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Abstract

This thesis builds upon an existing experiment [1] investigating the tumbling of microrods
in a shear flow. The orientational dynamics of microrods in simple shear flows and
in turbulent flows is a subject of great importance. This is because the orientational
dynamics of particles strongly affects the bulk properties of the suspension [2]. There
is now a large number of studies theoretically investigating the tumbling of microrods
in flows [2, 3, 4, 5, 6], but there comparatively little experimental data [1, 7, 8]. The
laboratory setup [1] allows for recording of large amounts of data for these rods in the
form of grayscale movies at high framerates. The primary aim of this thesis is to analyse
this data and to compare the results to existing theory.

There are three observables in this experiment, the projected position of the rod in
the channel, the projected length of the rod, and the projected orientation vector of
the rod, all of these in the image plane of the recorded movies. The recorded movies
are analysed using Matlab [9]. Each frame is analysed and the Canny edge-detection
algorithm [10] is used to find the particle edges. The particle edges are subjected to an
elliptic fit in order to approximate the position, orientation and length of the projected
particle with the center, orientation, and length of the fitted ellipse. These properties
are translated into the three dimensional components of the rod orientation vector n(t).

Computer simulations of the equations of motion in the form given in [2, 4] were
performed. The results are compared to the trajectories observed in the experiment.
There is qualitative agreement between the experimental and the theoretical results.

Keywords: Jeffery orbits, microfluidic channel, particle tracking, shear
flow.
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1
Introduction

The purpose of this thesis is to investigate the dynamics of particles in flows. This
thesis builds upon a continuation of a previous experiment [1]. In this experiment, the
authors use a microfluidic channel to study the orientational dynamics of microrods in a
shear flow. The aim is to find how the orientation vector n varies as a function of time.
The orientation vector describes how the particle is oriented in space, and n is a time
dependent unit vector, see equation (1.1).

n(t) = (nx(t),ny(t),nz(t))
T. (1.1)

For n = (1,0,0) the particle is oriented along the x-axis in euclidean space.

The improvements implemented during this thesis are automating aspects of the data
analysis and adding global positional tracking of the particles. Reversal of the flow was
also implemented which enabled repeated laps and reuse of particles.

This report is divided into five main parts. This first introductory chapter describes
the background of the subject and the reasons for why this subject is important. The
first chapter also mentions the different challenges encountered during the course of this
M.Sc. thesis, and describes the experiment itself. The theoretical tools required to
understand the arguments put forward in this thesis are treated in chapter two. The
third chapter delves deeper into the challenges and problems, and presents the solutions
implemented. In the fourth chapter experimental results are presented for two different
particles, all the available data at the time of writing this thesis. Chapter five deals
with the interpretation of the data presented in chapter four, and how our data compare
to our expectations, and discuss attempts to understand the data presented in chapter
four.

All the analysis software developed during this thesis was implemented in Matlab
[9]. The numerical simulations were also written in Matlab using the different built-in
ordinary differential equation solvers. The reason for using Matlab is the it has built
in libraries for reading video data, solving ordinary differential equations, and several
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CHAPTER 1. INTRODUCTION

different pre-implemented edge-detection algorithms, including the so-called Canny edge-
detection algorithm.

1.1 Background

In 1922 George Barker Jeffery published a paper [3] called ”The motion of ellipsoidal
particles immersed in a viscous fluid”. In this paper Jeffery expanded upon a previous
paper [11], where Einstein had derived the how viscosity increases with the number of
spherical particles in a fluid. Jeffery generalised the result to include particles of any
ellipsoidal shape and derived the resulting equations of motion for ellipsoids in a shear
flow implicitly, and solved them explicitly for ellipsoids with the condition that at least
two axes of the three axes are of the same length.

In this thesis the three different semi-principal axes are of the lengths ax in the x-
direction, ay in the y-direction, and az in the z-direction, their relations are illustrated
in figure 1.1. This thesis focuses on tri-axial ellipsoidal particles, for which there is
no known explicit solution to the equations of motion. The motion of these tri-axial
ellipsoids is interesting because the motion itself is chaotic [4].

Figure 1.1: An ellipsoidal particle with the three different semi-principal axes of lengths
ax = 8, ay = 5, and az = 2. The ellipse is projected onto each plane to show the relations
between the different lengths. The orientation vector for this particle is n = (1,0,0).

1.2 Experimental setup

The channel [1] has the shape of a cuboid, with a length of 4.5 cm, a width of 2.5 mm,
and a depth of 400µm. The fluid in the channel is a mixture between water and glycerol
[1]. The reason for mixing in glycerol into the solution is to make the fluid more viscous,
and to lower the amount of air bubbles in the channel. The flow rates in this experiment
are typically in the range of 5–11µl/min. The flow is driven by a calibrated syringe
pump.
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1.3. RUNS AND LAPS

The channel is placed into a motorised stage with stepper motors, above a stationary
microscope and camera. A simplified image of the experimental setup can be seen in
figure 1.2.

Figure 1.2: The experimental setup. The channel is attached to a movable stage, and is
moved above the stationary camera to allow the viewing window to view different parts of
the channel. The channel is 4.5 cm long, 2.5 mm wide, and 400µm deep.

There are three observables; the projected position of the particle, the projected
length of the particle, and the angle of the projection in the image plane.

The particles are so small, that they are assumed to have no inertia. This means
that the particles are advected by the channel flow, and their speed at any instant is the
same as the channel flow velocity at the position of the particle [12].

1.3 Runs and laps

Particles are reused by reversing the flow, and allowing the center of mass of the particles
to advect both backwards and forwards in the channel. There are two ways of reversing
the flow. The first one is to reverse the flow very gently far away form the inlet or outlet
by gradually reducing the flow rate before the actual reversal, the intention is that the
rod will not be disturbed from its current orbit. The second method is to let the rod
enter either the inlet or outlet and then violently reversing the flow. The intention here
is, by contrast, that the resulting disturbance will force the particle into another orbit.

The recorded movies are divided into runs and laps. A run starts when the rod exits
the inlet, and stops when the rod enters the outlet. A lap corresponds to when the
particle travel from one end of the channel to the other, and runs are composed of one
or more laps.

1.4 The shear flow

The channel is 6.25 times as wide as it is deep, and the particle is placed close to the
middle along the z-axis, see section 1.5, and close to the the bottom along the y-axis.

3



CHAPTER 1. INTRODUCTION

The reason for this is so that the shear in the broad direction, along the z-axis, of the
channel is negligible compared to the shear in the y-coordinate. As a result the shear
lies approximately only along the y-axis, see figure 1.3.

The analysed particles are an order of magnitude smaller than the depth of the
channel, so they are small compared to the flow gradient, this allows for the shear
strength to be estimated from a linearisation of the flow velocity.

Figure 1.3: The shear flow.

The theoretical flow profile together with the most common particle position, 120µm
from the bottom, can be seen in figure 1.4. Section 2.1 summarises how this flow profile
is computed.

Figure 1.4: The theoretical flow profile of the channel. The flow at the borders is zero,
due to the no-slip boundary condition [12]. The flow velocity is maximal in the middle of
the channel. The color spectra goes from blue to red, where blue denotes zero flow velocity,
and red maximum flow velocity. The black dot marks the particle position in the channel,
at y = 120µm, z = 1.25 mm.

1.5 Coordinate systems

In this thesis two different reference systems are used, the one used by Hinch and Leal
[2], and by Mishra et. al. [1], where x is the flow direction, y is the shear direction,
and so z becomes the vorticity, or the third direction, perpendicular to the other two.
Jeffery and Yarin et. al. [4] instead use the convention that z′ is the flow direction,
y′ the shear direction and x′ is the vorticity. Both systems are right-handed and the

4



1.5. COORDINATE SYSTEMS

Table 1.1: Conversion table between the two different coordinate systems.

Hinch Jeffery

x z′

y −y′

z x′

Figure 1.5: The three different coordinate systems used in this thesis. The Jeffery system
is the primed system in parenthesis, the Hinch system is the non-primed letters and the
Euler angles in Greek letters. The scheme of how to go from Euler angles to any of the other
two systems can be found in section 2.2.

conversion between the two is given in table 1.1. The two different coordinate systems
can be seen, together with the Euler angles used in section 2, in figure 1.5.
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2
Theory

The aim of this chapter is to provide the theoretical tools required to understand how
the ellipsoids move inside the shear flow.

2.1 Derivation of the channel flow profile

This section is a summary of [12, 13]. The Navier-Stokes equation for incompressible
flow [12] is

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+ µ∇2u + f (2.1)

where ρ is the fluid density, the left hand side effects of inertia, ∇p the pressure gradient,
µ the viscosity, and f other acting forces. The flow is laminar so the effects of inertia
are assumed to be small, and there are no other forces acting on the fluid, so equation
(2.1) becomes

ρ
∂

∂t
u = µ∇2u−∇p, (2.2)

but u is time independent, because the flow is stationary, so equation (2.2) reduces to

µ∇2u = ∇p. (2.3)

However, the channel is very long compared to its width and depth, so it is reasonable
to approximate the channel length as infinitely long. Then the flow is purely along the
channel

u = u(y,z)x̂. (2.4)

The no-slip boundary condition for fluids sets the speed at each wall to zero. The pump
push with a constant pressure, and the channel outlet is open. The pressure drop from
end to end is constant so the difference in pressure is ∇p = f(y,z) = c, where c is some
constant. The end result of these simplifications are

∇2u(y,z) = f(y,z) (2.5)
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CHAPTER 2. THEORY

with the boundary conditions

u(0,z) = 0, (2.6)

u(y,0) = 0, (2.7)

u(h,z) = 0, (2.8)

u(y,w) = 0, (2.9)

here h is the hight of the channel, and w is the channel width. This is the Poisson
equation in a rectangular channel. The following general solution to the Poisson equation
comes directly from lecture notes by Professor Yuxi Zheng [13]. The solution begin by
solving the eigenvalue problem to find a base in which to describe f(y,z) = c

∇2u(y,z) = −λu(y,z). (2.10)

One solution to this equation is

u(y,z) = sin(
nπy

h
) sin(

mπz

w
), (2.11)

where

λ = (
nπ

h
)2 + (

mπ

w
)2, (2.12)

where n and m assume any value in N. Using Fourier sine series expansion [13] it is
possible to expand f(y,z) into

f(y,z) =
∞∑
n=1

∞∑
m=1

Bnm sin(
nπy

h
) sin(

mπz

w
), (2.13)

where

Bnm =
4

hw

h∫
0

w∫
0

f(y,z) sin(
nπy

h
) sin(

mπz

w
)dzdy. (2.14)

The general solution [13], u(y,z), is

u(y,z) = −
∞∑
n=1

∞∑
m=1

Bnm
(nπh )2 + (mπw )2

sin(
nπy

h
) sin(

mπz

w
) (2.15)

In this particular case Bnm can be simplified significantly

Bnm = c
4

hw

h∫
0

sin(
nπy

h
)dy

w∫
0

sin(
mπz

w
)dz (2.16)

= c
4

nmπ2
(− cos(nπ) + 1)(− cos(mπ) + 1) (2.17)
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2.2. JEFFERY’S EQUATIONS

Thus

Bnm =

{
c 16
nmπ2 if n and m are odd,

0 otherwise.
(2.18)

Let n = 2k − 1 and m = 2l − 1 and the final expression for u(y,z) becomes

u(y,z) = −c16

π4

∞∑
k=1

∞∑
l=1

sin( (2k−1)πy
h ) sin( (2l−1)πz

w )

(2k − 1)(2l − 1)((2k−1
h )2 + (2l−1

w )2)
, (2.19)

which corresponds to equation (8) in [13]. In figure 2.1 the infinite sum from equation
(2.19) is truncated after 300 terms.

Figure 2.1: The theoretical relative flow profile of the channel. The flow at the borders
is zero, due to the no-slip boundary condition. The flow in the middle of the channel is
the maximum flow. The color spectra goes from blue to red, where blue denotes no flow,
and red the maximum flow. The black dot marks the particle position in the channel, at
y = 120µm, z = 1.25 mm.

2.2 Jeffery’s equations

Yarin et. al. [4] have derived a dimensionless formulation of Jeffery’s original equations;

dφ

dt
=

1

2
+ g3 sinψ − g2 cosψ, (2.20)

dψ

dt
= g1 + (g2 cosψ − g3 sinψ) cos θ, (2.21)

dθ

dt
= (g2 sinψ + g3 cosψ) sin θ. (2.22)

In these expressions g1, g2, and g3 are functions defined as

g1 =
a2
y − a2

z

2(a2
y + a2

z)

[
−1

2
(cos2 θ + 1) sin 2φ sin 2ψ + cos θ cos 2φ cos 2ψ

]
, (2.23)

g2 =
a2
z − a2

x

2(a2
x + a2

z)
(− cos θ sin 2φ sinψ + cos 2φ cosψ), (2.24)

g3 =
a2
x − a2

y

2(a2
x + a2

y)
(cos θ sin 2φ cosψ + cos 2φ sinψ), (2.25)

9



CHAPTER 2. THEORY

where ax, ay, and az are the axes lengths of the ellipsoid. The variables φ, ψ and θ are
the Euler angles, with which the x′-axis can be rotated into the orientation axis of the
particle. The rotation scheme to convert these angles into the Jeffery coordinate system
is as follows;

1. Rotate z′ φ around x′ to obtain k.

2. Rotate x′ θ around k to obtain n.
The first and second step is sufficient to recreate the orientation vector n. However,
an ellipsoid has two more axes which provides another .

3. Rotate the ellipsoid ψ around n to orient the other axes of the particle, this rotation
is an intrinsic rotation.

These equations form the basis for all numerical simulations. The orientation vector n
can be expressed directly in the two different coordinate systems as

nJeffery = (cos θ, sin θ cosφ, sin θ sinφ), (2.26)

nHinch = (sin θ sinφ,− sin θ cosφ, cos θ). (2.27)

2.3 Jeffery orbits

As mentioned above, Jeffery [3] solved this system of equations explicitly for ellipsoids
where ay = az. These solutions are periodic with respect to time, and they are named
Jeffery orbits [12]. A few concrete examples of Jeffery orbits can be seen in figure 2.2. It
is convenient to represent these trajectories on component form of n. In figure 2.3 the
same initial conditions as in figure 2.2 are plotted in component form. The solution to
Jeffery’s equation [1] is expressed as

dn

dt
= Bn− n(nTBn), (2.28)

where

B =
1

1 + λ2
(λ2A−AT), (2.29)

and λ = ax/az is the aspect ratio of the rod. The expression for A is

A = ∇u =

 0 s 0

0 0 0

0 0 0

 , (2.30)

where s is the shear strength [1]. The solution to equation (2.29) is

n(t) =
1√

tan2 θ0 + cos2 ωt+ λ2 sin2 ωt

 λ sinωt

cosωt

tan θ0

 , ω =
sλ

1 + λ2
, (2.31)

where θ0 is the orbit constant [1].

10



2.4. POINCARÉ MAP OF ORBITS

Figure 2.2: Four Jeffery orbits. The orientation vector follows this line for some different
initial conditions, from top to bottom with the initial conditions; red: (φ,ψ,θ) = (0,0,π/2),
green: (φ,ψ,θ) = (0,0,π/4), blue: (φ,ψ,θ) = (0,0,π/6), and black: (φ,ψ,θ) = (0,0,π/16).

0 20 40 60 80 100 120
−1

0

1

t

n x

0 20 40 60 80 100 120
−1

0

1

t

n y

0 20 40 60 80 100 120
−1

0

1

t

n z

Figure 2.3: Four Jeffery orbits. These are the components of the orientation vector n
with the initial conditions; red: (φ,ψ,θ) = (0,0,π/2), green: (φ,ψ,θ) = (0,0,π/4), blue:
(φ,ψ,θ) = (0,0,π/6), and black: (φ,ψ,θ) = (0,0,π/16).

2.4 Poincaré map of orbits

Because an explicit solution exists for axisymmetric particles it is tempting to assume
that any shape that approximates a symmetric ellipsoid behaves like a symmetric ellip-

11



CHAPTER 2. THEORY

soid. However Hinch and Leal [2], and later Yarin et. al. [4], showed through simulations
and analytical arguments that this is not the case.

One very important result from [2] is that the time derivative of φ always is non-zero
and does not change sign. This is very useful, as it guarantees that it is possible to invert
equation (2.20) to obtain

dt

dφ
=

1
1
2 + g3 sinψ − g2 cosψ

. (2.32)

Using this relation and the chain rule it is possible to rewrite equations (2.21) and (2.22)
to change the integration variable from t to φ.

dψ

dφ
=

dψ

dt
· dt

dφ
=
g1 + (g2 cosψ − g3 sinψ) cos θ

1
2 + g3 sinψ − g2 cosψ

, (2.33)

dθ

dφ
=

dθ

dt
· dt

dφ
=

(g2 sinψ + g3 cosψ) sin θ
1
2 + g3 sinψ − g2 cosψ

. (2.34)

These modified equations allow control over the φ variable, which is desirable as φ is
driven by the shear flow.

From any given initial condition it is now possible to numerically integrate equations
(2.33) and (2.34) to obtain how these varies as a function of φ. The values of ψ and θ
do not automatically wrap so, since they are angles, it is meaningful to instead look at
nz = cos(θ) and arcsin(sin(ψ)).

Once integrated the three Euler angles, φ, ψ, and θ, can be rearranged into a Poincaré
map [14] by looking on how the values of the intrinsic rotation, arcsin(sin(ψ(φ))), and
nz = cos(θ(φ)) vary for fixed spacings of φ. The definition of a Poincaré map requires
that all points in the Poincaré map evaluate to another point in the map. This makes
φ = nπ a good choice, since any particle aligned with the vorticity will remain aligned.
Thus, the plane nx = 0 is the only choice for a Poincaré map that can describe the full
ellipsoidal dynamics.

By running one such simulation for several different initial conditions a map is created
of how the rod will behave for every possible configuration.

2.5 Poincaré maps

The image on the cover page is a Poincaré surface-of-section created for a simulation
based of a method described in Yarin et. al. [4], for a particle with ax = 10, ay = 1.15
and az = 1. The cover image can be seen in figure 2.4. The relation between ay and az
define the particle asymmetry, ε, as

ε =
ay
az
− 1, (2.35)

and the surface-of-section in figure 2.4 has ε = 0.15. In figure 2.5 another nine Poincaré
surfaces-of-section are presented.

12



2.5. POINCARÉ MAPS

The first figure, figure 2.5(a), is the surface-of-section for Jeffery orbits. The explicit
solution for n in equation (2.31) has nx = 0 when t = mπ/ω and m ∈ N0, so equation
(2.31) simplifies to

n
(mπ
ω

)
=

1√
1 + tan2 θ0

 0

cosmπ

tan θ0

 . (2.36)

For every point in the surface-of-section the z-component only depends on the value
of tan(θ0), which is constant. Therefore the value of nz is independent of the intrinsic
rotation ψ and form straight lines in the surface-of-section.

The Jeffery orbits are very sensitive to asymmetry, even for very small values of ε the
Jeffery orbits begin to break down into circular trajectories. Figure 2.5(b) is a Poincaré
map for ax = 10, ay = 1.001 and az = 1. The asymmetry, ε, is only 1/1000 and the
circular trajectories are already visible. For ε = 1/100 the circular trajectories are of
considerable amplitude.

In figure 2.5(e), when the asymmetry has reached 1/2 there are no longer any tra-
jectories that resemble Jeffery orbits, except the trivial ones, where cos(θ) = ±1. The
trivial orbits are those where the particle orientation vectors are parallel to the vorticity.

13



CHAPTER 2. THEORY

Figure 2.4: A Poincaré map for 10 : 1.15 : 1. The map is created by simulating equations
(2.33) and (2.34) for different initial conditions. Compare this figure to the maps in figure
2.5.

14



2.5. POINCARÉ MAPS

(a) 10 : 1 : 1 (b) 10 : 1.001 : 1 (c) 10 : 1.01 : 1

(d) 10 : 1.1 : 1 (e) 10 : 1.2 : 1 (f) 10 : 1.3 : 1

(g) 10 : 1.5 : 1 (h) 10 : 2 : 1 (i) 10 : 3 : 1

Figure 2.5: Poincaré maps for nine different ellipsoidal particles. The dimensions are on
the form ax : ay : az. The maps are created by simulating equations (2.33) and (2.34) for
different initial conditions. Figure 2.5(a) is the Poincaré map for ellipsoidal particles with
ay = az. The particle dynamics depends sensitively upon the asymmetry ε. In figure 2.5(b)
circular trajectories have begun to form, and in figure 2.5(d) small chaotic regions have
begun to form around ψ = ±π2 , cos(θ) = 0. When ε becomes large, as in figure 2.5(g), it is
unlikely that any trajectory maintaining a constant value of nz can be found, other than the
trivial trajectories where the orientational vector of the particle is parallel to the vorticity.

15



CHAPTER 2. THEORY

16



3
Data extraction

The experiment described in section 1.2 produces raw data in the form of grayscale
movies, in which the rod is seen from below as it travels along the channel. These
movies are captured at a rate of 100 frames per second (fps). Each frame is represented
by a matrix with 260×348 elements. One such element is referred to as a pixel, which is
the smallest discrete unit of a frame or an image. These pixels carry 8 bits of intensity
information, so each pixel consist of an integer value in the range of 0 to 255.

The length of video analysed for this M.Sc. thesis exceeds thirteen hours of raw
footage. This corresponds to roughly five million frames, which is an unrealistic amount
of data to be analysed manually. Therefore, automated tracking is a necessity.

A typical movie frame can be seen in figure 3.1, and for this frame the visual noise
is low. In this context visual noise refers to the existence of few rod like objects in
the immediate vicinity of the target rod. The edges of the target rod are sharp and
well defined, and so they are easy to locate manually by visual inspection, as they are
represented by large differences in the image contrast.

The aim of the data analysis is to recreate the orientation vector n from equation
(1.1). In order to find the length and orientation of the projected rod in the image plane
it is possible to approximate the projection by fitting an ellipse to to the edges of the
projected rod. The long axis of the fitted ellipse then equals half of the projected rod
length and the direction of the long axis shows how the projected rod is oriented in the
image plane.

3.1 Identification of different laps

The positional data from the stage motors contains information on how the camera
moves relative to the channel with respect to time. This means that it is possible to find
the different laps by studying the motion of the stepper motors. The stepper motors
move the channel so that the camera moves with the flow direction, the x-direction. An

17



CHAPTER 3. DATA EXTRACTION

Figure 3.1: A typical movie frame.

example of the camera x-position, relative to the channel, as a function of time can be
seen in figure 3.2. The positional information will be explained in more detail in section
3.7.
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Figure 3.2: The camera x-position on the channel as a function of time for movie M-

Movie0067.avi. The lines show the different detected laps and their flow direction.
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3.2. STATIC NOISE REDUCTION

3.2 Static noise reduction

Garbage, such as air bubbles or old rods, floating in the channel or stuck to the glass
walls are not the only source of visual noise. There are also effects like improper lighting
conditions and dirt on the camera lens. These types of disturbances are referred to
as static noise, because they do not vary with time. These objects are often of high
contrast, and so the risk that they interfere with the automated tracking is high.

The information hidden behind these artefacts is lost, but it is possible to lessen the
impact the static noise have during the image analysis by replacing the artefacts with
blind spots. This is achieved by subtracting the average frame from each frame, then
adding the average frame color to each pixel in the frame.

f∗k = fk −
1

N

N∑
n=1

fn + fk (3.1)

where f∗k denotes the cleaned up frame, N is the total amount of frames, and fk denotes
the average pixel color for frame fk. The effect of the static noise removal can be seen
in figure 3.3.

3.3 Canny edge-detection

Canny edge-detection, invented in 1986 by John Canny [10], is an edge-detection al-
gorithm that emphasizes good detection and localization. Good detection means that
edges should have a large probability of being found, and good localization means that
edges they should appear close to the actual location of the edge. Canny was the first
who also supplied the mathematical theory proving why the algorithm worked. This
makes the Canny edge-detection algorithm a good choice since the representation of the
rod is deformed as little as possible.

During a normal run the program is aware of roughly where the rod is, under the
assumption that the rod has not moved too far since the last frame. A smaller window
is then cut from the current frame using the old rod center as center and the Canny
edge-detection algorithm is executed and will typically return a result similar to that in
figure 3.4.

In general the rod is not in the vicinity of other objects so it is a simple matter to
do an elliptic fitting, see section 3.4, to all edges found by the Canny edge-detection.
However, sometimes the rod pass close to some other object, as seen in figure 3.4. When
this occurs it is not obvious which edges are part of the rod, and which edges belong
to the foreign object. If the rod has not moved far from its most recent position, it is
possible to use the last ellipse center point as a reference point for a flood-fill. Flood
filling is an algorithm where the closest edge pixel relative to the old center is selected,
then only edge pixels that are directly adjacent to any other selected edge pixel are
selected recursively. This process continues until no more unselected adjacent pixels
remains. The result of the flood-fill algorithm can be seen in figure 3.5.
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(a) Frame no. 106,761 in M-Movie0067.avi of
particle #4

(b) The average of all frames in M-

Movie0067.avi. Stationary objects are
clearly visible.

(c) The resulting frame without static noise.

Figure 3.3: Removal of static noise.

Figure 3.4: Canny edge-detection without flood-fill. The red circle marks the previous
ellipse center point.
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3.4. ELLIPTIC FIT

Figure 3.5: Canny edge-detection with flood-fill. The red circle marks the previous ellipse
center point.

The edge-detection algorithm returns a list of coordinates of each pixel that are a
part of an edge in the original image.

3.4 Elliptic fit

Once the edge-detection is complete an ellipse is fitted to the edge points. The fit is
a least square method based on principal-component analysis, (PCA), which finds the
direction in which the points are spread the most. For a set of points from an ellipse
with zero mean, and an even distribution of points around the edge, the direction of
maximum spread will coincide with the major axis of the ellipse.

The simplest implementation of PCA is explained in [15]. Let x and z be vectors
with the x and z values of all edge points in the fit. Create

A =


x1 z1

x2 z2
...

...

xN zN

 (3.2)

and find the eigenvectors and the eigenvalues to

M =
1

N − 1
ATA (3.3)

where M is a 2 × 2 matrix and N the number of edge points [15]. The eigenvector
corresponding to the largest eigenvalue, λ1, corresponds to the direction of the major
axis, and the length of the axis is

√
2λ1 [15]. Because the eigenvectors are perpendicular

to one and another the second eigenvector,λ2, corresponds to the minor axis with the
length

√
2λ2 [15]. The algorithm the tracking software uses is a more advanced version of
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x

z

(a) PCA fit

x

z

(b) Elliptic fit

Figure 3.6: The PCA fit compared to the elliptic fit. The elliptic fit appears to follow the
shape of the rod better than the regular PCA fit.

PCA [16] which is argued to be more stable than a simple principal component analysis.
A comparison between the two methods can be seen in figure 3.6.

Once the angle is found, both the z-component and the x-component can be obtained,
and from these the magnitude of the y-component can be computed.

For the tracking of the rod it does not matter whether the fitted ellipse is perceived
as thicker or thinner than the actual rod, since the width of the rod is not used during
the current tracking scheme, only its orientation, position, and length.

3.5 Approximation of the orientation vector

The orientation vector n is normalised, so in order to find the orientation from the
observables in a movie, the particle length lrod must be known. If lrod is known the
components of n can be determined as

nx =
x

lrod
, (3.4)

nz =
z

lrod
, (3.5)

|ny| =
√

1− n2
x − n2

z. (3.6)

Since the only available data is the projection of the rod it is not possible to determine
the sign of ny. However, the shear flow causes the ny-component to change sign between
every flip. For this reason an arbitrary initial sign has been assigned to ny, so to make
the data more comparable to the theoretical simulations.
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3.6. DETERMINING THE ROD LENGTH

3.6 Determining the rod length

The rod length lrod is unknown at the start of the experiment. This is not a problem
since Hinch et. al. [2] showed that any ellipsoid have a non-zero dφ

dt . It is also shown
in [2] that the particles spend more time aligned with the flow than perpendicular to it.
This means that the rod is expected the have ny = 0 at least some of the time. When
ny = 0 the orientation vector of the particle, n, lies in the x-z-plane, the image plane.
The alignment with the flow direction occurs once every flip, and each lap observed in
this experiment contains 6, or more, flips. By plotting all of the measured projection
lengths for a particle in a histogram it is possible to find the most likely particle length.

3.7 Particle position

In addition to a movie each experimental run is also accompanied by the positional
information of the channel relative to the camera. This is achieved with a separate
program which repeatedly queries the step motor controller for the current positional
data and records the data together with a time stamp. This process continues during
the recording of the entire movie.

By running both the camera video recording and the position recorder from the same
computer the time stamp of their respective data is synchronised. The two different
programs do not run at the same capture rate. For each frame, the position at the time
of the frame is found by a linear interpolation between the closest positions before and
after the frame in question.

When the tracking is completed, the camera position and the particle-within-frame
position are combined into the particle position. Examples of paths particles have trav-
elled can be seen in figure 4.2.

3.8 Dimensionless time

By design the pump rate is not constant during a large portion of a given lap. During the
part of the lap where the pump is supposed to maintain a constant rate slow variations
of the flow rate can still occur. The pump supplies a pressure to one side of the channel.
When the flow rate changes, so does ∆p from equation (2.3). If the change in flow rate is
slow enough so that all transients can be neglected, the change in ∆p translates linearly
to the flow velocity u.

For particles that are small compared the the channel the shear, s, is approximated
by ∂u

∂y (y,z) [1], which also scales linearly with ∆p.

While it is not possible to observe the changes in the flow velocity directly, it is pos-
sible to observe the flow velocity indirectly, through the particle position. The distance
the particle has travelled is

d(t) =

t∫
0

u(t′)dt′. (3.7)
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Equation (3.7) is useful because it scale with time in the same way as n(t). This
means that it is possible to plot any time series versus d(t) rather than t. The benefit is
that when compared to d(t) the time series will be less affected by flow changes.

24



4
Results

Two data sets are analysed, corresponding to two different particles. In the first data set
contains a relatively large particle, and in the second data set there is a smaller particle,
the particles can be seen in figure 4.1. The first data set contains the particle designated
particle #1 and the second data set contains particle #4. Particle #1 is 23.3 pixels long
and particle #4 is 17.3 pixels long. Histograms of the rod lengths can be seen in figure
4.3.

Figure 4.1: The two particles with the most data. The particle to the left is designated
particle #1 and the particle to the right is designated particle #4. Particle #1 is almost
twice as large as particle #4, and it carries a deformity. Particle #1 is 23 pixels long and
particle #4 is 17 pixels long.

For the first particle, particle #1, the experimental procedure included a reset of the
relative position between each lap, and as a result the individual laps have an unknown
offset towards each other. This discrepancy in the laboratory protocol was changed
before the rest of the data for the other particles were gathered. The first particle also
have a deformity, see figure 4.1, which did not seem to have any visual effect on the
trajectories. Some typical flow trajectories for the two primary data sets can be seen in
figure 4.2. The difference in scale between the x-axis and the z-axis is roughly two orders
of magnitude, this is because the camera and the channel is almost perfectly aligned, so
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the flow is almost purely along the x-axis, and the angle is in the order of 0.01 radians.
The bends that occur on ends of some of the runs are due to the particle entering or
exiting one of the outlets, this flow can result in a relatively large movement in z.
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(a) Particle #1
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(b) Particle #4

Figure 4.2: These are some example flow trajectories for both data sets. Because of the
discrepancy in the operator procedures for the first data set for particle #1 the trajectories
themselves are not comparable by position to each other, only by relative shape. For particle
#4 all coordinates share a point of reference so they are comparable. The bump in the later
data set is probably an air bubble that has formed somewhere in the channel which distorts
the flow. The difference in scale between the x-axis and the z-axis are almost two orders of
magnitude. The downward slope, with an angle in the order of 0.01 radians, is caused by a
small misalignment between the channel and the camera.
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(b) Particle #4

Figure 4.3: The length distributions of the two rods, as measured by the tracking software.

The data can be divided into two classes, those trajectories that are similar to Jeffery
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4.1. DATA SET 1

orbits, and those who are not. Both these types are found in both of the data sets.

4.1 Data set 1

Orbits that look like Jeffery orbits appear to be common, and some examples of these
orbits can be seen in figures 4.4, and 4.5. Amongst the rarer laps, those which do not
look like Jeffery orbits, are laps like the ones in figures 4.6 and 4.7.
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Figure 4.4: Data for particle 1, movie 37, lap 1.
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Figure 4.5: Data for particle 1, movie 37, lap 8.
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Figure 4.6: Data for particle 1, movie 37, lap 12.
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Figure 4.7: Data for particle 1, movie 42, lap 13.
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4.2 Data set 2

As in the first data set, there are trajectories that appear to be Jeffery orbits. Figures
4.8 and 4.9 are examples of Jeffery orbits. Trajectories that are different from the Jeffery
orbits, see figure 2.3, are shown in figures 4.10 and 4.11.
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Figure 4.8: Data for particle 4, movie 64, lap 6.
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Figure 4.9: Data for particle 4, movie 67, lap 2.
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Figure 4.10: Data for particle 4, movie 64, lap 2.
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Figure 4.11: Data for particle 4, movie 65, lap 1.

4.3 Comparison to simulations

Both particles have shown three types of trajectories that bear a resemblance not only
to each other but also to simulated trajectories.

The first type is trajectories that look similar to the Jeffery orbits from figure 2.3,
these have the largest magnitude of nz in the surface-of-section and nz does not change
sign between the different flips. The values of nz are almost constant. An example of
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where these orbits lie in the surface-of-section can be found in figure 4.12. This simulated
trajectory in figure 4.12 resembles figures 4.4, 4.8, and the second half of figure 4.9.

The second type is trajectories that still are similar to the Jeffery orbits, where the
values of nz varies more than for the first type, but not so much that nz changes sign.
The position of these types of trajectories is shown in figure 4.13. Some examples of
these orbits are figure 4.5 and the first half of figure 4.9.

The third trajectory type is circular trajectories, where nz does change both sign
and magnitude, an example of this behaviour can be seen in figure 4.14. Trajectories
like the one from figure 4.14 can be seen in figures 4.6, 4.7, 4.10, and 4.11.

There is also a forth type of trajectory, the trajectories which move within the chaotic
region. On short time scales they follow close-by orbits, so it is not possible to distinguish
chaotic orbits from stable orbits for the short laps that are presented in this thesis.

Since there are orbits that are similar to Jeffery orbits present in both data sets,
other than the trivial orbits, where nz = 1, it is plausible that the particle asymmetries
are relatively small, compare to the Poincaré map in figure 2.5(e).

Figure 4.12: A Poincaré map for an ellipsoid ax = 10, ay = 1.15, and az = 1. This
simulated trajectory bear resemblance to figures 4.4, 4.8, and the second half of figure 4.9.

4.4 Runs and stitches

In figure 4.15 a stitch of several laps has been made for particle #1 and in figure 4.16 the
same for particle #4. The first particle seems to stay in a stable orbit, while the second
particle has a prominent drift towards high absolute values of nz. It is unclear what
the differences between the two particles are. The particles show a similar dynamics for
single laps, but are very different when viewed over several laps.
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4.4. RUNS AND STITCHES

Figure 4.13: A Poincaré map for an ellipsoid ax = 10, ay = 1.15, and az = 1. This
simulated trajectory resembles the ones seein in figure 4.5 and the first half of figure 4.9.

Figure 4.14: A Poincaré map for an ellipsoid ax = 10, ay = 1.15, and az = 1. This
simulated trajectory bear resemblance to figures 4.6, 4.7, 4.10, and 4.11.

33



CHAPTER 4. RESULTS

0
2

4
6

8
10

12

x 
10

4

−
1

−
0.

50

0.
51

D
is

ta
nc

e

nx

M
−

M
ov

ie
00

44
.a

vi
, s

tr
et

ch
es

 5
−

9

0
2

4
6

8
10

12

x 
10

4

−
1

−
0.

50

0.
51

D
is

ta
nc

e

nz

Figure 4.15: Several stitched laps for particle #1 shows a stable trajectory. The laps are
reversed at each line, and the ideal situation would be a mirror image on both sides of a
stitch.
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Figure 4.16: Several stitched laps for particle #4 shows an unstable trajectory that drifts
towards high values of nz. The laps are reversed at each line, and the ideal situation would
be a mirror image on both sides of a stitch.
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5
Discussion

Mishra et. al. [1] pose the question of why the behaviour of the trajectories in experi-
mental data differs from the trajectories predicted by Jeffery [3]. They give two possible
causes, the effects of particle asymmetry and the influence of thermal noise, however in
[1] there is not enough data to draw a conclusion regarding which effect that is dominant,
and under what conditions. In order to come to a conclusion much longer time series
are needed, which would require either better flow control, or a longer channel. The
trajectories analysed in this thesis was many times longer than the trajectories analysed
by Mishra et. al., and the total number of laps analysed was also much grater. In this
thesis it was shown that a there is a qualitative agreement between the trajectories from
the experiment, and simulated trajectories for asymmetric particles.

If it turns out to be too hard to reliably create longer time series it might be possible
to analyse the data in other ways. One way would be to look at scatter plots for the
value of nz at times when nx = 0. It is possible that scatter plots for asymmetry and
thermal noise behave differently. The benefit would be that it is not as important to
have long laps, longer than what can be achieved with the current channel, but it would
be enough with many recorded laps.

It is important that the rod is long, relative to its girth. If not, when |ny| becomes
large the projection of the orientation vector will not reach the edge of the particle
shadow, see figure 5.1. Without a more sophisticated method of fitting the projection
which uses other available information, such as the current trajectory, it is not possible
to recover the orientation vector n.
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Figure 5.1: The projection of n does not reach the border of the particle shadow, this
means that its length cannot be retrieved through normal ellipse fitting.
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5.1. CAMERA TRACKING

5.1 Camera tracking

The engine of the tracking software was written before the recording of the particle
position was implemented and so the tracking software relies purely on image analysis
and object recognition to find the particle. The camera used to record the movies
is manually controlled by an operator. This means that the relative particle position
cannot always be reliably estimated between frames.

If instead the global particle position was used the predicted position will be less
random. If the problem is more predictable it might be useful not only to include infor-
mation from only one previous frame, but from several frames. One way to accomplish
this would be to implement a Kalman filter, which is a linear quadratic estimation algo-
rithm, to estimate the current state of the particle. Another possibility, given that it is
possible to fetch images from the camera directly, is to use a Kalman filter during the
actual recording to automate the control of the camera itself.
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