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Abstract

Pattern formation in reaction-diffusion systems has been the subject of study in a variety of natural
disciplines. In this thesis we investigate the behaviour of an abstract pattern-forming autocatalytic
system based on the Gray-Scott model, featuring a small number of related chemical species.

The aim is to investigate the form of interaction that takes place between these species, whether
competition or cooperation, and how this relates to the overall pattern generation. Through the
perspective of chemical evolution we seek to observe what long-term behaviour emerges, both in
terms of population composition and structure formation. The work is largely exploratory and we
approached the observed system properties from various angles to characterise them.

We report that systems composed of 2 species were seen to be unstable and only achieve
transient joint pattern formation, while the 3-species extension reached stability for a limited class
of configurations. This class produced rich behaviour in the form of dynamic patterns with shifting
structural features involving long transients, including a novel type of pattern, not seen in other studies
of the Gray-Scott model or related models. Both systems are examples of catalytic hypercycles. In
terms of pattern formation, the exhibited structural features reflect local species populations and
in general are not themselves decisive for the outcome of species interactions. In an unconstrained
evolution scenario, we report a strongly directed evolutionary path towards selfish species and loss of
structure.

Keywords: chemical evolution, complex systems, excitable media, Gray-Scott model, hypercycles,
pattern formation, self-organization.
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Chapter 1

Introduction

1.1 Pattern formation in reaction-diffusion systems

In the larger context of self-organising systems, the study of pattern formation in reaction-diffusion
systems has a long history, starting with Alan Turing’s paper in 1952 [Tur52], where such a mechanism
was proposed as the basis of biological morphogenesis, the process by which organisms take shape from
otherwise homogeneous and symmetrical incipient structures such as the morula of early embryonic
life. Structure would emerge when certain chemical system in steady state were perturbed. A point
of interest of these pattern-forming systems is the very long time spans in which they remain far from
steady state, a property characteristic of living systems.

Reaction-diffusion systems capture the effect of spatial distribution of chemical reactions. While
such transformations yield periodic oscillations in well-stirred environments that are effectively
non-spatial, they become far more interesting when transport processes such as diffusion are allowed
to extend these oscillation across a spatial domain. The interplay of these antagonistic feedback
mechanisms (synthesis of new molecules and their dispersal) has been postulated to be essential for
structure formation in the activator-inhibitor Gierer-Meinhardt model [GM72]. A closely related
concept is that of excitable media, though most definitions refer strictly to media that allow the
propagation of waves in a one-shot manner for a given time interval and as such, describe a sub-class
of the behaviour exhibited by reaction-diffusion systems [Mer92]

Not surprisingly, these models have found applications in describing a wide range of natural
phenomena across various scales, from microbiological processes such as chemotaxis (the directed
cellular movement based on concentration gradients), neural activity, tumour growth, wound healing,
and animal pigmentation patterns, to population dynamics, such as ecological dispersal and invasions,
as well as spread of epidemics [Mur03].

1.2 Terminology

These systems are inspired by organic molecules that participate in biochemical reactions within living
cells, most notably enzyme-facilitated transformations and replication.

Here we shall often speak of one chemical as fuel or substrate, by which we mean it acts as
some building material that is transformed through reaction with a catalyst into another molecule or
species, a transition that would otherwise have essentially null probability of happening. The catalysts
or enzymes use these molecules to make copies of themselves, hence they are called autocatalysts. In
this respect, the substrate becomes a resource present in the system in varying amounts. For the sake
of alleviating repetition, we shall use the above terms interchangeably.

Following the definitions and treatment of [HS87], we call a chemical system featuring multiple
chemical species a permanent system if all chemical species remain in the system (have non-null
concentration) in the limit of time t→∞

1.3 Chemical evolution

One of the aims of this thesis is to explore the way structure formation is affected by the appearance
of new types of molecules in the system. These are often slightly altered versions of existing molecules.
This process of random alteration of chemicals is referred to as mutation since it is inspired by faulty
biomolecule production inside the living cell. The entire process is termed chemical or molecular
evolution.
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In this type of abstract study however, the role of information-carrying molecules such as DNA
and the transcriptional and translational machinery that produces the molecules based on these is
ignored and the focus is placed upon the interactions of the end products themselves. Much of
the terminology however comes from the classic macroscopic version of evolution, thus we speak of
populations of various species, either wild types or mutants, that either survive or go extinct, with the
sense of molecule species concentrations that either remain non-null or drop to zero.

Self-replicating molecules have been of great interest for their hypothesised role in abiogenesis and,
in particular, in the emergence of key features of early life, cooperation between replication and later
integration in the more complicated mechanism of translation [SS97], as well as the emergence of the
first genomes, cellular compartments and cells [SS03].

This framework needs to account for variability in competing traits in order to allow for selection
and thus evolution, but also for the establishment of cooperation at least for relatively small groups
of replicators which would then need to resist destabilising influence from other groups [SS97]. Herein
lies a problem with the well-known catalytic hypercycle model of cooperating replicators proposed by
Eigen and Schuster in [ES77], that at least in a non-spatial, well-mixed environment it is known to
be vulnerable to parasites, species that only receive replicative support from others but offer none in
exchange [SS97], That is, upon their interaction cycle species are outcompeted by a fitter parasite and
become extinct, the system degenerating into a catalytic chain and ultimately leaving the parasite the
sole species in the system [SS03].

Various solutions have been proposed to tackle this conundrum. The straightforward spatial
extension of the hypercycle was seen to also be vulnerable [SCS+03] and so various constraints on
global interactions that seek to emphasize locality have been investigated.

The metabolic model in [SCS+03] forces absolute cooperation of all species in the system. If any
species goes extinct, the entire network does so as well. This architecture incorporates parasites and
assures global survival, both in the mixed and spatial versions, at the cost of the stringent interaction
requirement. Much emphasis has been placed on cyclic reaction networks since it was shown in
[ES78] that more complex topologies devolve into hypercycles or strictly competing entities, at least
when assuming uniform coupling. Another approach outlined in [SCS+03] and [HT03] is the so-called
stochastic correction principle, a model “half-way” towards spatiality, which features vesicles of mixed
competing species that undergo fission, each new vesicle containing a random fraction of the original
contents, thus letting concentration drift “weed out” parasites by eventually producing vesicles free
of these mutants. We shall not discuss this approach further. Models that introduce explicit spatial
separation of chemical reactions in order to study the interplay between structure formation and the
interaction between species in a catalytic network have been considered on different levels of dynamics.

One approach is to model the molecular dynamics microscopically using cellular automata [BH91],
[HT03], [AS06], where there is strict particle exclusion in each cell of the grid and empty cells are thus a
resource necessary for growth. The patterns in these are composed of largely segregated populations,
with neighbouring populations tending to be formed by catalytically linked species [BH91]. The
hypercycles in these environments were seen to resist invasion from parasites. In particular, the
patterns considered in the referred papers are spirals that while rotating and expanding cause the
parasite molecules to spread outwards and be pushed outside the system, going extinct. These studies
also point out that such spatially extended populations undergo group evolution [BH91], i.e. selection
that acts upon cooperating networks, which is an important step toward higher life-like systems.

However, there is a critical model dependence of the behaviour for the same classes of catalytic
networks. In [CB94] it was shown that for the macroscopic partial differential equations modelling
of the system in [BH91] the resistance disappears due to copies of the hypercycle possibly existing at
every grid point, thus the inability to expel the molecules of strong parasites (fitter than their wild
types) through spatial exclusion and the vulnerability to infection. A proposed solution explored in
[CB97] is to employ a constraint on substrate availability along with a high concentration cut-off, i.e.,
whenever species levels drop below a certain threshold, they are considered null and excluded. This
indeed allows for some structural features to remain isolated from others that have been infected, as the
parasites cannot spread between low-concentration areas. Still, this cut-off needs to be unreasonably
high to have effect. In this thesis, we do not use such a high cut-off. Neither do we rely on the
possible lowest machine-representable positive number, as this was seen to induce what are considered
spurious results. More on this in Appendix A. Another tactic to confer parasite resistance in the
PDE description is to have heterogeneous space by varying parameters such as decay rates and fuel
presence within the system [BH95b], which was seen to isolate infections within spiral fragments that
were later pushed out of the system. In the present study, such spatial gradients were seen to have no
impact on species interactions.
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1.4 Thesis considerations and results

While spatial extension has thus been considered for its role in helping the prebiotic emergence of
robust replicator cooperation, our perspective in the present study is somewhat different. Given an
established chemical system that builds patterns we wish to explore how these molecular structures
themselves are affected by mutation, especially at long time scales. Thus we do not restrict the
properties of these new species to parasites, but let the system undergo general mutation. Beyond
the trivial question of whether pattern-formation is able to sustain itself at all, we are particularly
interested in how the structures change when their internal composition is spontaneously altered. We
study various extensions of the Gray-Scott model featuring a small number of autocatalyst species
that arise as mutations of an original. That is, they feature near-identical behaviour but have different
intrinsic properties.

For the models explored here, we shall assume an aqueous isothermal solution containing the
autocatalyst molecules, distributed on an effectively two-dimensional surface. A guiding principle in
our model development was to impose as little external constraint as possible in order to observe
self-organised behaviour. Replicators that are more probable to have existed in early life, capable of
storing more information and having inherently higher variability are usually modelled as a nucleic-like
polymer [SS03] and some models have explicitly built-in genetic information from which reaction
behaviour is derived, such as the cellular automata model in [AS06]. However, small autocatalysts
of more limited variability do exhibit essential mechanisms of replication. In this work a more
abstract perspective is adopted, in which replicators posses continuous variability but behave as
small molecules, emphasis being placed on their interactions. Similarly with the dynamics in [CB94]
and [CB97], the Gray-Scott model and its extensions presented here specify a limited availability of
substrate used in replication, and therefore introduce competition between species in fuel consumption,
but unlike completely generalised models [TK01], we only consider one type of substrate and thus
higher selective pressure.

Some forms of mutation assume an inherently faulty replication process in a network with a
fixed number of species. In such models each catalytic replication yields alternative products with
certain relative frequencies. Technically, the differential equations have a mutation term that acts
as a perturbation of population growth [SS92]. The form of mutation we chose to use was sporadic
appearance of a new species. Thus we have assumed a fixed number of species in the chemical systems
studied here, with new species filling existing “slots”. A similar approach was taken in [HS98] for a
non-spatial system but here we obtain different behaviour.

There has been much work regarding chemical systems undergoing mutation (invasion) only after
the initial system has reached steady state, both in well-mixed conditions, e.g. [HS98], or in the spatial
models mentioned earlier. This was argued in [HT03] to reflect ecological dynamics rather than
evolutionary ones. However few studies focus on the the effects of mutation on pattern formation
while far from steady state. While experiments with spirals in different states of formation have
been considered, we have only been able to find the previously mentioned paper relevant to our study,
where this issue was considered explicitly and which reports contrasting results with the ecological-like
studies. In our work, both scenarios are present but it is generally not assumed that the a priori (wild
type) system is internally equilibrated (at steady state) or is even assumed to not be in some scenarios.
Specifically, in the evolutionary experiments of the most general model presented here, it is essential
that mutants are introduced before steady state. Mutants that appear in stable patterns were mainly
considered in order to study immediate interaction between species, especially the perturbative effects
of mutation, however we point out where results differ for mutation far from steady state.

We obtain here that 2-species systems, either non-interacting or catalytically linked are highly
competitive, leading generally to at most one survivor but sometimes to the extinction of both.
Except for the simplest unlinked model, patterns usually overlap in an infection-like manner. While
subject to change due to species replacement, the patterns that are formed are still those of the original
Gray-Scott model. Evolutionarily speaking, multiple mutation events quickly lead to structure loss
due to the increase in autocatalyst self-preservation, which corresponds to homogeneous population
distributions.

Interestingly, the addition of a properly linked third species is seen to stabilise the system and
induce long-lived dynamic patterns, even if populations still overlap. We have also discovered a new
type of pattern which does not occur in the original model. These systems, while assuring permanence,
are rare however and until they are reached in an evolutionary setting, structure loss still occurs quite
quickly. This seems to be the overwhelmingly probable fate of these systems. As we present our results
we shall draw parallels and point out differences with the most relevant studies mentioned earlier, as
well as give a review in the final discussion of this report.

3



Chapter 2

The Gray-Scott model

Originally published in [GS84] in a non-diffusive isothermal formulation, its pattern-forming behaviour
was explored in the paper by Pearson [Pea93] across a range of parameter values. The physical
plausibility of this rich set of patterns was demonstrated experimentally in [LMOS93]. Other aspects
of this system, such as its information dynamics [LEE04] and the effects of noise perturbations [MS06]
were subsequently studied.

Regarding its behaviour in an evolutionary setting and in particular steady state structure
resistance to parasite invasion, the model was studied as a special case by Blomberg and Cronhjort
[CB97], where it was shown that spatial separation of catalyst clusters by means of a high null
concentration cut-off provides such resistance.

In the next chapters we shall extend upon this result by considering the case of mutants that lend
catalytic support to wild type species, in contrast to the strictly parasitic type in the aforementioned
paper.

2.1 Model

The chemical system is composed of only two active chemical species U and V , along with a (virtual)
inert product P . V is the species which catalyses its own replication through the conversion of the
substrate U .

U + 2V −→ 3V (2.1)

V
k−→ P (2.2)

All reactions are irreversible and such will be the case for all model extensions presented here. P
denotes inactivated V (incapable of further catalytic activity), which is eliminated from the system
by a flow process. The degradation rate k controls how fast the inactivation occurs. All rates in
this thesis are non-negative. Note that in actual systems, the reactions portrayed here may not be
elementary, but they are typically treated as such in these models and the derived differential equation
assume mass action kinetics.

A way to look at this system is that it describes a self-replicating molecule that consumes fuel
to multiply and which only “lives” for a certain amount of time. We shall also use the following
graphical notation to illustrate this point. The looped arrow corresponds to reaction (2.1) which
occurs at dimensionless rate 1 (omitted above). The diagram omits that U is used in the self-catalysis
and that V degrades, since all models shall use the same substrate and degrading catalysts.

Note that the arrows showing catalysed synthesis are ambiguous regarding the stoichiometry but
since all models presented here use an autocatalysis ratio of 2:3, the diagram is kept unencumbered.

The dynamics take the shape of a system of non-linear parabolic partial differential equations
composed of three terms, a reaction function, a diffusion term, and a flow process. This last
term regulates the inflow of chemical U in the system which prevents its exhaustion, as well as
the elimination of inactivated V . The system units and parameters have been non-dimensionalised

4



from the original model description in [GS84]. As a matter of notation, uppercase letters denote the
name of the species, while lowercase their concentration.

∂u

∂t
= −uv2 +Du∇2u+ F (1− u) (2.3)

∂v

∂t
= uv2 +Dv∇2v − (F + k) v (2.4)

The constants Du and Dc are the diffusion coefficients of U and V , respectively, and F is the
dimensionless feed rate. Following [Pea93], we set the initial conditions as (u, v) = (1, 0) in the entire
system space except a small area of concentration usually (u, v) = (0.5, 0.25), which is randomised
with Gaussian white noise to break the symmetry of the emerging pattern.

This initial-value problem was solved by means of the simple forward Euler explicit finite difference
method on a two-dimensional lattice of N ×N cells and physical size L (system length). Their ratio
is the discrete space step size ∆x = L/N . More on numerical issues in Appendix A. All simulations
shown in this study have been performed on a torus, i.e a grid with periodic boundary conditions.
We point out a need to have a sufficiently large initial population, otherwise the catalyst is unable to
take hold due to diffusion and degradation, a phenomenon seen to be true also for CAs [AS06]. This
will also become relevant in mutant invasion studies, as will be pointed out.

As a note on terminology, in the present work we will speak of pattern steady state to refer to a
qualitative stable structure, ignoring small fluctuations and spatial translations or rotations. To be
more rigorous one would refer to a periodic orbit reached by the dynamical system, but the informal
sense is used for its qualitative insight.

2.2 Pattern examples

Here we show a few examples of patterns formed by this starting model. Since we will be interested in
the behaviour of the self-replicator V (and its mutants later on), the animations showing the system
time evolution will trace this concentration alone. Maxima of catalyst overlap perfectly with minima
of substrate so plotting U would give the same patterns in the negative. From this perspective, one
could also say there is a one-to-one correspondence between (catalyst-)empty space and high fuel
concentration. This is often relevant in explaining the expansion and change in shape of structures,
as this empty, resource-rich space tends to be optimally occupied by asymptotically time-independent
patterns, i.e. those that reach steady state, or to be more accurate, a periodic orbit if one considers
translation across the torus space.

Given the small integration time steps ∆t, for convenience we record the system evolution using a
specific time length called generation, computed as

1 generation =

⌈
LN

∆t2

⌉
(2.5)

The term has been borrowed from population studies for its suggestiveness. The speed of system
evolution is determined by the discretisation constants L, N , ∆t, and the generation length was found
to scale well with these values, spanning a largely consistent relative time interval, unless ∆t was below
10−3 (which was deemed infeasible). Note that all simulation presented in this report use the same
constants. The number of integration iteration steps comprising one generation is given throughout
for reference. Its intuitive sense here is that of a time interval spanning visible change in the system
and the above scaling was found largely satisfactory, even if it has been sometimes doubled when
the interest was in long-term development. The convention used here is that the randomised initial
conditions, before the dynamics are let to run, is counted as generation 0.

Dv Du L N ∆t
1.4 · 10−9 2 ·Dv 0.01 150 0.05

Table 2.1: System parameters used for the Gray-Scott patterns illustration in this section. The lengths were
chosen in order to have the structural features at large enough size, with a grid of sufficient resolution but
small enough size to allow fast computation. The diffusion coefficient Dv was computed with the heuristic
described in Appendix A
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When speaking about the size of pattern feature on the grid, we sometimes use the notion of Moore
neighbourhood of a cell which defines the square of side 2r + 1 centred on it and we refer r to as the
Moore radius of this square, where the unit is one cell.

Figure 2.1: Examples of Gray-Scott patterns. These are frames from animations recording the time evolution
of different systems. The catalyst concentration [V ] is plotted in shades of green across system space. The
top label marks the generation number of the frame. The system parameters for all these are shown in Table
2.1. A generation has specific time length d LN

∆t2
e = 600 integration iterations.

The first pattern occurs for (k, F ) = (0.0634, 0.04) and is a mix of stripes and replicating spots. In the
classification in [Pea93], these are κ (stripes) and λ (repl. spots), as this k is near the frontier between these
two. In the top and bottom left of this frame we can see spots dividing.
The second pattern occurs for (k, F ) = (0.063, 0.062) and is composed of loops with stripes branching from
bends. Although not clear due to the low resolution in [Pea93] this would be type κ or µ. The outward
expansion of the structural features (waves) is slower than for the first pattern.

Figure 2.2: Examples of Gray-Scott patterns.
The first pattern is chaotic (Pearson ε), occurring for (k, F ) = (0.056, 0.02) and consists of dividing spots.
These spots regularly disappear when in dense clusters, as can be see in the upper-right where a group is
fading out, unlike the asymptotically time-independent type λ spots which fill the space and achieve steady
state.
The second pattern occurs for (k, F ) = (0.045, 0.01) and is made up of thin spirals that annihilate when
meeting. The spiral bodies exhibit irregularities (kinks) that nucleate new spirals. This corresponds to
Pearson type β. The diffusion coefficient Dv was reduced to 1.4 ·10−10 for this simulation, since it was slightly
too high for the pattern waves to properly take shape.
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The full extent of patterns that can be formed by this model is shown in the diagram below, of
much higher resolution than the one provided in [Pea93]. This is taken from a study by Robert Munafo
[Mun], which provides a very detailed inventory of structures in the Gray-Scott model, including an
interesting regime named “u-skate world”, after a travelling structure reminiscent of the glider in
Conway’s Game of Life.

Figure 2.3: Phase diagram of pattern formation in the original Gray-Scott for varying k and F parameters,
after [Mun] (axes added). The colour encodes the u concentration from dark blue (1.0) to dark red (0.0),
following the scheme in [Pea93], that also gave the names of the two trivial states reachable by the system, the
so-called “blue state” in the upper-left region, which contains a homogeneous mix of U and V at comparable
concentrations, and the “red state” on the right, containing only u = 1.0 and so, void of catalyst.
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2.3 Noise

In order to analyse the effect of stochastic perturbations on the emerging patterns, a noise term was
added to the dynamics in some experiments. Both uniform and Gaussian noise distributions were
used.

In keeping with standard practice [Kam07], random fluctuations intrinsic to chemical reactions
scale as the square root of the number of particles, so for a certain chemical concentration c we would
have the end quantity as

c = ĉ+ ν
√
n (2.6)

where ĉ is the quantity computed by a deterministic differential equation, ν is a random number
drawn from a normal distribution (the common case of Gaussian white noise) and n is the number
of particles in ĉ. Then c is the perturbed quantity which is obtained at that time step. Strictly, any
c > 1 after random perturbation is truncated to 1.

Since we concern ourselves with a continuous system, the above scaling presupposes an implicit
discretisation. That is, to express the real concentration c (x) ∈ [0, 1] as a ratio of number of particles
over the capacity of the grid cell corresponding to position x. Note that technically speaking, this
restriction from real to rational numbers is already effected by finite computer representation. We
thus make the above equation more explicit as

c(x) = ĉ(x) + λν ·
√
ĉ(x)

nmax
, ∀x ∈ Ω ⊂ R2 (2.7)

where Ω is the system space domain, and λ is an extrinsic noise amplification parameter since we
wish to control the strength of these fluctuations.

Thus we need to decide values for two parameters, the standard deviation σ of the normal
distribution from which ν is drawn and the grid cell capacity nmax. In order to obtain the scales
of these in a less arbitrary way, we turn to dimensional values in [LMOS93] for some orientation.

The stochastic process that yields ν values is the Langevin force L(t) equating Gaussian white
noise. As such, its variance is given as

σ2 = 〈L(t)2〉 = 2γkBT (2.8)

for continuous time t, where γ is the damping coefficient in the corresponding Brownian motion
equation and is inversely proportional to the diffusion coefficient D. Here we set it as γ = D−1. We use
the temperature of 303.15 K from [LMOS93] and obtain σ2 = 8.3766 · 10−21 ·D−1 , but approximate
to

σ2 =
10−20

D
(2.9)

Regarding maximum cell capacity, this needs to be taken as a function of the space discretisation
step ∆x = L/N , where L is the system size (length) and N is the number of cells comprising a side
of the square 2D grid. For an estimation of the number of particles that would be contained in the
entire reactor, we take sizes from [LMOS93], where the volume of the chamber was 7.6 ·10−2 ml. Since
we are dealing with an aqueous solution, we take the reference density as a tenth of the number of
water molecules per ml, i.e. 3.34 · 1021. So then the (three-dimensional) reactor capacity is CR = 1020

particles approximately, and we take a truncated linear density 3
√
CR ≈ 106. Even if simulations may

portray grids that would be physically implemented with larger chambers, we set this value as the
maximum value. Note that this discretisation only comes into play when noise is present and does
not otherwise influence computations so its level of rigour is not essential. Then we simply set

nmax =
(

∆x 3
√
CR

)2

(2.10)

To get an intuition for these values, in many simulations here we have set ∆x = 6.67 · 10−5

which gives 4489 molecules per grid cell after the above formula. We stress again that his is an
ad-hoc discretisation and unrelated to the rationale in choosing the concentration cut-off discussed in
Appendix A.

In deciding how strong the noise should be in a realistic setting, the amplification parameter λ was
set between λmin = 105 and λmax = 106. Anything below would have no noticeable effects and higher
values gave unreasonably strong noise. To simplify notation when specifying noise strength, we shall
use the notation λ̄ = λ

λmax
and speak of adjusting the noise level λ̄ in the range [0, 1].
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Besides the normal distribution described above, experiments were also performed using a uniform
distribution U (−σ,+σ). Although uniform noise of reasonably high strength manages to fragment the
patterns more than the Gaussian, no essential destruction of these took place for the parameter values
tried. The more natural Gaussian white noise which was used throughout this study was consistently
seen to have little to no impact on the overall shape of these structures.

Effects of noise on the Gray-Scott system have been previously investigated in [LHMPM03] where
it was seen to cause shifts between pattern types if the reaction parameters were set at the frontier
between these, and in [MS06], where the number of structural features (spots and stripes) would vary
as a function of noise strength. In this study we have found only a few cases of dynamics change due to
noise, presented in special cases of the models. Beyond these results, noise influence was not pursued
since it was seen to have essentially no impact on pattern formation in the context of evolution. Hence,
while less chemically rigorous, deterministic dynamics have been used in general (besides the initial
randomisation of initial conditions).
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Chapter 3

Simple mutation

3.1 Model

This is a very simple extension of the Gray-Scott model, one that features a near-identical copy of
the autocatalyst that appears at late time into the system’s evolution via some process of mutation.
There is no reaction between the wild type and mutant autocatalysts.

U + 2V −→ 3V

U + 2M −→ 3M (3.1)

V
k1−→ P

M
k2−→ P

The corresponding differential equations are as follows

∂u

∂t
= −uv2 − um2 + F (1− u) +Du∇2u

∂v

∂t
= uv2 − (F + k1) v +Dv∇2v (3.2)

∂m

∂t
= um2 − (F + k2)m+Dm∇2m

where u, v, m, and Du, Dv, Dm are the concentrations and diffusion coefficients of the three
species, respectively. As before, F is the fuel feed rate and k1, k2 are the degradation rates of the
autocatalysts into the inert species P . Here we named the two degradation rates k1 and k2 for
generality and simplicity of notation but in order to be more suggestive we will refer to them also as
kwt for the wild type autocatalyst V and kmut for mutant M . To point out the relation between the
two, we shall use ∆k = kmut − kwt in our discussion.

In all simulations presented here, we kept Dv = Dm since the mutant is only slightly different.
Different diffusion rates were tried but yielded no essential change in the dynamics. Hence the only
differing parameter between the two species is the degradation rate k. Here we will focus on the mutant
and talk about an advantageous degradation rate when ∆k < 0 and disadvantageous when ∆k > 0.
We may use such a designation since obviously a lower degradation rates permits the autocatalyst to
remain and replicate in the system longer.

10



3.2 Simulations

We considered the starting wild type species V in two pattern regimes, spirals and spots, and for these
mutants with both advantageous and disadvantageous degradation rates. The mutation perturbation
(or “drop”) was placed without subtracting it from the wild type catalyst quantity, i.e. vt+1(x, y) =
vt(x, y), when placing a concentration µ of mutant at coordinates (x, y) and time t. This was in
order to focus more on species interaction and is also justified by the more plausible small mutant
perturbations, which have low impact on wild type levels. This drop was placed in the system after
the wild type formed patterns at either a minimum or maximum of wild type concentration.

In order to see how spread out a pattern is, i.e. how much space is occupied with the spatial
structures of a certain species X, we use a very simplistic measure. Namely, we are interested in the
number of cells that have “peaks” in concentration, that is, have a sufficiently higher than average
concentration. This significant difference is discriminated by the mean absolute difference, since the
population variance was found to be too restrictive:

δ(x) =
1

N2

∑
i,j

|xi,j − x̄|

where x̄ is the average X concentration and N is the size of the grid. Then we simply construct
the counting measure ρ : R2 → N as:

ρ(x) = |{xi,j : xi,j > x̄+ δ(x)}| (3.3)

For a trivial steady state with x = const. this measure is obviously null. We shall use this measure
whenever it is more telling than a total concentration plot of the catalyst species. In the example
to follow, tracing the relative spread of a species was considered relevant. When quantities are more
relevant or when the spread plots are ambiguous, the concentration evolutions will be shown.

Now will follow the results of a few simulations. The system used had a grid of size N = 150, a
physical size of L = 0.01, and periodic boundary conditions. For integration a time step ∆t = 0.05
was used and the diffusion coefficients were taken Dv = Dm = 1.4 · 10−10, with Du = 2 ·Dv as usual.
A generation has the specific length d LN

∆t2
e = 600 integration iterations.

The initial conditions are always a system with u = 1 and v = 0 except for a region of 20 × 20
cells where u = 0.5 and v0 = 0.25. To reduce some of the symmetry in the initial pattern, we add
Gaussian noise of level λ̄ = 0.5.

Due to this, the simulations have a certain degree of randomness, however the essential behaviour
is reproducible for the same parameters.
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Simulation 1 The spirals regime corresponds to F = 0.01 and kwt = 0.045. The mutant placed
had an advantageous degradation rate.

Figure 3.1: Movie frames from a simulation in the spiral patterns regime (in order left-right, top-bottom),
featuring a mutant introduced at generation 50, which gradually spreads and occupies more space. Wild type
(green) and mutant (red) concentrations are plotted. The mutant has an advantageous degradation rate with
∆k = −0.002, the initial drop has concentration µ = 0.2 and Moore radius dµ = 1 and placed at a non-null
minimum of v.
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The small mutant perturbation placed at low wild type concentration slowly spreads occupying
more space. In this pattern regime, colliding wave fronts annihilate each other and this also holds
between species. Initially, the spirals the mutant formed were destroyed by colliding with those of
the wild type but nucleation sites managed to survive, generating subsequent spirals. Below is the
ρ-spread of both species over the entire run of the simulation.

Figure 3.2: Spread of autocatalyst patterns of the wild type (blue) and mutant species (red) as cell
percentages, measured with ρ. The trend of gradual mutant takeover is fairly obvious. The fluctuations
are due to spiral annihilation, as seen in the frames above.
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Simulation 2 Here we look at the evolution of a mutant at a degradative disadvantage. In all the
simulations that were ran for mutants with ∆k > 0 placed in small drops (low µ and dµ) the outcome
was the disappearance of the mutant.

Figure 3.3: Simulation frames in the spiral patterns regime (left-right, top-bottom), featuring a mutant
introduced at generation 50, which gradually disappears. Wild type (green) and mutant (red) concentrations
are plotted. The mutant is not able to replicate and spread for very long, while being forced out of the system
completely by generation 130. The mutant has a disadvantageous degradation rate with ∆k = +0.002, the
initial drop has concentration µ = 0.2 and Moore radius dµ = 2 and placed at a non-null minimum of v.

Figure 3.4: Spread of autocatalyst patterns of the wild type (blue) and mutant species (red) as cell
percentages, measured with ρ. The mutant is not able to remain in the system for too long due to its
higher degradation rate and initial disadvantage of occupying a limited space.
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Simulation 3 We are interested in the dividing spots regime due to its stability. This corresponds
to F = 0.04 and kwt = 0.065. Dv is also increased to 1.4 · 10−9. The mutant had an advantageous k.
A generation has length 2 · d LN

∆t2
e = 1200 iterations since the dynamics in this regime are slower.

Figure 3.5: Frames from a simulation in the dividing spots regime (in order left-right, top-bottom), featuring
a mutant introduced at generation 50, which gradually spreads and occupies more space. Wild type (green)
and mutant (red) concentrations are plotted. Due to k deviation, the mutant forms stripes and gradually
pushes away the V spots. The mutant has an advantageous degradation rate with ∆k = −0.002, the initial
drop has concentration µ = 0.3 and Moore radius dµ = 3 and placed at a non-null minimum of v.

A plot of the catalyst spread ρ is omitted since the trend is quite obvious, with the mutant gradually
taking over the space from the wild type. The size of the initial mutant drop needed to be larger
than in the spirals regime and the concentration slightly higher for the mutant to be able to spread,
otherwise the mutant very rapidly degraded out of the system. Interestingly, if the size of the drop
was unreasonably large, e.g. dmut = 9 the mutant was also unable to take hold. The reason was
that due to its size it overlapped with existing wild type spots and, since both catalysts consume the
fuel U , the two species disappeared in those areas of faster use. What was left of the mutant was
insufficient for further spread.
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Simulation 4 As before, we look at the evolution of a disadvantaged mutant. The system is
otherwise the same

Figure 3.6: Frames from a simulation in the dividing spots regime (in order left-right, top-bottom), featuring
a mutant introduced at generation 50, which gradually disappears. Wild type (green) and mutant (red)
concentrations are plotted. The mutant introduced at generation 150 very quickly disappears from the system
The mutant has a disadvantageous degradation rate with ∆k = +0.002, the initial drop has concentration
µ = 0.5 and Moore radius dµ = 5 and placed at a non-null minimum of v.

The concentration and size of the mutant perturbation were increased farther in this simulation
but even at higher values the mutant was always unable to reproduce and degraded out of the system
in a few generations.

These simulations show that between the two species there is mainly a competition for resource-rich
space, the regions of structure formed by each being mutually exclusive and slightly repulsive. It
was also apparent that only mutants with lower degradation rate were able to survive after being
introduced.

Given this competition for space and by looking at various simulations, we deduce that the initial
size of the mutant perturbation is important in deciding if the new species manages to establish a
hold in the system and replicate, with extreme values being problematic. We therefore performed a
sweep of (µ, rµ) parameter space to map the values yielding surviving mutants.
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3.3 Parameter space sweep

In this sweep we look for mutant “survival”, which is used here in a restricted sense, namely that the
mutant managed to gain a hold on the system and self-replicated for a significant time. This includes
cases where the mutant dies out eventually, alongside possible cases where it remains in balance with
the wild type catalyst (up to long simulation times). As was seen in various simulations, if a mutant
does not achieve this hold it very quickly disappears due to degradation and diffusion, hence the
importance of this initial step. We considered mutants with ∆k < 0 since one with a disadvantageous
degradation rate was never seen to take hold.

To account for the initial randomization, each parameter combination is run through 10 simulations
and the frequency of survival is recorded.

Algorithm 3.1 Simple Mutation Survival Sweep

for µ ∈ {0.1, ..., 0.5} and dmut ∈ {1, ..., dspot = 8} do

Initialize()
for run = 1, ..., 10 do

repeat
if (wt pattern steady state) then

Introduce Mutant(kmut, position))
end if
Simulation step(())

until ENDTIME

if |{(i, j) : mi,j − ε > 0}| 6= 0 then . ∃ cells with mutant
Count Survivor Case(())

end if

end for
Record Survivor Frequency(µ, dmut)

end for

The wild type pattern steady state is reached by generation 150 in this system and the mutant
succeeds or fails to take hold by generation 200 (ENDTIME). ε is the effective null concentration.
The position at which to insert the mutant was set to a non-null minimum concentration of v, a
maximum of v, and random. Results for these three sweeps are below.
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Figure 3.7: Frequency diagrams of mutant survival cases after placing the mutant at (left) mini,j(v), (centre)
maxi,j(v), and (right) rnd(i, j). The values are averaged over 10 runs for each combination of concentration
µ and Moore radius dmut. ∆k was taken to be −0.002. For reference, the radius of a spot is dspot = 8 and the
distance between spots is about 5.

From the above frequency diagrams one can distinguish what was hinted at through simulations
run for a mutant with ∆k < 0 placed in this regime, namely that it is able to take hold in the system
only for a narrow range of concentrations and sizes. The most favourable situation is when the mutant
drop is placed in between wild type clusters, at a minimum of v. This way, this initial perturbation
has more space available to spread. However, if the initial drop is larger than the inter-spot distance
this becomes problematic as described before.

A sweep was performed for a mutant with ∆k = +0.002 but this yielded only 1% survival for only
a few parameter combinations, enforcing the previous observations that a disadvantaged mutant is
unable to establish itself in the system.

One thing to note is that for this model, when a mutant is introduced at wild type steady state,
it has a considerably lower chance of establishing itself initially, whatever the end outcome.
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Chapter 4

Interacting catalysts

4.1 Model

Building on the previous model, we add interactions between the wild type and mutated versions of
the autocatalyst. Specifically, we allow for the two chemical species to provide catalytic support for
the synthesis of the other.

The experimental realisation of a similar system was first reported by [LSYG97] as a cooperative
2-species cycle composed of self-replicating coiled coil peptides, however the molecules in question had
quadratic autocatalysis and consumed three types of building material for replication and were also
not described to degrade for the duration of the experiment. As we shall see, the model presented
here exhibits essentially different behaviour, marked by general competition.

The question arises of how the two catalyst versions would interact with the substrate and each
other. Here we considered that, since the mutation brings about only a minute change in the molecule,
the two catalysts should interact in a largely similar manner with the substrate, hence we specifically
allow for the concomitant binding of two differing catalyst molecules, which leads to two possible
reactions products, namely the replication of one or the other catalyst species. We assign to these two
possible evolutions reaction rates r1 and r2. We could think of these as the rates of received catalytic
support for V and M , respectively. Below are the reaction scheme and corresponding differential
equations:

U + 2V −→ 3V

U + 2M −→ 3M

U +M + V
r1−→ 2V +M (4.1)

U +M + V
r2−→ 2M + V

V
k1−→ P

M
k2−→ P

Here, for simplicity, the mutant M degrades into the same inert species as the wild type V as this
only serves to remove them from the system. This reaction scheme could be classified as an elementary
hypercycle composed of two replicators [ES77].
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∂u

∂t
= −u

(
v2 +m2 + (r1 + r2) vm

)
+ F (1− u) +Du∇2u

∂v

∂t
= u

(
v2 + r1vm

)
− (F + k1) v +Dc∇2v (4.2)

∂m

∂t
= u

(
m2 + r2vm

)
− (F + k2)m+Dc∇2m

Ignoring the differences in degradation rates, the scheme features an interaction between the
substrate and a joint quantity of catalyst. Following this line of thought, the following constraint
was imposed:

Constraint 1:
r1 + r2 = 2 (4.3)

This yields a change in fuel as a function of the joint catalyst concentration. More precisely, the
fuel rate can be written as:

∂u

∂t
= −u(v +m)2 + F (1− u) +Du∇2u

While this constraint is artificial, it was applied assuming that the species are very similar. So the
relation captures the way they interact with the fuel as a single quantity, as opposed to emphasizing
separate behaviour. It was seen in all models starting with this one that outcomes were determined by
the comparative values of ri (i.e if r1 < r2 or conversely), not their magnitude. So this constraint was
not seen to obscure behaviour. The one exception to this found will be pointed out as a special case
of this model. Technically, it also serves to relate the two possible reaction outcomes as the catalytic
support rates become interdependent, thus resulting in parameter reduction.

We now have two parameters that govern the interaction of catalyst species, degradation rate
and received catalytic support, namely rates r1 and r2. We proceed to test how species of varying
parameter values interact with each other.

4.2 Mutation outcomes

As a preliminary investigation of the impact of the two parameters on species interaction, we considered
one mutation event, specifically the placing of a low concentration (µ = 0.2) and low-spread (Moore
radius rµ = 2) quantity of mutant catalyst at a peak of wild type catalyst, once its pattern had
reached steady state. A system with periodic boundary conditions and with the following parameters
was used:

Du F L N ∆t
2 ·Dc 0.04 0.01 150 0.05

Table 4.1: System parameters for single mutation outcome sweep.

The original (wild type) catalyst was always the same: kwt = 0.065, which along with F places it in
the dividing spots regime, and diffusion coefficient Dc = 1.4 · 10−9. The initial catalyst concentration
was randomised using Gaussian noise, as in the previous model simulations. The mutant always has
the same diffusion coefficient, the rationale being that small deviations in chemical properties should
not lead to changes in diffusion. Slightly differing coefficients were tried, however, but had no effective
impact on the dynamics. The sampling of values was rather sparse, as the apparent symmetry was
hinted at through the various simulations.
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Figure 4.1: Scatter plot in parameter space of single mutation outcomes (dots), classified by the surviving
species: white circles - wild type survived, blue circles - mutant survived. ∆k is the change in mutant
degradation rate with respect to the wild type, i.e. kmut = kwt + ∆k. Rates r1 and r2, which correspond to
received catalyst support of the wild type and mutant, respectively, are set at the beginning of each simulation
and obey Constraint 1, therefore only r1 is needed for the plot.

In all simulations performed with Constraint 1, only one catalyst species remains as t→∞, as the
mutant either replaces the wild type or disappears from the system. Indeed, the two parameters lie in
symmetric balance, advantage of one species being conferred through lower degradation rate or higher
received catalytic support. The case corresponding to identical species (central dot in the scatter plot
above) yields a wild type survival outcome. This is due to the factor of “spatial hold”: the introduced
minute mutant quantity with no intrinsic advantage in chemical parameters is not able to spread and
take a hold inside the system, so it degrades out. Below are a few representative simulation examples
to illustrate the behaviour. All are performed with the system described above and start with a wild
type in the sots regime, i.e. kwt = 0.065. A generation has length 2 · d LN

∆t2
e = 1200 integration

iterations.
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Simulation 1 We look at a mutant with advantageous k and r, introduced at a maximum of wild
type pattern concentration, once this has achieved steady state.

Figure 4.2: Frames from a simulation in the dividing spots regime (in order left-right, top-bottom), featuring
a mutant replacing an existing species. Wild type (green) and mutant (red) concentrations are plotted. The
mutant very quickly takes over after being introduced at generation 180. Its concentration peaks co-locate
with the existing pattern but leads to their rapid degradation. The mutant has an advantageous degradation
rate ∆k = −0.001 and received catalytic support r2 = 1.8, the initial drop has concentration µ = 0.2 and
Moore radius dµ = 2 and placed at maxi,j(v).

Figure 4.3: Spread of autocatalyst patterns of the wild type (blue) and mutant species (red) as cell
percentages, measured with ρ. This shows the very fast species replacement after the mutation event at
generation 180.
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Given both the replicative and catalytic advantage, the mutant is able to quickly replace the wild
type. This behaviour is the same for cases ∆k < 0, r1 = r2 = 1, and the case ∆k = 0, r1 < r2, the
speed of replacement being dictated by the difference in parameters. Where the mutant perturbation
is placed has little importance, as it very quickly co-locates with the existing patterns (“infects” them).

Simulation 2 In this simulation we tested a lower degradation rate but disadvantageous (lower)
received catalytic support r2 = 0.5, which implies a given support of r1 = 1.5. Since the behaviour
here is quite obvious, a spread plot is omitted.

Figure 4.4: Two moments from a simulation in the dividing spots regime (in order left-right, top-bottom),
featuring a mutant failing to spread. Wild type (green) and mutant (red) concentrations are plotted. While
the mutant spot co-locates with the wild type’s, it is unable to spread farther and quickly degrades. The
mutant has an advantageous degradation rate ∆k = −0.001 but a disadvantageous received catalytic support
r2 = 0.5, the initial drop has concentration µ = 0.2 and Moore radius dµ = 2 and placed at at generation 180,
at a maxi,j(v).

The same behaviour is obtained in the other cases of high mutant disadvantage, as can be seen in
the mutation outcome diagram. The speed of mutant disappearance is influenced by the difference in
parameter values.

Given that the model displays the behaviour of species replacement, we then proceeded to simulate
multiple mutation events in succession, as investigation of an evolutionary process.
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4.3 Evolution simulations

We considered systematic mutant placements, assuming only one other catalyst species present during
placement. The simulations were stopped if both species disappeared from the system.

We wished to observe any tendency of the evolutionary process, so we performed long simulations
in which we allow one species to form patterns in the entire available space, then introduce a mutant
of small concentration µ = 0.2 and Moore radius rµ = 2 and let sufficient time pass until only one
species remains. Then the procedure is repeated until the limit time is reached.

We varied both degradation rate k and received catalytic support rate r, since it was fairly obvious
that were only one to vary, the survivors would simply be those with the more advantageous value. We
also allowed degradation rate values to fall outside the pattern-yielding range. Below is the algorithm
of the simulations

Algorithm 4.1 Evolution Simulation 1

Initialize()

repeat

Simulation step(kwt, kmut, rwt, rmut)

if (another MTIME generations passed) then

if (
∑
vij ≤ ε and

∑
mij ≤ ε) then . system “destroyed”

STOP

else if (
∑
vij ≤ ε xor

∑
mij ≤ ε) then . only one survivor

Record(survivor)

kmut ← kwt + ∆k ∈ N
(
0, σ2

∆k

)
. truncate if outside range

rmut ← rwt + ∆r ∈ N
(
0, σ2

∆r

)
rwt ← 2− rmut . Constraint 1 imposed on wild type

Introduce Mutant(kmut, rmut, random position)

end if
end if

until ENDTIME

Algorithm notes:

1. The survivor is the species with non-null concentration, designated as “wild type”.

2. The simulation assumes at most one catalyst species survives, so the trivial equilibrium case was
excluded.

The systems used in these simulations were

sim Du F L N ∆t
1,2 2 ·Dc 0.04 0.01 150 0.05
3,4 2 ·Dc 0.04 0.01 300 0.01

Table 4.2: System parameters for evolution simulations of the interacting catalysts model. For the last two
simulations, precision was increased as instabilities in the integration were suspected to occur.

And the catalyst parameter ranges were the ones in the following table.
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sim k r σ∆k σ∆r k0
wt F ENDTIME

1 [0.06, 0.07] [0.1, 1.9] 0.004 0.05 0.065 0.05 105 gen.
2 [0.06, 0.07] [0.1, 1.9] 0.002 0.01 0.065 0.05 105 gen.
3 [0.055, 0.075] [0.5, 1.5] 0.002 0.2 0.065 0.04 103 gen. (*)
4 [0.055, 0.07] [0.8, 1.2] 0.002 0.025 0.0657 0.04 3 · 103 gen. (*)

Table 4.3: Parameters of the system used in the above simulations. The rate r0
wt of the initial species was

always 1. The standard deviations are the ones of the normal random process that generates mutant values.
(∗) The increased precision constrained the length of the simulation as the integration became much slower
(generation size increased to 3 · 105 integration iterations from only 600 iterations).

The range and variance of r were set to both wide and narrow to see the impact of constraining
one of the parameters. The fuel feed rate values were chosen to allow for a larger range of patterns.
See the phase diagram in the original model for reference.

Below are the positions in parameter space of the survivors of these simulations

Figure 4.5: Trajectories in parameter space of surviving species in evolution simulations 1, 2 (top row) and
3, 4 (bottom row). The initial species is marked with a larger green dot while the last species is marked with
a red diamond. Vertical lines (equal k) connect species that survived through successive mutation events but
had their r parameter altered by imposing Constraint 1. The captions give the number of unique species. The
large number of clustered points in the extreme left and right of the first two plots is due to parameter values
k being truncated to the limits of the allowed range. One can see for simulation 4 how the survivors have a
clear overall direction towards lowest k value (increasing label numbers to the left).

A common situation observed in these simulations is that a species would survive more than one
mutation event but would have, due to Constraint 1, suffered change in its r parameter. As this rate is
an extrinsic property defined in relation to the other catalyst, two species with the same degradation
rate k and different received catalytic support rates r are considered identical.

From the above plots it is discernible that, given a narrow range and/or narrow variance of r
(simulations 2, 4 - right column), the survivors are headed in the direction of minimal k, as evidenced
by the clustering of the data series in that region. When r is given a large range and variance
(simulations 1, 3), the survivor trajectories appear as random walks. Variance here has the higher
impact, as the jumps in values become much larger for k.
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Evolution example We reproduce here movie frames from evolution simulation 3.

Figure 4.6: Movie frames from evolution simulation 3 (in order left-right, top-bottom). Colours alternate
between designated wild type and mutant. A mutant was introduced every 100 generations, if only one species
was present. The patterns mostly stayed in the spots regime. Key moments were reproduced here. At gen.
101 : a mutation that fails; gen. 201-204 : a mutant takes over; gen. 301-304 : mutant takeover; gen. 501 :
a previous mutant took over and formed a different pattern, now another mutant is introduced. Subsequent
mutations brought the system back into the spots regime.
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4.4 Special cases

We consider here two cases where one of the received catalytic support rates r is effectively null. The
simulations were done with the initial species in the dividing spots regime, as before. As reference for
the placement of mutant concentrations, the radius of the Moore neighbourhood occupied by a spot
was taken from the simulation frames as dspot = 8.

Case 1: mutant at advantage

Setting r1 = 0 yields an autocatalyst mutant that only receives catalytic support from the wild type
but gives none itself. Perturbation values were taken from “reasonable” intervals of concentration
µ ∈ {0.1, ..., 0.5} and Moore radius dµ ∈ {1, ..., dspot = 8}. Generally, in this case a mutant will either
disappear or destroy the system.

If the mutant has an advantageous (lower) degradation rate, it will spread and co-locate with the
wild type (the spots overlap) and the two species subsequently disappear in tandem. This behaviour
is actually that of the parasites studied in [CB97], which will be discussed further in the next, more
general model. The placed concentration of mutant initially “infects” the closest clusters, leads to
their complete joint degradation, then spreads to the next closest wild type clusters. The process is
repeated until both species completely disappear from the system, an outcome which we call “system
destruction” since it corresponds to a trivial steady state of u = 1, v = m = 0. What is remarkable in
this behaviour is the timing of cluster destruction. Only after the closest, most infected (with highest
mutant concentration) clusters completely disappear, do mutant levels increase in the surrounding
clusters and start degrading themselves, and so on. Such an evolution is shown in the frames below.

Figure 4.7: Frames of a simulation in which the mutant leads to system destruction. Wild type (green) and
mutant (red) concentrations are plotted. At generation 139 the system is in steady state featuring wild type
clusters. At generation 151 a mutant drop of concentration µ = 0.2 and Moore radius of dµ = 2 is placed
near coordinates (42, 118), a minimum of wild type concentration. At generation 154 the mutant has infected
(co-locates with) the closest 4 clusters, starting their degradation. At generation 191 the initially infected
clusters have disappeared and the closest 6 have had a sudden increase in co-located mutant. Very quickly
the system is led to the complete degradation of both catalyst species.
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However, rather extreme conditions were found in which a mutant with an advantageous
degradation rate managed to replace the wild type and subsequently occupy the system by itself,
though not really forming patterns. This was in a different regime, for a fuel feed rate F = 0.008
(≈ 0), kwt = 0.03 and kmut = 0.029 (≈ kwt). Some frames of this simulation are below.

Figure 4.8: Frames of a simulation in which the mutant takes over. Wild type (green) and mutant (red)
concentrations are plotted. By generation 299, the wild type spatial distribution arrived in a pattern orbit. At
generation 301, A drop of µ = 0.2 and dµ = 2 was placed at a maximum peak of wild type, near coordinates
(85, 128). The region occupied solely by the mutant expands pushing away the wild type until it completely
disappears from the system.
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Case 2: mutant at disadvantage

The typical case for a parasitic mutant with a disadvantageous degradation rate is that it will spread
and co-locate with (“infect”) the wild type spots but will eventually degrade and disappear. For such a
mutant an interesting exception was found as well. Namely a mutant with kmut = kwt+0.0005 = 0.0655
(≈ kwt), high concentration and spread, placed in a steady state of wild type spots managed to form an
independent spot (no co-location), which remained stable up until the simulation end. It is important
to note that this behaviour was only found to be attainable by no longer applying Constraint 1 and
setting r1 = 0 and r2 = 1.

The evolution of this simulation is presented in figure 4.9 below. In these frames, the independent
mutant spot degrades the surrounding spots in much the same way as infection did in the other
simulations. In the concentration cross-sections plotted at generations 169 and 196 it can be seen
how the neighbouring peaks of mutant rise and interact with the wild type peaks, leading to their
destruction and leaving space for newly divided clusters to fill, though the mutant is unable to divide.
Thus a state of dynamic balance was achieved in which the two nearly identical catalysts both formed
patterns independently and shared the available space. This event is however rare in more realistic
evolutionary scenarios, due to larger parameter deviations, lower mutation concentrations and spread,
and random mutant placement. And as we will show in the next section, this balance is unstable
except for certain limit values, leading towards species replacement, given enough time.

Conversely, r2 = 0 yields a mutant that only gives catalytic support to the wild type but receives
none itself. This invariably leads to an inserted mutant not surviving, i.e. degrading out of the system,
for placements of concentration µ ∈ {0.1, ..., 0.5} and Moore radius dµ ∈ {1, ..., dspot = 8}. For this
case, only mutants with ∆k = −0.002 were inserted at a peak of wild type concentration.
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Figure 4.9: Simulation frames and 1-dimensional concentration plots. Wild type (green) and mutant (red)
concentrations are plotted in the left column and the concentrations along the y axis for fixed x = 105 are
plotted in the right, including fuel (black). At generation 151, after the wild type has reached steady state,
a drop of mutant of high concentration µ = 0.5 and radius dµ = 4 is placed at a maximum of wild type
concentration, which it very quickly degrades and takes its place. It then slowly starts degrading neighbouring
spots which are replaced as farther ones divide in the gaps. However, the mutant spot does not divide itself
but only shifts position, though it tries to divide at e.g. generation 501. This behaviour repeats with no sign
of change until simulation end.
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4.5 The aggregate pattern case

We return to the special case in the previous section, where the mutant had formed an independent
(non-colocating) spot and perform a series of experiments to investigate the behaviour of such
aggregate structures. In particular, we wish to investigate the conditions in which such aggregate
patterns might appear and how sensitive these are under perturbation and evolutionary scenarios (i.e.
catalyst parameter change). We note again that this special case is in violation of Constraint 1. This
may be justified by some silent braking of reaction rate r1, but we do not pursue such things here,
given the abstraction of the model.

The asymmetry of the species interaction, specifically the degradation only seen in the wild type
(of lower k), is due to the parasitic nature of the mutant. A value of kmut ≤ 0 leads to faster mutant
takeover (without infection).

After a preliminary exploration, it became apparent that the parameter ranges that permit this
behaviour are very narrow, with r1 ≈ 1 and r2 ∈ [0, 0.18). Outside of these, the interacting falls in
the previously described cases (parasitic infection and at most single species survival). Furthermore,
the aggregate is truly stable, with no w.t. degradation, only if the mutant is in the non-dividing spots
regime, and occurs only for a small range of difference in species degradation rate (see below). The
placing of the mutant also needs to be at a maximum of wild type concentration for it to have a good
chance of taking hold.

Why the aggregate illustrated in the previous section is not truly stable becomes clear in very
long simulations. In fact, the system remains in a metastable state characterized, as shown before,
by successive destruction and division of wild type spots, which continuously prevent the mutant
from dividing. However, given sufficient time, the introduced spot is able to divide once, after which
the subsequent divisions will occur at decreasing time intervals, at an almost exponential pace, until
finally the original species is forced out of the system. As such, in this case the initial single mutant
spot is sufficient for takeover.

Below is a typical plot of the quantitative evolution of the two species in a much longer simulation
with the same parameters as the one in Case 2 of the previous section, namely with F = 0.04,
kmut = kwt + 0.0005 = 0.0655, r1 = 0 and r2 = 1, with a generation equal to 600 integration
iterations. As usual, only the initial conditions feature randomisation, having no essential difference
between runs.

Figure 4.10: Total wild type (green) and mutant (red) concentrations. The mutant has been placed at
generation 300 with a concentration µ = 0.5 and radius dµ = 4 on a maximum peak of w.t. The large
oscillations in w.t. level are due to the continuous spot destruction and division. The very long plateau in
total mutant concentration is the metastable state, where no division occurs. Afterwards, each step in the
mutant curve represents one spot division.
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To better observe the interaction between species and to see how changes in conditions might affect
the metastable state, we perturb the prevailing wild type population, by clearing an area around the
mutant spot (w.t. concentration set to zero) when the state is reached to see how this spot behaves
given enough space. Below is a plot of a typical such simulation, having all parameters as in the
previous ones. As might be expected, the spot divides much sooner given the favourable open space
(devoid of competing wild type).

Figure 4.11: Total wild type (green) and mutant (red) concentrations. The mutant has been placed at
generation 300 with a concentration µ = 0.5 and radius dµ = 4 on a maximum peak of w.t. An area of Moore
radius 20 centred on the mutant spot has been cleared of w.t. at generation 500. The free space permits this
spot to divide much sooner, significantly shortening the metastable state and, consequently, the entire mutant
growth period (to half of that in the previous simulation, ending just after gen. 105).
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To see how the metastable aggregate pattern responds to stochastic perturbations we run
simulations with high Gaussian noise (λ̄ = 1), even though such intrinsic noise levels would not be
chemically realistic. This shortens the metastable state duration considerably. The fluctuations slow
down wild type division, giving the mutant a higher chance of multiplying since empty, fuel-rich space
is not occupied so quickly by the w.t. Below is the concentration plot of a typical such simulation.
It must be noted that if the noise is too high patterns are broken down and the introduction of the
mutant leads to the immediate disappearance of both species.

Figure 4.12: Total wild type (green) and mutant (red) concentrations in a noisy simulation. The mutant
has been placed at generation 500 with a concentration µ = 0.5 and radius dµ = 4 on a maximum peak of w.t.
The noise is Gaussian, with a level λ̄ = 1.0. Complete mutant takeover takes place much quicker, under 5000
generations, due to the stochastic perturbation of w.t. division.
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As mentioned before, a necessary condition for stable aggregate pattern formation is that the
mutant be in the stable (non-dividing) spots regime, given by k roughly in [0.067, 0.07] for F = 0.04.
Since these clusters do not divide and spread (no increase of its concentration surrounding the initial
cluster), there is no destructive interference with wild type clusters. The steady state of such a
combination looks as below and is completely frozen, up to translation (given the torus topology of
the system).

Figure 4.13: The steady state of the aggregate pattern composed of dividing spots (green), of kwt = 0.065
and a non-dividing mutant spot (red), of kmut = 0.067. The mutant had been introduced at generation 300 at
the peak of a wild type spot, which it destroyed and replaced. No subsequent destruction of the original spots
occurred and the system settled at about generation 700, when all wild type spots had achieved equilibrium
relative positions.
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Such a steady state is resistant to noise. This was tested on a steady state of a system with the
same parameters as the above illustration. At generation 1000, the system was subjected to very high
(effectively external) Gaussian noise λ̄ = 10.0 for a duration of 10 generations. This can be seen in
the first frame below, where the spots are fuzzy due to concentration oscillations. When the noise
is stopped, wild type spots shrink and disappear, to be replaced by dividing neighbours in a span of
about 100 generations.

Figure 4.14: Simulation frames showing the noise perturbation of the aggregate pattern steady state. The
top-left frame shows the system under high noise, with distorted (fuzzy) patterns, which takes place between
generations 1000-1010. The following two frames (top-right, bottom-left) show the disappearance of wild type
spots, followed by their replacement due to the division of remaining spots, almost complete before generation
1080 (bottom-right frame).
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Another limiting condition in the formation of aggregates is the difference in the degradation rates
of the two species involved, which cannot be too large, otherwise the mutant exhibits infection of
w.t. spots and subsequently degrades out of the system, as seen in the general case. This maximum
difference varies with the catalytic support r1 given by the mutant, as shown in the plot below. For a
fixed r1, the maximum differences (found by approximation) did not essentially vary with the starting
kwt. Note that this difference does not depend upon one of the species being in the non-dividing
regime (and consequently, that the aggregate being stable). Still, for this sweep a starting wild type
close to it was chosen.

Figure 4.15: Curve showing approximate values of the maximum difference in degradation rates ∆kc which
permits aggregate behaviour, as a function of r1, for a starting kwt = 0.065. This quickly shrinks to null for
r1 > 0.12. The values were found by running multiple simulations for each r1 to probe the critical ∆k value
by interval halving until 2-digit approximations were obtained.

To conclude this special case investigation, we can say that stable aggregates may be formed with
catalytically parasitic mutants within the non-dividing spots regime, which are introduced into a wild
type population of lower, but necessarily close, degradation rate. These non-dividing species must
appear second otherwise only replacement takes place, because dividing (expanding) patterns are
subjected to less competition from the non-dividing ones.
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As may be observed, this special case allows for an increase in k in a multiple mutation events
scenario. So evolutionarily speaking, this is in opposition to the tendency described elsewhere for the
surviving species to have diminishing degradation rates. However, as shown in the proof sketch below,
the direction of change with highest probability is always towards decreasing k values.

Claim. Evolutionarily, the degradation rate k tends to lower values within the aggregate case.

Proof sketch. Assume the evolution scenario Eaggr defined as:

1. without Constraint 1

2. fixed r2 = 1

3. jumps in degradation rate ∆k drawn from N (0, σ∆k)

4. new parasites use old ones: previous parasite offers r2 = 1 support to new mutant

5. evolution is a stationary stochastic process

So then what are the probabilities of left P (←) and right jumps P (→), respectively?
Let i denote the current species, j the introduced, and s the survivor (successor) species.
Assume without loss of generality the simplifying assumption

σ∆k =
∆kc

3
(A1)

This ratio gives the interval [ki −∆kc, ki + ∆kc] (centred at ki), which holds 99.7% of values
drawn from the jumps distribution, i.e. the newly generated species. We divide this interval in
three portions corresponding to outcome cases in the evolutionary process. As evidenced by the vast
majority of simulations, the survivor s of a mutation process is:

s =


i if ki < kj and kj − ki > ∆kc (1)

j if ki < kj and kj − ki < ∆kc (2)

j if kj < ki (3)

To be clearer, the current species i survives mutation for ki + ∆kc < kj (case 1), and is replaced
by the mutant for kj ∈ (ki, ki + ∆kc) (case 2) or kj ∈ [kmin, ki) (case 3), where kmin < ki −∆kc.
Observe that we do not consider stable aggregates with kj − ki ≈ ∆kc, since this stops the evolution
process. Note that the probability of generated values to fall in the subinterval (3) is equal to that of
the reunion of (1) and (2) and equal to 0.5 (probabilities of negative or positive jumps, respectively).

So we have the probabilities of each case as:

P ((1)) = 1
2 ·

0.3
100 = 0.0015 ≡ P (•) (no change)

P ((2)) = 1
2 ·

99.7
100 = 0.4985 ≡ P (→)

P ((3)) = 0.5 ≡ P (←)

One can easily see that even with variation of divisions (1) and (2) (lower k species always replace,
so (3) is fixed), jumps to lower values are always of probability 0.5 and the probability that the
current species surviving (no change in k) is never null (this would only happen for kj = ki = kamax,
the highest admissible value for non-dividing spots and patterns in general, but this implies ∆kc =
0 ⇒ kj − ki = 0 = ∆kc, which was excluded above). This also justifies the simplifying assumption
(A1) used here. So then we have:

P (←) > P (→), ∀ki ∈ [kamin, k
a
max] (4.4)

where [kamin, k
a
max] is the allowed range for aggregate patterns. Let n designate the number of

the current species and have the evolution process stop at both ends of this range. Then the above
implies

lim
n→∞

kn = kamin (4.5)

Thus we have a consistent direction of the evolution of species described by this model.
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4.6 Slight extension: full parametrisation

We now allow for the catalyst self-replication rates to take arbitrary values and also adapt Constraint
1 accordingly. This more general reaction scheme looks like

U + 2V
s1−→ 3V

U + 2M
s2−→ 3M

U +M + V
r1−→ 2V +M (4.6)

U +M + V
r2−→ 2M + V

V
k1−→ P

M
k2−→ P

with the corresponding differential equations:

∂u

∂t
= −u

(
s1v

2 + s2m
2 + (r1 + r2) vm

)
+ F (1− u) +Du∇2u

∂v

∂t
= u

(
s1v

2 + r1vm
)
− (F + k1) v +Dc∇2v (4.7)

∂m

∂t
= u

(
s2m

2 + r2vm
)
− (F + k2)m+Dc∇2m

While the self-replication rates s1, s2 are unconstrained, the mutual reaction rates r1, r2 depend
on the interaction between species, as in the previous scheme. Such as with Constraint 1, we seek to
capture the reaction of fuel and joint catalyst quantities. Hence, we equate the first reaction rate with
a quadratic form (obeying non-negativity of rates):

s1v
2 + s2m

2 + (r1 + r2) vm = (
√
s1v +

√
s2m)

2
(4.8)

and derive

Constraint 2:
r1 + r2 = 2

√
s1s2 (4.9)

We can easily see how this reduces to Constraint 1 for s1 = s2 = 1.
As a matter of range, given reaction rates r1, r2 ≥ 0, then r1 = 2

√
s1s2 − r2 ≥ 0, which means

r2 ≤ 2
√
s1s2 and symmetrically r1 ≤ 2

√
s1s2.

We would also like to see the impact of change in catalyst self-replication rates on the overall rate
of reactions. Of interest is the fuel feed term, since this reflects the variation in fuel use which occurs
upon mutation. We therefore set τ ≡ ts1 and rescale the system with respect to time and get:

∂u

∂τ
= −uv2 − s2

s1
um2 − r1 + r2

s1
uvm+

F

s1
(1− u) +

Du

s1
∇2u

∂v

∂τ
= uv2 +

r1

s1
uvm− F + k1

s1
v +

Dc

s1
∇2v (4.10)

∂m

∂τ
=

s2

s1
um2 +

r2

s1
uvm− F + k2

s1
m+

Dc

s1
∇2m

We do not rename parameters as the reduction in their number is not the aim and this formulation
is more suggestive. Here we chose to rescale time with respect to species S but the system is perfectly
symmetrical. We use this form of the PDEs in the evolution simulations, along with Constraint 2.
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4.7 Mutation outcomes

We wish to see for different parameter values which of the two species remains in the system after
the introduction of a mutant. We perform a sweep over combinations of these values. For these
simulations, a system with periodic boundary conditions and the following parameters was used:

Du F L N ∆t ENDTIME
2 ·Dc 0.04 0.01 150 0.05 1000 gen.

Table 4.4: System parameters for single mutation outcome sweep. 1000 generations was deemed sufficient
to allow for the disappearance of at least one species. One generation here equals 1200 integration iterations.

The original (wild type) catalyst was always the same, in the dividing spots regime: kwt = 0.065,
s1 = 1, with diffusion coefficient Dc = 1.4 · 10−9 for both species. The initial catalyst concentration
was slightly randomised using Gaussian noise, as in the previous model simulations. The mutant
perturbation introduced was always of concentration µ = 0.2 and Moore radius rµ = 2. For each
combination of parameters, the mutant was introduced at a point of maximum concentration, after
the original catalyst formed patterns across the entire available space. Then the simulation was left to
run for sufficiently long and the final outcome was recorded. A single simulation run (i.e. using a single
random seed) was performed for each parameter combination since it was seen that the outcome was
not sensitive to randomisation of initial conditions, as was the case in the non-interacting catalysts
model, where an outcome likelihood (frequency) plot was produced. Below is the diagram of the
outcomes in parameter space.

Figure 4.16: Scatter plot in parameter space of single mutation outcomes (dots), classified by the surviving
species. The colours represent as follows, green: wild type survived; blue: mutant survived; white:
quasi-equilibrium cases, where both species remained in the system up to the allotted time; red : both species
disappeared. Except for the quasi-equilibrium cases at the centre, the subvolumes of this space containing
the cases have been outlined with the semi-transparent envelopes featuring the appropriate colours. ∆k is the
change in mutant degradation rate with respect to the wild type, i.e. kmut = kwt + ∆k. Similarly, ∆s is the
change in self-replication rate. Rates r1 and r2, which correspond to wild type and mutant, respectively, are
set at the beginning of each simulation and obey Constraint 2, therefore only r1 is needed for the plot.
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The above volume of parameter space is divided into regions for which one species survives the
mutation event. Namely, a mutant has an advantage on the wild type in terms of reaction dynamics
if it falls either in ∆k < 0 (lower degradation rate), ∆s > 0 (higher replication rate), or r1 < 1 (offers
less catalytic help to the wild type and, due to Constraint 2, receives more itself). As can be seen from
the above scatter plot, quite predictably, there is a balance of outcomes between these parameters,
with the subvolumes corresponding to an all-advantageous mutant being populated with replacement
events and conversely, for advantageous wild types, with survival events.

However, there is also a subvolume comprised of cases where both catalysts disappeared, in the
region of low r1 - high r2, ∆s < 0, and ∆k > 0, in other words, for parasitic mutants that get more
catalytic help but offer little and which also degrade quicker, thanks to low replication rate and higher
k. When such a mutant is introduced into the system, the concentration peaks co-locate with the
wild type and both disappear, leading to the destruction of the system.

This is the behaviour of the parasites in the paper by Cronhjort and Blomberg [CB97], and is the
same as the special case illustrated in Figure 4.7 for the previous model. In fact, the single component
plus parasite model that the authors used in their simulations is a special case of the one here, obtained
by setting r1 = 0 and s2 = 0 (and to be rigorous, k1 = k2), as the model in the paper does not feature
parasite autocatalysis. However, r1 = 0 is sufficient to achieve the same behaviour.

The behaviour exhibited by this model is richer since it comprises the ones observed in previous
models, but does not add any novel phenomena, so animation frames for various mutation outcomes
were omitted. The replacement scenario allows for an equilibrium outcome, as evidenced by the
species with only minute differences near the centre of the above volume. However, these states were
seen to be transient in other simulations. Given enough time, they will resolve to a single survivor
replacement case. As mentioned before, an interesting phenomenon in the competition between species
is that space is an important resource. Even if the introduced mutant is identical with the existing
wild type, if its pattern does not initially spread over enough (free) space it will disappear.
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4.8 Evolution simulations

Our aim here, as before, is to observe the trajectory of surviving species in parameter space in order
to identify any tendencies of the evolutionary process. We have performed a number of simulations
using the algorithm described below, using different parameter ranges. Here we include the results of
these simulations.

Algorithm 4.2 Evolution Simulation 2

Initialize()

repeat

Simulation step(kwt, kmut, swt, smut, rwt, rmut)

if (another MTIME generations passed) then

if (
∑
vij ≤ ε and

∑
mij ≤ ε) then . system “destroyed”

STOP

else if (
∑
vij ≤ ε xor

∑
mij ≤ ε) then . only one survivor

Record(survivor)

kmut ← kwt + ∆k ∈ N
(
0, σ2

∆k

)
smut ← swt + ∆r ∈ N

(
0, σ2

∆s

)
rmut ← rwt + ∆r ∈ N

(
0, σ2

∆r

)
rwt ← 2

√
s1s2 − rmut . Constraint 2 imposed on wild type

Introduce Mutant(kmut, smut, rmut, random position)

end if
end if

until ENDTIME

As before, the most plausible scenario of mutation was considered that of normally distributed
deviation of small variance from the existing species’ attributes.

For these simulations, a system with the following parameters were used

Dc Du F σ∆k σ∆s σ∆r µ rµ L N ∆t
1.4 · 10−9 2 ·Dc 0.04 0.01 0.005 0.005 0.2 2 0.01 150 0.05

Table 4.5: Parameters of the system used in the above simulations. The starting parameter values were s =
r = 1 and k = 0.065. The standard deviations are the ones of the normal random process that generates mutant
values and µ, rµ are the mutant concentration and Moore radius of the introduced quantity, respectively.
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The first three simulations were set with wide value ranges in order to see any strong tendencies.
As it turned out, s and r values remained in the vicinity of 1. Small standard deviations were chosen
for the mutant generating process because mutation here was considered a slight variation of the
original but also to avoid hitting extreme values which lead to system destruction (complete decay of
both catalysts).

The parameters for the four simulations considered for analysis are

sim k s r ENDTIME survivors
1 [0.05, 0.07] [0, 10] [0, 2] 5 · 105 gen. 197
2 [0.05, 0.07] [0, 10] [0, 2] 5 · 105 gen. 134
3 [0.05, 0.07] [0, 10] [0, 2] 2 · 106 gen. 251
4 [0.06, 0.07] [0.9, 1.1] [0.8, 1.2] 2 · 106 gen. 129

Table 4.6: Parameter ranges for 4 Gaussian random walk simulations. The intervals are the limit values of
the parameters, to which any higher deviations are truncated. The length is measured in generations, with 1
generation being equal here to 1200 integration iterations.

All of the above simulations exhibited the same overall behaviour. The small number of catalyst
species recorded as survivors of mutation events is due to either the disappearance of both species or to
very minute differences in parameter values, which lead to extremely slow replacement processes that
exhaust the amount of time allocated. As a typical evolution example, below is the parameter-space
trajectory of the survivors in simulation 4.
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Figure 4.17: The trajectory in parameter space of surviving species obtained in simulation 4, in two
perspectives. The starting species is marked with the larger, green dot, while the species in the system
at the end of the simulation is marked with the larger, red dot. It is obvious that the majority of surviving
species had their degradation rate k at the minimum of the allowed range, with a few very short incursions
into greater values.

In order to test for tendencies in the data series, we look for deviations from a Gaussian random
walk assumption. The very obvious is the tendency of the degradation rate toward the lowest value.
There also seems to be a preference for r > 1, as evidenced by the distribution of the data series and
the one-point jumps into lower r values for the same s values. The points that vary only in r, an
extrinsic parameter, and are stationary in k and r are considered identical species since, as with the
last model, they are due to failed mutations only altering the received catalytic support rate through
Constraint 2. This situation occurred frequently when k arrived at the lower end of the allowed range,
as visible in the figure above, since subsequent decreases were neglected.

43



We also plot the histograms of the jumps in catalytic rates ∆s and ∆r between data points, as
well as the normal probability plots (quantile-quantile plots with a normal distribution as reference)
of these sets.
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Figure 4.18: Histograms (top row) and quantile-quantile plots (bottom row) of the distribution of jumps in
parameter values between consecutive points in the time series representing species parameters. The number
of bins is 32 (a quarter of the data series) and the histograms feature a superimposed normal distribution with
µ = 0 and σ = 0.005 (red curve), which is also used as reference in the Q-Q plots. It is easily seen that the
jumps do no match the normal distribution from which the evolution simulation drew the mutations. Indeed,
they are not normally distributed, as evidenced by both the histograms and the Q-Q plots, although one could
say that for a narrow range of values, i.e. (−0.003, 0.003), the jumps in r do follow a normal distribution with
fat tails. One can also note the central peak in s jumps, which holds a large number of null jumps.

An average over the 4 simulations shows that jumps in synthesis rate ∆s are roughly 50% zero,
while increases and decreases are in equal percentage (25%). These stationary values are paired with
stationary k values, meaning that these are the failed mutations that only alter r. As for the previous
model results, we wish to look at distinct species which are here distinguished by unique (k, s) pairs.
Therefore we remove consecutive data points that have only different r values. We choose to keep
only the first instance of these points since we are considering only change from the original surviving
wild type.

After filtering out duplicate instances of species, we are left with roughly half of the data series.
This indicates a high number of stationary species, that survived a few to several mutations. This is
a significantly higher percentage than in the previous model and due to the extra dimension available
for exploration.

We now redo the previous plots with the filtered data series. Only these unique species will be
used in the following analysis.
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Figure 4.19: The trajectory in parameter space of unique surviving species obtained in simulation 4 (65 data
points). The starting species is marked with the larger, green dot, while the species in the system at the end
of the simulation is marked with the larger, red dot.
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Figure 4.20: Histograms (top row) and quantile-quantile plots (bottom row) of the distribution of jumps
in parameter values between unique consecutive species, as obtained in simulation 4. The number of bins is
a quarter of the data series and the histograms feature a superimposed normal distribution with µ = 0 and
σ = 0.005 (red curve), which is also used as reference in the Q-Q plots. The ∆s and ∆r distributions more
closely match the normal distribution of the mutant generating process used by the evolution algorithm. The
distributions are skewed however and feature heavier tails on one side.
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We now see that the jumps between unique species is almost normally distributed, but skewed to
one side and featuring a heavier tail on the other. Which side varies between simulations.

Across the simulations considered here, there seems to be a preference for received catalytic support
r > 1, having an average of 89% of (unique) species in this interval. For s this is not as clear, with
an average of 55% (unique) species with s > 1 but featuring a wide variation, with as little as 6% in
simulation 1.

We are interested in the interplay of species parameter variation with respect to the evolutionary
trajectory. Since the distributions are not exactly normal, we compute the Spearman rank correlation
coefficient between each pair of variables, after centering the data sets. The only significant correlation
is between s and r values, with significant positive correlation in all simulations considered here (see
table below). This indicates a tendency for tandem increase in the two values, something hinted at
in the evolution trajectory above, though not readily visible in other simulations performed. The
correlation is not surprising, given Constraint 2, which adjusts the existing species’ r as a function of
s. However, this decreases with data series size.

sim n ρs,r p-value
2 62 0.56 2.1 · 10−6

4 65 0.61 6.08 · 10−8

3 100 0.21 2.8 · 10−2

1 101 0.34 4.7 · 10−4

Table 4.7: Spearman rank correlation coefficients and associated (two-sided) p-values between data series
{s} and {r}. The entries are sorted by the number of unique species n yielded by the simulations, since there
is the issue of small population sizes. One can notice a trend of decreasing correlation and significance with
population increase.

Between simulations there appears no discernible difference in system behaviour when considering
large variations in mutant values or large parameter limits, except for the more likely possibility
of catalyst degradation due to extreme values. One difficulty with these simulations is the frequent
system destruction or extremely slow replacement events, as mentioned previously. This leaves us with
small data series to be analysed. Thus the slight preference for higher values r might be particular
to these simulations. Due to the extra parameter dimension, some species survive several mutation
events by only having r change, in contrast with the previous model, where this was more rare.

Besides the obvious tendency toward the lowest admissible k values, a tentative conclusion is
that there is a weak tendency of the s and r rates to increase in tandem through the evolutionary
process, though it is not clear if this holds for much longer time series. Overall, this indicates that
“selfish” species, ones that degrade less, self-synthesize more, and receive more catalytic support (and
consequently, offer less) are the ones favoured by the evolutionary process. There is a limit to this
however, as parasitic species that effectively offer no catalytic support lead to system destruction.
Nevertheless, evolution quite clearly leads the system outside of the patter-forming range of values,
so we could say that systematic mutation leads towards the destruction of structure-forming chemical
systems.

As an illustration of these evolutionary simulations, we reproduce below some animation frames
from a run performed before the time-rescaling of the differential equations was undertaken, though
the behaviour is essentially the same. This was chosen because of its greater diversity of exhibited
patterns. The only difference in system parameters are the higher standard deviation of r jumps
σ∆r = 0.05. The parameter ranges were k ∈ [0.05, 0.07], s ∈ [0.95, 1.05], and r ∈ [0.8, 1.2].
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Figure 4.21: Movie frames from an evolution simulation (in order left-right, top-bottom). Colours alternate
between designated wild type and mutant. A mutant was introduced every 100 generations, if only one species
was present. At 101 : a mutant that fails; 364 : a mutant producing the homogeneous steady state takes over;
1384 : after a few more homogeneous species, a stripes mutant takes over; 1639 : after two stripes species, a
spots mutant takes over; 1921 : the system passed through another homogeneous state, followed by stripes,
now spots. Subsequent species stayed close to the spots regime, but final species in the simulation where
homogeneous states.
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4.9 Conclusions

The above results show that for the model of catalyst competition in the shape of a 2-component
hypercycle, coexistence of the two species is generally not possible, and that their simultaneous
presence in the system leads either to the elimination of one or both of them, in the form of a
dramatic system destruction.

This is in contrast with the non-spatial elementary 2-cycles in [ES78] composed of species with no
resource competition. These were shown to be cooperative leading to a non-trivial stable steady state.
Here the added dynamics and spatial extension resulted in opposite results. It is also in contrast
with the spatial model in [SS06], which looked at a 2-cycle without autocatalysis and relaxed resource
competition through temporary fuel sequestration (i.e. catalysts consume and degrade back into
fuel). To underline the importance of local interaction in hypercycle dynamics, the authors used both
discrete (asynchronous cellular automata) and stochastic (mean-field theory) spatial models. The
outcomes of these were either the survival or extinction of both species, with no discernible patterns
formed but simply randomly spread concentration gradients.

In an evolutionary context, the system is shifted by systematic mutation in the direction of selfish
chemical species, which are fitter assuming constant substrate concentrations. Subsequent survivors
mutation events are those that tend toward lower degradation and higher synthesis rate and are
ultimately of a type that does not produce spatial structures.

Therefore, these systems are purely competitive, with transient balance reached only in case
of near-identity of the competing catalyst species. Furthermore, unless an unrealistically high
concentration cut-off is imposed that would isolate spatial structures, the patterns formed play no
deciding role in this competition but simply reflect local population sizes.
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Chapter 5

Catalytic hypercycle

We consider here the hypercyclic linkage of replicators and adapt it to the spatial Gray-Scott model.
The name comes from the closed chain of catalysed replication that connects autocatalysts, which in
turn comprise catalytic cycles. In contrast with studies considering cycles of second-order replicators
(see for instance review [SS03]), each species features cubic autocatalysis, following the original model.
The catalytic linkage between them is less critical to their survival since they are fully functional
self-replicative units in their own right and the mutual catalysis of cycle neighbour replication appears
as an additional feature. Furthermore, since these species are considered to have arisen through
mutation and are near-identical, the cycle considered here features both forward an backward catalytic
reactions, as described below.

5.1 Model

The extension of the Gray-Scott model to three near-identical species takes the form of a compound
hypercycle, following the classification in [ES78]. Note that the replicators in the respective study do
not consume their substrates when copying themselves so here we have the added constraint of limited
fuel supply.
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U + 2Vi
rii−→ 3Vi

U + Vi + Vi+1
rii+1−→ Vi + 2Vi+1 (5.1)

U + Vi + Vi+1
ri+1i−→ 2Vi + Vi+1

Vi
ki−→ P

Here we renamed the self-replication rates as rii for uniformity of notation, i ∈ {1, 2, 3} and
i = 4 ≡ 1 given the circular reaction graph. For each species Vi we speak of forward catalytic link
rii+1 and backward link ri+1i where this becomes relevant.
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The corresponding PDEs are:

∂u

∂t
= −u[r11v

2
1 + r22v

2
2 + r33v

2
3 + (r12 + r21) v1v2 + (r23 + r32) v2v3 + (r13 + r31) v1v3]

+F (1− u) +Du∇2u

∂v1

∂t
= u

(
r11v

2
1 + r21v1v2 + r31v1v3

)
− (F + k1) v1 +Dc∇2v1

∂v2

∂t
= u

(
r22v

2
2 + r12v1v2 + r32v2v3

)
− (F + k2) v2 +Dc∇2v2 (5.2)

∂v3

∂t
= u

(
r33v

2
3 + r23v2v3 + r13v1v3

)
− (F + k3) v3 +Dc∇2v3

The constraints used in the previous models extend naturally as

Constraint 3:

rij + rji = 2
√
riirjj ,∀i 6= j ∈ {1, 2, 3} (5.3)

As a reminder, this comes from equating the rate of fuel consumption to a quadratic form, as
∂u
∂t = −u (r11v1 + r22v2 + r33v3)

2
+ (. . . ), justified by the near identity of the three species, which

react with u as a joint quantity.

5.2 Mutation outcomes

We consider the evolutionary scenario in which two mutations occur, such that the above defined
cycle appears. As we have seen in the previous sections, once a mutant appears, unless all reaction
parameters are nearly identical, the species holding a chemical advantage will quite quickly cause
the disappearance of the other. Thus, for three species to simultaneously exist, there is only a
narrow window in which the second mutation ought to occur. This greatly limits the probability of
the emergence of the hypercycle from one original species, assuming nothing like cascade mutation.
Indeed, the realistic global odds of cycle formation are ignored here, as we are mainly interested in
the properties of this system.

We shall therefore begin by initialising the system with one species, then introducing a small
quantity of a mutant species, followed shortly after by the introduction of a second. Here we do
not generate mutant parameters randomly based on their wild types but only observe behaviour for
different values. We place the mutant perturbations at a maximum of wild type concentration, as
this was seen in the previous system to increase the chances of initial mutant survival. Again, we are
placing ourselves within a rather narrow island of probability in order to study this system. Note that
the order of mutant placement does not affect the resulting dynamics.

Dc Du L N ∆t
1.4 · 10−9 2 ·Dc 0.01 150 0.05

Table 5.1: System parameters for hypercycle formation simulations.
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Simulation 1: spots and stripes

We start with species in and near the dividing spots region. Reaction scheme parameters are below. As
before, we place mutant quantities of concentration µ = 0.2 and Moore radius rµ = 2. The simulation
ran for 800 generations, with one generation spanning 2d LN

∆t2
e = 1200 forward Euler integration

iterations, so twice the specific length.

F 0.04
k1 0.065 (dividing spots - Pearson λ)
k2 0.064 (stripes and spots - Pearson κ, λ )
k3 0.063 (stripes - Pearson κ)

r

 1 1.7 0.2
0.3 1 1.9
1.8 0.1 1



Table 5.2: Reaction scheme parameters for hypercycle simulation 1. Observe that reaction rates r obey
Constraint 3.

As an easier to grasp visual alternative to parameter notation we shall use an extension of the
model diagram, as illustrated below. Note that as with previous graphic notation, as a simplification
we omit the fact that U takes part in all catalysis reactions. The reason why for each pair of species
we mark the higher of the forward and backward catalytic rates (considering increasing V indices as
forwards) will become apparent later, as we shall see these play a role in the cycle’s stability. Note that
V2 is effectively parasitic to V1, due to its high received replication rate and low given rate. Similarly,
V3 is parasitic to V2.

Figure 5.1: Hypercycle diagram depicting degradation and catalytic rates of the system in simulation 1. The
values appearing next to the species label denote their degradation rates. The thick arrows depict the rate
with higher value of the forwards and backwards rates for each pair of species, while the dashed arrow the
smaller of the two. The colours depict their order of appearance, namely blue (top): first, green (lower-left):
second, and red (lower-right): third.

Below are movie frames from the time evolution of this system.
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Figure 5.2: Simulation 1 frames, showing the formation of a compound hypercycle. The three species
concentrations are marked with green, red, and blue, respectively. At gen. 151, after V1 has formed its
pattern across the entire space, a perturbation of mutant V2 is introduced at a maximum of wild type V1,
close to coord. (70, 138). This quickly spreads, infecting the surrounding spots and removing the wild type.
At gen. 156, a perturbation of V3 is placed at a maximum peak of V2, close to (70, 138). Similarly, V3 starts
infecting and replacing V2, but in the wake of its infection, V1 levels are restored (gen. 159 - 161), followed by
concentration fluctuations, with each spot holding one dominant species, as distinguishable by its coloration
(gen. 162 - 206). Ultimately, the fluctuations settle, with each species arriving at about the same global
concentration level. Almost at steady state (gen. 794), the pattern observed corresponds to neither species
alone.
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Remarkably, the introduction of the third species has led to the restoration of the original, which
had started to be driven out by the first mutant, and so to the stabilisation of the chemical system.
V3 infects V2 but since it acts as a promoter of V1, it leads to its concentration increase given sufficient
time. Note that this would not be possible if we had set a high concentration cut-off, as flow of V1

between spots would have been stopped and would not have been available to V3 for replication.
Hence we observe overall cooperative behaviour of mutual replication, which was generally

impossible with only two competitive species. While strictly speaking, the three species are competing
for fuel and may have advantageous received catalytic and degradation rates with respect to one
another, the cyclic nature of the model allows for the emergence of collaboration. The three species
exchange local dominance in each spot through fluctuating concentration levels, but finally achieve
steady state. Furthermore, the compound pattern they form appears as a combination of the ones
formed by each species individually, lying somewhere between k2 and k1 in pattern space.

To see these global concentration oscillations we plot total concentrations during the simulation.

Figure 5.3: Total concentration of the three hypercycle species in simulation 1 (normalised over grid size).
V1 levels lie on top after generation 200, V3 lowest, and V2 middle level. A periodic orbit or steady state is
reached shortly before generation 800.

One can see in the above figure how V1 levels very quickly drop when the effectively parasitic mutant
is introduced but before it disappears completely, it is recovered by the introduction of V3. The three
species then start oscillating with decreasing amplitudes, until they reach a steady concentration, at
about generation 450.

53



Simulation 2: fledgling spirals

We have looked at other species placement within parameter space. In the following simulation we
chose more closely related species that form short-lived spirals. Placed mutant quantities are of
concentration µ = 0.2 and Moore radius rµ = 2. The simulation ran for 800 generations of same
length as the previous simulation. Below are the parameters and movie frames.

Figure 5.4: Compound hypercycle diagram depicting parameters for simulation 2. Replication rates r obey
Constraint 3. The fuel feed rate is F = 0.01, which in conjunction with ki, places the species within fledgling
spirals (Pearson α) pattern regime
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Figure 5.5: Simulation 2 frames, showing the formation of a compound hypercycle. The three species
concentrations are marked with green, red, and blue, respectively. At gen. 151 an amount of mutant V2 is
placed near coord. (118,100). By generation 155, the infected spiral is virtually only composed of mutant, and
in the next generation is subjected to the introduction of V3 at peak V2 concentration near coord. (108,100),
and subsequently starts spreading. Afterwards, the autocatalysts’ levels start oscillating, with one species
dominant in each spiral. This goes one for some time, until about gen. 300, after which concentration curves
overlap, fluctuating in tandem.
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Once again we have seen that while initially species levels oscillate out of phase with each other,
each one achieving peak concentration while the other two are at low levels, after enough time the peaks
synchronise and fluctuate in tandem. This is visible in the animation frames above as a somewhat
violet colour that comes from comparable (if not identical) levels of species in each structural feature.
There is only the matter of offsets in amplitude between the three concentration curves. In contrast
with Simulation 1, here V1 and V3 overlap perfectly at a very small offset from the V2 curve. This is
seen in the global concentration evolution plot below.

Figure 5.6: Total concentration of the three hypercycle species in simulation 2 (normalised over grid size).
After generation 300, the V1 and V3 curves are indistinguishable, with V2 synchronised at a narrow amplitude
offset (top curve).

To better describe this behaviour we look in simulation 3 at a short time interval following initial
infection, at a slowed animation rate (shorter generations).
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Simulation 3: species interaction

To have a clearer picture of the narrow time interval in which the two mutations occur, we shorten

the length of a generation to

⌊
1
32 · d

LN
∆t2
e
⌋

= 18 integration iterations. Below are the simulation

parameters. The simulation ran for 20000 generations.

Figure 5.7: Compound hypercycle diagram depicting parameters for simulation 3. V1 corresponds to stripe
patterns, V2 to a mix of stripes and spots, and V3 to dividing spots (Pearson λ) Replication rates r obey
Constraint 3. The fuel feed rate is F = 0.04.

Note that these are the same species as in simulation 1, except with lower forward catalytic rates
and placed in a different order. As noted above, the different order of placement has no impact on
the end steady state. The mutants were placed at gen. 4800 and 5200. Below are two frames showing
the system state a short time after each of these events.

Figure 5.8: Simulation 3 frames, showing system state shortly after placement of mutant V2 (left) and V3

(right). The three species concentrations are marked with green, red, and blue, respectively. V2 infects the
original species and starts spreading from close to coordinates (110, 70), also affecting the pattern (spots start
breaking off). Since V3 is placed at a peak of V2, this second mutant starts spreading from the same region,
with a more pronounced change in pattern, since it forms dividing spots exclusively.

In order to study the interaction between species in this narrow window of the mutation events,
we look at the concentration evolution of a single grid point, namely (110, 70), where we saw in the
above figures that the new species enter the system and can be found in greater concentrations shortly
thereafter.
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Figure 5.9: Species concentration evolution at grid point (110,70) during the entire duration of simulation
3 (top) and in the interval [4600, 6000]. By the end of the simulation, steady state is nearly reached as can
be seen in here by the vanishing oscillations. Mutant V2 is introduced at gen. 4800 and starts replicating,
causing the wild type V1 levels to start dropping. At gen. 5200 the second mutant is introduced and causes V2

levels to drop and V1 to increase. This goes on until about gen. 5500, just before V1 peaks, with a reversal in
V2 and V3 evolution. Subsequently, this behaviour repeats yielding out of phase oscillations, with each species
holding peak concentration for a short interval.

The cyclic nature of the reaction scheme becomes apparent from the above concentration curves.
Since V3 plays the role of antagonist of V2 and promoter of V1 due to the catalytic rates linking them,
once it enters the system it aids the replication of V1 and hinders synthesis of V2. However, once V1

is restored to sufficient levels, since it is the promoter of V2 it aids in its replication and hinders V3,
and so on. These oscillations follow the pattern of out of phase increase in species Vi, then Vi+1, with
decrease in Vi−1, where each i ∈ {1, 2, 3} is antagonist of i− 1 and promoter of i+ 1, with i = 4 ≡ 1.

To get a clearer picture of how the third species salvages V1, stabilizes the system, and why this
relation is sufficient to maintain oscillations, leading the system towards steady state or orbit, we plot
the concentration space trajectory for the same grid point.
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Figure 5.10: (v1, v2, v3)−space trajectory of grid point (110, 70) during simulation 3, from two perspectives.
In both, but more apparent on the left hand side view, the start of the trajectory is marked with a black dot,
the time of the first mutation event with a red dot, and the second with a green dot. Note that these two
mark the times when the mutants were introduced in the system (at different grid points) and are slightly
offset here since (110, 70) was chosen manually as close as possible to both mutation points. However, one
can distinguish how the trajectory changes direction shortly after each of these moments.

After V2 is introduced, the 2-species trajectory heads towards the v1 axis (V2 starts disappearing)
but once the third species appears, this curve becomes embedded in the 3-species space and caught
by a global attractor. So as a descriptive explanation of the stable behaviour seen, we could say that
since the 3-species hypercycle dynamics feature a global attractor, once V3 is coupled into the (V1, V2)
dynamics, the phase space trajectory falls into its basin of attraction.
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Simulation 4: failed hypercycle

Here we show a case in which the species forming the hypercycle did not reach stability. The
parameters of this system are below. A generation of specific length d LN

∆t2
e = 600 integration iterations

was deemed appropriate for looking at the time evolution.

Figure 5.11: Compound hypercycle diagram of simulation 4 parameters. Replication rates r obey Constraint
3. The fuel feed rate is F = 0.04.

In this case, the introduced third species has no effect on the concentration levels of the previous
two species and simply goes extinct.

Figure 5.12: Total concentration of the three hypercycle species in simulation 4 (normalised over grid size).
Mutants of concentration µ = 0.2 and Moore radius rµ = 2 were placed at generations 200 and 210. One can
see how the introduced V3 does not manage to spread, nor does it help V1 return to previous levels, but they
both disappear from the system in about 50 generations.

Unlike previous simulations, the system is not brought to a stable orbit or steady state by the
extension to three interacting species. As is visible on the cycle diagram above, V2 is effectively
parasitic towards both V1 and V3 (although to a lesser degree toward V3, as the forward and backward
catalytic rates are close). This globally catalytically advantaged relation of V2 ensures that its growth
is unhindered and antagonises the replication of the other two. Notice that the relative degradation
rates here play an insignificant role compared to reaction rates.
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5.3 Stable hypercycle properties

We now ask what parameters allow for a stable compound hypercycle and if any values allow for
different pattern-forming behaviour. As was suggested by the cyclic nature of the catalytic chain, the
first simulations tried had forward rates set significantly higher than backward rates, as illustrated by
the first three examples in the previous section. During this search, a few properties of these cycles
were found.

Directionality

A great many simulations were performed varying r to identify the class of stable cycles (data not
shown here). For simplicity, rii were kept at 1 since it has been seen that their variation may be
equated to varying ki. It turns out that in order for the hypercycle to be a permanent system (all
species survive forever, following the definition in [HS87]), it needs to be directional with respect to
catalytic rates between species, i.e. forward rates must all be greater than backward rates or vice
versa. In this respect, the failed cycle example showed previously is no coincidence. This is also the
reason for the emphasized depiction of the higher rate in the cycle diagrams. Due to Constraint 3 one
could have either of these rates null, in which case the hypercycle becomes of elementary type but still
exhibits the same behaviour. The directionality condition holds regardless of degradation rates and
implicitly, of formed patterns, which shows some degree of independence of the chemical dynamics
from the spatial distribution of molecules and transport processes.

In fact, this difference between rij and rji need not be great in order for the cycle to be permanent.
However, if the rates are very close, this results in the system reaching a periodic orbit, not a fixed
point, as illustrated in the simulation below, featuring a weakly directional cycle.

Figure 5.13: Diagram of a compound hypercycle with close forward and backward catalytic links. Replication
rates r obey Constraint 3. The fuel feed rate is F = 0.04.
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Figure 5.14: Total species concentration (normalised over grid size) of a weakly directional cycle. Generation
length was 2 · d LN

∆t2
e. The left hand plot covers the entire simulation while the right hand side provides a zoom

at late time. This only features the v1 and v2 curves since their oscillations were very small and difficult to
see with all three curves fit in, however v3 follows an identical evolution.

As can be seen from the concentration curves above, the system hits a periodic orbit after 104

generations. The patterns at this time are still dividing spots, only the species levels continue to
fluctuate. The non-spatial hypercycles composed of up to 4 replicators described in [ES78] were seen
to have an asymptotically stable fixed point and as such, this periodic orbit of the spatial model
appears as a slight divergence of that result.

Cycles with perfectly equal forward and backward catalytic links were only seen to fail, even when
starting from a mix of all three species, leaving only the catalyst with lowest degradation rate. There
are exceptions to this in which forward and backward rates are nearly equal. However, these are
extremely sensitive to initial conditions, to the point that a different pseudorandom number generator
seed (i.e. the randomization of the initial perturbation) leads to its failure. As such, we refer to these
as quasi-stable hypercycles. A single example was found through the evolutionary simulations to be
discussed later. Here, the self-replication rates rii were also allowed to drift through mutation.

Figure 5.15: Diagram of a quasi-stable compound hypercycle. Replication rates r obey Constraint 3. The
fuel feed rate is F = 0.04. V1 falls outside the pattern-forming domain and corresponds to the homogeneous
steady state, while V2 and V3 correspond to dividing spots and stripes, respectively.
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Figure 5.16: Total species concentration (normalised over grid size) of a quasi-stable compound hypercycle.
The generation length was d LN

∆t2
e.

Here, the fluctuations in catalyst levels appear random and do not settle into an orbit, at least
not a discernible periodic one. Indeed, at time t → ∞ it may be that the cycle fails, from whatever
initial conditions. We again appeal to the relevance of very long but finite time scales. The pattern at
these long times up to 8 · 104 generations is shown below. It consists of a single stripe looping around
the system boundaries. Since the species concentrations continue to fluctuate, one can distinguish
travelling peaks of each catalyst that also impact the pattern as they traverse the stripe.

Figure 5.17: Simulation frames of a system featuring a quasi-stable compound hypercycle at early time
(top row) and late time (bottom). The three species concentrations are marked with green, red, and blue,
respectively. The late time pattern is a stripe that loops across the periodic boundaries and features travelling
peaks of each species. In the case of V1 this also impacts the pattern, as can be seen in the last two frames
in the shape of two green-tinted bumps that move towards the upper and lower grid boundaries. These two
high v1 peaks collide and annihilate, leaving a high v2 section behind.
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A discernible feature of this system is that there are large local shifts in pattern type, depending on
which species holds local concentration maximum. V1 corresponds to the homogeneous steady state
and whenever it is the dominating catalyst in a certain region the local structural feature expands
and then thins as V1 levels drop. This is distinguishable in the first two simulation frames above as
the pattern shifts from spread-out green (high v1) splotches to thinner spots and stripes.

Cycles that do not fulfil this directionality property and have one component predominantly
offering catalytic support to the other two behave similarly to the unstable branched systems described
in [ES78], leading to a sole survivor, although those systems do not feature backward catalytic links.

The compound hypercycle has been given less attention in the same paper, due to its improbable
role in abiogenesis, though it was characterised to be generally stable (permanent). A later study [SS90]
catalogued the phase portraits of concentration simplexes for a non-spatial compound 3-hypercycles.
Superimposing results is not trivial and here we have the substrate availability constraint and limited
replicator lifespan which might account for this restriction in network topology. There is also the
complication that graph representation does not determine system phase portraits uniquely in [SS90].
Further agreement with the results in the previous reference has not been investigated. Safe to say
is that strongly directional cycles (with very low back-link rates) behave essentially the same as the
elementary cycles, so then the need of directionality (effectively cyclic linkage in this case) is not
surprising.

However, if one considers only the reaction network formed with the dominant catalytic links
and disregarding self-loops and assuming rij 6= rji,∀i, j or more generally, consider arc weights as
the absolute difference of forward and backward rates and oriented in the direction of the larger of
the two, this property is consistent with the necessary permanence condition for catalytic networks
with n ≤ 5 species, that they be Hamiltonian (there exists a closed directed path connecting all
species exactly once) [HS87]. In particular, there is also consistency with the non-permanence of
the 2-species model, i.e. considering only the dominant link (having a purely parasitic species) and
assuming all other parameters equal, the network in question no longer has a directed path between all
nodes. Furthermore, such a difference network would isolate species nodes for a hypercycle with equal
forward and backward rates, corresponding to competing replicators, which here have been seen to
lead to a sole survivor, consistent with [ES78]. Note though that the referred results were formulated
for (non-spatial) ODEs featuring quadratic autocatalysis.

We also compare the properties obtained here with the analytical results stated in [BPN10] for a
spatial extension of the same elementary hypercycle. These are qualitatively very similar, namely that
the cycle is permanent but in addition it is shown that steady states of homogeneous concentration
distribution are stable to any perturbation for large enough diffusion constants, while heterogeneous
steady states have a limited form of stability (not Lyapunov stable). These results are in contrast
with the patterns observed here, shown to be stable under strong noise perturbations.

The cited results were derived for networks of interacting catalysts with no fuel consumption
(replicator equations) under a constant organisation constraint, i.e. conservation of total amount of
replicators - essentially equivalent to continuously-stirred tank reactor conditions [HS99]. Here we have
cubic autocatalysis with fuel consumption competition in a spatially extended compound hypercycle,
which account for the difference in behaviour.
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Compound pattern

A structural property of the compound hypercycle explored here is that the pattern formed at steady
state is influenced by all three species. Unless they are identical, the compound pattern does not
correspond strictly to any one species.

We determined experimentally that this resulting pattern corresponds to a concentration-weighted
average of the three degradation rates. To put it slightly more formally, first consider the notion
of structural equivalence between reaction-diffusion systems. We say that two such systems are
structurally equivalent if the patterns they yield at steady state are equivalent. Now let the average
degradation rate be given by

k̄ =

∑n
i=1

(
ki ·
∫

vi
∗dx

)
∑n
i=1

∫
v∗i dx

(5.4)

Where n is the number of autocatalyst species with “∗” denoting steady state and x covers the
entire system space. That is, k̄ is the average ki weighted by total vi concentrations. We now state

Hypothesis (Compound pattern rule). A compound hypercycle with n = 3 autocatalysts that reaches
a non-trivial steady state is structurally equivalent to a Gray-Scott system with autocatalyst having
degradation rate k̄ and the same F .

We use the original Gray-Scott model as reference since, with one exception discussed later, no
compound pattern was obtained that could not be also obtained with the single-catalyst model. This
is a phenomenological rule that was tested through a large number of simulations by letting the
hypercycle systems reach steady state, then running 1-species Gray-Scott simulations with a catalyst
having k = k̄ until steady state. The patterns always matched.

The above rule can be made less strict if we consider that some permanent cycles reach a periodic
orbit in which, although species levels fluctuate, the pattern stays either unchanged or slightly wobbles.
In the former case, the rule still holds and in the latter, one could talk about a time average of pattern
shape that still obeys the rule.

This rule might also be said to hold as a function of time for small regions containing one structural
feature, as was observed for many of the simulations performed. The local ratio of concentrations is
reflected in these local patterns. Illustrations are the quasi-stable hypercycle considered previously
and systems in the next section. To put it more formally, for such systems there exist non-void
subregions Ω of system space and time intervals (t1, t2) such that we can define k̄ = k̄ (Ω, t) and
instead of summing concentrations globally at steady state we do so for these small regions for every
time instant in the intervals, i.e. replace integrals above with

∫
x∈Ω

vi(t)dx and hold for t ∈ (t1, t2).
The relevance of looking at this time dependence is the continuous and sometimes long-lived shifts in
patterns that occur before steady states.

Another amendment to the above rule is that it generally holds if species appear sequentially in
the system. As we shall see, a novel pattern that does not obey this relation was found for a narrow
range of parameters when starting from a mix of all species. We leave the hypothesis statement in a
less encumbered form however since the vast majority of systems obey it as such.
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5.4 Dynamic patterns

As we have seen in previous sections, the compound hypercycle model exhibits local pattern shifts
after the third species is introduced, which go on while diminishing until close to steady state or
periodic orbit. This period of pattern change becomes longer as the forward and backward catalytic
links get closer in value and may even persist to infinite time for weakly directional cycles.

As such, one could say that these cycles yield dynamic patterns composed of structural features
that periodically shift between pattern types, as peaks of species concentration travel across the system
space (and shift the local k̄). This is different from the original Gray-Scott pattern time evolution,
where the behaviour is still exhibited by the same pattern class, whereas here all classes between kmin
and kmax for a fixed F may appear in the system. And since a subset of cycles stays away from steady
state for significant periods of time, the pattern alterations become more relevant, as they characterise
the overall behaviour of the system.

The quasi-stable hypercycle in the previous section is one example of this behaviour. Even at very
long times, periodic local alterations of pattern shape occurred as a function of species levels. Below
are a few other examples of such dynamic patterns.

We underline that it is the compound nature of the cycle, featuring close forward and backward
catalytic links that allows for this behaviour to emerge. A one-way (elementary [ES78]) hypercycle
would very quickly converge to steady state. It was however seen in various simulations that a single
weakly directional link was sufficient, acting as a kind of “bottleneck” for the catalytic chain. Also,
as may be obvious, the degradation rates of the three species need to be sufficiently far apart for
noticeable shifts in pattern type to occur along with concentration fluctuations.

Simulation 1: pulsating spots

Here are cycle parameters that yield pulsating non-dividing spots for very long times, followed by
animation frames showing the evolution of the system. The length of a generation was set at the
specific length d LN

∆t2
e.

Figure 5.18: Diagram of a weakly directional compound hypercycle that forms a pattern made up of pulsating
spots. Replication rates r obey Constraint 3. The fuel feed rate is F = 0.04. Alone, V1 corresponds to dividing
spots, V2 to non-dividing (stable) spots, and V3 falls outside the pattern-forming region, in the trivial extinct
state.
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Figure 5.19: Simulation frames showing pulsating spots. At generation 160, all three species are present
but not have not yet spread and are confined largely within one spot, situated around coordinates (5, 100).
The compound pattern is still dictated by V1 (dividing spots) but after approximately 40 generations, after
more clusters host all species, oscillation in catalyst levels start, leading to change in spot size. High-v3 spots
(blue) are of smallest size, the largest are high-v1 (green) and high-v2 are of intermediate size. The transition
between peak concentrations is reflected by the change in size. Division occurs more rarely and stops quite
early, when V3 levels are low. The last division ends after gen. 215 at coord. (60, 50). The remaining space
is filled by translation of the surrounding spots.
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As can be seen from the frames above, once all three species are present in the system, a process
of concentration and consequently size oscillation begins and continues for a very long time, at largely
the same amplitudes. Since V3 falls inside the “dead” state, whenever it achieves peak concentration
inside a spot (while the other two species are at minimum), the spot shrinks as it starts to degrade
but is saved by increasing V1 levels which, due to the dividing nature of its corresponding pattern,
increases spot sizes to their largest extent, then followed by V2 peaking, which reduces radius since
they fall within the stable, non-dividing pattern regime. The spots follow the pulsating pattern of
green-red-blue, i.e. local v1 − v2 − v3 maxima.

Simulation 2: merging and dividing stripes

Here is an example of dynamic pattern featuring stripes that thin out, break apart and subsequently
merge back together with a certain regularity. The length of a generation was set at the specific length
d LN

∆t2
e. For this system, the simulation was started from a randomised mix of all species.

Figure 5.20: Diagram of an overall weakly directional compound hypercycle exhibiting patterns of dividing
and merging stripes. Replication rates r obey Constraint 3. The fuel feed rate is F = 0.04. Alone, V1

corresponds to stripes, V2 to dividing spots, and V3 to stable (non-dividing) spots.

Note that the link between V2 and V3 is strongly directional r23 � r32. However, this does not
change the behaviour and since the initial conditions were a complete mix of catalysts, the system
quite quickly reaches a periodic orbit. Below are frames that show the shifting nature of the compound
pattern.
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Figure 5.21: Simulation frames showing a dynamic pattern of stripes and spots, starting from a small region
containing a mix of all species. The compound pattern first manifests itself as an outward-extending wave,
with smaller waves breaking off in its wake and travelling inwards. At about generation 45 the wave stops
advancing and the broken off inwards waves shrink to spots. The pattern holds steady in place until about
gen. 52, when all its features suddenly start enlarging and merging (gen. 63). Subsequently the wave fronts
advance and meet themselves across the periodic boundary, forming a pattern made up mostly of stripes (gen.
87). Due to species fluctuations, this pattern experiences episodes of shrinking and fragmentation followed by
engorgement and merging, as seen in the last two time intervals (gen. 87-95, gen. 87-95). The system settles
in a stripes-only pattern but still experiences smaller shape transitions up to the end of the simulation, at
1000 gen.
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Simulation 3: dynamically dividing spots

The pattern presented here is an interesting counterpart to the dividing spots manifested by the
original Gray-Scott model. These compound spots only occasionally divide, when autocatalyst levels
reach certain levels. Below are the parameters and animation frames.

Figure 5.22: Diagram of an overall weakly directional compound hypercycle exhibiting patterns of
occasionally dividing spots. Replication rates r obey Constraint 3. The fuel feed rate is F = 0.04. Alone, V1

corresponds to stripes, V2 to dividing spots, and V3 to stable (non-dividing) spots.
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Figure 5.23: Simulation frames showing a dynamic pattern of occasionally dividing spots, starting
from a small region containing a mix of all species. The compound pattern first manifests itself as an
outward-extending wave that breaks up into 4 spots that remain stationary for about 50 generations, after
which, as V2 levels rise, it undergoes division that completes at about gen. 110. The 8 new spots remain
largely stationary and only undergo the same spontaneous division around gen. 170, after which the pattern
is once again almost immobile. The next division event occurs at about gen. 250 but it is interesting to
note that the spot near coordinates (105, 85) reverts it division and merges back because there isn’t enough
catalyst-free space around it. After the space has been filled, the spots begin to have faster concentration
oscillations, as can be seen from their alternating coloration.
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The dividing spots regime of the Gray-Scott model has been likened to cellular division but perhaps
this class of hypercycles is closer to the mitosis mechanism in that it features a chemical clock besides
the requirement of favourable environment conditions (here, catalyst-free and fuel-rich space around
the spots), although mitosis in real cells is irreversible once initiated, in contrast with the behaviour
exhibited here. As can be seen from the concentration plots below in conjunction with the animation
frames above, division occurs only when the oscillating catalysts reach certain levels. In particular,
the spots do not divide most of the time, when v3 levels are relatively high but do so when there is an
increase in v2 (which by itself corresponds to dividing spots), followed by an increase in v1 and sharp
drop of v3.

Figure 5.24: Total species concentration (normalised over grid size) of a compound hypercycle manifesting
occasionally dividing spots. The generation length was d LN

∆t2
e iterations. Up to gen. 400, the spots divide in 4

episodes, corresponding to the sudden deep drops in v3 (left portion of the plot, close to generations 80, 160,
240). Once they take up the entire system space, the concentration levels quickly settle into an orbit.
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5.5 Novel pattern: expanding loop

In this subsection we present an example of compound pattern that could not be equated to any
Gray-Scott structure. It is the only novel pattern found in this study and presents some interesting
properties.

The structure manifests as a loop that only expands occasionally but which does not break up as
in similar Gray-Scott patterns. After it approaches itself over the periodic boundary, a long period
of slight adjustments to its shape starts, which bring the pattern to a stable space-filling optimum.
Below are the parameters and time evolution of the first case found of this pattern.

Figure 5.25: Diagram of a novel loop-yielding compound hypercycle. Replication rates r obey Constraint 3.
The fuel feed rate is F = 0.04. Alone, V1 corresponds to stripes that extend and stop at a critical separation
when colliding (Pearson θ), V2 corresponds to dividing spots (Pearson λ), and V3 to stable (non-dividing)
spots (outside Pearson λ, at higher k). As far as directionality goes, the cycle is mostly weakly directional.

The simulation was run to very long times, 5 · 104 generations, with one generation set at d LN
∆t2
e

iterations. The initial conditions consisted of a perturbation of 20× 20 grid cells (1.77% of the grid),
containing a mix of all species, with the same concentrations as in all previous simulations before
randomisation, i.e. u = 0.5, vi = 0.25 in the perturbation and u = 1, vi = 0 everywhere else. To
better show the behaviour of this pattern we split the frames into the early, expansion period and the
later, space-filling period.
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Figure 5.26: Simulation frames showing the loop pattern in its early expanding phase. The pattern first
manifests itself as an outward-extending wave but quickly recedes, taking the shape of a symmetrical stationary
ring (top row). This shape is retained perfectly for about 50 generations, after which species levels fluctuate
and the ring expands in a single growth spurt that lasts about 20 generations, remaining again perfectly
stationary afterwards (second row). These expansion events continue but after the ring meets itself the shape
changes, with sections expanding inwards, as can be seen in the bottom row that depicts the loop before and
after an expansion event.
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Figure 5.27: Simulation frames showing the loop pattern in its later, shape-adjusting period. After gen. 3000,
there are no more spontaneous expansion events but only very slight changes in loop shape. Concentration
fluctuations are more frequent and of larger amplitude, and can be seen as travelling peaks along the loop (top
row). These slight shape alterations continue until the final pattern is reached some time after gen. 1.3 · 104,
after which the loop only translates across the periodic boundary (bottom row).

Figure 5.28: Total species concentration (normalised over grid size) of the expanding loop-yielding compound
hypercycle. The generation length was d LN

∆t2
e iterations. The expansion period featuring episodic growth events

lasts until about gen. 4000 and is marked by an increase in pattern coverage but with occasional large changes
in species levels. After this interval, the species transition to oscillations around the same mean value. These
oscillations have periodic increases in amplitude but the maximum amplitudes reached appear diminishing
and the species concentrations are expected to reach a periodic orbit at t→∞.
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While similar to other patterns made up of loops in the Gray-Scott model (e.g. patterns in
k ∈ [0.061, 0.063] for F = 4, see the pattern phase diagram), the essential difference with this structure
is that it does not split as it grows and does not break apart or merge sections when meeting itself. Nor
does the loop sprout stripes from bends like e.g. the (k, F ) = (0.063, 0.062) pattern. An important
remark is that this pattern is an exception to the structural equivalence rule stated in the previous
section. Towards steady state, the weighted average is k̄ ≈ 0.0647, which corresponds to dividing
spots. This was the sole exception to the rule found in this study. This holds even when a few loops
are allowed to form, each of these remaining separate while adjusting shape, as shown below. This
system has the same parameters as the previous one but with three 20 × 20 cell initial randomised
perturbations.

Figure 5.29: Simulation frames showing the expanding loop-yielding system with three loops present, formed
from three initial randomised perturbations. Until about gen. 700, the entire pattern is in the expansion phase,
featuring occasional growth episodes. Afterwards, while the shapes undergo slight alterations, concentrations
start to oscillate with higher frequency around the same mean values, as can be seen by the varying colours
of each loop.

The systems featuring multiple loops behave in essentially the same way. The only change is that
in the later adjustment period, as the concentrations fluctuate, each loop holds approximately the
same species levels and appear as having the same colour. With a single loop, peaks of a single species
would visibly travel across its length.

It turns out however that this pattern is quite sensitive to initial conditions: if the initial
perturbation holding the mix of species covers a too small or large area, the loop breaks up and
the end structure follows the compound pattern rule in the previous section. If the initial mix covers
a small area (e.g. 5× 5 cells), it forms dividing spots immediately, whereas a mix covering more than
4% of the grid breaks into a shrinking stripe and spots. In both cases, the steady states consists only
of spots. Moreover, if too many initial perturbations are placed the forming loops will touch and break
apart, resulting in the same end pattern.

Through simulations it was determined that the size of an initial perturbation must lie within
[1, 4] % of the total grid area for it to form a loop. It is also critical that the system start with a
mix of all three species; sequential placement through mutation events does not yield stable loops but
conforms to the compound pattern rule.
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Figure 5.30: Simulation frames showing the expanding loop-yielding system started from a large initial
perturbation covering 60×60 grid cells. The wave first formed is not able to retract and form a ring but breaks
into a long stripe and a single spot (top row). This spot starts dividing occasionally, when v2 levels are high
(bottom row) while the loop begins slowly shrinking, with spots detaching from its ends either permanently
or temporarily (the stripe occasionally swells and reconnects). Ultimately, the pattern will feature only spots.

We have also tried combining starting patterns to see how the stable loop interacts with other
structures and found that it becomes destabilised by these and breaks apart. Below are a few
frames illustrating this behaviour. Since we could get different starting patterns by setting the initial
perturbations sizes, we placed two such mixes initially: once which would yield a loop and a smaller
one that would result in dividing spots.
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Figure 5.31: Simulation frames showing the interaction of two patterns manifested by the loop-yielding
system. The initial conditions consisted of two perturbations of sizes 5 × 5 and 20 × 20 containing a mix of
all species. The smaller pattern breaks up and forms dividing spots which starts “squeezing” the loop, also
causing frequent concentration oscillations within it (which would normally only appear at late times). After
300 generations, the loop breaks up into spots.

We now return to the simple experiment presented at the start of this section to point out another
interesting feature of this compound pattern, namely that it exhibits different types of dynamics during
its existence. As was pointed out earlier, the pattern’s time evolution is divided in two intervals, called
for convenience expansion and space-filling periods.

We take a closer look at the oscillations during these periods and measure the time between
expansion events. Technically, we measure the wavelength (inter-peak distance) of the v2 curve as a
function of time for ease of (visual) inspection. Precisely, these peaks correspond to shortly before the
events, which start with a sharp drop in V2 levels and increase of the other two.

Below is the concentration evolution during the expansion period of another run of the simulation
first presented in this section. While the exact length of this period varies slightly between simulations
due to the initial randomisation, its shape is essentially the same.
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Figure 5.32: Total species concentration (normalised over grid size) of the expanding loop-yielding compound
hypercycle (top) and the inter-peak distance (wavelength) of the v2 curve (bottom), spanning the early
expansion period and the start of its space-filling period. The abscissa of the wavelength plot marks the
generation of v2 peak i, starting from i = 2, and the ordinate the number of generations from the previous
peak i− 1. The generation length is d LN

∆t2
e iterations.

We see from the above plots that during this early period, the time between expansion events
gradually increases. When the loop stops experiencing these spontaneous increases, v2’s wavelength
seems to go towards a constant value. This evolution was seen to be consistent across all simulations
run. As perhaps a simple curiosity is that the kink seen in the steadily increasing wavelength slope
was found in most of these simulations. It coincides with the moment the loop starts bending inwards
after just meeting itself shortly before.

We now look at the long-term oscillatory behaviour of the system for a longer run of the same
simulation (but with different random seed). We can see that as t → ∞, the system finds itself on
an orbit. This experiment doubles in that it also confirms the state ultimately reached (1.5 · 105

generations here).
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Figure 5.33: Total species concentration (normalised over grid size) of the expanding loop-yielding compound
hypercycle (top) and the inter-peak distance (wavelength) of the v2 curve (bottom), spanning the entire
duration of the simulation. The abscissa of the wavelength plot marks the generation of v2 peak i, starting
from i = 2, and the ordinate the number of generations from the previous peak i− 1. The wavelength spikes
in the later oscillatory mode that starts after gen. 5000 coincide with the periodic increases in v2 amplitude
seen in the top concentration plot. The generation length is d LN

∆t2
e iterations.

After the expansion period ends, the internal dynamics of the pattern is marked by v2 oscillations
of largely constant wavelength, with periodic spikes of increased inter-peak distance that correspond
to the periodic increases in amplitude.

We have also looked at the stability of the loop when subjected to short periods of strong noise. It
was observed that the pattern is resistant to these and does not break up, but that a third oscillation
mode is induced by the perturbation, characterised by a higher frequency of expansion events.

To illustrate, we ran the same simulation (with a different random seed) for only 5000 generations,
covering the expansion period. From generation 1000 to 1020, the system was subjected to strong
noise λ̄ = 1. We only show the concentration and wavelength plots, since beside visible speckling
during the noise event and slight concentration fluctuations, no essential difference in pattern shape
is observed.
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Figure 5.34: Total species concentration (normalised over grid size) of the expanding loop-yielding compound
hypercycle (top) and the inter-peak distance (wavelength) of the v2 curve (bottom), spanning the early
expansion period and the start of its space-filling period. The system was under strong noise (λ̄ = 1) for
20 generations starting at gen. 1000, followed by a visible increase in oscillation frequency. The generation
length is d LN

∆t2
e iterations.

We see that strong noise induces transition from one oscillation mode to another. This happens
irrespective of the duration of noise presence. Once the system is thus perturbed, it enters a faster
expansion mode with decreasing time intervals between spontaneous loop enlargements. This can be
seen in the wavelength plot above, where initially the time between events steadily increases until
generation 1000. After the sharp drop in v2 inter-peak distance caused by the random fluctuations
under noise, the time between the expansion events starts to decrease and this period ends quicker,
at about 1800 generations.

This fast expansion mode was seen to be stable with respect to subsequent noise events, the overall
shape of spontaneous enlargement frequency having the same shape, barring the spikes caused by the
noise. The behaviour is shown in the plots below, in a case with two noise events (though the evolution
is identical when more occur).
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Figure 5.35: Total species concentration (normalised over grid size) of the expanding loop-yielding compound
hypercycle (left) and the inter-peak distance (wavelength) of the v2 curve (right), spanning the early expansion
period. The system underwent two strong noise perturbations at gen. 500 and 1000, each lasting 20
generations. The markedly different modes are distinguishable before and after the first noise perturbation
in the left plot, with the fast expansion mode unaffected by the second noise event. The generation length is
d LN

∆t2
e iterations.

We sought to explore the extent of this pattern’s presence in parameter space but as it turns out
it may be confined to a very narrow range of values. For the hypercycle presented at the beginning of
this section, all non-uniform permutations of weak/strong catalytic links (i.e. values ∈ {1.1, 1.5, 1.9})
as well as both cycle directions (rij > rji,∀i, j and vice versa) were tried. The only flexible parameter
was the rate r31 ∈ [1.5, 2], with all other deviations being unable to form the pattern. The initial
circular wave forms but is unable to hold together as a loop and breaks up, following the compound
pattern rule. Similarly, all but minute changes in ki lead to failure of loop formation. Largely by
accident a second set of hypercycle parameters that achieves this behaviour was found, with one ki in
the so-called “u-skate world” region described in [Mun].
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Figure 5.36: Diagram of a loop-yielding compound hypercycle (left) and final pattern shape after 105

generations (right). Replication rates r obey Constraint 3. The fuel feed rate is F = 0.062. Alone, V1

corresponds to a few scattered stripes and non-dividing spots (“u-skate world”, close to Pearson κ), V2

corresponds to loops and stripes (Pearson κ), and V3 to stripes and spots (Pearson µ). As far as directionality
goes, the cycle is mostly weakly directional.

Interestingly, the final pattern arrived at in all simulations with this cycle look the same regardless
of random seed, in the shape reminiscent of a stylised “I ” shown above, as is or reflected. Furthermore,
this system arrives at a far tighter periodic orbit than the first one, as can be seen in the following
plots taken from the same long noiseless simulation that produced the pattern above.

Figure 5.37: Total species concentration (normalised over grid size) of the expanding loop-yielding compound
hypercycle (left) and the inter-peak distance (wavelength) of the v2 curve (right). The expansion mode has
decreasing time intervals between spontaneous enlargement events (first portion of the right hand side plot).
This period lasts for slightly over 6000 generations, after which the system apparently passes through 3 orbits
of increasing duration (clearer for the lower curves in the left hand side plot). The final orbit seems to be have
been reached some time after gen. 5 · 104. The generation length is d LN

∆t2
e iterations.

In contrast with the previous loop-yielding cycle, during the initial expansion period, the time
between growth events is decreasing. Noise perturbation causes this decrease to occur more sharply,
as can be seen in the following plots from a simulation with strong noise level λ̄ = 1. In this respect,
the behaviour is consistent with the previous cycle, in that noise induces an accelerating growth mode.
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Figure 5.38: Total species concentration (normalised over grid size) of the expanding loop-yielding compound
hypercycle (left) and the inter-peak distance (wavelength) of the v2 curve (right). The system underwent a
strong noise λ̄ = 1 perturbation at gen. 1000 lasting 20 generations, after which the decrease in inter-growth
intervals becomes sharper (ignoring the downward spike due to noise), until the space-filling period begins, in
which the wavelength is overall constant. The generation length is d LN

∆t2
e iterations.

It was also discovered that this hypercycle is more flexible to parameter deviations in terms of
producing the loop pattern. The size of the initial species mix may be in the range [1, 75] % of the
grid area, which is far more permissive. Secondly, rates r12 and r31 may vary as r12 ∈ [1.2, 1.5]
and r31 ∈ [1.2, 2], when changed alone. If r12 is increased the spontaneous growth events occur at
a much higher frequency (separated by about 5 generations). If r31 is set at the lower end of its
allowed interval, the system experience more pronounced periodic increases in amplitude during the
space-filling period.
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These two cycle cases, along with very small deviations in the vicinities of their F and ki values,
were the only instances of this structure formation found. For ease of reference, below is the location
in parameter space of the cycles that exhibit this behaviour.

Figure 5.39: Position in (k, F )-parameter space of compound hypercycle parameters that have been
confirmed to form the novel loop pattern. Horizontal lines connect the k values of the species in one cycle,
with k1 < k2 < k3. The dotted boundaries depict the approximate limits of the pattern-forming region and
are given for reference (values taken from [Mun]).

At first glance, these positions seem to follow the curvature of the pattern-forming region of the
Gray-Scott model. The scarcity of data points is due to the difficulty in locating stable loop patterns.
To test their stability, simulations need to be run for very long times and as parameter deviations
increased, the loops would ultimately destabilise.
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5.6 Evolution simulations

We now move on to an evolutionary scenario for this model in the same vein as the previous ones, to
see how its cooperative behaviour influences the parameter direction of the species involved.

Any stable hypercycle reached through these simulations would be the final one, since none of its
constituents would become extinct. Therefore the question of these evolutionary simulations becomes:
how often does the system encounter stable cycles through random mutation? Or, how common are
stable cycles in the evolutionary landscape of the three-species compound hypercycle?

Given the directionality requirement for a stable hypercycle it is perhaps no great surprise that the
probability of it arising through unconstrained random mutations is quite small. So these parameter
combinations are very sparse points of stability in this landscape. Indeed, in the vast majority of
simulations run the systems kept exchanging cycle components as previous ones went extinct, until
the time limit would be reached. In fact, these experiments had served to deduce this particular
stability condition.

We have used the algorithm described below. The system starts with two species set manually
and the first random mutant completes the cycle. Regular checks are performed to see if any species
goes extinct and if so, random mutants are introduced to replace them. If all three disappear, the
simulation is stopped. This differs from most studies of mutation in hypercycles, e.g. [ES78], [BH91],
[CB94], where new species would appear as external components to an internally equilibrated cycle
or nearly so. Here these new species are incorporated in the 2-species configuration far from steady
state, completing the 3-species hypercycle (they are “internalised”).

Algorithm notes

1. Since the system is only defined with three species, the role of wild type is assigned at each
mutation event to one species, upon which the mutant is based. The third species, if present,
is assigned the role of some “original” species, otherwise this remains unassigned (o = 0). The
name means to be purely suggestive, as it is not guaranteed that this species was the wild type
2 mutation events before. The assignment section of the algorithm (lines 21-29) manages these
roles in a deterministic manner at every mutation event.

2. The convention used in the evolution scenario is that only received catalytic rates are set through
mutation, while the corresponding back-reactions (offered catalytic support) are set by imposing
Constraint 2.
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Algorithm 5.1 Evolution Simulation 3: Hypercycle evolution

1: function Mutation(π) . returns mutant parameter as deviation of π
2: δπ ∈ N

(
0, σ2

∆π

)
3: return π + δπ
4: end function

5: function Presence(v1, v2, v3) . marks which species present

6: x(s)←

(∑
i,j

vs(i, j) > ε

)
∀s ∈ {1, 2, 3} . 1 = True, 0 = False

7: return x
8: end function

9: procedure Main

10: Initialize(k1, k2, r11, r22, r12, r21) . Start with 2 species
11: x = (1, 1, 0) . keeps track of which species present
12: o = 1, w = 2,m = 3 . “original”, “w.t.”, “mutant” roles assignment

13: repeat
14: Simulation step(ki,rij)

15: if (another EXTINCT CHECK generations passed) then
16: x←Presence(v1, v2, v3)
17: if not (x(1) and x(2) and x(3))) then . at least one extinction

18: if not (x(1) or x(2) or x(3))) then . full extinction
19: STOP
20: end if

21: o = w = m = 0
22: for i← 1, 3 do . Assign roles to species
23: if not x(i) then
24: m← i . “mutant” = last not-present index
25: else
26: o← w . “original” = first present species index
27: w ← i . “w.t” = last present species index
28: end if
29: end for
30: km ←Mutation(kw)
31: rmm ←Mutation(rww)
32: rwm ←Mutation(rww)
33: rmw ← 2

√
rwwrmm − rwm . Constraint 2

34: if o 6= 0 then . The system has a 2nd (“original”) species
35: rom ←Mutation(row)
36: rmo ← 2

√
roormm − rom . Constraint 2

37: end if

38: Introduce Mutant(km, rmm, rwm, [rom], at max(i,j){vw})
39: Record(cycle parameters)
40: end if . (line 17)
41: end if . (line 15)
42:

43: until ENDTIME
44: end procedure
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Example simulation

We show results from a typical evolutionary simulation, with parameters as follows. The F value was
again chosen such that its pattern-forming k interval would be large. The system parameters were
the same as the ones used for the hypercycle experiments in the previous section, and the mutant
perturbations were of concentration µ = 0.2 and Moore radius rµ = 2. One generation was set to
specific length d LN

∆t2
e integration iterations.

F k0
1 k0

2 rij σ∆k σ∆r [kmin, kmax] [rmin, rmax] ENDTIME

0.04 0.065 0.065 1.0 0.005 0.005 [0.05, 0.07] [0.0, 2.0] 2 · 105 gen.

Table 5.3: System parameters for hypercycle evolution simulations. All catalytic rates started with value
1.0 and were made to obey Constraint 3.

During the simulation presented here, 52 hypercycles were present, all of them beginning with the
third not forming any patterns since all of its components corresponded to the homogeneous steady
state. These transient cycles are long-lived due to the proximity of the constituent species parameters
and so a small number take up the entire time of long simulations. However, tendencies in parameter
drifts are discernible, as shown in the plots below for the same simulation. Species quickly develop
selfish parameter values, as was the case in the previous models. Note that these evolution curves are
consistent across all simulations performed.

Figure 5.40: Parameter trajectories during a hypercycle evolutionary simulation. Degradation rates ki
quickly drop toward kmin, with occasional increases (bottom row), while self-replication rates rii (top row,
left) as well as received replication support rates rji, ∀ Vi (top row, right) increase and remain above 1.0,
leading to species with high self-amplification. One can also observe a slight correlation of these two rate
curves.
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Figure 5.41: Patterns and the hypercycles that produced them from an evolutionary simulation. The right
column diagrams are marked with the generation number they first appeared in the system. The colours
code for the order of appearance of a species: cyan - the “original species”, which was present before the
previous mutation event, green - “wild type”, and red - last mutant introduced as a variation of the wild type.
(For clarification of these roles see the algorithm notes.) The animation frames on the left column are taken
slightly after their respective cycles were introduced. All cycles starting from the third one produced only
homogeneous structures (no patterns).
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5.7 Conclusions

We observe that unless set in a cooperative configuration, the three species still evolve toward “selfish”
individuals, i.e. high self-replication and received replication support rates, as well as low degradation
rates. The correlated increase in rates rii and rji, ∀ Vi is due to the fact that the latter is set by
random mutation as a deviation from the former, but we have mentioned both since their effects are
compounded. Given this tendency, when stable cycles are reached, they would have a high likelihood
of occurring outside the pattern forming range. This is consistent with the 2-species model, in that
evolution drives the system towards loss of structure.

The most important difference from the previous model is that at infinite time these systems will
find themselves in a stable cycle configuration, if the algorithm outlined here is to be used, since even
if rare, these configuration are cooperative. As such, while only 2 competing species cannot in general
coexist, the 3-species compound hypercycle leads to a permanent system through repeated mutation,
given ample time.

We have thus seen that the hypercycle allows for cooperative behaviour and the establishment of
a permanent system. It also permits a richer array of structure formation in the shape of dynamic
patterns, with time-dependant features that emerge out of local species oscillations. While it fits
with established criteria of permanence for elementary hypercycles in mixed conditions, the spatial
extension of the model along with the added dynamics of the autocatalysts and their competition
for a common resource place additional constraints on stable cycle structure. While we cannot argue
for the likelihood of evolutionary emergence of such cycles, their behaviour, as well as the abstract
nature of this study, warrant their characterisation. In addition, for this model we have discovered a
novel pattern, i.e. not reproducible with the simple Gray-Scott dynamics, featuring different types of
internal dynamics, albeit a very limited one in terms of parameter-space presence.
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Chapter 6

Discussion

6.1 Overview

In this final section we will undertake an overview of the results presented in this thesis and outline
the contributions to existing knowledge of similar systems.

Concerning our aim to explore long-term evolutionary effects on pattern formation, we conclude
that for the systems composed of two and three autocatalysts presented here, the system inexorably
heads towards pattern loss and quite quickly so in terms of successive survivors of the replacement
process. This is due to the fact that selection favours selfish species which have parameter values
outside of pattern-forming range and in the case of the two-catalyst system, it ultimately leads to
the appearance of parasites that cause mutual extinction. While there are a few “islands of stability”
within the structure-yielding range, as is the case of the stable aggregate patterns in section 4.5 and
the stable hypercycle class, the likelihood of reaching them through unconstrained evolution is very
small. The fact that patterns themselves are not decisive for evolutionary outcomes but merely reflect
(local) populations is most likely due to the PDE nature of the systems since all species may exist in
every grid cell. Since the evolutionary direction is dictated by reaction parameters rather than spatial
structure, slight transitions in patterns due to noise as in [LHMPM03] would not change this overall
direction.

We also sought to understand the effects of spontaneous population variation on patterns. These
short-term interactions are of dominance by the fitter species, which drive the less fit out from the
system and form their own pattern. However, in the 3-hypercycle this replacement is stopped and the
interaction is stabilised. Very rich behaviour is obtained in this model, in the form of dynamic patterns
that have features which shift their structure in reflection of the local species population ratios. For
more catalytically altruistic species this is even more pronounced as long-lived oscillations maintain
the continuous changes in pattern features. While each of these features could be obtained with the
original single-catalyst Gray-Scott model, to our knowledge the overall result is novel. Moreover, a
new kind of pattern was found within this dynamic class in the shape of a stable loop which undergoes
episodic growth. This pattern was shown to have varied internal dynamics and to be able to coexist
in groups.

We also report that behaviour was essentially identical in environments with varying fuel feed
F and/or degradation ki rates. While the parameter gradients allowed for the forming patterns to
vary, as was the case of the phase diagram presented for the Gray-Scott model, the manner in which
species interaction occurred was unchanged, the overall pattern behaving as one unit. Hence these
results were omitted from this report. This is contrast with the phenomena observed in [BH95b] for
a PDE model of an elementary second-order replicator hypercycle with no resource competition but
growth limited by a carrying capacity. The study showed that space heterogeneity (degradation rate
gradients) confers resistance to strong parasites introduced at steady state. They would be pushed
out of the system by spiral fragmentation.

6.2 Parallels with existing models

These results have varying degrees of consistency with existing work, especially in the case of the
3-species compound hypercycle described in this thesis. Due to its improbable role in the early stages
of life it has found little attention in such studies. Most models describe elementary hypercycles
composed of second-order replicators, which are known to be topologically equivalent to Lotka-Volterra
equations [SS03]. In particular they feature quadratic autocatalysis, while here we have a cubic term.
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An exception to this prevailing focus is the study of a compound hypercycle in [BH95a], however
their cycle features inhibitory back-links. The authors report different behaviour for odd- and
even-numbered cycles, though it was stated the negative interactions tended to lead to cycle breakup.
They also report non-overlapping population patches that mix and enlarge.

In the non-interacting autocatalysts case first considered in this work, space and the coupled
availability of the common resource U complicates competition. Even for fitter mutants, the spread of
the initial mutation population constrains its survival. Such non-interacting replicator systems were
seen to lead to a sole survivor in the non-spatial setting in [ES78] and in this sense we have consistent
results, although selection differs in that the fitness of each species was simply its replication rate and
a conservation of the total amount of replicators was in effect.

In contrast with [ES78], resource availability and limited species lifespan induces mutual exclusion
in 2-cycles. Furthermore, here we get extinction even for slightly asymmetric interactions, not only
for parasitic relationships as in [SS03] for the same non-spatial environment and reaction networks
as the previous paper. There is some consistency with [ES78] concerning the 3-cycles, in that they
exhibit cooperation and achieve permanence, if only for a subclass thereof. Details about this cycle
class have been outlined in the stable cycle properties section of the hypercycle chapter.

As was pointed out in the introduction chapter, cellular automata (CA) models show different
behaviour for the same reaction scheme, largely due to their local particle exclusion. Here there is
overlap of populations though in wave regimes we do observe population gradient offsets, but there is
considerable blending.

A similar approach to ours regarding mutation was taken in [HT03], where a mutant was introduced
before population equilibrium. However, they consider only parasitic mutants. The referred work was
concerned with a stochastic CA model of an elementary hypercycle with no resource competition. In
particular, the authors show that a 2-cycle may coexist indefinitely with a strong parasite and often
this invader would be eventually expelled. This configuration would correspond to a broken cycle in
this thesis, a case which we did not consider but which we suspect would lead to its failure. In the CA
model in [AS06] of an elementary hypercycle composed of second-order replicators featuring faulty
synthesis with no resource competition, the populations in the cycle were reported to undergo genetic
drift, unlike the species in this work which have a strongly directed evolutionary direction.

Alongside the elementary hypercycle, there has been considerable focus on analysing second-order
replicator networks, often under the constraint of constant organisation (total population size fixed by
dilution) and assumption of abundant (constant) resources thus with no competition in this respect.
While we also assume a constant fuel resupply, it may be locally exhausted by the catalyst populations,
especially for the the inflow rates in the pattern-forming region.

Perhaps the closest model and results to our work is to be found in [CB97]. Indeed, the two
models are identical for certain parameters if the reaction constraints used here are to be discarded.
While our model does not consider varying molecule lengths we do have variation in the self-synthesis
rate, which the lengths were inversely proportional to in the respective study. The authors only
consider a limited number of network configurations, most notably an elementary hypercycle with
no autocatalysis, subjected to an invasion by a parasite also devoid of autocatalysis, which occurs at
pattern steady state. The pattern they investigate is described to be the dividing spots classified as
λ by Pearson [Pea93]. In an earlier paper with explicitly excluded autocatalysis for the same PDE
system [CB94], while not considering a 2-cycle case, the reported behaviour of the (non-invaded)
elementary 3-cycle is consistent with the one seen here. Namely the system reaches a time-constant
state, though note that for strongly directional (yet still compound) cycles here the system reaches a
periodic concentration orbit, even if minute. The invasion of a fitter parasite in their study kills the
entire system while less fit ones die out and coexistence is achieved in the limit case of equal fitness,
similar to what is observed in this work. To reiterate, the situation in our study differs in that we
incorporate the new species into the network as a variation of an existing component. A possible point
of contention comes from the authors’ hypothesis that any architecture may display clusters. Here
however we have seen that non-directional compound hypercycles fail altogether, which contradicts
this claim.

Unlike models that assume inherently faulty replication between a fixed number of species, similarly
to the rare-event perspective in this thesis, the non-spatial study by [HS98] looks at the effects of
introducing a new component. Their model is a non-spatial network that allows bidirectional and
negative couplings (inhibitions), with no resource competition. Mutants that were based on a species
from the network and inherited only its interactions were seen to be incorporated into the network,
as opposed to a randomly coupled new species, that kill the system altogether. This is contrast
with our results which feature frequent network failure for mutants closely based on their wild types,
unless the necessary coupling are achieved in the 3-cycle. The sharpest difference comes however
with their result that all evolved networks through small deviations are permanent, as we have seen
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here that minute differences in parameters simply delay extinction in competitive configurations. The
important consistency with this study is that the authors also report increase in average fitness in
evolved networks, although different parameters are involved, replication rates in [HS98] since species
do not degrade but are diluted out (constant organisation conditions), while in our model fitness also
comes from degradation rates.

Different forms of mutation produce differing results at least for a non-spatial setting. Such as
the continuous (perturbation) treatment in [SS92] of mutation in fixed networks with no resource
competition. Mutation in their model tends to drive the system away from extinction of single species
and does not cause extinction in stable complete populations. This is in sharp contrast with our
results (except for the special stable cycle class) - after a network is formed by the introduction of a
mutant, even slightly deviating new species will lead to extinction.

We also make a quick note of another system with behaviour resembling that of our 2-species
model, namely the spatial Nicholson-Bailey host-parasitoid model in [BL93], where the host may be
viewed as the resource for which parasitoids compete. They also report population overlaps and
replacement by a fitter species in spiral patterns.

6.3 On further extensions

A well-known problem of internally equilibrated hypercycles is their vulnerability to external
parasitation. In the present model we have seen that the incorporation of a third species with little
to high degree of parasitic nature into an existing 2-hypercycle far from steady state may stabilise the
system and lead to permanence. If we assume the directionality constraint for a stable cycle fulfilled
and think of these as elementary cycles in the direction of the dominating rates (see discussion in
the cycle properties section), established properties [ES78] of these networks in the non-spatial case
hold. As such, we suspect that longer directional compound cycles would allow permanence and show
similar dynamics, reaching a periodic orbit state at infinite time. For this hypothesis we list some
results concerning larger systems.

We know that more complex network topologies reduce to hypercycles [ES78]. For uniform coupling
terms generally only independent replicators or (elementary) hypercycles remain. We also have from
[ES78] that if a cycle has alternative internal paths (short-cuts), only the most efficient path (in terms
of catalysis rate) will remain. Since our results show some overlap with the non-spatial elementary
hypercycles and the evolutionary behaviour appears decoupled from structure formation to a certain
extent, we expect other results regarding arbitrarily complex networks to hold, at least for certain
subclasses.

Non-spatial second-order replicator networks under the constant organisation constraint were
shown in [HS98] to exhibit a logarithmic increase in the number of constituent species as a function of
the number of mutation events. The same result was obtained in [MN94] in a non-spatial replicator
metapopulation model of competing parasites. There is a similarity to the model studied here, in
that the infecting parasites compete over the common resource of hosts, which are sustained in turn
by self-replication. However, it features a strict chain hierarchy of forward replication support and
inhibition (negative interaction), and the constant organisation constraint. A consistent result is that
for a new species to establish itself, its decay rate (or “virulence”) must lie within a critical range with
respect to its wild type.

In the spatially extended multi-substrate and multi-catalyst generalisation of the Gray-Scott model
in one dimension [TK01], we have similar behaviour to our results in that spikes of overlapping
oscillating populations are formed. This resembles the case of concentration-oscillating spots shown
here, although the authors describe rare cases of spikes differing either in peak shape or internal
dynamics, with chaotic spikes mixed with fixed point ones.

It was stated in the analytical treatment by [WW14] that for the elementary hypercycle with
no autocatalysis, the solution consisting of a single spot pattern is (linearly) stable up to a cycle
length of 4 components. Their analysis was of the same model as that in [CB97], where it was shown
numerically that these spots were stable for cycles of length 5. Note that this does not entail lack of
structure formation but a change in dynamics of larger cycles.

On the other hand, there are also results which stand against the hypothesis stated earlier, such
as the the numerical survey [SH93] which showed that the probability of achieving permanence in
random non-spatial second-order replicator networks of more than 5 components decreases at least
exponentially with the number of components.
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Appendix A

On numerical issues

As pointed out in a previous paper[CB97], one needs to be careful of stability when performing
numerical integration of these dynamics. Most critically here, one needs to avoid the emergence of
spurious structural features.

A necessary condition for the stability of (well-posed) initial-value problems solved by finite
difference methods is the Courant-Friedrichs-Lewy (CFL) condition, which informally states that
the time step length must be smaller than information propagation time on the discrete grid. More
formally, “the mathematical domain of dependence must be contained in the numerical domain.”
[Tre96] Domain denotes all points that may influenced by a given point x starting from time t = 0,
whether in the analytical (mathematical) system or in the discrete integration space.

For the current system, this condition may be stated as

C =
s∆t

∆x2 =
D∆t

∆x2 < Cmax (A.1)

where s denotes the velocity of information, here taken as the diffusion coefficient since it
parametrises the Laplacian spatial operator. C is the so-called “Courant number” and the bounding
Cmax = 1/4. This is to say, the length of the squared space step should be at least 4-fold that of the
time step, which is sufficient for the stability of an explicit method used on a parabolic system, as is
the case here [Tre96].

In most simulations the ratio has been kept as low as feasible, a typical example being a CFL
number for u of 3.15 · 10−2, with the value for v at half.

As can be seen from the above, the magnitude of the diffusion coefficient is related to the
discretisation parameters. Throughout the literature, the value of D is given without explicit reference
or functional link to these parameters. Here we have used the following heuristic to set this parameter
in our simulations. The idea is to work backwards and assume a given Courant number Cd and derive

D = Cd
∆x2

∆t
(A.2)

We have found this derivation to work well for Cd = 10−3 in the majority of simulations though
the essential thing is to have the diffusion coefficient of the same order of magnitude as the right-hand
side term above.

The integration method used throughout this work, unless stated otherwise, is the forward Euler
method. The midpoint method was also used, but no difference in behaviour could be observed
when confining as described above. Therefore, the simple Euler method was deemed satisfactory and
chosen for speed. For the same reason, most simulations use a 5-point stencil for the discrete Laplacian
operator, especially since its computation was the speed bottleneck of the simulations. As no effective
difference was observed in pattern formation following the precision considerations described here, the
more accurate 9-point discrete Laplacian was not employed.

Regarding effective null concentration, we have chosen a more realistic value ε = 10−24, based on
the Avogadro constant (i.e. ε < 1/6.02214129(27) · 1023), rather than relying on the implicit machine
IEEE 754 specification of lowest non-null representable double precision floating point number, which
is 10−324 [iee08]. Note though that this value is used for every grid cell, so a mole is a quite high
reference value and a ratio over ∆x2 would be perhaps more appropriate, giving a value of e.g. 10−14

for most simulations in this report, but for simplicity the aforementioned value was chosen. Visible
effects of high cut-offs have been reported to occur for values above 10−5 [CB94], many orders of
magnitude higher than our value, even with the extra scaling.
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Very low values are also worth taking note of, since some patterns were seen to be influenced by
them. Specifically, we have found for the fledgling spirals pattern (Pearson α) that as the null cut-off
was lowered from 10−30 to 10−300, a twofold increase in the number of wave fragments occurred, all
other parameters being kept identical. However, concentrations below the ε chosen here were deemed
unreasonable as the probability of finding any particle in a cell holding these values is effectively zero.
So we decided to consider these structural features that appear at machine ε as spurious and, besides
the numerical experiments performed to decide the above issues of numerical stability, all results
presented in this thesis, unless otherwise specified, have employed the 10−24 cut-off.

The pseudorandom number generator used was the Tausworthe algorithm (for quality and speed)
supplied by the GSL package, with seed given by computer system time. From the same package, the
Ziggurat algorithm was used to draw Gaussian random variates.
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Appendix B

Simulation movie files

The animations from which frames have been illustrated in this report may be found online at https:
//github.com/phil-b-mt/sim_animations. Below is a table that indicates the file name of the
movie corresponding to each series of frames, as given by figure number. Some simulations described
in this report have not had the animations saved, as only a few time intervals were of interest. The
movies have been encoded in the H.264/MPEG-4 AVC format and should be viewable with any
modern media player (e.g. VLC).

Figure File name
3.1 simple sim1.mp4
3.5 simple sim3.mp4
4.2 ic sim1.mp4
4.4 ic sim2.mp4
4.6 ic evol ex.mp4
4.7 ic special1a.mp4
4.8 ic special1b.mp4
4.9a ic special2.mp4
4.9b ic special2 cross.mp4
4.14 ic aggr noise perturb.mp4
4.21 fic evol ex.mp4
5.2 hcycle sim1.mp4
5.5 hcycle sim2.mp4
5.11-5.12 hcycle sim4.mp4
5.17 hcycle quasistable first1000.mp4

hcycle quasistable last1000.mp4
5.19 hcycle dyn1.mp4
5.21 hcycle dyn2.mp4
5.23 hcycle dyn3.mp4
5.26-27 hcycle loop1.mp4
5.29 hcycle loop2.mp4
5.30 hcycle loop3.mp4
5.31 hcycle loop4.mp4
5.41 hcycle evol ex.mp4
(*) unused/hcycle dyn ex1.mp4
(*) unused/hcycle dyn ex2.mp4

Table B.1: The last two files marked with (*) have not been described in this thesis but have been provided
as they are interesting examples of dynamic patterns.
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Appendix C

Software

The software used to perform simulations was developed by the author and is available at https:

//github.com/phil-b-mt/egs under a GPL3 licence. It was written in C++ and uses the OpenMP
library for parallelisation and the GNU Scientific Library (GSL) for pseudorandom number generation.
GSL routines are guaranteed to be thread-safe by the developers, meaning that no errors are introduced
when calculations using them are done in parallel. The simulation program handles the numerical
computations only, saving the system evolution for later visualisation and analysis. This was done
largely with Python scripts.

Plotting, both of the animations and the various concentration and trajectory plots, has been done
with the matplotlib library, versions 1.2.1 to 1.3.1 (the change in versions had no essential effect on
the procedures used here).

The correlations in section 4.8 on 2-species evolution were obtained using the functions
scipy.stats.spearmanr() and numpy.correlate() from the Python libraries SciPy (0.9.0) and NumPy
(1.6.1), respectively. The Q-Q plots in the same section were done in Mathematica 8.0.4.0.
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