L
∂qk

= ξk, (2.34)

where ξk is the generalised force that is associated with joint variable qk.

The kinetic energy of the system is expressed as

T =
n∑
k=1

(Tlk + Tmk
) , (2.35)

where Tlk corresponds to the kinetic energy of link k and Tmk
corresponds to the

kinetic energy of the actuator related to link k.

The potential energy of the system is expressed as

U =
n∑
k=1

(Ulk + Umk
) , (2.36)

where Ulk corresponds to the kinetic energy of link k and Umk
corresponds to the

potential energy of the actuator related to link k.

The kinetic energy of the links for each branch corresponds to

Tl =
1

2

n∑
k=1

(
mlk ṗ

T
lk
ṗlk + ω

T
kRkI

k
lk
RT
kωk

)
, (2.37)

where plk describes the center of mass of link k and mlk describes the mass of the
same link. The kinetic energy of the actuators for each branch corresponds to

Tm =
1

2

n∑
k=1

(
mmk

ṗTmk
ṗmk

+ ωTkRkI
i
mk
RT
kωk

)
, (2.38)

where pmk
describes the center of mass of joint k and mmk

describes the mass of the
same joint. Inserting (2.10) into (2.37) and (2.38) forms

Tl =
1

2

n∑
k=1

(
mlk q̇

TJ
(lk)T
P J

(lk)
P q̇ + q̇TJ

(lk)T
O RkI

k
lk
RT
kJ

(lk)
O q̇

)
(2.39)

and
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Tm =
1

2

n∑
k=1

(
mmk

q̇TJ
(mk)T
P J

(mk)
P q̇ + q̇TJ

(mk)T
O RkI

k
mk
RT
kJ

(mk)
O q̇

)
. (2.40)

The potential energy of the links and the actuators in the system corresponds to

U = −
n∑
k=1

(mlkg
T
0 plk +mmk

gT0 pmk
) (2.41)

where g0 is the (3 × 1) vector describing the gravitational acceleration in three
dimensions.

For the case of the robot arm, (2.39)-(2.41) are utilised to obtain the total kinetic
and potential energy of all the links and joints within the system. As specified
in Section 2.1, the number of links in all three branches of the abstracted model is
equal to three, which implies that k ∈ {1, 2, 3} regarding the sums associated with
the energies of the links of each branch i, j and t. Since there are only two actuators,
one in each of the side branches and both attached to link 3, k = 3 in the sums that
are associated with the energies of the actuators in branch i and j. Thus

{Tmk
,Umk

} = 0, k ∈ {1, 2}.

Formulating the Lagrangian described by (2.33) will render a Lagrangian which
is a function of both unactuated and actuated joints, qu and qa. However, since
the system is constrained, the Lagrangian must depend on actuated joints only.
Consider the constraint equations derived in Subsection 2.2.3. By applying

qu = qu(qa),

and its derivative

q̇u =
∂qu
∂qa

dqa
dt

, (2.42)

the Lagrangian can now be expressed as a function of the actuated joint variables
according to

L(q, q̇) = L(qa, q̇a). (2.43)

According to (2.34), the Lagrange’s equations can be calculated as

d

dt

∂L
∂q̇a
− ∂L
∂qa

= ξ. (2.44)
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(2.43) together with (2.44) gives the final Lagrange equation

∂2L
∂q̇2a

q̈a +
∂

∂qa

∂L
∂q̇a

q̇a −
∂L
∂qa

= ξ. (2.45)

By identifying terms, (2.45) can be rewritten as the second order differential equation

B(qa)q̈a +C(qa, q̇)q̇a + g(qa) = ξ, (2.46)

where B is a (N × N) intertia matrix where N are the degrees of freedom of the
system. The index bij describes the effect of acceleration of joint i on joint j. The
inertia matrix is a symmetric, positive definite matrix, whose indices are configu-
ration dependent. C can be interpreted as the dampening term in the model. g
corresponds to the moment generated by gravitational pull at each link and actuator.

The generalised force can be expressed as

ξ = u− F q̇a − JT (qa)h, (2.47)

where u is the vector of input forces applied by the actuators and F is a diagonal
matrix that contains friction coefficients for each joint. h, which will be discussed
in Chapter 3, denotes the vector of external forces and moments exerted on the end-
effector. J (see (2.11)) represents the Geometric Jacobian for end-effector velocity.
This gives

B(qa)q̈a +C(qa, q̇a)q̇a + g(qa) = u− F q̇a − JT (qa)h, (2.48)

which will have a number of rows equal to the number of degrees of freedom, N .
In the case of this thesis, the degree of freedom is one (see Subsection 2.1.1). (2.48)
describes the desired dynamic relation sought by (2.32). Due to the sheer size of the
expression described by (2.48), it will not be presented here but it is available in the
Wolfram Mathematica file associated with this thesis (Skoog and Stenman 2014).
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This chapter presents the motion and interaction control of the robot arm. Four
different control algorithms in the operational space are presented and implemented.

The first two controllers, PD Control with Gravity Compensation and Inverse Dy-
namics Control are both motion control schemes that do not handle interaction with
the environment. The other two control algorithms, Impedance Control and Force
Control with Inner Position Loop, are both Interaction controllers, i.e., they handle
interaction between the robot arm and the environment.

As mentioned in Subsection 2.2.2, the orientation of the end-effector is assumed to
be the same as, and invariant with respect to, the base frame. Therefore, the focus
of the four implemented controllers is controlling the position of the end-effector and
not its orientation. Hence, there will be no moment exerted on the end-effector by
the environment.

The position of the end-effector, the environment and the desired position of the end-
effector are given by the 3× 1 vectors x, xe and xd respectively. The Z-coordinates
of these vectors are explained in Figure 3.1.

Henceforth, the notation for actuated joint variables qa is changed. In lieu of (2.1),
when referring to the vector q, the actuated joints is considered.

𝑥𝑒  

𝑍 

𝑥𝑑  
𝑥 

Figure 3.1. Demonstration of the different notations for position. xe describes
the position of the environment, x the end-effector position and xd describes the
desired position of the end-effector.

24
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3.1 PD Control with Gravity Compensation

The PD controller with gravity compensation controls the position, x, of the robot
arm. By the final value theorem, a steady state error will be present since the con-
sidered controller does not include any integral action. However, by compensating
for the effect of gravity on the links, the robot arm will reach a constant reference
position without error.

Given a desired constant end effector position xd, and that the end effector contact
force h is equal to zero, the task is to find a suitable control algorithm that will lead
the operational space position error

x̃ = xd − x(q) (3.1)

towards zero. Consider now (2.48) with h = 0, rewritten as

B(q)q̈ + (C(q, q̇) + F ) q̇ + g(q) = u. (3.2)

By proposing a Lyapunov function candidate (Sciavicco and Siciliano 2000, p. 252)

V (q̇, x̃) =
1

2
q̇TB(q)q̇ +

1

2
x̃TKP x̃ > 0 ∀q̇, x̃ 6= 0, (3.3)

it can be shown that the following control law

u = g(q) + JTA(q)KP x̃− JTA(q)KDJA(q)q̇, (3.4)

with positive definite diagonal matrices KP and KD, will lead to

V̇ = −q̇TF q̇ − q̇TJTA(q)KDJA(q)q̇, (3.5)

which will be less than zero for any q̇ 6= 0. Thus, the Lyapunov function will
decrease as long as q̇ 6= 0. Hence, the system will reach the following equilibrium
position

JTA(q)KP x̃ = 0. (3.6)

In the case of full rank Analytical Jacobian, JA,

x̃ = xd − x(q) = 0, (3.7)
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i.e., the desired position is achieved. However, in the case of h 6= 0, in lieu of (3.6),

JTA(q)KP x̃ = JT (q)h. (3.8)

In the case of full rank Analytical Jacobian, JA, the steady state error will corre-
spond to

x̃ =K−1P T
T
Ah. (3.9)

The simulation model of the robot arm with implemented PD Control with Gravity
Compensation is illustrated in Figure 3.2.

Robot arm 𝒒 

𝒒  

𝒈(𝒒) 

𝑲𝐷  

𝑲𝑃  𝑱𝐴
𝑇(𝒒) 

𝒙𝒅 

𝒙  

𝒖 

𝒙 

𝒙  
+ 
− 

+ 
+ 

+ 
− 

𝚺 𝚺 𝚺 

𝑱𝐴(𝒒) 

𝒙(𝒒) 

Figure 3.2. Block diagram for PD Control with Gravity Compensation.

The equation underlying the robot arm block in Figure 3.2 is derived from (3.2) as

q̈ = B−1u−B−1 (C + F ) q̇ −B−1g.

The robot arm block contains two integrators to obtain q̇ and q.

3.2 Inverse Dynamics Control

Inverse dynamics control can be seen as an enhanced version of the PD control with
gravity compensation. This control algorithm is based on the exact linearisation of
all nonlinear dynamics of the system. It includes additional terms, actively providing
the system with a spring-damper behaviour.

Consider the task of tracking a given operational space trajectory, given that h = 0.
(3.2) can be rewritten as
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B(q)q̈ + n(q, q̇) = u, (3.10)

where

n(q, q̇) = (C(q, q̇) + F ) q̇ + g(q). (3.11)

An inverse dynamics linearising control control signal u can be chosen as

u = B(q)y + n(q, q̇), (3.12)

which will lead to a system of double integrators

q̈ = y. (3.13)

The new control signal y can now be designed in such way that the state x will
follow a given trajectory xd. Recall (2.15)

ẍ = JA(q)q̈ + J̇A(q, q̇)q̇,

that suggests a control law

y = J−1A (q)
(
ẍd +KD

˙̃x+KP x̃− J̇A(q, q̇)q̇
)
, (3.14)

with positive definite diagonal matrices KP and KD. The error dynamics can be
described by

¨̃x+KD
˙̃x+KP x̃ = 0, (3.15)

with the solution

χ = χ0e
At, A =

[
0 I
−KP −KD

]
, χ =

[
x̃
˙̃x

]
. (3.16)

The properties of (3.15) and (3.16) will ensure that the desired trajectory xd will
asymptotically be reached. By tuning of the control parameters KP and KD,
different dynamic behaviour of the system is obtained. By studying the eigenvalues
of A, this behaviour can be evaluated.

The simulation model of the robot arm with implemented Inverse Dynamics Control
is illustrated in Figure 3.3.
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Figure 3.3. Block diagram for Inverse Dynamics Control.

3.3 Impedance Control

Impedance control is based on the Inverse dynamics control with the addition that
it also addresses the interaction between the robot arm and the environment. It
also actively add a mass dynamic to the system, providing the system with a mass-
spring-damper behaviour. A contact force is created by the robot arm due to its
given spring behaviour when the setpoint is set below the surface of the environment,
as shown in Figure 3.1.

Consider the system described by (2.48) and the inverse dynamics control law

u = B(q)y + n(q, q̇),

with n as in (3.11). The controlled robot arm will now be described by

q̈ = y −B−1(q)JT (q)h, (3.17)

where h is the previously mentioned contact force and moment affecting the end
effector. In the case of this thesis, the environment has been defined as an elastically
compliant plane. h is therefore calculated as

h =KT A(x− xe), (3.18)

where K is the stiffness matrix which corresponds to the reaction forces exerted
on the end effector by the environment. K is assumed to be very large. The
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derivation of T A is expressed by (2.21) and x−xe represents the operational space
displacement. x is the position of the end-effector and xe is the position of the
undeformed surface, as explained in Figure 3.1.

The stiffness matrix can be used in the following way to form the environmental
stiffness matrix, KA.

KA = T T
AKT A. (3.19)

KA is then used to describe the equivalent forces affecting the robot arm

hA =KA(x− xe). (3.20)

The control signal y will be chosen conceptually analogous to (3.14) as

y = J−1A (q)M−1
d

(
M dẍd +KD

˙̃x+KP x̃−M dJ̇A(q, q̇)q̇
)
, (3.21)

where M d is a positive definite diagonal matrix that corresponds to the equivalent
mass of the system. This will yield the operational space system

M dẍ+KD
˙̃x+KP x̃ =M dB

−1
A (q)hA, (3.22)

where

BA(q) = J
−T
A (q)B(q)J−1A (q)

is the equivalent configuration dependant inertia matrix of the robot arm in the
operational space. (3.22) gives an expression for a generalised mechanical impedance
between the resulting forces M dB

−1
A hA and the operational space displacement x̃.

This impedance can be seen as a mechanical mass-spring-damper system whose
coefficients are defined by the diagonal matrices M d,KD and KP . The relation
between the spring constant KP and the environment stiffnes can be expressed by

KP (xd − x) =KA(x− xe). (3.23)

At equilibrium, the end-effector position is given by

x∞ =
(
I +K−1P KA(x)

)−1 (
xd +K

−1
P KA(x)xe

)
(3.24)

and the resulting contact force can be expressed by
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hA∞ =
(
I +KA(x)K

−1
P

)−1
KA(x)(xd − xe). (3.25)

The simulation model of the robot arm with implemented Impedance Control is
illustrated in Figure 3.4.
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Figure 3.4. Block diagram for Impedance Control.

The system of double integrators is presented in Figure 3.5.
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Figure 3.5. System of double integrators

3.4 Force Control with Inner Position Loop

The force controller relies on the same principles as the Impedance controller. How-
ever, instead of fixing the position setpoint to some constant distance below the
environment surface, by the use of an inner position loop, a suitable position set-
point based on the contact force error is calculated. The task for the controller is
to maintain a constant end-effector contact force. Hence, the availability of a force
sensor at the end-effector is implicitly assumed.
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Assuming error-free measurements of the contact force acting on the robot arm, a
new linearising control law can be chosen as

u = B(q)y + n(q, q̇) + JT (q)h. (3.26)

The control signal will now be chosen as

y = J−1A (q)M−1
d

(
−KDẋ+KP (xF − x)−M dJ̇A(q, q̇)q̇

)
, (3.27)

where xF is related to a force error. This will yield the operational space system

M dẍ+KDẋ+KPx =KPxF , (3.28)

which will lead x to xF . Let hAd denote a desired constant force reference where
the relation between xF and the force error can be expressed as

xF = CF (hAd − hA) , (3.29)

where CF corresponds to a diagonal matrix where the elements are specifying the
control action of the force controller. (3.28) and (3.29) reveal that the force con-
trol relies on a preexisting inner position control loop. Assuming that an elastic
environment is affecting the robot arm, (3.28) together with (3.29) becomes

M dẍ+KDẋ+KP (I +CFKA)x =KPCF (KAxe + hAd) . (3.30)

With a proportional CF there will exist an undesired steady state error. However,
if CF contains an integral action according to

CF =KF +KI

∫ t

(·)dt, (3.31)

it will be possible to achieve hA − hAd = 0.

The simulation model of the robot arm with implemented Force Control with inner
Position loop is illustrated in Figure 3.6.
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Figure 3.6. Block diagram for Force Control with inner Position loop.



4 RESULTS

Four different control algorithms have been implemented for the simplified system.
The first two controllers are motion controllers without any interaction with the
environment. The latter two are interaction controllers that will be used to interact
with the environment to control the contact force between the robot arm and the
road.

Each controller has been simulated for two different cases. These cases are different
for the motion and interaction controllers and will be explained in more detail for
each controller.

4.1 PD Control with Gravity Compensation

The first simulation case represents that the robot arm end-effector should maintain
a fixed position relative to the base frame.

The parameters used in the first case can be seen in Table 4.1 and the results of
the simulation are presented in Figure 4.1. Since the controller compensates for the
effect of gravity on the links, there is no remaining steady state error. This can be
seen in the figure.

Table 4.1. Case 1, constant setpoint: Parameters for PD control with gravity
compensation.

Setpoint [mm] KP KD

-70 30 6

33
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Figure 4.1. Case 1, constant setpoint: Simulation results, PD control with
gravity compensation.

The second simulation case represents the robot arm tracking a sinusoidal position
reference, without any interaction.

The parameters used in the simulation of the second case can be seen in Table 4.2.
The simulation result can be seen in Figure 4.2. As expected, a steady state error
cannot be avoided.

Table 4.2. Case 2, sinusoidal setpoint: Parameters for PD control with gravity
compensation.

Setpoint [mm] KP KD

−70± 5 30 6
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Figure 4.2. Case 2, sinusoidal setpoint: Simulation results, PD control with
gravity compensation.
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4.2 Inverse Dynamics Control

The first simulation case represents that the robot arm should maintain a fixed
position relative to the base frame. The parameters used in this simulation can be
seen in Table 4.3.

As explained in Section 3.2, the error dynamics can be calculated by (3.16). The
results of this calculation, which are presented in Figure 4.3, can be compared to
the simulation results which are presented in Figure 4.4. Clearly, the results are
equivalent. Due to the controller perfectly compensating for all the dynamics of the
system, zero steady state error is successfully achieved. The poles of the system
can be calculated from the matrix A in (3.16) where the values of KP and KD are
shown in Table 4.3. The obtained poles are

p = {−8.3723,−2.6277},

which clearly resides in the left half of the complex plane thus the system is asymp-
totically stable.

Table 4.3. Case 1, constant setpoint: Parameters for Inverse dynamics control.

Setpoint [mm] KP KD
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Time [s]
0 2 4 6 8 10

Z
 [
m

m
]

-30

-25

-20

-15

-10

-5

0

5
Position error

(a) Position error

Time [s]
0 2 4 6 8 10

Z
 [
m

m
/s

]

-5

0

5

10

15

20

25

30

35

40
Velocity error

(b) Velocity error

Figure 4.3. Error dynamics for an equivalent spring-damper system.

The control signal for the first case is presented in Figure 4.5.
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Figure 4.4. Case 1, constant setpoint: Simulation results, Inverse dynamics
control.
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Figure 4.5. Case 1, constant setpoint: Control signal for Inverse dynamics
control.

The second simulation case represents the robot arm tracking a sinusoidal position
and its two time derivatives as reference, without any interaction. The parameters
used in the simulation for the second case can be seen in Table 4.4. The result of this
simulation is presented in Figure 4.6. Due to the controller perfectly compensating
for all the dynamics of the system, zero steady state error is successfully achieved.

Table 4.4. Case 2, sinusoidal setpoint: Parameters for Inverse dynamics control.

Setpoint [mm] KP KD

−70± 5 30 10

The control signal for the second case is presented in Figure 4.7.
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Figure 4.6. Case 2, sinusoidal setpoint: Simulation results, Inverse dynamics
control.
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Figure 4.7. Case 2, sinusoidal setpoint: Control signal for Inverse dynamics
control.

4.3 Impedance Control

The task for this controller is to have a low, yet persistent, contact force to ensure
contact between the contact shoes and the electrified tracks.

In the first case, the vehicle travels at a constant speed on a flat road. This implies
a constant distance between the vehicle and the road. It also implies a constant
distance between the setpoint and the road.

The parameters used in the simulation of the first case can be seen in Table 4.5.
The results of this simulation are presented in Figure 4.8 - Figure 4.10. Due to the
ground stiffness there will be a displacement between the end-effector and the road
according to (3.23), which can be seen in Figure 4.8.
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Since the end-effector is in contact with the road, there will be a contact force which
can be seen in Figure 4.10b.

Table 4.5. Case 1, road unevenness represented by a constant: Parameters for
Impedance control.

Setpoint [mm] Displacement [mm] Mass [Kg] KP KD

-70 0.25 1 75 25
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Figure 4.8. Case 1, road unevenness represented by a constant: Position of the
end-effector for Impedance control.
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Figure 4.9. Case 1, road unevenness represented by a constant: Simulation
results, Impedance control.
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Figure 4.10. Case 1, road unevenness represented by a constant: Simulation
results, Impedance control.

In the second case, the vehicle travels with varying speed on a non-flat road, i.e., the
vehicle’s suspension will be compressed and extended as it drives on the road. This
means that the distance between the vehicle and road will vary and the setpoint
position will be set lower than the road to ensure contact force. The alteration of
compression in the vehicle’s suspension will be regarded as a sinusoidal change.

The parameters used in the simulation of the second case can be seen in Table 4.6.
The results of this simulation are presented in Figure 4.10 - Figure 4.11. Due to the
ground stiffness there will be a displacement between the end-effector and the road
according to (3.23).

Since the end-effector is in contact with the road, there will be a contact force which
can be seen in Figure 4.13b.

Table 4.6. Case 2, road unevenness represented by a sinusoid: Parameters for
Impedance control.

Setpoint [mm] Displacement [mm] Mass [Kg] KP KD

−70± 5 0.25 1 75 25
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Figure 4.11. Case 2, road unevenness represented by a sinusoid: Position of the
end-effector for Impedance control.
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Figure 4.12. Case 2, road unevenness represented by a sinusoid: Simulation
results, Impedance control.
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Figure 4.13. Case 2, road unevenness represented by a sinusoid: Simulation
results, Impedance control.

Based on the results presented above, it can be concluded that the Impedance
controller fulfills the control objective.

4.4 Force Control with Inner Position Loop

The force controller takes a reference force as setpoint which is used to calculate a
suitable position setpoint via an inner position loop. The goal for this controller is
to ensure contact between the end-effector and the electrified tracks by maintaining
a constant end-effector contact force corresponding to the force setpoint.

In the first case, the vehicle travels at a constant speed on a flat road. This implies a
constant distance between the vehicle and the road. The force setpoint is constant.

The simulation parameters used in the first case can be seen in Table 4.7. The
results of the simulation are presented in Figure 4.14 and Figure 4.15. Figure 4.14b
presents the displacement between the end-effector and the road. The figure shows
the contact force error successfully declining towards zero.

Table 4.7. Case 1, road unevenness represented by a constant: Parameters for
Force control.

Setpoint [N] Mass [Kg] KP KD KF KI

-10 1 10 100 20 20
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Figure 4.14. Case 1, road unevenness represented by a constant: Simulation
results, Force control.
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Figure 4.15. Case 1, road unevenness represented by a constant: Simulation
results, Force control.
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In the second case, the vehicle travels with varying speed on a non-flat road, i.e.,
the vehicle’s suspension will be compressed and extended as it drives on the road.
This means that the distance between the vehicle and road will vary. The alteration
of compression in the vehicle’s suspension will be regarded as a sinusoidal change.
The force setpoint is constant.

The simulation parameters used in the second case can be seen in Table 4.8. The
results of the simulation are presented in Figure 4.16 and Figure 4.17a. Figure 4.16b
presents the displacement between the end-effector and the road.

Table 4.8. Case 2, road unevenness represented by a sinusoid: Parameters for
Force control.

Setpoint [N] Mass [Kg] KP KD KF KI
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Figure 4.16. Case 2, road unevenness represented by a sinusoid: Simulation
results, Force control.



44 Chapter 4 Results

Time [s]

0 2 4 6 8 10

F
 [
N

]

-15

-10

-5

0

5

10

Force error

(a) Contact force error

Time [s]

0 2 4 6 8 10

F
 [

N
]

-600

-500

-400

-300

-200

-100

0

100

200

Control signal

(b) Control Signal

Figure 4.17. Case 2, road unevenness represented by a sinusoid: Simulation
results, Force control.

As can be seen in the results presented above, the contact force error does not reach
zero at steady-state but a constant contact is achieved, thus, the Force controller
with inner position loop fulfills the control objective.



5 DISCUSSION

The use of the Lagrange method to derive a dynamic model has proven advantageous
since the considered system consists of a large number of links and joints. This
method allows for a systematic approach where the complexity of the model is kept
at a manageable level.

One challenge during the modeling phase of this thesis was the coupling between
the vertical and lateral motion of the robot arm, i.e., the individual actuators affect
the motion of the robot arm around both the vertical and the lateral axes. All
constraint equations necessary to employ three-dimensional motion was not found
during this project.

An alternative way of constructing the robot arm could simplify the modeling of
the system. If the two degrees of freedom were decoupled it would be easier to
model the robot arm. A possible way of doing this would be to have a rotating
actuator mounted in the axis of rotation of the arm. A linear actuator could then
be mounted between stated rotating axis and the robot arm to elevate the arm.
Possible drawbacks could be that the actuators might individually have to take
larger loads, meaning larger actuators. The design might also allocate too much
space underneath a vehicle to be a viable solution.

The purpose of the two motion controllers is not to fulfill the control objective, but
to show how it is possible to add complexity to an initially rather simple controller
to achieve a complex end result. The two implemented interaction controllers how-
ever are possible candidates to fulfill the control objective since both of them can
theoretically maintain a constant contact force.

All four control algorithms are based on exact compensation of some, or all, nonlinear
dynamics of the system. The PD controller compensates for the effect of gravity,
but the other controllers compensate for all undesired nonlinear dynamics whilst
also actively adding a desired dynamic behaviour to the system. A comparison
between the error dynamics of the system with Inverse dynamics control and the
error dynamics of the equivalent linear system was made. The results can be seen
in Figure 4.3 and Figure 4.4. Both figures display the exact same behaviour which
leads to the conclusion that the controllers manage to perfectly compensate for all
nonlinear dynamics of the system.

The results of the Impedance controller show that it manages to follow the given
reference trajectory in the second simulation case to a certain extent as is shown
in Figure 4.12a. Seeing that the controller manages to follow the given trajectory,
the contact force will fluctuate in the near vicinity of the desired contact force. This
can be seen in Figure 4.13b.

45



46 Chapter 5 Discussion

The results of the Force controller with inner position loop show that for the first sim-
ulation case, the force error declines towards zero. This can be seen in Figure 4.15a.
For the second simulation case there is a trade-off between the magnitude of the
initial impact force and the magnitude of the force error. Tuning the controller such
that the resulting impact force is low will lead to a large deviation of force error.
Tuning the controller for a small force error deviation will result in a high impact
force. The tuning used for the simulation of the second case for force control allows
for a somewhat large deviation for the force error, whilst guaranteeing contact with
the electrified tracks. This can be seen in Figure 4.17a.

Both interaction controllers seem to sufficiently fulfill the control objective, i.e., guar-
anteeing constant contact with the environment whilst simultaneously maintaining
a moderate contact force.

There are some advantages of the Impedance control compared to the Force control.
It requires less to implement than the Force control and the Force controller also
needs an accurate measurement of the contact forces and moments applied on the
end-effector to function. The Impedance controller follows a trajectory based on
position, velocity and acceleration, which the Force control does not, seeing that the
latter can only have a vector of desired forces and moments as reference. This gives
that in the case of lateral motion of the truck, the Impedance controller could easily
turn the robot arm to follow the powered rails, whilst the Force controller would rely
on the resulting lateral friction forces and moments on the contact shoes caused by
the truck’s deviation from the electrified tracks. The latter seems like a less robust
way of following the tracks, seeing that it relies on disturbance-free contact rather
than a measured position signal from a sensor.

The are also some disadvantages of the Impedance control compared to the Force
control. The Impedance control relies on a good knowledge and measurement of the
vertical distance, velocity and acceleration of the road relative to the base frame.
If any of these measurements cannot be obtained, the controller will not be able
to control the robot arm as desired. Even if all measurements can be obtained,
the Impedance controller also relies on a estimated homogeneous stiffness in the
road. Should the road become more or less stiff compared to the stiffness when
the controller was originally tuned, the contact force would change without any
indication. The Force control on the other hand only desires a distance measurement
between the road and the base frame, and of course the previously mentioned force
measurement, to function. Seeing that the controller has a force as reference, the
force will be sufficiently controlled regardless of road stiffness. This also means that
tuning the impedance control to a certain force will be a somewhat tedious task
compared to the Force control.
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To evaluate which of the two interaction controllers is most suitable to control the
robot arm. The Force control relies only on two measurements, instead of three as
for the Impedance control, and is easier to tune to obtain a certain contact force.
However, one of the disadvantages of Impedance control, that a change will occur
in the road stiffness, can be deemed unlikely to occur. Therefore, due to the slightly
less advanced implementation and the lack of force sensors one can argue that the
Impedance control is more suitable to implement for the robot arm.

The control of a device such as the robot arm may be scheduled and divided into
several control modes. One mode can be implemented for the localization of the
electrified tracks, one for the actual interaction with the rails and one for lifting the
robot arm up to a resting position. By scheduling the controller in this way, it is
possible to tune the controller for each separate mode to maximise performance.
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A Modeling

A.1 Kinematics

A.1.1 Representation of a Rigid Body

A rigid body can be described by its position and orientation in space with respect
to the reference frame. Let O − xyz be the reference frame and x, y, z be the unit
vectors of the reference frame. A point o′ can be written with respect to the frame
in O − xyz in the following way

o
′
= o

′

xx+ o
′

yy + o
′

zz,

where o′x, o
′
y, o

′
z are the components of the vector o′ along the frame axes of O−xyz.

The position of the point o′ can be described by the vector

o
′
=

o′xo′y
o
′
z

 . (A.1)

In order to describe the orientation of o′ with respect to the frame O − xyz an
orthonormal frame is attached to the point o′ with the unit vectors x′

,y
′
, z

′ . The
resulting frame will be O − x′

y
′
z
′ . The relation between the unit vectors of frame

O − x′
y

′
z
′ and the reference frame O − xyz can be described by

x
′

= x
′

xx+ x
′

yy + x
′

zz

y
′

= y
′

xx+ y
′

yy + y
′

zz (A.2)

z
′

= z
′

xx+ z
′

yy + z
′

zz.

A.1.2 Rotation matrices

The rotational matrix is a (3×3) matrix consisting of the three unit vectors in (A.1),
according to

R =

x′
y

′
z

′

 =

x′
x y

′
x z

′
x

x
′
y y

′
y z

′
y

x
′
z y

′
z z

′
z

 . (A.3)

A point p is represented by

p =

pxpy
pz

 ,
51
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with respect to the frame O − xyz, but it can also be represented by

p
′
=

p′
x

p
′
y

p
′
z

 ,
in the coordinate frame O−x′

y
′
z
′ . Both p and p′ represent the same point in space,

P . Therefore, one can write

p = p
′

xx+ p
′

yy + p
′

zz =

x′
y

′
z

′

p′
,

which can be rewritten according to (A.3) as

p = Rp
′
. (A.4)

Let pi denote a vector describing the vector of coordinates of a point P in the ith
frame. Let Ri

j be the rotation matrix describing frame i with respect to frame j.
Let there be three vectors, p0, p1 and p2, all describing the same point for the
corresponding frame O−x0y0z0, O−x1y1z1 and O−x2y2z2 respectively. p2 written
in the coordinate frame 1 can be written as

p1 = R1
2p

2. (A.5)

Writing the equations for describing p0 and p1 and also p0 and p2 in the same
manner and inserting these into (A.5) will result in

R0
2 = R

0
1R

1
2. (A.6)

A.1.3 Transformation matrices

The previous section only looked at the rotation between frames. If a translation
were also to be included, it can be expressed in the following way

p0 = o01 +R
0
1p

1, (A.7)

where o01 denotes the vector describing the origin of frame 1 with respect to frame 0.
By simply adding a fourth component to the generic coordinate vector it is possible
to write the translation + rotation in a more compact form,

p̃ =

[
p
1

]
. (A.8)

Using this new way of describing vectors one can write a translation + rotation as

A0
1 =

[
R0

1 o01
0T 1

]
, (A.9)
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which is a (4 × 4) matrix called the homogeneous transformation matrix. Just like
the rotation matrix, one can write consecutive rotations and translations by stacking
homogeneous transformation matrices, as seen below.

p̃0 = A0
1A

1
2 . . .A

n−1
n p̃n (A.10)

A0
n = A0

1A
1
2 . . .A

n−1
n (A.11)

In the special case of a homogenous transformation matrix from the base frame b
and the end-effector e, the matrix is denoted

T b
e = A

b
1A

1
2 . . .A

e−1
e . (A.12)

A.1.4 Direct kinematics

The purpose of direct kinematics is to calculate the end effector’s position and
orientation as a function of the joint variables in a manipulator. The homogeneous
transformation matrix in the previous section can be written as

T b
e =

[
Rb
e(q) pbe(q)
0T 1

]
=

[
nbe(q) sbe(q) abe(q) pbe(q)
0 0 0 1

]
, (A.13)

where q is the vector of joint variables.
[
nb

e(q) sbe(q) ab
e(q)
]
are the unit vectors of

the frame attached to the end effector at position pbe. All of these are in this case
expressed in the base frame, hence the b superscript. These vectors are all a function
of q.

Euler Angles

Rotation matrices are characterised by nine non-independent elements. This implies
that the rotation matrices give a redundant description of the frame orientation.
The elements are, due to orthogonality, related by six constraints which implies
that it is sufficient to describe the orientation of a rigid body in space by only three
parameters. Representation of an orientation using a set of three angles according
to

φ =
[
ϕ ϑ ψ

]T
, (A.14)

will lead to a minimal representation. Consider an arbitrary rotation around one
of the coordinate axes with a corresponding rotation matrix that is a function of
a single angle. Then, a composition of three such rotations, assuming that two
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successive rotations are not made around parallel axes, will correspond to a generic
rotation matrix R(φ).

Given a rotation matrix Rb
e(q), which represents an arbitrary orientation of the

end effector, obtained through consecutive rotations as described in appendix A.1.3,
there exists a set of Euler Angles, φ, which will lead to

R(φ) = Rb
e(q), (A.15)

for a given rotation matrix

Rb
e =

r11 r12 r13
r21 r22 r23
r31 r32 r33

 . (A.16)

For the case of Euler Angles describing ZYX rotation, the solution to (A.15) corre-
sponds to

ϕ = Atan2(r21, r11) (A.17)

ϑ = Atan2

(
−r31,

√
r232 + r233

)
(A.18)

ψ = Atan2(r32,−r33). (A.19)

A.1.5 Differential kinematics

The mapping between the joint velocities q̇ and the velocity of a point p is described
by the (6×N) Geometric Jacobian matrix J such that

v =

[
ṗ
ω

]
=

[
JP (q)
JO(q)

]
q̇. (A.20)

The velocity of an arbitrary frame i corresponds to

ṗi = J
(i)
P1q̇1 + . . .+ J

(i)
Piq̇i = J

(i)
P q̇ (A.21)

ωi = J
(i)
O1q̇1 + . . .+ J

(i)
Oiq̇i = J

(i)
O q̇, (A.22)

which can be written in vector form

J
(i)
P =

[
J

(i)
P1 · · · J

(i)
Pi 0 · · · 0

]
(A.23)
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J
(i)
O =

[
J

(i)
O1 · · · J

(i)
Oi 0 · · · 0

]
. (A.24)

To find the Geometric Jacobian for the frame attached to an arbitrary point pi, the
columns of (A.23),(A.24) correspond to

J
(i)
Pj =

{
zj−1 for a prismatic joint j
zj−1 × (pi − pj−1) for a revolute joint j.

(A.25)

Further,

J
(i)
Oj =

{
0 for a prismatic joint j
zj−1 for a revolute joint j.

(A.26)

To find the Geometric Jacobian for the frame attached to link i, the columns
of (A.23), (A.24) correspond to

J
(li)
Pj =

{
zj−1 for a prismatic joint j
zj−1 × (pli − pj−1) for a revolute joint j,

(A.27)

where pli is the center of mass for link i. Further,

J
(li)
Oj =

{
0 for a prismatic joint j
zj−1 for a revolute joint j.

(A.28)

With some modifications, the notion used in (A.27)-(A.28) can be adopted for com-
puting the Geometric Jacobian for an actuator i according to

J
(mi)
Pj =

{
zj−1 for a prismatic joint j
zj−1 × (pmi

− pj−1) for a revolute joint j,
(A.29)

where pmi
is the center of mass for link i. Further,

J
(mi)
Oj =

{
J

(li)
Oj j = 1, . . . , i− 1

krzmi
j = i,

(A.30)

where kr is the gear reduction ratio of the actuators.

For the robot arm considered in this thesis, the Geometric Jacobians for the links
and actuators in the three branches i, j and t are presented below. The Geometric
Jacobian for end-effector velocity is also presented.
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J l1i =

[
zbi × (pl1 − pbi) 0 0

zbi 0 0

]
J l2i =

[
zbi × (pl2 − pbi) z1i × (pl2 − p1i) 0

zbi z1i 0

]
J l3i =

[
zbi × (pl3 − pbi) z1i × (pl3 − p1i) z2i

zbi z1i 0

]
Jm3
i =

[
zbi × (pm3

− pbi) z1i × (pm3
− p1i) z2i

zbi z1i krz2i

]

J l1j =

[
zbj × (pl1 − pbj) 0 0

zbj 0 0

]
J l2j =

[
zbj × (pl2 − pbj) z1j × (pl2 − p1j) 0

zbj z1j 0

]
J l3j =

[
zbj × (pl3 − pbj) z1j × (pl3 − p1j) z2j

zbj z1j 0

]
Jm3
j =

[
zbj × (pm3

− pbj) z1j × (pm3
− p1j) z2j

zbj z1j krz2j

]

J l1t =

[
zbt × (pl1 − pbt) 0 0

zbt 0 0

]
J l2t =

[
zbt × (pl2 − pbt) z1t × (pl2 − p1t) 0

zbt z1t 0

]
J l3t =

[
zbt × (pl3 − pbt) z1t × (pl3 − p1t) z2t × (pl3 − p2t)

zbt z1t z2t

]

J et =

[
zbt × (pe − pbt) z1t × (pe − p1t) z2t × (pe − p2t)

zbt z1t z2t

]
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