
Human Interaction Solutions for Intuitive Motion
Generation of a Virtual Manikin
Master’s thesis in Applied Mechanics

LUCA CALTAGIRONE

Department of Applied Mechanics
Division of Vehicle Engineering and Autonomous Systems
CHALMERS UNIVERSITY OF TECHNOLOGY
Göteborg, Sweden 2014
Master’s thesis 2014:60

MASTER’S THESIS IN APPLIED MECHANICS

Human Interaction Solutions for Intuitive Motion
Generation of a Virtual Manikin

LUCA CALTAGIRONE

Department of Applied Mechanics
Division of Vehicle Engineering and Autonomous Systems

CHALMERS UNIVERSITY OF TECHNOLOGY

Göteborg, Sweden 2014

Human Interaction Solutions for Intuitive Motion
Generation of a Virtual Manikin
LUCA CALTAGIRONE

c© LUCA CALTAGIRONE, 2014

Master’s thesis 2014:60
ISSN 1652-8557
Department of Applied Mechanics
Division of Vehicle Engineering and Autonomous Systems
Chalmers University of Technology
SE-412 96 Göteborg
Sweden
Telephone: +46 (0)31-772 1000

Cover:
Intelligently Moving Manikins (IMMA). CAD models courtesy of Volvo Cars.

Chalmers Reproservice
Göteborg, Sweden 2014

Human Interaction Solutions for Intuitive Motion
Generation of a Virtual Manikin
Master’s thesis in Applied Mechanics
LUCA CALTAGIRONE
Department of Applied Mechanics
Division of Vehicle Engineering and Autonomous Systems
Chalmers University of Technology

Abstract

The aim of this work was to develop a motion capture algorithm for the Kinect sensor, which can provide
robust and real time tracking, even in those situations where the Kinect algorithm performs poorly. The
proposed method belongs to the family of model based algorithms which work by establishing correspondences
between an acquired point cloud and a custom-built body model. Specifically, an extension to articulated
bodies of the point cloud registration algorithm known as iterative closest point (ICP) was used in combination
with the Gauss-Newton minimization algorithm.

The virtual manikin IMMA (Intelligently Moving Manikins) allows for the conduction of ergonomic studies
in a simulated assembly line. To perform motion verification of the solutions found by the simulation software, a
motion capture system could be integrated within its platform. Furthermore, this could facilitate the analysis of
some complex assembly operations which may be troublesome to solve with the current version of IMMA. Most
of the available commercial devices are expensive, difficult to operate, and require specialized equipment and
software. However, in recent years, Microsoft has introduced to the market an RGB-D camera, the Kinect 1.0,
which provides 3D information without the need for triangulation, and furthermore integrates a sophisticated
motion tracking system based on machine learning algorithms. Unfortunately, this system performs rather
poorly in the settings commonly found in assembly lines where self-occlusions and occlusions are commonplace.

By measuring the normalized residual error per point (NREP), one can determine how well the articulated
iterative closest point (AICP) system matches the body model to the point cloud acquired from the sensor.
The obtained results show that the AICP system is more robust than the Kinect algorithm by producing an
NREP approximately seven times smaller on average relative to a set of 30 unconstrained motion sequences
involving occlusions and self-occlusions. Furthermore the developed system allows the tracking of a wider range
of motions in an extended range. This makes it a potentially better solution for performing motion capture in
assembly lines.

Keywords: Computer vision, RGB-D sensor, Gauss-Newton algorithm, articulated ICP, nearest neighbor search

i

Acknowledgements

I would like to thank my supervisors Niclas Delfs, Peter Mårdberg, and Fredrik Ekstedt for the stimulating
discussions and very useful advice. I am grateful to FCC for allowing me to work on this project and providing
me with the necessary equipment and space. I would also like to thank my examiner Mattias Wahde for his
feedback and guidance. Last but not least, my special thanks goes to my beloved wife for her invaluable help,
support, and patience.

iii

iv

Contents

Abstract i

Acknowledgements iii

Contents v

1 Introduction 1
1.1 Background . 1
1.2 Purpose . 1
1.3 Outline . 1
1.4 Scope and limitations . 1

2 Motion capture 3
2.1 Kinect sensor . 3
2.2 Motion capture algorithms . 4

3 Theory 5
3.1 Body model . 5
3.1.1 Skeleton model . 5
3.1.2 Body surface . 8
3.2 Iterative closest point . 8
3.2.1 Standard ICP . 9
3.2.2 Articulated ICP . 9

4 Method 13
4.1 Data acquisition . 13
4.2 Sub-sampling . 13
4.3 Subject segmentation . 13
4.4 Initialization body model . 13
4.4.1 Skeleton model . 15
4.4.2 Body surface model . 15
4.5 Tracking algorithm . 16
4.5.1 Matching . 16
4.5.2 Minimization cost function and body model update . 16
4.6 Tracking failure recovery . 16
4.7 Occlusions and self-occlusions handling . 16

5 Results 19
5.1 Self-occlusions . 19
5.2 Less common poses . 24
5.3 Free motions . 27
5.4 Occlusions, extended range, and rear facing . 29
5.5 Known problems of the AICP . 31

6 Discussion 35

7 Conclusions and future work 37

List of Figures 40

List of Tables 42

Appendices 44

A Bone length 46

v

B Gauss-Newton algorithm 50

C Tables 52
C.1 Results of 30 motion sequences . 52
C.2 Sub-sampling factor . 53
C.3 Relative residual error threshold . 53

vi

1 Introduction

1.1 Background

One of the programs developed at the Fraunhofer-Chalmers Research Centre for Industrial Mathematics (FCC),
in collaboration with its industrial partners and academia, is the virtual manikin IMMA (Intelligently Moving
Manikins) (see Figure 1.1), which allows for the conduction of ergonomic studies in a simulated assembly line.
This is accomplished by optimizing the comfort function during the execution of a simulated assembly operation.
To verify the solutions found by the simulation software, a motion capture system could be used to track the
movements of a real worker performing the same operation. On the market there are many available systems,
but most of them require expensive equipment, long installation time, and specialized software. Another option
is to utilize the relatively cheap sensor produced by Microsoft, the Kinect 1.0, which incorporates a color camera
and a depth sensor, thus providing 3D information without the calibration and triangulation phases which
are required by optical systems. The Kinect is also equipped with a motion capture system; unfortunately,
however, it is mainly designed for playing video games and controlling external devices remotely, and therefore
it is not so sensitive to finer movements and it performs rather poorly when motions involve self-occlusions or
occlusions.

1.2 Purpose

The goal of this thesis is to design and develop a motion capture system that can provide robust and real
time tracking, even in those situations where the Kinect algorithm performs poorly, while at the same time
maintaining its simplicity of use. The main focus is on motions involving self-occlusions, given that they
commonly occur while performing manual work, and occlusions caused by objects or people, another common
situation in assembly lines. Furthermore, the system should be easily extendable to perform motion capture
with multiple Kinects.

1.3 Outline

In Chapter 2 a brief introduction to the field of motion capture is given, presenting the various technologies
available, their advantages, and their limitations. Afterward, the features of the Kinect sensor and its proprietary
skeleton tracking algorithm are described. Finally, in the last section, an overview of different methods used in
computer vision for motion capture is presented. Chapter 3 covers the theoretical background of this work. In
the first section, a description of how to mathematically model a skeleton and its corresponding body surface is
provided, followed by an introduction of the point cloud registration method called ICP in both its standard
version and in its generalization to articulated bodies (AICP). Chapter 4 presents a detailed description of all
the phases of the AICP motion capture system: data acquisition and sub-sampling, subject segmentation, body
model generation, and point cloud - body model matching. In Chapter 5 the results are shown and the AICP
and Kinect capture system performances are compared. In Chapter 6 a final discussion, the conclusions, and
future work are presented.

1.4 Scope and limitations

The implementation of a machine learning system to perform motion capture would have required a large
amount of time and resources, particularly the phase of collecting a representative training set; therefore
the scope of this work was limited to a more classical algorithm that works by model fitting through dense
correspondences. Given that the system was intended to work on consumer hardware and in real time, the
motion capture was restricted to only one subject in order to reduce the computing resources needed. Another
important requirement was simplicity of use, therefore the option of wearing markers or special suits to help
the tracking process was not considered.

1

Figure 1.1: Assembly operation performed by a virtual manikin within IMMA software. CAD models courtesy
of Volvo Cars.

2

2 Motion capture

Motion capture, as the name suggests, is the process of recording patterns of movement. Its applications
include computer animation in the movie and video-game industries [1, 2], human-machine interaction [3, 4],
surveillance [5], and entertainment [6]. In the following, a brief overview of the most common systems used to
perform human motion capture is given.

Optical systems

Optical systems make use of multiple color cameras to obtain 2D images, which are then combined, by means of
triangulation, to recover 3D information. The number of cameras used depends on the specific application but it
can range from a minimum of two, up to 40 or more, with a refresh rate that can reach 1000 frames per second
[7]. Generally the subject wears markers over his body, in specific locations, to facilitate the identification of
landmarks. There exist two kinds of markers: passive ones, which are simply reflective objects, and active ones,
which are light-emitting diodes (LED). By setting a brightness threshold for the cameras, it is then possible to
exclude all other objects which do not emit or reflect as much light. The passive markers do not require using
cables as the the active ones do, however the active markers allow for larger capture volumes. These systems
necessitate long set-up times and can only be used indoors.

Inertial systems

Inertial systems make use of miniature inertial sensors to determine a subject’s movements. An example of this
system is the one developed by Xsens [8] that consists of 17 sensors, each of which comprises 3D gyroscopes,
accelerometers, and magnetometers. After a set-up and calibration phase during which body dimensions and
body-to-sensor alignment is performed, the system determines motion information by combining data fusion
algorithms and bio-mechanical models. The basic working principle behind this system is to determine the
angular velocities of the various body segments, which are then integrated to determine the rotation angles and
consequently the segments’ orientations. These systems only provide relative motion information, so external
devices are needed to obtain absolute positioning. As opposed to optical systems, they are not affected by
lighting conditions or occlusions, and are much more portable.

Mechanical systems

In this case, the relative position of a subject is directly measured by wearing an exoskeleton [9]. Each joint is
equipped with a potentiometer whose resistance changes as a function of the rotation angle; by measuring the
voltage at its terminals, it is then possible to determine the joint angle. Just like inertial systems, mechanical
systems are not affected by occlusions and offer unlimited capture volume.

2.1 Kinect sensor

All the above systems make use of special hardware and software, and are generally expensive and complex
to set up and operate. However, in recent years, with the introduction to the market of cheap RGB-D (color
and depth) sensors, a lot of interest has been directed at developing marker-less motion capture systems. The
Kinect sensor was first released by Microsoft in 2010 to allow the control of the Xbox video-game console by
using gestures and spoken commands. It is equipped with a color camera, a depth sensor, and a microphone
array. The depth sensor consists of an infrared laser projector combined with an infrared camera; depth data
is obtained by analyzing how a known pattern of infrared light, emitted from the projector, is deformed by
the environment in the sensor’s field of view; a technique known as structured light[10]. Its depth and color
resolutions are respectively 320x240 and 1024x620 pixels with a refresh rate of 30 frames per second. One of
the main features of the Kinect sensor is its skeleton tracking system which can capture the motion of up to
two people simultaneously.

3

The algorithm that performs the skeleton tracking has been developed by Shotton et al. [11]. It consists of
a deep randomized decision forest classifier1 trained with hundreds of thousands of images covering a wide
spectrum of body types, positions, and clothing. The classifier associates each pixel with a body part and this
information is then pooled to generate a proposal for the positions of 3D skeletal joints. The performance of
this system is rather impressive; it runs at 30 frames per second on consumer hardware with a good level of
accuracy, it does not need an initialization phase, and it recovers quickly from tracking failures. However, this
applies only in specific settings: the user should be facing directly toward the sensor, or with limited deviation;
no objects should be in the field of view between the user and the sensor; and no objects should be handled
such as holding tools. Another strict requirement is that at least the full upper body should be visible. If one
or more of the these requirements is not met, the motion tracking can become very poor or fail altogether.

2.2 Motion capture algorithms

Motion capture and analysis is a very active research field and many approaches have been developed to
perform this task [13]. The algorithm implemented by Shotton et al. [11] belongs to the family of learning
based methods. These algorithms directly map the data acquired from a sensor (i.e., color camera, RGB-D
sensor, etc.) to the joint space by means of a classifier. As previously mentioned, they can perform rather well
but they also have some important limitations: the breadth of the training set restricts the range of motions
that can be accurately tracked, adding new motions is time consuming because it involves re-training the
classifier and acquiring tracking information for the training set by other means, and the motion tracking
cannot incorporate temporal and kinematic coherence.

To avoid these limitations, model based methods could be used instead [14, 15, 16, 17]. In this case, a
model of the subject being tracked is created during an initialization phase and then matched to the data to
determine the subject’s position. These algorithms can, in principle, track all possible motions, they usually
incorporate constraints such as bone lengths and joint angles limits in the body model, and they can make use
of temporal information to facilitate tracking during brief occlusions or failures of the matching algorithm. On
the downside, the need to generate a body model makes these systems less user-friendly and slower to initiate.
Additionally, the dense correspondences fitting needed for pose estimation is computationally demanding, which
limits their use in real time applications, and recovery from tracking failures is generally more difficult.

A combination of learning and model based algorithms is, of course, possible; for example, in [18], the
authors developed an adaptive body model that enforces kinematic constraints and eliminates odd poses to
complement the OpenNI [19] motion tracking algorithm. Another approach is to detect key-points such as
anatomical landmarks on the image (or depth map) and then use inverse kinematics to determine the joint
orientation. Zhu and Fujimura [20] made use of a deformable template to detect the head, neck, and trunck of
a subject; Schwarz et al. [21] built a graph-based representation of the depth data in order to measure geodesic
distances, allowing them to localize body landmarks. Other interesting approaches have been developed but a
complete review is beyond the scope of this work; for more details we refer the interested reader to [13].

1The basic component of a random forest classifier is a decision tree. A decision tree is a tree-shaped structure with nodes,
branches, and leaves. Each node represents a feature and each branch leaving that node corresponds to one of its possible values.
The classification process consists of visiting all nodes until a leaf, with its associated class label, is reached. A random forest is an
ensemble of decision trees, each of which is trained using only a randomly chosen subset of features. For a detailed description see
[12].

4

3 Theory

The approach adopted in this work to perform motion capture belongs to the family of model based algorithms.
As briefly mentioned in the previous chapter, these algorithms work by establishing and then minimizing
correspondences between a point cloud and a body model. The first part of this chapter illustrates in detail the
components of the implemented body model; in the second part, a description of the algorithm used to align
the body model with a point cloud is presented.

3.1 Body model

A body model is an abstract and simplified representation of a human body. Its basic components are a skeleton
and a body surface.

3.1.1 Skeleton model

Just like a real skeleton, a model skeleton is composed of bones (links) and joints connecting them and allowing
motion. The considered model consist of 16 links and 16 joints. Furthermore, a set of 11 body landmarks
placed in correspondence with anatomical areas of interest is defined. The links are segments of fixed length,
with no mass or volume. Joints are modeled as mathematical points with only rotational degrees of freedom.
Each joint ji is associated to a cartesian coordinate system Ri, xi-yi-zi, that, by convention, has the zi-axis
oriented in the same direction as the link extending from it (see Figure 3.1). The state of joint ji is then fully
defined by the Tait–Bryan angles (αi, βi, γi), where i = 0, . . . , 15, indicating the amount of rotation about the
xi, yi, and zi-axes, respectively. In this work, rotations are applied sequentially to the xi, yi, and zi-axes, in
that order (xi-y

′
i-z
′′
i). These basic rotations can be expressed in matrix form as:

Rx(α) =

1 0 0
0 cosα − sinα
0 sinα cosα

 (3.1)

Ry(β) =

 cosβ 0 sinβ
0 1 0

− sinβ 0 cosβ

 (3.2)

Rz(γ) =

cos γ − sin γ 0
sin γ cos γ 0

0 0 1

 (3.3)

As Figure 3.2 illustrates, the skeleton can be organized in a tree structure which clarifies the connections
among its elements. Multiple joints can have the same parent, therefore the operator Λ(·) [16] is introduced,
which takes as input the index of a joint and returns the index of its parent. Furthermore, the operator Ξ(·) is
defined; this takes as input the index of a body landmark and returns the index of its parent joint. Rigid body
transformations can be utilized to perform transformations between coordinate systems. Given that reflections
change the right-hand axis convention to a left hand, only transformations belonging to the Special Euclidean
group SE(3) are considered. Each element in SE(3) is defined by a pair (R, t), where R is a rotation followed
by a translation t, so that x 7→ Rx+ t. Two transformations can be combined as follow:

(R3, t3) = (R2, t2) • (R1, t1) = (R2R1,R2t1 + t2) (3.4)

In robotics, it is common to utilize homogeneous coordinates in order to unify the description of rotations and
translations [22]. This requires augmenting the space from R

3 to R4 and appending a 1 at the end of all vectors.
The rotation R and the translation t can then be combined in a single matrix as follow:

(R, t) 7→
(
R t
0 1

)
(3.5)

Given that R is an orthogonal matrix (i.e., R−1 = RT), the inverse transformation of a rigid transformation in
homogeneous coordinates can be easily determined:(

R t
0 1

)(
A b
0 1

)
=

(
RA Rb + t
0 1

)
=

(
1 0
0 1

)
⇐⇒ A = RT ,b = −RT t (3.6)

5

Figure 3.1: Local coordinate systems. Each joint is associated to a local coordinate system with the z-axis
oriented in the same direction of the link extending from it.

Furthermore, it is straightforward to verify that relation 3.4 is still valid; in fact by multiplying two rigid
transformations it follows that: (

R2 t2

0 1

)(
R1 t1

0 1

)
=

(
R2R1 R2t1 + t2

0 1

)
(3.7)

According to mapping 3.5, the basic rotation matrices in homogeneous coordinates can be redefined as follow:

Rx(α) =

1 0 0 0
0 cosα − sinα 0
0 sinα cosα 0
0 0 0 1

 (3.8)

Ry(β) =

cosβ 0 sinβ 0

0 1 0 0
− sinβ 0 cosβ 0

0 0 0 1

 (3.9)

Rz(γ) =

cos γ − sin γ 0 0
sin γ cos γ 0 0

0 0 1 0
0 0 0 1

 (3.10)

Furthermore, it is possible to define a general translation matrix D as:

D(x, y, z) =

1 0 0 x
0 1 0 y
0 0 1 z
0 0 0 1

 (3.11)

6

F
ig

u
re

3
.2

:
T

re
e

st
ru

ct
u

re
o
f

th
e

sk
el

et
o
n

m
od

el
.

T
h
e

gl
o
ba

l
n

od
e

re
p
re

se
n

ts
th

e
w

o
rl

d
co

o
rd

in
a
te

sy
st

em
,

w
h
il

e
th

e
re

m
a
in

in
g

n
od

es
re

p
re

se
n

t
th

e
bo

d
y

la
n

d
m

a
rk

s
tr

a
ck

ed
d
u

ri
n

g
m

o
ti

o
n

s.
L

in
ks

a
n

d
jo

in
ts

a
re

d
ep

ic
te

d
a
s

so
li

d
li

n
es

a
n

d
sm

a
ll

er
ci

rc
le

s,
re

sp
ec

ti
ve

ly
.

T
h
e

to
p

le
ft

fi
gu

re
sh

o
w

s
th

e
sk

el
et

o
n

m
od

el
in

it
s

d
ef

a
u

lt
st

a
te

,
th

a
t

is
,

w
h
en

a
ll

jo
in

t
a
n

gl
es

a
re

ze
ro

.

7

A homogeneous rigid transformation Mi is then associated to each joint ji, expressed as a combination of the
basic rotations and translation matrices previously defined, establishing the coordinate transformation from Ri

to RΛ(i). Moreover, transformation matrices MW
i are defined as:

MW
i =M0 · . . .MΛ(i) · Mi (3.12)

establishing the transformations from Ri to the world coordinate system.

Remark

Given that the lengths of the links are set at initialization time and do not change afterwards, the variables
determining the skeleton configuration are only the joint angles and link l0 representing the displacement
from the world coordinate system. These can be arranged in a single variable k = [Θ0, . . . ,Θ15; l0], where
Θi = [αi, βi, γi].

3.1.2 Body surface

The Kinect sensor only provides information about the surface of the body, therefore it is necessary to build a
surface model to relate the skeleton to the point cloud. For this purpose, a total of 11 major body parts are
identified: upper and lower arm (left and right), upper and lower leg (left and right), head, chest, and abdomen,
which need to be generated and connected to specific links of the skeleton.

Link Body part name Body part label
L1 Abdomen B1
L2 Chest B2
L3 Head B3
L5 Right upper arm B4
L6 Right lower arm B5
L8 Left upper arm B6
L9 Left lower arm B7
L11 Right upper leg B8
L12 Right lower leg B9
L14 Left upper leg B10
L15 Left lower leg B11

Table 3.1: Correspondences between skeleton links and body parts.

As Table 3.1 illustrates, some of the links do not have any associated body part. For this reason the operator
Γ(·) is introduced, which takes as input the index of a body part and returns the index of the link it is connected
to. Each Bm is a set of 3D points defined in the local frame of reference of the link they are attached to. How
to generate them will be described in detail in the next chapter. To obtain the body parts in world coordinates,
the transformation matrices MW

i can be utilized. Then it follows that:

BW
m =MW

Γ(m)Bm (3.13)

The full body surface BW is then obtained by joining all the subsets BW
m :

BW = (MW
Γ(1)B1) ∪ (MW

Γ(2)B2) ∪ . . . ∪ (MW
Γ(11)B11) =

11⋃
i=1

MW
Γ(m)Bm (3.14)

3.2 Iterative closest point

As previously mentioned, model based algorithms perform motion capture by matching a body model of the
subject with the data acquired from a sensor. To perform this task, a modified version of a popular point
registration algorithm known as ICP has been implemented. In the following sections, an introduction to the
ICP algorithm in its standard version will be introduced, followed by its generalization to articulated bodies.

8

3.2.1 Standard ICP

The ICP is an algorithm employed to minimize the difference between a target point cloud, T = {t1, . . . , tn},
which is kept fixed, and a source point cloud, S = {s1, . . . , sm}, which is iteratively transformed through rigid
transformations. Let us describe the algorithm’s steps:

1. For each point in the source point cloud, find the closest point in the target point cloud. This set of
points is referred to as C = {c1, . . . , cm}.

2. Estimate the rigid transformation M(α, β, γ, x, y, z) = D(x, y, z)Rz(γ)Ry(β)Rx(α) that minimizes the
least-squares cost function E:

E(α, β, γ, x, y, z) =

m∑
i=1

‖Msi − ci‖2 (3.15)

3. Transform the source points by applying M . That is:

S →MS (3.16)

4. Repeat steps (1,2,3) until the stopping criterion is met (for example, when the residual of the cost function
is below fixed threshold)

3.2.2 Articulated ICP

The standard ICP algorithm is applied to point clouds that can be registered through a single rigid transformation
(i.e., point clouds representing rigid bodies), in which case convergence to a local minimum and closed-form
solution of the minimization problem in (3.15) are guaranteed [23]. The process of human motion capture, on
the other hand, requires registering point clouds with an underlying structure of an articulated body, which
can undergo multiple and simultaneous rigid transformations. For this reason, a procedure inspired by the
standard ICP, which can be extended to the case of articulated bodies [16, 17, 24, 25], has been developed.

Let us consider a body model with its associated body parts B = {B1, B2, . . . , B11}, world transformations
MW = {MW

1 , . . . ,MW
15}, and configuration k0. As before, let us call T the target point cloud. Then the

algorithm proceeds in the following steps (see Figures 3.3, 3.4, 3.5, 3.6):

1. Compute body parts in world coordinates, BW
m =MW

Γ(m)(k0)Bm, for m = 1, . . . , 11.

2. Partition T by finding closest body parts, T = {T1, . . . , T11} where Tm = {tm1 , . . . , tmlm}.

3. For each Tm compute the set Cm = {cm1 , . . . , cmlm} of its closest neighbors in the body model surface BW .
Then determine the corresponding set in local coordinates, C∗m = {c∗m1 , . . . , c∗mlm }.

4. Find the configuration k† which minimizes the cost function E:

E(k) =
1

2

11∑
m=1

∥∥∥MW
Γ(m)(k)C∗m − Tm

∥∥∥2

=
1

2

11∑
m=1

lm∑
j=1

∥∥∥MW
Γ(m)(k)c∗mj − tmj

∥∥∥2

(3.17)

5. Update the body model configuration, k0 → k†.

6. Repeat steps (1-5) until stopping criterion is met.

Remarks

The cost function can be rewritten in vector form by rearranging its terms in a column vector, r(k), so that:

E(k) =
1

2
r(k)T r(k) (3.18)

Step 3 of the AICP algorithm requires performing a nearest neighbor search. A simple but rather slow approach
to solve this task would be to compute all the mutual distances between target and source point cloud, and then

9

Figure 3.3: Step 1 of AICP: calculation of the body model in world coordinates. Left panel: body model with
color coded body parts, BW

i . Right panel: target point cloud, T .

Figure 3.4: Step 2 of AICP: partitioning of the target point cloud. Left panel: body model with color coded body
parts, BW

i . Right panel: the target point cloud has been partitioned by finding closest body part in the body
model.

to select the pairs of points that have the smallest relative distance. Another approach, which usually allows
for a faster search, is to build and query a data structure, such as a k-d tree. For this purpose an external
library called ANN [26] was utilized.

The problem in step 4 does not have a closed-form solution as in the case of the standard ICP, so another
minimization method should be employed. The chosen algorithm is the well known Gauss–Newton algorithm
(see Appendix B), which approximates a given function with its second order Taylor expansion, and iteratively
corrects an initial guess k0 with the following update rule:

J T
0 r0 = −J T

0 J0(k− k0) (3.19)

where r0 = r(k0) and J0 is its Jacobian matrix.

10

Figure 3.5: Step 3 of AICP. By performing a nearest neighbor search, correspondences between the body model
and the target point cloud are established. The left panel shows the target sets, Ti. The right panel shows the
source sets, Ci.

Figure 3.6: Body model and target point cloud after execution of AICP. The left panel shows the body model in
its updated configuration. The right panel shows the target point cloud.

11

4 Method

In this chapter, all the stages of the AICP motion capture system will be presented and detailed. As will become
clear, the process of gaining high-level information, such as the position of the subject’s body landmarks, from
a partial 3D surface reconstruction involves the interplay of many components.

4.1 Data acquisition

As mentioned in Chapter 2, the Kinect is equipped with a depth sensor and a color camera. Our system
only makes use of the depth information from which a point cloud of the scene is obtained. The depth map
resolution is 320x240 pixels; it is important to point out that the depth accuracy decreases with distance from
the sensor. The Kinect for Windows has two working modalities: near mode and default. In near mode, the
distance range is between 0.4 and 3.0 meters, while in default mode it is between 0.8 and 4.0 meters. This
limits the volume of space where a subject’s full-body can be tracked to a narrow region. On the software
side, two options are available for accessing the Kinect hardware: the opensource APIs OpenNI [19] and the
proprietary Microsoft SDK. The chosen approach was to utilize the Microsoft SDK, which offers better support
and functionality.

4.2 Sub-sampling

Given that the depth map is a two-dimensional grid, a simple procedure to obtain a uniform sub-sampling of

factor k is to store every kth pixel while iterating through its elements (see Figures 4.1 and 4.2).

4.3 Subject segmentation

The point cloud at this stage is a representation of the full scene in the field of view of the Kinect. Therefore,
beside the points belonging to the body surface of the subject, there are usually present a large number of points
associated with the floor, walls, and other objects, which are unnecessary for the motion capture and need to
be removed (see Figure 4.1). The chosen method to perform subject segmentation utilizes the information
provided by the Kinect SDK in the depth map, where each pixel is a structure with two fields, one storing the
depth in millimeters, and the other the player index. By knowing the player index of the subject, it is then
possible to select only his associated pixels. To determine the subject’s player index, the positions of all the
skeletons found by the Kinect tracking system are checked and the one that is closest to the subject is chosen.
Their relative distance, however, should be smaller than a threshold (set to 0.5 meters); this is to avoid the
body model being captured by another person in the field of view of the Kinect should the subject leave the
scene momentarily.

The above segmentation procedure fails entirely when the subject is farther than four meters from the
Kinect, and has some problems during occlusions. Therefore, in those situations, a different segmentation
algorithm is used. This method stems from the consideration that two consecutive frames will generally be
very similar to each other (assuming that the subject is not moving too quickly) and therefore the previous
skeleton position will be rather close to the current subject’s point cloud. Under this assumption, the points
that are within a certain range from the skeleton can be then selected and associated to the subject, while
all other points are discarded. The range should be chosen carefully; if it is allowed to be too large it would
cause many erroneous points to be assigned to the subject, and if set too small it would produce an incomplete
subject point cloud, possibly leading to tracking failure.

4.4 Initialization body model

As explained in Chapter 2, modelbased systems require the use of a model to perform motion capture. The
following sections present an explanation of how the body model is generated.

13

Figure 4.1: Raw point cloud as obtained by the Kinect sensor consisting of 70.000 points.

Figure 4.2: Sub-sampled point cloud by factor k = 2. This is accomplished by keeping every 2nd pixel while
iterating through the depth-map elements.

14

Figure 4.3: Skeleton model after initialization and segmented point cloud of the subject in the T-pose. During
the initialization phase, the link lengths and joint angles are computed by utilizing the body landmark positions
returned by the Kinect tracking system.

4.4.1 Skeleton model

As illustrated in Figure 3.2, the skeleton model has 15 links with lengths that need to be determined according
to the subject’s actual body size. The chosen method of measurement requires the subject to stand straight
in front of the Kinect sensor in the T-pose (see Figure 4.3) for a short time interval (see Appendix A for a
discussion of this procedure). Within this time frame, the body landmark positions are acquired from the Kinect
system and their relative distances are computed and averaged to obtain the link lengths. The links belonging
to the extremeties are also symmetrized. Afterward, the last acquired positions of the body landmarks are
utilized to compute the joint angles such that the skeleton model is in the same pose as the Kinect skeleton.
This is accomplished by computing the rotations about the x-axis and y-axis such that the positions of the
body landmarks, as returned by the Kinect tracking system, have only one non-zero component along the
z-axis when expressed in the local coordinate system of their parent joint. Let us call bm = [bmx , b

m
y , b

m
z], the

position of body landmark m, as returned by the Kinect. Then for m = 2, . . . , 16, the coordinates of each bm

are converted in the local coordinate system of joint ji, where i = Ξ(m), so that: bm 7→ b∗m = [b∗mx , b∗my , b∗mz].
The joint angles are then given by:

αi = − arctan2

b∗my√
(b∗mx)2 + (b∗mz)2

(4.1)

βi = arctan2
b∗mx
b∗mz

(4.2)

The functions arctan2 takes two arguments in order to determine the quadrant of the computed angles that
can be in the range (−π, π].

4.4.2 Body surface model

A common method utilized to model a body surface involves using simple geometric shapes such as cylinders,
spheres, and ellipsoids, which are then combined in a simplified representation of the subject’s body. The
chosen approach is of this kind, where the basic geometric shape is the elliptical cone frustum, parametrized by
five quantities: height h, base radii: rbx, rby, and top radii: rtx, rty. Each body part (i.e., upper arm, lower arm,
etc.) can be decomposed into an arbitrary number of these elements, which are then fitted to the segmented
point cloud to approximate the real shape of the subject.

In the utilized model, the extremities (arms and legs) are symmetrical around their links, therefore their
basic geometric elements only require three parameters to be fully determined: top and bottom radii, and

15

height. Moreover, continuity between elements is imposed, that is, two contiguous elliptical cone frustums must
have the same radii where they meet. This applies to elements within the same body part, and to elements
belonging to contiguous body parts, which further reduces the total numbers of parameters to be determined.
Once the number of basic elements is chosen, the link is split accordingly in equally long sub-segments. Then,
for each subsegment’s end points, a set of nearest neighbors in the point cloud is computed and their distances
averaged. These values are then assigned to the radii of the elliptical cone frustums (see Figure 4.4). A similar
procedure is used when generating the abdomen, trunk, and head, but given that these body parts are not
symmetric, the lateral radii also need to be determined. The trunk and abdomen are chosen to be equally
broad and of fixed radius, which is set to be equal to the length of the link connecting the center shoulder to
the left or right shoulder. The head width is set to 0.8 the radius just described.

4.5 Tracking algorithm

4.5.1 Matching

The first step of the ICP algorithm establishes correspondences between body model and point cloud. The
standard implementation of the ICP algorithm [23, 27] and many of its extensions to articulated bodies [24, 16,
17] match the body model to the destination point cloud. However, in this work, an inverse assignment has
been utilized; that is, the target points are matched to their nearest neighbors in the body model.

4.5.2 Minimization cost function and body model update

Once correspondences between body model and target point cloud have been established, the next step is to
find the rigid transformations that minimize the cost function (3.17) by using the Gauss-Newton algorithm. To
start the minimization process, a guess for the parameters vector is required, and a natural choice is to use the
solution found in the previous iteration, k0. In this implementation, only one step in the descent direction is
performed, where the step size is found by using a simple backtracking line search. The body model is then
updated to the new configuration k† just found. Matching and minimization are then repeated until the cost

function’s relative error, ∆E = E(k0)−E(k†)
E(k0) , is smaller than a fixed threshold (see Table C.3).

4.6 Tracking failure recovery

The AICP algorithm can sometimes undergo tracking failures which would require a reinitialization of the
system. To avoid this, a recovery routine has been implemented which makes use of the tracking information
provided by the Kinect. The algorithm outline is the following:

1. At each frame, acquire Kinect skeleton data. The skeleton data contains body landmark positions and
body landmark tracking status: tracked, inferred, not tracked.

2. If all body landmark have the status ’tracked’, then:

(a) Compute distances between each body landmark as returned by the Kinect and our system.

(b) If any of the distances are consistently (at least 30 consecutive frames) larger than a set threshold,
then re-position our skeleton according to the Kinect system.

This algorithm works under the reasonable assumption that the Kinect tracking algorithm is reliable when all
body parts are clearly visible.

4.7 Occlusions and self-occlusions handling

The AICP can become unstable when one or more body parts are largely occluded. To avoid tracking failures
in those situations, a routine has been implemented that disables the joints corresponding to the involved body
parts. This is accomplished by checking the cardinalities, lm, of each target set Tm and by comparing them
with their values at initialization time, l0m, when all the body parts were clearly visible. Whenever the condition
lm < l0m/K, where K is a user-defined parameter, is verified, the corresponding joint Γ(m) may be disabled,

16

F
ig

u
re

4
.4

:
E

xa
m

p
le

sh
o
w

in
g

th
e

p
ro

ce
ss

o
f

m
od

el
in

g
a

bo
d
y

pa
rt

.
In

th
is

ca
se

,
th

e
ri

gh
t

lo
w

er
a
rm

h
a
s

be
en

m
od

el
ed

by
jo

in
in

g
tw

o
ba

si
c

el
em

en
ts

.
It

s
co

rr
es

po
n

d
in

g
li

n
k

is
sp

li
t

in
tw

o
eq

u
a
ll

y
lo

n
g

su
b-

se
gm

en
ts

.
F

o
r

ea
ch

o
f

th
ei

r
en

d
po

in
ts

:
P

1
,

P
2
,

a
n

d
P

3
,

a
se

t
o
f

n
ea

re
st

n
ei

gh
bo

rs
in

th
e

po
in

t
cl

o
u

d
is

co
m

p
u

te
d

a
n

d
th

ei
r

d
is

ta
n

ce
s

a
ve

ra
ge

d
.

T
h
es

e
va

lu
es

a
re

th
en

a
ss

ig
n

ed
to

th
e

ra
d
ii

o
f

th
e

el
li

p
ti

ca
l

co
n

e
fr

u
st

u
m

s.

17

depending on whether the remaining body parts in its child branch (see Figure 3.2) are also occluded. For
example, if B7 (left lower arm) is occluded, joint j9 in the left elbow will be disabled. On the other hand, if
B6 (left upper arm) is occluded, j8 will be disabled only if B7 is also occluded. This is because the tracking
algorithm can determine the correct configuration of a joint even when its linked body part is entirely hidden
as long as the visible body parts contain sufficient information.

18

5 Results

The standard procedure to test a newly developed motion capture algorithm is to compare its predicted
movements against a ground truth, usually obtained by using one of the motion capture systems described
in Chapter 2. In this way, it is possible to accurately measure the deviations from the correct positions.
Unfortunately, in this work, access to such a system was not available, and therefore the obtained results are
rather qualitative. In the following, some of the most common situations where the Kinect tracking system
encounters problems are presented, showing, side-by-side, how the body landmarks were detected by the AICP
and the Kinect systems. Each figure is followed by a plot showing the normalized residual error per point
(NREP) obtained while performing the represented pose a few times. This quantity is computed at the end of
the optimization process when the body model has been aligned with the point cloud, and it is the residual of
the cost function divided by the number of points in the point cloud and normalized by subtracting a base
line value. The NREP does not give a direct measure of the accuracy of the motion capture, but provides
information about how well the point cloud is covered by the body model. When the motion capture is working
poorly, the offset between body model and point cloud will grow larger, and therefore the NREP is expected to
increase accordingly.

Figure 5.1 shows the residual errors per point (REP) before normalization in the case of a subject standing
still in the T-pose. This pose is optimal in the way that all body parts are clearly visible and well separated
from each other, and therefore it is considered as baseline for the measurements to follow. Each of the cases
presented begins with the subject holding this pose for several seconds. Both systems present an offset which is
expected given that the body model surface only approximates the subject’s real shape. The Kinect offset
is larger, which is also expected given that its tracking system does not perform body model - point cloud
matching. To make the results more readable and easier to compare, the utilized unit of measurement is taken
to be the average standard deviation of the REP relative to the baseline phase of various datasets collected in
this work, which is referred to as ∆ = 2.4 · 10−2 mm.

0 200 400 600 800 1000 1200 1400 1600 1800
0

0.5

1

1.5

2

Frame

R
e

s
id

u
a

l
e

rr
o

r
p

e
r

p
o

in
t

(R
E

P
)

[
m

m
] REP−Kinect (µ ± σ) = 1.2 ± 0.022

REP−AICP (µ ± σ) = 0.81 ± 0.016

REP baseline: T−pose

REP Kinect
REP AICP
REP Kinect mean
REP AICP mean

Figure 5.1: Residual error per point relative to subject in the T-pose.

5.1 Self-occlusions

Figures 5.2 to 5.8 illustrate how the AICP algorithm and the Kinect tracking system responded to various
situations involving self-occlusion.

19

Figure 5.2: Example of a self-occlusion involving one arm and one leg. Top panel: the left side shows the
body model in the pose determined by the AICP, while the right side shows the body model in the Kinect pose.
Bottom panel: AICP skeleton and Kinect skeleton superimposed on the depth map, on the left and right side,
respectively.

0 500 1000 1500 2000 2500 3000 3500 4000
−20

−10

0

10

20

30

40

50

60

70

Frame

N
o

rm
a

liz
e

d
 r

e
s
id

u
a

l
e

rr
o

r
p

e
r

p
o

in
t

(N
R

E
P

)
[

∆
]

NREP−Kinect (µ ± σ) = 24 ± 11

NREP−AICP (µ ± σ) = 4.3 ± 1.5

NREP self−occlusion: arm−leg

NREP Kinect
NREP AICP
NREP Kinect mean
NREP AICP mean

Figure 5.3: NREP during self-occlusions involving one arm and one leg. Six neutral and motion phases are
alternated. The neutral phase corresponds to the subject in the T-pose. The mean values shown are relative to
the motion phase.

20

Figure 5.4: Example of a self-occlusion involving the legs. Top panel: the left side shows the body model in the
pose determined by the AICP, while the right side shows the body model in the Kinect pose. Bottom panel:
AICP skeleton and Kinect skeleton superimposed on the depth map, on the left and right side, respectively.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−20

0

20

40

60

80

Frame

N
o
rm

a
liz

e
d
 r

e
s
id

u
a
l
e
rr

o
r

p
e
r

p
o
in

t
(N

R
E

P
)

[
∆

]

NREP−Kinect (µ ± σ) = 18 ± 15

NREP−AICP (µ ± σ) = 0.1 ± 1.8

NREP self−occlusion: leg−leg

NREP Kinect
NREP AICP
NREP Kinect mean
NREP AICP mean

Figure 5.5: NREP during self-occlusion involving the legs. Six neutral and motion phases are alternated. The
neutral phase corresponds to the subject in the T-pose. The mean values shown are relative to the motion phase.

21

Figure 5.6: Example of a self-occlusion involving the arms. Top panel: the left side shows the body model in the
pose determined by the AICP, while the right side shows the body model in the Kinect pose. Bottom panel:
AICP skeleton and Kinect skeleton superimposed on the depth map, on the left and right side, respectively.

0 1000 2000 3000 4000 5000 6000
−20

−10

0

10

20

30

40

Frame

N
o

rm
a

liz
e

d
 r

e
s
id

u
a

l
e

rr
o

r
p

e
r

p
o

in
t

(N
R

E
P

)
[

∆
]

NREP−Kinect (µ ± σ) = 8 ± 5.1

NREP−AICP (µ ± σ) = 2.1 ± 1.6

NREP self−occlusion: arm−arm

NREP Kinect
NREP AICP
NREP Kinect mean
NREP AICP mean

Figure 5.7: NREP during self-occlusion involving arms. Six neutral and motion phases are alternated. The
neutral phase corresponds to the subject in the T-pose. The mean values shown are relative to the motion phase.

22

Figure 5.8: Example of a self-occlusion involving left arm and head. Top panel: the left side shows the body
model in the pose determined by the AICP, while the right side shows the body model in the Kinect pose.
Bottom panel: AICP skeleton and Kinect skeleton superimposed on the depth map, on the left and right side,
respectively.

0 500 1000 1500 2000 2500 3000 3500 4000 4500
−20

−10

0

10

20

30

40

50

Frame

N
o

rm
a

liz
e

d
 r

e
s
id

u
a

l
e

rr
o

r
p

e
r

p
o

in
t

(N
R

E
P

)
[

∆
]

NREP−Kinect (µ ± σ) = 18 ± 8.6

NREP−AICP (µ ± σ) = −3.7 ± 1.9

NREP self−occlusion: arm−head

NREP Kinect

NREP AICP

NREP Kinect mean

NREP AICP mean

Figure 5.9: NREP during self-occlusion involving left arm and head. Five neutral and motion phases are
alternated. The neutral phase corresponds to the subject in the T-pose. The mean values shown are relative to
the motion phase.

23

5.2 Less common poses

There are certain poses that the Kinect tracking system fails to identify correctly. This is likely due to the fact
that its training set did not contain any similar poses. Figures 5.10 to 5.15 show some examples of this problem.

Figure 5.10: Example of a less common pose. Top panel: the left side shows the body model in the pose
determined by the AICP, while the right side shows the body model in the Kinect pose. Bottom panel: AICP
skeleton and Kinect skeleton superimposed on the depth map, on the left and right side, respectively.

0 1000 2000 3000 4000 5000
−20

0

20

40

60

80

Frame

N
o

rm
a

liz
e

d
 r

e
s
id

u
a

l
e

rr
o

r
p

e
r

p
o

in
t

(N
R

E
P

)
[

∆
]

NREP−Kinect (µ ± σ) = 31 ± 13

NREP−AICP (µ ± σ) = −1.6 ± 1.7

NREP less common pose 1

NREP Kinect

NREP AICP

NREP Kinect mean

NREP AICP mean

Figure 5.11: NREP while performing a less common pose. Five neutral and motion phases are alternated. The
neutral phase corresponds to the subject in the T-pose. The mean values shown are relative to the motion phase.

24

Figure 5.12: Example of a less common pose. Top panel: the left side shows the body model in the pose
determined by the AICP, while the right side shows the body model in the Kinect pose. Bottom panel: AICP
skeleton and Kinect skeleton superimposed on the depth map, on the left and right side, respectively.

0 1000 2000 3000 4000 5000 6000
−20

0

20

40

60

80

100

Frame

N
o

rm
a

liz
e

d
 r

e
s
id

u
a

l
e

rr
o

r
p

e
r

p
o

in
t

(N
R

E
P

)
[

∆
]

NREP−Kinect (µ ± σ) = 42 ± 18

NREP−AICP (µ ± σ) = −2.3 ± 1.5

NREP less common pose 2

 NREP Kinect

NREP AICP

NREP Kinect mean

NREP AICP mean

Figure 5.13: NREP while performing a less common pose. Five neutral and motion phases are alternated. The
neutral phase corresponds to the subject in the T-pose. The mean values shown are relative to the motion phase.

25

Figure 5.14: Example of a less common pose. Top panel: the left side shows the body model in the pose
determined by the AICP, while the right side shows the body model in the Kinect pose. Bottom panel: AICP
skeleton and Kinect skeleton superimposed on the depth map, on the left and right side, respectively.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−20

0

20

40

60

80

100

120

140

160

Frame

N
o
rm

a
liz

e
d
 r

e
s
id

u
a
l
e
rr

o
r

p
e
r

p
o
in

t
(N

R
E

P
)

[
∆

]

NREP−Kinect (µ ± σ) = 53 ± 36

NREP−AICP (µ ± σ) = 2.2 ± 1.5

NREP less common pose 3

NREP Kinect
NREP AICP
NREP Kinect mean
NREP AICP mean

Figure 5.15: NREP while performing a less common pose. Five neutral and motion phases are alternated. The
neutral phase corresponds to the subject in the T-pose. The mean values shown are relative to the motion phase.

26

5.3 Free motions

Figure 5.16 presents the NREP relative to a simple free motion sequence: subject facing the Kinect sensor
while performing slow movements not involving self-occlusions. Figure 5.17 shows the case of an unconstrained
motion sequence involving self-occlusions, quick movements, walking, turning away from the sensor, squatting,
bending the back, etc. In Figure 5.18, the average NREP (ANREP) relative to 30 unconstrained motion
sequences lasting one minute each is presented (see Table C.1 for the numerical results).

0 500 1000 1500 2000 2500 3000
−30

−20

−10

0

10

20

30

40

50

Frame

N
o
rm

a
liz

e
d
 r

e
s
id

u
a
l
e
rr

o
r

p
e
r

p
o
in

t
(N

R
E

P
)

[
∆

]

NREP−Kinect (µ ± σ) = −3.9 ± 5.2

NREP−AICP (µ ± σ) = −2.1 ± 2

NREP simple motion

NREP Kinect
NREP AICP
NREP Kinect mean
NREP AICP mean

Figure 5.16: NREP while performing a simple motion: slow movements, no self-occlusions, always facing the
sensor.

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

0

50

100

150

200

Frame

N
o

rm
a

liz
e

d
 r

e
s
id

u
a

l
e

rr
o

r
p

e
r

p
o

in
t

(N
R

E
P

)
[

∆
]

NREP−Kinect (µ ± σ) = 20 ± 24

NREP−AICP (µ ± σ) = 3 ± 6

NREP unconstrained motion

NREP Kinect
NREP AICP
NREP Kinect mean
NREP AICP mean

Figure 5.17: NREP while performing an unconstrained motion: normal or quick movements, self-occlusions,
squatting, turning away from the sensor, etc.

27

0 5 10 15 20 25 30

−20

0

20

40

60

80

100

Run

A
v
e

ra
g
e
 n

o
rm

a
liz

e
d
 r

e
s
id

u
a
l
e
rr

o
r

p
e
r

p
o

in
t

(A
N

R
E

P
)

[∆
]

ANREP−Kinect (µ) = 25

ANREP−AICP (µ) = 3.6

ANREP unconstrained motions − 30 runs of 1 minute

ANREP Kinect
ANREP AICP
ANREP Kinect mean
ANREP AICP mean

Figure 5.18: ANREP unconstrained motion 30 runs. Average NREP relative to 30 unconstrained motion
sequences lasting one minute each.

5.4 Occlusions, extended range, and rear facing

Figure 5.19 illustrates how the AICP algorithm and the Kinect tracking system respond when presented with
occlusions covering a large part of the body surface. In Figure 5.20, the ability of the AICP system to work in
an extended range (distance > 4 m) is demonstrated. Figure 5.21 presents an additional problem associated
with the Kinect tracking system which cannot distinguish between front and back of the subject.

Figure 5.19: Example of an occlusion caused by a book held in front of the sensor. Top panel: the left side
shows the body model in the pose determined by the AICP, while the right side shows the body model in the
Kinect pose. Bottom panel: AICP skeleton and Kinect skeleton superimposed on the depth map, on the left and
right side, respectively.

Figure 5.20: Example of subject in the extended region (distance > 4 meters). Top panel: the left side shows
the body model in the pose determined by the AICP, while the right side shows the body model in the Kinect
pose. Bottom panel: AICP skeleton and Kinect skeleton superimposed on the depth map, on the left and right
side, respectively.

29

Figure 5.21: Example of subject turned away from the sensor. The Kinect system cannot differentiate between
front and back of the subject. Top panel: the left side shows the body model in the pose determined by the AICP,
while the right side shows the body model in the Kinect pose. Bottom panel: AICP skeleton and Kinect skeleton
superimposed on the depth map, on the left and right side, respectively.

30

5.5 Known problems of the AICP

There are certain situations that can cause tracking failures of the AICP system such as fast motions, closely
positioned body parts, and large occlusions. Fast motions and closely positioned body parts are problematic for
the same reason; as previously explained, the AICP works by matching the point cloud with the body model by
finding the pairs of closest points. When body parts get too close or the subject’s motions become too quick, it
becomes more likely that wrong correspondences are established. Figures 5.22, 5.23, and 5.24 show two typical
situations presenting this problem.

Larger occlusions can cause problems for a different reason; the unavoidable noise and discrepancy between
body model and real shape of the subject are averaged out when the subject is clearly visible or undergoing
small occlusions. However, during large occlusions only few points are visible and the AICP minimization
process can produce erratic behaviors (see Figure 5.25). Figure 5.26 shows an example of this situation.

Figure 5.22: Example of AICP tracking failure due to fast motion and close body parts. This picture shows the
starting situation: the left arm is in contact with the chest. Top panel: the left side shows the body model in the
pose determined by the AICP, while the right side shows the body model in the Kinect pose. Bottom panel:
AICP skeleton and Kinect skeleton superimposed on the depth map, on the left and right side, respectively.

31

Figure 5.23: Example of AICP tracking failure due to fast motion and close body parts. The subject quickly
moved his arm away from the chest and the matching phase associated the points belonging to the arm to the
body model abdomen, thus resulting in a wrongly estimated pose. Top panel: the left side shows the body model
in the pose determined by the AICP, while the right side shows the body model in the Kinect pose. Bottom panel:
AICP skeleton and Kinect skeleton superimposed on the depth map, on the left and right side, respectively.

Figure 5.24: Example of AICP tracking failure due to body parts too close to each other. In this case the subject
was walking sideways with his arms against the body, when eventually the right arm was absorbed by the trunk.
Top panel: the left side shows the body model in the pose determined by the AICP, while the right side shows the
body model in the Kinect pose. Bottom panel: AICP skeleton and Kinect skeleton superimposed on the depth
map, on the left and right side, respectively.

32

Figure 5.25: Illustration of instability due to large occlusion. The joint tries to minimize the relative distances
between the points and its link. The left panel shows the joint in the optimal configuration which minimizes the
link distance from the point cloud. The right panel shows how the joint repositions the link when a large subset
of points are hidden (shown in lighter color) by an occlusion.

Figure 5.26: Example of ICP tracking failure due to large occlusions. The subject is turned away from the
sensor, causing some body parts to be severely occluded. The few points visible produce erratic behavior of the
body model. Top panel: the left side shows the body model in the pose determined by the AICP, while the right
side shows the body model in the Kinect pose. Bottom panel: AICP skeleton and Kinect skeleton superimposed
on the depth map, on the left and right side, respectively.

33

6 Discussion

In this work, a motion capture system to be used in combination with the Kinect sensor has been developed and
implemented. The task was rather demanding due to the strict requirements of performing real-time tracking
while maintaining a good level of accuracy and allowing for motions where occlusions and self-occlusions are
frequent. Other systems available on the market, such as the proprietary Microsoft Kinect algorithm, can only
meet some of these requirements and only in specific conditions, despite the considerable resources invested in
research and development. The developed system works by establishing and minimizing dense correspondences
between point clouds acquired from the Kinect and a body model previously generated. It only makes use
of low-level information to perform motion capture, with the exceptions of the initialization phase and when
recovering from tracking failures, during which it acquires the body landmark positions from the Kinect tracking
algorithm.

The core routine of the implemented system is an extension to articulated bodies of the ICP algorithm,
which iteratively revises a group of rigid transformations in order to minimize the residual distance between the
body model and the point cloud. However, the idea of using the ICP algorithm for motion tracking is not new;
in fact, some papers have already been published discussing various implementations of it [24, 16, 25]. But
whereas these authors optimize the cost function one joint at the time in a hierarchical fashion, in this work it
is minimized over the full configuration space at once. Furthermore, an inverted matching procedure [17] is
utilized, that is, correspondences are established from the point cloud to the body model. Intuitively this can
be seen as having the point cloud pulling the body model instead of having the body model chasing the point
cloud. During occlusions and self-occlusions, matching the body model with the point cloud could result in
several erroneous correspondences, because all the points of the body model need to be matched, even though
their corresponding body part in the point cloud is partially or entirely hidden. This could be avoided, to a
limited extent, by introducing a distance threshold for the matched pairs (i.e., discarding pairs with relative
distances larger than a set value), but at the price of possibly losing valuable correspondences in situations
involving quick motions. The inverted matching does not incur these problems because in this case, if a body
part in the point cloud were occluded, the corresponding part in the body model would simply not be active.

In the previous chapter, the NREP produced by the AICP and the Kinect systems were compared while
performing various motion sequences. Beside producing a lower mean NREP, thus providing a better alignment
between body model and point cloud, the AICP was also more stable than the Kinect algorithm, as shown by
its significantly smaller NREP standard deviation in most of the analyzed situations. The main assumption
made when using an ICP algorithm is that the point clouds to be matched are almost aligned, otherwise
the algorithm could get stuck in a local optimum. In the context of this work, that means assuming that
the movements of the subject are not excessively fast; if this condition is not met, the matching phase could
produce several erroneous correspondences and thereby result in tracking failures. This is especially true with
fast motions involving body parts that are close to each other (see Figures 5.22, 5.23, and 5.24). A possible
solution to these problems could be to utilize markers to help the matching algorithm. For example, by wearing
colored wrist bands it could be possible to avoid the situations shown in the previous chapter, where the lower
arm section of the point cloud was erroneously matched with the body model trunk.

The processing speed of the system is affected by a few factors, the most obvious being the hardware
running the program. The sizes of body model and point cloud play another important role and that is why a
sub-sampling routine was incorporated in the pipeline (see Table C.2). It is important to point out that a low
frame rate is not only unpleasant to view on the screen but it also makes the system much more likely to fail;
given that the previous configuration is the initial guess to calculate the current one, if too many frames are
skipped, the body model could result poorly aligned with the current frame, thus causing the AICP to get
stuck in a local minimum.

The AICP can become unstable when one or more body parts are largely occluded (see Figures 5.25 and
5.26). In those situations, the noise in the point cloud and the unavoidable discrepancy between the body
model and the real shape of the subject, in conjunction with the fact that the occluded parts are represented
by very few points, can result in erratic motions of the skeleton. For this reason, a routine to disable the joints
associated with severely occluded body parts was implemented. Anyhow, the AICP system could be easily
extended to work with multiple Kinects, therefore substantially reducing the occlusions problem.

35

7 Conclusions and future work

The goal of this work was to develop a motion capture algorithm that could obviate some of the inherent
limitations of the Kinect tracking system while providing accurate and real-time tracking. As shown in the
previous chapter, the developed system proves to be more robust in dealing with occlusions and self-occlusions
by producing an NREP approximately seven times smaller on average relative to a set of 30 unconstrained
motions, it can track a wider range of poses, and it can work in an extended range. This makes it a potentially
better solution for performing motion capture in an assembly line setting, where self-occlusions commonly
occur while performing manual work and occlusions are sometimes unavoidable due to the presence of other
workers or robotic tools.

The segmentation of the subject is a crucial phase of the overall tracking algorithm which needs careful
attention, especially when using an inverted matching procedure. The current routines could be extended to use
more information in the segmentation process, such as color intensity or markers. Another option could be to
integrate or substitute them with more advanced machine learning techniques for human detection such as the
one available with OpenCV. The main bottleneck of this pipeline is the nearest neighbor search in the AICP
algorithm. The current implementation utilizes the ANN library developed by Arya and Mount [26], which is
highly optimized but runs on a single core. A substantial improvement in tracking speed could be achieved
by developing a GPGPU implementation to parallelize the search. The Jacobian used in the Gauss-Newton
algorithm is computed numerically by means of forward finite difference. However, it could be possible to
compute it analytically or by automatic differentiation, thus obtaining exact derivatives in shorter time. The
Kinect for Windows SDK supports up to four simultaneous Kinects for skeletal tracking. However, the tracking
accuracy is still bound by the accuracy of the best positioned Kinect (relative to the subject), which, as has
been shown, can be rather poor in the event of occlusions or self-occlusions even when the user is facing the
sensor. The AICP system, on the other hand, could combine the point clouds acquired from each Kinect to
obtain a more complete view of the subject, and therefore providing more accurate and stable tracking.

37

List of Figures

1.1 Intelligently moving manikins . 2
3.1 Local coordinate systems . 6
3.2 Tree structure of the skeleton model . 7
3.3 Step 1 of AICP . 10
3.4 Step 2 of AICP . 10
3.5 Step 3 of AICP . 11
3.6 Final result of AICP . 11
4.1 Example of raw point cloud . 14
4.2 Example of raw point cloud after sub-sampling . 14
4.3 Skeleton model after initialization . 15
4.4 Example of body surface modeling . 17
5.1 REP base line case . 19
5.2 Results: example of a self-occlusion arm-leg . 20
5.3 NREP self-occlusion arm-leg . 20
5.4 Results: example of a self-occlusion leg-leg . 21
5.5 NREP self-occlusion leg-leg . 21
5.6 Results: example of a self-occlusion arm-arm . 22
5.7 NREP self-occlusion arm-arm . 22
5.8 Results: example of a self-occlusion arm-head . 23
5.9 NREP self-occlusion arm-head . 23
5.10 Results: example of a less common pose 1 . 24
5.11 NREP less common pose 1 . 24
5.12 Results: example of a less common pose 2 . 25
5.13 NREP less common pose 2 . 25
5.14 Results: example of a less common pose 3 . 26
5.15 NREP less common pose 3 . 26
5.16 NREP simple motion . 27
5.17 NREP involved motion . 27
5.18 ANREP 30 uncostrained motion sequences . 28
5.19 Results: example of occlusion . 29
5.20 Results: example of tracking failure in extended range . 29
5.21 Results: example of tracking failure due to rear facing subject 30
5.22 Results: example of AICP tracking failure due to quick motion part 1 31
5.23 Results: example of AICP tracking failure due to quick motion part 2 32
5.24 Results: example of ICP tracking failure due to body parts too close 32
5.25 Illustration of instability due to large occlusions . 33
5.26 Results: example of AICP tracking failure due to large occlusions 33
A.1 Average bone length - T-pose . 46
A.2 Average bone length - Slow periodic motion . 47
A.3 Average bone length - Unconstrained motion . 47

40

List of Tables

3.1 Correspondences between links and body parts . 8
A.1 Table average bone length for 5 runs - T-pose . 46
A.2 Table average bone length for 5 runs - Slow motion . 48
A.3 Table average bone length for 5 runs - Unconstrained motion 48
C.1 Results of 30 motion sequences . 52
C.2 Sub-sampling factors . 53
C.3 Relative residual error threshold . 53

42

References

[1] A. J. D. et al. “Markerless Motion Capture of Complex Full-Body Movement for Character Animation”.
Proceedings of the Eurographics Workshop on Animation and Simulation. Springer-Verlag LNC, 2001.

[2] A. S. et al. Motion Capture process, techniques and applications. IJRITCC 1.4 (2013). issn: 2321 – 8169.
[3] K. Yamane and J. Hodgins. “Simultaneous Tracking and Balancing of Humanoid Robots for Imitating

Human Motion Capture Data”. Proceedings of IEEE/RSJ International Conference on Intelligent Robots
and Systems. 2009.

[4] S. C. et al. “Teleoperation of a humanoid robot using full-body motion capture, example movements, and
machine learning”. Proceedings of Australasian Conference on Robotics and Automation: 3-5 Dec 2012,
Victoria University of Wellington, New Zealand. 2012.

[5] S. Oh et al. “A Large-scale Benchmark Dataset for Event Recognition in Surveillance Video”. Proceedings
of the 2011 IEEE Conference on Computer Vision and Pattern Recognition. CVPR ’11. Washington, DC,
USA: IEEE Computer Society, 2011, pp. 3153–3160. isbn: 978-1-4577-0394-2. doi: 10.1109/CVPR.2011.
5995586. url: http://dx.doi.org/10.1109/CVPR.2011.5995586.

[6] J. C. P. C. et al. A Virtual Reality Dance Training System Using Motion Capture Technology. IEEE Trans-
actions on Learning Technologies 4.2 (2011), 187–195. issn: 1939-1382. doi: http://doi.ieeecomputersociety.
org/10.1109/TLT.2010.27.

[7] Phase space motion capture. url: http://www.phasespace.com/impulse_motion_capture.html.
[8] D. Roetenberg, H. Luinge, and P. Slycke. Xsens MVN: full 6DOF human motion tracking using miniature

inertial sensors. Xsens Motion Technologies BV, Tech. Rep (2009).
[9] Exo-skelelton motion capture. url: http://www.metamotion.com/gypsy/gypsy-motion-capture-

system-mocap.htm.
[10] L. Zhang, B. Curless, and S. M. Seitz. “Rapid Shape Acquisition Using Color Structured Light and

Multi-pass Dynamic Programming”. The 1st IEEE International Symposium on 3D Data Processing,
Visualization, and Transmission. Padova, Italy, June 2002, pp. 24–36.

[11] J. S. et al. Real-Time Human Pose Recognition in Parts from Single Depth Images. IJACT 4.11 (2012).
doi: 10.4156/ijact.vol4.issue11.23.

[12] L. Breiman. Random Forests. English. Machine Learning 45.1 (2001), 5–32. issn: 0885-6125. doi:
10.1023/A:1010933404324. url: http://dx.doi.org/10.1023/A:1010933404324.

[13] C. S. et al. Skeleton Tracking using Kinect Sensor and Displaying in 3D Virtual Scene. IJACT 4.11
(2012). doi: 10.4156/ijact.vol4.issue11.23.

[14] S. Knoop, S. Vacek, and R. Dillmann. “Sensor fusion for 3D human body tracking with an articulated
3D body model”. Robotics and Automation, 2006. ICRA 2006. Proceedings 2006 IEEE International
Conference on. May 2006, pp. 1686–1691. doi: 10.1109/ROBOT.2006.1641949.

[15] L. Zhang et al. “Real-time human motion tracking using multiple depth cameras”. Intelligent Robots
and Systems (IROS), 2012 IEEE/RSJ International Conference on. Oct. 2012, pp. 2389–2395. doi:
10.1109/IROS.2012.6385968.

[16] S. Pellegrini, K. Schindler, and D. Nardi. “A Generalisation of the ICP Algorithm for Articulated Bodies.”
BMVC. Citeseer. 2008, pp. 1–10.

[17] D. Droeschel and S. Behnke. “3D Body Pose Estimation Using an Adaptive Person Model for Articulated
ICP”. Intelligent Robotics and Applications. Ed. by S. Jeschke, H. Liu, and D. Schilberg. Vol. 7102. Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 2011, pp. 157–167. isbn: 978-3-642-25488-8. doi:
10.1007/978-3-642-25489-5_16. url: http://dx.doi.org/10.1007/978-3-642-25489-5_16.

[18] L. V. Calderita et al. Model-Based Reinforcement of Kinect Depth Data for Human Motion Capture
Applications. Sensors 13.7 (2013), 8835–8855. issn: 1424-8220. doi: 10.3390/s130708835. url: http:
//www.mdpi.com/1424-8220/13/7/8835.

[19] OpenNI API. 2014. url: http://structure.io/openni.
[20] Y. Zhu and K. Fujimura. “Bayesian 3D Human Body Pose Tracking from Depth Image Sequences”.

Proceedings of the 9th Asian Conference on Computer Vision - Volume Part II. ACCV’09. Xi’an, China:
Springer-Verlag, 2010, pp. 267–278. isbn: 3-642-12303-1, 978-3-642-12303-0. doi: 10.1007/978-3-642-
12304-7_26. url: http://dx.doi.org/10.1007/978-3-642-12304-7_26.

[21] L. A. Schwarz et al. Human Skeleton Tracking from Depth Data Using Geodesic Distances and Optical Flow.
Image Vision Comput. 30.3 (Mar. 2012), 217–226. issn: 0262-8856. doi: 10.1016/j.imavis.2011.12.001.
url: http://dx.doi.org/10.1016/j.imavis.2011.12.001.

44

http://dx.doi.org/10.1109/CVPR.2011.5995586
http://dx.doi.org/10.1109/CVPR.2011.5995586
http://dx.doi.org/10.1109/CVPR.2011.5995586
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/TLT.2010.27
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/TLT.2010.27
http://www.phasespace.com/impulse_motion_capture.html
http://www.metamotion.com/gypsy/gypsy-motion-capture-system-mocap.htm
http://www.metamotion.com/gypsy/gypsy-motion-capture-system-mocap.htm
http://dx.doi.org/10.4156/ijact.vol4.issue 11.23
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.4156/ijact.vol4.issue 11.23
http://dx.doi.org/10.1109/ROBOT.2006.1641949
http://dx.doi.org/10.1109/IROS.2012.6385968
http://dx.doi.org/10.1007/978-3-642-25489-5_16
http://dx.doi.org/10.1007/978-3-642-25489-5_16
http://dx.doi.org/10.3390/s130708835
http://www.mdpi.com/1424-8220/13/7/8835
http://www.mdpi.com/1424-8220/13/7/8835
http://structure.io/openni
http://dx.doi.org/10.1007/978-3-642-12304-7_26
http://dx.doi.org/10.1007/978-3-642-12304-7_26
http://dx.doi.org/10.1007/978-3-642-12304-7_26
http://dx.doi.org/10.1016/j.imavis.2011.12.001
http://dx.doi.org/10.1016/j.imavis.2011.12.001

[22] T. B. Jadran Lenarcic and M. M. Stanisic. Robot Mechanisms. Springer, 2012. isbn: 978-9400745216.
[23] P. Besl and N. D. McKay. A method for registration of 3-D shapes. Pattern Analysis and Machine

Intelligence, IEEE Transactions on 14.2 (Feb. 1992), 239–256. issn: 0162-8828. doi: 10.1109/34.121791.
[24] D. Moschini and A. Fusiello. “Tracking Human Motion with Multiple Cameras Using an Articulated

Model”. Computer Vision/Computer Graphics CollaborationTechniques. Ed. by A. Gagalowicz and W.
Philips. Vol. 5496. Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2009, pp. 1–12. isbn:
978-3-642-01810-7. doi: 10.1007/978-3-642-01811-4_1. url: http://dx.doi.org/10.1007/978-3-
642-01811-4_1.

[25] S. Corazza et al. Markerless Motion Capture through Visual Hull, Articulated ICP and Subject Specific
Model Generation. English. International Journal of Computer Vision 87.1-2 (2010), 156–169. issn: 0920-
5691. doi: 10.1007/s11263-009-0284-3. url: http://dx.doi.org/10.1007/s11263-009-0284-3.

[26] Approximate Nearest Neighbor Searching. 2010. url: http://www.cs.umd.edu/~mount/ANN/.
[27] S. Rusinkiewicz and M. Levoy. “Efficient variants of the ICP algorithm”. 3-D Digital Imaging and Modeling,

2001. Proceedings. Third International Conference on. 2001, pp. 145–152. doi: 10.1109/IM.2001.924423.

45

http://dx.doi.org/10.1109/34.121791
http://dx.doi.org/10.1007/978-3-642-01811-4_1
http://dx.doi.org/10.1007/978-3-642-01811-4_1
http://dx.doi.org/10.1007/978-3-642-01811-4_1
http://dx.doi.org/10.1007/s11263-009-0284-3
http://dx.doi.org/10.1007/s11263-009-0284-3
http://www.cs.umd.edu/~mount/ANN/
http://dx.doi.org/10.1109/IM.2001.924423

Appendices

46

A Bone length

The Kinect tracking system does not set any constraints on bone lengths, which can therefore largely fluctuate
from frame to frame, depending on the particular motion the subject is performing. This could present a
problem, given that the initialization phase of the AICP system relies on the Kinect algorithm to determine the
body proportions of the body model. For this reason, a small study was undertaken to understand what poses
or motions are best suited for acquiring reliable bone length data. In the following, the results accounting for
three different cases are presented: subject standing in the T-pose (see Figure A.1), subject facing the Kinect
while performing a slow periodic motion which involved waving his arms and squatting (see Figure A.2), and
subject performing unconstrained movements (see Figure A.3). Instead of studying individually each one of the
fifteen links, the time evolution of their average (average bone length, ABL) is considered.

The T-pose does not involve motion, therefore its corresponding average standard deviation σN , is taken as
the noise level of the Kinect system (see Table A.1). As Figures A.1), A.2), and A.3), and Tables A.1, A.2, and
A.3 illustrate, the final mean values of the ABL are compatible with each other, but the slow and unconstrained
motions running averages take longer to settle about their mean values within the noise level. Therefore, it
appears preferable to initialize the skeleton model by standing in the T-pose.

0 500 1000 1500 2000 2500

258

260

262

264

266

268

Frames

A
v
e

ra
g
e
 b

o
n
e
 l
e
n
g
th

 (
A

B
L
)

[m
m

]

ABL (µ ± σ) = 262.31 ± 0.74

ABL: T−pose

ABL

ABL running average

ABL average

ABL average ± σ
N

Figure A.1: Average bone length for subject standing in the T-pose.

T-Pose
Run Mean[mm] Std[mm]

1 263.4 0.8
2 263.8 1.0
3 265.1 0.7
4 264.9 1.2
5 264.2 0.6

Average 264.3 0.9

Table A.1: Table reporting ABL mean and standard deviation relative to T-pose. Values obtained performing
the pose for one minute each run.

48

0 500 1000 1500 2000 2500
240

245

250

255

260

265

270

275

280

Frames

A
v
e
ra

g
e
 b

o
n
e
 l
e
n
g
th

 (
A

B
L
)

[m
m

]

ABL (µ ± σ) = 259.87 ± 6.46

ABL: slow periodic motion

ABL

ABL running average

ABL average

ABL average ± σ
N

Figure A.2: Average bone length during slow periodic motion. In this case the subject is performing a periodic
and slow motion involving waving his arms and squatting.

0 500 1000 1500 2000

220

230

240

250

260

270

280

Frames

A
v
e
ra

g
e
 b

o
n
e
 l
e
n
g
th

 (
A

B
L
)

[m
m

]

ABL (µ ± σ) = 261.08 ± 6.00

ABL: unconstrained motion

ABL

ABL running average

ABL average

ABL average ± σ
N

Figure A.3: Average bone length during unconstrained motion.

49

Slow motion
Run Mean[mm] Std[mm]

1 261.2 9.3
2 260.5 9.2
3 259.4 10.7
4 262.0 9.0
5 260.3 10.1

Average 260.7 9.6

Table A.2: Table reporting ABL mean and standard deviation relative to slow motion. Values obtained
performing the motion for one minute each run.

Unconstrained motion
Run Mean[mm] Std[mm]

1 262.5 6.8
2 263.4 4.8
3 264.3 4.4
4 261.5 6.2
5 263.8 5.1

Average 263.1 5.5

Table A.3: Table reporting ABL mean and standard deviation relative to unconstrained motion. Values
obtained performing the motion for one minute each run.

B Gauss-Newton algorithm

A common method used to solve non-linear least squares problems is the Gauss-Newton algorithm, which will
be presented in the following. Let us consider the observation pairs S = {(x1, y1), . . . , (xN , yN)} and a model
curve f which is parametrized by k = [k1, . . . , km]. Then the objective function is defined:

E(k) =
1

2

N∑
i=1

[yi − f(xi, k)]2 (B.1)

By setting ri(k) = yi − f(xi, k), the previous expression can be rewritten as:

E(k) =
1

2

N∑
i=1

ri(k)2 =
1

2
r(k)T r(k) where rT = [r1, . . . , rN] (B.2)

The purpose of the G-N algorithm is to find the value of k such that the cost function E is minimal. In the
following, for clarity, a notation simplification will be utilized by writing Ek in place of E(k) and similarly for
the other functions of k. The first step is to provide an initial guess k0 that is assumed to be close to the global
minimum. Then the cost function is Taylor expanded to the second order, so that:

Ek = E0 +∇E0 · (k − k0) +
1

2
(k − k0)T · ∇2E0 · (k − k0) (B.3)

where ∇E0 and ∇2E0 are respectively the gradient and the Hessian matrix of the cost function evaluated in k0.
Let us derive the gradient of the cost function:

∇Ek =
1

2
∇[rTk rk] =

1

2
[JT

k rk + [rTk Jk]T] = JT
k rk (B.4)

where Jk is the Jacobian of the residual vector rk. The Hessian matrix is given by:

∇2Ek =
1

2
∇2[rTk rk] = ∇[JT

k rk] = JT
k Jk +

N∑
i=1

rki
∇2rki

(B.5)

and by setting Q =
∑N

i=1 rki∇2rki , the more compact expression is obtained:

∇2Ek = JT
k Jk +Q (B.6)

The Hessian matrix of the cost function is given by the sum of two terms, one of which only contains first order
derivatives. When k is a critical point, the derivative of the truncated cost function is vanishing, so that:

dEk

dk
= JT

0 r0 + JT
0 J0(k − k0) +

1

2

d

dk
[(k − k0)TQ0(k − k0)] = 0 (B.7)

In the approximation Q = 0, the update rule of the G-N algorithm is finally obtained:

JT
0 r0 = −JT

0 J0(k − k0) (B.8)

52

C Tables

C.1 Results of 30 motion sequences

Kinect AICP
Run Mean[∆] Std[∆] Mean[∆] Std[∆]

1 7.4 8.0 2.6 2.5
2 20.3 20.2 1.5 5.1
3 35.2 18.6 9.6 4.7
4 30.4 22.3 0.8 5.8
5 14.1 9.4 1.4 4.0
6 23.7 14.3 4.3 5.4
7 8.4 11.4 1.3 2.9
8 22.6 17.2 5.3 5.2
9 22.4 15.5 -0.1 4.8
10 47.2 25.3 2.0 4.5
11 27.4 29.0 2.4 5.0
12 30.0 34.3 3.4 3.9
13 28.2 11.1 5.4 5.7
14 38.6 66.8 3.4 4.6
15 21.6 21.5 6.3 6.0
16 28.7 16.8 7.4 6.6
17 27.6 16.3 4.2 7.8
18 32.3 20.6 5.2 7.2
19 20.0 15.6 1.4 4.6
20 35.1 33.2 3.4 3.7
21 14.0 27.1 3.1 3.0
22 42.9 36.8 6.9 4.8
23 17.0 13.0 1.5 5.6
24 19.9 16.6 3.1 3.7
25 20.0 13.6 4.0 4.7
26 8.8 8.5 0.6 4.0
27 15.2 9.9 2.7 3.9
28 14.2 12.9 3.6 3.5
29 31.9 24.3 3.9 5.7
30 31.5 37.2 8.2 5.5

Table C.1: Table of results relative to 30 unconstrained motion sequences lasting one minute each.

54

C.2 Sub-sampling factor

k FPS Point cloud size NREP[∆] Std NREP[∆]

1 20.2 2318 6.0 7.8
2 25.6 1174 3.7 5.8
3 29.5 795 4.2 6.6
4 29.7 583 4.4 11.0

Table C.2: Mean values of frame rate, NREP, and point cloud size for various sub-sampling factor k. The
values refer to a ten minute long unconstrained motion sequence. The program was run on a PC equipped with
cpu Intel Core i5-3570K 3.50 GHz.

C.3 Relative residual error threshold

k FPS Std Iterations Std Mean NREP[∆] Std NREP[∆]

0.1 29.8 2.4 1.5 0.5 13.0 15.0
0.05 29.7 2.4 1.9 0.5 4.6 11.0
0.01 28.1 3.2 2.9 1.3 4.5 8.0
0.005 26.4 3.7 3.43 1.6 1.2 6.2
0.001 22.5 4.5 5.7 3.0 6.7 11.0

Table C.3: Frame rate, NREP, and iterations of Gauss-Newton optimization for various values of relative
residual error thresholds. The values refer to a ten minute long unconstrained motion sequence. The program
was run on a PC equipped with cpu Intel Core i5-3570K 3.50 GHz.

55

	Abstract
	Acknowledgements
	Contents
	Introduction
	Background
	Purpose
	Outline
	Scope and limitations

	Motion capture
	Kinect sensor
	Motion capture algorithms

	Theory
	Body model
	Skeleton model
	Body surface

	Iterative closest point
	Standard ICP
	Articulated ICP

	Method
	Data acquisition
	Sub-sampling
	Subject segmentation
	Initialization body model
	Skeleton model
	Body surface model

	Tracking algorithm
	Matching
	Minimization cost function and body model update

	Tracking failure recovery
	Occlusions and self-occlusions handling

	Results
	Self-occlusions
	Less common poses
	Free motions
	Occlusions, extended range, and rear facing
	Known problems of the AICP

	Discussion
	Conclusions and future work
	List of Figures
	List of Tables
	Appendices
	Bone length
	Gauss-Newton algorithm
	Tables
	Results of 30 motion sequences
	Sub-sampling factor
	Relative residual error threshold

