
Improving Memory Consumption with
FAITH - a Proof Assistant for
Improvement Theory

Master’s thesis in Computer science and engineering

Örjan Sunnerhagen

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2021

Master’s thesis 2021

Improving Memory Consumption with
FAITH - a Proof Assistant for

Improvement Theory

Örjan Sunnerhagen

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2021

Improving Memory Consumption with FAITH

Örjan Sunnerhagen

© Örjan Sunnerhagen, 2021.

Supervisor: David Sands, Department of Computer Science and Engineering
Examiner: John Hughes, Department of Computer Science and Engineering

Master’s Thesis 2021
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX
Gothenburg, Sweden 2021

iv

Improving Memory Consumption with FAITH

Örjan Sunnerhagen
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
In functional languages with lazy evaluation and sharing, such as Haskell, it is
hard to reason about space usage. In particular, it is hard to know if a given
local transformation in such a language will introduce an asymptotic space increase.
Gustavsson and Sands have developed Space Improvement Theory to prove if such
transformations introduced asymptotic space increase. However, since the proofs
are long and complicated, Space Improvement proofs done on paper are prone to
errors.

To tackle this problem, I have constructed FAITH, the proof assistant for
Improvement Theory. FAITH allows users to define transformational laws, such
as those for Space Improvement, and then use those laws in proofs that transform
one term to another step by step. In case of errors, FAITH provides helpful error
messages. The main contributions of FAITH is to check proofs of inequational
reasoning with custom transformational laws that can be applied inside arbitrary
contexts.

Keywords: Computer Science, Haskell, optimization, performance, functional
programming, formal verification, proof assistant, Improvement Theory, memory
consumption, Space Improvement Theory

v

Acknowledgements
I would like to thank my supervisor David Sands and my examiner John Hughes for
their support in this project. I would also like to thank my family and friends for
their encouragement during the project.

Örjan Sunnerhagen, Gothenburg, June 2021

vii

Contents

List of Figures xi

List of Tables xiii

1 Introduction 1

2 Background - Space Improvement Theory 3
2.1 Language . 3
2.2 Recursive let . 4
2.3 Semantic Equivalence . 4
2.4 Abstract Machine . 5
2.5 Improvement . 7
2.6 Gadgets . 8

2.6.1 Dummy references . 8
2.6.2 Spikes . 9
2.6.3 Weights . 9
2.6.4 Balloons . 10

2.7 Language summary . 10
2.8 Transformational Rules . 11
2.9 Induction . 12

3 Case studies 13
3.1 Case study 1: Cyclic structures . 13
3.2 Case study 2: intermediate data structures 18

4 Implementation 21
4.1 Overview of functionality . 21
4.2 Representation of variables . 22

4.2.1 Concrete unique variable names 22
4.2.2 Locally nameless representation 23

4.3 Substitution . 25

5 Discussion 27
5.1 Related Work . 27

5.1.1 Using other tools for Space Improvement Theory 27
5.1.1.1 Time improvement and Unie 27
5.1.1.2 Higher Order Abstract Syntax in Abella and Beluga 28

ix

Contents

5.1.1.3 Ott . 29
5.1.1.4 Hybrid . 29

5.1.2 Other approaches to similar problems 30
5.2 Evaluation . 31

5.2.1 Comparison to UNIE . 31
5.2.2 Tests . 32

5.3 Lessons from development . 33
5.4 Future work . 33

5.4.1 Induction . 33
5.4.2 Further support for Time Improvement Theory 35
5.4.3 Further parsing capabilities 35
5.4.4 Matching . 36
5.4.5 Pretty-printing . 37

5.5 Conclusion . 37

Bibliography 39

A User Guide 43
A.1 Syntax . 43
A.2 Forbidden Law constructs . 46

B Detailed FAITH scripts and encodings 47
B.1 All laws . 47
B.2 Full FAITH proofs . 50

B.2.1 Case study 1, cyclic structures 50
B.2.2 Case study 2: intermediate data structures 56

B.2.2.1 Adding gadgets to any 56
B.2.2.2 Inductive case . 60

x

List of Figures

2.1 Sestoft’s mark 1 abstract machine [44], used by Gustavsson and Sands’
space improvement theory [16, 14] . 5

2.2 The evaluation of let ty “ Nu in pλx.Mq y by the abstract machine,
given that M contains x more than once. Due to the (Lookup) and
(Update) rule, the evaluation of N to V is only performed the first
time x is mentioned in M . 6

2.3 A number of laws from [16], showcasing some of the difficulty in
matching, checking correctness and applying a certain rule mechani-
cally. 11

3.1 The rules that are used in the case studies, in the ascii representation
used in FAITH. 14

3.2 The rules that are used in the case studies, in LATEX representation . 14

xi

List of Figures

xii

List of Tables

A.1 Table of some of the different language constructs in the different
language representations . 46

A.2 Substitutions that need keywords to specify their type. If the substi-
tution is not of this type, specify it without a keyword. 46

xiii

List of Tables

xiv

1
Introduction

Functional programming is a programming style with many advantages and the lazy
evaluation and call-by-need semantics of e.g. Haskell serves well for compiling and
running such programs. However, the space usage of such programs is hard to reason
about. To append three lists you can either write:

xs ++ (ys ++ zs)

or

(xs ++ ys) ++ zs

but which one should you use? Is one better than the other? Do they use the same
amount of space? How can you be sure?

One way to find out is to use profiling. We could feed the transformation lots
of different lengths of lists with different elements, such as numbers, unevaluated
expressions et cetera and measure the space usage and make some kind of judgement.
Using profiling however, we can never be sure if there is some special combination of
lists where changing xs ++ (ys ++ zs) to (xs ++ ys) ++ zs increases the space
usage with more than a constant factor. In other words, by using profiling, we can
never be sure whether the transformation introduces a space leak or is safe for space.

Other transformations of lazy programs also come into question when develop-
ing regular programs, standard libraries or optimizing compilers. These include tail
recursion, strictly accumulating parameters or the worker-wrapper transformation.
Since these transformations are not all yet proven safe for space, a compiler opti-
mization or library function that uses these transformations may introduce a space
leak in some special case.

To be sure not to miss any special cases, we must turn to formal proofs. Such
formal proofs were made by Gustavsson and Sands [14, 15, 16], where they proposed
a theory for proofs about the space behaviour of transformations and showed space
improvement for several transformations. For example, in [15, 16], they have shown
that changing xs ++ (ys ++ zs) to (xs ++ ys) ++ zs may only change the stack
and heap usage by a constant factor, but the converse is only true for the sum of
the stack and heap. The proofs are for local improvements of programs, and can
thus be applied in any program context.

The proofs are based on a set of transformational rules, derived from the space
behaviour of how an abstract machine would evaluate a given program. To prove
that a term is improved by another, you transform the first term to the other step
by step, using these transformational rules. Since most structural changes of a

1

1. Introduction

program change the space behaviour somewhat, the transformational rules typically
compensate for changes in space behaviour by adding or removing space gadgets.

One of these 50 transformational rules rules defined in [16], called (unfold-3) is
the following:

let Γtv
wx “ V u in Crxs ŸŹ

„
let Γtv

wx “ V u in CrvOV s ifx P FVpV q.

The rule says that if a variable x is bound to a value V in a context C, we can
substitute the variable for its value if we add a space gadget vO to V to compensate
for the decreased stack usage. For the rule to apply, x also needs to be among the
free variables of the value V , so V is a recursive function or a constructor containing
x, for example y : x. The side condition is needed because otherwise, the binding
v
wx “ V might get garbage collected earlier in the evaluation. The theory is explained
in full in section 2.

Since most rules preserve or improve space behaviour by making a small change
to a term, add or remove space gadgets and have side conditions, any substantial
program transformation will be prone to errors that can only be discovered by those
comfortable with the theory if the proofs are on paper. To ensure the integrity of
proofs of improvement theory, some kind of formalization is therefore necessary.

A tool that supports reasoning about space improvement transformations has to
fulfil a number of criteria. Firstly, the improvements are local, so the transformations
should be valid under binding. Secondly, the rules are stated in the Barendregt
variable convention [2], which states that all bound variables in any instance of a
rule are distinct and disjoint from the free variables, so the tool needs to implement
that correctly. Thirdly, the tool needs to support the binding constructs of not just
the λ-calculus, but also recursive lets and case statements. Finally, since there are
around 50 rules, and more rules might be added later, the tool has to make it easy
to add new rules.

From these criteria, I have created the FAITH tool, a proof Assistant for
Improvement Theory. The tool parses its rules and the proof, and checks that
each transformation in the proof is correct with respect to the rules. It does this
by implementing substitution that keeps the invariant that all variable names are
unique and distinct from the free variables, in order to ensure correctness. Since
all laws are parsed rather than implemented, the tool can be used both for Space
Improvement Theory and a subset of Time Improvement Theory, as well as any
other similar set of transformational rules applied to the same language.

I have used the FAITH tool to verify some of the proofs in [16, 15] in section 3,
to serve as example usage. I will then explain the underlying technology in section
4.

I evaluated some other tools for constructing proofs about programming lan-
guages [1, 37, 45, 9] and a tool specifically for time improvement [23]. However, as
concluded in section 5.1.1, none of these tools were suitable for space improvement.
We also discuss other related work in section 5.1.2. Thereafter, we evaluate the tool
by comparing it to UNIE [23] and talk about testing in section 5.2. I mention some
lessons from development in section 5.3 and suggest future work in section 5.4. For
a user guide, see appendix A. The tool is open-source and available at [48].

2

2
Background - Space Improvement

Theory

This section will summarize space improvement theory, as described in [14] and [16].
We will not go into many details and comment on the design or show proofs. For
these details, I refer the reader to [14, 16]. Readers that are not interested in the
motivation for the laws of space improvement can skip ahead to section 2.7.

2.1 Language
The language of space improvement theory is a small functional language. A pro-
gram is a term, which we will denote as L, M and N , and can be formed by the
following grammar:

L,M,N :: “ x | λx.M |M x | c ~x | seqM N

| n |M `N | addn M | iszeroM
| let t~x “ ~Mu inN | caseM of tci Ñ Niu.

The letter x is for variables, n is for numbers and c is for constructors. Constructors
are always fully applied and the vector notation ~x is short for x1 . . . xn, so c ~x is an
abbreviation for c x1 . . . xn, where n is the arity of the constructor c. In the same
way, let t~x “ ~Mu inN is an abbreviation for let tx1 “ M1, . . . , xn “ Mnu inN . The
case construct caseM of tci Ñ Niu also contains several cases, so it could be written
in the longer form caseM oftc1 ~x1 Ñ N1, . . . , cn ~xn Ñ Nnu.

We will denote values with V and W and the language defines them as terms
in weak normal head form, so V,W ::“ n | c ~x | λx.M . The construct seqM N
evaluates M to a value, throws away its result and then evaluates N . Since M x is
in the language and M N is not, arguments to functions must be variables. This
choice is to make sure that the argument is bound to a variable on the heap, which
will enable sharing, as we will see in the abstract machine later.

When M x is evaluated, M is first evaluated to V “ λy.N and then the appli-
cation is performed. The procedure is similar for case, seq , `, addn and iszero , so
to generalize this concept, the language uses reduction contexts. Reduction contexts
are denoted by R and are defined by:

R ::“ r¨sx | case r¨s of tci ~xi Ñ Niu | seq r¨sM | r¨s `M | addn r¨s | iszero r¨s

3

2. Background - Space Improvement Theory

In these, r¨s is the hole of the context, so it is where the term will go. For example,
if R “ r¨s ` 2 and M “ 1, then RrM s “ 1` 2.

2.2 Recursive let

The let in this language is recursive. This means that you can create terms such as
the mutually recursive even/odd function

let isEven = \x if x == 0 then True else isOdd (x-1)
isOdd = \x if x == 0 then False else isEven (x-1)

in isEven 5

which in the language of space improvement would be

let tisEven “ λx.case piszeroxq of
ttrue Ñ true
, false Ñ let ty “ x´ 1u in isOdd yu,

isOdd “ λx.case piszeroxq of
ttrue Ñ false
, false Ñ let ty “ x´ 1u in isEven yu

u in isEven 5

if minus (´) were added to the language in a similar way to `. Just like isOdd
can refer to isEven and vice versa, it is also possible to create the infinite list
of ones through let tx “ 1, xs “ x : xsu inxs. This means that in the construct
let t~x “ ~Mu inN , all the variables ~x are bound in all the expressions ~M and in
the expression N .

2.3 Semantic Equivalence

In Space Improvement theory, semantic equivalence, which we will denote by ”, will
be explained in this section. Firstly, the names of the variables do not matter, as
long as they have the same binding structure. This is called α-equivalence and is
expressed in lambda calculus as

λx.M ” λy.M ry{xs if y R FVpMq,

and generalized to case-statements and lets in the obvious way. Furthermore, the
order of bindings in a let or cases in a case-statement does not matter. This means

4

2. Background - Space Improvement Theory

that

let tx “ 1, xs “ x : xsu in
casexs of tnil Ñ 2,

y : ysÑ 3u
”

let tas “ a : as, a “ 1u in
case as of tb : bsÑ 3,

nil Ñ 2u.

2.4 Abstract Machine

xΓtx “Mu, x, Sy Ñ xΓ, M, #x : Sy (Lookup)
xΓ, V, #x : Sy Ñ xΓtx “ V u, V, Sy (Update)

xΓ, let Γ1 inN, Sy Ñ xΓΓ1, N, Sy (Letrec)
xΓ, RrM s, Sy Ñ xΓ,M,R : Sy (Push)
xΓ, V, R : Sy Ñ xΓ, M, Sy ifRrV s ù M (Reduce)

pλx.Mq y ù M ry{xs

case cj ~y of tci ~xi ÑMiu ù Mjr~y{~xj
s

seqV M ù M

m`N ù addm N

addm n ù xm` ny

iszerom ù

#

true ifm “ 0
false otherwise

Figure 2.1: Sestoft’s mark 1 abstract machine [44], used by Gustavsson and Sands’
space improvement theory [16, 14]

The abstract machine of space improvement theory is shown in figure 2.1. First
an explanation of the notation: A machine configuration is denoted xΓ, M, Sy, where
Γ is the heap, M is the term being evaluated and S is the stack. The heap is a set,
while the stack is ordered, using the R : S to denote that the reduction R is put
on top of the stack S. The notation #x is an update marker for x and xm` ny is
the mathematical addition of two numbers, as opposed to the syntactic construct of
addition of two terms M `N .

The abstract machine expresses the lazy semantics of e.g. Haskell; arguments
are only evaluated when needed (call-by-need) and the result of an evaluation may

5

2. Background - Space Improvement Theory

xΓ1, let ty “ Nu in pλx.Mq y, S1y

Ñ xΓ1ty “ Nu, pλx.Mq y, S1y

Ñ xΓ1ty “ Nu, λx.M, pr¨s yq : S1y

Ñ xΓ1ty “ Nu, M ry{xs, S1y

...
ÑxΓ2ty “ Nu, y, S2y

Ñ xΓ2, N, #y : S2y

...
ÑxΓ3, V, #y : S2y

Ñ xΓ3ty “ V u, V, S2y

...
ÑxΓ4ty “ V u, y, S3y

Ñ xΓ4, V, #y : S3y

Ñ xΓ4ty “ V u, V, S3y

Figure 2.2: The evaluation of let ty “ Nu in pλx.Mq y by the abstract machine,
given that M contains x more than once. Due to the (Lookup) and (Update) rule,
the evaluation of N to V is only performed the first time x is mentioned in M .

be reused (sharing). The machine does this lazy sharing through its use of variable
bindings on the heap. Whenever a function is called, it has to call it with a variable
rather than a general term. This means that to get the effect of pλx.MqN , you
must transform it to

let ty “ Nu in pλx.Mq y.

The evaluation of this term, given that M contains x more than once, is shown in
figure 2.2. We see that the abstract machine puts y “ N on the heap with (Letrec)
and after (Push) and (Reduce), it evaluates M ry{xs. When the value of y is needed
the first time, the (Lookup) rule is invoked, which takes y “ N off the heap, sets
an update marker #y for y and starts evaluating N . When N has been evaluated
to a value V , the (Update) rule puts the binding y “ V on the heap, so the next
time y is needed, the labor of evaluating N to V is not repeated. This mechanism
for expressing laziness and sharing comes from Launchbury’s natural semantics [27],
which Sestoft transformed to small-steps semantics and revised to make his mark 1
abstract machine [44], which is essentially the abstract machine we see in figure 2.1.

To garbage collect, we remove any unnecessary bindings and update markers
between each step of the abstract machine. To formalize the procedure, we say that
the domain of a set of bindings Γ, denoted domΓ, are all the variables that Γ binds,
so if Γ “ tx “M, y “ Nu, domΓ “ tx, yu. Similarly, the domain of a stack, domS,
are the variables that have an update marker in S, and domΓYdomS “ dom pΓ, Sq.

6

2. Background - Space Improvement Theory

For a configuration of an abstract machine xΓ, M, Sy to be valid, dom pΓ, Sq must
contain all free variables of Γ, M and S. If we can remove any bindings or update
markers while still keeping the configuration valid, we do so between each step of
the abstract machine. We denote this garbage collection with ą̈.

To measure the space usage, the stack and heap usage is measured at each
step. When placed on the heap or stack respectively, bindings take one heap space,
reduction contexts take one stack space and update markers takes one stack space
and one heap space. The motivations for this is found in [14, 16], but in short,
this ensures that the space measurement is at most a constant factor away from the
actual space usage, where the constant is proportional to the size of the program.

2.5 Improvement
The maximum heap and stack usage, ph, sq, is the space used in a computation. We
write M óph,sq to say that xH, M, εy is evaluated to some final state xΓ, V, εy with
a maximum heap size at most h and maximum stack size at most s (with garbage
collection between each step of the abstract machine). Here, ε denotes the empty
stack.

A typical local rewrite-optimization searches a program for some pattern, such
as (xs ++ ys) ++ zs, and replaces it with something (potentially) more effective,
such as xs ++ (ys ++ zs) at each location where that pattern appears. We want
to formalize this notion. We let M be the initial term and N be the better term.
We can then say that there is a context C that contains M in several places, and
we take out the Ms and leave holes that we fill with N instead, turning CrM s into
CrN s. Not all lists have the names xs, ys and zs, however, so we want to substitute
the variables in M and N for any other variables to fit the program. We let σ range
over such substitutions r~x{~ys, which are always variable-for-variable, and arrive at
the notation that CrMσs is changed to CrNσs.

As mentioned above, contexts are "programs with holes", which gives rise to the
following definition, where we let C and D range over contexts:

C,D :: “ r¨s | x | λx.C | Cx | c ~x | seq C D
| n |C`D | addn C | iszero C
| let t~x “ ~Cu in D | case C of tci Ñ Diu.

Technically, contexts do not need to have holes, but in most useful cases they will.
We are now able to formally state the definition of weak and strong space

improvement that [14, 16] describes. A term M is said to be weakly improved by N ,
written M Ź

«
N , if there exists a linear function fpxq “ kx `m such that for any

context C and any substitution σ,

CrMσs óph,sq ùñ CrNσs ópfphq,fpsqq .
A term M is said to be strongly improved by N , written M Ź

„
N , if, for any

context C and any substitution σ,

CrMσs óph,sq ùñ CrNσs óph,sq

7

2. Background - Space Improvement Theory

Note that CrMσs óph,sq means that the heap and stack size cannot be larger
than h and s respectively, but it may be smaller. This means that the strong
improvement M Ź

„
N says that N cannot use more space than M , and the weak

improvement M Ź
«
N says that N can use more space than M , but not more space

than what can be bounded by a linear function.
It may seem peculiar that we would need the strong space improvement. The

measurement of space is only an approximation that is a constant away from the
actual space usage, so adding the linear function to define weak improvement would
seem harmless. However, Gustavsson and Sands [14, 16] have shown we have to
use strong improvement to make any meaningful proofs. They show that if we
use strong improvement, we only have to consider the context that immediately
needs to fill its holes with values to be able to generalize to all contexts. They also
show that we need strong improvement to create a valid proof strategy for recursive
functions. Since a strong space equivalence ŸŹ

„
(both Ÿ

„
and Ź

„
) cannot change the

space usage, not by even a constant factor (with respect to the abstract machine),
transformational laws of strong space equivalence need to be more restrictive than
those of weak space equivalence. This is one of the reasons that time improvement is
easier than space improvement; time improvement proofs can be carried out mostly
in a weak improvement, while space improvement proofs need to be carried out
mostly in strong improvement.

2.6 Gadgets

To show weak space equivalence M ŸŹ
«
N (both M Ź

«
N and N Ź

«
M), a common

technique, used by Gustavsson and Sands [14, 16], is to annotate M and N with
some gadgets to produce M 1 and N 1 such that M ŸŹ

«
M 1 ŸŹ

„
N 1 ŸŹ
«
N . The aim of a

gadget is therefore to modify the term’s space usage within the allowance granted
by the linear function of weak improvement. We will briefly explain these gadgets
below.

2.6.1 Dummy references
Since the abstract machine garbage-collects bindings and update markers at each
step, one way to increase space usage is to hold on to a variable longer than necessary.
To do this, we use dummy references. The dummy reference is defined as

t~xuM “
def let t~y “ ~xu inM where ~y are fresh.

Since ~x will be part of the free variables of t~xuM , they will not be garbage-collected
until t~xuM is evaluated. When t~xuM is evaluated, the bindings will be immediately
garbage-collected;

xΓ, let t~y “ ~xu inM, Sy

Ñ xΓt~y “ ~xu, M, Sy

ą̈ xΓ, M, Sy

8

2. Background - Space Improvement Theory

so there are no other side effects. Gustavsson and Sands [16] show that dummy
references can be introduced while retaining weak space equivalence as long as they
reference a dummy binding, i.e. a binding that is just used for taking up space;

let tx “Mu inN ŸŹ
«

let tz “ Ω, x “ tzuMu inN where z is fresh.

In this equation, Ω is a divergent term. The divergent term does not terminate and
the amount of stack and heap weight does not matter (wOΩ ŸŹ

„
Ω and wNΩ ŸŹ

„
Ω).

It can be for example letx “ x inx or a type error. In this law, Ω can be replaced
with anything, since it will not be used.

There are also other rules that introduce or remove dummy bindings as part of
the transformation, such as (reduction);

wRrV s ŸŹ
„

wOXN if RrV s ù N and FVpRrV sq “ FVpXNq,

where the wO and w annotations will be explained in the next chapters.

2.6.2 Spikes
To create a momentary increase in stack- or heap size, Gustavsson and Sands [16]
introduces stack- and heap spikes. Stack spikes are defined as

OM “
def case true of ttrue ÑMu,

since the case-reduction is put on the stack for one unit of time, while true is evalu-
ated.

Heap spikes are defined as

NM “
def let tz “ Ωu in tzuM where z is fresh,

since the binding z “ Ω is kept on the heap by the dummy reference tzuM for one
time unit, and is then garbage-collected in the next step, when tzuM is evaluated.

Gustavsson and Sands [16] show that stack- and heap spikes can be introduced
while retaining weak space improvement;

M ŸŹ
«

OM

M ŸŹ
«

NM

2.6.3 Weights
Another way to change the space usage of a program by a constant factor is to change
the amount of space a program construct uses when put on the heap or stack. This
is when weights enter the picture. Firstly, we introduce a weight annotation to the
let construct;

let tw
v x “Mu inN.

This notation means that w
v x “M has stack weight w and heap weight v. This

means that when the binding w
v x “M is put on the heap, it will take up v units of

9

2. Background - Space Improvement Theory

space. It also means that when the update marker #w
v x is on the stack, it will take

up w units of stack space and v units of heap space.
Gustavsson and Sands [16] also introduce weights on reduction contexts;

wR

This means that R will take up w units of space when placed on the stack. In
summary,

|
w
v x “M | “ pv, 0q |#w

v x| “ pv, wq |
wR| “ p0, wq

When w or v are not specified, they are defined to be 1, as was the case before
weights were introduced.

2.6.4 Balloons
To set the weight of something to 0 is called introducing a balloon. Since a weight
of 0 could hide other space usage, they can only be inserted in certain contexts;

pλx.Mq y ŸŹ
«

0
ppλx.Mq yq

let tx “ V u inM ŸŹ
«

let t0x “ V u inM

The heap weight of a binding may be set to 0 if it is a top-level definition, like a
standard library definition, because it will then only be allocated once. M ¨ x is
syntactic sugar for 0pM xq

2.7 Language summary
In summary, the base language are terms that can be constructed in any of the
following ways:

L,M,N ::“ x | λx.M | c ~x | n | let tw
v ~x “

~Mu inN |
wRrM s

|
t~xuM |

wOM |
wNM

Where R is a reduction context and is defined in the following way:

R ::“ r¨sx | case r¨s of tci ~xi Ñ Niu | seq r¨sM | r¨s `
wM | addn r¨s | iszero r¨s

Values are terms in weak normal head form. The let construct is recursive, so in
let tw

v ~x “
~Mu inN , the variables ~x are bound in ~M and in N .

There is some syntactic sugar:

• If w or v are not specified, they are assumed to be 1

• Patterns of the case-constuctor ci ~xi can be abbreviated as pati

• A set of alternatives of the case constructor tci ~xi Ñ Niu can be abbreviated
as alts

• 0pMxq can be abbreviated as M ¨ x

10

2. Background - Space Improvement Theory

let Γtv
wx “ V u in Crxs ŸŹ

„
let Γtv

wx “ V u in CrvOV s ifx P FVpV q (unfold-3)
let Γtv

wx “ let ∆ inMu inN ŸŹ
„

let ∆tv
wx “ let Γ inMu inN (let-let)

if domΓY dom∆ Ď FVpMq, and |Γ| “ |∆|
wRrvcaseM of tpati Ñ Nius ŸŹ„

w`vcaseM of tpati Ñ wRrNisu (R-case)
let Γtx “ V, y “ V u inM Ź

„
let Γrx{ystx “ V rx{ysu inM rx{ys (value-merge)

let Γtx “ V, y “ V u inM Ÿ
„

let Γrx{yst2x “ V rx{ysu inM rx{ys (value-copy)
let tv

wx “Mu in Crcasex of talts, c ~y Ñ DrtxuvOc ~ysus (case-fold)
Ź
„

let tv
wx “Mu in Crcasex of talts, c ~y Ñ Drxsus

Figure 2.3: A number of laws from [16], showcasing some of the difficulty in
matching, checking correctness and applying a certain rule mechanically.

• letx “ N inM x can be abbreviated as M N

• Γ and ∆ range over sets of let-bindings

• X ranges over variables in dummy references, so if X “ t~xu, XM “ t~xuM

There are also contexts C, D. They can be constructed in the same way as terms,
but at each place where there would be a term, there is a context, and a context
can also be defined as the hole r¨s. A value context V is a context that is a value,
for example λx.C. If a term M is put into a context CrM s, every hole is replaced
by M . Free variables in M might then bind to variables in C.

There is also the divergent term Ω. This term does not terminate and the
amount of stack and heap weight does not matter (wOΩ ŸŹ

„
Ω and wNΩ ŸŹ

„
Ω).

The domain of a set of bindings, denoted domΓ, are the variables bound by it.
The notation FVpMq denotes the free variables in M .

M Ź
„
N denotes strong improvement and M Ź

«
N denotes weak improvement.

Strong improvement implies weak improvement.

2.8 Transformational Rules
Using the gadgets introduced in section 2.6 and the fact that the total space usage
of a program is the maximum stack and heap usage of that program, Gustavsson
and Sands [16] derive a number of laws about strong and weak space improvement
(I will use laws and transformational rules interchangeably). Figure 2.3 shows some
of these derived laws.

There are around 50 laws of similar nature in [16] that one has to keep in
mind when proving M Ź

«
N . You can of course always derive another rule from

the abstract machine if you need a new one, so the choice of laws are always a bit
ad-hoc.

We will get more into the technical details of how the FAITH tool works in
section 4, but for now, let’s just note some challenges with this setup. As mentioned

11

2. Background - Space Improvement Theory

above, the number of laws is not finite, so new laws should be easy to add if needed.
The laws are defined with the Barendregt variable convention [2], which states that
all bound variables in any instance of the law are distinct and they are disjoint from
the free variables. So the tool needs to check that the variable convention holds for
all instances of a law.

These rules show that even though the base language is quite small, the language
for expressing rules is much larger. There are boolean expressions on set theory
in (let-let), vectorized expressions for the branches of a case statement and weight
arithmetic in (R-case). There is also substitution in (value-merge) and (value-copy).

The main difficulty however, is that some terms are repeated in the same
term, such as V in (unfold-3), and that you have to apply contexts correctly, as
in (case-fold). This is hard because you then have to α-rename some terms during
substitution, in order to arrive at a term with unique variable names in order to
uphold the Barendregt variable convention. We will explain how we solved this in
section 4.

2.9 Induction
Gustavsson and Sands have shown that you can use induction to prove transfor-
mations of recursive terms. The idea is that if a term is recursive and terminates,
it can be transformed into a nonrecursive term by unwinding the recursion a finite
number of times. By the definition of Space Improvement, it only models the in-
stances where the initial term terminates. Therefore, to show space improvement
for a recursive term, you can show that space improvement for all unwindings of
that term using induction. The base case is then

let tw
v f “ Vrf su in Crf 0

s “
def let tw

v f “ Vrf su in CrtfuΩs

and the induction case is

let tw
v f “ Vrf su in Crfn`1

s “
def let tw

v f “ Vrf su in CrwOVrfn
ss

Gustavsson and Sands show that this only works in strong space improvement, and
the proof, which is rather nontrivial, can be found in [16].

12

3
Case studies

To showcase the usability of the FAITH tool, I have used it to verify some of the
transformations found in [16, 15]. These case studies were both useful for debugging
FAITH, and discovered some minor errors in the proofs themselves.

All of the rules that are used in the case studies are found in figure 3.2. The
FAITH representation of these rules are in figure 3.1. The full list of rules can be
found in [16] and their representation in FAITH are in appendix B.1.

These case studies may seem quite small, since they only change one definition
of a function to another, and are not a change to a whole program. However, one
main point of Improvement Theory is that the transformations are local, so the case
studies are examples of local transformations that can be applied to any program.
Therefore, a larger program can have these transformations applied at any part of the
program without worsening the memory consumption asymptotically. This means
that optimizing compilers may apply these transformations in order to improve
larger programs. More motivations for these studies are provided in [16, 15].

3.1 Case study 1: Cyclic structures

The first and shortest of the proofs that Gustavsson and Sands makes in [16, 15] is
a proof that

let txs “ x : xsu inM

more space efficient than

let trepeat “ λx.plet tys “ repeat xu inx : ysqu in let txs “ repeat xu inM

The theorem is stated as: Let Γ “ trepeat “ λx.plet tys “ repeat xu inx : ysqu.
Then

Γ $ let txs “ repeat xu inM Ź
„

let txs “ x : xsu inM

13

3. Case studies

-dummy-ref-algebra-8: {X}d^M |~> M;
-@-rules-3: R[@] <~> {FV(R)}d^@;
-@-rules-2: let G {x = {X}d^@} in N |~> let G {x = M} in N

if FV(M) subsetof X union {x};
-spike-algebra-zero-stack-spike: [0]s^M <~> M;
-spike-algebra-zero-heap-spike: [0]h^M <~> M;
-reduction: [w]^R[V] <~> [w]s^{X}d^N

if (R[V] ~~> N) && (FV(R[V]) = FV({X}d^N));
-dummy-ref-algebra-5: {}d^M <~> M;
-spike-algebra-13: [w]s^M |~> M;
-let-elim: let {x =[v,w]= M} in x <~> [w]h^M if not x in FV(M);
-let-R: let G in [w]^R[M] <~> [w]^R[let G in M]

if dom G subsetof FV(M);
-let-flatten: let G1 in let G2 in M <~> let G1 G2 in M

if dom G2 subsetof FV(M);
-unfold-5: let G {x =[0,0]= V} in C[x]

<~> let G {x =[0,0]= V} in C[V];
-value-merge': let G {x = let {y = V} in V} in M

|~> let G {x = V[x/y]} in M;

Figure 3.1: The rules that are used in the case studies, in the ascii representation
used in FAITH.

XM Ź
„
M (dummy reference algebra 8)

RrΩs ŸŹ
„

FVpRqΩ (rule 3 for Ω)
let Γtx “ XΩu inN Ź

„
let Γtx “Mu inN (rule 2 for Ω)
if FVpMqX Y txu

0OM ŸŹ
„
M (stack algebra zero stack spike)

0NM ŸŹ
„
M (stack algebra zero heap spike)

wRrV s ŸŹ
„

wOXN (reduction)
if RrV s ù N and FVpRrV sq “ FVpXNq

HM ŸŹ
„
M (dummy reference algebra 5)

wOM Ź
„
M (spike algebra 13)

let tv
wx “Mu inx ŸŹ

„
wNM if x R FVpMq (let-elim)

let Γ in wRrM s ŸŹ
„

wRrlet Γ inM s if domΓ Ď FVpMq (let-R)
let Γ in let ∆ inM ŸŹ

„
let Γ∆ inM if dom∆ Ď FVpMq (let-flatten)

let Γt0
0x “ V u in Crxs ŸŹ

„
let Γt0

0x “ V u in CrV s (unfold 5)
let Γtx “ let ty “ V u inV u inM ŸŹ

„
let Γtx “ V rx{ysu inM (value-merge’)

Figure 3.2: The rules that are used in the case studies, in LATEX representation

14

3. Case studies

The proof is by induction on the unwindings of repeat. The base case is stated as

let txs “ repeat0 xu inM
” tdefinition of unwindingsu
let txs “ trepeatuΩxu inM
Ź
„
tdummy reference algebrau

let txs “ Ωxu inM
ŸŹ
„
trules for Ωu

let txs “ txuΩu inM
Ź
„
trules for Ωu

let txs “ x : xsu inM

and the induction case is stated as

let txs “ repeatpn`1q xu inM
” tdefinition of unwindingsu
let txs “ 0O

pλx.let tys “ repeatn xu inx : ysqxu inM
ŸŹ
„
tspike algebrau

let txs “ pλx.let tys “ repeatn xu inx : ysqxu inM
ŸŹ
„
treductionu

let txs “ Olet tys “ repeatn xu inx : ysu inM
Ź
„
tspike algebrau

let txs “ let tys “ repeatn xu inx : ysu inM
Ź
„
tinductive hypothesisu

let txs “ let tys “ x : ysu inx : ysu inM
Ź
„
tvalue-merge’u

let txs “ x : xsu inM.

When verifying this proof in the FAITH tool, I could not find a rule in the
spike algebra to add or remove stack spikes as suggested by the second step of the
induction case. However, since it is used, and since it makes sense that adding a
stack spike or heap spike with 0 weight is a strong space equivalence, we find that
we have to add 0OM ŸŹ

„
M and 0NM ŸŹ

„
M to the spike algebra.

Since the FAITH tool doesn’t implement metavariables, the proof in the FAITH
tool replacesM by f ¨x ¨xs. With this representation, we can still express essentially

15

3. Case studies

the same proof, since we can use the following derivation for any M :

M

ŸŹ
„
tdummy reference algebra 5, stack algebra zero stack spikeu

0OHM

ŸŹ
„
treductionu

pλx.M rx{ysq ¨ y

ŸŹ
„
tstack algebra zero heap spikeu

0N
pλx.M rx{ysq ¨ y

ŸŹ
„
tlet-elimu

plet t0
0z “ λx.M rx{ysu in zq ¨ y

ŸŹ
„
tlet-Ru

let t0
0z “ λx.M rx{ysu in z ¨ y

and then, in most cases, float the allocation of z out of the way, in order to be able
to apply the inductive hypothesis. One note about this derivation is that we have
created a binding with zero heap weight. In [16], the authors have only shown that
you can create a binding with zero heap weight by arguing that the definition is
top-level.

The full FAITH proof can be found in appendix B.2.1, but to see the general
structure, here is the base case:

bindings {
G = {repeat =[0,0]= \x1. let {zs = repeat x1} in x1:zs};
}

-- base case
proposition: G free(x f) |- let {xs = {repeat}d^@ x} in f <> x <> xs

|~> let {xs = x : xs} in f <> x <> xs;
proof: -simple -single{

-dummy-ref-algebra-8
ctx=(let G in let {xs = [.] x} in f <> x <> xs)
X={repeat}
M=@;

|~> let {xs = @ x} in f <> x <> xs;
-@-rules-3-lr

ctx = (let G in let {xs = [.]} in f <> x <> xs)
R=([.] x);

<~> let {xs = {x}d^@} in f <> x <> xs;
-@-rules-2

ctx=(let G in [.])
G=let {}
x=xs
X={x}

16

3. Case studies

N=(f <> x <> xs)
M=(x:xs);

|~> let {xs = x : xs} in f <> x <> xs;
} qed;

I designed FAITH to separate correctness from user friendliness. This is why the
proof needs to be very specific, specifying all the substitutions and exactly which
rule that should be used and in which direction. The reason for the design is that
by parsing and checking a very detailed proof, the FAITH tool doesn’t have to guess
anything, and the amount of functionality and thereby the amount of code that
needs to be trusted is kept to a minimum. The idea is that if the FAITH tool is
developed further to incorporate guessing features such as matching, the tool could
then also generate a very detailed proof such as this one, and have it be checked by
the current version of FAITH. I will elaborate more on matching in section 5.4.4.

To create a proof, we start by declaring G “ Γ in bindings. In the proposition,
we declare the free variables. Even though this can be inferred, FAITH lets the user
define its free variables so that if there are more variables that are free in another
term, FAITH does not have to guess which term it is that contain the correct free
variables. Since induction is not implemented, we skip the first step of the definition
of unwindings and go directly to its definition. We then complete all transformations
to get to the goal.

The way that FAITH implements derivations in context is slightly different from
[16]. Instead of applying a new proof technique, we treat it as syntactic sugar. That
is

Γ $M Ź
„
N “

def let Γ inM Ź
„

let Γ inN

and similar for the other improvement relations. This is why we specify
ctx=(let G in [.]) in the last step, and not ctx= [.]. This has also slight con-
sequences for the induction principle; see section 5.4.1.

Because of the change from M to f ¨ x ¨ xs, the induction case is much longer
than the proof in [16]. This is because once we have gotten to

let txs “ let tys “ repeatn xu inx : ysu in f ¨ x ¨ xs,

we have to get to

let txs “ let t0
0g “ λa.λas.a : asu in let tys “ repeatn xu in g ¨ x ¨ ysu in f ¨ x ¨ xs

in order to apply the inductive hypothesis to get to

let txs “ let t0
0g “ λa.λas.a : asu in let tys “ x : ysu in g ¨ x ¨ ysu in f ¨ x ¨ xs

and then reapply g and remove the let definition to get to

let txs “ let tys “ x : ysu inx : ysu in f ¨ x ¨ xs

and then continue with the last step.
The FAITH tool has not implemented induction, so the proof is divided up into

three proofs; base case, induction case until the induction hypothesis and induction

17

3. Case studies

case after the induction hypothesis. The function repeat is not indexed to be repeatn
or repeatn`1 either. Se section 5.4.1 for a discussion on how induction would be
implemented in FAITH.

One small error that I found in the derivation is that Gustavsson and Sands
seem to have to forgotten to remove the empty dummy binding after the reduction
step. Therefore, these steps should be

let txs “ pλx.let tys “ repeatn xu inx : ysqxu inM
ŸŹ
„
treductionu

let txs “ OHlet tys “ repeatn xu inx : ysu inM
ŸŹ
„
tdummy reference algebrau

let txs “ Olet tys “ repeatn xu inx : ysu inM
Ź
„
tspike algebrau

let txs “ let tys “ repeatn xu inx : ysu inM

I also found that this was sometimes forgotten in the second case study. However,
since the mistake was fixed by adding a single step, the proofs are still valid.

3.2 Case study 2: intermediate data structures
This section will describe the formalization of part of case study 2; intermediate
data structures. The proof is that the function any can be defined either as

any p xs = case xs of
[] -> False
(y:ys) -> p y || any p ys

or

any' p = or . map p
or = foldr (||) False

without any difference in the asymptotic space behaviour.
Because of time constraints, I did not formalize the base case. I did however

formalize the adding of gadgets to any, creating any_a and the inductive case of
transforming any_a to any'_a. The full proofs can be found in appendix B.2.2.
Except that the removal of the empty dummy reference binding was sometimes
skipped in this case study too, I also found that because of a slightly different
desugaring, my version of the proof became a few steps shorter.

In any_a, there is a subterm that is

let tz “ Ωu in or ¨ pp ¨ yq ¨ tzupanya ¨ p ¨ ysq

However, since this applies terms to terms, it is syntactic sugar. A readable way of
desugaring the application is

let tz “ Ω, a “ p ¨ y, b “ tzu
panya ¨ p ¨ ysqu in or ¨ a ¨ b

18

3. Case studies

However, if one would strictly go by the definition of desugaring, the result is a bit
different. The definition of desugaring is that M N desugars to letx “ N inM x,
where x is fresh. This means that the subterm would desugar to

let tz “ Ωu in let tds “ tzu
panya ¨ p ¨ bsqu in plet tc “ p ¨ bu in or ¨ cq ¨ ds

After the induction step, the corresponding subterm is

let tz “ Ω, ds “ tzu
panya ¨ p ¨ bsqu in let tc “ p ¨ bu in or ¨ c ¨ ds

which means that you just need one step of (let-flatten) to get to

let tz “ Ω, a “ p ¨ y, b “ tzu
panya ¨ p ¨ ysqu in or ¨ a ¨ b

but (let-R) followed by (let-flatten) to get to the mechanically desugared term.

19

3. Case studies

20

4
Implementation

This chapter will describe the implementation of FAITH. We will start with a general
description of the checking process. Since the process involves handling variables,
we will then move on to the choice of variable representation. In this section, we
will see some motivation for an invariant of unique variable names. We will then
move onto some details on how FAITH implements a substitution algorithm that
respects this invariant.

4.1 Overview of functionality

When the user requests FAITH to verify a proof, the FAITH system first parses the
law file and the proof file. It then checks that all terms have unique variable names,
distinct from the variables declared to be free. We will see the motivation for this
in section 4.2.1. The FAITH system also performs some other correctness checks on
the law and proof file. FAITH then checks each transformation step, and that the
proof starts with the specified start and ends with the specified goal.

A single step is specified in the proof file by a term, a law name, a second
term and the substitutions that need to be made in order for the law to justify the
transformation from the first term to the other. The law file contains laws with a law
that corresponds to that law name. The FAITH system treats all laws as having an
outer context in which they are applied, which is specified by the ctx argument. The
FAITH tool checks that all substitutions are of the correct type, and then performs
the substitution into both sides of the law, as well as any side conditions that the
law may contain. The FAITH tool checks whether the substitutions applied to the
left hand side produces a term which is equivalent to the first term, and the same for
the right hand side and the second term. We will see details on the implementation
of equivalence in section 4.2.2. The tool also applies the substitutions to the side
conditions, evaluates them and check whether they hold. If all checks are successful,
the FAITH tool tells the user that the proof is correct, and if not, it produces an
error and a log file.

Each step is processed sequentially, so the time complexity is linear in the
number of steps of the proof. As we will see in section 4.2.2, all permutations of
all let statements are tried when checking for alpha equivalence at each step, which
means that the time complexity is also exponential in the size of the term. However,
the terms are generally quite small. Each proof step could be processed in parallel,
but that would require changes to the logging system, and performance was not an
issue for the proofs that I verified.

21

4. Implementation

4.2 Representation of variables
When developing FAITH, I wanted the variable representation to support two things:
matching a term to a rule, and transforming a term to another term. Even though
matching remains for future work, the variable representation is chosen so that it
can support matching. The matching should be done with respect to α-equivalence
and the transformation should not unintentionally capture variables. To make both
of these operations easily implementable, the choice of internal representation of
variables is crucial.

Take the application of (unfold-1) for example:

let Γ t0
0x “ V u in Crxs ŸŹ

„
let Γ t0

0x “ V u in CrV s (unfold-1)

When we apply the rule left-to-right, we want to make sure that the free variables
in V are not captured in C and when we apply the rule right-to-left, we want to
check that the first V is α-equivalent to the second V . We solve this by combining
two representations:

1. Concrete variable names (i.e. Strings) that are unique with respect to the
whole term

2. Locally nameless representation

We will go over the benefits of both representations in turn. In essence, concrete
unique variable names enables the user to apply arbitrary transformations to the
term without unintended variable capture, while a locally nameless representation
enables easy checks of α-equivalence between terms.

4.2.1 Concrete unique variable names
If variable names are concrete but not unique, we might accidentally capture vari-
ables when applying transformations. For instance, non-unique variable names
would allow the term

let t0
0x “ λa.yu in plet ty “ 5u in px 1q ` yq,

on which we might erroneously apply (unfold-1) to get

let t0
0x “ λa.yu in plet ty “ 5u in ppλa.yq 1q ` yq.

But this changes the final result from y ` 5 to 5 ` 5 because of the unintended
variable capture. However, with variable names that are unique with respect to the
whole term, the first term would need to be α-renamed to

let t0
0x “ λa.yu in plet tz “ 5u in px 1q ` zq,

which would be correctly transformed to

let t0
0x “ λa.yu in plet tz “ 5u in ppλb.yq 1q ` zq.

22

4. Implementation

Note that we needed to rename the second a to b to make variable names globally
unique.

Another way to circumvent this would be to add the side-conditions on the free
variables of V and the holes in C. However, if these would need to be added to
each rule by the user, these side-conditions could be confused with the free-variable-
restrictions that are imposed to prevent certain values to be garbage-collected, such
as x in (unfold-3)

let Γtv
wx “ V u in Crxs ŸŹ

„
let Γtv

wx “ V u in CrvOV s ifx P FVpV q.

It would also be time-consuming and error-prone to add these side-conditions, both if
they would be added by the user and if the FAITH project would involve generating
these side-conditions automatically.

In general, the tool needs to be able to implement any transformation that can
be described in the law language. When stating the laws, Gustavsson and Sands
follow the standard free-variable convention, so all bound variables in a law are
distinct, and they are disjoint from the free variables [16, 2]. This means that if all
bound variables in a term are also distinct and disjoint from the free variables, laws
can be interpreted literally.

It is not entirely uncommon to have the precondition that all variables are
unique; Launchbury has that precondition for his natural semantics [27] and Gus-
tavsson and Sands’ [14] abstract machine is essentially Sestoft’s Mark 1 machine
[44], which is built from Launchbury’s semantics. Unique variable names are also
used in the Static Single Assignment form (SSA), which is a representation used
in low-level machine code in e.g. Low Level Virtual Machine code (LLVM) [26] to
enable compiler optimizations.

4.2.2 Locally nameless representation
The locally nameless representation [5] is used for checking α-equivalence between
terms with free variables. This may both be between the current term and the goal
and between subterms within the same term. Take for example when we want to
match (unfold-1)

let Γ t0
0x “ V u in Crxs ŸŹ

„
let Γ t0

0x “ V u in CrV s

from right to left on for example

let t0
0x “ λy.λz.x` y ` zu inλa.λb.λc.x` b` c.

We need to check that λy.λz.x` y` z and λb.λc.x` b` c are α-equivalent, and the
locally nameless representation is very well suited for this.

In locally nameless representation, the bound variables use their de Bruijn index
[8], while free variables have their canonical name. The de Bruijn index of a variable
is the number of λ-signs between the variable and where it is bound. This means
that both λy.λz.x` y ` z and λb.λc.x` b` c has the representation

λλpx` a1 ` a0q

23

4. Implementation

where ai is a variable with the de Bruijn index i.
The locally nameless representation works well for checking equivalence be-

tween different subterms of the same term because of the restriction on variable
name uniqueness. If variables were not unique, we would be able to wrongly apply
(unfold-1) to for instance

let t0
0x “ λy.λz.x` y ` zu inλx.λb.λc.x` b` c.

We could also compare subterms by applying de Bruijn indexing to the whole
term. However, then we would have to change the index of the free variables as they
were moved past new λ-signs to get to the subterm that we want to compare with.
This method would be error-prone and possibly inefficient.

To make the representation work for the whole language, we need to define the
de Bruijn indexing for variables bound in lets and constructors of case-statements
too. For lets, we use two indexes i and j and say that eij means the variable that is
i lets away and in that let, it is the jth variable that is bound. This means that

let tx “ 1, y “ 2u in y ` plet tz “ 3` y, a “ 4u inx` y ` z ` aq

has the representation

let t1, 2u in e01 ` let t3` e11, 4u in e10 ` e11 ` e00 ` e01.

For variables bound in constructors in case-statements we use a similar approach. A
variable with the representation sij is i case-statements away. In that case-statement,
sij is the jth variable bound by the constructor in the branch where sij appears.
This means that

casex of
c1 f g Ñ f ` g

c2 a bÑ a` pcase b of
c1 d eÑ a` b` d` eq

has the representation

casex of
c1 Ñ s00 ` s01

c2 Ñ s00 ` pcase s01 of
c1 Ñ s10 ` s11 ` s00 ` s01q.

You may note that in this representation, the order of the bindings in a let
and the order of constructors in a case matters, even though those orders do not
matter semantically. For constructors in case-statements, we can impose an order
on constructors to solve this. For lets, a strict ordering is not definable on terms like

let ta “ b, b “ a, d “ 1, e “ 1u in 1.

This is one of the reasons that it is inconvenient to exclusively use a locally nameless
representation; since the representation is based on orders which should not matter,

24

4. Implementation

a term cannot have a single representation which is both invariant to α-renaming
and reordering of lets.

To solve this, we simply try all permutations of all let bindings whenever we
test for alpha equivalence. This would of course introduce a substantial toll on the
performance if the terms were large. However, since the terms are small and we
made sure that the generation and testing of permutations were performed lazily, it
seems that the performance overhead is not significant for the proofs we performed
with the help of the FAITH tool. We have also not yet introduced parallelization to
improve performance because it is not yet necessary.

4.3 Substitution
The process of substitution was more intricate than I expected. This section will
attempt to explain the problem and give an overview of how it was solved.

The transformational rules are formulated in the Barendregt variable convention
[2], which says that all variables in any instance of a law are distinct, and they are
disjoint from the free variables. Since a law can be applied to any subterm of the
main term, or even the whole main term, this means that the variable convention
always has to hold for all terms. FAITH ensures that the variable convention holds
by assigning unique names for all variables, and that those names are distinct from
the names of the free variables.

The transformational rules also repeats some of its term-metavariables, such as
V on the right hand side of (unfold-1);

let Γ t0
0x “ V u in Crxs ŸŹ

„
let Γ t0

0x “ V u in CrV s.

This means that to apply the transformation left-to-right, we have to α-rename V
when it is used the second time.

The rules also contain contexts, that may have more than one hole, where a
term needs to be copied. The rules may also contain multiple copies of a context,
but they can’t be renamed as easily as terms, since the bound variables of contexts
may bind free variables of a term that is inserted into its holes.

The FAITH system has to take all this into account, but it shouldn’t rename
the variables more than necessary, in order to keep user friendliness.

In the UNIE tool [23], this was for the most part solved by the use of the
external framework KURE [43]. However, I could not use this approach, since it
would be hard to translate the transformations into KURE rewrites in a way that
is general enough to be used on any transformation that FAITH can parse.

The way that the FAITH tool solves this is that we have built a custom monad
that keeps the invariant that anything that leaves it will have bound variable names
that do not interfere with bound variable names of its previous terms1. To do this,
the monad keeps the substitutions and the set of forbidden names in its internal
state, and renames the bound variables in its terms as much as is needed to maintain
the invariant. This also means that context application and finding the domain of
a set of bindings are implemented as functions inside the monad.

1This is in SubstitutionMonad.hs in [48]

25

4. Implementation

26

5
Discussion

5.1 Related Work

5.1.1 Using other tools for Space Improvement Theory
In this section, I will evaluate some other tools that are built for formal reasoning
about programs. The section explores whether one could express space improvement
in another proof assistant and get a reasonable amount of help with space improve-
ment proofs. Ultimately, I found that out of these other approaches, a ground-up
implementation in Haskell was most suitable for implementing reasoning about space
improvement.

5.1.1.1 Time improvement and Unie

Improvement theory was mainly developed around the year 2000, but is getting
more popular. The improvement theory of time [33], which uses the same abstract
machine as [14] but measures the time complexity, was used in 2014 to prove that
the worker-wrapper transformation is a time improvement [18]. In 2018, Handley
and Hutton [23] developed a tool for creating proofs of time improvement for the
theory of [33], called UNIE (University Of Nottingham Improvement Engine). Using
the tool, they were able to verify the proof of [18] and several proofs from [33].

The FAITH tool is similar, but is built for space improvement theory [14].
One option could have been to base the FAITH system upon UNIE. This would
have had some benefits; some transformations and utility functions for bound and
free variables could have been reused, since the language of time improvement is
similar to that of space improvement. There are however some issues with further
developing upon UNIE’s code base.

Firstly, the tool implements its own parser and pretty printer by using Alex
[30] directly instead of using a parser generator like BNFC [10]. This means that
the parsing is defined by functions in Alex rather than a single grammar file. This
lack of a single and modifiable grammar definition makes the language hard to pre-
cisely understand and to modify. Secondly, it does not implement alpha-equivalence.
Binders can be renamed manually, but it is not possible to choose the target name.
This makes it impossible to prove that λx.x ŸŹ

«
λy.y (where ŸŹ

«
is weak time equiva-

lence), since x can only be renamed to a or b. Thirdly, UNIE does not include a build
plan, and is mainly built upon KURE [43], which needs Haskell base version 4.8.0.0,
which was released in 2015, so it currently only runs in the ghc iterpreter (ghci).
KURE can be exchanged for a more general and modern framework, as suggested by

27

5. Discussion

Handley in his PhD thesis [22], but changing a framework in an existing codebase
is too much work for the current time constraints. Finally, UNIE implements each
transformational law as Haskell-functions in the program, while FAITH parses laws
from a law file. This makes FAITH more flexible, but because of this difference,
many things would need to be changed in UNIE if it were to adapt to this change
in approach.

5.1.1.2 Higher Order Abstract Syntax in Abella and Beluga

Higher Order Abstract Syntax (HOAS) is a way to represent languages with binding.
The proof assistants Abella [1] and Beluga [37] implement HOAS, so that proofs
about languages can be expressed and checked in the tools using HOAS syntax. In
HOAS, a recursive let where the order of the bindings matter and the number of
bindings is fixed (here 3) can be represented with the type

tm tup3 : type.
letrec3 : (tm -> tm -> tm -> tup3)

-> (tm -> tm -> tm -> tm)
-> tm.

mktup3 : tm -> tm -> tm -> tup3.

in Beluga syntax, which is similar to the representation

letrecpλx1.λx2.λx3.pM1,M2,M3q, λx1.λx2.λx3.Nq

There may also be a more sophisticated way that also encapsulates definitions of
recursive lets that can have any number of variables. However, this encoding is far
from Haskell syntax, which would confuse users who are unfamiliar with HOAS.
Since the users of the FAITH tool do not define the language, they should not need
to worry about its encoding when constructing space improvement proofs.

While Abella [1] may have the potential to express space improvement theory,
it seems that it has not yet been used for similar tasks. Among the examples for
Abella, complex binding structures such as recursive lets and case statements seem to
be lacking from the languages that the proofs are made about. The closest seems to
be some form of recursion in a model of the Programming language for Computable
Functions (PCF) [38], shown below in Abella syntax:

sig pcf.
kind tm, ty type.
type rec ty -> (tm -> tm) -> tm.

module pcf.
eval (rec T R) V :- eval (R (rec T R)) V.

and some reasoning about Higher-order logic programming.
Beluga [37] focuses on automation of the variable handling of general languages,

and not much on proof automation. There is some automation however, and an in-
teractive mode called Harpoon. To check the extent of the automation, we expressed
a long transitivity problem of a path through a graph. When trying to prove it using

28

5. Discussion

Harpoon, it seemed that Harpoon could not recommend possible next steps or solve
the problem by simple search. Based on this observation, we drew the conclusion
that we can serve more automation and other helpful features to the user by imple-
menting the FAITH tool from the ground up than to formalize space improvement
in Beluga.

5.1.1.3 Ott

Ott [45] is a tool for specifying programming languages. It checks that the definitions
are sane, and produces code in LATEX[12] for documentation, in Coq [3], HOL [47]
and Isabelle/HOL [34] for proofs and in OCaml [28] for implementation. It also
creates utility functions for renaming, insertion, et cetera. It is possible to represent
the binding structure of recursive let:s in Ott;

term, M :: 'M_' ::=
% ...

| let s in M :: :: letrec (+ bind binders(s) in M +)

bindSet, s :: 's_' ::=
| {} :: :: nil (+ binders = {} +)
| x = M : s :: :: cons (+ bind x in M +) (+ bind binders(s) in M +)

(+ binders = x union binders(s) +)

and since it exports to powerful proof assistants, it is probably possible to provide
the automation needed for matching, reordering of let-bindings and proof search.

However, the representation of variables that Ott generates is fully concrete, i.e.
Strings or similar for variables. Without further restrictions, this is not sufficient for
space improvement theory, since the laws are formulated in the Barendregt variable
convention [2], which means that fully concrete names are only a valid representation
if the variable names are unique, as seen in section 4.2. Therefore, the Ott tool is
unfortunately not usable for Space Improvement Theory.

5.1.1.4 Hybrid

Hybrid [9] is a package for Isabelle/HOL [34] and Coq [3]. Using de-brujin indexes, it
provides support for HOAS reasoning. Martin has done a case study that formalizes
evaluation, typing and subject reduction for Mini-ML [32]. Mini-ML [7] is a small
lambda calculus that includes recursive lets in a similar fashion to the language
of space improvement. This study gives some hope of an easy formalization of
space improvement. Recent work by Zanetti on PureCake [51] has also formalized
recursive lets in the HOL formalization of equivalences in a call-by-name calculus,
where concrete representation of variables was used.

However, I did not further explore the possibility of formalizing space improve-
ment in HOL or Isabelle/HOL for a couple of reasons. Firstly, HYBRID [9] uses de
bruijn indexing, and as seen in section 4.2, this would not be enough to implement
the transformations we aim to implement in a general manner. Secondly, the level
of support is limited to that of Isabelle/HOL [34], and when this decision was made,
I thought that I could have time to give more support to the user by implementing

29

5. Discussion

matching and other guessing techniques, which could make the proofs easier to do
in FAITH than in Isabelle/HOL. Thirdly, I did not have time to explore this avenue
of formalization further because of the time constraints of the project and the steep
learning curve for Isabelle/HOL. Finally, I believe that the FAITH tool is faster to
learn than Isabelle/HOL, which makes the formalizations more accessible.

5.1.2 Other approaches to similar problems
According to Handley and Hutton, they were, to the best of their knowledge, the
first to support inequational reasoning for Haskell programs [23]. There are also
other tools for equational reasoning [50, 17, 49, 29].

Time improvement has been used even in recent years. Schmidt-Schauß and
Sabel [42] have used a semantics similar to Moran and Sands’ time improvement [33]
to show that common subexpression elimination is a time improvement. A theory
based on Moran and Sands’ time improvement [33] was also used by Hackett and
Hutton [19] to show that fixed point fusion, map fusion and short cut fusion are
time improvements.

Hacket and Hutton have also made a library for Liquid Haskell that can measure
and reason about resource usage [20]. The library requires the user to annotate
the code that is to be analyzed, by writing it in a monad and inserting where
in the evaluation of the code ticks should be increased or decreased. The library
can thereafter check bounds on the resource usage. Their library does not model
memoization by default however, so functions have to be written to be explicitly
lazy to model sharing of values.

Some recent work has been done on the space improvement of [33]. Shmidt-
Schauß and Dallmeyer [40] have shown space improvement and worsening for some
transformations using a variation of the theory of [14]. They have also a more recent
work that adds an optimal garbage collector to their theory, which makes it robust
to newer implementations of garbage collection [41]. Even though they develop a
tool to count the space usage in their abstract machine, their proofs are done by
hand.

Quite recently, Paraskevopoulou [36] have formally shown in CoQ that closure
conversion is safe for space. Although the conversion is somewhat local, they use a
vastly different model of computation, and thus, we did not build upon their work.
Another example of a transformation verified by a theorem prover is [4]. In this
paper, Breitner shows that the Call Arity analysis and transformation is safe in the
sense that a program after this transformation does not perform more allocations
during evaluation. The measure is chosen since it correlates to both time and space
usage. While the proof doesn’t use Sands’ improvement theory [33], the proof uses
Sestoft’s Mark 1 abstract machine [44], which is the basis of the abstract machine
of [33, 14]. However, Call Arity is a global transformation, so they did not use
improvement theory, since improvement theory only covers local transformations.

Gómez-Londoño et al. [11] have developed a framework for formally proving
that a CakeML program stays within a certain resource limit. Since ML is strictly
evaluated, the framework is not usable for Haskell. The authors state that while
proofs are now made possible, they are currently tedious to construct.

30

5. Discussion

5.2 Evaluation
To evaluate the tool, we compare its usability to UNIE, and discuss possible testing
potential.

5.2.1 Comparison to UNIE
In section 5.1.1.1, I gave the reasons why I did not further develop UNIE [23] to
become FAITH, but built FAITH "ground-up". In this section, we will compare the
FAITH tool to UNIE as finished products.

The main benefit of UNIE is that the user does not have to be very specific
about which rule to use. For the rules UNIE implements, matching is done, even
for most contexts, and few arguments have to be provided. The code is also pretty-
printed using non-ascii characters for e.g. time ticks and improvement relations.
The ease at which one can perform the worker-wrapper improvement proof found in
[18] is impressive compared to the amount of details one has to provide for similar
proofs in the FAITH tool. I will describe how matching can be added to FAITH in
section 5.4. UNIE has also implemented the spacing in pretty-printing, while this is
also future work for FAITH.

However, while UNIE shines in the amount of guessing it implements, FAITH
shines in flexibility to accommodate more proofs. The main reason for this is that
UNIE implements rules as functions, while FAITH parses its rules. Using specialized
functions, UNIE has implemented around 35 transformations, while FAITH covers
the 50 rules from space improvement and any rule that can be expressed with the
same language constructs. Because the rules are parsed in FAITH, the documenta-
tion of what each rule does is implemented automatically and is always up-to date.
In the UNIE tool, the documentation has to be provided separately, which is not
done for most rules. The parsing of rules also provide more of a guarantee that the
rule does what it says that it does, especially since the syntax of rules is very similar
to the notation in Gustavsson and Sands’ paper [16].

Neither UNIE nor FAITH provides support for induction. However, there is not
much development needed to implement induction in FAITH because of the general
approach to transformations that FAITH implements in order to parse rules. See
section 5.4.1 for more elaboration on this.

UNIE uses a Read Print Evaluate Loop (REPL) in order to communicate with
the user. While this makes it easy to experiment, UNIE does not provide undo/redo,
and the user must select which subterm to transform by navigating using left,
right, rhs, lhs et cetera. FAITH users, on the other hand, are editing a text file,
and can therefore use the undo/redo functionality provided by their text editor.
Inspired by the way Coq [3] only checks a proof file until the cursor, FAITH also
has a special marker $, that when inserted only checks the transformations up to
that marker (and warns the user of this), so that users do not have to implement
the whole proof before checking that they are correct so far. In order to select the
subterm to transform, the user provides the context explicitly. This selection can
easily be done using copy-paste.

One of the reasons that I did not develop UNIEs code base further was the lack

31

5. Discussion

of documentation and that the imports were unspecific. To make FAITH better in
these regards, I made sure that every imported function to every module is either
prefixed or explicitly imported and provided many comments. I have also put much
effort into making any errors easy to understand. FAITH does this by logging
most steps so that the user can see early errors that lead to later faults, as well
as implementing pretty-printing for all sub-languages used. When something is not
alpha-equivalent, I have also implemented a simple function to show the smaller
term where there is a difference.

5.2.2 Tests
In a tool that checks correctness of a proof, it is essential that the tool is correct
in itself. Since I did not go the type-level-programming route, this is mainly done
through testing. Currently, the program contains checks for pre- and postconditions
of a function in the function itself, so when a proof is run through FAITH, the tool
checks that the proof is correct and that the pre- and postconditions are true for
the terms that were fed into the different functions of FAITH. This makes it less
likely that an incorrect proof may go through the tool because of an internal error,
because the tool may discover the internal error itself. In fact, the case studies were
useful for debugging, since some bugs did trigger some of the internal checks.

There are four main avenues of correctness:

1. That the transformational laws in the law file correspond to the laws in [16]

2. That the laws expressed in the law file are sound with respect to the abstract
machine

3. That the proofs in Gustavsson and Sands’ case studies are correct with respect
to the laws

4. That internal functions of the tool are correctly implemented, with respect to
their stated pre- and postconditions.

For the first avenue, we can note that the language that the laws are specified in
FAITH is very similar to the LATEX representation in [16, 15]. This means that
FAITH does implement the laws that it says that it should, given that the language
constructs are correctly implemented. This means that if the laws are incorrect, the
error would lie in Gustavsson and Sands’ paper.

To check if a law is sound with respect to the abstract machine, we could use
propositions and QuickCheck [6] combined with small extensions to FAITH. This
would prevent users from inserting unsound laws into the law file. However, to give
QuickCheck terms to test, we would need to generate terminating instances of the
laws, and the validity of the check would depend on the diversity of the generated
instances. The reason that we would need terminating instances is that to check
that the instances are space equivalent without using space improvement theory, we
would need to evaluate both terms and check that they have the same result and
memory consumption (in strong improvement). Of course, some nontermination
could be interesting, since improvement theory is a theory of untyped terms, but

32

5. Discussion

in practice, we would only find an error if two terms have an improvement relation
between them but only one terminates, so the majority of the generated terms will
need to terminate.

The generation of law instances is however an avenue for future work. The main
reason is that generating arbitrary terminating terms is hard. Palka, Claessen, Russo
and Hughes have generated arbitrary lambda terms [35], so such a future work could
be inspired by that work, but it would also need to generate potentially recursive let
bindings and case statements. Such a future work would also need to involve either
matching a law to a term or generating terms for the substitutions into a law, such
that these terms interact when substituted into the law.

The third avenue of correctness is what the tool checks. As seen in the case
studies, I did find some minor remarks there using the FAITH tool.

The fourth avenue of correctness is addressed by the internal checks in the
program. However, a better design could have been to test the correctness of the
functions independently using propositions and QuickCheck [6]. This would require
generation of valid laws and terms. This is less work than checking that the laws
are correct, since most functions do not need that the terms that they handle do
terminate or even typecheck, and some may even not require the terms to be well-
typed, but they would need to have unique variable names and respect the binding
structure. I hope that the documentation is enough to leave automated testing for
future work. The first test could be to assert that the tool should not throw internal
errors for the checks that already are in place.

5.3 Lessons from development
We found that there were many functions that were on the whole syntax tree,
which made many functions large because of the sheer size of the language. To
mitigate this, the syntax tree was reduced by the "typechecking", which removed
some sugaring and other things needing different constructors because of parsing.
I also developed general functions to apply a function to all subterms of a term,
so that only the interesting constructs needed special code (λ, cases and lets on a
function that deals with bindings for example). A more structured way to do this
might have been to look into template Haskell [46] and/or lenses and traversals [25].
However, I did not have time to learn how to use these.

5.4 Future work
In this section, I will give suggestions on future work on the FAITH tool. In devel-
oping the FAITH tool, I have aimed for a high generality, which is why I believe
that these extensions could be developed without much program restructuring.

5.4.1 Induction
The tool does not currently implement induction, but not much is needed to imple-
ment a simple form of it. You would need to add the language construct of indexed

33

5. Discussion

variables, to be the fn in

let tw
v f “ Vrf su in Crfn`1

s “
def let tw

v f “ Vrf su in CrwOVrfn
ss,

where the index can only be n or n ` 1. To apply the induction hypothesis, you
would provide the context and the substitution for the free variables. Then FAITH
would do the variable-for-variable substitutions and check for alpha equivalence to
the left hand side of the induction hypothesis. Variable-for-variable substitution is
already implemented because it is needed when implementing pλx.Mq y ù M ry{xs.
Since FAITHs version of derivations in context is slightly different from that of [16],
the induction principle will also have to be modified. Since we defined derivations
in contexts as

Γ $M Ź
„
N “

def let Γ inM Ź
„

let Γ inN,

the induction principle needs to be

Γ $ Crf 0
s Ź
„
M Γ $ DrCrfn

ss Ź
„

DrM s ùñ Γ $ Crfn`1
s Ź
„
M

Γ $ Crf s Ź
„
M

.

The difference lies in that the D is needed, because if the induction hypothesis was

Γ $ Crfn
s Ź
„
M “

def let Γ in Crfn
s Ź
„

let Γ inM,

we would need to bring the binding Γ to the place where we would need to apply
the induction hypothesis.

To explain this change, we have to recall the definition of strong improvement.
It says that M Ź

„
N means that for any context C and any substitution σ,

CrMσs óph,sq ùñ CrNσs óph,sq .

This means that if the induction hypothesis was Γ $ Crfns Ź
„
M , the unsugared

version would be

Drplet Γ in Crfn
sqσs óph,sq ùñ Drplet Γ inMqσs óph,sq .

This means that if we find Crfns somewhere in the term, we would have to bring
the top-level definitions Γ right up to Crfns in order to apply the induction hypoth-
esis. However, if we have the induction hypothesis be Γ $ DrCrfnss Ź

„
DrM s, the

unsugared version would be

D1rplet Γ in D2rCrfn
ssqσs óph,sq ùñ D1rplet Γ in D2rM sqσs óph,sq,

where D1 and D2 are contexts. With this definition, we can let D1 “ r¨s and use
D2 to apply the induction hypothesis on a subterm.

In case study 1, this proposed definition lets us apply the induction hypothesis
on

let trepeat “ λx.plet tys “ repeat xu inx : ysqu
in let txs “ let t0

0g “ λa.λas.a : asu in let tys “ repeatn xu in g ¨ x ¨ ysu in f ¨ x ¨ xs

34

5. Discussion

with D1 “ r¨s,

D2 “ let trepeat “ . . .u in let txs “ let t0
0g “ λa.λas.a : asu in r¨su in f ¨ x ¨ xs

to get to

let trepeat “ λx.plet tys “ repeat xu inx : ysqu
in let txs “ let t0

0g “ λa.λas.a : asu in let tys “ x : ysu in g ¨ x ¨ ysu in f ¨ x ¨ xs,

whereas we would need to get to

let txs “ let t0
0g “ λa.λas.a : asu

in let trepeat “ . . .u in let tys “ repeatnuin g ¨ x ¨ ysu
in f ¨ x ¨ xs

to be able to apply Γ $ Crfns Ź
„
M , which might not be possible.

These are quite small changes to the code, but there might also be other com-
plications.

5.4.2 Further support for Time Improvement Theory
Since the thesis focused on Space Improvement Theory [16], not all constructs of
the laws of Time Improvement Theory [33] are covered. To also cover the whole of
time improvement, FAITH would need to implement evaluation contexts E, the –
relation, strict contexts, more support for vectorized expressions such as ~x “ ~DrΩs,
and the ability to have a side condition be M Ź

„
XM .

5.4.3 Further parsing capabilities
If more of the logic of space improvement would be parsed, and thus externalized
and made changeable by the user, the tool could verify more kinds of proofs.

One example is that you may want to add other kind of proof techniques than
induction. For example, you might want to prove M ŸŹ

„
N by proving M Ź

„
N and

then N Ź
„
M . These proof techniques could be specified in the law file in a syntax

such as

-simple: -single{M ... N} |- M ... N;
-fix-point-induction:

-base{C[f^0] |~> M}
-induction{C[f^n] |~> M |- C[f^(n+1)] |~> M}
|- C[f] |~> M;

-both-ways: -lr{M |~> ... N} -rl{N |~> ... M} |- M <~> N;

and then parsed and used in the proof, if the tool would be extended to allow
such generality. The only thing to change would be the global conditions, i.e. the
improvement relation and the start and goal.

Another example could be that the improvement relations (ŸŹ
«
, Ÿ
«
, Ź
«
,ŸŹ
„
,Ÿ
„
,Ź
„
)

and their hierachy could be parsed in the law file. This would externalize more

35

5. Discussion

of the theory, so that it is only the language that is truly specific to improvement
theory. The reduction relation could also be parsed instead of implemented. To make
the tool future-proof for such generalizations, we have put the implementation of
reduction and comparison of improvement relations into a separate file1.

However, the language of improvement theory, with its binding semantics and
syntax, is not something I would recommend to externalize. As exemplified by the
tools that I have evaluated in section 5.1.1, it is hard to create a tool that both
allow users to create readable proofs of improvement theory, while also letting the
user define the language. However, since the language is well-defined and parsed
using the external BNFC tool [10], extensions and/or changes to the language can
be added if the source code is modified.

5.4.4 Matching
The main avenue for future work on FAITH is matching. Specifically, it would be
to match laws on the term. Take this transformation, for example:

<~> let {xs = (\x2. let {ys = repeat x2} in x : ys) x}
in f <> x <> xs;

-reduction-lr
ctx=(let G in let {xs = [.]} in f <> x <> xs)
w=1
R=([.] x)
V=(\x2. let {ys = repeat x2} in x : ys)
X={}
N=(let {ys' = repeat x} in x : ys');

<~> let {xs = s^{}d^(let {ys = repeat x} in x : ys)}
in f <> x <> xs;

If matching was done, the user could be less specific about the proof. For example,
it could be enough to specify the first and the second term, -reduction or a subset
of the substitutions, and have the tool guess the rest. If this would be implemented,
FAITH could then pretty-print the detailed proof that would be internally generated.
After that, the tool could parse the pretty-printed proof, and check that it is correct
using the functionality that is currently available. Using this separation, FAITH
would become more user-friendly, while still producing correct proofs. Furthermore,
the amount of code to trust in order to trust the correctness of the proofs would
remain the same.

The problem of matching would be to match the second-order language of
laws on the first-order terms. The law language is second-order because it includes
contexts, which have the type term Ñ term. One way to solve this is to solve the
harder problem of second-order unification. To do this, one would need to apply
the context-hole variable approach used in some of the proofs in [16] and further
explained in [39]. This would make contexts into functions, since the theory models
capturing. After this transformation, one can apply the second-order unification
algorithm of Huet et al [24] in order to match laws on contexts. However, I suspect

1This is LanguageLogic.hs in [48]

36

5. Discussion

that the problem need not be that complicated. Another approach is to use first-
order unification [31] to match the first-order law terms (M , Γ, V et cetera). Then
for the second-order patterns Cr<pattern>s, search for every instance of <pattern>
in the term that you match on. This would terminate, since the term you match
on is fully concrete, because all the terms mentioned in the proofs need to be fully
concrete.

If matching is implemented, the few terms that have to be provided could also
have wildcards, so that the user doesn’t have to specify the whole term. Matching
would also be the first step toward proof search.

5.4.5 Pretty-printing
Currently, the pretty-printer prints the term on a single line. This is because the
pretty-printer FAITH uses does not support the spacing conventions of functional
languages such as Haskell. In particular, FAITH uses the pretty-printer from BNFC
[10], which uses spacing that is built for Java-like languages. Therefore, FAITH
just removes the newlines and some of the spaces. If matching is added to FAITH
as described in section 5.4.4, the spacing on the detailed proof will be crucial for
readability. You would then also need to test that if a term is pretty-printed and
then parsed, you would arrive at an equivalent term.

5.5 Conclusion
In this master’s thesis, I have tackled the problem that proofs of space improvement
[16] are hard to construct in an easy and correct manner. To address this prob-
lem, I have constructed FAITH, the proof assistant for Improvement Theory. The
tool parses its laws, and allows the user to create transformational proofs between
different terms in order to create proofs of space improvement. The user has to pro-
vide unique variable names to all binding variables, provide all substitutions, and
divide the proof into its non-inductive parts. However, for these inputs, FAITH will
then check the correctness of the proof, and if there are any errors, provide detailed
log messages to indicate the errors. FAITH also provides functionality for check-
ing partly incomplete proofs. Since FAITH parses its laws rather than implements
them as functions, the tool can be used for any set of transformations that use the
same language, for example a subset of time improvement theory [33] or new laws
of space improvement. Since FAITH uses unique variable names, transformations
can be specified under the Barendregt variable convention [2], and the proofs that
FAITH supports include transformations that are done in a binding context. I hope
that the FAITH will be useful for further use of space improvement theory [16], and
for verifying other transformational proofs of functional languages.

37

5. Discussion

38

Bibliography

[1] David Baelde, Kaustuv Chaudhuri, Andrew Gacek, Dale Miller, Gopalan Na-
dathur, Alwen Tiu, and Yuting Wang. Abella: A system for reasoning about
relational specifications. Journal of Formalized Reasoning, 7(2):1–89, 2014.

[2] Hendrik P Barendregt et al. The lambda calculus, volume 3. North-Holland
Amsterdam, 1984.

[3] Bruno Barras, Samuel Boutin, Cristina Cornes, Judicaël Courant, Jean-
Christophe Filliatre, Eduardo Gimenez, Hugo Herbelin, Gerard Huet, Cesar
Munoz, Chetan Murthy, et al. The Coq proof assistant reference manual: Ver-
sion 6.1. PhD thesis, Inria, 1997.

[4] Joachim Breitner. Formally proving a compiler transformation safe. ACM
SIGPLAN Notices, 50(12):35–46, 2015.

[5] Arthur Charguéraud. The locally nameless representation. Journal of auto-
mated reasoning, 49(3):363–408, 2012.

[6] Koen Claessen and John Hughes. Quickcheck: a lightweight tool for random
testing of haskell programs. In Proceedings of the fifth ACM SIGPLAN inter-
national conference on Functional programming, pages 268–279, 2000.

[7] Dominique Clément, Thierry Despeyroux, Gilles Kahn, and Joëlle Despeyroux.
A simple applicative language: Mini-ml. In Proceedings of the 1986 ACM con-
ference on LISP and functional programming, pages 13–27, 1986.

[8] Nicolaas Govert De Bruijn. Lambda calculus notation with nameless dummies,
a tool for automatic formula manipulation, with application to the church-
rosser theorem. In Indagationes Mathematicae (Proceedings), volume 75, pages
381–392. Elsevier, 1972.

[9] Amy Felty and Alberto Momigliano. Hybrid. Journal of automated reasoning,
48(1):43–105, 2012.

[10] Markus Forsberg and Aarne Ranta. Bnf converter. In Proceedings of the 2004
ACM SIGPLAN workshop on Haskell, pages 94–95, 2004.

[11] Alejandro Gómez-Londoño, Johannes Åman Pohjola, Hira Taqdees Syeda, Mag-
nus O Myreen, and Yong Kiam Tan. Do you have space for dessert? a verified
space cost semantics for cakeml programs. Proceedings of the ACM on Pro-
gramming Languages, 4(OOPSLA):1–29, 2020.

39

Bibliography

[12] Michel Goossens, Frank Mittelbach, and Alexander Samarin. The LATEX
companion, volume 1. Addison-Wesley Reading, 1994.

[13] Jörgen Gustavsson. Space-Safe Transformations and Usage Analysis for Call-
by-Need Languages. PhD thesis, Göteborgs Universitet, 2001. Paper I.

[14] Jörgen Gustavsson and David Sands. A foundation for space-safe transfor-
mations of call-by-need programs. Electronic Notes in Theoretical Computer
Science, 26:69–86, 1999.

[15] Jörgen Gustavsson and David Sands. Possibilities and limitations of call-by-
need space improvement. ACM SIGPLAN Notices, 36(10):265–276, 2001.

[16] Jörgen Gustavsson and David Sands. Space safe transformations of call-by-need
programs. Paper I in [13], 2001.

[17] Walter Guttmann, Helmuth Partsch, Wolfram Schulte, and Ton Vullinghs. Tool
support for the interactive derivation of formally correct functional programs.
J. UCS, 9(2):173, 2003.

[18] Jennifer Hackett and Graham Hutton. Worker/wrapper/makes it/faster. ACM
SIGPLAN Notices, 49(9):95–107, 2014.

[19] Jennifer Hackett and Graham Hutton. Parametric polymorphism and oper-
ational improvement. Proceedings of the ACM on Programming Languages,
2(ICFP):1–24, 2018.

[20] Martin A. T. Handley, Niki Vazou, and Graham Hutton. Liquidate your assets:
Reasoning about resource usage in liquid haskell. Proc. ACM Program. Lang.,
4(POPL), December 2019.

[21] Martin AT Handley. Efficiency three ways: tested, verified, and formalised.
PhD thesis, University of Nottingham, 2020.

[22] Martin AT Handley. Improving haskell. chapter 4 in [21], 2020.

[23] Martin AT Handley and Graham Hutton. Improving haskell. In International
Symposium on Trends in Functional Programming, pages 114–135. Springer,
2018.

[24] Gérard Huet and Bernard Lang. Proving and applying program transformations
expressed with second-order patterns. Acta informatica, 11(1):31–55, 1978.

[25] Csongor Kiss, Matthew Pickering, and Nicolas Wu. Generic deriving of generic
traversals. Proceedings of the ACM on Programming Languages, 2(ICFP):1–30,
2018.

[26] Chris Lattner and Vikram Adve. Llvm: A compilation framework for lifelong
program analysis & transformation. In International Symposium on Code Gen-
eration and Optimization, 2004. CGO 2004., pages 75–86. IEEE, 2004.

40

Bibliography

[27] John Launchbury. A natural semantics for lazy evaluation. In Proceedings of
the 20th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 144–154, 1993.

[28] Xavier Leroy, Damien Doligez, Alain Frisch, Jacques Garrigue, Didier Rémy,
and Jérôme Vouillon. The ocaml system release 3.12. Institut National de
Recherche en Informatique et en Automatique, 2011.

[29] Huiqing Li, Claus Reinke, and Simon Thompson. Tool support for refactoring
functional programs. In Proceedings of the 2003 ACM SIGPLAN workshop on
Haskell, pages 27–38, 2003.

[30] Simon Marlow. Alex. https://www.haskell.org/alex/, 2021 (accessed
March 24, 2021).

[31] Alberto Martelli and Ugo Montanari. An efficient unification algorithm. ACM
Transactions on Programming Languages and Systems (TOPLAS), 4(2):258–
282, 1982.

[32] Alan J. Martin. Reasoning using higher-order abstract syntax in a higher-order
logic proof environment : improvements to hybrid and a case study, 2011.

[33] Andrew Moran and David Sands. Improvement in a lazy context: An oper-
ational theory for call-by-need. In Proceedings of the 26th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pages 43–56,
1999.

[34] Tobias Nipkow, Lawrence C Paulson, and Markus Wenzel. Isabelle/HOL: a
proof assistant for higher-order logic, volume 2283. Springer Science & Business
Media, 2002.

[35] Michał H Pałka, Koen Claessen, Alejandro Russo, and John Hughes. Testing
an optimising compiler by generating random lambda terms. In Proceedings of
the 6th International Workshop on Automation of Software Test, pages 91–97,
2011.

[36] Zoe Paraskevopoulou and Andrew W Appel. Closure conversion is safe for
space. Proceedings of the ACM on Programming Languages, 3(ICFP):1–29,
2019.

[37] Brigitte Pientka and Andrew Cave. Inductive beluga: Programming proofs. In
International Conference on Automated Deduction, pages 272–281. Springer,
2015.

[38] Gordon D. Plotkin. Lcf considered as a programming language. Theoretical
computer science, 5(3):223–255, 1977.

[39] David Sands. Computing with contexts a simple approach. Electronic Notes in
Theoretical Computer Science, 10:134–149, 1998.

41

https://www.haskell.org/alex/

Bibliography

[40] Manfred Schmidt-Schauß and Nils Dallmeyer. Space improvements and equiv-
alences in a functional core language. arXiv preprint arXiv:1802.06498, 2018.

[41] Manfred Schmidt-Schauß and Nils Dallmeyer. Space Improvements for To-
tal Garbage Collection. Institut für Informatik, Johann Wolfgang Goethe-
Universität, 2019.

[42] Manfred Schmidt-Schauß and David Sabel. Improvements in a functional core
language with call-by-need operational semantics. In Proceedings of the 17th In-
ternational Symposium on Principles and Practice of Declarative Programming,
pages 220–231, 2015.

[43] Neil Sculthorpe, Nicolas Frisby, and Andy Gill. The kansas university rewrite
engine: A haskell-embedded strategic programming language with custom
closed universes. Journal of Functional Programming, 24(4):434–473, 2014.

[44] Peter Sestoft. Deriving a lazy abstract machine. Journal of Functional Pro-
gramming, 7(3):231–264, 1997.

[45] Peter Sewell, Francesco Zappa Nardelli, Scott Owens, Gilles Peskine, Thomas
Ridge, Susmit Sarkar, et al. Ott: Effective tool support for the working seman-
ticist. Journal of functional programming, 20(1):71, 2010.

[46] Tim Sheard and Simon Peyton Jones. Template meta-programming for haskell.
In Proceedings of the 2002 ACM SIGPLAN workshop on Haskell, pages 1–16,
2002.

[47] Konrad Slind and Michael Norrish. A brief overview of hol4. In International
Conference on Theorem Proving in Higher Order Logics, pages 28–32. Springer,
2008.

[48] Orjan Sunnerhagen. Proof assistant for improvement theory (faith). https:
//github.com/orjansu/FAITH, 2021 (accessed May 31, 2021).

[49] Simon Thompson and Huiqing Li. Refactoring tools for functional languages.
Journal of Functional Programming, 23(3):293, 2013.

[50] Mark Anders Tullsen and Paul Hudak. Path, a program transformation system
for haskell. Yale University, 2002.

[51] RICCARDO ZANETTI. Purecake: Towards a formally verified non-strict lan-
guage compiler, 2020.

42

https://github.com/orjansu/FAITH
https://github.com/orjansu/FAITH

A
User Guide

A.1 Syntax
Since it is cumbersome to work with LATEX when using text editors and in parsing,
the language is translated to ascii. There are two, slightly different languages; one
for terms in the proof language, and one for terms in the law language. The proof
language is used for the terms in the proofs, while the law language is used for stating
laws. One reason for this distinction is that the law language uses metavariables,
and would be ambigous if any names could be used for any variables. For example,
we know that c x y is the constructor c applied to the variables x and y and not a
variable called c, because we use c to range over constructors, but this wouldn’t be
practical when writing big terms. Table A.1 shows some of the different constructs
in the different languages. To indicate something recursive, I will use for example
<term> to indicate a term, but < or > is not part of the language when not in
verbatim. Here is an example of a proof file:

-- single line comments
{- Multiple line

Comments
-}
bindings{
-- Let-bindings for derivations in context
A = { false = False

, head = \xs . case xs of {y : ys -> y}};
-- Constructor declaration
Pair (2);
Triple (3);
Nothing (0);
}

proposition: A free(a b) |- s^(\c. a + b + c) |~> (\c. a + b + c);
proof: -simple -single{

-spike-algebra-13
ctx = (let A in [.])
M=(\c. a + b + c)
w=1;

|~>
-- note that we have to supply the |~>, but not the first and

43

A. User Guide

-- last term if we don't want to.
}qed;

-- There may be multiple proofs in a single file
proposition: A free(x) |- [1]h^[2]h^x <~> [2]h^[1]h^x;
proof: -simple -single{

-spike-algebra-12-lr
ctx =(let A in [.]) w=1 v=2 M=x;

<~>
}qed;

Here are some syntax notes:

• All variable names of bound variables have to be unique with respect to the
whole term, and these variable names have to be distinct from the free vari-
ables.

• You may rename variables and change the order of bindings in let statements
or bindings in case statements as you please. If you want to do it in a separate
step (for esthetic reasons), you can use the command -alpha-equiv without
arguments.

• The improvement relations ŸŹ
«
Ÿ
«
Ź
«
ŸŹ
„
Ÿ
„
Ź
„
“def are <~~> <~~| |~~> <~> <~| |~>

=def=.

• Lists of variables are separated by spaces and not commas.

• To add a stack weight of for example 3 to a reduction, add [3] before it, for ex-
ample [3] case a of {}, [3] seq a b, [3] (a + [3] b) and [3] (f x).
You must have parenthesises to add weight to an application, like [3] (f x)
or the outer weight of +, like [3] (a + b) or [3] (a + [3] b), but you must
not have a parenthesis to add weight to other reductions (case, add, iszero
orseq. If you add weight to a reduction in the law language, use the same
syntax as you would in the proof language, but if you want to add weight to
a general reduction, the syntax is [w] ^ R[M] and not [w] R[M].

• For parsing reasons,to highlight the fact that the bindings in a let and the
branches in case are sets, and to make the law language similar to the term
language, the bindings of a let statement and the branches of a case statement
are surrounded by {} and interspersed by ,. Therefore, the syntax is not the
Haskell syntax

let a = case x of
True -> 1
False -> 2

b = 2
in a + b

but instead, the correct syntax is

44

A. User Guide

let { a = case x of
{ True -> 1
, False -> 2}

, b = 2}
in a + b

• When specifying some substitutions, you need to add a keyword before the
value to indicate its type. See table A.2 for details.

• If you want to specify a substitution to be a context that is just a hole, for
example C “ r¨s, you have to write C= [.] and not C=[.].

• When specifying substitutions to a term, you will often need parenthesises
around it.

• When specifying a law that has the relation <~>, <~~> or =def=, you will need
to add the suffix -lr or -rl to indicate if you want to use the law from left to
right or from right to left.

• In law language, constructors are denoted c ys. In proof language, they are
identifiers with a capital letter, and its arguments are surrounded by a paren-
thesis, for example Pair (a b). To be able to use a custom constructor in
proofs, it must be declared in the bindings{} with the number of arguments.
For example, the Pair constructor needs to be declared as Pair (2)

• the Cons constructor in case statements does not have parenthesises around
it.

Most of these intricacies exist because the language needs to be unambigous and
parseable by space-insensitive LR parsing, as implemented by BNFC [10]. For fur-
ther documentation of syntax, look at the BNFC documentation of the languages in
the repository [48]. For further examples of law syntax, see the laws in section 3.1.
You can also compare the full set of laws in B.1 with the laws in [16]. For example
proofs, see appendix B.

The syntax of transformational proofs is a list in the following order:

1. A transformational command and the substitutions, followed by ;

2. An improvement relation (<~~>, <~>, =def=, |~> or |~~>)

3. A term, followed by ;

4. Optionally, a marker $ to indicate that the proof is only done until this point.

5. repeat from step 1

45

A. User Guide

Table A.1: Table of some of the different language constructs in the different
language representations

Name LATEX Law language Proof Language
variables x, y, f, z x, y, f, z lower-case identifiers

Lambda abstraction λx.M \ x . M \ <variable> . <term>
Stack spike(s) O or vO s^ or [v]s^ [<integer>]s^ or s^
Heap spike(s) N or vN h^ or [v]h^ [<integer>]h^ or h^

Dummy references X {X}d^ {<variables>}d^
Balloon application x ¨ y x <> y x <> y

Table A.2: Substitutions that need keywords to specify their type. If the substi-
tution is not of this type, specify it without a keyword.

Type keyword example
let bindings let G=let {a = 1, b = 2}

vector of variables variables ys = variables [a b c]
patterns patterns pat_i = patterns [[], a:as]

case branches case alts = case { [] -> False}
terms terms N_i = terms [0, a + as]

A.2 Forbidden Law constructs
There are some law constructs that are accepted by the parser, but are not sup-
ported. Their behaviour if they are inserted is undefined. Because of time con-
straints, FAITH does not currently check that these constraints hold for the laws
that it parses. However, note that if a law was written in a way that breaks one of
the first two constraints, it cannot be instantiated, since all terms to instantiate it
on would have unique variable names.

1. The metavariable for a set of bindings may not be copied in the same term,
because that would imply that the same names for bound variables are used
twice. For example, the law term let G in let G in M is forbidden.

2. Metavariables in binding positions may not be repeated, as that would mean
that a variable name is repeated. For example, the law terms
let {x = M, x = N} in V, case M of { x : x -> N} and \x. \x. M are
forbidden.

3. The case statements may only be in one of the following forms:

(a) {alts, <list of concrete statements>}
(b) {pat_i -> <term> }, where <term> may contain N_i
(c) { <list of concrete statements> }

4. There may not be multiple vectorized expressions, i.e. if you add a new vec-
torized expession metavariable to the .cf file, such as N_j, things might not
work properly.

46

B
Detailed FAITH scripts and

encodings

B.1 All laws
These are all laws that are part of space improvement from Gustavsson and Sands
[16]. Note that all relations involving =def=, <~> and <~~> needs the suffix -lr or
-rl to indicate if you mean the left-to-right or right-to-left direction. The reduction
~~> is implemented in code rather than rules. It is in LanguageLogic.hs in [48].

-reduction: [w]^R[V] <~> [w]s^{X}d^N
if (R[V] ~~> N) && (FV(R[V]) = FV({X}d^N));

-unfold-1: let G {x =[v,w]= V} in C[x]
|~> let G {x =[v,w]= V} in C[{x}d^V];

-unfold-2: let G {x =[v,w]= V} in C[x]
<~| let G {x =[v,w]= V} in C[{x}d^[v]s^V];

-unfold-3: let G {x =[v,w]= V} in C[x]
<~> let G {x =[v,w]= V} in C[[v]s^V] if x in FV(V);

-unfold-4: let G {x =[0,w]= V} in C[x]
<~> let G {x =[0,w]= V} in C[{x}d^V];

-unfold-5: let G {x =[0,0]= V} in C[x]
<~> let G {x =[0,0]= V} in C[V];

-let-elim: let {x =[v,w]= M} in x <~> [w]h^M if not x in FV(M);
-- Side condition is a bug I found.

-let-R: let G in [w]^R[M] <~> [w]^R[let G in M]
if dom G subsetof FV(M);

-let-flatten: let G1 in let G2 in M <~> let G1 G2 in M
if dom G2 subsetof FV(M);

-let-let: let G1 {x =[v,w]= let G2 in M} in N
<~> let G2 {x =[v,w]= let G1 in M} in N

if dom G1 union dom G2 subsetof FV(M) && |G1| = |G2|;

-let-alts: let G1 in [w] case M of {pat_i -> let G2 in N_i}
<~> let G2 in [w] case M of {pat_i -> let G1 in N_i}

47

B. Detailed FAITH scripts and encodings

if dom G1 union dom G2 subsetof FV(N_i) && |G1| = |G2|;

-let-let': let G1 {x =[v,w]= M} in N
<~> let G2 {x =[v,w]= {dom G2}d^(let G1 in M)} in N

if dom G1 subsetof FV(M) && |G1| = |G2|;

-let-alts': let G1
in [w] case M of {pat_i -> N_i}

<~> let G2
in [w] case M of {pat_i -> {dom G2}d^(let G1 in N_i)}

if dom G1 subsetof FV(N_i) && |G1| = |G2|;

-value-merge: let G {x = V, y = V} in M
|~> let G[x/y] {x = V[x/y]} in M[x/y];

-value-copy: let G {x = V, y = V} in M
<~| let G[x/y] {x =[1,2]= V[x/y]} in M[x/y];

-value-merge': let G {x = let {y = V} in V} in M
|~> let G {x = V[x/y]} in M;

-value-copy': let G1 {x = let {y = V} in V} in M
<~| let G {x =[1,2]= V [x/y]} in M;

-gc: let G1 G2 in M <~> {X}d^(let G1 in M)
if FV(let G1 G2 in M) = FV({X}d^(let G1 in M));

-empty-let: let {} in N <~> N;

-R-case: [w]^R[[v] case M of {pat_i -> N_i}]
<~> [w+v] case M of {pat_i -> [w]^R[N_i]} ;

-case-unfold: case x of {alts, c ys -> D[x]}
|~> case x of {alts, c ys -> D[{x}d^c ys]};

-case-fold: let{x =[v,w]= M}
in C[case x of {alts, c ys -> D[x]}]

<~| let{x =[v,w]= M}
in C[case x of {alts, c ys -> D[{x}d^[v]s^c ys]}];

-@-rules-1: {X}d^@ |~> M if FV(M) subsetof X;
-@-rules-2: let G {x = {X}d^@} in N |~> let G {x = M} in N

if FV(M) subsetof X union {x};
-@-rules-3: R[@] <~> {FV(R)}d^@;
-@-rules-4: let G in {X}d^@ <~> {Y}d^@ if Y = FV(let G in {X}d^@);
-@-rules-5: [w]s^@ <~> @;

48

B. Detailed FAITH scripts and encodings

-@-rules-6: [w]h^@ <~> @;
-@-rules-7: let G {x =[v,w]= @} in C[x]

<~> let G {x =[v,w]= @} in C[{x}d^@];

-spike-algebra-1: [w]^R[[v]s^M] <~> [w+v]s^[w]^R[M];
-spike-algebra-2: [w]^R[[v]h^M] <~> [v]h^[w]^R[M];
-spike-algebra-3: let G in [v]s^M <~> [v]s^(let G in M)

if dom G subsetof FV(M);
-spike-algebra-4: let G in [v]h^M <~> [v+|G|]h^(let G in M)

if dom G subsetof FV(M);
-spike-algebra-5: [w] case M of {pat_i -> [w]s^N_i}

<~> [w] case M of {pat_i -> N_i};
-spike-algebra-6: [w]s^[v]s^M <~> [v]s^M if w =< v;
-spike-algebra-7: [w]h^[v]h^M <~> [v]h^M if w =< v;
-spike-algebra-8: [w]s^{X}d^[w]s^M <~> [w]s^{X}d^M;
-spike-algebra-9: [w]h^{X}d^[w]h^M <~> [w]h^{X}d^M;
-spike-algebra-10: [w]h^[v]s^M <~> [v]s^[w]h^M;
-spike-algebra-11: [w]s^[v]s^M <~> [v]s^[w]s^M;
-spike-algebra-12: [w]h^[v]h^M <~> [v]h^[w]h^M;
-spike-algebra-13: [w]s^M |~> M;
-spike-algebra-14: [w]h^M |~> M;

-dummy-ref-algebra-1: [w]^R[{X}d^M] <~> [w]s^{X}d^[w]^R[M];
-dummy-ref-algebra-2: let G in {X}d^M <~> [|G|]h^{X}d^(let G in M)

if dom G subsetof FV(M);
-dummy-ref-algebra-3: let G {x =[w,0]=V} in C[{x}d^M]

<~> let G {x =[w,0]=V} in C[{FV(V)\\{x}}d^M];
-dummy-ref-algebra-4: [w]^R[{X}d^M] <~> [w]^R[M] if X subsetof FV(R);
-dummy-ref-algebra-5: {}d^M <~> M;
-dummy-ref-algebra-6: {X union Y}d^M <~> {X}d^M if Y subsetof FV(M);
-dummy-ref-algebra-7: {X}d^{Y}d^M <~> {X union Y}d^M;
-dummy-ref-algebra-8: {X}d^M |~> M;

-dummy-ref-def: {xs}d^M =def= let {ys = xs} in M if ys are fresh;
-dummy-bind-intro: let {x = M} in N <~~> let {z = @, x = {z}d^M} in N

if z is fresh;
-stack-spike-def: [w]s^M =def= [w] case True of {True -> M};
-heap-spike-def: [w]h^M =def= let {x=[1,w]= @} in {x}d^M

if x is fresh;
-stack-spike-intro: M <~~> [w]s^M;
-heap-spike-intro: M <~~> [w]h^M;

-lemma-5-5-1: [w]^R[M] |~> [w1]^R[M] if w >= w1;
-lemma-5-5-2: [w] (M + [v] N) |~> [w1] (M + [v1] N)

if w >= w1 && v >= v1;

49

B. Detailed FAITH scripts and encodings

-lemma-5-5-3: let G {x =[w,v]=M} in N |~> let G{ x =[w1,v1]= M } in N
if w >= w1 && v >= v1;

-lemma-5-6-1: R[M] <~~> [w]^R[M] if w > 0;
-lemma-5-6-2: (M + N) <~~> [w](M + [v] N) if w > 0 && v > 0;
-lemma-5-6-3: let G {x = M} in N <~~> let G {x =[w,v]= M} in N

if v > 0 && w > 0;

-balloon-intro-1: (\x.M) y <~~> (\x.M) <> y;
-balloon-intro-2: let {x = V} in N <~~> let {x =[0,1]= V} in N;
-balloon-reduction: (\x.M) <> y <~> M [y/x] if y in FV(M[y/x]);

-unfold-weak: let G {x=[v,w]=V} in C[x]
<~~> let G {x=[v,w]=V} in C[{x}d^V];

-- Laws that I added that I think are needed and valid
-balloon-intro-untyped: M x <~~> M <> x;
-spike-algebra-zero-stack-spike: [0]s^M <~> M;
-spike-algebra-zero-heap-spike: [0]h^M <~> M;

B.2 Full FAITH proofs

B.2.1 Case study 1, cyclic structures
bindings {
G = {repeat =[0,0]= \x1. let {zs = repeat x1} in x1:zs};
}

-- base case
proposition: G free(x f) |- let {xs = {repeat}d^@ x} in f <> x <> xs

|~> let {xs = x : xs} in f <> x <> xs;
proof: -simple -single{

-dummy-ref-algebra-8
ctx=(let G in let {xs = [.] x} in f <> x <> xs)
X={repeat}
M=@;

|~> let {xs = @ x} in f <> x <> xs;
-@-rules-3-lr

ctx = (let G in let {xs = [.]} in f <> x <> xs)
R=([.] x);

<~> let {xs = {x}d^@} in f <> x <> xs;
-@-rules-2

ctx=(let G in [.])
G=let {}
x=xs

50

B. Detailed FAITH scripts and encodings

X={x}
N=(f <> x <> xs)
M=(x:xs);

|~> let {xs = x : xs} in f <> x <> xs;
} qed;

--inductive case (before induction)
proposition: G free(x f) |-

let {xs = [0]s^(\x2. let {ys = repeat x2}
in x : ys) x} in f <> x <> xs

|~> let { xs = let {g =[0,0]= (\a . \ as . a : as)}
in let {ys = repeat x} in g <> x <> ys}

in f <> x <> xs;
proof: -simple -single{

-spike-algebra-zero-stack-spike-lr
ctx=(let G in let {xs= [.] x} in f <> x <> xs)
M=(\x2. let {ys = repeat x2} in x : ys);

<~> let {xs = (\x2. let {ys = repeat x2} in x : ys) x}
in f <> x <> xs;

-reduction-lr
ctx=(let G in let {xs = [.]} in f <> x <> xs)
w=1
R=([.] x)
V=(\x2. let {ys = repeat x2} in x : ys)
X={}
N=(let {ys' = repeat x} in x : ys');

<~> let {xs = s^{}d^(let {ys = repeat x} in x : ys)}
in f <> x <> xs;

-dummy-ref-algebra-5-lr
ctx=(let G in let {xs = s^[.]} in f <> x <> xs)
M=(let {ys = repeat x} in x : ys);

<~> let {xs = s^(let {ys = repeat x} in x : ys)} in f <> x <> xs;
-spike-algebra-13

ctx=(let G in let {xs = [.]} in f <> x <> xs)
w=1
M=(let {ys = repeat x} in x : ys);

|~> let {xs = let {ys = repeat x} in x : ys} in f <> x <> xs;
-- Start of the extra work that is needed because meta-variable M
-- is not implemented.
-dummy-ref-algebra-5-rl

ctx=(let G in let {xs = let {ys = repeat x} in [.]}
in f <> x <> xs)

M=(x : ys);
<~> let {xs = let {ys = repeat x} in {}d^(x : ys)}

in f <> x <> xs;
-spike-algebra-zero-stack-spike-rl

51

B. Detailed FAITH scripts and encodings

ctx=(let G in let {xs = let {ys = repeat x} in [.]}
in f <> x <> xs)

M=({}d^(x : ys));
<~> let {xs = let {ys = repeat x} in [0]s^{}d^(x : ys)}

in f <> x <> xs;
-reduction-rl

ctx=(let G in let {xs = let {ys = repeat x} in [.]}
in f <> x <> xs)

N=(x : ys)
w=0
X={}
R=([.] ys)
V=(\as . x : as);

<~> let {xs = let {ys = repeat x} in (\as . x : as) <> ys}
in f <> x <> xs;

-dummy-ref-algebra-5-rl
ctx = (let G in let {xs = let {ys = repeat x}

in [.] <> ys} in f <> x <> xs)
M=(\as . x : as);

<~> let {xs = let {ys = repeat x}
in {}d^(\as . x : as) <> ys}

in f <> x <> xs;
-spike-algebra-zero-stack-spike-rl

ctx= (let G in let {xs = let {ys = repeat x}
in [.] <> ys} in f <> x <> xs)

M=({}d^(\as . x : as));
<~> let {xs = let {ys = repeat x} in [0]s^{}d^(\as . x : as) <> ys}

in f <> x <> xs;
-reduction-rl

ctx= (let G in let {xs = let {ys = repeat x}
in [.] <> ys} in f <> x <> xs)

w=0
X={}
N=(\as' . x : as')
R=([.] x)
V=(\a. \as . a : as);

<~> let {xs = let {ys = repeat x} in (\a. \as . a : as) <> x <> ys}
in f <> x <> xs;

-spike-algebra-zero-heap-spike-rl
ctx=(let G in let {xs = let {ys = repeat x}

in [.] <> x <> ys}
in f <> x <> xs)

M=(\a. \as . a : as);
<~> let {xs = let {ys = repeat x}

in [0]h^(\a. \as . a : as) <> x <> ys}
in f <> x <> xs;

52

B. Detailed FAITH scripts and encodings

-let-elim-rl
ctx=(let G in let {xs = let {ys = repeat x}

in [.] <> x <> ys}
in f <> x <> xs)

M=(\a. \as . a : as)
x=g
v=0
w=0;

<~> let {xs = let {ys = repeat x}
in (let {g =[0,0]= (\a. \as . a : as)}

in g) <> x <> ys}
in f <> x <> xs;

-let-R-rl
ctx=(let G in let {xs = let {ys = repeat x}

in [.] <> ys}
in f <> x <> xs)

G=let {g =[0,0]= (\a. \as . a : as)}
M=g
R=([.] x)
w=0;

<~> let {xs = let {ys = repeat x}
in (let {g =[0,0]= (\a. \as . a : as)}

in g <> x) <> ys}
in f <> x <> xs;

-let-R-rl
ctx = (let G in let {xs = let {ys = repeat x}

in [.]}
in f <> x <> xs)

G=let {g =[0,0]= (\a. \as . a : as)}
M=(g <> x)
R=([.] ys)
w=0;

<~> let {xs = let {ys = repeat x}
in let {g =[0,0]= (\a. \as . a : as)}

in g <> x <> ys}
in f <> x <> xs;

-let-flatten-lr
ctx = (let G in let {xs = [.]} in f <> x <> xs)
G1=let {ys = repeat x}
G2=let {g =[0,0]= (\a. \as . a : as)}
M=(g <> x <> ys);

<~> let {xs = let { ys = repeat x
, g =[0,0]= (\a. \as . a : as)}

in g <> x <> ys}
in f <> x <> xs;

-let-flatten-rl

53

B. Detailed FAITH scripts and encodings

ctx = (let G in let {xs = [.]} in f <> x <> xs)
G1=let {g =[0,0]= (\a. \as . a : as)}
G2=let {ys = repeat x}
M=(g <> x <> ys);

<~> let {xs = let {g =[0,0]= (\a. \as . a : as)}
in let { ys = repeat x} in g <> x <> ys}

in f <> x <> xs;
}
qed;
{-
This would be the induction step if induction was implemented,
but now it is in comments and there are two separate proofs instead.

<~> let {xs = let {g =[0,0]= (\a. \as . a : as)}
in let { ys = repeat^n x} in g <> x <> ys}

in f <> x <> xs;

-ih
ctx = [.]
D = (let {xs = let {g =[0,0]= (\a. \as . a : as)}

in [.]}
in f <> x <> xs)

f=g
x=x
|~> let {xs = let {g =[0,0]= (\a. \as . a : as)}

in let {ys = x : ys} in g <> x <> ys}
in f <> x <> xs;

-}

-- inductive case (after induction)
proposition: G free(x f) |-

let {xs = let {g =[0,0]= (\a. \as . a : as)}
in let {ys = x : ys} in g <> x <> ys}

in f <> x <> xs
|~> let {xs = x : xs} in f <> x <> xs;

proof: -simple -single{
-unfold-5-lr

ctx=(let G in let {xs = [.]} in f <> x <> xs)
G= let {}
x=g
V=(\a. \as . a : as)
C=(let {ys = x : ys} in [.] <> x <> ys);

<~> let {xs = let {g =[0,0]= (\a. \as . a : as)}
in let {ys = x : ys}

in (\b. \bs . b : bs) <> x <> ys}
in f <> x <> xs;

54

B. Detailed FAITH scripts and encodings

-balloon-reduction-lr
ctx= (let G in let {xs = let {g =[0,0]= (\a. \as . a : as)}

in let {ys = x : ys} in [.] <> ys}
in f <> x <> xs)

x=b
M=(\bs . b : bs)
y=x;

<~> let {xs = let {g =[0,0]= (\a. \as . a : as)}
in let {ys = x : ys} in (\bs . x : bs) <> ys}

in f <> x <> xs;
-balloon-reduction-lr

ctx=(let G in let {xs = let {g =[0,0]= (\a. \as . a : as)}
in let {ys = x : ys} in [.]}

in f <> x <> xs)
M=(x : bs)
x=bs
y=ys;

<~> let {xs = let {g =[0,0]= (\a. \as . a : as)}
in let {ys = x : ys} in x : ys}

in f <> x <> xs;
-gc-lr

ctx=(let G in let {xs = [.]}
in f <> x <> xs)

G1 = let {}
G2 = let {g =[0,0]= (\a. \as . a : as)}
X={}
M=(let {ys = x : ys} in x : ys);

<~> let {xs = {}d^(let {}
in let {ys = x : ys} in x : ys)}

in f <> x <> xs;
-dummy-ref-algebra-5-lr

ctx=(let G in let {xs = [.]}
in f <> x <> xs)

M=(let {} in let {ys = x : ys} in x : ys);
<~> let {xs = (let {} in let {ys = x : ys} in x : ys)}

in f <> x <> xs;
-empty-let-lr

ctx = (let G in let {xs = [.]}
in f <> x <> xs)

N=(let {ys = x : ys} in x : ys);
<~> let {xs = let {ys = x : ys} in x : ys}

in f <> x <> xs;
-- End of the extra work that is needed because general
-- metavariable M is not implemented.
-value-merge'

ctx=(let G in [.])

55

B. Detailed FAITH scripts and encodings

G=let {}
x=xs
y=ys
V=(x:ys)
M=(f <> x <> xs);

|~> let {xs = x : xs} in f <> x <> xs;
} qed;

B.2.2 Case study 2: intermediate data structures
We substituted M for f any for similar reasons as in case study 1. For parsing
reasons, we cannot use (||) to be the binary or-operator. Instead, we will use the
operator or for this purpose. We acknowledge that this may be confusing, since or
is the list operator for or in Haskell. However, the list operator will not be used in
the proof, since

any' p = or . map p
or = foldr (||) False

is inlined to

any' p = (foldr (||) False) . map p

and then, the (||) is changed to or, to create

any' p = (foldr or False) . map p

This inlining is safe for space, since the definition of or is top-level, and can thus
be set to have stack and heap weight 0 within weak space equivalence, so that
-unfold-5 can be applied.

B.2.2.1 Adding gadgets to any

bindings {
G = { or = \a. \b. case a of

{ True -> True
, False -> b
}

};
}

-- Add gadgets
proposition: G free(f)|-

let {any = \p. \xs. case xs of
{ [] -> False
, y:ys -> let { py = p y

, anypys = any p y ys}
in or py anypys}}

56

B. Detailed FAITH scripts and encodings

in f any
<~~>

let {any = \p. \xs. [2]h^(case xs of
{ [] -> s^False
, y:ys -> s^(let { z = @

, py = p <> y
, anypys = {z}d^(any <> p <> y <> ys)}

in or <> py <> anypys)})
} in f any;

proof: -simple -single{
-heap-spike-intro-lr

ctx=(let G in (let {any = \p. \xs. [.] } in f any))
M= (case xs of

{ [] -> False
, y:ys -> let { py = p y

, anypys = any p y ys}
in or py anypys})

w=2;
<~~> let {any = \p. \xs. [2]h^(case xs of

{ [] -> False
, y:ys -> let { py = p y

, anypys = any p y ys}
in or py anypys})

} in f any;
-stack-spike-intro-lr

ctx = (let G in let {any = \p. \xs. [2]h^(case xs of
{ [] -> False
, y:ys -> [.]}) } in f any)

M=(let { py = p y
, anypys = any p y ys}

in or py anypys)
w=1;

<~~> let {any = \p. \xs. [2]h^(case xs of
{ [] -> False
, y:ys -> s^(let { py = p y

, anypys = any p y ys}
in or py anypys)})

} in f any;
-stack-spike-intro-lr

ctx = (let G in let {any = \p. \xs. [2]h^(case xs of
{ [] -> [.]
, y:ys -> s^(let { py = p y

, anypys = any p y ys}
in or py anypys)})

} in f any)
M=False

57

B. Detailed FAITH scripts and encodings

w=1;
<~~> let {any = \p. \xs. [2]h^(case xs of

{ [] -> s^False
, y:ys -> s^(let { py = p y

, anypys = any p y ys}
in or py anypys)})

} in f any ;
-balloon-intro-untyped-lr

ctx = (let G in let {any = \p. \xs. [2]h^(case xs of
{ [] -> s^False
, y:ys -> s^(let { py = [.]

, anypys = any p y ys}
in or py anypys)})

} in f any)
M=p x=y;

<~~> let {any = \p. \xs. [2]h^(case xs of
{ [] -> s^False
, y:ys -> s^(let { py = p <> y

, anypys = any p y ys}
in or py anypys)}) } in f any;

-balloon-intro-untyped-lr
ctx=(let G in let {any = \p. \xs. [2]h^(case xs of

{ [] -> s^False
, y:ys -> s^(let { py = p <> y

, anypys = [.] y ys}
in or py anypys)}) } in f any)

M=any x=p;
<~~> let {any = \p. \xs. [2]h^(case xs of

{ [] -> s^False
, y:ys -> s^(let { py = p <> y

, anypys = any <> p y ys}
in or py anypys)}) } in f any;

-balloon-intro-untyped-lr
ctx=(let G in let {any = \p. \xs. [2]h^(case xs of

{ [] -> s^False
, y:ys -> s^(let { py = p <> y

, anypys = [.] ys}
in or py anypys)}) } in f any)

M=(any <> p) x=y;
<~~> let {any = \p. \xs. [2]h^(case xs of

{ [] -> s^False
, y:ys -> s^(let { py = p <> y

, anypys = any <> p <> y ys}
in or py anypys)}) } in f any;

-balloon-intro-untyped-lr
ctx=(let G in let {any = \p. \xs. [2]h^(case xs of

58

B. Detailed FAITH scripts and encodings

{ [] -> s^False
, y:ys -> s^(let { py = p <> y

, anypys = [.]}
in or py anypys)}) } in f any)

M=(any <> p <> y) x=ys;
<~~> let {any = \p. \xs. [2]h^(case xs of

{ [] -> s^False
, y:ys -> s^(let { py = p <> y

, anypys = any <> p <> y <> ys}
in or py anypys)}) } in f any;

-let-flatten-rl
ctx=(let G in let {any = \p. \xs. [2]h^(case xs of

{ [] -> s^False
, y:ys -> s^([.])}) } in f any)

G1=let {anypys = any <> p <> y <> ys}
G2=let {py = p<> y}
M=(or py anypys);

<~> let {any = \p. \xs. [2]h^(case xs of
{ [] -> s^False
, y:ys -> s^(let {anypys = any <> p <> y <> ys}

in let {py = p <> y}
in or py anypys)}) } in f any;

-dummy-bind-intro-lr
ctx=(let G in let {any = \p. \xs. [2]h^(case xs of

{ [] -> s^False
, y:ys -> s^([.])}) } in f any)

x=anypys
M=(any <> p <> y <> ys)
N=(let {py = p <> y}

in or py anypys)
z=z;

<~~> let {any = \p. \xs. [2]h^(case xs of
{ [] -> s^False
, y:ys -> s^(let { z=@

, anypys = {z}d^(any <> p <> y <> ys)}
in let {py = p <> y}

in or py anypys)}) } in f any;
-let-flatten-lr

ctx= (let G in let {any = \p. \xs. [2]h^(case xs of
{ [] -> s^False
, y:ys -> s^([.])}) } in f any)

G1=let { z=@, anypys = {z}d^(any <> p <> y <> ys)}
G2=let {py = p <> y}
M=(or py anypys);

<~> let {any = \p. \xs. [2]h^(case xs of
{ [] -> s^False

59

B. Detailed FAITH scripts and encodings

, y:ys -> s^(let { z=@
, anypys = {z}d^(any <> p <> y <> ys)
, py = p <> y}

in or py anypys)}) } in f any;
-balloon-intro-untyped-lr

ctx = (let G
in let {any = \p. \xs. [2]h^(case xs of

{ [] -> s^False
, y:ys -> s^(let { z=@

, py = p <> y
, anypys = {z}d^(any <> p <> y <> ys)}

in [.] anypys)}) } in f any)
M=or x=py;

<~~> let {any = \p. \xs. [2]h^(case xs of
{ [] -> s^False
, y:ys -> s^(let { z=@

, py = p <> y
, anypys = {z}d^(any <> p <> y <> ys)}

in or <> py anypys)}) } in f any;
-balloon-intro-untyped-lr

ctx = (let G in let {any = \p. \xs. [2]h^(case xs of
{ [] -> s^False
, y:ys -> s^(let { z=@

, py = p <> y
, anypys = {z}d^(any <> p <> y <> ys)}

in [.])}) } in f any)
M=(or <> py) x=anypys;

<~~> let {any = \p. \xs. [2]h^(case xs of
{ [] -> s^False
, y:ys -> s^(let { z=@

, py = p <> y
, anypys = {z}d^(any <> p <> y <> ys)}

in or <> py <> anypys)}) } in f any;
}
qed;

B.2.2.2 Inductive case

bindings {
G = { any_a =[0,0]= \p1. \xs1. h^([2]case xs1 of

{ [] -> s^False
, y1:ys1 -> s^(let { z1 = @

, a1 = p1 <> y1
, b1 = {z1}d^(any_a <> p1 <> ys1)}

in or <> a1 <> b1)})
, foldr_a =[0,0]= \f2 . \ z2 . \l2 .

case l2 of

60

B. Detailed FAITH scripts and encodings

{ [] -> z2
, a2:as2 -> let {t2 = foldr_a <> f2 <> z2 <> as2}

in f2 <> a2 <> t2}
, map_a =[0,0]= \f3 . \l3 . case l3 of

{ [] -> []
, a3:as3 -> let { h3 = f3 <> a3

, t3 = map_a <> f3 <> as3}
in h3:t3

}
, or =[0,0]= \a4. \b4. case a4 of

{ True -> True
, False -> b4
}

, false =[0,0]= False
};

}

-- pre-induction
proposition: G free(p xs) |-

let { b = map_a <> p <> xs}
in foldr_a <> or <> false <> b
<~>
h^([2] case xs of

{ [] -> s^false
, b : bs -> s^(let { z = @

, ds = {z}d^(let {cs = map_a <> p <> bs}
in foldr_a <> or <> false <> cs)}

in let {c = p <> b}
in or <> c <> ds)});

proof: -simple -single {
let {b = map_a <> p <> xs}
in foldr_a <> or <> false <> b;
-unfold-5-lr

ctx = [.]
G= let { any_a =[0,0]= \p1. \xs1. h^([2]case xs1 of

{ [] -> s^False
, y1:ys1 -> s^(let { z1 = @

, a1 = p1 <> y1
, b1 = {z1}d^(any_a <> p1 <> ys1)}

in or <> a1 <> b1)})
, map_a =[0,0]= \f3 . \l3 . case l3 of

{ [] -> []
, a3:as3 -> let { h3 = f3 <> a3

, t3 = map_a <> f3 <> as3}
in h3:t3

61

B. Detailed FAITH scripts and encodings

}
, or =[0,0]= \a4. \b4. case a4 of

{ True -> True
, False -> b4
}

, false =[0,0]= False
}

x = foldr_a
V = (\f5 . \ z5 . \l5 .

case l5 of
{ [] -> z5
, a5:as5 -> let {t5 = foldr_a <> f5 <> z5 <> as5}

in f5 <> a5 <> t5})
C = (let { b = map_a <> p <> xs}

in [.] <> or <> false <> b);
<~>
let { b = map_a <> p <> xs}
in (\f5 . \ z5 . \l5 .

case l5 of
{ [] -> z5
, a5:as5 -> let {t5 = foldr_a <> f5 <> z5 <> as5}

in f5 <> a5 <> t5}) <> or <> false <> b;
-balloon-reduction-lr

ctx = (let G in let { b = map_a <> p <> xs}
in [.] <> false <> b)

M = (\ z5 . \l5 .
case l5 of

{ [] -> z5
, a5:as5 -> let {t5 = foldr_a <> f5 <> z5 <> as5}

in f5 <> a5 <> t5})
x=f5 y=or;

<~>
let { b = map_a <> p <> xs}
in (\ z5 . \l5 .

case l5 of
{ [] -> z5
, a5:as5 -> let {t5 = foldr_a <> or <> z5 <> as5}

in or <> a5 <> t5}) <> false <> b;
-balloon-reduction-lr

ctx = (let G in let {b = map_a <> p <> xs}
in [.] <> b)

x=z5 y=false
M=(\l5 . case l5 of

{ [] -> z5
, a5:as5 -> let {t5 = foldr_a <> or <> z5 <> as5}

in or <> a5 <> t5});

62

B. Detailed FAITH scripts and encodings

<~>
let { b = map_a <> p <> xs}
in (\l5 . case l5 of

{ [] -> false
, a5:as5 -> let {t5 = foldr_a <> or <> false <> as5}

in or <> a5 <> t5}) <> b;
-balloon-reduction-lr

ctx = (let G in let { b = map_a <> p <> xs}
in [.])

x=l5 y = b
M=(case l5 of

{ [] -> false
, a5:as5 -> let {t5 = foldr_a <> or <> false <> as5}

in or <> a5 <> t5});
<~>
let { ys5 = map_a <> p <> xs}
in (case ys5 of

{ [] -> false
, a5:as5 -> let {t5 = foldr_a <> or <> false <> as5}

in or <> a5 <> t5});
-let-R-lr

ctx = (let G in [.])
G = let {ys5 = map_a <> p <> xs}
w=1
R=(case [.] of { [] -> false

, a5:as5 ->
let {t5 = foldr_a <> or <> false <> as5}
in or <> a5 <> t5})

M=ys5;
<~> (case (let {ys5 = map_a <> p <> xs} in ys5) of

{ [] -> false
, a5:as5 ->

let {t5 = foldr_a <> or <> false <> as5}
in or <> a5 <> t5});

-let-elim-lr
x=ys5
v=1
w=1
M=(map_a <> p <> xs)
ctx=(let G in (case [.] of

{ [] -> false
, a5:as5 ->

let {t5 = foldr_a <> or <> false <> as5}
in or <> a5 <> t5}));

<~> (case h^(map_a <> p <> xs) of
{ [] -> false

63

B. Detailed FAITH scripts and encodings

, a5:as5 ->
let {t5 = foldr_a <> or <> false <> as5}
in or <> a5 <> t5});

-spike-algebra-2-lr
ctx=(let G in [.])
w=1
R=(case [.] of

{ [] -> false
, a5:as5 -> let {t5 = foldr_a <> or <> false <> as5}

in or <> a5 <> t5})
v=1
M=(map_a <> p <> xs);

<~> h^(case map_a <> p <> xs of
{ [] -> false
, a5:as5 ->

let {t5 = foldr_a <> or <> false <> as5}
in or <> a5 <> t5});

-unfold-5-lr
ctx= [.]
G= let { any_a =[0,0]= \p1. \xs1. h^([2]case xs1 of

{ [] -> s^False
, y1:ys1 -> s^(let { z1 = @

, a1 = p1 <> y1
, b1 = {z1}d^(any_a <> p1 <> ys1)}

in or <> a1 <> b1)})
, foldr_a =[0,0]= \f2 . \ z2 . \l2 .

case l2 of
{ [] -> z2
, a2:as2 -> let {t2 = foldr_a <> f2 <> z2 <> as2}

in f2 <> a2 <> t2}
, or =[0,0]= \a4. \b4. case a4 of

{ True -> True
, False -> b4
}

, false =[0,0]= False
}

V= (\f3 . \l3 . case l3 of
{ [] -> []
, a3:as3 -> let { h3 = f3 <> a3

, t3 = map_a <> f3 <> as3}
in h3:t3})

x=map_a
C=(h^(case [.] <> p <> xs of

{ [] -> false
, a5:as5 -> let {t5 = foldr_a <> or <> false <> as5}

in or <> a5 <> t5}));

64

B. Detailed FAITH scripts and encodings

<~> h^(case (\f7 . \l7 . case l7 of
{ [] -> []
, a7:as7 ->

let { h7 = f7 <> a7
, t7 = map_a <> f7 <> as7}

in h7:t7}) <> p <> xs of
{ [] -> false
, a5:as5 ->

let {t5 = foldr_a <> or <> false <> as5}
in or <> a5 <> t5});

-balloon-reduction-lr
ctx=(let G in h^(case [.] <> xs of

{ [] -> false
, a5:as5 ->

let {t5 = foldr_a <> or <> false <> as5}
in or <> a5 <> t5}))

x=f7 y=p
M=(\l8 . case l8 of

{ [] -> []
, a8:as8 -> let { h8 = f7 <> a8

, t8 = map_a <> f7 <> as8}
in h8:t8});

<~> h^(case (\l7 . case l7 of
{ [] -> []
, a7:as7 -> let { h7 = p <> a7

, t7 = map_a <> p <> as7}
in h7:t7}) <> xs of

{ [] -> false
, a5:as5 ->

let {t5 = foldr_a <> or <> false <> as5}
in or <> a5 <> t5});

-balloon-reduction-lr
ctx=(let G in h^(case [.] of

{ [] -> false
, a5:as5 ->

let {t5 = foldr_a <> or <> false <> as5}
in or <> a5 <> t5}))

x=l7 y=xs
M=(case l7 of

{ [] -> []
, a7:as7 -> let { h7 = p <> a7

, t7 = map_a <> p <> as7}
in h7:t7});

<~> h^(case case xs of
{ [] -> []
, a7:as7 -> let { h7 = p <> a7

65

B. Detailed FAITH scripts and encodings

, t7 = map_a <> p <> as7}
in h7:t7} of

{ [] -> false
, a5:as5 ->

let {t5 = foldr_a <> or <> false <> as5}
in or <> a5 <> t5});

-R-case-lr
ctx= (let G in h^[.])
R=(case [.] of

{ [] -> false
, a5:as5 -> let {t5 = foldr_a <> or <> false <> as5}

in or <> a5 <> t5})
w=1
v=1
M=xs
pat_i=patterns [[], a10:as10]
N_i=terms [[], let { h7 = p <> a10

, t7 = map_a <> p <> as10}
in h7:t7];

<~> h^ ([2] case xs of
{ [] -> case [] of

{ [] -> false
, a10:as10 ->

let {t5 = foldr_a <> or <> false <> as10}
in or <> a10 <> t5}

, b:bs -> case let { h7 = p <> b
, t7 = map_a <> p <> bs}

in h7:t7 of
{ [] -> false
, a9:as9 ->

let {t9 = foldr_a <> or <> false <> as9}
in or <> a9 <> t9}

});
-reduction-lr

ctx = (let G in h^ ([2] case xs of
{ [] -> [.]
, b:bs -> case let { h7 = p <> b

, t7 = map_a <> p <> bs}
in h7:t7 of

{ [] -> false
, a9:as9 ->

let {t9 = foldr_a <> or <> false <> as9}
in or <> a9 <> t9}

}))
w=1
R=(case [.] of

66

B. Detailed FAITH scripts and encodings

{ [] -> false
, a10:as10 -> let {t5 = foldr_a <> or <> false <> as10}

in or <> a10 <> t5})
V= []
X={or foldr_a}
N=false;

<~> h^ ([2] case xs of
{ [] -> s^{or foldr_a}d^false
, b:bs -> case let { h7 = p <> b

, t7 = map_a <> p <> bs}
in h7:t7 of

{ [] -> false
, a9:as9 ->

let {t9 = foldr_a <> or <> false <> as9}
in or <> a9 <> t9}

});
-dummy-ref-algebra-7-rl

ctx=(let G in h^ ([2] case xs of
{ [] -> s^[.]
, b:bs -> case let { h7 = p <> b

, t7 = map_a <> p <> bs}
in h7:t7 of

{ [] -> false
, a9:as9 ->

let {t9 = foldr_a <> or <> false <> as9}
in or <> a9 <> t9}

}))
X={or}
Y={foldr_a}
M=false;

<~> h^ ([2] case xs of
{ [] -> s^{or}d^{foldr_a}d^false
, b:bs -> case let { h7 = p <> b

, t7 = map_a <> p <> bs}
in h7:t7 of

{ [] -> false
, a9:as9 ->

let {t9 = foldr_a <> or <> false <> as9}
in or <> a9 <> t9}

});
-dummy-ref-algebra-3-lr

ctx = [.]
G= let { any_a =[0,0]= \p1. \xs1. h^([2]case xs1 of

{ [] -> s^False
, y1:ys1 -> s^(let { z1 = @

, a1 = p1 <> y1

67

B. Detailed FAITH scripts and encodings

, b1 = {z1}d^(any_a <> p1 <> ys1)}
in or <> a1 <> b1)})

, map_a =[0,0]= \f3 . \l3 . case l3 of
{ [] -> []
, a3:as3 -> let { h3 = f3 <> a3

, t3 = map_a <> f3 <> as3}
in h3:t3

}
, or =[0,0]= \a4. \b4. case a4 of

{ True -> True
, False -> b4
}

, false =[0,0]= False
}

x=foldr_a
w=0
V= (\f2 . \ z2 . \l2 .

case l2 of
{ [] -> z2
, a2:as2 ->

let {t2 = foldr_a <> f2 <> z2 <> as2}
in f2 <> a2 <> t2})

C=(h^ ([2] case xs of
{ [] -> s^{or}d^[.]
, b:bs -> case let { h7 = p <> b

, t7 = map_a <> p <> bs}
in h7:t7 of

{ [] -> false
, a9:as9 ->

let {t9 = foldr_a <> or <> false <> as9}
in or <> a9 <> t9}

}))
M=false;

<~> h^ ([2] case xs of
{ [] -> s^{or}d^{}d^false
, b:bs -> case let { h7 = p <> b

, t7 = map_a <> p <> bs}
in h7:t7 of

{ [] -> false
, a9:as9 ->

let {t9 = foldr_a <> or <> false <> as9}
in or <> a9 <> t9}

});
-dummy-ref-algebra-5-lr
ctx=(let G in h^ ([2] case xs of

{ [] -> s^{or}d^[.]

68

B. Detailed FAITH scripts and encodings

, b:bs -> case let { h7 = p <> b
, t7 = map_a <> p <> bs}

in h7:t7 of
{ [] -> false
, a9:as9 ->

let {t9 = foldr_a <> or <> false <> as9}
in or <> a9 <> t9}

}))
M=false;

<~> h^ ([2] case xs of
{ [] -> s^{or}d^false
, b:bs -> case let { h7 = p <> b

, t7 = map_a <> p <> bs}
in h7:t7 of

{ [] -> false
, a9:as9 ->

let {t9 = foldr_a <> or <> false <> as9}
in or <> a9 <> t9}

});
-dummy-ref-algebra-3-lr

ctx= [.]
G= let { any_a =[0,0]= \p1. \xs1. h^([2]case xs1 of

{ [] -> s^False
, y1:ys1 -> s^(let { z1 = @

, a1 = p1 <> y1
, b1 = {z1}d^(any_a <> p1 <> ys1)}

in or <> a1 <> b1)})
, foldr_a =[0,0]= \f2 . \ z2 . \l2 .

case l2 of
{ [] -> z2
, a2:as2 -> let {t2 = foldr_a <> f2 <> z2 <> as2}

in f2 <> a2 <> t2}
, map_a =[0,0]= \f3 . \l3 . case l3 of

{ [] -> []
, a3:as3 -> let { h3 = f3 <> a3

, t3 = map_a <> f3 <> as3}
in h3:t3

}
, false =[0,0]= False
}

x=or
w=0
V=(\a4. \b4. case a4 of

{ True -> True
, False -> b4
})

69

B. Detailed FAITH scripts and encodings

M=false
C=(h^ ([2] case xs of

{ [] -> s^[.]
, b:bs -> case let { h7 = p <> b

, t7 = map_a <> p <> bs}
in h7:t7 of

{ [] -> false
, a9:as9 ->

let {t9 = foldr_a <> or <> false <> as9}
in or <> a9 <> t9}

}));
<~> h^ ([2] case xs of

{ [] -> s^{}d^false
, b:bs -> case let { h7 = p <> b

, t7 = map_a <> p <> bs}
in h7:t7 of

{ [] -> false
, a9:as9 ->

let {t9 = foldr_a <> or <> false <> as9}
in or <> a9 <> t9}

});
-dummy-ref-algebra-5-lr

ctx=(let G in h^ ([2] case xs of
{ [] -> s^[.]
, b:bs -> case let { h7 = p <> b

, t7 = map_a <> p <> bs}
in h7:t7 of

{ [] -> false
, a9:as9 ->

let {t9 = foldr_a <> or <> false <> as9}
in or <> a9 <> t9}

}))
M=false;

<~> h^ ([2] case xs of
{ [] -> s^false
, b:bs -> case let { h7 = p <> b

, t7 = map_a <> p <> bs}
in h7:t7 of

{ [] -> false
, a9:as9 ->

let {t9 = foldr_a <> or <> false <> as9}
in or <> a9 <> t9}

});
-let-R-rl

ctx=(let G
in h^ ([2] case xs of

70

B. Detailed FAITH scripts and encodings

{ [] -> s^false
, b:bs -> [.]
}))

R=(case [.] of
{ [] -> false
, a9:as9 ->

let {t9 = foldr_a <> or <> false <> as9}
in or <> a9 <> t9})

G=let { h7 = p <> b, t7 = map_a <> p <> bs}
M=(h7:t7)
w=1;

<~> h^ ([2] case xs of
{ [] -> s^false
, b:bs -> let { h7 = p <> b

, t7 = map_a <> p <> bs}
in case h7:t7 of

{ [] -> false
, a9:as9 ->

let {t9 = foldr_a <> or <> false <> as9}
in or <> a9 <> t9}

});
-reduction-lr

ctx=(let G
in h^ ([2] case xs of
{ [] -> s^false
, b:bs -> let { h7 = p <> b

, t7 = map_a <> p <> bs}
in [.]

}))
w=1
R=(case [.] of

{ [] -> false
, a9:as9 ->

let {t9 = foldr_a <> or <> false <> as9}
in or <> a9 <> t9})

V=(h7:t7)
X={}
N=(let {t = foldr_a <> or <> false <> t7}

in or <> h7 <> t);
<~> h^ ([2] case xs of

{ [] -> s^false
, b:bs -> let { h7 = p <> b

, t7 = map_a <> p <> bs}
in s^{}d^(let {t9 = foldr_a <> or <> false <> t7}

in or <> h7 <> t9)
});

71

B. Detailed FAITH scripts and encodings

-dummy-ref-algebra-5-lr
ctx=(let G

in h^ ([2] case xs of
{ [] -> s^false
, b:bs -> let { h7 = p <> b

, t7 = map_a <> p <> bs}
in s^[.]

}))
M=(let {t9 = foldr_a <> or <> false <> t7}

in or <> h7 <> t9);
<~> h^ ([2] case xs of

{ [] -> s^false
, b:bs -> let { h7 = p <> b

, t7 = map_a <> p <> bs}
in s^(let {t9 = foldr_a <> or <> false <> t7}

in or <> h7 <> t9)
});

-spike-algebra-3-lr
ctx=(let G

in h^ ([2] case xs of
{ [] -> s^false
, b:bs -> [.]
}))

G= let { h7 = p <> b
, t7 = map_a <> p <> bs}

v=1
M=(let {t9 = foldr_a <> or <> false <> t7}

in or <> h7 <> t9);
<~> h^ ([2] case xs of

{ [] -> s^false
, b:bs -> s^(let { h7 = p <> b

, t7 = map_a <> p <> bs}
in let {t9 = foldr_a <> or <> false <> t7}

in or <> h7 <> t9)
});

-let-flatten-lr
ctx = (let G in h^ ([2] case xs of

{ [] -> s^false
, b:bs -> s^[.]
}))

G1 = let { h7 = p <> b, t7 = map_a <> p <> bs}
G2= let {t9 = foldr_a <> or <> false <> t7}
M=(or <> h7 <> t9);

<~> h^ ([2] case xs of
{ [] -> s^false
, b:bs -> s^(let { c = p <> b

72

B. Detailed FAITH scripts and encodings

, cs = map_a <> p <> bs
, ds = foldr_a <> or <> false <> cs}

in or <> c <> ds)
});

-let-flatten-rl
ctx=(let G

in h^ ([2] case xs of
{ [] -> s^false
, b:bs -> s^[.]
}))

G1= let {cs = map_a <> p <> bs
, ds = foldr_a <> or <> false <> cs}

G2= let { c = p <> b}
M=(or <> c <> ds);

<~> h^ ([2] case xs of
{ [] -> s^false
, b:bs -> s^(let { cs = map_a <> p <> bs

, ds = foldr_a <> or <> false <> cs}
in let {c = p <> b}

in or <> c <> ds)
});

-let-let'-lr
ctx=(let G in h^ ([2] case xs of

{ [] -> s^false
, b:bs -> s^[.]
}))

G1=let {cs = map_a <> p <> bs}
x=ds
v=1 w=1
M=(foldr_a <> or <> false <> cs)
N=(let {c = p <> b}

in or <> c <> ds)
G2=let {z = @};

<~> h^ ([2] case xs of
{ [] -> s^false
, b:bs ->

s^(let { z = @
, ds = {z}d^(let {cs = map_a <> p <> bs}

in foldr_a <> or <> false <> cs)}
in let {c = p <> b}

in or <> c <> ds)
});

} qed;

{-
Induction is not implemented, so this is in comments. However, if it was

73

B. Detailed FAITH scripts and encodings

implemented, the step would probably look like this.
-ih

ctx= [.]
G=G
C=(h^ ([2] case xs of

{ [] -> s^false
, b:bs -> s^(let { z = @

, ds = {z}d^([.])}
in let {c = p <> b}

in or <> c <> ds)
}))

p=p
xs=bs

-}

-- post-induction
proposition: G free(p xs) |-

h^ ([2] case xs of
{ [] -> s^false
, b:bs -> s^(let { z = @

, ds = {z}d^(any_a <> p <> bs)}
in let {c = p <> b}

in or <> c <> ds)
})

<~>
any_a <> p <> xs;

proof: -simple -single {
h^ ([2] case xs of

{ [] -> s^false
, b:bs -> s^(let { z = @

, ds = {z}d^(any_a <> p <> bs)}
in let {c = p <> b}

in or <> c <> ds)
});

-let-flatten-lr
ctx=(let G in h^ ([2] case xs of

{ [] -> s^false
, b:bs -> s^[.]
}))

G1=let { z = @, ds = {z}d^(any_a <> p <> bs)}
G2=let {c = p <> b}
M=(or <> c <> ds);

<~> h^ ([2] case xs of
{ [] -> s^false
, b:bs -> s^(let { z = @

, ds = {z}d^(any_a <> p <> bs)

74

B. Detailed FAITH scripts and encodings

, c = p <> b}
in or <> c <> ds)

});
-unfold-5-lr

ctx = [.]
G=let { any_a =[0,0]= \p1. \xs1. h^([2]case xs1 of

{ [] -> s^False
, y1:ys1 -> s^(let { z1 = @

, a1 = p1 <> y1
, b1 = {z1}d^(any_a <> p1 <> ys1)}

in or <> a1 <> b1)})
, foldr_a =[0,0]= \f2 . \ z2 . \l2 .

case l2 of
{ [] -> z2
, a2:as2 -> let {t2 = foldr_a <> f2 <> z2 <> as2}

in f2 <> a2 <> t2}
, map_a =[0,0]= \f3 . \l3 . case l3 of

{ [] -> []
, a3:as3 -> let { h3 = f3 <> a3

, t3 = map_a <> f3 <> as3}
in h3:t3

}
, or =[0,0]= \a4. \b4. case a4 of

{ True -> True
, False -> b4
}

}
x=false
V=False
C=(h^ ([2] case xs of

{ [] -> s^[.]
, b:bs -> s^(let { z = @

, ds = {z}d^(any_a <> p <> bs)
, c = p <> b}

in or <> c <> ds)
}));

<~> h^ ([2] case xs of
{ [] -> s^False
, b:bs -> s^(let { z = @

, ds = {z}d^(any_a <> p <> bs)
, c = p <> b}

in or <> c <> ds)
});

-spike-algebra-zero-stack-spike-rl
ctx=(let G in [.])
M=(h^ ([2] case xs of

75

B. Detailed FAITH scripts and encodings

{ [] -> s^False
, b:bs -> s^(let { z = @

, ds = {z}d^(any_a <> p <> bs)
, c = p <> b}

in or <> c <> ds)
}));

<~> [0]s^h^ ([2] case xs of
{ [] -> s^False
, b:bs -> s^(let { z = @

, ds = {z}d^(any_a <> p <> bs)
, c = p <> b}

in or <> c <> ds)
});

-dummy-ref-algebra-5-rl
ctx=(let G in [0]s^[.])
M=(h^ ([2] case xs of

{ [] -> s^False
, b:bs -> s^(let { z = @

, ds = {z}d^(any_a <> p <> bs)
, c = p <> b}

in or <> c <> ds)
}));

<~> [0]s^{}d^h^ ([2] case xs of
{ [] -> s^False
, b:bs -> s^(let { z = @

, ds = {z}d^(any_a <> p <> bs)
, c = p <> b}

in or <> c <> ds)
});

-reduction-rl
ctx = (let G in [.])
w=0
R=([.] xs)
V=(\xs2 . h^ ([2] case xs2 of

{ [] -> s^False
, b:bs -> s^(let { z9 = @

, ds9 = {z9}d^(any_a <> p <> bs)
, c9 = p <> b}

in or <> c9 <> ds9)
}))

N=(h^ ([2] case xs of
{ [] -> s^False
, b8:bs8 -> s^(let { z8 = @

, ds8 = {z8}d^(any_a <> p <> bs8)
, c8 = p <> b8}

in or <> c8 <> ds8)

76

B. Detailed FAITH scripts and encodings

}))
X={};

<~> (\xs2 . h^ ([2] case xs2 of
{ [] -> s^False
, b:bs -> s^(let { z = @

, ds = {z}d^(any_a <> p <> bs)
, c = p <> b}

in or <> c <> ds)
})) <> xs;

-spike-algebra-zero-stack-spike-rl
ctx = (let G in [.] <> xs)
M=(\xs2 . h^ ([2] case xs2 of

{ [] -> s^False
, b:bs -> s^(let { z = @

, ds = {z}d^(any_a <> p <> bs)
, c = p <> b}

in or <> c <> ds)
}));

<~> [0]s^(\xs2 . h^ ([2] case xs2 of
{ [] -> s^False
, b:bs -> s^(let { z = @

, ds = {z}d^(any_a <> p <> bs)
, c = p <> b}

in or <> c <> ds)
})) <> xs;

-dummy-ref-algebra-5-rl
ctx=(let G in [0]s^[.] <> xs)
M=(\xs2 . h^ ([2] case xs2 of

{ [] -> s^False
, b:bs -> s^(let { z = @

, ds = {z}d^(any_a <> p <> bs)
, c = p <> b}

in or <> c <> ds)
}));

<~> [0]s^{}d^(\xs2 . h^ ([2] case xs2 of
{ [] -> s^False
, b:bs -> s^(let { z = @

, ds = {z}d^(any_a <> p <> bs)
, c = p <> b}

in or <> c <> ds)
})) <> xs;

-reduction-rl
ctx=(let G in [.] <> xs)
w=0
R=([.] p)
X={}

77

B. Detailed FAITH scripts and encodings

V=(\q . \xs3 . h^ ([2] case xs3 of
{ [] -> s^False
, e:es -> s^(let { z' = @

, fs = {z'}d^(any_a <> q <> es)
, y = q <> e}

in or <> y <> fs)
}))

N=(\xs2 . h^ ([2] case xs2 of
{ [] -> s^False
, b:bs -> s^(let { z = @

, ds = {z}d^(any_a <> p <> bs)
, c = p <> b}

in or <> c <> ds)
}));

<~> (\p9 . \xs9 . h^ ([2] case xs9 of
{ [] -> s^False
, b:bs -> s^(let { z = @

, ds = {z}d^(any_a <> p9 <> bs)
, c = p9 <> b}

in or <> c <> ds)
})) <> p <> xs;

-unfold-5-rl
ctx = [.]
G=let {foldr_a =[0,0]= \f2 . \ z2 . \l2 .

case l2 of
{ [] -> z2
, a2:as2 ->

let {t2 = foldr_a <> f2 <> z2 <> as2}
in f2 <> a2 <> t2}

, map_a =[0,0]= \f3 . \l3 . case l3 of
{ [] -> []
, a3:as3 -> let { h3 = f3 <> a3

, t3 = map_a <> f3 <> as3}
in h3:t3

}
, or =[0,0]= \a4. \b4. case a4 of

{ True -> True
, False -> b4
}

, false =[0,0]= False
}

x=any_a
V=(\p1. \xs1. h^([2]case xs1 of

{ [] -> s^False
, y1:ys1 -> s^(let { z1 = @

, a1 = p1 <> y1

78

B. Detailed FAITH scripts and encodings

, b1 = {z1}d^(any_a <> p1 <> ys1)}
in or <> a1 <> b1)}))

C=([.] <> p <> xs);
<~> any_a <> p <> xs;

} qed;

79

	List of Figures
	List of Tables
	Introduction
	Background - Space Improvement Theory
	Language
	Recursive let
	Semantic Equivalence
	Abstract Machine
	Improvement
	Gadgets
	Dummy references
	Spikes
	Weights
	Balloons

	Language summary
	Transformational Rules
	Induction

	Case studies
	Case study 1: Cyclic structures
	Case study 2: intermediate data structures

	Implementation
	Overview of functionality
	Representation of variables
	Concrete unique variable names
	Locally nameless representation

	Substitution

	Discussion
	Related Work
	Using other tools for Space Improvement Theory
	Time improvement and Unie
	Higher Order Abstract Syntax in Abella and Beluga
	Ott
	Hybrid

	Other approaches to similar problems

	Evaluation
	Comparison to UNIE
	Tests

	Lessons from development
	Future work
	Induction
	Further support for Time Improvement Theory
	Further parsing capabilities
	Matching
	Pretty-printing

	Conclusion

	Bibliography
	User Guide
	Syntax
	Forbidden Law constructs

	Detailed FAITH scripts and encodings
	All laws
	Full FAITH proofs
	Case study 1, cyclic structures
	Case study 2: intermediate data structures
	Adding gadgets to any
	Inductive case

