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Abstract

As a part of MOSART, an international EU project, an efficient and high-level frame-
work is needed to help rapid and accurate estimation of energy and performance for
McNoc (Multi-core Network on Chip). This thesis is about characterization of the Data
Management Engine (DME) which is triggered by the Leon3 processor. In this thesis, a
power model was established and used to characterize the micro-functions in the Data
Management Engine (DME) to be able to get a quick estimation of energy and perfor-
mance without having to run slow gate-level simulation and slow power extraction.
The result was validated by being tested on a FFT program.

Keywords: MOSART, McNoC, Data Management Engine, Leon3 processor, Power
Model, FFT program
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1 Introduction

The thesis is proposed within the frame of MOSART, an international EU project in-
volving several partners, both from academy and industry. MOSART aims at designing
and implementing a complete and advanced platform, based on the Networks on Chip
(NoC) developed at KTH, to be used for wireless applications.

For several years, KTH has been doing research on Networks on Chip (NoC) and
has built Nostrum [3], a mesh based NoC which uses bufferless switches implementing
a deflective routing algorithm. Among the extensions proposed within the MOSART
frame, is the introduction of a Data Management Engine (DME). The DME is a hard-
ware block located in each Processor-Memory (PM) node of the network. Its main pur-
pose is to bridge processor cache, local memory and Network Interface (NI). This is
shown in Figure 1.1.

Figure 1.1: DME location [2]

The DME was developed to help the CPU core make operations related to memory
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more effective. Furthermore, the DME is an interface between the CPU core and the
network. The DME makes it easy to connect the CPU core to the network without any
modification and supports global memory operations for the CPU core. All in all, the
DME supports several function related to memory as follows [1]:

• Distributed Shared Memory Addressing
Maintain the illusion of a global, shared memory via physical addressing or virtual-
to-physical memory translation for logical addressing.

• Memory access and Synchronization
Local access and remote access. Consistency in access is guaranteed by several
synchronization mechanisams when memory access happens on a shared region.

• Memory management
Effectively allocate and deallocate memory through the whole multi-core chip.

• Support for coherent cache
Updating cache directory, the copy of cache block.

• Data movement
Multiple models of data transfer.

This thesis work was carried out at the Electronic Systems Department, School of ICT,
KTH, Kista, Sweden, as a part of MOSART, an efficient and high-level framework is
needed to help rapid and accurate estimation of energy and performance of the McNoC
(Multi-core Network on Chip). The reason for doing this thesis is to be able to get a
quick power estimate without having to run slow gate-level simulation and slow power
extraction using the tool every time. This thesis is about the characterization of each
micro-function running in the Data Management Engine (DME) which is triggered by
the Leon3 processor (For more details about the Leon3 processor, refer to Section 2.1.1).

In Chapter 2, the Application platform and the DME is introduced, then the power
model and the procedure of characterization are demonstrated, finally the results are
reported and analysed. In Chapter 3, the validation of the characterization results are
reported. In Chapter 4, conclusions and future work are discussed.
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2 Characterization of DME

2.1 Network on Chip

McNoC (Multi-core Network on Chip) is a NoC (Network on Chip) implementation
developed at KTH and it is a 2D mesh packet switched network with configurable size
[2]. The latest McNoC refers to Figure 2.1 which consists of Processor-Memory (PM)
and is connects by switches (also called routers, represented by circles in the figure).
Each PM is a SoC (System on Chip) which is composed of a processor (in this case the
Leon3), and a Data Management Engine (DME,also called Dual Microcoded Controller)
and is connected using the Advanced High-performance Bus (AHB) [4]. Since McNoC
is a network, the memory is required to be able to be accessed by other nodes through
switches. DME was introduced to manage the memory accessing. Private memory is
only allowed to be accessed by the node itself and shared memory is allowed to be
accessed by all nodes, both the node itself and other nodes. Instructions can only be
stored in private memory in contrast to data that can be stored both in private memory
and in shared memory.

Figure 2.1: Application plaform [2]
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2.1.1 Leon3

The Leon3 processor core [8] is a synthesizable VHDL model of a 32-bit processor com-
pliant with the SPARC V8 architecture [5]. Four different cases regarding the instruc-
tions/data presence in the Leon3 cache were considered as follows:

1. instruction cache hit and data cache hit
DME is in idle state and performs no operations.

2. instruction cache hit and data cache miss
DME does not perform instruction fetch instead it receives a command from the
processor, which in turn triggers the corresponding DME micro-function for data
handling.

3. instruction cache miss and data cache hit
Leon3 fetches instructions from Local private memory through DME. No other
operations are performed.

4. instruction cache miss and data cache miss
DME works both as a bridge between Leon3 and memory (for instruction fetch)
and as an engine for data handling.

The data cache and instruction cache are configurable. Since the main reason for the
DME to exist is for the handling of data in a distributed shared memory architecture,
only the second and fourth case are considered. For the characterization of the micro-
functions, the Leon3 processor is configured with data cache but without instruction
cache. Data cache and instruction cache are not included for validation of the charac-
terization results. The reason for this configuration will be disscussed in Section 2.6.1
and Section 3.2.

2.1.2 Switch

For the PM node communication, data packets are transmitted through switches. One
switch has 5 inputs and 5 outputs for duplex communication with 5 different targets,
and the switch is thus connected with 4 neighbour switches and 1 PM node. When
receiving a Packet Data Unit (PDU), the switch would check the destination and guide
the PDU to the next switch or its connected PM node. The hardware view of the switch
is shown in Figure 2.2. PDU going through switch will cause 1 cycle delay which will
be observed in the time consumption of each micro-function.
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Figure 2.2: Switch model fabric [6]

2.2 Data Management Engine

As shown in Figure 2.3, the DME contains six main parts, namely, Core Interface Con-
trol Unit (CICU), Network Interface Control Unit (NICU), Control Store, Mini-processor
A and B, and the Synchronization Supporter.

Figure 2.3: DME internal structure [2]

The Mini-processor A executes microcode from the control store through port A and
uses register file A for temporary data storage. Its operation is triggered by a com-
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mand from the local Leon3 processor. Mini-processor B executes microcode from the
control store through port B, and uses register file B for temporary data storage. The
Mini-processor B is similar to the Mini-processor A. The difference is that, rather than
being triggered by a command from the local Leon3 processor, the Mini-processor B is
triggered by a command from a remote Leon3 processor via the interconnect. As the
names suggest, the CICU is the interface with the CPU core and the NICU is the inter-
face with the network. The CICU receives local memory read/write access requests as
local commands from the core, activates the Mini-processor A to process the requests,
and receives replies from Mini-processor A or the local memory. The NICU receives
remote memory read/write access requests as remote commands from other cores, ac-
tivates Mini-processor B to process the requests and then sends back the replies to the
interconnect. The Control Store works as an instruction cache. For each command, it
loads the corresponding piece of microcode from the local memory (if not already in the
Control Store) and provides the microcode as instructions to the two Mini-processors.
The operation of the Control Store is completely controlled by the two Mini-processors.
The Synchronization Supporter coordinates the two Mini-processors A and B for the
exclusive access of shared variables, such as locks and semaphores. Register files A
and B are temporary data storages, which may be considered as part of Mini-processor
A and B, respectively. Due to this structure, the DME can process two streams of com-
mands in parallel, one coming through the CICU and processed by Mini-processor A,
and the other coming through the NICU and processed by Mini-processor B. During
parallel computation, particular attention must be paid that the two Mini-processors
do not request concurrent access to the same memory location. This is handled by the
synchronization block.

2.2.1 Distributed Shared Memory

Memories are distributed in each node and tightly integrated with the processors. All
local memories can logically form a single global memory address space. However,
we do not treat all memories as shared. As illustrated in Figure 2.4, the local memory
is partitioned into two parts: private and shared. Two addressing schemes are intro-
duced: physical addressing and logic (virtual) addressing. The private memory can
only be accessed by the local processor and the addressing is physical. All of the shared
memories are visible to all nodes and are organized as a Distributed Shared Memory
(DSM) and this memory uses virtual addressing. The boundary address between the
private memory space and the shared memory space is configurable.
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Figure 2.4: DSM organization [2]

2.3 Introduction of Characterization

The steps involved in the thesis procedure are shown in Figure 2.5. At the beginning,
the design package of the DME was given together with some programs that were
working well at RTL level. The first step is to synthesize the RTL model of the DME,
simulate and verify that the gate-level version functionally works correctly. If the netlist
is working well, then the characterization can go on, otherwise the block should be
returned to the developer. Use the power model which will be introduced in Section
2.4 to charaterize the DME. The power model is composed of extracting the simulation
time at RTL level and using the simulation time to characterize the micro-functions
running in each block of the DME at gate-level. Finally, validate the results with one or
more real applications to check whether this power model can give a quick estimation
of energy and performance of the DME.
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Figure 2.5: Procedure of thesis

2.3.1 Correspondence Between Leon3 and DME

Since the DME is triggered by the Leon3 processor and there is a one to one map-
ping between Leon3 commands [8] and DME micro-functions, the DME characteriza-
tion process is basically done by controlling the instructions that are executed by the
Leon3 processor. In this respect, the power model, which will be introduced in Section
2.4, will be used to estimated the power. Table 2.1 shows the correspondence between
Leon3 instructions and DME micro-functions. Each DME micro-function itself is com-
posed of several micro-instructions, but the characterization was executed at the micro-
function level. As showed in Table 2.1, all the load/store related Leon3 instructions
trigger the LOAD WORD and STORE WORD DME micro-function respectively. The
ldd (load double word) and std (store double word) Leon3 instructions trigger the cor-
responding DME micro-function twice. The DME micro-function BLOCK/UNLOCK
is implemented by predefined C-Macros that need to be manually inserted into the ap-
plication software. All the Leon3 instructions which are not load/store related do not
trigger any DME micro-functions. The instruction fetch is also implemented through
the LOAD WORD micro-function. Some micro-functions like LOAD BYTE that will be
developed in future research is now redirected to the LOAD WORD micro-function.
Table 2.2 reports the redirected relationship inside DME. It enables the use of the same
model to get the characterization result of the new micro-functions.
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Leon3 instruction DME micro-function

ld (load word) LOAD WORD
lduh (load unsigned half word) LOAD HWORD
ldub (load unsigned byte) LOAD BYTE
ldsh (load signed half word) LOAD HWORD
ldsb (load signed byte) LOAD BYTE
ldd (load double word) LOAD WORD +LOAD WORD
st(store word) STORE WORD
sth(store half word) STORE HWORD
stb(store byte) STORE BYTE
std(store double word) STORE WORD +STORE WORD
Software-defined macros BLOCK/UNLOCK
other instructions —

Table 2.1: Relation between Leon3 instructions and DME micro-functions

LOAD BYTE
LOAD HWORD

LOAD WORD

STORE BYTE
STORE HWORD

STORE WORD

Table 2.2: Redirected relationship in DME

2.3.2 Synthesis

There are several programs included in the DME package which can be used to test
whether each block functionally is working well at RTL level. After synthesis, these
programs were also used to check whether the netlist was working correctly. The
netlist for the CICU was unfortunately out of control and was returned to the devel-
oper. Therefore it is not included in the following descriptions.

2.3.3 Platform

The following platform (Figure 2.6) has been established for the entire characterization
which is a 7x1 (7 rows, 1 column) network with the memory addresses and names
specified in Table 2.3. In the characterization, the source node is node 1 which means
that the program is stored in the local private memory of node 1. The source node
initiates the data access request to local private memory, local shared memory and also
to shared memory in the destination nodes (node 2-7).
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Figure 2.6: The platform used
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Memory Space Memory Name
0x40000000 0x401FFFFF Private Memory
0x40200000 0x4021FFFF Shared Memory #0
0x40220000 0x4023FFFF Shared Memory #1
0x40240000 0x4025FFFF Shared Memory #2
0x40260000 0x4027FFFF Shared Memory #3
0x40280000 0x4029FFFF Shared Memory #4
0x402A0000 0x402BFFFF Shared Memory #5
0x402C0000 0x402DFFFF Shared Memory #6
0x402E0000 0x402FFFFF Shared Memory #7

Table 2.3: Memory space

2.4 Power Model

The power model used to test the power of each instruction is composed of Nops and
the instruction under test (IUT).The testing program is shown in Figure 2.7.

Figure 2.7: Testing pragram

Each time, one instruction is under test. This IUT is repeated 100 times to get the av-
erage energy performance. Between two IUTs of these repetitions, 50 nop instructions
has been inserted to make sure that each time one IUT has been executed. And another
50 nop instructions has been insterted in the beginning and end of the testing part of
program to isolate the testing from initialization instructions and terminating instruc-
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tions. For example, if the IUT is ld, it will be repeated 100 times. Between each two ld,
50 nop instructions will be insterted. And another 50 nop instructions will be inserted
in the beginning and end of the testing part of program. After the characterization of
ld is finished, another IUT, e.g. st, will be tested in the same way and be characterized.

The following formula has been used to establish the power estimate. First, the in-
struction under test would be Nop, which means Leon3 in an idle state. When Leon3
is in an idle state, there would be no instruction fetch and data fetch from DME which
means DME is also in an idle state. The following energy and power estimate is re-
lated to DME. When the Leon3 processor executes the instruction under test, the cor-
responding micro-function or idle state of the DME will be triggered. The simulation
time would exclude 25 Nop in the beginning and the end since there is some delay
between Leon3 and DME. So the testing part of program is composed of 100 IUT plus
5000 Nop.

E5000Nop = P5000Nop ∗ tsimulation (2.1)

where:

• E5000Nop is the energy of DME when5000 Nop executed Leon3.

• P5000Nop is the power of DME when 5000 Nop executed in Leon3.

• tsimulation is the simulation time of DME when 5000 Nop executed in Leon3.

The energy of each Nop would be:

ENop =
E5000Nop

5000
(2.2)

EIUT = E100IUT/100 (2.3)

where:

• EIUT is the Energy of 1 micro-function under test executed in DME.

• E100IUT is the Energy of 100 micro-functions under test executed in DME.

The Energy of 100 micro-functions under test executed in DME.

E100IUT = E5000Nop+100IUT − ENop ∗ 5000 (2.4)

where:

• E100IUT is the Energy of 100 micro-functions under test running in DME.

• E5000Nop+100IUT is the Energy of 5000 Nop and 100 micro-functions under test of
DME when executed 5000 Nop and 100 corresponding instructions executed by
Leon3.

The total simulation time was extraction from the gate-level simulation.
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2.5 RTL simulation

Firstly, the beginning and end time of the testing part of the program should be ex-
tracted at RTL-level to get the running time of the program. The reason for doing this is
that the time can not be oberserved by gate-level simulation. After getting the time, the
DME characterization will be carried out on the gate-level netlist. The time consump-
tion in cycles can be observed in the console which is shown in Figure 2.8, Figure 2.9
and Figure 2.10.

Figure 2.8: STORE WORD and LOAD WORD time consumption

Looking at the time result, which is expressed in number of cycles, it can be seen that
19 more cycles are used for local shared memory access compared to local private mem-
ory access due to the operation of virtual-to-physical address translation performed by
the DME. 8 extra cycles are needed to perform remote access to an adjacent node. The
cause of these extra cycles is that the operation requires traversing 2 switches two times
each and that each switch takes 1 cycle to move a packet from input to output, 4 cycles
are consumed by the switches, while the remaining 4 cycles are consumed in the remote
PM node. Finally, each extra switch included in the communication path introduces 2
clock cycles of delay.

From Figure 2.9 and Figure 2.10, it can be found that BLOCK micro-functions always
takes 4 cycles more than the UNLOCK micro-function. Since BLOCK and UNLOCK
micro-functions are always being used in pairs, the virtual-to-physical address transla-
tion will cost time in BLOCK but do not need to be recalculated in UNLOCK.
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Figure 2.9: BLOCK time consumption

Figure 2.10: UNLOCK time consumption
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2.6 Gate Level Simulation

Gate-level simulation with the time achieved at RTL-level simulation generates files
with accurate time and power reports. Using the power model, the result of each block
can be observed and reported in the following part.

2.6.1 Result for Each Component

From the power model, it is known that the micro-function under test needs to avoid
effect from instruction fetch when the characterization is proceeding. In this section, the
result of the characterization of each block of DME would be demonstrated under the
condition that Leon3 is configured with instruction cache, resulting in a hit condition,
and without data cache. Different tables refer to different micro-function.

The idle state energy consumption per cycle of each component of the DME is re-
ported in Table 2.4. Here, the idle state means that Leon3 does not fetch instruction nor
data from DME. As mentioned in previous section Mini-processor A and B have similar
inner structure, so their idle states consumes more or less the same energy.

Block Energy per cycle(pJ)
MiniProcessorA 17.33
MiniProcessorB 17.42

NICU 5.76
Synchronizor 0.61

Table 2.4: The idle state of each block of DME

When some operations are performed, some blocks are in an idle state. The energy
result for individual DME blocks allow us to estimate the working block of the DME.
STORE WORD and LOAD WORD micro-functions are complementary to each other
and cause a similar behaviour in the DME’s internal logic, both for energy and time.
The characterization results of them are shown in Table 2.5 and Table 2.6.
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Local private access Local shared access
Time[cycles] 1 20
Energy[pJ]

MiniA 17.33 375.95
MiniB 17.42 348.35
NICU 5.76 115.24

Synchronizer 0.61 12.15

Remote shared access(2) Remote shared access(3)
Time[cycles] 28 30
Energy[pJ] node1 node2 node1 node3

MiniA 515.58 485.15 549.92 519.81
MiniB 487.67 500.08 522.50 534.91
NICU 161.71 164.09 173.23 175.61

Synchronizer 17.00 17.00 18.22 18.22

Remote shared access(4) Remoteshared access(5)
Time[cycles] 32 34
Energy[pJ] node1 node4 node1 node5

MiniA 587.03 554.53 619.44 589.11
MiniB 557.34 569.79 592.17 604.58
NICU 184.77 187.15 196.28 198.66

Synchronizer 19.43 19.43 20.65 20.65

Remote shared access(6) Remote shared access(7)
Time[cycles] 36 38
Energy[pJ] node1 node6 node1 node7

MiniA 656.54 623.83 690.79 658.49
MiniB 627.00 639.46 661.84 674.29
NICU 207.81 210.19 219.34 221.72

Synchronizer 21.86 21.86 23.08 23.08

Table 2.5: Energy consumption for STORE WORD
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Local private access Local shared access
Time[cycles] 1 20
Energy[pJ]

MiniA 17.33 369.87
MiniB 17.42 348.35
NICU 5.76 115.24

Synchronizer 0.61 12.15

Remote shared access(2) Remote shared access(3)
Time[cycles] 28 30
Energy[pJ] node1 node2 node1 node3

MiniA 514.94 485.18 549.31 519.84
MiniB 487.67 487.68 522.53 534.44
NICU 161.78 163.69 173.30 175.22

Synchronizer 17.00 17.00 18.22 18.22

Remote shared access(4) Remote shared access(5)
Time[cycles] 32 34
Energy[pJ] node1 node4 node1 node5

MiniA 586.49 554.56 618.87 589.15
MiniB 557.37 569.32 592.20 604.12
NICU 184.84 186.76 196.35 198.28

Synchronizer 19.43 19.43 20.65 20.65

Remote shared access(6) Remote shared access(7)
Time[cycles] 36 38
Energy[pJ] node1 node6 node1 node7

MiniA 656.05 623.90 690.34 658.56
MiniB 627.04 639.01 661.87 673.85
NICU 207.90 209.82 219.42 221.35

Synchronizer 21.86 21.86 23.08 23.08

Table 2.6: Energy consumption for LOAD WORD

In private access, the only working part is the CICU which can be observed in RTL
simulation while all other components get almost the exact same energy consumption
as in the idle state since private memory address is physical addressing which means
that the DME works as a bridge between Leon3 and private memory. For local shared
access, Mini-processor A needs to calculate virtual-to-physical address transformation
and consumes more energy than in the idle state while all other parts remains in idle
state. Mini-processor B and NICU are supposed to work only when a remote access
occurrs. When node 1 initiate a remote access for other nodes, for example node 3, the
working component is NICU for node1 and NICU and Mini-processor B for node 3. It
can be observed in Table 2.5 and Table 2.6 that the Mini-processor B of destination node
consumed more energy than the Mini-processor B of the source node.
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Table 2.7 and Table 2.8 report the characterization result for the BLOCK/UNLOCK
micro-functions respectively. As mentioned before, there is no Leon3 instruction that
is directly triggering the DME BLOCK/UNLOCK micro-functions. Instead, there are
some predefined C-macros that need to be manually inserted in the application soft-
ware by the programmer and that cause the DME BLOCK/UNLOCK micro-functions
to execute. When calling the C-macros, the memory address to be blocked/unlocked
has to be given by the programmer. It was also in this way that BLOCK and UNLOCK
micro-functions for access to different memory locations were measured.

Local private access Local shared access
Time[cycles] - 25
Energy[pJ]

MiniA - 449.39
MiniB - 427.92
NICU - 141.40

Synchronizer - 15.60

Remote shared access(2) Remote shared access(3)
Time[cycles] 33 35
Energy[pJ] node1 node2 node1 node3

MiniA 592.79 564.24 564.24 627.62
MiniB 567.26 628.12 628.12 602.09
NICU 187.78 189.50 189.50 199.30

Synchronizer 19.78 20.48 20.48 20.99

Remote shared access(4) Remote shared access(5)
Time[cycles] 37 39
Energy[pJ] node1 node4 node1 node5

MiniA 664.27 633.58 696.98 668.21
MiniB 636.93 697.78 671.76 732.56
NICU 210.83 633.58 222.35 224.08

Synchronizer 22.21 697.78 23.42 24.13

Remote shared access(6) Remote shared access(7)
Time[cycles] 41 43
Energy[pJ] node1 node6 node1 node7

MiniA 733.63 702.90 768.45 737.56
MiniB 706.60 767.41 741.44 802.2
NICU 233.88 235.61 245.41 247.14

Synchronizer 24.64 25.34 25.85 26.56

Table 2.7: Energy consumption for BLOCK
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Local private access Local shared access
Time[cycles] - 21
Energy[pJ]

MiniA - 379.65
MiniB - 358.25
NICU - 118.36

Synchronizer - 13.10

Remote shared access(2) Remote shared access(3)
Time[cycles] 29 31
Energy[pJ] node1 node2 node1 node3

MiniA 524.28 494.93 559.11 529.59
MiniB 497.59 496.96 532.42 531.75
NICU 164.74 166.52 176.27 178.05

Synchronizer 17.35 18.00 18.57 19.22

Remote shared access(4) Remote shared access(5)
Time[cycles] 33 35
Energy[pJ] node1 node4 node1 node5

MiniA 595.77 564.27 628.48 598.90
MiniB 567.26 566.55 602.09 601.33
NICU 187.80 189.59 199.32 201.11N

Synchronizer 19.78 20.43 20.99 21.65

Remote shared access(6) Remote shared access(7)
Time[cycles] 37 39
Energy[pJ] node1 node6 node1 node7

MiniA 665.14 633.58 699.96 668.24
MiniB 636.93 636.13 671.76 670.92
NICU 210.85 212.64 222.38 224.17

Synchronizer 22.21 22.86 23.42 24.07

Table 2.8: Energy consumption for UNLOCK

BLOCK/UNLOCK micro-functions are only allowed to perform on shared memory,
so there are no results for local private memory access. For local shared memory, only
Mini-processor A and the synchronization supporter are working while other compo-
nents are idle. When node 1 initiates a remote BLOCK for another node, for example
node 3, the working component is Mini-processor A and NICU for node1 while NICU,
Mini-processor B and Synchronization Supporter are working for node 3. This can be
observed in Table 2.7. First, the Mini-processor B of the destination node consumes
more energy than that of the source node whcich consumes the idle state energy mul-
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tiplied by the corresponding number of cycles. Second, Synchronization Supporter in
the destination node consumes more than that of the source node. When node 1 initi-
ates a remote UNLOCK for other nodes, e.g. node 3, the working component for node1
is NICU while NICU and Synchronization Supporter are working for node 3. It can be
seen from Table 2.8 that the Mini-processor B of the destination node consumes almost
the same energy as that of the source node. With the same reason of the different time
consumption between BLOCK and UNLOCK, BLOCK and UNLOCK are always used
in pairs, the virtual-to-physical address translation will be realized in BLOCK but the
result can be used directly in UNLOCK.
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3 Model Validation

3.1 Validation Method

The previous characterization results have been validated using a real application. In
this case, the processor Leon3 is without cache, which means that every instruction and
data should be fetched through the DME. The validation has been carried out in the
following way. The instructions has been stored in node1. Data has been stored in
local private memory, local shared memory of node1 and remote shared memory of the
other 6 nodes. The estimated DME energy has been calculated using Equation 3.1. The
instruction fetch only relates to the component CICU which was not working, so the
validation did not take instruction fetch into account.

EEstimated = tidle ∗ pidle + EWorking (3.1)

where:

• EEstimated is the Energy estimate for the DME when running the real application

• tidle is the idle time when running the real application

• pidle is the idle power of DME

• Eworking is the estimated working energy of DME

The estimated working Energy was calculated by Equation 3.2.

Eworking =
N

∑
i=1

NumMFUTi ∗ EMFUTi (3.2)

where:

• NumMFUTi is the number of micro-function i under test
A provided scripts can transform C program into Leon3 commands and get the
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statistic result of each command. Shown in Table 2.1, is the one-to-one map-
ping between the Leon3’s commands and the DME’s micro-functions. Using the
statistic result of Leon3 commmands and the one-to-one mapping between the
Leon3’s command and the DME’s micrco-functions, the statistic result of each
DME’s micro-function can be calculated.

• EMFUTi is the Energy of micro-function i under test

When running the real application, besides the working time, there will be some idle
time which is calculated by Equation 3.3.

tidle = ttotal −
N

∑
i=1

NumMFUTi ∗ tMFUTi (3.3)

where:

• ttotal is entire application running time which can be extracted from console

• tMFUTi is the consumption time of 1 micro-function i under test running in DME

Emeasured = ttotal ∗ pmeasured (3.4)

where:

• pmeasured is the measured power for the entire application

• Emeasured is measured Energy for the entire application

Both the measured energy and the estimated energy has excluded the initialization
energy of the DME. The error rate has been calculated by

ErrorRate =
EEstimated − Emeasured

Emeasured
(3.5)

3.2 Validation with Real Application

The characterization results presented above have been validated for accuracy against
gate-level energy extraction. The application used for validation is a FFT program.

Leon3 was configured without both instruction cache (I-Cache) and data cache (D-
Cache) to make sure that each instruction and data fetch was from memory. When the
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CICU is working, the configuration will be better for validation since the instruction
fetch is taken into account.

As mentioned in the validation method, validation has been performed on the same
case studies that were used during characterization, i.e. data in local private, local
shared and remote shared memory. The validation results are shown in Table 3.1. In
each case study we are comparing measured energy versus estimated energy values
for each of the DME components. Error in percentage was reported, calculated on the
energy summation for Mini-processor A, Mini-processor B, NICU and Synchronizer.
As evident from the table, the accuracy resulting from our model is very high, since the
error is always below 0.1%. The explanation for such a high accuracy lies in the high
regularity and determinism of the DME operation. It should be noted that for both the
estimated and measured energy the energy for DME initialization was excluded since
this was fixed in time and energy consumption as shown in 3.2.
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Total instructions[#] 683485 683485 683485 683485
Total time[ms] 58.128 58.433 58.548 58.579

Local Local Remote Remote
Private access Shared access shared access(2) shared access(3)

Measured energy[µJ] node1 node2 node1 node3
MiniA 50.359 50.715 50.822 50.725 50.848 50.752
MiniB 50.622 50.888 50.989 51.044 51.015 51.075
NICU 16.747 16.835 16.867 16.894 16.875 16.903

Synchronizer 1.765 1.744 1.778 1.778 1.779 1.779

Estimated energy[µJ]
MiniA 50.356 50.641 50.744 50.721 50.770 50.747
MiniB 50.623 50.889 50.989 50.994 51.015 51.025
NICU 16.746 16.834 16.868 16.869 16.876 16.878

Synchronizer 1.765 1.774 1.778 1.778 1.779 1.779
Error[%] -0.0025 -0.0615 -0.0639 -0.0656 -0.0639 -0.0622

Total instructions[#] 683485 683485 683485 683485
Total time[ms] 58.610 58.640 58.671 58.701

Remote Remote Remote Remote
Shared access(4) Shared access(5) shared access(6) shared access(7)

Measured energy[µJ] node1 node4 node1 node5 node1 node6 node1 node7
MiniA 50.882 50.781 50.901 50.805 50.935 50.834 50.962 50.860
MiniB 51.042 51.098 51.068 51.124 51.095 51.151 51.122 51.178
NICU 16.884 16.911 16.893 16.920 16.902 16.929 16.911 16.921

Synchronizer 1.780 1.780 1.781 1.781 1.782 1.782 1.782 1.782

Estimated energy[µJ]
MiniA 50.798 50.774 50.823 50.800 50.851 50.827 50.878 50.853
MiniB 51.042 51.051 51.069 51.078 51.095 51.105 51.122 51.131
NICU 16.885 16.887 16.894 16.896 16.903 16.905 16.912 16.913

Synchronizer 1.780 1.780 1.780 1.780 1.781 1.781 1.782 1.782
Error[%] -0.0688 -0.0647 -0.0638 -0.0630 -0.0696 -0.0646 -0.0687 -0.0513

Table 3.1: Validation

ini time[cycle]=26730
MiniA MiniB NICU Synchronizer

ini Energy[nj] 463.029 465.552 154.015 16.232

Table 3.2: Initialized energy of DME
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4 Conclusion

4.1 Some Conclusions

The thesis goal to develop an efficient and high-level framework to help rapid and ac-
curate estimation of energy and performance without having to run slow gate-level
simulation and slow power extraction using the tool has been achieved. The charac-
terization results can be used to estimate the energy consumption of a real application
instead of using the tool to give the exact number. The results can be also used as a
reference to improve the product. The established power model was successfully im-
plemented in DME characterization.

4.2 Future Work

When DME develop other micro-instructions, it would be easy to get the time and en-
ergy consumption as the power model has been established and the scripts has been
finished. For example, develop the LOAD BYTE, LOAD HWORD instead of redirect-
ing to LOAD WORD right now.
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