
	

	

	
	

Evaluation of Conditional Recurrent
Generative Adversarial Networks for
Multivariate Time-Series Augmentation
Master’s thesis in Engineering Mathematics and Computational Science

ANNA CARLSSON

Department of Mathematical Sciences
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2020

MASTER’S THESIS

Evaluation of Conditional Recurrent Generative Adversarial
Networks for Multivariate Time-Series Augmentation

ANNA CARLSSON

Department of Mathematical Sciences

Division of Applied Mathematics and Statistics

CHALMERS UNIVERSITY OF TECHNOLOGY

Gothenburg, Sweden 2020

Evaluation of Conditional Recurrent Generative Adversarial Networks for Multivariate Time-

Series Augmentation

ANNA CARLSSON

© ANNA CARLSSON, 2020.

Supervisors:

Patrik Dammert and Håkan Warston, SAAB Surveillance

Torbjörn Lundh, Chalmers University of Technology

Examiner:

Torbjörn Lundh, Chalmers University of Technology

Master’s Thesis 2020

Department of Mathematical Sciences

Division of Applied Mathematics and Statistics

Chalmers University of Technology

SE-412 96 Gothenburg

Telephone +46 31 772 1000

Cover: Synthetic sinusoidal time-series generated using the s-BiLSTM-CNN GAN architecture

developed in this thesis. See Chapter 3 for further description of the architecture and Chapter 4

for evaluation of the synthetic time-series and the training process.

Typeset in LATEX

Gothenburg, Sweden 2020

iv

Evaluation of Conditional Recurrent Generative Adversarial Networks for Multivariate Time-

Series Augmentation

ANNA CARLSSON

Department of Mathematical Sciences

Chalmers University of Technology

Abstract

A successful application of any machine learning algorithm is dependent on a sufficiently large

training dataset, preferably class-balanced and correctly labeled. However, in many applications,

the collection and labeling of data is time-consuming, expensive, and might require special

security precautions if the data is of a sensitive nature. Therefore, different types of augmentation

methods are commonly used. For time-series data, traditional augmentation methods such as

rotation, translation, and flipping are not applicable. In applications where the dataset consists

of time-series data, other augmentation methods are therefore of interest.

In this thesis, the usage of generative adversarial networks (GANs) as an augmentation method

for univariate and multivariate time-series data is investigated. Both recurrent and conditional

recurrent GANs are examined. Apart from constructing architectures for time-series generation,

the thesis focuses on finding suitable methods for evaluating the quality of the generated data.

To monitor the training progress and select a suitable generator model to simulate synthetic data

from, two distance-based kernel metrics are used: maximum mean discrepancy (MMD) and

energy distance (ED). To evaluate the sample quality and diversity of the generated data, several

experiments are performed where a classifier is trained on real, tested on synthetic data (TRTS),

trained on synthetic, tested on real data (TSTR), and lastly trained and tested on a mixture of real

and synthetic data (TMTM). Furthermore, experiments aiming to examine the usage of synthetic

samples from conditional recurrent GANs to augment a real dataset are performed.

The results indicate that the GANs successfully generates highly realistic samples, both of simpler

time-series and more complex multivariate time-series. However, the time-series seem to not aid

a classifier to any large extent when added to real data, even when larger proportions of synthetic

data are added. A possible explanation for this is that the synthetic data, although consisting of

realistic samples, suffers from loss of in-class diversity and boundary distortion.

Keywords: deep learning, generative adversarial networks, generative models, multivariate time-

series classification, maximum mean discrepancy, energy distance, covariate shift, boundary

distortion

v

Acknowledgements

Firstly, I would like to express my sincere gratitude to my industrial supervisors, Håkan Warston

and Patrik Dammert, for invaluable support and encouragement throughout the project. I would

also like to thank Torbjörn Lundh, my academic supervisor, for enthusiastically supporting my

work and answering my questions.

I would also like to thank my manager Ulrika Svahn and the whole New Concepts team. Thank

you for giving me the opportunity to work with such an interesting project and for warmly

welcoming me into your team. I have thoroughly enjoyed all morning and afternoon coffee

breaks, lunch walks, and interesting discussions.

Lastly, I would like to thank my family and friends. My family, for unconditionally supporting

and encouraging me no matter which project I undertake. My friends, for supporting me during

those five very intensive years. Thank you for being my late-night study company, for all coffee

breaks spent together, and for all pep-talks. I cannot imagine that my time at Chalmers would

have been nearly as good without each and every one of you.

Anna Carlsson, Gothenburg, June 2020

vii

Contents

List of Figures xi

List of Tables xiii

1 Introduction 1

1.1 Background . 2

1.2 Scope . 2

1.3 Related Work . 3

1.4 Thesis Outline . 4

2 Theory 5

2.1 Supervised and Unsupervised Learning . 5

2.2 Artificial Neural Networks . 6

2.2.1 The Basic Neural Unit . 6

2.2.2 A Simple Feed-Forward Network . 7

2.2.3 Training a Neural Network . 8

2.2.4 Convolutional Neural Networks . 13

2.2.5 Recurrent Neural Networks . 16

2.3 Generative Adversarial Networks . 21

2.3.1 The Training Objective and the Loss Function 21

2.3.2 Conditional Generative Adversarial Networks 23

2.3.3 Improving Training Stability . 24

2.4 Evaluation of Generative Models . 25

2.4.1 Maximum Mean Discrepancy . 26

2.4.2 Energy Distance . 28

3 Methodology 29

3.1 Overview . 29

3.2 Description and Preprocessing of Datasets . 30

3.2.1 Sinusoidal Time-Series . 30

3.2.2 Radar Tracker Time-Series . 30

3.3 Neural Network Architectures . 32

ix

Contents

3.3.1 Generation of Sinusoidal Time-Series . 32

3.3.2 Generation of Radar Tracker Data . 34

3.3.3 Classification of Radar Tracks . 35

3.4 Training the Neural Networks . 36

3.4.1 Computing Platform . 36

3.4.2 Hyperparameters and Training Settings . 36

3.5 Experiments Performed on Synthetic Radar Time-Series 38

3.5.1 The Effect of Sampling Proportions of Conditional Labels 38

3.5.2 The Quality of the Synthetic Samples from a Classification Perspective . . 39

3.5.3 The Proportion of Synthetic Data Versus Classification Accuracy 41

4 Results 43

4.1 Generation of Sinusoidal Time-Series . 43

4.1.1 Comparison of Architectures . 43

4.1.2 Training Convergence . 45

4.2 Generation of Multivariate Radar Time-Series . 47

4.2.1 The Training Process and Convergence of the Models 48

4.2.2 Effect of Sampling Proportion of Conditional Labels 50

4.2.3 The Quality of Synthetic Data from a Classification Perspective 51

4.2.4 The Proportion of Synthetic Data Versus Classification Accuracy 58

5 Discussion 61

5.1 The Multivariate Time-Series Radar Dataset . 61

5.2 The Distribution Discrepancy Metrics . 62

5.2.1 Applicability of Metrics . 62

5.2.2 The Choice of Evaluation Metrics for GAN Samples 63

5.2.3 Evaluation Metrics Versus Loss for Training Monitoring 64

5.2.4 Maximum Mean Discrepancy or Energy Distance? 64

5.3 The Classification Performance of Synthetic Data 65

5.3.1 The Methods for Sampling Conditional Labels During Training 66

5.3.2 The Sample Quality of the Synthetic Data . 67

5.3.3 The Diversity of the Synthetic Samples . 68

5.3.4 The Applicability of GANs as an Augmentation Method 69

6 Conclusion 71

6.1 Summing Up . 71

6.2 Future Work . 72

6.2.1 GANs Tailored for Data Augmentation in Classification Tasks 72

6.2.2 Normalizing Flows . 73

6.2.3 Topological Data Analysis . 73

Bibliography 77

x

List of Figures

2.1 Illustration of a single neural unit . 7

2.2 A simple feed-forward network with a single hidden layer 8

2.3 Illustration of a simple convolutional neural network (CNN) processing a single

image from the MNIST dataset of handwritten images 14

2.4 A simple recurrent neural network (RNN) unfolded in time 17

2.5 A simple example of a bidirectional recurrent network 17

2.6 Illustration of a single long-short term memory (LSTM) unit 19

2.7 Illustration of a single gated recurrent unit (GRU) 20

2.8 An example of a conditional recurrent GAN for time-series generation 24

3.1 Examples of observations from the simulated sinusoidal time-series dataset 31

4.1 Synthetic samples generated by the generators in the s-BiLSTM-CNN GAN and

the s-LSTM GAN at four different epochs (after 1, 10, 50, and 200 epochs) 44

4.2 Maximum mean discrepancy (MMD) and energy distance (ED) between synthetic

samples and test samples from real data across epochs during the training of

s-BiLSTM-CNN GAN and s-LSTM GAN on sinusoidal waves 45

4.3 Binary cross-entropy loss of the generator and discriminator (split into the loss

of real and fake batches) and maximum mean discrepancy (MMD) and energy

distance (ED) as a function of epoch for the s-BiLSTM-CNN GAN 46

4.4 Binary cross-entropy loss of the generator and discriminator (split into the loss

of real and fake batches) and maximum mean discrepancy (MMD) and energy

distance (ED) as a function of epoch for the s-LSTM GAN 47

4.5 Binary cross-entropy losses and discrepancy metrics of the t-BiLSTM-CNN GAN

trained on the multivariate time-series radar dataset 49

4.6 Binary cross-entropy losses and discrepancy metrics of the t-LSTM GAN trained

on the multivariate time-series radar dataset . 49

4.7 The confusion matrix obtained when testing a classifier trained on only real data

on a withheld test set summarized over 20 iterations of MCCV 56

xi

List of Figures

4.8 Confusion matrices for the six synthetic datasets (three each for models t-BiLSTM-

CNN GAN and t-LSTM GAN with proportional, equal, and separate label sampling)

where the optimal generator models have been selected using the lowest obtained

MMD value . 57

4.9 Confusion matrices for the six synthetic datasets (three each for models t-BiLSTM-

CNN GAN and t-LSTM GAN with proportional, equal, and separate label sampling)

where the optimal generator models have been selected using the lowest obtained

ED value . 58

4.10 The accuracy of the GRU classifier, tested on real data only, as a function of the

proportion of added synthetic data from generators selected using MMD 59

4.11 The accuracy of the GRU classifier, tested on real data only, as a function of the

proportion of added synthetic data from generators selected using ED 60

6.1 Four examples of k-simplices for k = 0, k = 1, k = 2, and k = 3 74

6.2 An example of a geometric simplicial complex, consisting of several k-simplices. 75

xii

List of Tables

3.1 The architecture of the s-BiLSTM-CNN GAN used to generate sinusoidal waves . 33

3.2 The architecture of the s-LSTM GAN used to generate sinusoidal waves 33

3.3 The architecture of the conditional t-BiLSTM-CNN GAN used to generate multi-

variate tracker time-series . 34

3.4 The architecture of the conditional t-LSTM GAN used to generate multivariate

tracker time-series . 35

3.5 The architecture of the recurrent neural network used for classification of multi-

variate radar time-series . 36

3.6 The training parameters used to train the s-BiLSTM-CNN GAN, the s-LSTM GAN,

the t-BiLSTM-CNN GAN, and the t-LSTM GAN . 37

3.7 The training parameters used to train the GRU classifier for classification of multi-

variate radar time-series . 37

4.1 The average lowest maximum mean discrepancy (MMD) and energy distance (ED)

scores obtained when training the t-BiLSTM-CNN GAN and the t-LSTM GAN using

different sampling methods . 50

4.2 The average accuracy, precision, recall, and F1-score obtained when training a

classifier on real data and then testing the classifier on synthetic data generated by

generators (selected using MMD) of two different architectures (t-BiLSTM-CNN

GAN and t-LSTM GAN) and three different sampling methods (equal, proportional,

and separate) . 52

4.3 The average accuracy, precision, recall, and F1-score obtained when training a

classifier on real data and then testing the classifier on synthetic data generated by

generators (selected using ED) of two different architectures (t-BiLSTM-CNN GAN

and t-LSTM GAN) and three different sampling methods (equal, proportional, and

separate) . 53

4.4 The average accuracy, precision, recall, and F1-score obtained when training a

classifier on synthetic data generated by generators (selected using MMD) of

two different architectures (t-BiLSTM-CNN GAN and t-LSTM GAN) and three

different sampling methods (equal, proportional, and separate) and then testing

the classifier on only real data . 54

xiii

List of Tables

4.5 The average accuracy, precision, recall, and F1-score obtained when training a

classifier on synthetic data generated by generators (selected using ED) of two

different architectures (t-BiLSTM-CNN GAN and t-LSTM GAN) and three differ-

ent sampling methods (equal, proportional, and separate) and then testing the

classifier on only real data . 55

xiv

1 | Introduction

Over the last few years, deep learning has become one of the most promising methods for a

wide range of tasks, including classification problems. However, a successful application of

deep learning relies on sufficient training data: that is, a sufficiently large training set, a balance

between classes, and correctly labeled observations. Low-quality data can lead to poorly fitted

models and overfitting issues. However, in many real-world applications, such ideal data is not

possible to collect. For this reason, several augmentation techniques have been developed and

are used to extend limited datasets without collecting any new data. In the image data domain,

simple methods such as rotation, translation, and flipping are used to increase the number of

training samples [1]. For other types of data, augmentation is not as straightforward. This is, in

particular, true when it comes to time-series data, for which the so-called temporal dependency

needs to be conserved in the augmented samples.

A field related to data augmentation is generative modeling: given a sample from a probability

distribution, the aim is to model the underlying distribution from which the sample is drawn

[2]. Such methods offer the possibility to augment a dataset by estimating the underlying

distribution, drawing additional samples from this estimate, and including such synthetic

samples in the training dataset to extend it. A wide range of methods for generative modeling

has been proposed. Such models include analytic approaches where the distribution is modeled

using some fixed family of distributions, graphical models, variational approaches, and neural

network approaches such as Variational Auto-Encoders (VAEs) and Generative Adversarial

Networks (GANs) [2].

Another related field is the qualitative evaluation of synthetic data from generative models

with computationally intractable likelihoods. The problem of how such evaluation should be

performed is an open research question, and yet today, many applications rely heavily on visual

inspection of the synthetic samples.

In this thesis, an interesting boundary region between those areas is explored: the usage of GANs

as an augmentation method for time-series data classification and evaluation of the synthetic

data by some evaluation metrics, avoiding visual inspection. In the following sections, the

background and scope of the project are given as well as a summary of some related work.

1

1. Introduction

1.1 Background

Saab Surveillance is a business area within Saab AB, a Swedish defense company that develops

and manufactures a wide range of defense and security solutions. At the unit Surface Radar

Solutions, land and naval-based systems for primarily air surveillance and weapon location are

developed. A key component of a radar system is the tracker, responsible for connecting radar

observations of the same target into tracks describing the movement and position of the target.

To determine what kind of object the radar is tracking, some type of classification algorithm is

needed.

A previous master thesis investigated the usage of deep learning to classify such tracks recorded

by the tracker in a certain radar system [3]. One conclusion of the thesis was that the results

suffered from the small amount of training data available. Obtaining a sufficiently large dataset

in a military setting can be problematic for several reasons. One reason is that it is time-

consuming and expensive to run the measurement systems, record the data, and manually label

the observations. Another reason is that military data is often of sensitive nature and special

security precautions are needed to store and handle such data. Furthermore, the availability

of recorded data for the most interesting targets can be limited. Therefore, it is interesting to

examine the possibility of utilizing generative models to create synthetic samples from collected

real-world data. Such synthetic data would not just be easier to obtain compared to real data,

but would also be an improvement from a security perspective since it does not hold real-world

information. Specifically, it is interesting to examine the characteristics of such generative

models and their applicability for classification problems in radar systems. This can be done

by comparing the distribution of synthetic data to the distribution of real-world data. An

application of special interest is the classification of birds and UAVs (Unmanned Aerial Vehicles,

commonly called drones) from data recorded by the radar tracker, as a continuation of the

mentioned master thesis.

1.2 Scope

The scope of this thesis is to investigate the usage of generative adversarial networks (GANs) to

generate time-series data that can be used for augmentation in a classification task. Furthermore,

the quality of the synthetic data should be evaluated using some discrepancy metrics. In the

sections below, the main limitations of the thesis are described.

The Training Data

The time-series data in question are two different datasets: one simpler univariate dataset

consisting of simulated sinusoidal time-series and one multivariate time-series dataset, provided

by Saab Surveillance. The latter is a real-world dataset, recorded by a tracker in one of Saab’s

radar systems.

2

1. Introduction

The Generative Model

The generative models examined in this thesis are different types of generative adversarial

networks (GANs). The reason for selecting GANs is that they have been incredibly successful in

a wide range of tasks, including time-series forecasting and anomaly detection. Furthermore,

the most common deep learning frameworks support the implementation of such networks.

There exist a large number of well-documented variations of GANs, as well as scientific reports

evaluating the performance of them. Specifically, recurrent generative adversarial nets (cGANs)

will be used and in the case of the multivariate tracker data, they will be conditioned on the

class labels. Such GANs are referred to as conditional recurrent GANs. Naturally, further types

of GANs and other generative models exist that could be suitable for generating multivariate

time-series, but such models are beyond the scope of this thesis.

Evaluation of the Synthetic Data

To evaluate the synthetic data generated in this thesis, two distance-based discrepancy metrics

are used: maximum mean discrepancy (MMD) and energy distance (ED). They are both exam-

ples of two-sample tests, from the statistical domain. To evaluate the classification performance

of the synthetic data, a classifier is needed. The selected classifier was used in a previous thesis

done on the same dataset [3], and consist of a multilayered gated recurrent unit (GRU) network.

No other architectures have been investigated since this thesis is limited to investigating the

possibility of incorporating GANs in the classification framework used, rather than finding a

better classifier.

1.3 Related Work

Studies relevant to this thesis are works utilizing GANs for time-series data generation and for

general data augmentation. Furthermore, studies investigating methods for quality evaluation

of synthetic data from generative models are of interest.

Evaluating the quality of generated data by generative models, for instance GANs, is an open re-

search field. In a successful application of generative models, the synthetic data should capture

the underlying distribution of the training data well. Several studies have aimed at developing

frameworks for investigating whether or not generative models manage to capture such char-

acteristics of the training data. In a study by S. Santhurkar et. al. [4], the authors investigate a

phenomenon called covariate shift from a classification perspective. The authors denote the true

data distribution PT (X) and the synthetic data distribution PG (X), and define covariate shift as

the case when PT (Y |X) = PG (Y |X) but PT (X) 6= PG (X), whereX is some source domain and

Y is some target domain. A framework for detecting two types of covariate shift: mode collapse

(the generator generates samples of some modes with larger probability) and boundary distor-

tion (the synthetic data fails to capture the distribution in the boundary regions of the support)

is presented. For this thesis, the test for detection of boundary distortion is relevant. The test

3

1. Introduction

is performed by training a GAN separately on the data classes, form a balanced dataset, and

check the classification accuracy when tested on real data. If the performance of the classifier is

worse when trained on synthetic data compared to when trained on real data, it indicates that

the generator fails to capture boundary cases present in the training dataset.

Several studies aiming at generating continuous time-series data with GANs have been per-

formed. One of the first such studies was conducted by S. L. Hyland et. al. in 2017 [5]. The study

aimed to generate multivariate continuous time-series using a GAN trained on a medical dataset

from an intensive care unit (ICU). As a first step, a GAN was trained to generate simpler data such

as sinusoidal time-series and a serialized version of the MNIST dataset of handwritten images

[6]. All GANs in the study were recurrent, and for the ICU data, a conditional recurrent GAN was

used. The authors successfully managed to generate realistic-looking univariate time-series, as

well as more complex multivariate ICU time-series. A more recent study by A. M. Delaney et. al.

from 2019 [7] focused on generating sinusoidal time series and electrocardiogram (ECG) signals.

The study was based on a 2019 paper by F. Zhu [8], where ECG signals were generated using

GANs. Both works showed promising results and managed to generate univariate time-series

data successfully. Works, in which multivariate time-series data have been generated, are fewer

but existent. Except for the already mentioned work by S. L. Hyland et. al. [5], two studies have

been performed where GANs was used for anomaly detection in multivariate time-series [9, 10].

Both studies were based on the work by S. L. Hyland et. al. and they managed to train GANs in

less than 100 epochs that could generate realistic synthetic samples.

1.4 Thesis Outline

The thesis is structured as follows. In Chapter 2, the theoretical preliminaries necessary to follow

the work in this thesis are presented. The theory covers the basics behind neural networks,

recurrent neural networks, generative adversarial networks, and the discrepancy metrics used in

this thesis to evaluate synthetic data. In Chapter 3, the datasets, the various architectures used to

generate and classify data, and the experiments performed on the synthetic data are presented.

Furthermore, some practical details regarding training settings and training procedures of GANs

are presented. In Chapter 4, results from the training processes of GANs and the results of the

experiments made on the synthetic data are presented. In Chapter 5, the results are discussed.

Lastly, in Chapter 6, the thesis is wrapped up and some methods that can be interesting to

investigate further are described.

4

2 | Theory

In the following sections, the theoretical preliminaries needed to follow the rest of the report

are presented. In Section 2.1, a brief introduction to unsupervised and supervised learning

is presented together with some main challenges of supervised learning. In Section 2.2, the

theory behind some relevant types of artificial neural networks is covered: mainly feed-forward

networks, convolutional neural networks, and recurrent neural networks. In Section 2.3, the

theoretical foundation of generative adversarial networks is covered. Lastly, in Section 2.4, some

evaluation metrics that can be used to compare samples from the true dataset with samples

from a synthetic dataset generated by a generative model are presented.

2.1 Supervised and Unsupervised Learning

Supervised learning is the problem of teaching an algorithm to perform a certain task based on

an outcome variable, commonly referred to as the target variable [11]. The input variables to

the algorithm are commonly referred to as feature variables. Examples of supervised learning

methods are linear and logistic regression, random forest classification, support vector machines

(SVM), and artificial neural networks (mostly). Unsupervised learning is, in contrast, the problem

of learning from data without having any target variable associated with each observation.

Examples of unsupervised learning methods are cluster analysis and generative modeling. In

this thesis, both supervised (deep neural networks) and unsupervised learning (generative

adversarial networks) will be used.

One of the main challenges with supervised learning is to obtain models with high general-

izability [1]. Generalizability refers to the ability of the model to perform well on data it has

not previously seen. If a trained model has poor generalizability, it has either underfitted or

overfitted the training data. Underfitting refers to the case when a too simple model has been

used. When overfitting, the model finds patterns in noise and fails to adapt to the true under-

lying features of the training data. When such an overfitted model is tested on new data, the

model performs poorly. In a sense, the model can be considered to be too flexible: a too large

number of parameters gives the model ability to adapt to noise in the training data. However,

it is desirable that the model is flexible to some extent: a too rigid model will fail to capture

the true relationship in the data since it is too simple. This relationship between under- and

overfitting is usually referred to as the bias-variance tradeoff.

5

2. Theory

Many methods exist for avoiding overfitting and are widely used when training almost any

supervised model. Several such methods will be discussed in a subsequent section.

2.2 Artificial Neural Networks

Artificial neural networks is a flexible and powerful framework for solving supervised learning

tasks inspired by the structure and dynamics of the biological brain [12]. Although the usage of

neural networks has practically exploded both within academia and a wide range of industries

during the last few years, neural networks are not a new idea: the basic neural unit we use today

was first proposed by McCulloch and Pitts in 1943 [12, 13]. Due to the rapid increase in hardware

performance and the increase of available training datasets, neural networks are nowadays used

in many different fields. Common applications include object recognition, speech recognition,

and machine translation and new application areas are under constant development.

In the following sections, some theory behind artificial neural networks is presented. McCulloch

and Pitts’ simple neural unit is presented in Section 2.2.1. In Section 2.2.2, a simple network

structure with a single hidden layer is presented. Such a simple structure serves well to build an

understanding of neural networks in general. In Section 2.2.3, the training process of a neural

network is described as well as some methods for reducing overfitting of the training data. In

Section 2.2.4, the principles behind convolutional neural networks are presented. Such networks

are commonly used for processing temporal and spatial data. Lastly, in Section 2.2.5, recurrent

neural networks and some well-known developments such as long-short term memory (LSTM)

and gated recurrent unit (GRU) networks are introduced.

2.2.1 The Basic Neural Unit

A simple neural unit is shown in Figure 2.1. The neural unit has index i . As can be seen in the

figure, neuron i receives input from N other upstream neurons. Each output from the upstream

neurons is assigned a weight, which determines how much a certain output should affect the

input of neuron i . The output of neuron i is computed by summing the weighted input together

and then apply an activation function as follows:

xi = f

(
N∑

j=1
wi j x j −bi

)
, (2.1)

where f denotes the activation function, wi j is the weight of the j th input neuron to neuron i ,

x j is the output of neuron j , and bi is the threshold (or the bias) of neuron i .

The activation function is usually a nonlinear function, needed to introduce some non-linearity

to the model. A common choice is the rectified linear unit (ReLU) function, defined as [14]:

ReLU(x) = max(0, x), (2.2)

6

2. Theory

where x corresponds to the summarized input to the neuron, sometimes referred to as the

local field [12]. Inspired by the mammalian brain, a neuron can either be active (excitatory) or

inactive (inhibitory). To be active, the neuron needs to receive a sufficiently large input from

the upstream neurons. The threshold of the neuron determines how large the local field needs

to be for the neuron to be active. The values of the weights can be either positive, negative, or

zero. If a weight from a certain upstream neuron is set to zero, the output of this neuron will not

contribute to the activation of neuron i . A negative weight means that the input from a certain

upstream neuron will decrease when the output of the upstream neuron increases.

x2

...

wi 2

...

Σ f
Activation

xi = f
(∑N

j=1 wi j x j −bi

)Output

x1 wi 1

xN wi N

Weights

Bias
−bi

Inputs

Figure 2.1: An illustration of a single neural unit, originally proposed by McCulloch and Pitts [13]. The
blue neuron in the figure has index i , and the output of the i th neuron is computed by summing the
weighted input wi j x j together, adding the bias, and applying the nonlinear activation function f . The
bias bi is sometimes referred to as the threshold of neuron i .

2.2.2 A Simple Feed-Forward Network

A simple feed-forward network is shown in Figure 2.2. The name refers to the fact that informa-

tion is always fed forward in the network, and no feedback loops to upstream layers or neurons

within the same layer exist. Sometimes, such networks are called multilayered perceptrons [12].

The first layer is referred to as the input layer. The number of neurons in this layer is determined

by the shape of the data: mostly, there are as many input neurons as features in the data. The

middle layer is referred to as a hidden layer since the states of the neurons in this layer are not

accessible [12]. The number of neurons in such a layer can vary. The last layer is called the

output layer. This layer delivers the final result of the network, and the dimension of this last

layer depends on the problem and the structure of the network. For binary classification, the

number of output neurons is usually two. For multi-class classification, the number of output

neurons usually corresponds to the number of target classes. Note that the number of hidden

layers can vary; for some simpler problems, no hidden layers are necessary and for some more

complex problems, several layers may be needed.

In Figure 2.2, some notation is introduced. The states of the input neurons are denoted x1
i ,

where i denotes the number of the neuron in the layer and 1 refers to the fact that the input layer

is also the first layer. The same goes for the hidden neurons and for the output neurons, but

their states will be denoted hl
i and y l

i , respectively, where l denote the layer number. In some

7

2. Theory

cases, vector notation is preferable. The states of the neurons in the input layer are denoted

x(1). Similarly, the state of the hidden neuron is denoted h(l). In a classification setting, the

difference between the true labels of the observations, commonly denoted y, and the output

of the network is clarified by denoting the output of the network ŷ(l). When confusion might

occur, this notation will be used in this thesis too. The weight matrix of each layer is denoted

W (l), where l refers to the layer number. Note that the layer index will mostly be omitted for the

input and output layers in subsequent sections.

x1
1Input 1

x1
2Input 2

x1
3Input 3

h2
1

h2
2

h2
3

h2
4

y3
1

y3
2

Hidden layerInput layer Output layer

h(2)

x(1)

ŷ(3)

W (1) W (2)

Figure 2.2: A simple feed-forward network with a single hidden layer. In the figure, both scalar and vector
notation are introduced. For practical reasons, vector notation is often preferred.

2.2.3 Training a Neural Network

As have been seen, a neural network consists of neurons, connected to downstream neurons,

and the output of upstream neurons is fed forward through the network until it reaches the

output layer. But how does the network learn? How can we prevent overfitting of the training

data? Such questions will be answered in the following sections.

Backpropagation and Stochastic Gradient Descent

Backpropagation refers to the process of evaluating the error of the network, and then sequen-

tially update the weights of the network to allow the network to perform better in subsequent

training iterations. This is almost always performed using a gradient descent algorithm. Gradient

descent-type of algorithms performs optimization by iteratively stepping in the direction of the

steepest descent, which corresponds to the negative gradient:

θk+1 = θk −α∇θ J (θk), (2.3)

where θk+1 are the trainable parameter values at iteration k +1, θk are the parameter values at

iteration k, α is the learning rate (the step size of the algorithm), and ∇θ J(θk) is the gradient

of the cost function J(θk) at iteration k with respect to the trainable parameters. The learning

8

2. Theory

rate can be constant, but more often some kind of adaptive learning rate is implemented. More

details on this will be described later in this section.

The process of feeding information forward in the network to obtain an output is called forward

propagation. The forward propagation algorithm is summarized in Algorithm 1 following [14].

As can be seen in Equation 2.3, the gradient of the cost function with respect to the trainable

parameters needs to be computed to update the weights. Since the output is computed by

sequentially transforming the input, the gradients of parameters belonging to upstream layers

can be computed with the chain rule, using gradients of the downstream parameters. This

process is usually called backpropagation. The backpropagation algorithm is summarized in

Algorithm 2, also here following [14].

Algorithm 1: The forward propagation algorithm, following [14]. Ω(θ) is a regularizer with some
weight parameter λ. ¯ denotes element-wise multiplication.

input : number of layers l , weight matricesW (i), i ∈ {1, . . . , l }, the bias parameters b(i),
i ∈ {1, . . . , l }, the features (input) x, the target y

output : loss function J = L(y, ŷ)

1 h(0) =x;
2 for k = 1, . . . , l do
3 a(k) = b(k) +W (k)hk−1; // local field
4 h(k) = f

(
a(k)

)
; // activation

5 ŷ =h(l); // predicted output
6 J = L(y, ŷ)+λΩ(θ); // loss

Algorithm 2: The backpropagation algorithm, following [14]. The gradient of the output layer is
first computed and then used to compute upstream gradients. Also here,Ω(θ) corresponds to a
regularizer and λ some weight parameter.

input : loss function J = L(y, ŷ)

1 g←∇ŷ J =∇ŷL(ŷ,y) ; // gradient of output layer
2 for k = l , l −1, . . . ,1 do
3 g←∇a(k) J = g¯ f ′(a(k)) ; // gradient of activation
4 ∇b(k) J = g+λ∇b(k)Ω(θ) ; // gradient of biases
5 ∇W (k) J = gh(k−1)ᵀ+λ∇W (k)Ω(θ); // gradient of weights
6 g←∇h(k−1) J =W (k)ᵀg ; // gradient of layer k-1’s activation

Activation Function and Loss Function

The activation function introduces non-linearity to the network. Without the activation function,

the network would simply perform a series of linear transformations, which could be insufficient

to learn the pattern of more complex data. By using nonlinear transformations φ(x), where

x is some local field, we can apply a linear model to the transformed data and thus model

nonlinear relationships [14]. Several activation functions are commonly used in neural network

architectures and are suitable in different situations.

9

2. Theory

The most commonly occurring activation function is the already mentioned rectified linear unit

(ReLU) function (see Section 2.2.1). Although simple, ReLU has some large advantages, making

it the recommended choice for feed-forward and convolutional neural networks [14]. Firstly,

the gradients of the active neurons are always one. Other activation functions, such as sigmoid

and the hyperbolic tangent function, tend to cause very small gradients when the local fields

are either very large or very small. This is not the case for ReLU, and therefore this activation

function is considered more stable for learning. One disadvantage is the risk of so-called dead

neurons: neurons that independently of the input always outputs zero. Why such neurons arises

vary, but since the gradients of such neurons are always zero, they cannot be recovered. In

some applications, this is a desired property since it makes the network sparser. The mentioned

sigmoid and hyperbolic tangent functions are defined as:

sigm(x) = 1

1+e−x (2.4)

and

tanh(x) = ex −e−x

ex +e−x . (2.5)

The sigmoid function normalizes the output between 0 and 1 and is therefore often used to

normalize the output to probabilities. Since the GAN discriminator should output the proba-

bility that a sample is real, a sigmoid activation function is often used in the output layer of a

discriminator. A disadvantage of the sigmoid function is that it easily saturates if the input to

the activation is very small or very large [14]. Therefore, it is important to make sure that the

outputs of the layers are kept relatively close to zero since the sigmoid is most sensitive there:

otherwise, using sigmoid units in a network can make the learning process difficult. For this

reason, it is discouraged to use the sigmoid function in-between network layers.

The loss function is central in all gradient descent-based learning algorithms and measures the

inconsistency between the network output and the true labels of the data. The loss function is

the objective function minimized by the gradient descent algorithm. There exists many different

loss functions, and which one to use depends on the problem at hand. In the context of GANs, a

common choice of loss function is the binary cross-entropy loss. In Section 2.3.1, the specific

loss function for GANs will be further discussed, but here we will state the formal definition of

binary cross-entropy loss:

L = L(pθ) =−(yi log
(
pθ(yi)

)+ (1− yi) log
(
1−pθ(yi)

)
, (2.6)

where yi is the true class of the observation (either 0 or 1), pθ(yi) is the probability of observation

yi belonging to the first class, and 1− pθ(yi) the probability of yi belonging to the second

class.

10

2. Theory

Adaptive Learning Rate

Gradient descent-based learning algorithms require a learning rate (step size), to perform

optimization. How this parameter should be chosen is not straightforward, and it has proven

to be a hyperparameter that can greatly affect the performance of the trained model. How

sensitive the cost is to changes in parameter values can substantially vary between different

parameters. For this reason, different types of algorithms with adaptive learning rates have been

proposed.

One of the most popular adaptive learning rate optimization algorithms is the Adam (Adaptive

Moment estimator) algorithm [15]. The original stochastic gradient descent algorithm has

a fixed learning rate for all parameters. The Adam algorithm, on the other hand, computes

adaptive learning rates for each parameter. The idea is to adapt the learning rate to how the

gradients have changed in the past: the algorithm saves the exponentially decaying average of

past gradients (denoted mt for time t , the gradients themselves are denoted g t) and the past

squared gradients (denoted vt for time t). The exponentially decaying averages are defined

as:

mt =β1mt−1 + (1−β1)g t

vt =β2vt−1 + (1−β2)g 2
t .

(2.7)

Since the averages are initialized as zero vectors, they are biased towards zero. This is espe-

cially prominent during early iterations according to the original paper [15]. Therefore, a bias

correction is needed and is defined as:

m̂t = mt

(1−βt
1)

v̂t = vt

(1−βt
2)

.
(2.8)

If the gradients in the past have changed much, it is reasonable to slow down training a bit to

prevent taking too large steps and hence miss an optimal solution. If the past gradients have

changed slowly, then the step size should be increased. This yields the Adam update rule:

θt = θt−1 −α m̂t√
v̂t +ε

. (2.9)

This is repeated until convergence is reached. The default values of β1 and β2 is usually 0.9 and

0.999, respectively, but can require modifications in different applications.

Regularization

Regularization is a method common in both statistics and machine learning that can be used

to prevent overfitting by shrinking coefficient estimates towards zero [16]. Effectively, this

11

2. Theory

corresponds to reducing the number of trainable parameters. The two most used regularization

methods are the lasso (L1-regularization) and ridge regression (L2-regularization). There also

exist some methods more specific to deep learning, such as dropout. All three methods will be

briefly described in the following paragraphs.

In the case of deep learning, the coefficient estimates are simply the trainable weights and

biases. As was briefly introduced in Section 2.1, overfitting in machine learning usually refers

to when a model performs well on some particular training data partition but fails to capture

the general structure of the data and hence generalizes badly when tested on other partitions.

Regularization is applied to prevent the model from becoming too complex, by reducing the

number of trainable parameters and/or punishing large parameter values. Both the lasso and

ridge regression adds a term to the loss function, which punishes models with a large number of

weights. In the case of the lasso, the loss function is given by [14]:

JL1 = L(y, ŷ)+λΩ(θ) = L(y, ŷ)+λ‖w‖1 = L(y, ŷ)+λ∑
i
|wi |, (2.10)

meaning that the regularization term corresponds to the sum of the absolute values of each

individual weight. Here, JL1 is the total loss function, L(y, ŷ) is the loss computed from the

labels y and the network output ŷ, λ is a fixed parameter, andΩ(θ) is the regularization term

dependent on the trainable parameters, in this case the weightsw. The lasso gives in general

more sparse solutions compared to the non-regularized solution by reducing some weights to

zero. Ridge regression, on the other hand, does too reduce the size of the weights but tends to

keep all the parameters in the model. The loss function in the case of ridge regression is given by

[14]:

JL2 = L(y, ŷ)+λΩ(θ) = L(y, ŷ)+λ‖w‖2
2 = L(y, ŷ)+λ∑

i
w2

i , (2.11)

meaning that the squares of all weights in a layer are added to the loss function. While the lasso

sets parameters to zero, ridge regression never shrinks parameters to zero. Practically, this gives

models that have a smaller variance but a slightly larger bias [16]. The fact that the squared

weights are added to the loss function also punishes large weights, which could stabilize the

training process since large weights can lead to exploding gradients.

Dropout is a different type of regularization method specific to neural networks. The idea is

that for each training batch, a binary mask is randomly sampled and then applied to the input

and hidden layers [14]. Since multiplying the output and input of a neuron with zero practically

removes the neuron from the network, each such randomly sampled binary mask will for each

batch remove different units from the network. The probability of generating a mask value one

at a certain position in the mask is a hyperparameter set before the training phase. The result is

that the model is slightly different in each training step, which has shown to significantly reduce

the risk of overfitting on the training data and giving models that better generalize to testing

data [17].

12

2. Theory

Cross-Validation

An important part of the training process of any statistical model is to evaluate how well the

model performs. Ideally, data collection is simple and a test dataset can be obtained. The perfor-

mance of the model can then be evaluated by predicting the target of the unseen observations

in the test dataset. However, when further data collection is not possible, cross-validation is

commonly used. A simple version of cross-validation is to split the dataset into a training dataset

and a test dataset, and then train the model on the training dataset and evaluate the model on

the test dataset.

Sometimes, for instance if the dataset is small, withholding a proportion of the dataset purely

for evaluation might not be suitable, since the fitted model might generalize poorly due to lack

of training data. In such cases, k-fold cross-validation (k-fold CV) is often utilized. The dataset

is firstly split into k folds. Then, the model is trained k times, each time using k −1 folds as

training data and one fold as the test set. This means, that after k training rounds, each fold has

been used for training k −1 times and as test fold once. The total error of the model is computed

by averaging over the individual cross-validation errors obtained when testing the withheld

test-fold in each iteration.

An alternative approach to cross-validation is Monte Carlo cross-validation (MCCV) [18]. The

approach is similar to k-fold cross-validation, but instead of splitting the data into fixed folds,

the data is at each iteration randomly split into a training and test set. Also here, the total error

of the model is obtained by averaging over the errors obtained in each iteration. An important

difference between MCCV and k-fold CV is that in the latter, all observations are used for training

and testing at some point. In MCCV, it is not guaranteed that all samples will be in the training

or test sets at some time. However, MCCV explores a larger number of possible partitions into

training and test sets, which is not the case in k-fold CV since the splits are fixed.

2.2.4 Convolutional Neural Networks

Convolutional neural networks (CNNs) are networks suitable for data with some known spatial

or temporal structure. Examples of such structures are time-series (one-dimensional temporal

data) or images (two-dimensional spatial data) [14]. One of the main advantages of CNNs is that

they have relatively few trainable parameters compared to fully-connected (dense) networks

and are therefore more computationally efficient. The “convolutional” part of the name stems

from the mathematical operation convolution, which is the key feature of convolutional neural

networks. In Figure 2.3, an example of a simple CNN is shown. In this case, the CNN processes

28×28 pixel images from the MNIST dataset of handwritten images [6] and aims at classifying

an image into one of the classes 0-9. In the upcoming sections, each type of layer will be briefly

described.

13

2. Theory

Figure 2.3: Illustration of a simple convolutional neural network (CNN) processing a single image from
the MNIST dataset of handwritten images [6].

Input Layer

The input layer consists of neurons, fed with the input data. In the case of images, the layer

accepts input in three dimensions: height (H), width (W), and depth (D) where depth is the

number of color channels in the image. For instance, an RGB image has three color channels

(red, green, and blue) and a grayscale image has a single color channel. In the general case,

when the data is fed in batches to the network, the input layer accepts a fourth dimension

corresponding to the batch size. Batch training is used in most applications and means that the

trainable parameters in the network are updated after evaluating the errors from a batch rather

than after a single sample. In Figure 2.3, the dimension of the input layer is 28×28×1 since an

MNIST image has dimensions 28×28, is grayscale, and no batch training is used.

Convolution Layer

In the convolution layer, the mathematical operation convolution is central. Convolution is an

operation applied to two functions, f and g , and results in a function (f ∗g), which describes the

amount of overlap between f and g as f is shifted over g [19]. In the one-dimensional discrete

case, the convolution between f and g is defined as:

(f ∗ g)(t) = ∑
k∈K

f (k)g (t −k). (2.12)

In machine learning contexts, the first component usually corresponds to the input and the

second component to the convolution kernel. The resulting component is sometimes called the

feature map [14].

Practically, the kernel is a tensor with a predefined size. Similar to the input layer, the convolution

kernel has width and height dimensions (W ×H) but also a depth dimension corresponding

to the number of channels. This last dimension is often omitted in notation. The kernel is

repeatedly applied to the input by “sliding” the kernel over the input image, and at each position,

14

2. Theory

the convolution between the kernel and the covered part of the image is computed. The step

size of the sliding operation is called stride. A common value of the stride is one. Unless some

padding is done with the input, some combinations of kernel size and stride may cause the

output image to shrink in its spatial dimensions. Sometimes, this effect it desired since it

downsamples the input data. The depth of the output is not related to the number of input

channels: convolution is performed over all the input dimensions (W , H , and D) so each applied

kernel results in an image with depth one. The total output depth is determined by the number

of kernels used.

In Figure 2.3, four kernels of size 3×3 is used with no padding of the input. This results in a

reduction of width and height of the output of the convolution layer and the four kernels result

in four output channels.

Pooling Layer

The pooling layer is included in a convolutional network to reduce the spatial dimensions of

the data, which results in less trainable parameters and hence a reduced risk of overfitting [20].

A pooling layer also makes the output less sensitive to translations of the input [14]. A pooling

operation is applied to each depth dimension of the input separately and to sections of the

data with predefined sizes. The idea is to replace each such section, or neighborhood, with a

summary of the values in the neighborhood. The most common pooling layer is the max-pooling

layer. In this case, each neighborhood of the input data is in the output represented by the

maximum value of the neighborhood [14]. Another example of a common pooling function is

average pooling, where each neighborhood is represented by its average value.

In Figure 2.3, the kernel size of the max-pooling layer is 2×2 and the stride is 2. This results in

a size reduction of the output (13×13). Since the pooling operation is applied to each depth

dimension separately, the depth of the output is not affected.

Fully Connected Layer

In most convolutional networks, the layer or layers before the output layers are fully connected.

It is not necessary to include such dense layers before the output layers: one could replace

them with convolutional layers or simply omit them, but it is common practice to include them

since it is a simple way of transforming the dimensions of the convolutional layer output to the

required shape of the output. The input to the fully connected layer is flattened and then fed

forward through the layer similar to a simple fully-connected network.

In Figure 2.3, the output of the max-pooling layer is flattened to dimensions 676×1 and then

fed into a fully connected layer. Here, the fully connected layer has 256 neurons, but this is an

arbitrary choice and should be tuned as a hyperparameter. Also, note that not all neurons are

shown in the figure.

15

2. Theory

2.2.5 Recurrent Neural Networks

So far, all networks in this chapter have been on a feed-forward layout, meaning that information

is always transferred forward in the network. However, there also exist networks with recurrent

connections. Such networks are suitable to use with sequential data, including time-series

data, since their structure allows for the re-usage of weights across time-steps [14]. This type

of network is called recurrent neural networks (RNNs). Their usage with sequential data can

be motivated with a simple example. For a feed-forward network to process a time-series, it

would need specific input nodes with different parameters for each time-step of the sequence.

If the sequence is a sentence and text recognition should be performed, the network would

need to learn the rules of the language for each position in the sentence since the weights are

not shared between the nodes that process the different parts of the sentence. In a recurrent

network, however, the weights are shared across the full sequence, and a much smaller number

of trainable parameters is needed. Sharing in this context means that present network output

is fed back into the network and influences future output. This is sometimes referred to as

a recurrent network’s “memory”. Since information is fed back in the network from a later

stage, the network “remembers” old information and lets this information influence the current

output.

Sequential data does not necessarily have to be dependent on time. In machine translation, for

instance, the input is sentences. A sentence is an example of sequential data independent of

time but ordered by for instance some index. Since this thesis deals with time-series data, the

notation will be adapted to time-dependent data but the results generalize to other types of

sequential data as well. We denote past input x(0),x(1), . . . ,x(t−1) and the present input x(t). The

output at time t is denoted y(t).

Due to the feedback connections in a recurrent network, it is not possible to directly train

the network using backpropagation. However, by unfolding the network in time, using the

backpropagation algorithm is possible. An example of a simple RNN is shown in Figure 2.4. The

input xt is fed into a hidden neuron, which also receives feedback in the form of the previous

hidden state ht−1. This network can be unfolded in time to simplify the structure. This is also

shown in Figure 2.4. Here, the state of the hidden neuron is dependent on both the input xt at

time step t and the state ht−1 at time step t −1. With this network structure, the network can

be trained in practically the same way as a normal feed-forward network using some gradient

descent-based algorithm. After unfolding the network it corresponds to a multilayer network

where each time step corresponds to a network layer.

In practice, simple RNNs such as the one in Figure 2.4 are seldom used. The reason for this

is that they suffer from vanishing and exploding gradients, which makes the training process

unstable. Several more complex recurrent networks have been suggested and are widely used

in for instance natural language processing and machine translation. In the upcoming section,

special cases of recurrent networks are presented. Firstly, some theory of bidirectional recurrent

16

2. Theory

networks is given. Such networks have shown impressive results in tasks where the prediction of

the output y(t) of the network is dependent on the whole sequence, such as speech recognition

and bioinformatics [14]. Bidirectional RNNs combine a network that moves forward in time with

a network that moves backward in time, and the result is that the network has access to both

backward and forward information at each time step. Next, two examples of gated RNN cells

called long short-term memory networks (LSTMs) and gated recurrent unit networks (GRUs) are

presented. Both networks are constructed to be more stable during training and to suffer less

from vanishing and exploding gradients.

ht

xt

yt

= h0

x0

y0

h1

x1

y1

h2

x2

y2

. . . ht

xt

yt

Figure 2.4: A simple recurrent neural network (RNN) unfolded in time. The current state ht of the network
depends on both the input xt and the state at time t −1, ht−1. To be able to train the recurrent network
using backpropagation, the network is unfolded in time.

h→
t−2 h→

t−1 h→
t h→

t+1

h←
t+1h←

th←
t−1h←

t−2

xt−2 xt−1 xt xt+1

yt+1ytyt−1yt−2

Input layer

Output layer

Forward layer

Backward layer

Figure 2.5: A simple example of a bidirectional recurrent network. The input xt is fed to the corre-
sponding neuron in both the forward and the backward RNN and thus affects states h→

t and h←
t . The

forward state h→
t is also dependent on information from the past, h→

t−1, and the backward state h←
t is

also dependent on future information, h←
t+1. The output is thus dependent on the input of the current

time step, but also information from past and future states.

Bidirectional Recurrent Networks

As have been previously mentioned, bidirectional recurrent networks use two recurrent net-

works: one transversing the data forward in time (from the beginning of the sequence) and

17

2. Theory

one transversing the data backward in time (from the end of the sequence). In Figure 2.5, a

simple example of a bidirectional RNN is shown. As can be seen, the input xt is fed to the

corresponding neuron in both the forward and the backward RNN and thus affects states h→
t

and h←
t . The forward state h→

t is also dependent on information from the past, h→
t−1, and the

backward stateh←
t is also dependent on future information,h←

t+1. The output is thus dependent

on the input of the current time step, but also information from past and future states.

The idea of bidirectional RNNs can easily be generalized to higher dimensions. In the case of

images, a bidirectional network would need four different recurrent networks, each processing

the data in one of the four possible directions: up, down, left, and right [14].

Long-Short Term Memory Network

The most widely used RNN cell in sequence modeling is the LSTM cell. A schematic illustration

of an LSTM cell can be found in Figure 2.6. One cell corresponds to the unit shown in the figure,

and there are usually several such cells connected in a row, similar to the hidden units in the

previous recurrent networks shown. It is also possible to stack such LSTM layers, and thus

create a multilayered LSTM network. The gray box represents the cell, the blue parts are neural

networks, and the orange ellipses represent pointwise operations (addition or multiplication).

Each LSTM cell has three important components. The first component is the cell state, which in

the figure is represented by the upper horizontal line. The cell state is passed from the previous

cell to the current cell and further on to the next cell. As can be seen in the figure, information

from the cell can be added and removed to the cell state. This change of the cell state is regulated

by the so-called gates. Gates are, as the name suggests, units that can let information pass but

not necessarily do. The gates correspond to the blue sigmoid components in the figure and are

hence neural networks. Sigmoid units output a value on the interval [0,1], and this number

determines how much information that will be passed through the gate. The leftmost gate

in Figure 2.6 is called the forget gate and it’s output is denoted ft . The forget gate considers

the previous hidden state ht−1 and the current input xt and determines how much of the old

information of the cell state ct−1 to keep. The hidden state is, despite its name, formally the

output of the cell. This state is passed between units in the same layer, but also to the layer

above. In Figure 2.6, this is illustrated using two ht outputs: one fed to the next cell, one fed

to the next layer. This also means, that if the previous layer was also an LSTM layer, then the

input xt is the output ht of the previous layer. Formally, the output ft of the forget gate is given

by:

ft =σ(W f · [ht−1, xt]+b f), (2.13)

where W f is the trainable weights of the forget gate and b f is the trainable bias. This factor is

then multiplied with ct−1, and the result is either that ct−1 is kept as it is (then ft equals one)

or that ct−1 is reduced. The next gate in Figure 2.6 is the input gate. The input gate considers

ht−1 and xt and determines the importance of the input. If the input is considered important, it

18

2. Theory

should influence the new cell state. This is once again done using a sigmoid function:

it =σ(Wi · [ht−1, xt]+bi), (2.14)

where Wi is trainable weights and bi trainable bias of the input gate. In parallel to the input gate,

the tanh layer creates a vector c̃t of new proposed values to the cell state. The values are given

by:

c̃t = tanh(Wc · [ht−1, xt]+bc), (2.15)

where Wc is the trainable weights of the tanh layer and bc is the trainable bias. Those values are

multiplied with the input state it , and the result is added to the cell state. The total cell state is

thus given by:

ct = ft · ct−1 + it · c̃t . (2.16)

The last gate is the output gate. The output gate decides the output of the cell, ht . The output is

a filtered version of the cell state ct . The filtering is made by a sigmoid layer, which uses ht−1

and xt to determine which information in ct that should be outputted. The cell state is pushed

through a tanh function and then multiplied with the filter. The resulting output is ht . Formally,

this corresponds to:

ht =σ(Wo · [ht−1, xt]+bo) · tanh(ct), (2.17)

where Wo is the trainable weights of the output gate and bo is the trainable bias.

The intuition behind LSTMs success in many tasks is the fact that they can dynamically vary the

length of its memory (hence the name, long-short term memory) [14]. Hence, some information

is accumulated over large periods, and some information that is not considered important is

forgotten.

ct−1 ct

ht−1 ht

ht

xt

σ σ tanh σ

×

×

+

×

tanh

ft c̃t
it ot

ct−1

ht−1

ct

ht

ht

Figure 2.6: Illustration of a single long-short term memory (LSTM) unit. The three gates are the forget
gate, which determines how much of the old information from the old cell state to keep, the input gate,
which determines how much of the new information to include in the new cell state, and the output gate,
which determines the output of the gated cell. The figure is based on a similar figure from [21].

19

2. Theory

Gated Recurrent Unit

The GRU cell is a newer type of recurrent cell and has a slightly simpler structure compared to

the LSTM cell. The cell lacks a cell state, but consists of a hidden state and two gates: the reset

and the update gates. An illustration of a GRU cell can be seen in Figure 2.7. The contribution to

the hidden state from the reset gate is formally given by:

rt =σ(Wr · [ht−1, xt]+br), (2.18)

where Wr and br are the trainable weights and bias of the reset gate. The other gate, the update

gate, is similar to the reset gate but as will be seen, the output of the gate is used differently. The

output of the update gate is given by:

zt =σ(Wz · [ht−1, xt]+bz), (2.19)

where Wr and br are the trainable weights and bias of the update gate. The new hidden state of

the cell is given by:

ht = (1− zt) ·ht−1 + zt h̃t , (2.20)

where h̃t is the proposed new hidden state given by:

h̃t = tanh(W · [rt ·ht−1, xt]). (2.21)

ht−1 ht

ht

xt

σ σ tanh

×
h̃t

+

−1

zt

×

×
rt

Figure 2.7: Illustration of a single gated recurrent unit (GRU). The cell has a hidden state and two gates:
the reset and the update gates. The reset gate computes a factor determining how much of the old hidden
state to keep. The update gate computes a factor zt that determines the proportion of the old hidden
state and the proposed hidden state in the output. The figure is based on a similar image from [21].

The output of the reset gate, rt , is used to determine how much of the old hidden state to keep

in the proposed new hidden state h̃t . If rt equals zero, then the reset gate opts for “resetting”

the hidden state to the proposed state h̃t . However, it is the update gate that determines the

proportion of the old hidden state and the proposed hidden state in the output. The output

20

2. Theory

of the update gate, zt , corresponds to the proportion of the proposed hidden state h̃t to be let

through and (1−zt) corresponds to the proportion of the old hidden state to be let through. This

is summarized in Equation 2.20.

2.3 Generative Adversarial Networks

Generative Adversarial Networks (GANs) were first proposed in a 2014 article by Goodfellow

et. al. [22] and has gained a tremendous research interest during the last few years. GANs are

examples of generative models: models that take training data following some distribution

pdata, and learns to estimate samples from this distribution [23]. GANs consists of two separate

neural networks: the generator and the discriminator, trained using conflicting objectives. The

generator produces samples, intending to make them as similar as possible to the training data.

The discriminator is fed either a real or a fake sample and then estimates the probability of the

sample being real rather than produced by the generator.

Formally, both the generator and the discriminator are functions differentiable with respect to

their inputs and to their parameters [23]. They are commonly denoted G and D , respectively. The

function D takes x (the observed variables) as input and its parameters are usually denoted θ(D).

The generator G takes z (the latent variables) as input and its parameters are usually denoted

θ(G). The objective of the discriminator, J (D)
(
θ(D),θ(G)

)
, is dependent on the parameters of both

the discriminator and the generator, but it can only access its own parameters θ(D). The same

goes for the generator; its objective function J (G)
(
θ(D),θ(G)

)
is dependent not only on its own

parameters, but also the discriminator’s parameters, but it can only control its own parameters

θ(G). Both the generator and the discriminator aims at minimizing their own objective functions,

but since they cannot control all parameters, it is commonly described as a game rather than

an optimization problem. The aim of the whole training process is to reach a Nash equilibrium

of the game. A Nash equilibrium can be described by a tuple
(
θ(D),θ(G)

)
where θ(D) locally

minimizes J (D) and θ(G) locally minimizes J (G).

2.3.1 The Training Objective and the Loss Function

As mentioned, the two networks are simultaneously trained using conflicting objectives. There

exist several different versions of objectives for GAN training, but in all versions, it is only the

objective of the generator, J (G), that differs. In the following sections, the different objectives

associated with the discriminator and generator will be presented. The choice of loss function

for the generator results in different games played by the generator and discriminator.

21

2. Theory

The Discriminator Objective

The cost function used for training the discriminator is [23]:

J (D) (θ(D),θ(G))=−1

2
Ex∼pdata

[
logD(x)

]− 1

2
Ez∼pz

[
log(1−D(G(z)))

]
, (2.22)

where pz is the prior distribution of z, commonly U(0,1) or N (0,1). We may recall the definition

of the cross-entropy loss function defined in Equation 2.6 in Section 2.2.3. The difference is

that Equation 2.6 is written for individual observations, while Equation 2.22 is written in terms

of expected values over a number of observations. Also, here the classifier is trained on two

different sets of data: one set consisting of real samples, labelled 1, and one set consisting of

fake samples from the generator labelled 0. Hence, the objective defined in Equation 2.22 is

the binary cross-entropy loss. In simple terms, minimizing this cost function is equivalent to

maximizing the probability that D assigns 1s to real samples, and 0s to fake samples.

The Minimax Generator Objective

A simple version of the game played by the generator and discriminator is the zero-sum game.

In this game, the total cost of all players equals zero at all times. In the context of GANs, this

corresponds to [22]:

J (G) =−J (D). (2.23)

The total training objective is usually denoted V (D,G). Here, V stands for value function. Since

the cost functions of G and D are the same except for the sign, the total objective can simply

be taken to be J (D)
(
θ(D),θ(G)

)
. Since the function should be maximized with respect to the

discriminator parameters θ(D) and minimized with respect to the generator parameters θ(G),

the objective is maximized in an inner loop and minimized in an outer. Therefore, the game is

sometimes referred to as a minimax game:

min
G

max
D

V (D,G) = min
G

max
D

(−J (D) (θ(D),θ(G)))=
min

G
max

D

(
1

2
Ex∼pdata

[
logD(x)

]+ 1

2
Ez∼pz

[
log(1−D(G(z)))

])
.

(2.24)

The cost function in Equation 2.24 was presented in the original GAN article in 2014 and has some

neat properties for theoretical analysis. It has however turned out to perform badly in practical

applications [23]. This is because the generator maximizes the same binary-cross entropy as

the discriminator minimizes. For the generator, this means that when the discriminator has

managed to assign correct labels to the real images with high probability, the generator receives

less cost [23]. Hence, the gradients of the generator vanish. Since the discriminator often assigns

correct labels to real images with high probability in the beginning of the training process when

the generator still outputs nonsense, using this cost function may prevent the generator from

learning anything at all.

22

2. Theory

The Heuristic Non-Saturating Generator Objective

An alternative loss function for the generator, commonly referred to as the heuristic non-

saturating objective, is defined as:

J (G) (θ(D),θ(G))=−1

2
Ez∼pz

[
logD(G(z))

]
. (2.25)

Two important things should be noted. Firstly, the generator cost does only consist of one term.

This is based on the idea that the first term in Equation 2.24 does not contribute to the gradients

of the generator. Secondly, the labels are flipped. Instead of minimizing the probability of

the discriminator being correct, the generator is now trained by maximizing the probability of

the discriminator being wrong. Note that if this loss function is used, the game is no longer a

zero-sum game and cannot be described by a single value function.

2.3.2 Conditional Generative Adversarial Networks

In an ordinary GAN, there is no way of controlling what data is generated by the model, for

instance with respect to class labels. In 2014, an extension to the GAN framework called condi-

tional generative adversarial networks (cGANS) was proposed [24]. The idea is to provide both

the generator and the discriminator with additional information, for instance class labels, to

direct which modes of the data that is generated.

In most applications, both the generator and the discriminator is provided with the additional

information y. y is not necessarily class labels but could be any information unique for the data

class. Other studies have provided numerical vectors describing the surrounding environment

in the case of sensor modeling [25], facial attributes in the case of facial image generation [26],

and scene attributes for outdoor scene generation [27], just to mention a few examples.

In this project, the additionally provided information will be class labels. We let y denote

the corresponding class labels to the input x. y is provided to both the generator and the

discriminator as a one-hot-encoded matrix, where each column corresponds to a class and

each row to an observation. Thus, the row sum should equal to one since each observation

only belongs to one class. There exist several methods to feed the conditional input to the

networks in a GAN. In this thesis, methods relevant to time-series data are of interest. A common

method in the context of sequential data is to concatenate the input to the network with the

conditional input at each time step. With this approach, we can ensure that the network cannot

forget the conditional input. An example of a conditional recurrent GAN can be seen in Figure

2.8. Here, LSTM units are used in both the generator and discriminator. At each time step, the

input is concatenated with the conditional information. For each time step, the discriminator

determines if the sample time step is real or fake, and then performs a majority vote to determine

if the full sequence is real or fake.

23

2. Theory

(a) Generator (b) Discriminator

Figure 2.8: An example of a conditional recurrent GAN for time-series generation. This network consists
of LSTM units in both generator and discriminator to process the input time-series. At each time step,
the network is conditioned with additional information to prevent the network from forgetting the
conditional information. The discriminator determines at each time step if the inputted sequence is real
or fake, and then bases the total judgment by a majority vote over the full sequence. Courtesy of [5].

2.3.3 Improving Training Stability

Ever since the introduction of generative adversarial networks in 2014, it has been known that the

training process of GANs can be difficult to succeed with. Except for problems common among

all neural network training processes, such as vanishing and exploding gradients, there exist

several issues with GANs related to their ability (or disability) of generating data that captures

the true diversity of the training data. Two such examples are mode collapse and boundary

distortion, which were introduced in Section 1.3. Since gradient descent-based algorithms aim

at minimizing a loss function and not directly find the Nash equilibrium, a common problem

is that the network fails to converge [28]. In the following sections, two common methods for

stabilizing the training progress and encourage training convergence are presented.

Minibatch Discrimination

A common problem when training GANs is that the generator collapses into always generating

very similar or identical samples. This is a form of severe mode collapse: the model is unable

to generate anything but a specific mode. The problem is that the discriminator handles each

sample in a batch independently, and may therefore have a gradient that points in the same

direction for many iterations [28]. Since the discriminator is unable to tell that the samples are

nearly identical, the gradients are independently determined and since the loss of the generator

is indirectly based on the gradients of the discriminator loss, no feedback is given to the generator

that it should produce more diverse samples. The idea behind minibatch discrimination is to let

the discriminator compare the similarity between samples within a batch and assign each batch

a similarity score. The score is appended to the batch and can be used to guide the discriminator

24

2. Theory

in whether or not the samples in the batch are real or fake. If the samples are too similar, the

similarity score signals that the batch is fake, and to be able to keep improving, the generator is

forced to produce more diverse samples.

Formally, we may denote an input to the discriminator xi . In some intermediate layer in

the discriminator, the feature vector of this input can be denoted f (xi) ∈ RA , where A is the

dimension of the feature vector [28]. To perform minibatch discrimination, this feature vector is

multiplied with a tensor T ∈RA×B×C . Both B and C can be considered to be hyperparameters:

as we will see, B corresponds to the length of the similarity vector and C is sometimes referred to

as the hidden dimension. All elements in the tensor should be trainable parameters. The result

of the multiplication is a matrix Mi ∈RB×C for each of the feature vectors. Now, the L1-distance

between rows of different matrices Mi is computed, and then a negative exponential is applied.

This means that we obtain a real number: cb(xi ,x j) = exp
(−‖Mi ,b −M j ,b)‖L1

) ∈ R, where b

denotes that this is one of B such real numbers (one per similarity element in the similarity

vector). The similiary score vector for sample xi is then obtained by summing over j [28]:

o(xi)b =∑
j

cb(xi ,x j). (2.26)

The similarity vector is then given by:

o(xi) = [o(xi)1,o(xi)2, . . . ,o(xi)B] . (2.27)

This vector is then appended to the flattened input data and can then be used by the discrimina-

tor to determine the similarity between samples in a batch.

Excluding Max-Pooling Layers in CNNs

In convolutional neural networks, pooling layers are frequently used to downscale the input

data. In some studies, for instance [7, 8], pooling layers have been used to downsample the data

between the convolutional layers. Another study, however, suggests that downsampling in GANs

should be done using strided convolution layers since this allows the generator or discriminator

to learn their downsampling on their own [29]. There is no consensus in the literature on which

of those approaches that should be used, but it is believed that excluding pooling layers in

GANs can lead to a more stable training process. Therefore, it is often recommended to perform

downsampling using strided convolution instead of max-pooling.

2.4 Evaluation of Generative Models

To this day, there is no consensus on how data synthesized by generative models should be

evaluated [7]. Still, the most common method to evaluate the success of GANs is to use a human

annotator to judge if the generated samples are sufficiently realistic [4]. This is feasible in

the case of images, but not entirely unquestionable: the motivation between annotators may

25

2. Theory

vary and the quality between the judgments may differ. For instance, it has been shown that

annotators given feedback about their mistakes tend to classify a larger number of images as

fake [28]. Other methods to evaluate synthetic images exist, such as computing the so-called

inception score, where a neural network called Inception [30] is used to classify the images. The

predicted class probabilities of an observation are summarized into a score, which can be used

as a measure of quality: a high-quality image should be classified with high probability, and this

is reflected in the inception score. For non-image data, the task is more difficult. It has been

proposed that a combination of different evaluation metrics should be used to evaluate the

synthesized data [4].

In the following sections, two evaluation metrics that can be used to evaluate synthetic data

from a GAN are presented. The metrics are two-samples tests: tests used to determine if two

samples are drawn from the same statistical distribution. The evaluation metrics presented here

are furthermore differentiable, meaning that they in addition to two-sample tests can be used as

loss functions to train generative models.

2.4.1 Maximum Mean Discrepancy

Maximum Mean Discrepancy (MMD) is an integral probability metric proposed in a 2012 article

[31]. The metric has proven to be well-suited to evaluate the quality of generated GAN samples

in high-dimensional data [32]. The method can be used to test whether samples from two

probability distributions, p and q , are drawn from the same distribution. In the case of MMD,

this is done by finding a smooth function on which the observations from p and q differ so that

the differences in the probability mass functions can be visualized [31]. The test statistic is the

difference between the mean values of the function on the two samples: if this difference is large,

the samples are likely drawn from different distributions and when it is small, they are more

likely drawn from the same distribution.

Formally, maximum mean discrepancy is defined as follows [31]: let (X ,d) be a metric space

and let p and q be two Borel probability measures defined on X . Furthermore, let F be a class

of functions such that f : X →R. MMD is then defined as:

MMD[F , p, q] = sup
f ∈F

(
Ex f (x)−Ey f (y)

)
. (2.28)

A biased estimate of MMD is obtained by replacing the expectations in Equation 2.28 with the

population means computed from two samples X and Y :

MMDb[F , p, q] = sup
f ∈F

(
1

m

m∑
i=1

f (xi)− 1

n

n∑
i=1

f (yi)

)
. (2.29)

The choice of the function class F is the unit ball in a reproducing kernel Hilbert space (RKHS)

H . The theoretical details will not be covered in this section, but the interested reader is

recommended to read the full theoretical motivation behind the choice of function class in

26

2. Theory

the original paper [31]. However, it should be noted that the class do have some interesting

properties that can intuitively motivate the choice as a function class for the MMD metrics. Let

H be a Hilbert space of functions mapping a non-empty set X to R. An interesting property of

an RKHS is that if two functions, f ∈H and g ∈H , are close in the norm of H , then f (x) and

g (x) are close for all x ∈X [33]. Using for instance a Gaussian kernel, it happens that MMD is

zero if and only if the distributions are identical.

For practical purposes, it is only necessary to know how to compute the test statistic. If x and

x ′ are independent random variables with distribution p, y and y ′ are independent random

variables with distribution q , and k(·, ·) a continuous kernel, the squared population MMD is

defined as [31]:

MMD2[F , p, q] = Ex,x ′k(x, x ′)−2Ex,y k(x, y)+Ey,y ′k(y, y ′). (2.30)

The corresponding unbiased empirical estimate, which can be computed from two samples X

and Y , is defined as:

MMD2
u[F , X ,Y] = 1

m(m −1)

m∑
i=1

m∑
j 6=i

k(xi , x j)+ 1

n(n −1)

n∑
i=1

∑
j 6=i

k(yi , y j)−

2

mn

m∑
i=1

n∑
j=1

k(xi , y j).

(2.31)

A simple choice of kernel is the Gaussian radial basis function (RBF) kernel. The kernel is a

popular choice in various kernelized learning algorithms and defined as follows:

k(x, x ′) = e−
1

2σ2 ‖x−x ′‖2
2 , (2.32)

where σ is the standard deviation of the kernel. There exists various strategies to select σ. The

most common choice in practical applications is to let σ equal the median pairwise distance

between the joint samples X and Y [32].

Since MMD is estimated using a finite sample with some variance, the estimated value is not

necessarily zero although the samples come from the same distribution. Furthermore, the

estimate is not necessarily non-negative, although it estimates a squared metric. The reason for

this is that, as can be seen in Equation 2.31, the terms where i = j are removed. According to the

original MMD paper, the reason for removing those terms is to remove spurious correlations

between observations [31]. Furthermore, the authors state that this removal is necessary to

make the estimator unbiased. Practically, this means that slightly negative values of the MMD

estimate can be obtained.

27

2. Theory

2.4.2 Energy Distance

Energy statistics, commonly called E -statistics, is a class of discrepancy measures based on the

idea of Newton’s gravitational potential energy between two heavenly bodies [34]. Statistical

observations should have zero potential energy only if they originate from the same underlying

distribution. The distance measure has been successful in testing high-dimensional multivari-

ate samples for equal distribution. There exist several similar measures based on the idea of

potential energy, but the most popular version was first introduced by G. J. Székely [35]. Let X

and X ′ be two independent random vectors with the same cumulative distribution (cmf) P and

Y and Y ′ two independent random vectors with the same cmf Q. The squared energy distance

between the random vectors is then defined as [36]:

D2(P,Q) = 2E‖X −Y ‖2 −E‖X −X ′‖2 −E‖Y −Y ′‖2 ≥ 0, (2.33)

where equality holds only if X and Y are identically distributed. This inequality, the basic energy

inequality, was formally proved in a technical report by G. J. Székely [37], and the details are

omitted here. The so-called E -statistics is computed as follows:

En,m(X ,Y) = 2A−B −C , (2.34)

where A, B , and C are defined as:

A = 1

nm

n∑
i=1

m∑
j=1

‖xi − y j‖2

B = 1

n2

n∑
i=1

n∑
j=1

‖xi −x j‖2

C = 1

m2

m∑
i=1

m∑
j=1

‖yi − y j‖2.

(2.35)

Also for the E -statistic, it holds that En,m(X ,Y) tends to zero if and only if the samples come

from equal distributions.

Similar to maximum mean discrepancy, the energy distance measure is an integral probability

metric. Although developed completely independent of each other, the definitions of MMD and

energy distance are strikingly similar. For several years, it remained a question whether or not

energy distance could be seen as a kernel statistics with a L2 kernel instead of a Gaussian RBF

kernel. In 2012, a study showed that both the energy distance and MMD are members of a much

broader family of kernel-based metrics [38].

28

3 | Methodology

In the following chapter, the methods used to preprocess the data, construct the models, evaluate

the synthetic data, and perform the experiments on the synthetic data are presented. In Section

3.1, an overview of how the project has been conducted is given. In Section 3.2, the datasets

used to train the generative adversarial networks in this project are described. In Section 3.3,

the architectures of all networks constructed in this project are described. This includes both

the GAN architectures and the architecture of the recurrent neural network used to classify the

multivariate radar time-series. In Section 3.4, the computing platform on which the experiments

were run is described as well as some of the external libraries used to build the network and

training scripts. Furthermore, the settings used to train the described network architectures are

given. Finally, in Section 3.5, the experiments performed on the synthetic multivariate radar

time-series data are described.

3.1 Overview

The project was conducted in several steps, to ultimately reach the point where synthetic

multivariate time-series data could be evaluated in a classification setting. As a pre-experiment,

two different network architectures were developed and trained to generate univariate sinusoidal

time-series. Such a simple dataset is interesting to consider for several reasons. Firstly, the

networks should easily learn the distribution of such simple data. Therefore this choice of dataset

is motivated by the possibility of gaining some intuition for network architectures suitable for

time-series data. Secondly, it is easy to visually confirm if the networks manage to generate

realistic samples, and if the result of this visual inspection of the samples is in agreement with

the result of the two discrepancy metrics to be evaluated: maximum mean discrepancy (MMD)

and energy distance (ED). Thirdly, several other studies [5, 7, 8] have trained GANs to generate

sinusoidal waves, which allows for a comparison of architectures and results.

The main part of this project consisted of generating synthetic multivariate time-series radar

data and evaluate the quality of this synthetic data. This work included finding suitable GAN

architectures for the multivariate time-series data, training the models, monitoring the discrep-

ancy metrics during training, and performing several experiments to in-depth examine some

aspects of time-series augmentation using synthetic samples. At this stage, when the samples

29

3. Methodology

could not be visually evaluated directly, the understanding of the discrepancy metrics from the

pre-experiment phase was indeed useful.

3.2 Description and Preprocessing of Datasets

In the following sections, the datasets will be presented. In the case of the sinusoidal dataset, the

relevant parameters needed for recreating such a simulated dataset are given and in the case of

the multivariate radar time-series dataset, the preprocessing of the dataset is described.

3.2.1 Sinusoidal Time-Series

The dataset was generated by randomly selecting parameters for amplitude (a), period time (T),

and phase shift (ϕ). The samples were generated using the following equation:

y = a sin

(
2π

T
x+ϕ

)
. (3.1)

Note that the time steps x is a vector and so is the resulting vector y. The amplitude a was

uniformly selected from the interval [0.1,0.9], the period time T from the interval [2,8], and

the phase shift ϕ from the interval [−π,π]. The sampling frequency was set to 4 samples per

second and the sampling interval 10 seconds, yielding generated sequences of in total 40 time

steps.

The generated training dataset consists of 10,000 samples and the test dataset used for evaluation

consists of 3,000 samples.

In Figure 3.1, some examples of generated sinusoidal waves can be found. As can be seen, due

to the relatively low sampling frequency, some waves appear deformed. For a generative model,

this deformation should not pose any problems since the model (ideally) should be able to

reproduce any distribution. For evaluation purposes, however, smaller period times than T = 2

was not included in any of the datasets since it can be difficult to distinguish the periodical

properties of such sinusoidal waves due to the low sampling frequency.

3.2.2 Radar Tracker Time-Series

The radar tracker dataset was provided by Saab AB and is a multivariate time-series dataset. All

observations are recorded using the same type of radar system, but not necessarily recorded at

the same location and time. The time-series are of varied length, ranging from about 1 to 600

time steps. The raw dataset is heavily unbalanced, containing a much larger number of bird

tracks compared to UAV tracks.

Each multivariate time-series correspond to a target tracked by the radar. Each such target has

been classified as either “bird” or “UAV”. Each sample consists of about 20 numerical features,

describing the movement of the tracked object. Examples of features present in the dataset

30

3. Methodology

0.5

0.0

0.5
Am

pl
itu

de

0 2 4 6 8 10
Time (s)

0.5

0.0

0.5

Am
pl

itu
de

0 2 4 6 8 10
Time (s)

Figure 3.1: Examples of observations from the simulated sinusoidal time-series dataset used as training
data for two different GAN architectures. The sinusoidal waves were simulated by randomly selecting
amplitudes from the interval [0.1,0.9], period times from the interval [2,8], and phase shifts from the
interval [−π,π]. The sampling frequency was set to 4 samples per second and the sampling interval was
10 seconds, meaning that each generated sequence was 40 time steps in length.

are three-dimensional velocity, radar cross-section (RCS), and different maneuver parameters.

In the original dataset, fixed-wing (FW) UAVs and rotary wing (RW) UAVs are separated. In a

previous thesis, aiming to perform classification of bird and UAV tracks using recurrent neural

networks, no improvements in accuracy was observed when treating those types of UAVs as

separate classes [3]. Therefore, the FW and RW samples were treated as one class in the previous

thesis. Although the FW samples did not seem to affect the classification accuracy in the previous

thesis, it cannot be ruled out that the performance of the trained GAN would be affected by the

fact that different types of UAVs with slightly different properties are treated as a single class.

Furthermore, the number of FW samples in the raw dataset is small compared to the number

of RW samples. For this reason, the decision was made to exclude the FW samples from the

dataset, resulting in a dataset with two classes.

The preprocessing of the dataset included removing time-series shorter than 20 time steps and

sequences recorded at a too large distance. A common problem when training neural networks

on time-series is that the sequences preferably should be of equal length. The reason for this is

that batch training, used in most applications, requires all samples in each batch to be of equal

length. For many real-world datasets, the sequence lengths vary. A solution to this is to pad

the sequences with for instance zeros so they become of equal length. Since the length of the

remaining time-series at this point ranged from 20 time steps to about 600 time steps, with a

median of 43 time steps for birds and 87 time steps for UAVs, padding the sequences to match

the length of the longest sequence would mean that most sequences would be heavily padded.

Instead, the tracks were split into shorter sequences and treated as independent samples. For

the bird tracks, only a single such subtrack was extracted from each raw time-series since there

was a surplus of bird tracks. For the UAV tracks, however, as many subtracks as possible were

31

3. Methodology

extracted from each track. The length of those subtracks was set to 20 time steps. The reason for

keeping the sequences short is that most of the UAV samples were recorded to tune the signal

processing system in the radar, and hence the UAVs are flown in similar patterns in the recorded

data. To avoid overtraining the networks on the flight patterns, shorter sequences are preferable,

and hence the length 20 time steps was selected. After this preprocessing step, 7,177 bird tracks

and 3,177 UAV tracks remained and were available as training data for the models.

When a balanced dataset was needed, a random subset of the bird samples was selected to

match the number of UAV samples in the dataset.

3.3 Neural Network Architectures

In the following sections, the different neural network architectures used in this project are pre-

sented. The architectures include the GAN architectures used to generate both sinusoidal data

and tracker data and the architecture of the RNN classifier used to perform binary classification

of birds and UAVs.

3.3.1 Generation of Sinusoidal Time-Series

To generate sinusoidal time-series, two different architectures were constructed. The first one

is similar to an architecture used in a previous study [7] and has a generator consisting of a

bidirectional LSTM network and a discriminator consisting of a convolutional network. This

architecture will be referred to as the s-BiLSTM-CNN GAN (s for “sine”) throughout this thesis.

Both the generator and the discriminator have a fully-connected layer as the last layer. In

the generator, the output of the last layer is activated by a tanh function, meaning that the

output is constrained at [−1,1]. This activation is used since the amplitudes of the sinusoidal

waves in the training data are constrained at the same interval. In the discriminator, a sigmoid

activation function is applied to the output of the last layer since the network should output the

probability of an input sample being real. Since the exclusion of a max-pooling layer is said to

improve training stability [29], strided convolution is used to downsample the time-series in the

discriminator. Furthermore, LeakyReLU is included instead of ordinary ReLU. The difference

is that while ReLU is non-zero if and only if the input is non-negative, LeakyReLU is non-zero

even for negative input. The idea is that LeakyReLU should allow a small, negative gradient. The

proportion of the gradient allowed is called slope and is set as a hyperparameter. A minibatch

discrimination layer is also included in the discriminator to encourage the generator to generate

more diverse samples. Lastly, a dropout layer is included in the discriminator to avoid overfitting.

The details of the s-BiLSTM-CNN GAN architecture can be found in Table 3.1.

The second architecture is based on an architecture used in previous work [5] and consists of an

LSTM generator and an LSTM discriminator. This architecture will be referred to as the s-LSTM

GAN architecture. In this case, the discriminator does not perform downsampling as in the

s-BiLSMT-CNN GAN case, but instead the output of the LSTM layer is a tensor describing the

32

3. Methodology

probability of each time step being real. The decision for the total sequence is determined by

a majority vote, similar to the case shown in Figure 2.8. Also in this architecture, the last layer

of both the generator and the discriminator is fully-connected. In the generator, the output of

the fully-connected layer is activated with a tanh activation function. In the discriminator, the

output is fed through a sigmoid activation function. A detailed description of the s-LSTM GAN

architecture can be found in Table 3.2.

Table 3.1: The architecture of the s-BiLSTM-CNN GAN used to generate sinusoidal waves. The generator
consists of a bidirectional LSTM network with two layers and 50 hidden units. The output of the LSTM
layer is fed into a fully-connected layer with a tanh activation function since the amplitude of the sine
waves should be constrained between [−1,1]. The discriminator consists of one convolutional layer with
LeakyReLU and dropout, and of a fully-connected layer with a sigmoid activation.

Layer Properties Output size

Generator
Input - 50×40
BiLSTM Bidirectional, 50 hidden units, 50×40×100

2 layers
Fully connected Tanh activation 50×40
Discriminator
Input - 50×40
Convolutional 10 kernels, kernel size 4, 50×10×19

stride 2
LeakyReLU Slope parameter 0.2 50×10×19
Flatten - 50×190
Minibatch discrimination 16 hidden nodes, 3 outputs 50×193
Fully connected No activation 50×1
Dropout Probability 0.2 50×1
Sigmoid - 50×1

Table 3.2: The architecture of the s-LSTM GAN used to generate sinusoidal waves. The generator consists
of an LSTM network with one layer and 100 hidden units. The last layer is a fully-connected layer with
a tanh activation function since the output should be constrained between [−1,1]. The discriminator
is identical, but with a sigmoid activation function in the final fully connected layer and an averaging
operation is performed over the full sequence to determine the total probability of the sequence being
real.

Layer Properties Output size

Generator
Input - 50×40
LSTM 100 hidden units, 1 layer 50×40×100
Fully connected Tanh activation 50×40
Discriminator
Input - 50×40
LSTM 100 hidden units, 1 layer 50×40×100
Fully connected Sigmoid activation 50×40
Averaging - 50×1

33

3. Methodology

3.3.2 Generation of Radar Tracker Data

Due to the more complex structure of the multivariate radar time-series dataset, more complex

architectures were needed compared to the case of the sinusoidal waves. However, it was

desirable to keep the architectures as similar as possible to the architectures already presented,

since vastly different architectures might show different convergence patterns, and hence the

insights gained by studying the generation of sinusoidal waves might not be applicable.

Table 3.3: The architecture of the conditional t-BiLSTM-CNN GAN used to generate multivariate tracker
time-series. The generator consists of a bidirectional LSTM network with two layers and 150 hidden units.
The output of the LSTM layer is fed into a fully-connected layer without activation. The discriminator
consists of four convolutional layers with LeakyReLU and dropout, and of a fully-connected layer with a
sigmoid activation.

Layer Properties Output size

Generator
Input - 50×20
BiLSTM Bidirectional, 150 hidden units, 50×20×300

2 layers
Fully connected No activation 50×20
Discriminator
Input - 50×20
Convolutional 3 kernels, kernel size 5, 50×3×16

stride 1
LeakyReLU Slope parameter 0.2 50×3×16
Convolutional 5 kernels, kernel size 3, 50×5×14

stride 1
LeakyReLU Slope parameter 0.2 50×5×14
Convolutional 8 kernels, kernel size 2, 50×8×7

stride 2
LeakyReLU Slope parameter 0.2 50×8×7
Convolutional 12 kernels, kernel size 3, 50×12×3

stride 2
LeakyReLU Slope parameter 0.2 50×12×3
Flatten - 50×36
Minibatch discrimination 16 hidden nodes, 5 outputs 50×39
Fully connected No activation 50×1
Dropout Probability 0.2 50×1
Sigmoid - 50×1

The first architecture used to generate multivariate radar time-series data is based on the

s-BiLSTM-CNN architecture presented in Table 3.1, but with some modifications. It will be

referred to as the t-BiLSTM-CNN GAN (t for “tracker”) to avoid confusion with the corresponding

sinusoidal architecture. Firstly, a deeper convolutional network is needed in the discriminator

to handle a more complex input. Four convolutional layers were found suitable, and the two last

convolutional layers perform strided convolution to downsample the time-series. LeakyReLU is

used in-between the convolutional layers in the discriminator and a minibatch discrimination

34

3. Methodology

layer is included before the fully-connected layer. The generator consists of a bidirectional

LSTM network with two layers and 150 hidden units. The output of the discriminator is still

activated using a sigmoid function, but in the generator, tanh activation cannot be used since

the synthetic output should not be constrained between [−1,1]. Therefore, no activation is

applied to the output. Furthermore, both the generator and the discriminator are conditioned

on the class labels. Details on this model, the conditional t-BiLSTM-CNN GAN, can be found in

Table 3.3.

The LSTM-based architecture can be found in Table 3.4 and is similar to the architecture used to

generate synthetic sinusoidal waves. It will be referred to as the t-LSTM GAN architecture. In

both the generator and discriminator, two LSTM layers are used instead of a single one as in the

case of the sinusoidal waves. Furthermore, 350 hidden units are used in the generator and 150

in the discriminator, compared to 100 in both the generator and discriminator in the sinusoidal

case. Also in this network, both the generator and the discriminator are conditioned on the class

labels.

Table 3.4: The architecture of the conditional t-LSTM GAN used to generate multivariate tracker time-
series. The generator consists of an LSTM network with two layers and 350 hidden units. The last layer is
a fully-connected layer with no activation. The discriminator is identical, but with fewer hidden nodes
(150) and a sigmoid activation function in the final fully connected layer. Furthermore, an averaging
operation is performed over the full sequence to determine the total probability of the sequence being
real.

Layer Properties Output size

Generator
Input - 50×20
LSTM 350 hidden units, 2 layers 50×20×350
Fully connected No activation 50×20
Discriminator
Input - 50×20
LSTM 150 hidden units, 2 layers 50×20×150
Fully connected Sigmoid activation 50×20
Averaging - 50×1

3.3.3 Classification of Radar Tracks

To evaluate the classification performance of the synthetic data, a classifier is needed. Since this

thesis partly builds upon work from a previous thesis [3] where the same dataset was used, the

same type of classification network will be used in this thesis. The network is simple and consists

of a recurrent unit: a gated recurrent unit (GRU). The complete architecture can be found in

Table 3.5. Two changes have been made in the network structure. Firstly, a larger batch size has

been used. In the previous thesis, a batch size of 1 was used and the best classification results

were obtained using the full-length tracks. In this thesis, the batch size in the classification

tasks is set to 5. Using a batch size of 1 would be infeasible in this project due to the massive

computational time such runs would take. Furthermore, no training was done using the full-

35

3. Methodology

length tracks but only using tracks of lengths 20, as motivated in Section 3.2.2. Lastly, the

reason for not including a softmax activation function in the fully-connected layer is that in the

computational framework used (PyTorch, see Section 3.4.1), the standard implementation of

the cross-entropy loss function expects raw (non-normalized) input.

Table 3.5: The architecture of the recurrent neural network used for classification of multivariate radar
time-series, developed in a previous thesis [3].

Layer Properties Output size

Input - 5×20
GRU 25 hidden units, 2 layers 5×20×25
Dropout Probability 0.2 5×20×25
Fully connected No activation 5×2

3.4 Training the Neural Networks

In the following sections, the training processes of the generative adversarial networks and the

classification networks are described. Firstly, in Section 3.4.1, the computing platform used to

carry out the experiments is briefly described. In Section 3.4.2, the hyperparameters for the

networks are given and some training settings.

3.4.1 Computing Platform

All models were implemented in Python 3.7 using PyTorch 1.2 and CUDA 10.2. The experi-

ments were performed on a system running on Unix CentOS 7 with an Intel Xeon Silver 4210

(2.20GHz) CPU and an Nvidia Quadro RTX 6000 GPU. Several Python open-source libraries

were used as a basis for some of the implemented functions. The implementation of maximum

mean discrepancy and energy distance was based on the implementation in the torch library

torch-two-samples [39] but modified to be compatible with tensor computations following

the library opt-mmd accompanied with a 2016 paper on generative models and maximum mean

discrepancy [40]. Furthermore, the implementation of minibatch discrimination was based on

code accompanying a 2019 article about using GANs to generate realistic sinusoidal waves and

ECG data [7].

3.4.2 Hyperparameters and Training Settings

The selection of hyperparameters in any machine learning task is of great importance for the

performance of the trained models [14]. The hyperparameters can both affect the time- and

memory consumption during training, as well as the generalizability of the model when tested

on held-out samples. The standard ways of selecting hyperparameters are to select them either

manually or automatically. Selecting them automatically often includes some type of grid search

or random search, where a large number of combinations of hyperparameters are tested to

find the optimal set. In this project, the number of hyperparameters is large and the networks

36

3. Methodology

take long to train, so therefore, such an automatic tuning would be infeasible. Therefore, a

step-wise manual selection of hyperparameters was utilized. This comes with the advantage

that some intuition for how the hyperparameters affect the network performance can be gained.

The procedure used was simple: some basic set of parameters were obtained by studying

relevant papers. From that starting point, all hyperparameters but one was kept constant and

the last hyperparameter was varied. Each model was evaluated by training it several times and

monitoring maximum mean discrepancy (MMD) and energy distance (ED). After each epoch,

the MMD and ED between a generated synthetic sample and an equally large withheld test set

were computed. The test set was 10% of the available data. By considering the smallest MMD

and ED scores obtained, different parameter settings could be compared to each other. From

this, a set of hyperparameters could be selected.

The chosen architectural hyperparameters for all architectures can be found in Section 3.3.

The training hyperparameters used when training both the GANs on sinusoidal data and the

multivariate radar dataset can be found in Table 3.6. As can be seen, the choice of training

hyperparameters are the same for both the sinusoidal and the multivariate radar datasets.

The training parameters for the GRU classification network was not tuned as carefully, as this

was done in a previous thesis [3]. The parameters used can be found in Table 3.7.

Table 3.6: The training parameters used to train the s-BiLSTM-CNN GAN, the s-LSTM GAN, the t-BiLSTM-
CNN GAN, and the t-LSTM GAN to generate sinusoidal waves and multivariate radar time-series.

Parameter Value (BiLSTM-CNN) Value (LSTM)

Batch size 50 50
Rounds (gen.) 1 1
Rounds (disc.) 3 1
Learning rate (gen.) 0.0002 0.0002
Learning rate (disc.) 0.0002 0.0002
Optimizer Adam (β1 = 0.5, β2 = 0.999) Adam (β1 = 0.5, β2 = 0.999)
Loss Binary cross-entropy Binary cross-entropy

Table 3.7: The training parameters used to train the GRU classifier for classification of multivariate radar
time-series. All parameter values except the batch size are consistent with the parameters used in a
previous master thesis where classification of the radar tracks was done [3]. Note that the training folds
refers to the iterations of MCCV cross-validation, and not the folds in ordinary k-fold cross-validation.
In some of the experiments, 10 folds were used but when possible, 20 folds were preferred since the
variability between runs was large at times.

Parameter Value (GRU classifier)

Batch size 5
Epochs 25
Learning rate 0.0005
Optimizer Adam (β1 = 0.9, β2 = 0.999)
Loss Cross-entropy
Training folds 10 or 20

37

3. Methodology

3.5 Experiments Performed on Synthetic Radar Time-Series

In the case of the sinusoidal time-series dataset, the aim was simply to be able to generate

realistic-looking synthetic data and to gain some understanding of how well the metrics per-

formed relatively the visual quality of the samples generated. No further experiments were

conducted on the generated data. For the multivariate radar time-series data, however, several

experiments to evaluate the quality of the generated data were conducted.

The ultimate usage of the data generated in this thesis is to augment an existing real-world

dataset that is used to train a classifier for multivariate time-series classification. Evaluating

the quality of the data by using it as training and/or test data for such a classifier is therefore

highly relevant. This can, however, be done in many ways to investigate different aspects of data

quality. The experiments performed on the synthetic data aims at investigating those aspects

and will be described in the following sections.

3.5.1 The Effect of Sampling Proportions of Conditional Labels

The first experiment considers the effect of utilizing different sampling techniques when sam-

pling the synthetic labels provided to the generator and the discriminator as conditional in-

formation during training. In many applications, the class labels provided to the networks

during training are uniformly sampled, meaning that the generator will always generate fake

samples that are approximately class balanced, independent of the distribution between classes

in the training data. If the classes in the training data are heavily unbalanced, one could argue

that the fact that the synthetic samples are always class-balanced can aid the discriminator in

the decision that the sample is fake. On the other hand, if the synthetic samples are always

class-balanced, the generator will get more feedback regarding the quality of the minority class

samples compared to if the label proportions are the same as the class proportions in the train-

ing data. It is therefore interesting to investigate if there is a difference between synthetic data

generated from a generator trained with uniform sampling of the class labels and synthetic data

generated from a generator trained using proportional sampling of the class labels. Furthermore,

the extreme case is to train a GAN on each of the two data classes separately and then generate

a synthetic dataset by combining samples from those two GAN instances. This yields three

different ways to train conditional GANs and to generate synthetic data.

The mentioned methods were tested by training each architecture (t-BiLSTM-CNN GAN and

t-LSTM GAN) with the four different sampling techniques (equal, proportional, only birds, and

only UAVs). The lowest MMD and ED scores obtained for each run were monitored and averaged

over five runs. To examine if there was any difference in classification performance between

classifiers trained on synthetic data from the different generators, the GAN models trained with

the different sampling techniques were treated as separate models also in the experiments

described in the upcoming sections. It should be noted that while the generators trained using

equal and proportional sampling can be used directly to generate a synthetic dataset, this is

38

3. Methodology

not the case for the generators trained with only birds and only UAVs. Those generators were

used to generate samples from each class separately, which were then combined into a synthetic

dataset. In the upcoming sections, this method of generating synthetic data will be referred to

as the separate sampling method.

Another relevant aspect is how the generator model should be selected. During training, the

generator weights are saved after each epoch so the generator model from any epoch can easily

be restored. In this project, two different discrepancy metrics (MMD and ED) have been used to

monitor the training progress. Therefore, it is natural to base the selection of generator models

on those metrics. It turned out that in many cases, MMD and ED are minimized at different

epochs of training. It is not unlikely that the inclusion of additional metrics to MMD and ED

would result in an even larger ambiguity. So how should the generator model be selected if

the MMD and ED result in different models? Since both metrics were to be evaluated, the

natural answer was to select both models and compare their performance. As will be seen, all

results from the experiments described in the upcoming sections will be presented for datasets

generated by models selected using the minimal MMD and for datasets generated by models

selected using the minimal ED separately.

3.5.2 The Quality of the Synthetic Samples from a Classification Perspective

There are two main quality aspects of the synthetic data that needs to be evaluated: sample

quality and sample diversity. In this section, three different experiments aiming at evaluating

both of those aspects are described.

Train on Real, Test on Synthetic

How can the sample quality of multivariate time-series data be evaluated, without visually

inspecting the samples? A natural approach is to examine how well a classifier trained on real

data generalizes to a test set consisting of only synthetic samples. Following [5], the approach

will be called train on real, test on synthetic (TRTS). This approach serves as a measure of how

well the GAN manages to generate realistic samples. The test is unaffected by whether or not

the synthetic data suffers from mode collapse since it is trained on real data where the full

distribution is represented.

In this project, TRTS was performed by training a GRU-classifier (see Section 3.3.3) for 25 epochs

on a real, balanced dataset and then testing the performance of the classifier on an equally large

but fully synthetic dataset. The test datasets were generated using the generators described

in the previous sections. The generators are from two different architectures (t-BiLSTM-CNN

GAN and t-LSTM GAN), trained using different sampling techniques (equal, proportional, and

separate), and selected using two different criteria (MMD and ED). In some cases, MMD and ED

selected the same model, so in total, 10 different types of synthetic test datasets were generated.

For each type of synthetic test set, the classifier was trained 20 times on real data and each time,

39

3. Methodology

a new synthetic test set was generated by the corresponding generator. The accuracy, precision,

recall, and F1-scores were then computed by averaging over those 20 runs. For reference, the

classifier was also trained on a real, balanced dataset using 20 iterations of Monte-Carlo cross-

validation (MCCV). MCCV was performed by randomly splitting the dataset into a training

set (90% of the total samples) and a test set (10% of the total samples). Also in this case, the

classifier was trained for 25 epochs. The corresponding evaluation metrics were computed for

this reference case too.

Train on Synthetic, Test on Real

Another aspect of synthetic data quality is if the samples are diverse enough. If the synthetic

data suffers from a diversity loss compared to the training data, there is a covariate shift in

the synthetic data. One method to examine if this is the case is to train a classifier on a purely

synthetic dataset and test on real data. This has been done in several previous studies [4, 5]

and is called train on synthetic, test on real (TSTR). The intuition behind TSTR is that if the GAN

has failed to capture the full diversity of the underlying distribution, then a classifier trained

on synthetic data will perform worse when tested on real data (in which the full distribution is

represented) compared to if the classifier would be trained on real data.

The practical procedure for performing this experiment was similar to the previous experiment.

The generators described in the previous section were used to generate 10 different types of

training datasets. A GRU-classifier (see Section 3.3.3) was trained for 25 epochs on the synthetic

datasets and then tested on a balanced real dataset. The synthetic and real datasets used were

equally large (3,177 samples per class). Also in this case, the training procedure was repeated 20

times per type of synthetic dataset and then the accuracy, precision, recall, and F1-score were

computed by averaging over the 20 runs. For reference, the classifier was trained on purely real

data using 20 iterations of MCCV. The average evaluation metrics were computed by averaging

over the MCCV iterations.

To generate synthetic data for augmentation purposes, the TSTR score is more relevant to

consider since it reflects the ability of the synthetic data to be used to train models. However, for

quality evaluation purposes, the TRTS score is important to consider.

Train on a Mixture, Test on a Mixture

When both extremes have been tested, a remaining natural question is: what would happen if

the classifier is trained on a mixture of real and synthetic data, and then tested on a mixture of

real and synthetic data?

For reference, the classifier was first trained using Monte Carlo cross-validation with 20 iterations

on the real, balanced dataset. MCCV was performed by randomly splitting the dataset into a

training set (90% of the total samples) and a test set (10% of the total samples). At each iteration,

40

3. Methodology

the classifier was trained for 25 epochs. Instead of computing the evaluation metrics such as

accuracy and recall, a confusion matrix was generated after each MCCV iteration and then

averaged over. The reason for presenting the results in a confusion matrix instead of giving

the numerical evaluation metrics is that the classification result for the second part of this

experiment should be presented for real and synthetic samples separately and using a visual

presentation was found to be more viable.

To test the classification performance of the classifier on both real and synthetic data, a similar

approach was used. Also here, MCCV with 20 iterations was used to obtain average metrics. A

classifier was trained on each of the datasets described in previous sections and also here the

generator models selected using MMD and ED were considered separately. The proportion

of added synthetic data was set to 100%, meaning that the datasets consisted of as many real

samples as synthetic samples. The classifier was trained for 25 epochs per MCCV iteration for all

datasets. For this part of the experiment, the results were summarized in slightly unconventional

confusion matrices, where the real and synthetic samples were treated separately with four

true data classes (bird real, UAV real, bird synthetic, and UAV synthetic) but only two predicted

classes (bird and UAV). Using this representation, it was found to be simple to compare the

performance of the classifier on real and synthetic data.

3.5.3 The Proportion of Synthetic Data Versus Classification Accuracy

Another question that needs consideration is: how large proportion of synthetic data should be

used for augmenting the training dataset? A classifier, as described in Section 3.3.3, was trained

on a mixture of real and synthetic data. All datasets were class-balanced. The proportion of

synthetic data added to the real data was varied between 0% (no synthetic data) and 1000% (ten

times more synthetic data observations than real data observations). The trained classifier was

then evaluated using a withheld test set, consisting of 10% of the observations in the full real

dataset. Note that no synthetic data was included in the test set since the model performance

on real data was of interest in this experiment. In this experiment, MCCV with 10 iterations was

used for each proportion. The classifier was trained for 25 epochs in each training phase.

41

3. Methodology

42

4 | Results

In the following chapter, the results of the experiments described in Chapter 3 are presented. In

Section 4.1, the synthetic sinusoidal data generated by the two recurrent GAN architectures is

presented. In Section 4.2, the results from the various experiments conducted on the multivariate

tracker time-series dataset are presented.

4.1 Generation of Sinusoidal Time-Series

In the following sections, some results from the training of the sinusoidal-generating GANs and

some evaluation of the synthetic data are presented.

4.1.1 Comparison of Architectures

As described in Section 3.3, two different architectures were used to generate synthetic sinusoidal

data. One architecture is called s-BiLSTM-CNN GAN and the other one is called s-LSTM GAN.

Overall, the training processes of both networks were stable and all runs resulted in sinusoidal

waves of visually high quality.

There were some notable differences between training the networks. The first one was the time it

took to train the networks. The s-BiLSTM-CNN GAN took about four hours to train 1,000 epochs,

and the s-LSTM GAN took about three hours to train 1,000 epochs. It should be noted that while

the networks were trained for 1,000 epochs to allow the study of the convergence of the networks,

fewer epochs were required to reach samples that visually could be verified to be sinusoidal

waves. The exact number varied slightly between different runs, but the s-BiLSTM-CNN GAN

required about 150 epochs and the s-LSTM GAN required about 200 epochs.

In Figure 4.1, examples of synthetic samples from both architectures during different epochs of

training are shown. The samples are generated using the same latent (noise) vector, which allows

for a direct comparison of the development of the synthetic samples during training between

the architectures. As can be seen, neither network outputs anything similar to sinusoidal

waves at epoch 1, but already at epoch 10, the generators have learned to generate data with

some periodic behavior. Here, it is clear that the s-BiLSTM-CNN GAN learns faster since the

samples from this generator at epoch 10 are better compared to the corresponding samples

43

4. Results

from the s-LSTM generator. As can be seen in the figure, the discrepancy metrics maximum

mean discrepancy (MMD) and energy distance (ED) strictly improves as the network training

progresses. The figure also indicates that as the training progresses and samples of higher visual

quality are generated, the MMD and ED values tend to decrease. However, it is also clear from

the figure that one should be careful to compare values of the metrics directly: after one epoch,

the samples from the s-BiLSTM-CNN GAN better resembles sinusoidal waves compared to the

samples from the s-LSTM generator, but they have larger values of both MMD and ED. The

discrepancy metrics can say something about how the training progresses, but single such

numbers can be misleading and do not necessarily reflect the visual quality.

1.0

0.5

0.0

0.5

Am
pl

itu
de

s-BiLSTM-CNN GAN

Ep
oc

h
1

MMD: 0.314, ED: 2.236
s-LSTM GAN

MMD: 0.191, ED: 1.231

1.0

0.5

0.0

0.5

Am
pl

itu
de

Ep
oc

h
10

MMD: 0.114, ED: 0.845 MMD: 0.011, ED: 0.103

1.0

0.5

0.0

0.5

Am
pl

itu
de

Ep
oc

h
50

MMD: 0.013, ED: 0.110 MMD: 0.007, ED: 0.039

0 10 20 30 40
Time (s)

1.0

0.5

0.0

0.5

Am
pl

itu
de

Ep
oc

h
20

0

MMD: 0.003, ED: 0.027

0 10 20 30 40
Time (s)

MMD: 0.002, ED: 0.015

Figure 4.1: Synthetic samples generated by the generators in the s-BiLSTM-CNN GAN and the s-LSTM
GAN at four different epochs (after 1, 10, 50, and 200 epochs) of training. As can be seen, both networks
gradually learn the distribution of the training dataset and are after 200 epochs able to generate realistic
sinusoidal waves. Also, note that both MMD and ED are strictly decreasing as the samples improve.
However, a lower MMD or ED does not necessarily correspond to a higher quality of the generated
samples, which is visible in the samples generated after the first epoch of training.

The discrepancy metrics as a function of epochs for both architectures can be found in Figure 4.2.

Note that both the true values and the moving average over a window of 20 epochs are shown.

44

4. Results

As can be seen, both MMD and ED decreases as the training progresses. It is also clear that the s-

LSTM GAN architecture stabilizes at lower MMD and ED levels compared to the s-BiLSTM-CNN

GAN. Since the scale on the y axis is logarithmic, the fluctuations of the discrepancy metrics at

later epochs are small. As can also be seen in the figure, the training process of the s-LSTM GAN

seems to be more stable with smaller variances of both MMD and ED. It should be noted that a

stable training process does not necessarily correspond to generated samples of high quality,

but in general, a more stable training process is of interest to encourage convergence of the

network.

10 3

10 2

10 1

M
M

D

s-BiLSTM-CNN GAN
True value
Moving average

10 4

10 3

10 2

10 1

100 s-LSTM GAN
True value
Moving average

0 100 200 300 400
Epoch

10 2

10 1

100

En
er

gy
 d

ist
an

ce

True value
Moving average

0 100 200 300 400
Epoch

10 2

10 1

100

101
True value
Moving average

Figure 4.2: Maximum mean discrepancy (MMD) and energy distance (ED) between synthetic samples
and test samples from real data across epochs during the training of s-BiLSTM-CNN GAN and s-LSTM
GAN on sinusoidal waves. The figure shows both the actual obtained values and the moving weighted
average computed over a window over 20 epochs. Note that the scales on the y-axes are logarithmic, so
the actual changes in the discrepancy metrics at later epochs are small.

4.1.2 Training Convergence

For the sinusoidal waves, monitoring the training progress is simple since the quality of the

generated data can be evaluated by visually inspecting the generated samples after each epoch.

But other data, such as multivariate time-series radar data, is not as easily visually inspected.

Therefore, a comparison of other methods to monitor the training process is needed. A common

method is to follow how the losses of the generator and the discriminator are developing. In

contrast to when training other types of deep neural networks, the loss plots obtained during the

training of a GAN do not necessarily reflect the quality of the generated samples. Furthermore,

losses for different architectures can behave quite differently. To allow for a comparison, both

the losses and the discrepancy metrics were monitored during training. The results can be

found in Figure 4.3 for the s-BiLSTM-CNN GAN architecture and in Figure 4.4 for the s-LSTM

45

4. Results

architecture. In both figures, the generator and discriminator losses (for fake and real images

separately) are plotted as well as MMD and ED for each epoch. Note that also in these plots, the

moving average is shown together with the true values.

As can be seen in Figure 4.3, both the generator loss and the discriminator loss are quite stable as

the training progresses for the s-BiLSTM-CNN architecture. From the loss plot, it is not possible

to tell how the training progresses since the losses are relatively constant throughout the epochs.

From the MMD and ED plot, however, it is clear that the largest decrease in both MMD and ED

is achieved up to about 200 epochs and due to the previously presented results, it is reasonable

to assume that this also means that the quality of the synthetic data improves mostly during

the 200 first epochs, and then stabilizes. Such information could not be read out from the loss

plot.

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Bi
na

ry
 c

ro
ss

-e
nt

ro
py

 lo
ss

s-BiLSTM-CNN GAN
Gen. loss (moving avg.)
Disc. fake loss (moving avg.)
Disc. real loss (moving avg.)

0 200 400 600 800 1000
Epoch

10 3

10 2

10 1

M
M

D

MMD (true values)
ED (true values)
MMD (moving avg.)
ED (moving avg.)

10 2

10 1

100

ED

Figure 4.3: Binary cross-entropy loss of the generator and discriminator (split into the loss of real and
fake batches) and the discrepancy metrics maximum mean discrepancy (MMD) and energy distance (ED)
as a function of epoch for the s-BiLSTM-CNN architecture.

In Figure 4.4, the losses and discrepancy metrics are presented for the s-LSTM GAN architecture.

In contrast to the losses for the s-BiLSTM-CNN architecture presented in Figure 4.3, the losses

are not roughly constant during the 1,000 epochs of training. As can be seen, the generator loss

seems to increase with epochs and the discriminator losses decrease. The moving averages of the

discriminator losses seem to be similar, which indicates that the discriminator recognizes real

sinusoidal waves as well as synthetic samples. Another notable detail in the discrepancy metrics

plot is that both MMD and ED seem to stabilize at lower values for the s-LSTM architecture.

This indicates that the synthetic samples from the s-LSTM architecture are more similar to the

46

4. Results

samples in the withheld test dataset compared to samples from the s-BiLSTM-CNN architecture,

but such differences cannot be verified visually. Furthermore, the scale of the double y-axis is

logarithmic so the actual differences are small.

A comment should be made about the dips in the MMD curve in the s-LSTM case. From around

800 epochs, at four occurrences, a drop in the MMD level can be observed. Corresponding drops

cannot be seen in the ED curve. At a closer inspection of the values, what happens is that the

MMD values at those points are small negative numbers. Naturally, MMD cannot be negative

since it is a squared metric, but the estimate of MMD can be negative. The reason for this is that

the terms i 6= j are excluded in the definition (see Equation 2.31 in Section 2.4.1) to make the

estimator unbiased [31]. This means that non-negativity cannot be guaranteed. In this case,

the negative values are small (of order 1×10−5) and indicate that low MMD values close to zero

have been obtained.

0.5

1.0

1.5

2.0

Bi
na

ry
 c

ro
ss

-e
nt

ro
py

 lo
ss

s-LSTM GAN
Gen. loss (moving avg.)
Disc. fake loss (moving avg.)
Disc. real loss (moving avg.)

0 200 400 600 800 1000
Epoch

10 5

10 4

10 3

10 2

10 1

100

M
M

D

MMD (true values)
ED (true values)
MMD (moving avg.)
ED (moving avg.)

10 2

10 1

100

101

ED

Figure 4.4: Binary cross-entropy loss of the generator and discriminator (split into the loss of real and
fake batches) and the discrepancy metrics maximum mean discrepancy (MMD) and energy distance (ED)
as a function of epoch for the s-LSTM GAN architecture.

4.2 Generation of Multivariate Radar Time-Series

In the following sections, some results from the training phase of the multivariate time-series-

generating GANs are presented as well as the results of the experiments performed on the

synthetic data.

47

4. Results

4.2.1 The Training Process and Convergence of the Models

Also for the multivariate time-series radar dataset, two different architectures, the t-BiLSTM-

CNN GAN and the t-LSTM GAN, were used to generate synthetic data. Both architectures are

described in Section 3.3. As was described in Section 3.5.1, eight different networks were trained

in total (four of each architecture, with equal, proportional, only birds, and only UAVs sampling),

and therefore, it is not possible to include results from the training processes of all networks

here. However, a couple of typical examples of the developments of the losses and discrepancy

metrics across epochs can be of interest and are therefore included here.

In Figure 4.5, the training losses and the discrepancy metrics from one training of the t-BiLSTM-

CNN GAN architecture are presented. In this specific run, proportional sampling was used.

As can be seen, the losses do not change much throughout the epochs. The behavior of the

losses was consistent for all training processes for this specific architecture. Some occasional

“spikes” can be observed, mostly for the generator loss, but overall, the losses show a stable

behavior. The discrepancy metrics show a rather unstable behavior throughout the training

process. Initially, there is almost no decrease in the metrics, but after about 500 epochs, there is

a quick drop in both MMD and ED. After this drop, both metrics increases again, to later again

drop at a slower rate. This behavior could be seen in many of the training processes of this

specific architecture, and it was noted that such changes in the discrepancy between real and

synthetic samples were difficult, if not impossible, to infer from the loss plots. Furthermore, it

was noted that both the loss curves and the discrepancy curves for this architecture behaved

similarly to the corresponding curves in the case of the s-BiLSTM-CNN GAN.

In Figure 4.6, the loss curves and discrepancy metrics of the t-LSTM GAN with proportional

sampling are presented. Although the exact values of the binary cross-entropy loss vary between

runs, it was noted that the same tendencies of initial “spikes” in generator and discriminator

losses were observed each time the t-LSTM GAN architecture was trained. After this initial spike,

the generator loss seems to diverge and the discriminator losses approach zero. The discrepancy

metrics of the t-LSTM GAN shows similar behavior to the discrepancy metrics of the s-LSTM

GAN. The metrics decrease over epochs and seem to be quite stable.

Overall, the t-LSTM GAN reached lower MMD and ED scores compared to the t-BiLSTM-CNN

GAN, which can also be observed in Figures 4.5 and 4.6.

48

4. Results

0

1

2

3

4
Bi

na
ry

 c
ro

ss
-e

nt
ro

py
 lo

ss

t-BiLSTM-CNN GAN
Gen. loss (moving avg.)
Disc. fake loss (moving avg.)
Disc. real loss (moving avg.)

0 250 500 750 1000 1250 1500 1750 2000
Epoch

10 2

10 1

M
M

D

MMD (true values)
ED (true values)
MMD (moving avg.)
ED (moving avg.)

100

101

102

ED

Figure 4.5: Training losses and discrepancy metrics of the t-BiLSTM-CNN GAN trained on the multivariate
time-series radar dataset.

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Bi
na

ry
 c

ro
ss

-e
nt

ro
py

 lo
ss

t-LSTM GAN
Gen. loss (moving avg.)
Disc. fake loss (moving avg.)
Disc. real loss (moving avg.)

0 250 500 750 1000 1250 1500 1750 2000
Epoch

10 3

10 2

10 1

M
M

D

MMD (true values)
ED (true values)
MMD (moving avg.)
ED (moving avg.)

100

101

102

ED

Figure 4.6: Training losses and discrepancy metrics of the t-LSTM GAN trained on the multivariate
time-series radar dataset.

49

4. Results

4.2.2 Effect of Sampling Proportion of Conditional Labels

As was described in Section 3.5.1, one aspect to consider when training a conditional GAN is

how the synthetic labels, which are fed to the generator together with a latent vector, should be

sampled. Three different methods were examined: to generate equal proportions of the classes,

to generate the same proportion between the classes as in the dataset, and to train the same

GAN architecture separately on the classes.

The result of the experiment is summarized in Table 4.1. Each sampling method (equal, pro-

portional, only birds, and only UAVs) was tested five times for each architecture. The numbers

presented in Table 4.1 are averaged over those five runs and correspond to the mean lowest

MMD and ED scores obtained in each run. If the different methods affect the performance of

the generator differently, one would expect at least some changes in the minimal obtained MMD

and ED scores. As can be seen by considering the standard deviations, the variability between

the runs was sometimes large. However, a few comments should be made. For the t-BiLSTM-

CNN GAN, both the mean minimal MMD and ED are smaller for the proportional sampling

compared to the equal sampling. The largest mean minimal MMD and ED obtained are from

the separate sampling of birds. The only UAV case gives a mean minimal MMD comparable to

the proportional sampling case, but a slightly larger value of ED.

For the t-LSTM GAN, the differences between equal and proportional sampling are larger. Fur-

thermore, the observed MMD and ED values are much smaller compared to the corresponding

values observed in the t-BiLSTM-CNN GAN case. In the case of the network trained on only

UAVs, the mean minimal MMD value is negative. However, the corresponding mean minimal

ED value is not smaller compared to the proportional sampling case.

The average minimal MMD and ED values seem to follow each other in almost all cases. This

means that when the MMD score is large, then the ED score is in general large too. Considering

that the MMD and ED curves are following each other reasonably well in for instance Figures 4.5

and 4.6, this result is consistent with the results previously presented.

Table 4.1: The average lowest maximum mean discrepancy (MMD) and energy distance (ED) scores
obtained when training the t-BiLSTM-CNN GAN and the t-LSTM GAN using different sampling methods.
The means and standard deviations are computed from five runs for each model.

Architecture Sampling method MMD ED

BiLSTM-CNN GAN Equal 0.00957±0.0025 1.06±0.22
Proportional 0.00759±0.0040 0.891±0.44
Only birds 0.0123±0.011 1.61±1.4
Only UAVs 0.00718±0.0031 1.00±0.37

LSTM GAN Equal 0.00150±0.00050 0.282±0.061
Proportional 0.000439±0.00039 0.172±0.052
Only birds 0.000827±0.0012 0.316±0.18
Only UAVs -0.000258±0.00056 0.241±0.036

50

4. Results

4.2.3 The Quality of Synthetic Data from a Classification Perspective

In the following sections, the results of the three experiments performed to investigate the

classification performance of the synthetic multivariate time-series data as described in Section

3.5.2 are presented. The results for the train on real, test on synthetic (TRTS) and train on

synthetic, test on real (TSTR) experiments will be presented using four common classifier

evaluation metrics: accuracy, precision, recall, and F1-score. For reference, the definitions of

those evaluation metrics are given below together with some comments about how the metrics

should be interpreted.

Firstly, define the true negatives (TN) as the number of birds classified as birds, the true positives

(TP) as the number of UAVs classified as UAVs, the false negatives (FN) as the number of UAVs

classified as birds, and the false positives (FP) as the number of birds classified as UAVs. The

accuracy is defined as the proportion of the total number of samples classified correctly:

accuracy = TP+TN

TP+TN+FP+FN
. (4.1)

Precision is defined as the proportion of the total samples classified as UAVs that were actual

UAVs:

precision = TP

TP+FP
. (4.2)

From the definition, it is simple to see that a high precision corresponds to a low false positive

rate (few birds classified as UAVs). Next, recall is defined as the proportion of the actual UAVs

classified as UAVs:

recall = TP

TP+FN
. (4.3)

From the definition, it is clear that high recall corresponds to a low false negative rate (UAVs

classified as birds). Lastly, the F1-score is a weighted average of precision and recall and defined

as:

F1 = 2× precision× recall

precision+ recall
. (4.4)

F1-score thus takes into account both the false positive and the false negative rates. Note that

the metrics are defined as proportions, but a common alternative presentation is to express

the metrics as percentages. In this thesis, all those evaluation metrics will be expressed as

percentages.

In general applications, high false positive and false negative rates are considered equally bad.

However, in for instance military applications, a larger false-positive rate might not necessarily

pose any problems but a larger false negative rate might. To put it simply: the possible con-

sequences of misclassifying a bird as a UAV are less severe than the possible consequences of

misclassifying a UAV as a bird.

51

4. Results

Train on Real, test on Synthetic

To examine the quality of the synthetic samples, an experiment called train on real, test on

synthetic (TRTS) was performed. The experiment is described in detail in Section 3.5.2. The

idea is that if the GAN generators manage to create sufficiently realistic samples, a classifier

trained on real data should be able to classify the synthetic samples approximately as good as

real samples.

The average accuracy, precision, recall, and F1-score obtained for a classifier trained on real

data and tested on synthetic data generated using models selected with minimal MMD can be

found in Table 4.2. Note that the values are averaged over 20 runs. The last row of the table is a

reference case for a classifier trained on real data and tested on real data. Note that the classifier

in this reference case is trained on a smaller proportion of training data (90% of the full real

dataset) while the classifiers in the other cases presented in the table are trained on the full real

dataset. The reason for this difference is that a proportion of the real data needs to be saved for

testing in the reference case.

Table 4.2: The average accuracy, precision, recall, and F1-score obtained when training a classifier on real
data and then testing the classifier on synthetic data generated by generators of two different architectures
(t-BiLSTM-CNN GAN and t-LSTM GAN) and three different sampling methods (equal, proportional, and
separate). The generators were selected using the lowest obtained MMD score. As a reference, the
corresponding metrics for a classifier trained on only real data are included in the bottom of the table.

TRTS, generator selected using MMD

Architecture Sampl. method Accuracy (%) Precision (%) Recall (%) F1 (%)
t-BiLSTM-CNN Equal 52.3±4.2 51.8±3.5 61.9±10 56.2±5.7

Proportional 53.1±2.3 63.5±10 16.1±5.2 25.2±6.7
Separate 89.5±2.9 91.5±5.1 87.5±2.1 89.4±2.6

t-LSTM Equal 90.1±1.4 94.5±1.6 85.1±4.1 89.5±1.9
Proportional 90.0±1.9 86.2±3.8 95.6±1.7 90.6±1.6
Separate 87.6±1.1 90.6±2.3 84.0±2.9 87.1±1.2

Reference (real) - 90.2±1.7 89.3±4.1 91.7±3.1 90.4±1.5

As can be read out from the table, the quality of samples generated by different GAN architec-

tures using different sampling techniques seem to vary. The best-performing models for each

evaluation metric are marked with bold font. The t-LSTM GAN architecture with equal sampling

reaches the highest accuracy and precision. The accuracy is on a par with the reference case,

and the precision is several percentages above the reference value. This indicates that of all

synthetic datasets, the classifier, in general, manages to classify the largest number of samples

(independent of class) correctly from the t-LSTM GAN with equal sampling. The high precision

indicates that the false positive rate is low, meaning that few birds are misclassified as UAVs. If

instead recall and F1-score are considered, the best-performing model is the t-LSTM GAN with

proportional sampling, reaching a recall well above the reference case and an F1-score slightly

52

4. Results

above the reference case. This indicates that a classifier trained on real data manages to correctly

classify a larger proportion of the synthetic UAVs compared to when tested on real data.

In general, the generators selected using MMD seem to generate synthetic data of high qual-

ity. Only two models seem to produce samples of quality much lower compared to real data:

the t-BiLSTM-CNN GAN with equal sampling and the t-BiLSTM-CNN GAN with proportional

sampling.

The average accuracy, precision, recall, and F1-score for a classifier trained on real data and

tested on synthetic data from generators selected using ED can be found in Table 4.3. In this

case, a single model reaches the highest values for all metrics: the t-LSTM GAN with equal

sampling. Overall, nearly all values are either equally large as in the MMD case or smaller. It

should be noted that for the t-BiLSTM-CNN with proportional and equal sampling, the values

of all evaluation metrics are the same in the MMD and ED cases since the same generator

model was selected by MMD and ED. There is one exception where the obtained metric is

higher in the ED case: the accuracy of the t-LSTM GAN with equal sampling, which is slightly

larger in the ED case. A notable difference is also the metrics for the t-BiLSTM-CNN GAN with

separate sampling, which is much lower when the generator is selected using ED compared to

the MMD case. This indicates that the models selected using ED, in general, perform worse in

this classification experiment: they seem to generate synthetic data of lower quality compared

to the corresponding models selected with MMD.

Table 4.3: The average accuracy, precision, recall, and F1-score obtained when training a classifier
on real data and then testing the classifier on synthetic data generated by generators of two different
architectures (t-BiLSTM-CNN GAN and t-LSTM GAN) and three different sampling methods (equal,
proportional, and separate). The generators were selected using the lowest obtained ED score. As a
reference, the corresponding metrics for a classifier trained on only real data are included in the bottom
of the table.

TRTS, generator selected using ED

Architecture Sampl. method Accuracy (%) Precision (%) Recall (%) F1 (%)
t-BiLSTM-CNN Equal 52.3±4.2 51.8±3.5 61.9±10 56.2±5.7

Proportional 53.1±2.3 63.5±10 16.1±5.2 25.2±6.7
Separate 67.5±5.0 63.0±4.8 87.1±2.2 73.0±2.9

t-LSTM Equal 90.4±1.0 90.9±3.0 90.1±2.6 90.4±0.9
Proportional 86.4±1.5 84.2±3.9 90.0±3.4 86.9±1.1
Separate 83.5±1.9 84.0±3.2 83.1±3.2 83.5±1.8

Reference (real) - 90.2±1.7 89.3±4.1 91.7±3.1 90.4±1.5

Train on Synthetic, Test on Real

To examine the ability of the synthetic data to be used as training data for machine learning

methods, a classifier was trained on synthetic data and tested on real data (TSTR) as described

in Section 3.5.2. The results for the classifier trained on synthetic data from generator models

53

4. Results

selected using the MMD criterion can be found in Table 4.4. Also in this case, a reference result

for the classification performance when trained and tested on real data is included.

Table 4.4: The average accuracy, precision, recall, and F1-score obtained when training a classifier on
synthetic data generated by generators of two different architectures (t-BiLSTM-CNN GAN and t-LSTM
GAN), and three different sampling methods (equal, proportional, and separate) and then testing the
classifier on only real data. The generators were selected using the lowest obtained MMD score. As a
reference, the corresponding metrics for a classifier trained on only real data are included in the bottom
of the table.

TSTR, generator selected using MMD

Architecture Sampl. method Accuracy (%) Precision (%) Recall (%) F1 (%)
t-BiLSTM-CNN Equal 57.2±2.1 68.7±4.0 26.6±6.4 37.9±6.8

Proportional 74.5±2.7 77.3±2.1 69.6±8.3 72.9±4.5
Separate 77.0±1.2 70.0±1.4 94.7±1.1 80.5±0.7

t-LSTM Equal 76.1±3.3 72.1±5.2 86.7±4.4 78.5±1.9
Proportional 85.5±0.9 86.7±2.6 84.1±3.8 85.3±1.2
Separate 83.7±2.6 89.9±2.3 76.1±7.3 82.2±3.9

Reference (real) - 90.2±1.7 89.3±4.1 91.7±3.1 90.4±1.5

As can be seen in the table, the accuracy of a classifier trained on synthetic data from the

different GAN generators is smaller in all cases compared to the reference case. When a classifier

is trained on data from the best succeeding model, the t-LSTM GAN with proportional sampling,

an accuracy of 85.5% is reached on average, which is lower compared to the reference case of

90.2%. The worst performing model considering accuracy is the t-BiLSTM-CNN GAN model

with equal sampling, where a classifier trained on this data reaches an accuracy of 57.2%.

However, the accuracy metric only reflects the total classification performance and not how

well the classifier manages to classify samples from the different classes. If the recall column is

considered, there is one outstanding result: the recall of the t-BiLSTM-CNN GAN model with

separate sampling, which is 94.7%. This score is several percentages higher than the reference

case recall of 91.7%. As was described in Section 4.2.3, the recall is the proportion of UAVs

correctly classified. By training the classifier on purely synthetic data, the classifier classifies a

larger proportion of the UAVs correctly compared to when trained on real data. However, the

precision of this model is lower, which means that the number of false positives (birds classified

as UAVs) is larger compared to the reference case. The worst-performing model, if the recall is

considered, is the t-BiLSTM-CNN GAN model with equal sampling, where a classifier trained

on synthetic data from this model reaches a recall of 26.6%. The model performing best if both

precision and recall are taken into account is the t-LSTM GAN with proportional sampling,

reaching an F1-score of 85.3%. This is a few percentages lower than the reference case. The

model reaching the highest precision score is the t-LSTM GAN with separate sampling, meaning

that a classifier trained on this model is least prone to misclassify birds as UAVs.

The results for the classifier trained on synthetic data from generator models selected using the

ED criterion can be found in Table 4.5. The best-performing models for each of the evaluation

metrics are slightly different from the result presented for the MMD case in Table 4.4 and the

54

4. Results

top values of the metrics are overall lower. The model reaching the highest accuracy (84.0%) is

the t-LSTM GAN with equal sampling. This model is also the best-performing model if F1-score

is considered. The t-BiLSMT-CNN GAN model with separate sampling once again manages to

score the highest recall value of 89.2%, which is lower than both the reference score and the score

obtained for the same model in the MMD case. The t-LSTM GAN with proportional sampling

reaches the highest precision score.

Table 4.5: The average accuracy, precision, recall, and F1-score obtained when training a classifier on
synthetic data generated by generators of two different architectures (t-BiLSTM-CNN GAN and t-LSTM
GAN) and three different sampling methods (equal, proportional, and separate) and then testing the
classifier on only real data. The generators were selected using the lowest obtained ED score. As a
reference, the corresponding metrics for a classifier trained on only real data are included in the bottom
of the table.

TSTR, generator selected using ED

Architecture Sampl. method Accuracy (%) Precision (%) Recall (%) F1 (%)
t-BiLSTM-CNN Equal 57.2±2.1 68.7±4.0 26.6±6.4 37.9±6.8

Proportional 74.5±2.7 77.3±2.1 69.6±8.3 72.9±4.5
Separate 64.9±4.6 60.3±4.1 89.2±3.2 71.8±2.5

t-LSTM Equal 84.0±1.5 81.4±3.7 88.6±3.0 84.7±0.9
Proportional 80.3±2.0 85.6±2.6 73.3±6.8 78.7±3.3
Separate 80.7±1.7 85.2±2.2 74.5±4.9 79.4±2.4

Reference (real) - 90.2±1.7 89.3±4.1 91.7±3.1 90.4±1.5

Overall, synthetic data from the models selected using MMD seem to perform better as training

data for a classifier compared to synthetic data generated by the models selected using ED.

Train on a Mixture, Test on a Mixture

As described in Section 3.5.2, it is interesting to investigate the classification performance of a

model trained on a mixture of real and synthetic data. By also testing the classifier on a mixture of

real and synthetic data, any difference in classification performance between real and synthetic

test samples can be examined.

In Figure 4.7, the confusion matrix obtained when training the classifier on real data and

tested on real data can be found. This confusion matrix can be used as a reference when

studying the confusion matrices of the train on a mixture, test on a mixture (TMTM) experiment

presented later in this section. Note that the reference confusion matrix is from the same run

as the reference evaluation metrics presented in Tables 4.2, 4.3, 4.4, and 4.5, meaning that the

confusion matrix in Figure 4.7 is merely an alternative way of presenting the same data.

The confusion matrices of the generator models selected using MMD can be found in Figure 4.8.

As can be seen, each confusion matrix represents one specific architecture and label sampling

method. The classification counts of real and synthetic samples have been separated in the

matrices to clarify any difference in classification performance between real and synthetic

55

4. Results

Bird UAV
Predicted class

Bird

UAV
Tr

ue
 c

la
ss

0.888 ± 0.05 0.112 ± 0.05

0.083 ± 0.03 0.917 ± 0.03

Figure 4.7: The confusion matrix obtained when testing a classifier trained on only real data on a withheld
test set, summarized over 20 iterations of MCCV. Each test set consists of 10% of the total samples in the
real dataset.

samples. Note however, that the real and synthetic samples were not treated as separate classes

while training the classifier. Also in the matrices showed in Figure 4.8, the values are computed

from 20 MCCV iterations.

In all confusion matrices, it is clear that the classifier has managed to classify the synthetic

samples better compared to the real samples. For the t-BiLSTM-CNN GAN with equal and

separate sampling, the proportion of correctly classified synthetic samples of both classes

are close to 1.0, meaning that no synthetic samples are misclassified. For the t-LSTM GAN,

the proportion of correctly classified synthetic samples are lower compared to the t-BiLSTM-

CNN GAN, but still higher compared to the reference case in Figure 4.7. Ideally, if the GANs

have managed to capture the full distribution of the training data, the proportions of correctly

classified samples should be roughly equal for real and synthetic data.

Another aspect to consider is if the classifier seems to have been aided by the synthetic data

added to the real training data. One way to evaluate this is to consider the classification perfor-

mance on the real samples in the test set. Although this evaluation method has some similarities

with the TSTR experiment, it is important to remember one large difference: in this experiment,

the classifier has been trained on a mixture of real and synthetic data, and therefore the results

of this experiment indicate the ability of the synthetic data to add meaningful information to

the real data. This interaction of synthetic and real data during training is not captured by the

TSTR experiment.

For several of the models, including t-BiLSTM-CNN GAN with equal and separate sampling,

and t-LSTM GAN with equal, proportional, and separate sampling, the proportion of correctly

classified birds is larger compared to the reference case. This indicates that the synthetic data

aids the classifier to classify birds correctly. However, for all but the t-LSTM GAN with equal

sampling, the proportion of correctly classified UAVs are smaller compared to the reference case.

56

4. Results

Bird (R)

UAV (R)

Bird (S)

UAV (S)

0.926
± 0.03

0.074
± 0.03

0.101
± 0.04

0.899
± 0.04

0.999
± 0.00

0.001
± 0.00

0.000
± 0.00

1.000
± 0.00

t-BiLSTM-CNN (equal)

0.889
± 0.06

0.111
± 0.06

0.098
± 0.04

0.902
± 0.04

0.987
± 0.01

0.013
± 0.01

0.014
± 0.01

0.986
± 0.01

t-BiLSTM-CNN (proportional)

0.916
± 0.04

0.084
± 0.04

0.095
± 0.03

0.905
± 0.03

1.000
± 0.00

0.000
± 0.00

0.001
± 0.00

0.999
± 0.00

t-BiLSTM-CNN (separate)

Bird UAV

Bird (R)

UAV (R)

Bird (S)

UAV (S)

0.900
± 0.03

0.100
± 0.03

0.080
± 0.03

0.920
± 0.03

0.961
± 0.02

0.039
± 0.02

0.044
± 0.01

0.956
± 0.01

t-LSTM (equal)

Bird UAV

0.918
± 0.04

0.082
± 0.04

0.109
± 0.05

0.891
± 0.05

0.966
± 0.02

0.034
± 0.02

0.043
± 0.03

0.957
± 0.03

t-LSTM (proportional)

Bird UAV

0.922
± 0.04

0.078
± 0.04

0.103
± 0.04

0.897
± 0.04

0.979
± 0.01

0.021
± 0.01

0.012
± 0.01

0.988
± 0.01

t-LSTM (separate)

0.0 0.2 0.4 0.6 0.8 1.0

Predicted class

0.0

0.2

0.4

0.6

0.8

1.0
Tr

ue
 c

la
ss

Confusion matrices for generator models selected using MMD

Figure 4.8: Confusion matrices for the six synthetic datasets (three each for models t-BiLSTM-CNN GAN
and t-LSTM GAN with proportional, equal, and separate label sampling) where the optimal generator
models have been selected using the lowest obtained MMD value. Each confusion matrix has four rows
and two columns, where each row corresponds to a real data class and each column to the predicted
class by the classifier. Note that the synthetic and real samples are separated in the matrix, but were not
treated as different classes during the training of the classifier.

Hence, the t-LSTM GAN with equal sampling seems to be the only model that improves the

overall accuracy of the classifier, under the assumptions made in this experiment.

In Figure 4.9, the classification results from a classifier trained on a mixture of real and synthetic

data from generators selected using ED are presented. Also in this case, the classifier is better at

classifying synthetic samples from all generator models. Furthermore, the usage of synthetic

data from all models but one (t-BiLSTM-CNN GAN with proportional sampling) improves

the proportion of correctly classified birds compared to the reference case. However, none

of the models generate data that improves the proportion of correctly classified UAVs. The

best generator model in this aspect is the t-BiLSTM-CNN GAN with separate sampling, which

manages to classify 91.3% of the UAVs correctly.

57

4. Results

Bird (R)

UAV (R)

Bird (S)

UAV (S)

0.926
± 0.03

0.074
± 0.03

0.101
± 0.04

0.899
± 0.04

0.999
± 0.00

0.001
± 0.00

0.000
± 0.00

1.000
± 0.00

t-BiLSTM-CNN (equal)

0.889
± 0.06

0.111
± 0.06

0.098
± 0.04

0.902
± 0.04

0.987
± 0.01

0.013
± 0.01

0.014
± 0.01

0.986
± 0.01

t-BiLSTM-CNN (proportional)

0.908
± 0.04

0.092
± 0.04

0.087
± 0.04

0.913
± 0.04

0.999
± 0.00

0.001
± 0.00

0.002
± 0.00

0.998
± 0.00

t-BiLSTM-CNN (separate)

Bird UAV

Bird (R)

UAV (R)

Bird (S)

UAV (S)

0.916
± 0.05

0.084
± 0.05

0.113
± 0.04

0.887
± 0.04

0.965
± 0.03

0.035
± 0.03

0.053
± 0.03

0.947
± 0.03

t-LSTM (equal)

Bird UAV

0.932
± 0.03

0.068
± 0.03

0.122
± 0.04

0.878
± 0.04

0.955
± 0.02

0.045
± 0.02

0.050
± 0.03

0.950
± 0.03

t-LSTM (proportional)

Bird UAV

0.919
± 0.03

0.081
± 0.03

0.112
± 0.03

0.888
± 0.03

0.971
± 0.02

0.029
± 0.02

0.011
± 0.01

0.989
± 0.01

t-LSTM (separate)

0.0 0.2 0.4 0.6 0.8 1.0

Predicted class

0.0

0.2

0.4

0.6

0.8

1.0
Tr

ue
 c

la
ss

Confusion matrices for generator models selected using ED

Figure 4.9: Confusion matrices for the six synthetic datasets (three each for models t-BiLSTM-CNN GAN
and t-LSTM GAN with proportional, equal, and separate label sampling) where the optimal generator
models have been selected using the lowest obtained ED value. Each confusion matrix has four rows and
two columns, where each row corresponds to a real data class and each column to the predicted class by
the classifier. Note that the synthetic and real samples are separated in the matrix, but were not treated as
different classes during the training of the classifier.

4.2.4 The Proportion of Synthetic Data Versus Classification Accuracy

As was described in Section 3.5.3, the classification accuracy as a function of the proportion

of added synthetic data to the training dataset was measured. The results were averaged over

10 runs. The results for the cases where synthetic data from generators selected using MMD

was used can be found in Figure 4.10. Here, results for the t-BiLSTM-CNN GAN and the t-LSTM

GAN are presented separately. The shaded regions in the figure represent the standard deviation

of the average values over those 10 runs. The solid lines are the average accuracies computed

over 10 runs. The dashed line is a linear ordinary least squares (OLS) estimate to capture the

change of accuracy as the number of synthetic samples is increased. Note that the figure has a

logarithmic x-axis, and therefore, the lines are not linear in the figure.

58

4. Results

From Figure 4.10, it can be observed that the classifier trained on a mixture of real and synthetic

data from the t-BiLSTM-CNN generator selected using MMD seem to be rather unaffected by

the addition of larger proportions of synthetic data. This result holds for all sampling methods. A

small decline in accuracy for the separate and proportional sampling methods can be observed.

For the t-LSTM GAN, the accuracy of a classifier trained on real and synthetic data from a

generator trained with either proportional and equal sampling is unchanged even for larger

proportions of synthetic data. For the separate sampling case, however, there is a clear decline

in accuracy as larger proportions of synthetic data are added.

87

88

89

90

91

92

93

Ac
cu

ra
cy

t-BiLSTM-CNN GAN (MMD generator)

Prop.
Equal
Sep.

Prop. OLS, k=-0.000
Equal OLS, k=0.001
Sep. OLS, k=-0.000

100 101 102 103

Proportion of added synthetic data (%)

80

82

84

86

88

90

92

94

Ac
cu

ra
cy

t-LSTM GAN (MMD generator)

Prop.
Equal
Sep.

Prop. OLS, k=-0.000
Equal OLS, k=-0.000
Sep. OLS, k=-0.005

Figure 4.10: The accuracy of the GRU classifier, tested on real data only, as a function of the proportion
of added synthetic data from generators selected using MMD. The accuracy is computed by averaging
over 10 runs, where the test and training sets are randomly selected in each run. The shaded regions in
the figure correspond to the standard deviations of the accuracies over the 10 runs and the dashed line is
an ordinary least squares (OLS) fit of the mean accuracies to illustrate the development of the accuracy
over the different proportions.

In Figure 4.11, the corresponding plot for a classifier trained on synthetic data from generators

selected using ED is shown. Overall, the results are consistent with the MMD case. For the

t-BiLSTM-CNN architecture, a decline in accuracy can be seen for the separate sampling case.

59

4. Results

For the t-LSTM architecture, a decline for all three sampling methods can be observed. In this

case, the separate sampling method seems to yield the largest decline in accuracy for the t-LSTM

architecture in the MMD case.

85

86

87

88

89

90

91

92

93

Ac
cu

ra
cy

t-BiLSTM-CNN GAN (ED generator)

Prop.
Equal
Sep.

Prop. OLS, k=-0.000
Equal OLS, k=0.001
Sep. OLS, k=-0.003

100 101 102 103

Proportion of added synthetic data (%)

84

86

88

90

92

Ac
cu

ra
cy

t-LSTM GAN (ED generator)

Prop.
Equal
Sep.

Prop. OLS, k=-0.001
Equal OLS, k=-0.001
Sep. OLS, k=-0.006

Figure 4.11: The accuracy of the GRU classifier, tested on real data only, as a function of the proportion
of added synthetic data from generators selected using ED. The accuracy is computed by averaging over
10 runs, where the test and training sets are randomly selected in each run. The shaded regions in the
figure correspond to the standard deviations of the accuracies over the 10 runs and the dashed line is an
ordinary least squares (OLS) fit of the mean accuracies to illustrate the development of the accuracy over
the different proportions.

60

5 | Discussion

In the following chapter, the results presented in Chapter 4 will be discussed. Furthermore,

the data preprocessing, the dataset itself, and the applicability of the methods will be dis-

cussed.

5.1 The Multivariate Time-Series Radar Dataset

Before discussing the results of the experiments, some comments regarding the quality and

preprocessing of the multivariate time-series dataset used as training data for the conditional

recurrent GAN models are needed.

The dataset used was prepared and labeled as preparatory work in a previous thesis [3]. The

labeling was done manually, and the dataset may therefore contain mislabeled samples. During

data collection, the UAV was either tracked with GPS or flown in certain patterns to make sure

the UAV tracks would be distinguishable from bird tracks. However, an assumption made in the

process of labeling the data is that all samples that are known to not be UAV tracks are labeled as

birds. The possibility that UAVs other than the one flown by Saab were recorded during data

collection cannot be completely ruled out. Therefore, some bird samples may be UAVs. However,

the authors of the previous thesis estimated the risk of incorrectly labeled data as relatively

small.

Another quality aspect of the recorded data is diversity. As was described in Section 3.2.2, the

UAVs were mostly flown in similar patterns to tune the signal processing system of the radar.

Therefore, the recorded UAV samples are not as diverse as they would have been if the UAV had

been flown in more varied patterns. The fact that the UAV samples were split into relatively

short sequences (20 time steps) should to some extent prevent the networks to learn the flying

patterns of the UAV. However, the flying patterns of the UAV present in the data recordings might

not be representative of flying patterns of UAVs in general.

Another quality aspect worth mentioning is that some physical features, which are likely to

differ between birds and UAVs, are missing from the data. One such example is doppler spectral

widening, which was not used as a feature and potentially could give important information

about how different parts of the target are moving. It is reasonable to believe that if this feature

61

5. Discussion

would be present in the dataset, it could be important both for learning a GAN to produce

realistic samples and for improving the performance of a classifier.

The preprocessing of the dataset was performed using the same processing steps as in a previous

master thesis [3]. One step that might require a comment is the fact that the UAV samples are split

into subsequences of 20 time steps and treated as independent samples. In reality, subsequences

from the same time-series are not independent. This technique of augmenting time-series data

has been used in other studies [41, 42], and has been shown to work well in practice. To the

author, no study is known where this method has been evaluated in depth. However, since the

raw dataset was heavily unbalanced and the method has been used successfully in previous

studies, it was decided to use it although the assumption of independence does not hold in

practice.

5.2 The Distribution Discrepancy Metrics

In the following sections, different aspects of the usage of the two discrepancy metrics maximum

mean discrepancy (MMD) and energy distance (ED) are discussed.

5.2.1 Applicability of Metrics

In this thesis, both MMD and ED have been used to evaluate the training progress and for model

selection. Since they are distance-based, both metrics are simple and fast to compute and

there are no practical issues with implementing the metrics for neither univariate time-series

or multivariate time-series data. In several previous studies, MMD has been used for either

monitoring the training progress or selecting the generator models to generate synthetic data

from [7, 9, 10]. No previous work is known to the author where ED has been used as either a tool

for training monitoring or generator selection.

In the case of sinusoidal waves, MMD and ED perform very similarly. Both scores decrease with

increasing epochs and seem to reflect the improvement of the generated samples well. However,

as was mentioned in Section 4.1.1, values of both MMD and ED are sometimes smaller for

sequences not resembling sinusoidal waves, although the metrics are computed by comparing

the generated samples with actual sinusoidal waves. This suggests that single MMD and ED

values sometimes can be misleading in relation to sample quality. However, since the metrics

seem to correspond well with the visual improvement of the sinusoidal waves, the metrics were

used to evaluate the training process also for the multivariate time-series GANs.

In the multivariate time-series case, the applicability of the metrics is harder to evaluate since

no visual inspection of the generated samples can be performed. However, both MMD and

ED showed similar behavior when monitored during epochs compared to when used on the

sinusoidal data. This can be seen by comparing Figures 4.5 and 4.6 with Figures 4.3 and 4.4.

As can be read out from Table 4.1, lower MMD and ED scores were obtained for the t-LSTM

GANs if compared to the corresponding t-BiLSTM-CNN GANs. Does this mean that lower

62

5. Discussion

MMD and ED scores correspond to more realistic samples? Naturally, this is desirable since

the usage of MMD and ED aims at evaluating the sample quality during training. To answer

this question, Tables 4.2 and 4.3 should be considered. Here, the best-performing model is the

t-LSTM architecture with equal sampling if all metrics are considered in the ED case, and if

accuracy and precision are considered in the MMD case. The t-LSTM GAN with proportional

sampling is the best performing model if recall and F1-score are considered in the MMD case.

Since those GAN models also yield the lowest MMD and ED scores during training (as can be

seen in Table 4.1), the results indicate that lower obtained MMD and ED values correspond

to samples of higher quality for the multivariate time-series data too. It should be noted that

it is difficult to draw any conclusions in the separate sampling case. The minimal MMD and

ED values obtained during training (see Table 4.1) for the only bird and only UAV cases are in

most cases much lower compared to the equal and proportional sampling. However, this is

expected since the discrepancy within-class is should be smaller compared to the discrepancy

between-class. Therefore, such low values are not necessarily lower due to better sample quality,

but could also be lower since only one class is present in the samples.

5.2.2 The Choice of Evaluation Metrics for GAN Samples

Both maximum mean discrepancy and energy distance are distance-based kernel metrics. The

intention was to include several different metrics from both the statistical and information theory

domain. However, many evaluation metrics were ruled out for different reasons. A problem

with some of the statistical metrics considered is that they are not suitable for multivariate

data and/or not easily interpreted for time-series data. Examples of metrics ruled-out for those

reasons are the Anderson-Darling and Kolmogorov-Smirnoff tests. These tests are popular

statistical tests for testing if a sample is drawn from a given distribution (Anderson-Darling)

or if two samples are drawn from the same distribution (Kolmogorov-Smirnoff), but does not

generalize to multivariate time-series data. From the information theory domain, a metric called

Jensen-Shannon divergence (JSd) was considered. Since JSd measures the discrepancy between

distributions, it would be natural to use this metric to measure the discrepancy between the real

and synthetic data distribution during the training of a GAN. Furthermore, this metric appears

in previous work as an evaluation metric for generative models [25]. However, a key point here is

that JSd measures the discrepancy between distributions. If the data distribution is known, this

metric is simple to compute. In this project, the distributions of the real or synthetic data are not

known - only samples from them are available. Computing JSd, or rather computing an estimate

of JSd, under so-called weak agnostic assumptions with only finite i.i.d. samples available has

been the subject of previous work [43]. A common method to estimate JSd is to first estimate the

densities p and q , and then use the estimates to compute the divergences [44]. Several studies

suggest that an initial estimate of the distributions is not necessary to estimate JSd [44, 45], but it

is unclear if such an estimate would be a suitable evaluation metric in this application. Although

investigating the usage of such methods would be interesting, it was considered to be beyond

the scope of this thesis.

63

5. Discussion

The metrics left at this point were MMD and ED. Both metrics were found to be stable, fast to

compute, and intuitively simple to understand. Therefore, they were selected as discrepancy

metrics in this thesis. Since no previous works have been found where samples from GANs have

been evaluated using ED, it was interesting to investigate if this metric had any advantages to

the more well-used MMD metric.

5.2.3 Evaluation Metrics Versus Loss for Training Monitoring

One issue with training GANs is that no universal stopping criterion exists. The most common

way to determine if the adversarial training should be stopped is to visually inspect the generated

samples and determine if they look sufficiently realistic. This method is feasible for image data,

but not for numerical data of the type that has been handled in this thesis. Furthermore, it is

far from certain that changes in the distribution of synthetic data are directly visible, even for

image data. Using visual inspection for determining when to stop training a GAN is therefore

not a very precise method.

When training neural networks in general, it is helpful to inspect the training and validation

losses to determine when the training should be stopped. At a certain point, the validation loss

ceases to decrease, and this is a sign that all training after this point overfits the network on the

training data. However, as could be seen in for instance Figures 4.5 and 4.6, the behavior of the

losses of the generator and discriminator does not necessarily reflect the development of the

sample quality. This is, in particular, true for the case in Figure 4.5, where the losses show a stable

behavior, but yet the sample quality seems to fluctuate. Therefore, an important contribution of

this thesis is to show that two such simple metrics as MMD and ED could be used to monitor

how the sample quality changes over time. This conclusion is based on the discussion in Section

5.2.1: the GAN architecture that in the TRTS experiment seemed to have generated the most

realistic samples was also the model whose samples reached the minimal MMD and ED values

during the training process. Compared to visual inspection or monitoring of the loss function,

both MMD and ED seem to be better indicators of the training progress.

5.2.4 Maximum Mean Discrepancy or Energy Distance?

In this work, the usage of MMD and ED has two purposes: firstly, to monitor the development of

the sample quality during training and secondly, to select a suitable generator model to generate

synthetic data from.

For monitoring the training progress, the two metrics have performed similarly in almost all runs.

For the monitoring purpose, it is enough to have metrics that roughly capture the improvements

of the synthetic samples, and both metrics seem to have managed this. Compared to the

information that can be obtained from monitoring the loss and visual inspection, this is a

clear improvement. In some runs, slightly negative MMD values have been observed. As was

explained in Section 4.1.2, although MMD is a squared metric and hence always non-negative,

64

5. Discussion

the unbiased estimate of MMD is not guaranteed to be non-negative. Such negative values show

up as sudden dips in the MMD curve. This can, for instance, be seen in Figure 4.4. Such behavior

cannot be seen for ED since the energy distance estimate used is guaranteed to be non-negative.

However, the small negative values in some of the MMD curves do not affect the applicability of

the metric for monitoring purposes.

For selecting a suitable generator model, the experiments show differences in performance

between models selected using MMD and ED. It should be noted that for two GANs, namely the t-

BiLSTM-CNN GAN with equal and proportional sampling, the metrics select the same generator

model. For the other GANs, the selected models differ. In the train on real, test on synthetic

(TRTS) experiment (see Tables 4.2 and 4.3 for results), classifiers tested on synthetic data from

generators selected using MMD achieves higher precision, recall, and F1-score compared to

classifiers tested on synthetic samples from generators selected using ED. This can be seen by

considering the values marked in bold in Tables 4.2 and 4.3, which are the highest obtained

metric scores. The highest obtained accuracy was higher in the ED case, but the value is only

slightly larger than in the MMD case. For the train on synthetic, test on real (TSTR) experiment

(see Tables 4.4 and 4.5), similar tendencies can be seen. A classifier trained on synthetic data

from a generator selected using MMD reaches higher values of all metrics compared to the

ED case. Furthermore, in Table 4.4, it can be seen that the recall of a classifier trained on

synthetic data from one of the generators (t-BiLSTM-CNN GAN with separate sampling) selected

using MMD was several percentages higher compared to the reference case (94.7% compared to

91.7%). For the ED case, the recall of the same GAN model is lower than the reference case (89.2%

compared to 91.7%). This particular result is important since the recall is of large interest in this

specific military application: misclassification of UAVs can lead to more severe consequences

compared to misclassification of birds. In the train on a mixture, test on a mixture (TMTM)

experiment, it was noted that in the ED case, none of the architectures seem to be able to

generate data that improve the proportion of correctly classified birds and UAVs. In the MMD

case, one architecture was observed to be able to do this (the t-LSTM GAN architecture with

equal sampling).

Overall, the results indicate that MMD is a better choice for selecting a suitable generator model

to use for generating synthetic samples. To monitor the training progress of the GANs, no major

difference in performance between the two metrics was observed.

5.3 The Classification Performance of Synthetic Data

In the following sections, the different experiments performed on the synthetic multivariate

time-series data and the results of those experiments will be discussed. Instead of discussing

the experiments separately, the section has been divided into answering the following four

questions:

1. Could different sampling methods of the synthetic labels during the training of a GAN

affect the classification performance of the synthetic data?

65

5. Discussion

2. Do the GANs manage to generate realistic data, i.e., samples of high quality?

3. Do the GANs manage to capture the full distribution of the training dataset, i.e., is there

any detectable covariate shift in the synthetic data?

4. Does using synthetic data from GANs to augment existing real-world datasets seems like a

useful method?

Those questions will be answered one-by-one in the following sections.

5.3.1 The Methods for Sampling Conditional Labels During Training

In general, no clear pattern could be seen between the performance of the datasets generated

from GANs trained using the different sampling techniques. However, for the t-BiLSTM-CNN

GAN, the separate sampling of the synthetic labels seems to generate data of higher quality

compared to the t-BiLSTM-CNN GAN trained using the other sampling techniques. This can

be read out from the TRTS Tables 4.2 and 4.3, and the TSTR Tables 4.4 and 4.5. In the TRTS

case, in essence, all metric scores are higher for the separate sampling case compared to equal

and proportional sampling. There is one exception: the precision in the case of TRTS with

generator models selected using ED. However, the standard deviations of the precision for the

t-BiLSTM-CNN GAN are large, so it is difficult to draw any conclusions from this slightly smaller

mean value. In the TSTR case, separate sampling with the t-BiLSTM-CNN architecture yields

higher accuracy, recall, and F1-score in the MMD case and higher recall in the ED case compared

to the other sampling methods.

Altogether, the results indicate that separate sampling seems to generate more realistic samples

in the t-BiLSTM-CNN GAN case. In a way, this is not surprising. With separate sampling, the

same GAN architecture is trained on the data classes separately. Hence, a dataset generated from

two such GANs is generated using twice as many trainable parameters compared to the other

sampling methods. This should lead to models with smaller bias, but also most likely models

with larger variance due to larger model complexity. Since an increase in sample quality can be

seen by training the t-BiLSTM-CNN GAN separately on the two classes, the architecture itself

may contain too few trainable parameters. This would also explain why the t-BiLSTM-CNN GAN

architecture with other sampling techniques seems to produce less realistic samples. However,

if an architecture already contains a sufficient number of trainable parameters, training on

each of the classes separately might lead to overfitting. The results from the experiment where

the accuracy of a classifier trained on different proportions of synthetic data (Figures 4.10 and

4.11) indicate that this might be the case for the t-LSTM GAN architecture. The accuracy of the

t-LSTM GAN with separate sampling declines much faster as larger proportions of synthetic

data is added, which could indicate synthetic data of lower quality, perhaps due to the GAN

overfitting the training data.

66

5. Discussion

5.3.2 The Sample Quality of the Synthetic Data

As was briefly explained in Section 3.5.2, the train on real, test on synthetic (TRTS) experiment

can measure if the synthetic samples are realistic. The idea is that if a synthetic sample is

sufficiently realistic, a classifier trained on real data should be able to recognize and classify

synthetic samples roughly as well as real samples. Since the classifier is trained on the full real

dataset (where all data modes are present), the result of the experiment is not affected by a

possible covariate shift in the synthetic dataset.

As can be seen in Tables 4.2 and 4.3, several of the trained GAN generators seem to be able to

create highly realistic samples. Samples from the t-BiLSTM-CNN GAN with separate sampling

(in the MMD case) and the t-LSTM GAN with equal, proportional, and separate sampling (in

both MMD and ED cases), seem to be classified approximately as good as real samples by a

classifier trained on real data only. Lower metric scores indicate that the samples are not similar

to the real samples: the features learned from the real data cannot be found in the synthetic

samples by the classifier. Examples of cases where this is happening are for the t-BiLSTM-CNN

GAN with equal and proportional sampling for both the MMD and ED cases and the t-BiLSTM-

CNN GAN with separate sampling in the ED case. Higher metric scores compared to the real

case would indicate that the GAN has succeeded in identifying important features of the real

data, but have failed to capture the full complexity of the real data. A classifier trained on real

data could then easily classify synthetic samples correctly. However, such a result has not been

observed in this experiment.

Another result worth mentioning is the differences in classification accuracy between real and

synthetic samples in the train on a mixture, test on a mixture (TMTM) experiment. When

a classifier is trained on an equal proportion of real and synthetic data, it classifies a larger

proportion of the synthetic samples correctly compared to the real samples. This seems to be

particularly true for the cases where a classifier is trained on a mixture of real data and less

realistic synthetic data. Why is the classifier better at predicting the correct class of synthetic

samples of lower quality?

A possible explanation is that a synthetic dataset with samples of lower quality has a less complex

decision boundary. A decision boundary is a hypersurface separating the two data classes in

some high-dimensional data space. The classifier classifies all points on one side of the boundary

to one class and all points on the other side of the boundary to the other class. The training of a

classifier aims at localizing this decision boundary. Since the classifiers in the TMTM experiment

seem to be able to more easily separate the synthetic samples compared to the real samples, this

indicates that the decision boundaries of the synthetic datasets are less complex. A previous

study also mentions diversity loss in the boundary regions, i.e. boundary distortion, as a possible

explanation [4]. Boundary distortion will be further discussed in the next section.

67

5. Discussion

5.3.3 The Diversity of the Synthetic Samples

The second quality aspect of the synthetic data regards the diversity of the synthetic dataset. It is

not enough for the GAN to generate realistic samples: the real data distribution must be well-

represented. As was presented in Section 1.3, one usually refers to the difference in distribution

between the synthetic and real samples as a covariate shift. Two main types of covariate shifts

are commonly discussed: mode collapse and boundary distortion.

Mode collapse refers to the case when the generator is more likely to produce some modes

of the training data. In the extreme case, the generator is only able to generate a single mode.

In this study, conditional GANs have been used for the multivariate time-series data. This

means, that since both the generator and discriminator are conditioned on the class labels, the

conditioned information determines which modes to be generated. Therefore, mode collapse

in its commonly described form does not occur while training conditional GANs. The second

type of covariate shift, boundary distortion, describes the loss of diversity within each class and

more specifically, a failure of capturing the training data distribution at boundary regions of

the support. This type of covariate shift is relevant for this project. Although it is possible to

steer the proportion of samples in each class, it is not possible to steer the diversity within each

class.

The main finding indicating boundary distortion in the synthetic data is the fact that although at

least some of the GAN generators seem to be able to produce highly realistic synthetic samples

(for instance t-LSTM with equal, proportional, and separate sampling in Tables 4.2 and 4.3), this

data seems to not be able to improve the classification accuracy of a classifier trained on only

or partially synthetic data. This can be observed in the TSTR experiments (Tables 4.4 and 4.5),

where a classifier trained on the various synthetic datasets at all times performs worse compared

to when trained on real data. Since it has been shown that at least the t-LSTM architecture

generates highly realistic samples independent of the sampling method, the lower numbers

cannot be explained with low sample quality. Therefore, those results indicate that the data

suffer from a loss of diversity.

In the experiment investigating the classification accuracy as a function of added synthetic

proportion, the accuracy seems to be either unaffected or decline as larger proportions of

synthetic data from the generators are added. The results can be found in Figures 4.10 and 4.11.

Considering that the classifier seemed to perform worse when trained on synthetic data, it is

not completely surprising that adding more synthetic data leads to a decline in classification

accuracy. However, one result is surprising: although the t-BiLSTM-CNN GAN has shown to

produce less realistic samples, especially in the equal and proportional sampling cases, the

accuracy of the classifier barely decreases at all when larger proportions of synthetic data from

those generators are added. This holds for all t-BiLSTM-CNN generators selected using MMD

and the equal and proportional sampling t-BiLSTM-CNN generators selected using ED. This

68

5. Discussion

could indicate that the diversity of the samples from the t-BiLSTM-CNN GAN is larger and that

this compensates for less realistic samples.

A possible explanation for a larger diversity in the t-BiLSTM-CNN data is that this architecture

includes a minibatch discrimination layer, forcing the generator to produce more diverse sam-

ples. Such a layer was included in the BiLSTM-CNN architectures since it is commonly used

together with convolutional layers in discriminators.

5.3.4 The Applicability of GANs as an Augmentation Method

As was discussed in the previous sections, at least some of the GANs seem to be able to generate

highly realistic samples. However, the performance gain of providing a classifier additional

synthetic samples seem to have been modest in most cases. It is reasonable to use synthetic

samples from GANs for augmentation purposes?

First of all, how well have others succeeded in using synthetic samples from GANs to augment

real-world datasets? Several of the experiments performed in this thesis have to some extent

been performed in previous work. The train on synthetic, test on real (TSTR) experiment was

first introduced in a study aiming at generating multivariate medical time-series using GANs [5].

The authors of this study concluded that they managed to generate data at times comparable

to real data, but the classifier used did not perform as well on the synthetic data for any of the

features considered. Regardless of this, the authors believe that with small refinements of their

methods, such synthetic data could be of use in real applications.

An experiment similar to the accuracy versus synthetic proportion experiment was performed in

a previous work [46]. There, the authors measured the accuracy as a function of the proportion

of synthetic data added to the training dataset from different GAN models. However, they did

not present the average accuracy over a fixed number of runs, but over the top five runs with the

highest accuracy. Only two of the six models managed to improve the classification accuracy

when up to 50% synthetic data were added, and for larger proportions, the top five accuracies

declined also for those models. The training data, in this case, were images from the database

ImageNet, and the GAN architectures used were, with that said, different from the ones used in

this study. A study that compared traditional augmentation methods with GANs was published

in 2017 [47]. Traditional methods include cropping, rotating, and flipping of the training images.

The presented results showed that the traditional augmentation performed better compared to

using synthetic GAN data when tested using a CNN classifier.

There also exist studies where GANs have been used successfully as an augmentation method.

One such study was published in 2019 [48]. In this work, the authors trained GANs on different

multivariate datasets. None of the datasets contained any time-series data. For one of the

datasets, the Breast Cancer Wisconsin (Diagnostic) Dataset, the accuracy of a classifier improved

when trained on purely synthetic data and then tested on a real samples, compared to when

trained and tested on real data. The same tendencies could not be seen for the other dataset

69

5. Discussion

tested in the study: for them, the obtained test accuracy was about as high as for the real

case.

Making comparisons like this is difficult since different studies handle different datasets and

use different architectures. In all presented studies, relatively simple GANs have been used, and

none of the architectures are specially tailored for handling classification problems. Overall, it

seems like using such simple GANs as an augmentation method has been tested to some extent,

mostly for image data, and that the results vary. For some applications, the usage of this method

could be successful but a common problem seems to be that the synthetic data lack sufficient

realism or suffer from a lack of diversity.

Does this mean that the usage of GANs as an augmentation method is doomed? Not necessarily.

For some types of data, such as time-series data, traditional augmentation methods are not

suitable. Furthermore, this study has shown that the GANs seem to be able to generate highly-

realistic samples, and therefore, it might be a question of finding a different architecture and/or

better hyperparameters for creating samples with larger diversity. The fact that other studies

have succeeded in improving classification accuracy is also promising and also indicates that

there might be a question of finding a better GAN setup.

It should also be mentioned that there exist GANs tailored to dealing with classification problems.

Such GANs has different loss functions and a discriminator that does not only discriminate

between real and fake images, but also between different data classes. Those networks will not

be discussed here. However, one such combined GAN and augmentation method called deep

adversarial data augmentation (DADA) is briefly described in Section 6.2.1.

70

6 | Conclusion

In the following sections, the thesis will be summarized and some additional relevant methods,

which could be interesting to further investigate, are described.

6.1 Summing Up

In this thesis, recurrent GANs and conditional recurrent GANs have been trained to generate

two different types of time-series data: univariate time-series consisting of sinusoidal waves and

multivariate radar time-series. An important part of the thesis work has been to examine differ-

ent methods for evaluating synthetic GAN data. Two distance-based kernel metrics, maximum

mean discrepancy and energy distance, were examined for monitoring the training progress

and selecting a suitable generator model for the generation of synthetic samples. For evaluating

the quality of the synthetic dataset, the data was tested in a classification setting with several

experiments aiming at examining the sample quality and the in-class diversity.

Overall, both GAN architectures tested seem to be able to create highly realistic time-series,

both simpler and more complex ones. However, not all hyperparameter settings and sampling

methods tested yield realistic samples. Furthermore, it was shown that the synthetic data could

suffer from loss of in-class diversity as well as a distortion of the decision boundary region,

making the synthetic samples easier for a classifier to classify when trained on both real and

synthetic data.

The contribution of this thesis is to show that GANs can be a feasible method for generating

realistic synthetic time-series data in military applications. Although adding synthetic samples

to the real data did not improve the classification performance trained on such a mixture, highly

realistic data could be of interest for other usages. Furthermore, the thesis has contributed

with the insight that two such simple metrics as MMD and ED could be a more useful stopping

criterion compared to loss monitoring and visual inspection for GAN training. Lastly, the

thesis has shown that under some circumstances, it is possible to improve the classification

performance using synthetic data. Even if the gain in performance so far is small, adjustments

of the network architectures and hyperparameters could generate even more diverse synthetic

data.

71

6. Conclusion

6.2 Future Work

In this thesis, generative adversarial networks have been used to generate synthetic data for

augmentation of multivariate time-series. During the project, several other methods came to

mind that might be useful to study as a continuation and extension of this project. Some such

methods will be briefly described in the following sections.

6.2.1 GANs Tailored for Data Augmentation in Classification Tasks

In this project, conditional recurrent GANs have been used to generate synthetic data, which is

then evaluated using a classifier. This makes the method used in this thesis a two-step process.

An alternative approach would be to combine the training and the evaluation process. Such an

approach is described in a 2018 article, where the authors propose a new type of GAN called

deep adversarial data augmentation (DADA), shown to be efficient even in the extremely low

data regime [49].

The proposed structure of the DADA GAN is similar to an ordinary GAN. The generator, in the

paper called augmenter, produces synthetic samples from a latent vector and is conditioned on

the class labels. The discriminator differs from the ordinary discriminator of GANs in mainly

two aspects: firstly, instead of outputting a single value indicating the probability of the sample

being real, the discriminator outputs 2k values, where k is the number of classes in the dataset.

The first k outputs represent the probabilities of the input sample belonging to one of the k real

classes and the second k outputs represent the probabilities of the input belonging to any of the

k fake classes. In the ideal case, the discriminator should be unable to discriminate between real

and fake samples. The second aspect where the discriminator differs is that the loss is computed

over those 2k classes, using the cross-entropy loss function instead of the binary cross-entropy

loss.

The mentioned paper performed several experiments on common benchmarking datasets such

as CIFAR-10 and CIFAR-100. By selecting a small subset of the datasets for training and hence

simulating a low data regime, the authors could present significantly better results using DADA

compared to using synthetic data from for instance ordinary GANs. Using such a network to

generate synthetic data could potentially create more diverse data and improve the results

presented in this thesis further. Furthermore, the DADA method is interesting to consider for

other reasons too. In military applications, as briefly discussed in Section 1.1, obtaining training

data can be difficult due to the highly sensitive nature of such data. That means, that developing

methods that work well in the extremely low data regime is appealing since a minimal amount

of real data would be needed to train the models.

72

6. Conclusion

6.2.2 Normalizing Flows

A family of alternative generative models that have been developed to take care of some of the

shortcomings of GANs, such as an unstable training process and certain types of covariate shifts,

is normalizing flows. This family of generative models provides tractable likelihoods and the

possibility of an exact evaluation of the probability density of new observations [2]. The idea

is that an initial, simple density is transformed into a more complex one through a series of

differentiable and invertible transformations [50]. If X ∈Rd is a random variable with a tractable

distribution pX :Rd →R (for instance the multivariate standard normal distribution), Y= f (X)

an invertible and differentiable function, and X=g(Y) is the inverse function of f , then we may

use the change of variable formula to obtain the density of the transformed variable Y [2]:

pY(y) = pX(g(y))

∣∣∣∣det
∂g
∂y

∣∣∣∣= pX(g(y))

∣∣∣∣det
∂f

∂g(y)

∣∣∣∣−1

. (6.1)

The transformation of the initial density of the random variable X towards the final, more

complex density is called the generative direction. The opposite direction is called the normal-

izing direction. The name “normalizing flows” is based on this “normalizing” operation of the

more complex density. Also, the simple initial density is in practice often a normal density,

which is another reason for the name “normalizing flows”. Note that in order to obtain the final

density, multiple transformations with different functions fi is usually performed. Given that the

transformation fi can be arbitrarily complex, it has been theoretically shown that normalizing

flows can be used to generate any density pY from any simple distribution pX [2].

Normalizing flows was proposed in 2015 and has gained popularity during the last few years.

However, the usage of normalizing flows is not widely studied for time-series data, let alone

multivariate continuous time-series data. However, a recent study investigated the usage of

conditional normalizing flows in combination with an autoregressive model for multivariate

time-series data forecasting [51]. The paper states that the authors received state-of-the-art

results using this method. Furthermore, a slightly older paper investigated the usage of nor-

malizing flows for anomaly detection in an industrial time-series dataset [52]. Also this paper

presents promising results compared to a standard method for anomaly detection called Local

Outlier Factor (LOF).

6.2.3 Topological Data Analysis

Topological data analysis (TDA) is a statistical field based on the idea that datasets can be an-

alyzed using methods developed from algebraic topology and computational geometry [53].

While analysis of high-dimensional datasets can be difficult due to sensitivity to noise and

restrictions to specific metrics, TDA is robust to noise and the usage of the method is indepen-

dent on the distance metric chosen (however, the choice of metric might affect the quality of

information obtained from the analysis). Such an analysis method could be useful to analyze

73

6. Conclusion

the structure of for instance the multivariate time-series dataset explored in this thesis and how

synthetic such data differs from real data.

Intuitively, topological data analysis is about analyzing the high-dimensional topological and

geometrical shapes of the data in some metric space. It is assumed that the input data is a finite

set of points, with some distance metric associated with it [53]. It must not necessarily be a

Euclidean distance metric but could be any finite metric space. The set of points is assumed to

be a discrete representation of a continuous space, and therefore, a continuous representation

of the data is needed: the points themselves do not hold any topological information. Obtaining

a continuous data representation is usually done by enclosing all points with the smallest shape

that encloses them all: in mathematical contexts usually referred to as the complex hull. A

k-simplex, spanned by k +1 independent points X, is the complex hull of X. In Figure 6.1, four

examples of k-simplices are presented for k = 0, k = 1, k = 2, and k = 3.

Figure 6.1: Four examples of k-simplices for k = 0, k = 1, k = 2, and k = 3. A k-simplex, spanned by k +1
independent points X, is the complex hull of X, or more intuitively: the smallest shape that encloses all
k +1 points in X.

A collection of simplices is called a geometric simplicial complex K in Rd . Such collections are

created by connecting nearby k-simplices. A geometric simplicial complex K spans a subspace

of Rd which is called the underlying space of K [53]. This underlying space inherits the topology

of Rd , and can hence be used for topological analysis.

There are many ways to form geometric simplicial complexes from data. One natural way is

to extend the idea of forming α-neighboring graphs. Such a graph is formed by drawing edges

between vertices located closer than some distance α from each other. If two vertices are closer

than α to each other, then a line (1-simplex) can be drawn between them. If three vertices

are closer than α from each other, then a triangle (2-simplex) can connect them. If k vertices

are closer than α from each other, then they can be connected by a k-simplex. The result is a

geometric simplicial complex.

Using this continuous representation of the dataset, one can utilize different tools to analyze the

dataset. Such tools will not be described in depth here, as there already exist many well-written

summaries of TDA methods such as [53], just to mention one example. However, one method

deserves to be mentioned since it is by far the most common tool used in general within TDA. It

is called persistent homology. The idea is to count the number of n-dimensional holes in the

dataset, in a structured way: the data is sliced (intuitively similar to an MRI scan of human

organs), and the holes are counted to investigate the importance of the holes in the data. To

put it simply, holes that are present in many such slices are more important than holes that are

74

6. Conclusion

Figure 6.2: An example of a geometric simplicial complex, consisting of several k-simplices.

present in fewer. The persistent homology can be summarized in barcode diagrams, and with

the help of those diagrams, two spaces can be statistically compared. This could be interesting

for several reasons. Firstly, it could be an interesting method to visualize the multivariate tracker

data used in this thesis. Secondly, it could be interesting to compare samples from the real

data and synthetic data using TDA. TDA is robust even for small sample sizes, which suits

this application well. Furthermore, a recent study developed new metrics based on persistent

homology and used it to obtain good results in several univariate time-series classification task,

compared to conventional methods such as dynamic time warping (DTW) [54].

There exist several robust and well-documented libraries for topological data analysis in Python,

R, and C++. In Python, scikit-tda and GUDHI are two examples.

75

6. Conclusion

76

Bibliography

[1] Connor Shorten and Taghi M. Khoshgoftaar. “A Survey on Image Data Augmentation for

Deep Learning”. In: Journal of Big Data (2019).

[2] Ivan Kobyzev, Simon Prince, and Marcus A Brubaker. “Normalizing Flows: An Introduction

and Review of Current Methods”. In: arXiv preprint arXiv:1908.09257v2 (2019).

[3] Henrik Andersson and Chi Thong Luong. “Classification Between Birds and UAVs Using

Recurrent Neural Networks”. Gothenburg: Chalmers University of Technology, 2019.

[4] Shibani Santurkar, Ludwig Schmidt, and Aleksander Madry. “A Classification-Based Study

of Covariate Shift in GAN Distributions”. In: arXiv preprint arXiv:1711.00970 (2017).

[5] Cristóbal Esteban, Stephanie L. Hyland, and Gunnar Rätsch. “Real-valued (Medical) Time

Series Generation with Recurrent Conditional GANs”. In: arXiv preprint arXiv:1706.02633v2

(2017).

[6] Yann LeCun. The MNIST database of handwritten images. 1998. URL: http://yann.

lecun.com/exdb/mnist/ (visited on 02/07/2020).

[7] Anne Marie Delaney, Eoin Brophy, and Tomas E. Ward. “Synthesis of Realistic ECG using

Generative Adversarial Networks”. In: arXiv preprint arXiv:1909.09150v1 (2019).

[8] Fei Zhu et al. “Electrocardiogram Generation With a Bidirectional LSTM-CNN Generative

Adversarial Network”. In: Scientific Reports 9 (2019), pp. 1–11.

[9] Dan Li et al. “Anomaly Detection with Generative Adversarial Networks for Multivariate

Time Series”. In: arXiv preprint arXiv:1809.04758v3 [cs.LG] (2018).

[10] Dan Li et al. “MAD-GAN: Multivariate Anomaly Detection for Time Series Data with

Generative Adversarial Networks”. In: arXiv preprint arXiv:1901.04997v1 [cs.LG] (2019).

[11] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learn-

ing. Data Mining, Inference, and Prediction. Springer, 2009.

[12] Bernhard Mehlig. “Artificial Neural Networks”. In: arXiv preprint arXiv:1901.05639v2

[cs.LG] (2019).

[13] Warren S. McCulloch and Walter H. Pitts. “A Logical Calculus of the Ideas Immanent in

Nervous Activity”. In: Bullentin of Mathematical Biophysics (1943).

[14] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.

77

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

Bibliography

[15] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic Optimization”. In:

arXiv preprint arXiv:1412.6980 [cs.LG] (2014).

[16] Gareth James et al. An Introduction to Statistical Learning. With Applications in R. Springer,

2013.

[17] Nitish Srivastava et al. “Dropout: A Simple Way to Prevent Neural Networks from Overfit-

ting”. In: Journal of Machine Learning Research 15 (2014), pp. 1929–1958.

[18] Qing-Song Xu, Yi-Zeng Liang, and Yi-Ping Du. “Monte Carlo Cross-Validation for Selecting

a Model and Estimating the Prediction Error in Multivariate Calibration”. In: Journal of

Chemometrics 18 (2004), pp. 112–120.

[19] Eric W. Weisstein. Convolution. 2008. URL: http://mathworld.wolfram.com/Convolution.

html (visited on 03/16/2020).

[20] Andrej Karpathy. Convolutional Neural Networks for Visual Recognition. 2019. URL: http:

//cs231n.github.io/convolutional-networks/ (visited on 03/16/2020).

[21] Christopher Olah. Understanding LSTM Networks. 2015. URL: https://colah.github.

io/posts/2015-08-Understanding-LSTMs/ (visited on 03/20/2020).

[22] Ian Goodfellow et al. “Generative Adversarial Nets”. In: Advances in neural information

processing systems. 2014, pp. 2672–2680.

[23] Ian Goodfellow. “NIPS 2016 Tutorial: Generative Adversarial Networks”. In: arXiv preprint

arXiv:1701.00160v4 [cs.LG] (2017).

[24] Mehdi Mirza and Simon Osindero. “Conditional Generative Adversarial Nets”. In: arXiv

preprint arXiv:1411.1784v1 [cs.LG] (2014).

[25] Henrik Arnelid, Edvin Listo Zec, and Nasser Mohammadiha. “Recurrent Conditional

Generative Adversarial Networks for Autonomous Driving Sensor Modelling”. In: IEEE

Intelligent Transportation Systems Conference (ITSC) (2019).

[26] Jon Gauthier. Conditional Generative Adversarial Nets for Convolutional Face Generation.

Tech. rep. Symbolic Systems Program, Natural Language Processing Group, Stanford

University, 2015.

[27] Levent Karacan et al. “Learning to Generate Images of Outdoor Scenes from Attributes

and Semantic Layouts”. In: arXiv preprint arXiv:1612.00215v (2016).

[28] Tim Salimans et al. “Improved Techniques for Training GANs”. In: arXiv preprint arXiv:1606.03498v1

[cs.LG] (2016).

[29] Alec Radford, Luke Metz, and Soumith Chintala. “Unsupervised Representation Learning

with Deep Convolutional Generative Adversarial Networks”. In: arXiv preprint arXiv:1511.06434v2

[cs.LG] (2015).

[30] Christian Szegedy et al. “Rethinking the Inception Architecture for Computer Vision”. In:

arXiv preprint arXiv:1512.00567v3 [cs.CV] (2015).

78

http://mathworld.wolfram.com/Convolution.html
http://mathworld.wolfram.com/Convolution.html
http://cs231n.github.io/convolutional-networks/
http://cs231n.github.io/convolutional-networks/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Bibliography

[31] Arthur Gretton et al. “A Kernel Two-Sample Test”. In: Journal of Machine Learning Research

13 (2012), pp. 723–773.

[32] Dougal J. Sutherland et al. “Generative Models and Model Criticism via Optimized Maxi-

mum Mean Discrepancy”. In: arXiv preprint arXiv:1611.04488v5 [stat.ML] (2016).

[33] Dino Sejdinovic and Arthur Gretton. What is an RKHS? 2014. URL: http://www.stats.

ox.ac.uk/~sejdinov/teaching/atml14/Theory_2014.pdf (visited on 03/24/2020).

[34] Gábor J. Székely and Maria L. Rizzo. “Energy Statistics: A Class of Statistics Based on

Distances”. In: Journal of Statistical Planning and Inference 143 (2013), pp. 1249–1272.

[35] Gábor J. Székely and Maria L. Rizzo. “Testing for Equal Distributions in High Dimension”.

In: InterStat (2004).

[36] Gábor J. Székely and Maria L. Rizzo. “Energy Distance”. In: WIREs Computational Statistics

(2016), 8:27–38.

[37] Gábor J. Székely. E -Statistics: The Energy of Statistical Samples. Tech. rep. 02-16. Depart-

ment of Mathematics and Statistics, Bowling Green State University, Ohio, 2002.

[38] Dino Sejdinovic et al. “Equivalence of distance-based and RKHS-based statistics in hy-

pothesis testing”. In: arXiv preprint arXiv:1207.6076v3 [stat.ME] (2012).

[39] Josip Djolonga. A PyTorch Library for Differentiable Two-Sample Tests. 2017. URL: https:

//github.com/josipd/torch-two-sample (visited on 03/30/2020).

[40] Dougal J. Sutherland et al. “Generative Models and Model Criticism via Optimized Maxi-

mum Mean Discrepancy”. In: arXiv preprint arXiv:1611.04488v5 [stat.ML] (2016).

[41] Zhicheng Cui, Wenlin Chen, and Yixin Chen. “Multi-Scale Convolutional Neural Networks

for Time Series Classification”. In: arXiv preprint arXiv:1603.06995v4 [cs.CV] (2016).

[42] Arthur Le Guennec, Simon Malinowski, and Romain Tavenard. “Data Augmentation

for Time Series Classification using Convolutional Neural Networks”. In: ECML/PKDD

Workshop on Advanced Analytics and Learning on Temporal Data, September 2016, Riva

Del Garda, Italy (2016).

[43] Paul K. Rubenstein et al. “Practical and Consistent Estimation of f-Divergences”. In: arXiv

preprint arXiv:1905.11112v2 [stat.ML] (2019).

[44] Fernando Pérez-Cruz. “Kullback-Leibler Divergence Estimation of Continuous Distribu-

tions”. In: 2008 IEEE International Symposium on Information Theory (2008).

[45] Hideitsu Hino and Noboru Murata. “Information Estimators for Weighted Observations”.

In: Neural Networks 46 (2013), pp. 260–275.

[46] Suman Ravuri and Oriol Vinyals. “Classification Accuracy Score for Conditional Generative

Models”. In: arXiv preprint arXiv:1905.10887v2 [cs.LG] (2019).

[47] Luis Perez and Jason Wang. “The Effectiveness of Data Augmentation in Image Classifica-

tion using Deep Learning”. In: arXiv preprint arXiv:1712.04621v1 [cs.CV] (2017).

79

http://www.stats.ox.ac.uk/~sejdinov/teaching/atml14/Theory_2014.pdf
http://www.stats.ox.ac.uk/~sejdinov/teaching/atml14/Theory_2014.pdf
https://github.com/josipd/torch-two-sample
https://github.com/josipd/torch-two-sample

Bibliography

[48] Fabio Henrique Kiyoiti dos Santos Tanaka and Claus Aranha. “Data Augmentation Using

GANs”. In: arXiv preprint arXiv:1904.09135v1 [cs.LG] (2019).

[49] Xiaofeng Zhang et al. “DADA: Deep Adversarial Data Augmentation for Extremely Low

Data Regime Classification”. In: arXiv preprint arXiv:1809.00981v1 [cs.CV] (2018).

[50] Danilo J. Rezende and Shakir Mohamed. “Variational Inference with Normalizing Flows”.

In: arXiv preprint arXiv:1505.05770v6 (2016).

[51] Kashif Rasul et al. “Multi-variate Probabilistic Time Series Forecasting via Conditioned

Normalizing Flows”. In: arXiv preprint arXiv:2002.06103v2 [cs.LG] (2020).

[52] Maximilian Schmidt and Marko Simic. “Normalizing Flows for Novelty Detection in In-

dustrial Time Series Data”. In: arXiv preprint arXiv:1906.06904v1 [cs.LG] (2019).

[53] Frédéric Chazal and Bertrand Michel. “An Introduction to Topological Data Analysis: Fun-

damental and Practical Aspects for Data Scientists”. In: arXiv preprint arXiv:1710.04019v1

[math.ST] (2017).

[54] Yu-Min Chung, William Cruse, and Austin Lawson. “A Persistent Homology Approach to

Time Series Classification”. In: arXiv preprint arXiv:2003.06462v1 [stat.ME] (2020).

80

	List of Figures
	List of Tables
	Introduction
	Background
	Scope
	Related Work
	Thesis Outline

	Theory
	Supervised and Unsupervised Learning
	Artificial Neural Networks
	The Basic Neural Unit
	A Simple Feed-Forward Network
	Training a Neural Network
	Convolutional Neural Networks
	Recurrent Neural Networks

	Generative Adversarial Networks
	The Training Objective and the Loss Function
	Conditional Generative Adversarial Networks
	Improving Training Stability

	Evaluation of Generative Models
	Maximum Mean Discrepancy
	Energy Distance

	Methodology
	Overview
	Description and Preprocessing of Datasets
	Sinusoidal Time-Series
	Radar Tracker Time-Series

	Neural Network Architectures
	Generation of Sinusoidal Time-Series
	Generation of Radar Tracker Data
	Classification of Radar Tracks

	Training the Neural Networks
	Computing Platform
	Hyperparameters and Training Settings

	Experiments Performed on Synthetic Radar Time-Series
	The Effect of Sampling Proportions of Conditional Labels
	The Quality of the Synthetic Samples from a Classification Perspective
	The Proportion of Synthetic Data Versus Classification Accuracy

	Results
	Generation of Sinusoidal Time-Series
	Comparison of Architectures
	Training Convergence

	Generation of Multivariate Radar Time-Series
	The Training Process and Convergence of the Models
	Effect of Sampling Proportion of Conditional Labels
	The Quality of Synthetic Data from a Classification Perspective
	The Proportion of Synthetic Data Versus Classification Accuracy

	Discussion
	The Multivariate Time-Series Radar Dataset
	The Distribution Discrepancy Metrics
	Applicability of Metrics
	The Choice of Evaluation Metrics for GAN Samples
	Evaluation Metrics Versus Loss for Training Monitoring
	Maximum Mean Discrepancy or Energy Distance?

	The Classification Performance of Synthetic Data
	The Methods for Sampling Conditional Labels During Training
	The Sample Quality of the Synthetic Data
	The Diversity of the Synthetic Samples
	The Applicability of GANs as an Augmentation Method

	Conclusion
	Summing Up
	Future Work
	GANs Tailored for Data Augmentation in Classification Tasks
	Normalizing Flows
	Topological Data Analysis

	Bibliography

