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Localization in Changing Environments : A Semantic Visual Localization Approach
Ara Jafarzadeh

Department of Electrical Engineering

Chalmers University of Technology

Abstract

Visual localization is the problem of estimating the position and orientation of an
image with regards to a reference scene. It is a fundamental capability for many
applications in robotics and computer vision. Currently, most pose estimation meth-
ods are based on finding visual correspondences and they work well as long as the
appearance of objects is the same in the different images. When there are drastic
changes in illumination or view-point between image-pairs, it is rare to find algo-
rithms being capable of reliable performance.

In this thesis, we have introduced a new benchmark dataset designed for inves-
tigating the current performance of visual localization algorithms under changing
conditions and focusing on the failure cases of the existing algorithms. Further-
more, we have moved the problem of localization from 2D images to 3D scenes; we
have proposed a method for 3D registration of two scenes instead of using single
query images and have benefitted from semantic information of the point clouds for
improving the performance. The results show promising results on wide-baseline
localization.
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1

Introduction

Visual localization is the problem of estimating the position and orientation of an
image with regards to a reference scene and is a fundamental capability for many
applications in robotics and computer vision. Most methods [2-6] for doing 3D
reconstruction from images or localizing an image with respect to a scene are based
on finding visual correspondences. There are currently many methods [7-10] for
finding visual correspondences between similar images. These methods work well as
long as the appearance of objects is the same in the different images. When there
are drastic changes in illumination or viewpoint between image-pairs, it is rare to
find algorithms being capable of a good performance [11,12].

There is a widely known trade-off [13] between discriminative power and invariance
of the local descriptors. On the extreme sides of the discriminative power - invariance
spectrum, a local descriptor that is constant is not discriminative but invariant, and
taking an image patch as a descriptor is highly discriminative but not invariant.
This makes the local descriptors only capable of handling small changes between
the query and reference scene. At the same time, what is observed in outdoor
localization is that due to the dynamic nature of the world around us, outdoor
scene description should be robust to changes in illumination, seasons, etc.

There are only a few works [11,12] in the literature showing the impact of changing
conditions on 6DoF localization. One reason is that finding reliable poses that would
work as ground truth for localization algorithms has also been challenging in the
changing environments. Traditionally, [14-16] have used Structure-from-Motion
pipelines to generate the 3D models of the scene and have used the generated poses
as the accurate poses for localization. However, as the whole SfM pipeline is based
on local feature description, the generated models are only able to include slight
changes and with more dramatic changes, the pipeline fails to generate reliable
poses . The datasets that provide reliable poses and show changing environments
such as Aachen [11,17], CMU Seasons [11,18,19], and Robotcar [11,20] only cover
a few challenges or have been geographically limited to one location in the world.
In these datasets, for generating reliable poses, the authors have relied heavily on
human work.

In this thesis, we have revisited multiple common scenarios, such as night, seasonal
and viewpoint changes, that decrease the performance of localization. In this re-
gard, in order to provide challenging scenarios for localization, we have mined our
crowd-sourced data source for sequences that SfM fails. To improve the poses, we
have relied on human annotations and have created 43 sets of query-reference sets
with broader geographical coverage and more challenging scenarios compared to cur-
rent benchmark datasets [11,17-20]. We have applied state-of-the-art localization
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1. Introduction

algorithms to measure their performance under these conditions and have analyzed
how different challenges affect their performance. Additionally, we have proposed a
method that uses the 3D point clouds of the scenes and its semantic information to
generate more reliable poses in cases with strong viewpoint changes.

1.1 Overview

This thesis is organized as follows :

After a brief introduction in chapter 1, in chapter 2, we underline the most important
properties of the current benchmark datasets and highlight the characteristics that
make our proposed dataset different. Based on a thorough literature review, we
have discovered the current limitations of existing benchmark datasets. Today, a
geographically diverse dataset with reliable poses and showing real-world driving
scenarios is lacking in the literature. Constructing such a dataset would require
hundreds of people from all around the world to gather. We have addressed that by
choosing Mapillary as our crowd-sourced database. By careful mining and selection
of images from our database and improving the poses with manual annotations, we
have been able to generate such dataset. The process of generation of this dataset
is covered in chapter 3.

In chapter 4, we propose a new approach for automatically generating more reliable
poses with moving from 2D to 3D. We have tried both monocular and multi-view
depth estimation approaches for generating the point clouds. Also, we have bene-
fited from the current 3D point cloud description networks [21] to match query and
database scenes and later have improved the poses using the semantic information
of the point clouds.

In chapter 5, we have analyzed how current algorithms perform under changing
conditions and how we can address some of the challenges using our approach.
Also by applying the current state-of-the-art localization methods [22-24] on our
dataset, we have shown that the generated dataset is very challenging and can push
the current research forward.

In the appendix, sample images from the curated dataset could be found.



2
Theory and Related Work

Visual localization is the problem of estimating the camera pose of an image rel-
ative to a scene representation and has been studied extensively. In this section,
after explaining different approaches and previous usage of semantic information for
improving the localization performance, we go through benchmarking visual local-
ization. Later, as a part of this thesis benefitted from 3D point cloud description,
we breifly visit 3D point cloud classification.

2.1 Visual Localization

Different methods have been derived by looking at localization from different per-
spectives. They can be categorized into the following :

1. Image-retrieval-based: Methods that use image-level descriptors for finding
the closest image in the database and estimating the pose using that image,
[25-29].

2. Local-feature-based: These methods use depth information and estimate the
pose using 3D-3D correspondences, or 2D-3D matches when there is no in-
formation on depth for the query side [30-35]. These approaches build a 3D
model of the scene and then estimate the camera pose based on 2D-3D matches
between features in a test image and 3D model points [36-38]. Currently,
these approaches surpass the performance of other methods for localization in
changing environments. [22,24,39].

3. Learning-based: These methods represent the scene by a learned model and
then predict the matches and do pose estimation [40-43]. The performance
of these methods usually does not go beyond image retrieval methods [44].
In contrast, learning-based approaches that do not learn the full localization
pipeline but only the 2D-3D matching part [45-50] can outperform feature-
based approaches in terms of pose accuracy in small scenes. However, they
currently do not scale well to larger scenes [50] and do not handle conditions
not seen during training. Therefore, they are currently not used for localization
in changing environments.

4. Sequence-based: Methods that utilize multiple images instead of single im-
age for localization as image retrieval [51] or model the image sequence as a
generalized camera [52].

5. Hybrid methods: Methods that combine image-retrieval, geometric and learn-
ing methods [39].



2. Theory and Related Work

Table 2.1: A comparison between different localization datasets. CrowdDriven is
the most diverse in term of scene types and changes in viewing conditions.

Dat Nordland [60] | Pitishurgh [61] | Tokyo 24/7 [62] | NCLT [63] | RobotCar Scasons [11,20] | Aachen Day-Night [11, 17] | San Francisco [11,64] | CMU Scasons [11,65] | CrowdDriven
v v 7 7 v 7 % 7 7
7 v 7
7 7
Scene Tyy v
7
v 7 7
7 7 7 7 7 7
it 7
condition changes v v v v
7 7
7 7
7 7 7
7
7 v 7 v
» [__reference TIk %5ik T7ak 20k 3K GI0k i3 13k
images query 0k 21k Tk 3.8M T2k 369 0.1k 75k 1.7k

2.1.1 Semantic Visual Localization

Multiple localization methods have benefitted from the semantic information of the
scene for generating more reliable poses. One of the most recent works is the seman-
tic visual localization method proposed in [53]. In the semantic visual localization
(SVL) paper, after computing the semantic segmentations of every image associ-
ated with depth map, both segmented query and database images are voxelized and
turned into semantic voxel maps, Mpatapase and Mguery [54]. The goal of the local-
ization is to estimate the transformation between the Mpatapase and Mgyer,, through
3D-3D matches. For this purpose, SVL learns an embedding function that out-
puts similar descriptors for similar subvolumes that is invariant to large viewpoint
and illumination changes through semantic scene completion [55] as an auxiliary
task. Later, the descriptors are used to create a bag of semantic word representa-
tion (BoSW) [56] of the database and query maps. Note that only descriptors of
occupied subvolumes are considered in the BoSW representation. The matching of
subvolumes is done via nearest neighbor search in descriptor space using the Eu-
clidean metric, however, for a more efficient matching, an offline semantic vocabulary
trained on the training dataset (the same one that is used for descriptor learning)
is used. In this regard, only K = 5 nearest database words for each query word are
considered candidates for matching. Given these matches, the best match in terms
of geometrical and semantic alignment that aligns the query to the database map is
chosen. Later, for improving the poses, ICP [57] is used.

Another approach for leveraging semantic information of the scene and improving
localization performance is outlier removal. In this respect, Cohen et. al [58] use the
reprojection on non-matching labels as a metric for quantifying the wrong alignment
of the images. They project the 3D points of reference scene into images of the query
scene and use the number of points projected to sky as an outlier metric and later
choose the alignment with the least semantic violations (number of outliers). Toft et
al. [59] take a similar approach and use semantic consistency for outlier filtering. In
this respect, after generating a set of plausible poses for each match, they project the
3D points into 2D query images and count the number of matched labels between
2D and 3D points as a semantic consistency score and use it as a measurement for
how likely it is that the match is correct. On 2D descriptor matching, [56] uses the
semantic neighborhood to secure an exact match; this approach is explained further
in the methods section.
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2.2 Benchmarking outdoor localization under chang-
ing conditions

Tab. 2.1 provides an overview of visual localization datasets commonly used to mea-
sure visual localization performance under changing conditions. There are multiple
published datasets that are used by the community,e.g., the indoor 7 Scenes [45], 12
Scenes [66], and InLoc [67] indoor datasets or outdoor datasets such as Dubrovnik [30],
Rome [68], Vienna [69], San Francisco [35,70], or Cambridge Landmarks [71] datasets,
however, neither are tailored for measuring the impact of changing conditions.
There are also multiple place recognition datasets such as Nordland [60], Pitts-
burgh [61], and Tokyo 24/7 [62], however, they cannot be used for localization
and also coarse-scale location information can be obtained relatively easily at scale
via GPS measurements. On the other hand, getting accurate 6DoF poses under
changing conditions is a difficult task and needs manual intervention as the current
algorithms cannot handle strong changes in the scenes [11]. While current long-term
localization datasets such as Aachen Day-Night [11,72], CMU Seasons [11,73], and
RobotCar Seasons [11,20] offer accurate ground truth poses, they only cover a few
locations, in Europe and the United States, while our dataset has a wider range of
coverage as can be seen in Fig. 3.1.

In addition to current localization datasets released by the Computer Vision re-
search community, self-driving companies such as Lyft [74], Waymo [75], Aptiv
(nuScenes) [76], Baidu (Apolloscape) [77] have also released outdoor datasets. How-
ever, the focus for most of these datasets have been 2D-3D object detection, semantic
segmentation, depth estimation rather than localization.

Our goal for benchmarking has been to generate a dataset for long-term visual lo-
calization that (1) shows different challenging scenarios such as day-night, seasonal,
daylight illumination, structural and viewpoint changes (2) with reliable poses re-
fined using human annotations (3) using crowd-sourced data to imitate real driving
scenarios, (4) with reliable calibration and geographical information. The procedure
for generating this dataset is described in Section 3. Later, in the methods section,
we present a method for finding more reliable poses than the 3D model that was
built based on structure from motion pipeline run on those images.

2.3 3D Point cloud classification

Unlike 2D images, point clouds do not have any order and could be represented
as sets of points. Following this property, the description of point clouds should
also be order-invariant. Researchers used to transform point clouds to 3D voxels or
collections of images (i.e. views); however, recent deep architecture models such as
PointNet [78] model them as sets to make them permutation-invariant.

PointNet has three key modules: the max-pooling layer as a symmetric function to
aggregate information from all the points, a local and global information combina-
tion structure, and two joint alignment networks that align both input points and
point features. The architecture of PointNet is simple. The classification network
takes n points as input and uses multi-layer perceptrons (MLP) for mapping from
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2. Theory and Related Work

3 dimensions to a 64 dimensions feature vector and later to 1024 dimensions. After
taking the 3-dimensional network, a transformation network (T-Net) is used for es-
timating a transformation that aligns the points to a canonical space and makes it
invariant to certain geometrical transformations (e.g., rigid transformation). Note
that each of n points goes through the network. Later max-pooling is used to get a
global feature vector of size 1024. A simple classification MLP then transforms the
global feature vector to classification scores.

Following the success of PointNet, the authors also have proposed PointNet+-+ [79].
PointNet++ improves pre-steps to the classification network. In this regard, given n
points, it samples and groups (clusters) the point cloud into K clusters. A PointNet
is then applied to make a d-dimensional feature vector of each cluster member. This
process is applied twice, and later another PointNet is used to get the classification
scores. The 3D descriptor networks that are used in this thesis [21] use PointNet++
for point clustering.
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Benchmarking Visual Localization
: CrowdDriven

As explained earlier, current datasets are either not suitable for measuring the effect
of changing environments on localization or only cover a few geographical locations.
Additionally, if we take autonomous driving as our goal and look at the related
datasets, the images in datasets such as the RobotCar Seasons [11,20], and the
(extended) CMU Seasons [11,73] are usually taken using only a few cameras.

In this section, we provide an overview of CrowdDriven, our new benchmark dataset
designed to have wide geographical coverage and sourced with crowd-sourced data.
The dataset not only covers extreme changes, such as snow, but we have also visited
moderate changes that still could lead to failure of the SfM pipeline and therefore
could decrease the localization accuracy. Fig. 3.4 shows that the CrowdDriven con-
tains images from each month of the year with a slight bias to the recent years, as
we chose to include images with higher quality and more reliable metadata.

3.1 Data Source

Mapillary is a collaborative, street-level imagery platform that hosts images collected
by community members while driving or walking on public spaces and roads. Images
in Mapillary cover more than 190 countries with varying camera models at different
times of day and weather conditions. They are well-suited to evaluate problems
in conditions similar to those faced in self-driving scenarios since most images are

Figure 3.1: Geographical coverage of CrowdDriven.
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Figure 3.2: Left to right: Images from easy, medium, and hard datasets. For each
category, we show test (left) and reference images (right).

captured with consumer-grade devices such as smartphones and dashcams mounted
on vehicles traversing the scene with a forward motion. Thus, we have chosen
Mapillary as our data source.

3.2 Sequence Selection

To generate a dataset that is challenging for current state-of-the-art algorithms, we
have carefully selected the neighboring sequences that are taken at different times
and show different conditions, such as illumination, seasonal, and viewpoint changes.
We start by randomly selecting an image sequence as the seed sequence that is at
least 0.2 images/meter dense, and has a length between 20 and 100 images. Note
that we have consciously chosen to select smaller sequence-sets, as with today’s
consumer-grade GPS systems, it is reasonable to assume that we have acceptable
pose priors, and the problem is mostly localization on a finer scale. Then, we
select another neighboring sequence that is less than 3 meters apart from the seed
sequence that satisfies the same density criteria. Assuming the viewing direction of
the sequence as the average of raw compass angles of the images, we put the images
based on the angle difference into three classes based on the failures we expect to
see in the Structure-from-Motion pipeline:

(1) If SfM can accurately reconstruct the sequences in a common coordinate frame,
we consider the pair as easy.

(2) If SfM fails and the sequences show similar viewing direction, we use manual
annotations to correct the errors and classify the pair to be of medium difficulty.

(3) If SfM fails and the sequences show opposite viewing direction, we use manual
annotations to obtain a joint 3D model and consider the pair as hard.

The sequence-sets that have an angle difference of less than 45 degrees would either
show good localization or fail because of dramatic appearance changes, while the
angle difference of more than 135 would likely result in failures caused by both
appearance and viewpoint changes.

In the following, we describe how we reconstruct reference poses for our datasets.
Examples for easy, medium, and hard datasets are shown in Fig. 3.2.
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Table 3.1: Summary of the CrowdDriven dataset: scene type, number of test
images, number of reference images, number of 3D points, average number of obser-
vations per image, reference model conditions, test conditions, changes and whether
the scene is vegetated or not. Easy category: light gray, medium category: gray,
difficult category: dark gray

‘ scene type ‘ identifier ‘ Ftest ‘ #ref. imgs. ‘ #3D pts ‘ #obs. ‘ ref. conditions ‘ test conditions considerable changes ‘ foliage ‘
road Sydney 10 22 2973 567 | day, partly cloudy day, rain, illumination
Massachusettsl 10 29 1606 274 | day, partly cloudy day, overcast, illumination '
Poing 21 41 2902 272 day, clear sky day, overcast illumination v
Washington 19 20 3164 678 day. clear sky day, cloudy illumination
Melbourne 14 28 1332 183 day, cloudy day, overcast illumination
Burgundy2 12 36 3096 616 day, sunny day, rain illumination, rain
Eden Prairie 26 26 4840 937 day, sunny day, snow small viewpoint, seasonal, illumination
Burgundy3 g 26 2046 386 day, sunny day, rain seasonal, rain v
Thuringia 25 49 1717 201 day, sunny day, clear sky illumination '
Massachusetts2 20 56 2848 209 day, overcast night day-night
Burgundyl 15 21 5175 1112 day, rain day, overcast rain v
Besangon2 18 56 6207 494 day, overcast day, cloudy illumination, strong viewpoint v
Besangon4 17 32 1396 168 day, cloudy day, overcast strong viewpoint, illumination v
Besangon3 32 49 1860 205 day, overcast day, vegetated, strong viewpoint illumination v
Brittany 50 50 4291 450 day, sunny day, partly cloudy strong viewpoint v
suburban Portland 18 30 1292 153 day, clear sky day, overcast illumination
Curitiba 36 50 3724 373 day, cloudy day illumination
Tsuru 8 26 59 5 day, cloudy day, overcast illumination
Clermont-Ferrand 24 35 5774 986, day, sunny day, overcast illumination
Savannah 44 56 12900 963 day, clear sky day, cloudy illumination
Subcarpathia 48 52 11112 1358 day, cloudy day, overcast snow, seasonal
Massachusetts3 49 51 9691 1743 day, clear sky night day-night v
Besangonl 31 40 6989 923 day, sunny z day, sunny seasonal, small viewpoint, illumination
Skéane 11 17 2537 604 day, cloudy day small viewpoint, illumination
Angers2 39 45 13369 1810 day, cloudy day, clear sky strong viewpoint, illumination
Tle-de-France 34 41 3895 439 day, sunny day, cloudy strong viewpoint, illumination
Orleans2 34 47 13470 2208 day. clear sky day, sunny strong viewpoint, illumination
Pays de la Loire 21 24 3798 723 day, cloudy day, overcast strong viewpoint v
Brourges 33 34 7863 1088 | day, partly cloudy day, clear sky, illumination strong viewpoint v
Nouvelle-Aquitaine2 | 50 50 17118 1497 day, sunny day, sunny strong viewpoint
urban Muehlhausen 31 31 4752 755 day, cloudy day, overcast slight illumination
Bayern 47 49 17614 1720 day, cloudy illumination
Boston5 20 21 1456 176 day, sunny day-night
Bostonl 50 50 6498 551 day, sunny night day-night
Boston3 50 50 11417 937 day, clear sky day,clear sky small viewpoint
Massachusetts4 50 50 5895 538 day. clear sky night day-night
Boston2 42 58 21161 1701 day, clear sky night day-night
Boston4 49 51 10887 952 night day, sunny day-night
Le-Mans 50 50 4710 472 day, overcast day, overcast illumination, strong viewpoint
Nouvelle-Aquitainel | 31 53 15911 1483 day, overcast day, overcast strong viewpoint, seasonal, snow
Angersl 22 23 3310 618 day, cloudy day, clear sky strong viewpoint
Orleans1 46 47 10835 1244 day, sunny day, clear sky strong viewpoint, illumination
Leuven 45 46 10258 877 day, cloudy day, overcast strong viewpoint

3.3 Reference Pose Generation

For generating the reference poses, we have taken several steps: first, we have run
SfM using OpenStM [80] Open-source Library on the sequences to generate approxi-
mate poses, then using GPS priors, we have scaled the 3D reconstruction to a metric
one. We have also divided the reconstructions into test and training sequences, based
on the number of images in each sequence; the images from the smaller sequence are
considered as the test (query), while the images from the bigger one, are the train-
ing (reference/ database) images. It is also noteworthy that as the chosen images
are from neighboring sequences and the sequences are at least 8 meters long, the
images see the same scene and have visual overlap.! Furthermore, all the sequences
were annotated by individuals; therefore, enough correspondences could have been
spotted by humans, meaning that the query scene was recognizable for humans.

In the following we go through each dataset category and the procedure for reference
pose generation.

'In practice the length of sequences are considerably longer than 8 meters.
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3.3.1 Easy Datasets

When the SfM pipeline can reconstruct both sequences in the same coordinate frame,
we mark them as easy. Note that the sequences in this category still show challeng-
ing changes, such as snow; however, the structures in the scenes were distinctive
enough that enough matches were found. Therefore, both sequences could have
been registered in the same frame. After reconstruction, the resulting 3D scenes
and the alignment of sequences were inspected?, and only those with acceptable
alignment and no noticeable misalignments by humans have been accepted. After
the reconstruction, we use the GPS priors for (approximately) upgrading to a metric
reconstruction. We expected and have observed later, that the current state-of-the-
art algorithms are able to achieve satisfactory results in this category, see Tab. 5.1.
Note that the Structure-from-Motion library used for performing reconstructions
is OpenSfM [80]; however, we have later reconstructed the sequences with the
COLMAP [81] library and have achieved similar results.

Tab. 3.1 provides statistics over the 13 datasets in the easy category (marked in light
gray). As can be seen, challenges such as weather (snow or rain) and illumination
changes have been visited under different environments such as roads, suburban and
urban areas. Fig. 3.2(left) shows example images.

3.3.2 Medium and Hard Datasets

The changes between the query and database sequences of these categories are sig-
nificant to an extent that SfM fails to register both sequences in the same frame.
This means that they present a more significant challenge for current visualization
algorithms and would be more interesting to the community:.

Same as easy datasets, we run SfM pipeline on these sequences and use the GPS
priors for metric upgrading. However, as SfM cannot align the sequences, we in-
troduce manual annotations. In this regard, we have manually annotated visual
correspondences between the sequences.

The annotated matching points are then triangulated to generate 3D points. Then,
we estimate a rigid transform between these points and apply it to the query se-
quence to globally improve the alignment of the sequences. Later, we do bundle
adjustment [82] to improve the poses. An example of sequences before and after
pose refinement is shown in Fig. 3.3.

3.3.3 Manual Annotation

For recording the annotated matches between the query and database images, an
annotation tool has been developed. In addition to recording the matches, it also
hints the annotator with probable line that the match could be on using the epipolar
geometry of the scene and is put in the OpenSfM Open Source Library [80] and could
now be used by everyone. It is also noteworthy that manual annotation of these
sequences was a time-consuming task, taking over one hour for each sequence; be-
sides, we have discarded the sequences that are not well aligned after the annotation

2The visual inspection has been done by people with knowledge of 3D-vision.
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Figure 3.3: Left: To register the sequences in the medium and hard datasets, we
manually annotated points in the images to create correspondences (shown together
with automatically generated labels); Middle: Initial dense reconstruction of the
scene; Right: Dense reconstruction with refinement after registration.

to guarantee high quality of reference poses.

Tab. 3.1 provides statistics over the 15 medium (gray) and 15 hard (dark gray)
datasets in our benchmark set. As can be seen, nearly all the conditions that can
challenge the current localization algorithms have been included in these datasets.
In the medium category, conditions such as day-night changes, rain, snow and other
seasonal variations that can impact the geometry of the scene, have been met under
different scene types, while the main focus of the difficult category is to include large
viewpoint changes in addition to less extreme variations in illumination, weather,
and seasonal conditions. Fig. 3.2(middle) and (right) show examples for medium
and hard datasets, respectively. More examples could be found in the appendix.

3.4 Reference Pose Verification

For the easy categories, that are those where SfM is able to register both sequences
in the same frame, if there are no humanly noticeable artifacts and the sequences
seem to be visually well aligned with respect to each other, we accept the poses
estimated by SfM as the reference poses. However, in cases of medium and hard
datasets, we needed manual annotations for generating the reference poses, and
ways to measure the accuracy of poses after refinement 3. For the sequences in
these categories, in addition to the visual inspection step, we have developed some
metrics to estimate the improvement of the reconstruction after the refinement.
If a model fails these checks, we either annotate more correspondences or discard
that model. We have used uncertainty estimation as well as reprojection errors as a
metric for improvement of the reconstructions that will be described in the following
paragraphs.

3Tt is noteworthy that manually-annotated correspondences are less accurate than SIFT features
and only accurate up to 7 pixels.
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3.4.1 Uncertainty estimation using reprojection errors

We have done a procedure similar to a 5-fold Leave-One-Out where we do bundle
adjustment only using one-fifth of the points (training points) and we use the rest
as the validation points, the metric is the reprojection errors. In this respect, we
use training points for bundle adjustment as described in Sec. 3.3. We measure the
reprojection error of the 3D points generated from the training points and compare
it against the reprojection error of the 3D points generated from the validation
points. Ideally, both errors should be relatively similar and within a reasonable
range. However larger errors in reprojection error mean that the pose refinement
only describes one part of the image that has had the training points on; and a high
ratio indicates a higher uncertainty.

Tab. 3.3 ® shows statistics of the reprojection errors for the training and validation
ground control points on the medium and hard datasets. Considering that the
images in our dataset have high resolution, we believe that the generated poses
are accurate enough, however, in cases with higher validation/train ratio, such as
Besancon2, a higher uncertainty should be taken into account.

3.4.2 Uncertainty estimation using uncertainty of bundle
adjustment problem

To get an estimate on the uncertainty of the recovered camera positions, we compute
the covariance of the solution given by the bundle adjustment problem [82] that
includes SIFT and GCP correspondences.

To fix the gauge ambiguity [83,84] and get metric estimates of the uncertainty, we
fix the camera poses of the first sequence and optimize only the poses of the second
sequence and the intrinsics of both. From the full covariance matrix, we look only
at the 3x3 sub-matrices corresponding to the positions of the cameras of the second
sequence. We then compute the size of the principal axes of the corresponding
ellipsoid as a measure for uncertainty. Table 3.2 shows the median and maximum
uncertainty of the shots in each dataset. Notice that the images with the largest
uncertainty typically correspond to the last images in a sequence, i.e., those images
with the fewest constraints. As can be seen from the table, we measure smaller
positional uncertainties for the hard datasets (dark gray rows). This is likely due to
the fact that these datasets were created later in the benchmark creation process and
that more time was spent on these datasets to ensure sufficiently many annotations.

3.5 Baselines

In order to show that our dataset introduces new challenges, we have tested the state-
of-the-art localization algorithms on our dataset. We have chosen the algorithms

4Note that a reprojection error of tens of pixels is acceptable as it corresponds to about 1% of
the image diagonal and due to the fact that our manual annotations are not pixel-accurate.

5The datasets where we were able acceptable alignment was achieved by only a small number
of points were discarded in the table, as in these cases the test set was small and could have not
been representative of the whole points.
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Table 3.2: Max and median position uncertainties for the test images in each

dataset (in meters). medium category: gray, difficult category: dark gray

| names | max(m) | median(m) |
Burgundyl 2.70 0.49
Burgundy?2 1.19 0.29
Besancgonl 3.25 0.26
Burgundy3 1.39 0.79
Eden Prairie 4.68 0.17
Massachusetts2 1.32 0.32
Massachusetts3 1.07 0.24
Bostonl 1.71 0.88
Boston2 2.76 1.56
Boston3 1.83 1.04
Thuringia 0.43 0.25
Massachusetts4 0.96 0.40
Boston4 0.88 0.31
Boston) 0.17 0.17
Skane 0.40 0.06
Orleansl 0.17 0.17
Nouvelle-Aquitainel 0.17 0.17
Orleans2 0.20 0.06
Angersl 0.33 0.20
Leuven 0.10 0.04
Besancon?2 0.70 0.10
I[le-de-France 0.28 0.08
Besancon3 0.21 0.08
Pays de la Loire 0.33 0.18
Le-Mans 0.26 0.10
Besangon4 0.17 0.17
Brittany 0.54 0.18
Brourges 0.24 0.14
Angers2 0.52 0.32
Nouvelle-Aquitaine2 0.47 0.11
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Figure 3.4: (a) The number of images taken each month in our dataset, (b) The
number of images taken each year in our dataset, (c) Percentage of images that show
each change in our dataset
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Table 3.3: Mean reprojection error in training and validation set, the ratio between
validation error train error, and the sizes of the images.

[ hard datasets [ medium datasets ]
reconstruction name | mean reproj. err. tr. | mean reproj. err. val. | ratio | size - ref. size - test | name | mean reproj. err. tr. | mean reproj. err. val. | ratio | size - ref. | size - test
Angersl 10.88 14.43 1.33 | (2048, 2448) | (2048, 2448)  Besangonl 3.89 13.16 3.39 | (2050, 2448) ' (2050, 2448)
Angers2 7.69 32.38 421 | (2048, 2448) | (2048, 2448) Bostons 13.35 17.51 1.31 | (2160, 3840) (2160, 3840)
Besangon2 0.33 8.84 26.43 | (2048, 2448) | (2048, 2448)  Burgundyl 13.56 44.78 3.30 | (2048, 2448) (2048, 2448)
Besancon3 3.70 7.07 1.91 | (2048, 2448) | (2048, 2448)  Burgundy2 3.89 19.59 5.04 | (2048, 2448) (2048, 2448)
Besancond 1.56 4.62 2.96 | (2048, 2448) | (2048, 2448) Massachusetts2 7.11 13.10 1.84 (2160 3840) (2160, 3840)
Brourges 6.41 7.41 116 | (2048, 2448) | (2048, 2448) Skine 113 1.96 1.73 | (1024, 1360) (960, 1280)
Tle-de-France 1.59 4.20 2.64 | (2048, 2448) | (2048, 2448)  Thuringia 9.82 13.29 1.35 | (3024, 4032) (3024, 4032)
Le-Mans 3.87 5.70 147 | (2048, 2448) | (2048, 2448)
Leuven 3.37 4.31 1.28 | (3000, 4000) | (3000, 4000)
Nouvelle-Aquitainel 9.29 9.76 1.05 | (2048, 2448) | (2048, 2448)
Nouvelle-Aquitaine2 4.79 7.66 1.60 | (2048, 2448) | (2048, 2448)
Orleansl 443 11.92 2.69 | (2048, 2448) | (2048, 2448)
Pays de la Loire 7.23 8.97 1.24 | (2048, 2448) | (2048, 2448)
| mean 5.01 9.79 | 381 | - | - | mean 7.54 17.63 | 2.57 |

Y »
' o
——

Easy category Medium and Difficult Category
localized :  100% 100%ocalized : 0% 0% 84% 10% 2.94%

Figure 3.5: Inlier plots of the evaluated methods ( Top: closest reference image;
Top-middle: HF-Net Results, Bottom-middle: D2-Net, Bottom: S2DHM), and the
percentage of localized under the medium-precision regime for the best method.

based on the results on the current outdoor long-term visual localization under
changing conditions benchmark [1] as well as availability of code. We have chosen
to focus on the feature-based methods for localization. The reason behind is that
recently it has been shown [44] that current pose regression [71,85-87] approaches
do not yet outperform the feature-based methods on complex scenes such as Aachen
dataset [29].

3.5.1 SIFT

As the first baseline, we have implemented a simple localization pipeline using
COLMAP [81], where we do pose estimation based on the 2D-3D SIFT-based [7]
matches found exhaustively between the query image and the reference images.
The query images are then localized using COLMAP image registerator and the
estimated pose is used for evaluation.
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3.5.2 HF-Net

HF-Net [39] is a state-of-the-art localization method approach that performs local-
ization with a hierarchial approach. It uses a monolithic CNN for simultaneously
predicting local features and global descriptors for accurate 6-DoF localization. The
method first does a prior global retrieval,using MobileNetVLAD [88], for estimating
the candidate locations, called the prior frames. The K = 10 nearest neighbors
of the query image represent the candidate locations on the scene. Later the prior
frames are clustered based on the 3D structure that they co-observe, and connected
components are selected, called places. For each place, by 2D-3D matching between
the query image keypoints, that are based on SuperPoint [8], and the 3D model
points, a more accurate 6DoF pose is estimated using PnP [89].

In addition to achieving state-of-the-art results on the previous benchmark datasets,
see Tab. 5.2, HF-Net can run faster than the other baselines, due to restrictions in
the search space as well as using MobileNetVLAD [88] for faster retrieval.

3.5.3 D2-Net

The challenges confronted in our dataset, e.g. illumination, considerably change the
number of detected keypoints, this is due to the fact that strong changes have signifi-
cant impact on low-level information used by detectors. Traditionally, methods have
followed a detect-then-describe approach [7,8,90-92]. However, D2-Net [24] uses a
representation that is both a detector and descriptor for addressing the problematic
keypoint detection in changing environments. For the detection stage, it applies a
CNN on the input image and outputs a 3D tensor with the h x w resolution and
n channels R" x w x n, the resolution of the output is one fourth of the input.
During training, these descriptors are trained to produce similar descriptors for the
same points in the presence of strong appearance changes. Each of n channels could
also be thought of as a response map analogous to detectors such as Difference of
Gaussians [93].

Traditionally, in order to sparsify the detections and avoid an interesting point be-
ing detected multiple times in neighboring regions, a non-maximum suppression is
applied on top of the feature detector response. In D2-Net, this non-maximal sup-
pression is done in two steps; first across the channels and then across the response
map. In order to make the non-maximal suppression usable in backpropagation, the
detection is softened by defining a local softmax function defined in the neighboring
region for each point in the output.

This approach has made D2-Net more robust to strong changes between query and
database scenes; in previous benchmark datasets [11,67], in combination with image
retrieval, D2-Net have achieved state-of-the-art results, see Tab. 5.2. We have
skipped the retrieval stage for testing on our dataset. The same pipeline as the
SIFT baseline has been used, and SIFT was replaced with D2-Net features.

3.5.4 Sparse-to-Dense-Hypercolumn-Matching (S2DHM)

Sparse-to-Dense-Hypercolumn-Matching (S2DHM) [22] boosts the feature matching
step in localization with extracting and exhaustively matching dense features on
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the query side with the sparse features in the reference image. With doing dense
feature extraction on the query side, it can bypass feature detection on the query
images. This helps the method when the feature detection could be erroneous, such
as in night images. In this method, the 2D coordinates on the reference and their
corresponding 3D points are computed in an offline reconstruction stage. Also, same
as HF-Net, it uses image retrieval as the first step of localization, where it retrieves
the 30 first closest neighbors to each reference image.

Using this strategy for matching has been shown to achieve better performance
under strong changes, especially day-night changes, see Tab. 5.2.

3.5.5 Sequence-based localization

In addition to single-image localization, we also utilize the sequential information
of the images. Using known relative poses, we can model a sequence of images
as a generalized camera [52], i.e., a camera with multiple centers of projections.
This enables the matching part to benefit from other detected matches in the other
images and enables localizing images even if not enough matches are found in each.
We use a solver [36] (inside a RANSAC [94] loop) for estimating both pose and
intrinsic scale of the generalized camera. For each dataset, for modeling the gener-
alized camera, k+ 1 images ¢ to ¢ + k in the sequence are selected, for varying values
of k. Therefore, each image is present in multiple generalized cameras; however, we
select the pose using the generalized pose with the highest number of inliers.

17
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4
Our Method

While images capture a 2-dimensional projection of the scenes, point clouds lever-
age the 3D spatial and geometrical information. When there are strong viewpoint
changes in the query and database images, there might be only a small overlap
between the projections in the query and database images. However, the 3D scene
made by query and database images separately, preserve the captured similarities
between the two scenes. Also, point clouds exhibit less variation than images and
are less affected by illumination and seasonal changes [21].

Previously, Schonberger et al. [53] have proposed a method using semantic and
geometric information of the scenes, which achieved promising results on several
challenging large-scale localization datasets. Their method suggests learning the
descriptors while using semantic scene completion as an auxiliary task, explained
more in the Related Work section. Furthermore, the idea of using registration for
localization has been previously investigated by Gilbaz et. al. [95], they proposed
finding interesting points, called superpoints, by selecting overlapping spheres and
then filtering non-salient or low-quality superpoints. The superpoints later are de-
scribed by deep auto-encoders, and the descriptors are used for coarse matching
between the point clouds. Later, ICP is applied to the point clouds for improving
the poses.

We have used multi-view depth estimation for generating point clouds of both query
and reference scenes. Later, using both deep-learned [21] as well as hand-crafted
point descriptors [96], we have matched the points. Using the matches, we have
fitted a rigid transformation that transforms the query point cloud to the reference
point cloud. Following, using the semantic information of the point clouds, we have
improved matching with ignoring matches with the wrong label.

4.1 Estimating depth from 2D images

The first works for generating denser point clouds in this thesis was about using the
monocular depth estimation networks for assigning the depth of every point on the
image. However, our earlier experiments have shown us that, right now, even the
state-of-the-art monocular depth estimation neural networks cannot infer depths
accurately enough to be comparable to multi-view depth estimation in our case.
This probably might rise from the fact that our dataset, as opposed to landmark
datasets, comprise of images of objects that are far away, where the accuracy of
monocular depth estimation networks is less.

A brief description of both methods, 7.e. monocular and multi-view depth estimation,
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is provided in this section.

4.1.1 Multi-view depth estimation

After doing simple Structure-from-Motion using the OpenSfM, we have used the
semantic segmentations! to ignore the regions that are not of interest, such as sky,
cars, etc. At this point, we have a sparse reconstruction of the scene with scale
ambiguity. Having the images’ GPS data, we can resolve the scale ambiguity and
yield metric reconstruction (accurate up to GPS precision). Using poses from SfM,
we run a simple PatchMatch [99,100] based multi-view stereo algorithm to get denser
reconstructions and, thus denser depths. Later, we clean the depths by only keeping
the depth values that are consistent with at least 3 neighbors. Figs. 4.1 and 4.3
show the depths estimated by multi-view depth estimation and corresponding 3D
maps, only points that are seen by the image is shown.

4.1.2 Monocular depth estimation

For monocular depth estimation, we have used a network trained on the Mapillary
Planet-Scale Depth Dataset [101] in an off-the-shelf manner. The network has a U-
net [102] structure with a dilated ResNet-50 [103] that is trained on ImageNet [104]
as the encoder. In the contraction stage of the architecture (encoding part), the
image is reduced to a feature-map 16 times smaller than the input image. After the
encoder, a DeepLabV3 [105] head is added to incorporate contextual information.
The extracted feature map is then upsampled to the original size, and at every
stage, features from the corresponding contraction stage are concatenated with it.
The used loss function can be seen in eq. 4.1, with predicted depth map z, ground
truth depth z*, focal length f, and d; = log(z) —log (2*). The loss is only evaluated
on those pixels with known depth and n is the number of valid depth points in the
image and ) is a scale-invariant hyper-parameter, set to A = 0.5 here.

L(sot f) = Zd? 2(;@»)2 (4.1)

An example of the 3D map generated by the estimated depths by this method is
shown in Fig. 4.2.

4.2 3D point cloud description

3D point cloud descriptors can be categorized into two classes : (1) Handcrafted
point cloud descriptors [96,106-108] and (2) Learned point cloud descriptors [21,
109-111]. Inspired by the success of 2D image descriptors such as SIFT, there
have been multiple early works in designing handcrafted 3D point cloud descriptors,
which were mostly proposed before the popularity of deep learning and are largely
affected by domain knowledge. One of the most popular handcrafted 3D point cloud

!Semantic segmentations have been generated in an off-the-shelf manner, using a network with
a similar architecture to [97] that has been trained on Mapillary Vistas [98].
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Figure 4.1: Undistorted image and its depth map, computed by the multi-view
depth estimation method.

Figure 4.2: 3D map of an image, where the depths are estimated by monocular

depth estimation network.

Figure 4.3: 3D map of an image, where the depths are estimated by the multi-view
depth estimation method.
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descriptors is FPFH [96]. FPFH uses mean curvature around a point’s neighborhood
as a distinctive property and puts it in a histogram.

However, compared to the success of SIFT, handcrafted descriptors mostly do not
work well on real world and noisy point clouds [21]. Meanwhile, after advances in
point cloud description, e.g. in PointNet [78] and PointNet++ [79], deep-learned
descriptors have achieved better results [95, 110, 111]. In this regard, 3DMatch
[109] uses 3D CNNs for learning and uses RGB-D indoor scenes with voxel input
format. PPEFNet [110] uses a PointNet architecture to get the descriptors. It takes
local patches and computes point-pair features [112] between them and gives the
neighboring points, normals, and point-pair features and gives as an input to the
network instead of only coordinates. Also, it uses the global context for improving
the descriptor matching. LORAX [95] uses deep learning for reducing the dimensions
of its handcrafted descriptor. Among all these, neither use a detector; on the other
hand, 3D-FeatNet [21] uses two networks for detection and description. It utilizes a
week-supervised framework for generating feature correspondences where it benefits
from GPS/INS tagged 3D point clouds, therefore we decided to use 3DFeat-Net as
the deep point cloud feature detector and descriptor in our pipeline.

4.2.1 Deep point cloud description

Our first ideas were on trying to use the state-of-the-art point cloud classification
networks, such as PointNet++, to use for point cloud description, training from
scratch. However, in an ablation study, [21] suggests that solely using PointNet++,
for point cloud description decreases the performance of the registration success?
from 98.2 % (3DFeat-Net) to 48.6 % (PointNet++), and therefore current deep-
learned descriptors would have dramatically surpassed that approach.

As for point cloud descriptor, we have chosen 3DFeat-Net, because of using both
detection and description and the similarity of the dataset it has been trained on, i.e.
Oxford Robotcar [20] and the loss function it uses for training. Using two networks
for detection and description in a Siamese architecture setting, 3DFeat-Net uses
feature alignment for mining for harder negative, and has given good results on
commonly used benchmarks such as KITTI [113].

As advised in the paper, we have chosen the descriptor dimension to be 32, as based
on the metric error at 95% recall [21], that dimension gives the best result with
small number of dimensions.

4.2.2 3D point cloud matching

Having the point cloud descriptors, we use Euclidean distance as the metric and
match each detected point from the reference point cloud against its nearest neighbor
from the query point cloud in the descriptor space. Using a RANSAC loop and
Euclidean distance between matched points as metric, we estimate a rigid transform
that can register the query on the database point cloud with the most inlier matches.

2Success is defined as localizing within 2 meters and 5°
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4.3 Using semantics for a more robust matching

We have used semantic labels to improve the matches. For labeling the point clouds
with the correct semantic labels, we use the labels from 2D images. For getting the
semantic segmentations in the 2D-level, we use a network similar to [97] trained on
Cityscapes [114] and Mapillary Vistas [98] dataset in an off-the-shelf manner. The
network uses a ResNet50 backbone with a Feature Pyramid Network [115] on the
top. In this regard, we have taken two approaches: (1) We only accept the matches
with similar labels. In this regard, after matching with the nearest neighbor, we
reject the match in case of the labels are not same. (2) We use a a semantic twist
approach [56]. In this respect, followed by [56], we take a 3D patch around our
interest points. The semantic word of that patch is defined as the one-hot coded
vectors of the semantic labels present in that region. In this regard, by assuming a
sphere with a certain radius around our interest point, we put all the labels present
within that sphere in a one-hot coded vector, where one means presence of that label.
After testing with different sphere radii, the best trade-off between the accuracy of
localization and speed was achieved with 50cm sphere radius, that is also close to
radius training set patches of 3DFeat-Net that is 30cm. From the segmentation
network, we have 97 different classes, and the one-hot encoded vector theoretically
could have 2°7—1 different values; however, the actual present classes all considerably
less. Later for matching the 3D points, we only accept those matches with equal
semantic words. In the original paper, matching patches are done based on a bag of
visual word approach; however, we only have tried simple nearest-neighbor matching
as done in [21].

Although in 2D descriptor matching, the results of [56] is better than simple rejection
of matches with dissimilar labels, we could not reproduce that in 3D and on our
dataset and the result of the second approach is same the first one. The reason
behind is that because of only having a few present semantic labels in our dataset,
in most of the cases, taking the neighboring labels into account does not help with
further rejection of wrong matches. It is likely that in case of a wrong match, when
the label is same, the label of the neighboring point is same too.
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Experimental Setup and Results

5.1 Experimental Evaluation

In this section, we evaluate the performance of the state-of-the-art localization algo-
rithms on our dataset; in order to show that the new benchmark dataset introduces
new challenges that are currently unsolved. We also evaluate the performance of
our method on the difficult category, as the approach is likely to perform better in
case of viewpoint changes.

After introducing the evaluation measures, we focus on the different types of chal-
lenges and how solved they are by the current state-of-the-art, as well as if moving to
3D can partly solve the problem. We identified three main conditions in our dataset;
slight illumination changes, day-night changes, and strong viewpoint variations and
have gone through each and how it can affect the localization performance.

5.1.1 Evaluation Measures

We present the accuracy by computing the distance between the estimated and ref-
erence poses. We follow the evaluation protocol of [11]; the position error is defined
as the Fuclidean distance between the camera centers, while we follow common prac-
tice [116] and compute the rotation angle v from 2cos(|o|) = trace(R],;Rest) — 1,
the minimum rotation angle needed for alignment of the rotations, where Rp.s is
the reference and R.; is the estimated rotation.

Similar to [11], we introduce 4 levels of localization accuracy in order to reflect

Figure 5.1: The number of images localized with COLMAP Image Registrator and
total number of queries per dataset.
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Table 5.1: Localization performance of the baseline methods on our CrowdDriven
benchmark. We report the median position (in meters) and orientation (in degrees)
errors, as well as the percentage of test images localized within certain error bounds
on the position and orientation errors. Easy, medium, and hard datasets are color-
coded in light, standard, and dark gray, respectively. The right side of the table
provides information about the type of change between the training and test se-
quences: il.: illumination, fo.: foliage, sn.: snow, se.: seasonal, ng.: day-night, sm.
v.: small viewpoint, rn.: rain, st. v.: strong viewpoint.

| | S2DHM | HEF-Net | D2-Net | Changes
% of localized % of localized % of localized
name pos. err. | rot. err. | 0.5/1.0/5.0/10.0 (m) | pos. em. | rot. e, | 0.5/1.0/5.0/10.0 (m) | pos. err. | rot. err. 05/1.0/5.0/10.0 (m) | il. | fo. | sn. | se. | ng. | smv. | m. | stv.
2/5/10/20 () 2/5/10/20 (°) 2/5/10/20 (°)
Muehlhausen 029 033 80/100/100/100 0.09 0.18 100/100/100/100 0.07  0.08 100/100/100/100
Tsuru 0.16 0.34 88.89/100/100/100 0.24 0.38 66.67/88.89/100/100 0.07 0.06 100/100/100/100 v
Poing 042 0.60 55/85/100/100 0.39 072 65/90/100/100 011 0.06 100/100/100/100 v
Bayern 0.16 | 030 | $8.46/92:31/100/100 0.19 046 | 80.77/80.77/92.31/96.15 | 0.16  0.14 96.15/100/100/100 v
Savanmah 0.31 033 | 7222/8880/100/100 | 0.6 | 017 100/100/100/100 024 015 83.33/100/100/100 v
Curitiba 0.39 038 | 78.95/94.74/100/100 | 0.6 | 0.29 84.21/100/100/100 026 0.08 100/100/100/100 v
Melbourne 0.22 | 027 100/100/100/100 0.35 053 | 66.67/91.67/100/100 038 0.1 100/100/100/100 v
Sydney L1l 091 | 21.43/42.86/100/100 1.61 1.98 0/21.43/64.29/7857 | 0.41 = 0.23 78.57/100/100/100 v
Clermont-Ferrand | 0.23 | 050 100/100/100/100 0.37 091 | 86.67/93.33/93.33/93.33 | 043 0.5 73.33/100/100/100 v
Besangonl 90.39 7.41 0/0/0/0 89.76 | 131.84 0/0/0/ 0.53 174 | 38.89/61.11/77.78/77.78 v v
Massachusetts1 1.83 0.68 0/32/68/92 3.90 1.22 4/24/52/60 0.58  0.26 44/64/100/100 v
Bostond 34.83 | 2670 | 11.76/17.65/41.18/41.18 | 3536 | 96.44 |14.71/17.65/23.58/2647 | 0.81  0.82 | 14.71/64.71/100/100 v
Portland 068 | 0.52 | 2857/80.95/100/100 | 0.54 | 0.54 | 47.62/76.19/100/100 | 0.83 0.34 19.05/66.67/100/100 v
Burgundy2 0.60 0.74 42/84/100/100 049 | 0.71 50/84/98/100 089 10.09 0/0/14/100 v v
Washington 1947 | 159 0/0/0/0 5.41 3.9 10/20/50/70 106 0.17 0/20/90/100 v
Skine 1291 | 829 0/0/14.20/38.10 7571 | 96.35 | 23.81/28.57/42.86/47.62| 1.74  3.55 0/4.76/85.71/95.24 v
Burgundyl 353 | 853 0/0/71.88/96.88 440 8.86 0/0/50/81.25 183 1125 0/0/0/100 v
Burgundy3 447 3.08 0/13.89/63.89/86.11 1242 | 927 0/0/25/38.89 2.08 750 0/0/100/100 v v
Subcarpathia 5.9 470 0/5.88/47.06/52.94 5.24 4.09 0/17.65/47.06/70.59 | 2.06  1.50 |17.65/41.18/94.12/94.12 2%
Massachusettsd 133 | 1138 0/0/0/97.44 233 | 1178 0/0/0/64.10 222 3.89 0/10.26/94.87/100 v
Massachusetts2 | 24610 | 94.89 0/0/0/0 98.83 | 133.94 0/0/0/0 573 449 | 4.17/4.17/20.83/41.67 v
Massachusetts3 | 683.86 | 121.47 0/0/6.82/6.82 50457 | 123.50 0/0/2.27/4.55 653  29.55 0/0/0/0 v v
Boston2 5873.53 | 113.46 0/0/2.04/2.04 3261 | 4339 0/0/4.08/14.29 7.67  5.08 0/0/4.08/85.71 v
Brittany 20163 | 143.33 0/0/0/0 2243 | 16219 0/0/0/0 1479 146.82 0/0/0/0 v v
Boston) 30.57 | 535 | 0/2.94/35.29/35.29 | 8197 | 120.67 0/0/0/0 1504 978 0/0/0/26.47 v
Leuven 5852 | 146.80 0/0/0/0 5211 | 154.32 0/0/0/0 15.27 15470 0/0/0/0 v
Boston3 30216 | 137.32 0/3.23/6.45/16.13 19.68 | 138.77 0/0/3.23/16.13 16.42  6.66 0/0/16.13/32.26 v v
Bostonl 14687 | 117 0/0/18.75/18.75 3517 | 108.03 0/0/6.25/8.33 16.50  4.59 0/0/2.08/25 v
Brourges 6037 | 16298 0/0/0/0 3731 | 149.82 0/0/0/0 17.22 17658 0/0/0/0 v v
Orleans1 2645 | 176.72 0/0/0/0 4849 | 149.82 0/0/0/0 17.64 17825 0/0/0/0 v v
Thuringia 0.82 | 0.72 | 18.18/63.64/100/100 | 199 158 | 18.18/27.27/72.73/9091 | 1816 132.50 0/0/36.36/45.45 v
Nouvelle-Aquitaine2 | 21 170.39 0/0/0/0 8322 | 130.89 0/0/0/0 20.16  155.51 0/0/4.44/6.67 v
Angersl 165.33 | 14433 0/0/0/0 4275 | 13050 | 0/2.13/4.26/6.38 | 23.02 178.14 0/0/0/0 v
Pays de la Loire | 36.93 | 172.02 0/0/0/0 2408 | 149.13 | 0/2.38/2.38/2.38 | 24.06 17726 0/0/0/0 v v
Angers2 564.12 | 143.75 0/0/2.17/2.17 89.19 | 152.95 0/0/0/0 2413 166.39 0/0/0/0 v v
Orleans2 22469 | 164.96 0/0/0/0 3134 | 137.63 0/0/0/0 30.12 17252 0/0/3.23/3.23 v
Tle-de-France 7855 | 156.45 0/0/0/0 88.67 | 117.09 0/2/2/2 32.07  158.74 0/6/10/10 v v
Besangon3 10297 | 145.03 0/0/0/0 8176 | 148.22 0/0/0/0 3244 167.99 0/0/0/0 v v
Nouvelle-Aquitainel | 288.45 | 157.33 0/0/0/0 6070 | 144.84 0/0/0/0 3413 17758 0/0/0/0 v v
Le-Mans 46.16 | 162.29 0/0/0/0 45.90 | 149.95 0/0/0/2.04 3446 169.44 0/0/0/0 v v
Besangon2 7358 | 158.38 0/0/0/0 69.93 | 13447 0/0/0/0 4347 172.62 0/0/0/0 v v
Besangond 3137.38 | 138.70 0/0/0/0 303.66 | 124.22 0/0/0/0 53.02  163.24 0/0/0/0 v v
Eden Prairie - - - 110.88 | 150.73 0/0/0/0 56.53  101.90 0/0/0/0 v Vv v

the accuracy required for autonomous driving : (1) high (2) medium (3) coarse (4)
very-coarse with upper bounds : 0.5, 1, 5, 10 meteres for position error and 2, 5, 10,
20 degrees for rotation error, respectively.

In order to represent how the changes have affected the localization performance,
we also present the changes seen in the scenes. As could be seen in Tab. 5.1, the
main challenges that are observed in our benchmark datasets are slight illumination,
day-night, and strong viewpoint changes. Also, we have sorted the table by D2-Net
errors, which is mostly the method with better results, for observing how changes
affect the errors. We also have analyzed how any of these changes have affected the
pose errors.

5.1.2 Slight Illumination Changes

When the changes between reference and query images are only slight illumination
changes, such as in Muehlhausen, Tsuru, Poing, Bayern, Savannah, Curitiba, Mel-
bourne, Sydney, and Clermont-Ferrand, we can see that almost all the methods can
perform high-precision localization (see rows 1 to 9 of Tab. 5.1 and figure 5.2). Also,
the descriptor vector normalization that is mostly done in handcrafted descriptors
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Table 5.2: Baseline results on the previous benchmark datasets [1].

Method Condition | D2-Net + (Net/Dense)VLAD S2DHM HfNet
. Day 84.8 /92.6 / 97.5 80.5 / 87.4 / 94.2
Aachen day-night Night 139 ; 66.3 ; 85.7 129 ; 62.2 ; 76.5
Urban 91.7 / 94.6 / 97.7
CMU Seasons Suburban 74.5 / 81.5 / 91.3
Park 54.3 /62.5 / 79.0
Urban 94.0 / 97.7 / 99.1 65.7 / 82.7 / 91.0 | 89.5 / 94.2 / 97.9
Extended CMU-seasons | Suburban 93.0 / 95.7 / 98.3 66.5 / 82.6 / 92.9 | 76.5 / 82.7 / 92.7
Park 89.2 /93.2 / 95.0 54.3 /71.6 / 84.1 | 57.4 / 64.4 / 80.4
Robotcar Day 545 /80.0 / 953 46.4 /776 / 95.1 | 53.1 /791 / 955
[ Night 20.4 / 40.1 / 55.0 30.0 / 68.8 /946 | 7.2/ 17.4 / 314

such as SIFT enables the descriptor to be more robust to illumination changes as can
be seen in the mentioned datasets. We can conclude that having slight illumination
changes is not a challenge for current algorithms.

5.1.3 Day-night Changes

Although the small illumination changes seem to be a solved problem, when the illu-
mination changes are more significant, as seen between day and night, most methods
perform poorly when localizing night images, as seen in Figure 5.2. The best re-
sults for datasets that are affected with day-night illumination changes are mostly
achieved by D2-Net, in some of the datasets such as Massachusetts4 and Boston4.
This is expected as the descriptor is designed to be more robust to illumination
changes. However, a big problem in night images is the presence of artificial lights
that would either mask or considerably change the appearance of the features found,
making D2-Net fail on Massachusetts2, Massachusetts3, Boston2, and Bostonb.
The errors of methods such as HFNet and S2DHM are considerably higher, as seen in
Tab. 5.1. While matching between query and reference images in day-night cases, the
inlier ratio is usually considerably low. Taking approaches such as dense matching
does not work as long as the extracted features are not describing the same feature
in the same way in illumination changes.

5.1.4 Strong Viewpoint Changes.

The most challenging visited condition for both single and multi-image localization
has been strong viewpoint changes. For both single and multi-image queries, the
orientation errors are always above 160°, meaning a complete failure to localize the
images.

When the reference and query images look at the scene from opposite directions,
the appearance of objects could totally change; subsequently, a significant decrease
in the number of matches is expected. Also, as the field of view of the images is less
than 90 degrees, the overlap of the scenes could also be small. The overlaps are also
on smaller scales.

According to Tab. 5.1 and Tab. 5.4, as long as the only change visited in a scene is
strong viewpoint changes, and both sequences have been captured at the same time
of the day and the scene is not very vegetated, D2-Net performs better than the
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Figure 5.2: Position errors under different conditions, Top plots : single-image
localization, Bottom plots : multi-image localization. Left : D2-Net, Middle :
S2DHM, Right : HF-Net (the plots has been cut at 40 meters as error more than
40 meters is not of interest.)

other algorithms, in cases such as Brittany and Leuven, although the pose error is
still high. However, when the strong viewpoint change co-occurs with illumination
changes or the presence of foliage, the errors rise considerably, resulting from the
decrease in a previously small number of matches and leading to a complete failure
in localization. Even with taking the multi-image localization approach, the position

errors still do not reach the very-coarse precision. This has motivated us to move
from 2D to 3D.

5.1.5 Our method

Using multi-view depth estimation and moving from 2D to 3D and then doing 3D
registration, we can resolve localization for a third of sequences in the hard cate-
gory. Given the nature of our reference scenes and the fact that there is only small
rotations between the images of each scene, the 3D points that are constructed from
either scene might only co-observe e.g. the facades of building, and not contain
enough overlap in the point cloud. This could result in failure in most of the cases.
Approaches such as using scene completion [55] taken by [53], is expected to improve
this problem. One other big problem, also observed in 2D, is repetitive textures, as
can be seen in Fig. 5.3.

Using semantic data for ignoring the wrong matches has improved our result, see
Fig. 5.6. However, although semantic twist [56] has shown promising results in 2D,
we observed that this approach does not surpass simple semantic matches result on
our dataset, because of the nature of scenes and the fact that the labels are not as
diverse as the test cases presented in [56]. Therefore, only results of simple semantic
matching is shown in Tab. 5.3.

Comparing our approach to the state-of-the-art localization methods, interestingly
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Table 5.3: Localization performance of our pipeline, using 3D-FeatNet and FPFH
descriptors, on difficult part of CrowdDriven benchmark. We report the median
position (in meters) and orientation (in degrees) errors, as well as the percentage
of test images localized within certain error bounds on the position and orientation
errors. The right side of the table provides information about the type of change
between the training and test sequences: il.: illumination, fo.: foliage, sn.: snow, se.:
seasonal, ng.: day-night, sm. v.: small viewpoint, rn.: rain, st. v.: strong viewpoint.

‘ ‘ 3D-FeatNet | FPFH | conditions ‘

| name | pose | rot_err | percentage | pose |rot_err| percentage | il | ov. | fo. | sn. |se. |ng. | smv. | |str v |
Le-Mans 0.23 0.35 87.76/95.92/100/100 | 3.96 0.66 0/0/100/100 v v
le-de-France | 030 | 5.28 0/0/100/100 | 133.10 | 89.43 0/0/0/0 v
Besangon2 0.73 0.93 14.00/100/100/100 5.99 1.76 0/0/0/100 v v
Besancon3 1.00 | 040 0/50/100/100 140 | 238 | 0/0/100/100 v v
Besancond L1 | 077 | 0/2400/100/100 | 3.86 | 093 | 0/0/97.96/100 Vv v
Pays de la Loire 2.43 0.61 0/0/100/100 76.07 | 151.98 0/0/0/0 v v
Leuven 1579 | 1033 0/0/0/0 4645 | 175.14 0/0/0/0 v v
Brourges 20.34 | 11.62 0/0/0/0 48.73 | 179.77 0/0/0/0 v v
Brittany 23.87 | 176.88 0/0/0/0 3572 | 4.82 0/0/0/0 v v
Nouvelle-Aquitaine2 | 26.36 1.39 0/0/0/0 1.17 0.64 0/16.00/100/100 v
Angers2 32.65 | 8.61 0/0/0/0 2406 | 136.89 0/0/0/0 v
Orleansl 33.98 | 179.81 0/0/0/0 0.64 0.35 0/100/100/100 v
Angersl 46.01 | 177.95 0/0/0/0 101.90 | 46.67 0/0/0/0 v
Orleans2 46.01 | 90.26 0/0/0/0 34.43 | 157.70 0/0/0/0 v
Nouvelle-Aquitainel | 51.11 | 168.72 0/0/0/0 34.95 | 178.98 0/0/0/0 V|V v

the cases that are solvable by 3D point cloud matching, such as Besancon2, Be-
sancond, Besancon4, are the cases with vegetation, however, with a rather static
geometry in the query and reference scene. We believe that the improvement in
the result has risen from the denser point cloud of these scenes because of its more
textured nature of vegetation. As this is not the general case for vegetation, we can
not conlcude that this method will always work well for vegetated scenes.

In 3DFeat-Net [21], the authors have tested their method on the LIDAR data of Ox-
ford Robotcar [20] that contains challenging conditions including day-night changes.
Although no specific experiment was done on the method’s robustness to these
changes, the figures (see figure 1 in the original paper) show that the method has
some robustness to these changes on the LIDAR data. In the early attempts, we
have also tried to test the method on the datasets with strong illumination changes,
such as day-night changes seen in the Massachusetts2, Massachusetts3; however,
as the point-clouds are computed from the images, the night point clouds are still
sparse, so we could not reproduce the results using the point clouds from multi-view
point clouds.
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Table 5.4: Performance of the baseline methods on our CrowdDriven benchmark when using multi-image localization. We report
the median position (in meters) and orientation (in degrees) errors, as well as the percentage of test images localized within certain
error bounds on the position and orientation errors. We report results for different sequence lengths. Medium and hard datasets
are color-coded in standard and dark gray, respectively. The right side of the table provides information about the type of change

between the training and test sequences: il.: illumination,ov. : overcast, fo.: foliage, sn.: snow, se.: seasonal, ng.: day-night, sm. v.:
small viewpoint, rn.: rain, st. v.: strong viewpoint.

7 7 S2DHM _ HF-Net _ D2-Net _ conditions
% of localized % of localized % of localized
name pos. err. | rot. error | 0.5/1.0/5.0/10.0 (m) | pos. err. | rot. error | 0.5/1.0/5.0/10.0 (m) | pos. err. | rot. error | 0.5/1.0/5.0/10.0 (m) | il. | ov. | fo. | sn. | se. | ng. | sm.v. | rn. | st.v.
2/5/10/20 (°) 2/5/10/20 (°) 2/5/10/20 (°)
Skane 1.66 1.69 0/23.81/71.43/76.19 0.61 0.54 47.62/71.43/80.95/80.95 0.15 0.37 95.24/95.24/95.24/95.24 | v v
Massachusetts2 0.51 0.46 45.45/100/100/100 0.92 0.25 18.18/54.55/90.91/100 0.62 0.49 36.36/63.64/81.82/90.91 | v/
Thuringia 0.32 0.63 76.00/96.00/100/100 0.27 0.60 74.00/88.00,/98.00/100 0.30 0.52 72.00/96.00/100/100 ViV v
Burgundy?2 1.60 0.96 26.47/44.12/55.88/55.88 34.02 18.57 26.47/32.35/32.35/32.35 0.64 0.56 44.12/67.65/100/100 v
Boston4 3438.04 | 128.29 0/0/0/0 18.26 7.95 0/0/6.12/10.20 1.35 1.22 10.20/36.73/100,/100 v
Bostonb 297.34 173.65 0/0/0/0 31.19 117.01 0/0/0/0 3.34 1.78 37.50/50/50/62.50 v
Boston2 72.12 95.37 0/0/0/0 97.81 145.06 0/0/0/0 0.65 1.81 5.56/77.78/77.78/77.78 | v/ v v
Besangonl 29.82 2.57 0/26.47/38.24/38.24 59.75 125.11 0/0/0/0 28.90 1.85 0/0/35.29/35.29 v
Burgundy3 2.44 3.14 0/25.00/91.67/94.44 441 3.05 0/2.78/58.33/72.22 2.82 2.91 0/13.89/83.33/100 v v
Boston3 386.77 17.57 0/0/29.03/29.03 10.36 21.43 0/0/6.45/35.48 3.20 3.33 0/6.45/54.84/100 v v
Bostonl 149.96 132.81 0/0/18.75/18.75 13.60 25.97 0/0/22.92/33.33 2.63 4.26 0/0/58.33/72.92 v
Nouvelle-Aquitaine2 |~ 2.16 8.56 0/0,/90.62/100 3.11 8.87 0/0,/75.00/90.62 2.47 8.63 0/0,/100,/100 N
Burgundyl 117 11.29 0/0/0/100 1.55 11.26 0/0/0/76.92 1.15 11.21 0/0/0/100 v
Massachusettsd | 1393.84 | 77.81 0/0/4.55/4.55 1681 | 97.11 0/0/0/0 494 28.48 0/0/0/0 v v
Massachusetts3 57.31 142.47 0/0/0/0 57.31 142.47 0/0/0/0 65.22 40.99 0/0/0/0 v V|V v
Brittany 134.22 | 149.22 0/0/0/0 4680 | 169.11 0/0/0/0 1299 | 146.07 0/0/0/0 v v
Eden Prairie 20.90 170.85 0/0/0/0 55.55 68.27 0/0/0/0 23.57 153.63 0/0/6.67/8.89 v
Orleans? 95.19 | 12957 0/0/0/0 4008 | 126.87 0/0/10/10 2650 | 163.24 | 8.00/16.00/16.00/16.00 v
Te-de-France 74820 | 151.03 0/0/0/0 92.56 | 147.16 0/0/0/0 2311 | 168.35 0/0/0/0 v
Angers2 5057 | 13143 0/0/0/0 19.66 | 158.46 0/0/0/0 815 | 169.56 0/0/0/0 v v
Le-Mans 46.24 | 161.56 0/0/0/0 4387 | 152.15 0/0/0/4.08 3272 | 17141 0/0/0/0 v v
Leuven 48.73 134.82 0/0/0/0 77.69 90.79 0/0/2.00/2.00 24.36 171.92 0/0/0/0 v v
Besangon3 45873 | 157.18 0/0/0/0 3249 | 170.67 0/0/0/0 4348 | 174.15 0/0/0/0 v
Besancon2 5670.75 | 121.32 0/0/0/0 40.12 148.52 0/0/0/0 45.07 174.47 0/0/0/0 v v v
Brourges 8822 | 153.89 0/0/0/0 43.69 | 137.36 0/0/0/0 26.06 | 174.94 0/0/0/0 v v
Nouvelle-Aquitainel | 131.24 175.56 0/0/0/0 39.86 166.11 0/0/0/0 17.93 176.79 0/0/0/0 v v
Angersl 31534 | 140.58 0/0/0/0 20.34 | 102.01 0/8.51/27.66/36.17 2091 | 178.15 0/0/0/0 v
Pays de la Loire 510.92 153.42 0/0/0/0 47.80 156.94 0/0/0/0 35.87 178.19 0/0/0/0 v |V v
Besancond 2077 | 176.90 0/0/0/0 38.87 | 146.69 0/0/0/0 1485 | 178.94 0/0/0/0 v
Orleansl 42.48 161.58 0/0/0/0 22.56 160.46 0/0/0/0 26.43 178.95 0/0/0/0 v v
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5. Experimental Setup and Results

Figure 5.3: Database and query scene and their 3D matches, failure case of our
method - reason : repetitive structure.

Figure 5.4: Database and query scene and their 3D matches, failure case of our
method - reason : lack of enough overlap.

Figure 5.5: Database and query scene and their 3D matches, Success case of our
method.
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5. Experimental Setup and Results

Figure 5.6: Database and query scene and their 3D matches, matching using
semantic labels and descriptors.
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§

Conclusion

6.1 Conclusion

In this thesis, we have introduced a new benchmark dataset for outdoor visual lo-
calization focusing on the failure cases of the SfM pipeline. Applying the current
state-of-the-art and analyzing the results, we can conclude that (1) slight illumina-
tion changes is already a solved problem; and even early methods such as SIFT are
able to handle those conditions, (2) localizing night-time queries is still a challenging
problem for current algorithms; however, some methods (such as D2-Net) were able
to get better results by revising the detection stage. (3) by far, the most challenging
problem for current algorithms is strong viewpoint changes, and most methods fail
in correctly estimating the orientation.

We have also moved from 2D to 3D, with the idea that the 3D structure is less
affected by the changes. For some of the scenes affected by the strong viewpoint
changes, we have seen improvements; however, the dataset remains challenging. In
the future, statistical approaches that model the scene using statistical models and
are able to handle outliers such as [117] could be investigated. Also, approaches that
replace RANSAC with inlier confidence networks such as [118] could be investigated.
Also, for the problem of lack of overlaps, scene completion using generative neural
networks might be a good idea.

6.2 3D registration in other domains

3D representations are frequently used in other fields, such as the medical field. For
example, one of the most common modules in the diagnosis, CT scan, is a series
of 2D axial slices accumulated to represent the anatomy in a 3D structure [119].
CT scans are frequently used in colon health inspections, angiographies, pulmonary
conditions diagnosis, and it is also used in 3D tumor simulations, surgical planning,
and classification fusion [120].

When applying for 3D-3D registration, by estimating a rigid transform between the
query and database, the assumption is that no scaling or distortion between the
query and database scenes has been made. While this assumption holds in most
street-level scenes, it would not be accurate for a general case, for instance, the
medical applications of 3D-registration as the internal anatomy of the subject might
be distorted between these two scenes. There are many cases where we can have
this assumption in medical imagery, too, while in others, anatomical deformations
between two scenes should be taken into account.
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6. Conclusion

The most common scenario for non-rigid 3D registration in medical images is having
the 3D representation of an object (e.g., an organ) in two different times (¢ and t')
and registering one to another. In these scenarios, usually, the transformation esti-
mation is broken in two terms (eq. 6.1) [121], global and local, where the global part
Tyiobal (%, Y, 2) models the affine transformation of the object (rotation, orientation,
and scale) and an additional Toca (2, y, 2) term describes the free-form deformations
of the object. To model free-form deformations (FFD) of the anatomy, there are
powerful modeling tools for deformable objects, such as [122]. These methods follow
the idea of deforming an object by manipulating the underlying mesh of control
points and are based on B-splines.

T(z,y,2) = Taobal(®, ¥, 2) + Tiocar(z, Y, 2) (6.1)

To use our method for medical 3D object registration, the same considerations should
be taken. In this regard, after point cloud description, instead of the rigid trans-
formation between the scenes, first an affine transformation between two scenes (at
t and t') should be estimated. Further deformations between two scenes should be
estimated using by modeling deformations of the underlying control points.

On the other hand, as medical imagery is taken under more considerations, the scale
of the scene is better recovered as the exact calibration information of the scanning
devices is available [120].
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A
Appendix

A.1 Dataset Visualization

This section provides visualizations for the datasets from our CrowdDriven bench-
mark. Figures A.1 to A.43 show example images from all of our datasets.
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Figure A.1: Bayern, Category : Easy

Figure A.2: Clermont-Ferrand, Category : Easy
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Figure A.3: Curitiba, Category : Easy

Figure A.4: Massachusettsl, Category : Easy
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Figure A.5: Melbourne, Category : Easy

Figure A.6: Muehlhausen, Category : Easy
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Figure A.7: Poing, Category : Fasy

Figure A.8: Portland, Category : Easy
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Figure A.9: Savannah, Category : Easy

Figure A.10: Subcarpathia, Category : Easy
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Figure A.11: Sydney, Category : Easy

Figure A.12: Tsuru, Category : Easy
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Figure A.13: Washington, Category : Easy

Figure A.14: Besanconl, Category : Medium
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Figure A.15: Bostonl, Category : Medium
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Figure A.16: Boston2, Category : Medium
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Figure A.17: Boston3, Category : Medium

Figure A.18: Boston4, Category : Medium
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Figure A.19: Boston), Category : Medium

Figure A.20: Burgundyl, Category : Medium
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Figure A.21: Burgundy?2, Category : Medium

Figure A.22: Burgundy3, Category : Medium
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Figure A.23: Eden Prairie, Category : Medium

Figure A.24: Massachusetts2, Category : Medium
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Figure A.25: Massachusetts3, Category : Medium

Figure A.26: Massachusettsd, Category : Medium
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Figure A.27: Skane, Category : Medium

Figure A.28: Thuringia, Category : Medium
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Figure A.29: Angersl, Category : Difficult

Figure A.30: Angers2, Category : Difficult
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Figure A.31: Besancon2, Category : Difficult

Figure A.32: Besangon3, Category : Difficult

XVII



A. Appendix

Figure A.33: Besancon4, Category : Difficult

Figure A.34: Brittany, Category : Difficult
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Figure A.35: Brourges, Category : Difficult

Figure A.36: Ile-de-France, Category : Difficult
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Figure A.37: Le-Mans, Category : Difficult

Figure A.38: Leuven, Category : Difficult
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Figure A.39: Nouvelle-Aquitainel, Category : Difficult
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Figure A.40: Nouvelle-Aquitaine2, Category : Difficult
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Figure A.41: Orleansl, Category : Difficult

Figure A.42: Orleans2, Category : Difficult
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Figure A.43: Pays de la Loire, Category : Difficult
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