
!

Proof output and machine learning for
inductive theorem provers
Master’s thesis in Computer Science

VICTOR LINDHÉ
NIKLAS LOGREN

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY 
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2016

MASTER’S THESIS IN COMPUTER SCIENCE

Proof output and machine learning for inductive
theorem provers

VICTOR LINDHÉ
NIKLAS LOGREN

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY

UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2016

Proof output and machine learning for inductive theorem provers

VICTOR LINDHÉ
NIKLAS LOGREN

c© VICTOR LINDHÉ & NIKLAS LOGREN, 2016.

Examiner:
Patrik Jansson, Department of Computer Science and Engineering
Supervisor:
Moa Johansson, Department of Computer Science and Engineering

Master’s Thesis 2016:06
Department of Computer Science and Engineering
Chalmers University of Technology
University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Gothenburg, Sweden 2016

iv

Proof output and machine learning for inductive theorem provers

VICTOR LINDHÉ
NIKLAS LOGREN
Department of Computer Science and Engineering
Chalmers University of Technology
University of Gothenburg

Abstract

Automatic theorem provers have lately seen significant performance im-
provements by utilising knowledge from previously proven theorems us-
ing machine learning. HipSpec is an inductive theorem prover that has
not yet explored this area, which is the primary motivation for this work.

We lay a foundation for supporting machine learning implementations
within HipSpec. Firstly, a format for representing inductive proofs of the-
orems is designed. Secondly, a persistent library is implemented, which
allows HipSpec to remember already-proven theorems in between execu-
tions. These extensions are vital for allowing machine learning, since they
provide the machine learning algorithms with the necessary data.

This foundation is used to perform machine learning experiments on
theorems from the TIP library, which is a collection of benchmarks for in-
ductive theorem provers. We define several different feature extraction
schemes for theorems, and test these using both supervised learning and
unsupervised learning algorithms.

The results show that although no correlation between induction vari-
ables and term structure can be found, it is possible to utilise clustering
algorithms in order to identify some theorems about tail-recursive func-
tions.

Keywords: automated theorem proving, automated reasoning, theory
exploration, machine learning

v

Acknowledgements

We want to thank our supervisor Moa Johansson for her dedication and
unfailing support, and to Dan Rosén for his technical expertise and friendly
manners.

Victor Lindhé and Niklas Logren, Gothenburg, June 2016

vii

Contents

1 Introduction 1
1.1 Goals . 1
1.2 Motivation . 2
1.3 Contributions . 3
1.4 Prerequisites . 3

2 Background and literature review 4
2.1 Machine learning . 4

2.1.1 Supervised learning 4
2.1.2 Unsupervised learning 5
2.1.3 Feature extraction . 5
2.1.4 Bernoulli Naive Bayes 6
2.1.5 K-means clustering . 9
2.1.6 K-fold cross-validation 10

2.2 Theorem proving . 11
2.2.1 Types of theorem provers 11
2.2.2 Proof output . 12
2.2.3 Machine learning in theorem proving 13

2.3 Theory Exploration and Induction 14
2.3.1 Theory Exploration . 14
2.3.2 Using QuickSpec and how it works 15
2.3.3 The HipSpec loop . 15
2.3.4 TIP: Ton of Inductive Problems 17

3 Implementation 18
3.1 Proof output . 18
3.2 Persistent library . 19
3.3 Feature extraction . 20

3.3.1 Overview . 20
3.3.2 Symbolic features . 23
3.3.3 Abstract features . 25
3.3.4 Analytical features . 27

3.4 Machine learning for induction variable selection 28

ix

4 Results and evaluation 30
4.1 Evaluating the proof output 30
4.2 Evaluating HipSpec’s performance 30
4.3 Evaluation of supervised learning 31

4.3.1 Guessing induction variable 31
4.3.2 First or other induction variable 32
4.3.3 Discussion on supervised learning experiments . . . 33

4.4 Evaluation of unsupervised learning 34
4.4.1 Clustering lemmas using function features 34
4.4.2 Clustering lemmas using lemma features 36
4.4.3 Clustering lemmas using analytical features 38
4.4.4 Clustering functions 41

4.5 Discussion of results . 42
4.5.1 Size of data . 43
4.5.2 Incorrect data . 43
4.5.3 Feature extraction . 43

5 Related work 45
5.1 MeSh . 45
5.2 ACL2(ml) . 45

5.2.1 Clustering comparison with HipSpec 46

6 Further work and conclusions 47
6.1 Further work . 47

6.1.1 More and better data 47
6.1.2 Conjecture ordering 47
6.1.3 Theory exploration . 48
6.1.4 Utilising clustering . 48

6.2 Conclusion . 48

A Readme for this project’s ML extensions 53

x

1 Introduction

When developing software in Haskell, it is common practice to verify the
correctness of a program by writing properties about it that it should sat-
isfy, and then automatically test these properties using QuickCheck [4].
An example of such a property is that reversing a list twice should yield
the original list:

rev (rev (xs)) = xs

Having tested this property for many different lists xs gives the pro-
grammer some assurance that their definition of rev behaves as expected.

However, even if all tests pass, it is still possible that too few cases
were tested and that the property is false. In contrast to this approach,
proving a property offers much stronger guarantees: the programmer can
be entirely convinced that the property holds for any case. This is where
HipSpec enters the picture.

HipSpec is a system for automatically discovering and proving proper-
ties of Haskell programs, using induction [6]. It can automatically conjec-
ture interesting properties of a program, as well as prove them by utilising
an external theorem prover.

One aspect which differentiates HipSpec from other provers is its sup-
port for induction, which is often useful for proving properties about re-
cursive data types and functions, commonly used in functional program-
ming languages. Another aspect is that it uses a technique called theory
exploration to invent auxillary lemmas which might be needed in the proof
(explained in more detail in Chapter 2.3).

1.1 Goals

The purpose of this project is to extend HipSpec in four ways:

1. Creating a proof output format: Currently, HipSpec only returns
whether or not a conjecture was proven without any additional data.
In order to utilise machine learning on previously completed proofs,
we need a way to store proofs. Therefore, we design a suitable for-
mat for representing proofs in HipSpec, and modify HipSpec to out-
put proofs in this format.

1

2. Developing a persistent library: Currently, HipSpec does not store
any knowledge permanently when it manages to prove something,
and therefore, it cannot remember anything in between executions.
This is a problem, since the machine learning engine needs to train
itself on everything that HipSpec has ever proven. Therefore, we
introduce a persistent library, which stores all functions, data types
and lemmas the current instance of HipSpec ever encountered, as
well as their proofs.

3. Feature extraction on lemmas: By this point, a library has been de-
veloped and filled with proofs of lemmas. Now, we need a way to
extract features from lemmas, which are used for quantifying how
similar two lemmas are. Thus, one challenge is to investigate what
features of lemmas/theorems are useful for machine learning when
attempting to learn how to recognise similar proofs. Different feature
extraction schemes will be evaluated in combination with different
machine learning engines, on how well they work for both super-
vised and unsupervised learning.

4. Evaluate the possibilities of machine learning for HipSpec: The
final goal is to explore what kinds of possible improvements can be
done to HipSpec using machine learning. This involves attempting
to solve what we call the induction selection problem: selecting which
induction scheme to use and which variable(s) to do induction on
using supervised learning. In addition, we will also cluster similar
lemmas and functions using unsupervised learning, in order to see
if any common patterns can be found.

1.2 Motivation

When humans prove theorems we always rely on previous knowledge,
and we often draw connections between different proofs that share a sim-
ilar structure (reasoning by analogy). The main purpose of this project is
to investigate whether this behaviour can be replicated by an automated
theorem prover.

This requires defining a format for proofs. The proof output could ad-
ditionally increase the user’s confidence in the tool since it would be easier

2

to check the proofs manually, and it could also be the starting point for im-
plementing a proof checker.

That HipSpec keeps track of all things it has proved is essential for
learning from previous proofs; furthermore, it will allow HipSpec to be-
come smarter as it encounters more problems. The persistent library serves
as a foundation for the machine learning implementation that will be ex-
amined in this project, as well as for any further work concerning machine
learning in HipSpec.

Machine learning has seen many successful applications lately, and
also in the field of theorem proving (see section 2.2.3). We want to bring
some of that power also to HipSpec.

1.3 Contributions

This project has made the following concrete contributions:

• Defined and implemented a proof format for inductive proofs based
on the TIP language

• Implemented a persistent library for HipSpec that stores lemmas,
function definitions and data type definitions

• Implemented a machine learning and feature extraction framework
for HipSpec

All changes to HipSpec, as well as a document detailing how the ex-
tensions are to be used can be found at https://github.com/aommm/emna,
and extensions to the TIP library can be found at https://github.com/
aommm/tip-tools.

1.4 Prerequisites

The reader is assumed to have basic knowledge of probability, as well as
knowledge of logic and of formal proofs. It is also assumed that the reader
is familiar with Haskell and functional programming. Furthermore, a
background in Computer Science and programming languages is help-
ful for understanding the internal language of HipSpec and the new proof
format.

3

https://github.com/aommm/emna
https://github.com/aommm/tip-tools
https://github.com/aommm/tip-tools

2 Background and literature review

This project explores the areas of machine learning and theorem proving
in general, and the inductive theorem prover HipSpec in particular. There-
fore, this chapter aims to give an introduction to these subjects.

2.1 Machine learning

Machine learning is a field of study which examines the possibility of com-
puters to learn instead of being explicitly programmed. This is most often
achieved by means of software algorithms that analyse data and make de-
cisions or predictions based on the data, rather than based on predefined
instructions.

Now, we will briefly introduce the two main families of machine learn-
ing algorithms, and describe feature extraction, an important transforma-
tion most data has to go through in order to be usable in machine learning.
We will also describe the specific algorithms Bernoulli Naive Bayes and K-
means clustering that are used in this project, as well as a method called
K-fold cross-validation, which is used for evaluating the performance of ma-
chine learning algorithms.

2.1.1 Supervised learning

Supervised learning algorithms are presented with data (input) and a set of
correct answers (desired output), and try to learn how the input and output
is correlated. Then, they can be provided with only input, and hopefully
give the correct output.

More formally, the task of supervised learning is to find a function
g : X → Y, where X is the input space and Y the output space, given
N training samples {(x1, y1), ..., (xN, yN)}. There are many algorithms for
finding such a function, and in this project Bernoulli Naive Bayes will be
used. For more details about how this is achieved, see section 2.1.4.

An example application of this is predicting housing prices. With su-
pervised learning, we would give the computer information about some
already sold houses (input), e.g. size in square metres, number of floors
and city. We would also specify the prices that the houses were sold for
(desired output). This would then be fed into some training algorithm

4

(e.g. Bernoulli Naive Bayes) that outputs a function g, into which we could
then input a new house and get a prediction of what the house would sell
for.

2.1.2 Unsupervised learning

Unsupervised learning algorithms get only input and no desired output.
This means that the algorithm should find similarities and patterns in the
data without any additional guidance. Unsupervised learning is often use-
ful when working with a large amount of data which is infeasible to label
manually.

A specific kind of unsupervised learning is clustering, which partitions
a data set into several groups. What a group (or cluster) is, is not for-
mally defined, but depends on the particular clustering algorithm used.
In general, though, the data points of a particular cluster are assumed to
be more similar (in some way) to each other than to other data points. In
this project, the K-means clustering algorithm is used, which is described
in more detail in section 2.1.5.

An example: assume that we have a large amount of articles, and want
to cluster them based on their topic (e.g. ”sports” or ”science”). Then, we
simply feed the articles into an unsupervised learning algorithm which
will attempt to cluster them by topic in a meaningful way. How the clus-
ters are created depends heavily on the feature extraction used: how the
important parts of the articles were circled out.

2.1.3 Feature extraction

Often, data is not suited for direct usage by machine learning algorithms.
This can be the case if the data is in a nonsuitable format (i.e. a text string),
or if it contains too much information, which could lead to timeouts or
overfitting. This is why it is common to extract features from the original
data, and train on these instead.

A feature is something thought to characterize data in a non-redundant
way. For example, some features of a person are their gender, age and
height. Data is then measured solely by the extracted features. This en-
sures that the machine learning algorithm is looking only at the relevant
parts of the data.

5

Feature extraction is an important part of machine learning, and in real-
world applications it is crucial that it is done right. It is by the feature
extraction scheme that one defines what it means for two data points to be
similar, and it is easy to imagine that different feature extraction schemes
can yield vastly different results.

In the first example of predicting house prices, we would probably
see drastically increased performance by factoring in the location of the
house (for instance as ”distance from city centre”). In the second example
of clustering articles, we might want to count word occurences for each
article and use those as features (for instance ”football”:5 and ”deriva-
tive”:4). Additionally, in this case, neglecting to count common words
such as ”and” and ”then” would probably improve the accuracy.

2.1.4 Bernoulli Naive Bayes

In order to solve the induction selection problem (choosing which variable
to do induction on, defined in section 1.1), supervised learning is used
with lemmas as the input and the induction variable(s) used as the desired
output. This is described in more detail in section 3.4. More specifically,
the input is obtained by running all lemmas through feature extraction,
yielding one feature vector x1, . . . , xn per lemma.

The algorithm that is used for supervised learning in this project is
Bernoulli Naive Bayes. All Naive Bayes algorithms are based on a proba-
bilistic model, and they assume that each pair of features are (probabilis-
tically) independent from each other. Bernoulli Naive Bayes is a specific
such algorithm, in which all features are binary, i.e. xi ∈ {0, 1}. Now, we
will go into detail about how this algorithm works.

How it works In abstract terms, say that we want to see which class the
sample x1, . . . , xn belongs to. What we want to do is to calculate, for each
class y, the probability of the sample x1, . . . , xn belonging to that class:

P(y|x1, . . . , xn)

This can be calculated from the training data e.g. using probability
tables, and then we could classify our sample by choosing the class with
the highest probability.

The problem with this approach is that it is often infeasible to calculate
these class probabilities, when the number of features or samples are large.

6

In order to make this practical, Bayes’ Rule from probability theory is used,
which states that

P(y | x1, . . . , xn) =
P(y)P(x1, . . . xn | y)

P(x1, . . . , xn)

P(y) can be calculated from the training data, and the other expressions
can be simplified further. Since the algorithm assumes that each pair of
features are independent from one another, and since the nominator in the
above expression is constant given the feature vector, the entire expression
can be simplified to

P(y | x1, . . . , xn) ∝ P(y)
n

∏
i=1

P(xi | y)

Where ∝ is read as ”is proportional to”. Now, we have constructed the
Naive Bayes probability model. Note that this expression does not give an
exact value of the probability for a class, but it can still be used in order
to perform classification. The only thing that remains is how to calculate
P(xi | y), i.e. the probability of a specific feature occuring in a class. When
using Bernoulli Naive Bayes, recall that xi ∈ {0, 1}. The probability is
given by:

P(xi | y) = P(i | y)xi + (1− P(i | y))(1− xi)

P(i | y) denotes the probability of feature i being in class y, and it can
easily be precomputed from the training data.

Finally, in order to actually choose a class for the feature vector, we
could for example choose the class with the highest probability ŷ (using
the so-called MAP estimator):

ŷ = arg max
y

P(y)
n

∏
i=1

P(xi | y)

Motivation The Naive Bayes family of algorithms has been shown to
work well for many problems, despite the apparently oversimplified as-
sumption of independence [26]. It has been used successfully for e.g. text
classification and spam filtering, as well as in theorem proving contexts.
Furthermore, it scales well for a large number of samples, since many
terms in the above equations can be precomputed.

7

Example Consider an example where a survey on happiness has been
conducted. Each participant answered either 1 (yes) or 0 (no) to a number
of questions. A feature vector then looks like

x = (rich, married, healthy)

Additionally, each participant answers t = 1 if they are content with their
life or t = 0 if they are not. Say that we got 8 responses

t = 1 : (1; 1; 1); (0; 0; 1); (1; 1; 0)(1; 0; 1)
t = 0 : (0; 0; 0); (1; 0; 0); (0; 0; 1); (0; 1; 0)

And that we want to predict the contentedness of a new person who is
not rich, but married and healthy. In other words, we want to calculate the
probability of classifying the vector xnew = [0, 1, 1] with the label tnew = 1
(in this simple case we can calculate the probability directly, rather than
using proportionality).

P(tnew = 1 | xnew) =
P(tnew = 1)P(xnew | tnew = 1)

P(xnew)

Since we have an equal number of content and non-content responders,
we can say that P(tnew = 1) = P(tnew = 0) = 0.5.

The other term in the numerator, the so-called likelihood, is more in-
volved. If we use the Naive Bayes approach, we can assume that the vec-
tor components of each data point are independent, and hence we can
multiply them to find the probability for the whole vector:

P(xnew|tnew = i) =
3

∏
d=1

P(xnew
d |xnew = i)

where xnew
d is the d’th component of xnew

The question now is how each vector component xnew
d is distributed.

We see that it can only obtain the value 0 or 1, and so we make the ob-
servation that it follows a Bernoulli distribution. To find the probabilities
for tnew = 1 and xnew

i , we simply take the mean of all the data points’ ith

8

components. Hence, when tnew = 1:

xnew
1 ∼ Bern(0.75)

xnew
2 ∼ Bern(0.5)

xnew
3 ∼ Bern(0.75)

And when tnew = 0:

xnew
1 ∼ xnew

2 ∼ xnew
3 ∼ Bern(0.25)

The likelihood can then be computed using the probability mass function
of the Bernoulli distribution:

P([0, 1, 1] | tnew = 1) = 0.25 ∗ 0.5 ∗ 0.75 = 0.0938
P([0, 1, 1] | tnew = 0) = 0.75 ∗ 0.25 ∗ 0.25 = 0.0469

The nominator of the original expression can be rewritten using the
law of total probability into

P(xnew|tnew = 0)P(tnew = 0) + P(xnew|tnew = 1)P(tnew = 1)

Hence, the final probability of the new person being content becomes

P(tnew = 1 | xnew) =
0.0938 ∗ 0.5

0.0469 ∗ 0.5 + 0.0938 ∗ 0.5
= 0.6667
≈ 67%

2.1.5 K-means clustering

For clustering, on the other hand, the K-means algorithm is used.

How it works This algorithm works by first creating K clusters. Each
cluster is described by the mean µj of all the samples assigned to the clus-
ter, also called the centroid of the cluster.

9

Typically, the centroids are initialised by picking K samples from the
data set. Then, each sample is assigned to belong to the cluster with the
closest centroid (where ”closest” is taken to mean euclidian distance be-
tween the centroid and the sample). The centroids µj are then recomputed
to be the mean of all samples assigned to the cluster.

This process, computing the centroids and then assigning samples to
centroids, is repeated until the difference between the old centroids and
the new centroids are less than a threshold. In other words, it is repeated
until the centroids have converged. Now the algorithm is finished, and all
samples have been assigned to a cluster.

Motivation The K-means clustering algorithm is a popular and widely
used algorithm that is fast and easy to use [23, 24]. This algorithm was
picked for its simplicity, because we wanted to focus on optimising the
feature extraction rather than the algorithm.

2.1.6 K-fold cross-validation

K-fold cross-validation is a standard technique in machine learning for
evaluating the performance of supervised learning algorithms. It will be
used in this project for evaluating which machine learning parameters per-
form the best when solving the induction selection problem.

Its input is a set of labelled data. In our case, this is a set of lemmas
where each lemma has the induction variable(s) it was proven with as a
label.

It works by first partitioning the data into K folds. Then, 1 fold is as-
signed to be the validation fold and K − 1 folds are assigned to be training
folds. A fresh instance of the supervised learning algorithm is then fitted
on the data from the training folds. After this, each sample in the val-
idation fold is classified using the algorithm, and the number of correct
classifications are counted, and eventually a success ratio is calculated for
all lemmas in the validation fold.

This entire process is repeated in total K times, with a new validation
fold each time. Finally, the average success ratio of all repetitions is cal-
culated, which becomes the overall performance ratio of the tested algo-
rithm.

10

2.2 Theorem proving

Automated reasoning is the field of study which aims to investigate how
computers can perform different kinds of reasoning automatically or semi-
automatically. While the field of automated reasoning has seen many im-
provements since its inception, there is room for improvement, since com-
puters are still behind humans when it comes to scientific thinking [16].

A subfield within automated reasoning is theorem proving, which aims
to prove mathematical theorems using computers. This requires the soft-
ware to implement mathematical reasoning and inference rules. Theo-
rem proving software can today assist in analysing and exploring mathe-
matical theories, and have been used successfully in several mathematical
proofs, for example the Four-colour theorem and Kepler’s conjecture [2]
[9].

This chapter aims to give the reader an understanding of the field of
theorem proving, which is the context in which this project is done. Firstly,
we will give an overview of the different types of theorem provers that
exist today, and a few examples of popular provers. Secondly, we will
discuss the challenge of developing a proof output format for theorem
provers. Finally, we will discuss prior applications of machine learning
in theorem proving, and go into detail about different feature extraction
schemes used by different provers.

2.2.1 Types of theorem provers

Theorem provers can (roughly speaking) be called either interactive theo-
rem provers or automatic theorem provers. Their main difference lies in
the way they search for proofs – in interactive provers, the search is guided
by the human user, while in automated proofs, all decisions are made by
the prover. Additionally, theorem provers that support induction are said
to be inductive theorem provers. Here, we will describe these categories
more in detail, and give examples of provers.

This report covers the system HipSpec, which is an automated induc-
tive theorem prover. However, since techniques similar to what we want
to accomplish has been implemented already in some interactive theorem
provers, we will give a brief background to how these work as well.

11

Automatic Theorem Provers Automatic theorem provers can prove the-
orems without user interaction. They generally require two main inputs:
(1) the conjecture we want to prove, and (2) the background theory con-
sisting of potential premises for the conjecture. Examples of first-order
automatic theorem provers include Z3, Vampire, Waldmeister and E [8,
17, 12, 21].

Interactive Theorem Provers When working with interactive theorem
provers, the user guides the search for a proof by e.g. choosing which
proof procedure to use, or by providing auxiliary lemmas. This makes
the interactive provers more capable than the automatic ones, and more
specifically they are better at producing complex proofs [14].

It is worth noting that most interactive provers also include automated
tactics that can prove some things automatically. Hence, many interactive
provers could also be considered as ”semi-automatic” provers.

Examples of interactive theorem provers include Isabelle/HOL, Mizar
and HOL Light [25, 20, 10]. Additionally, these systems often use a higher-
order logic [11], which allows for expressing more properties than first-
order logic.

Inductive Theorem Provers Inductive theorem prover is the name for
provers that can prove things using induction. Many different induction
principles could be supported, for example recursion induction, structural
induction or mutual induction. Examples of inductive theorem provers
include HipSpec and Hipster [15].

2.2.2 Proof output

Formats for the input of various kinds of provers have largely been stan-
dardized. However, no de-facto standards exist for the output (or proof
certificates) of inductive theorem provers [3]. Different provers output dif-
ferent kinds of proofs, often containing data internal to the prover which
is of little interest to others. Also, often crucial details are skipped which
are obvious to the prover but not necessarily to a third-party, or no output
is produced at all.

Böhme and Weber [3] propose some guidelines for designing a proof
output format:

12

• Human-readable

• Proper level of theoretical detail

• Simple semantics

• State derived formulas explicitly

• Provide documentation

In this project, we aim to follow these guidelines as well as possible.
While Böhme and Weber’s main goal is to make proof formats check-
able by an external proof checker, we will not implement a checker in this
project. Our focus will be on storing the features of proofs which will be
useful for machine learning and on helping users understand the output
from HipSpec.

2.2.3 Machine learning in theorem proving

When humans prove theorems, we rely heavily upon data from previously
completed proofs when proving new theorems. Not every proof is unique,
and it is not uncommon that proofs share many similarities with one an-
other. Therefore, it is not unreasonable to assume that machine learning
could be applied in the domain of theorem proving, to find similar lemmas
and aid in the proof search.

In fact, machine learning has already been integrated in some theorem
proving systems, and these implementations will now be examined. Fur-
thermore, how these systems deal with feature extraction from theorems
warrants a closer look.

Isabelle/HOL and Sledgehammer Machine learning is employed in an
extension to Isabelle/HOL called Sledgehammer [19], which builds proofs
by invoking external theorem provers.

An important task for Sledgehammer is to find already proven facts rel-
evant to the conjecture it is proving, which should be sent to the theorem
prover. This is called the premise selection problem [16]. If the prover is sent
too many facts, the execution takes too long time. On the other hand, if it
gets too few facts, it won’t have the information necessary for completing
the proof. This fact selection is done by the so-called relevance filter, which

13

selects known facts based on similarity to the conjecture Sledgehammer is
attempting to prove.

One of the relevance filters available for Sledgehammer is MaSh, which
uses machine learning for selecting premises (facts) for the proof goal [18,
1].

Feature extraction in MaSh MaSh extracts features based on symbols,
types, type classes and the theory the fact belongs to, along with the facts
used in the proof.

Additionally, features of the terms are extracted with a certain depth,
in order to preserve parts of the formula’s structure (such as subterms).
For example, the lemma rev(rev(xs)) = xs, where rev is a function and xs is a
variable of type list, would give the features rev and rev(rev) given a depth
of 2. In addition to this, the theory List and the type List.list would also be
features.

The way of extracting features in this project is very similar to that of
MaSh. For more on how it is done in this project, see section 3.3.

2.3 Theory Exploration and Induction

This project aims to extend the HipSpec system, which is an automated
theorem prover that works by invoking external theorem provers. Now, a
brief introduction to HipSpec’s main mechanisms will be given.

2.3.1 Theory Exploration

HipSpec uses a bottom-up approach when trying to prove user-stated con-
jectures, which are properties of a Haskell program that the user wants to
prove. The first step of this approach is called theory exploration, which is
more described in section 2.3.2 and 2.3.3. When using theory exploration,
HipSpec builds a background theory with as many lemmas as possible
before trying to prove the user conjectures. This has been shown to be ef-
ficient when it comes to finding the necessary lemmas for many inductive
theorems [6].

This approach is the opposite of the conventional top-down approach
where the prover first tries to prove the conjecture and, if it fails, tries to
construct needed auxiliary lemmas and then makes a new attempt on the
proof goal.

14

2.3.2 Using QuickSpec and how it works

When first started, HipSpec uses a program called QuickSpec to generate
a set of conjectures, which are equational properties believed to be true by
testing, but not yet proven [5]. This is what is called theory exploration,
and now we will describe in more detail how it works.

As a first step, QuickSpec generates a universe of terms based on the
functions and variables in a supplied program. As input, QuickSpec takes
a Haskell program, a list of variables and functions (along with their types)
and test generators for the involved types.

From this universe, it puts terms in different equivalence classes. Two
terms are in the same equivalence class if they are the same for all test
cases QuickSpec runs on them. In the beginning, all terms are in the same
equivalence class. When discovering that two terms in the same class get
different results from the same test case, the equivalence class is split. This
continues until no split has happened for a couple of hundred tests – we
then regard it as stable. Terms that are alone in their own equivalence
classes are discarded.

The next step is to generate the equations from these equivalence classes.
This is done by selecting one term t from a class, preferably as simple
as possible, and stating that every other term t’ equals that term, getting
equations of the form t = t’. The selected term is called the representative
term.

The final step of QuickSpec is called depth optimisation. Given two
equal terms, one of them is selected to be the standard form of the ex-
pression. And given these standard forms, only terms with standard form
subterms are generated, avoiding unecessary terms that are obvious from
other terms.

2.3.3 The HipSpec loop

When QuickSpec is finished, HipSpec has a conjecture set which it will
loop over, trying to prove each conjecture. Now we will describe this loop
in more detail.

Selecting a conjecture to prove HipSpec begins the loop by selecting a
conjecture c. How this conjecture is chosen is important for HipSpec’s per-
formance: some conjectures might require other conjectures to be proven

15

Figure 1: The main loop of HipSpec [6]

first, and thus should be picked late, while others can be proven immedi-
ately, and thus should be picked early.

HipSpec chooses conjectures by saying that simple equations have a
priority over complicated ones. The simplicity of a term is defined by
its size: the smaller, the simpler. If two terms have the same size, the
more general term is picked: we pick the one with the greatest number
of distinct variables. This is a reasonable heuristic, but one could imagine
using machine learning in order to decide conjecture order (see section 6.1,
Further work).

Proving the conjecture When HipSpec has selected a conjecture, it checks
whether the conjecture follows from first order reasoning. If so, it is re-
garded as trivial, and HipSpec discards it.

Otherwise, it tries to prove the conjecture using induction using the
subsystem Hip. Hip first enumerates all the different ways of doing struc-
tural induction on a conjecture. For each way of doing induction, Hip then
invokes an external theorem prover for all subproblems of the induction
(e.g. for the base case and the step case).

If the external prover succeeds for all subproblems, then Hip has suc-
cessfully proven the conjecture. It is then added to the background theory
and can be used in subsequent proof attempts. However, if the proof at-
tempts fails (usually because of a timeout) the conjecture is added to the
set of failed conjectures.

16

Reusing failed conjectures When the set of open conjectures is empty,
HipSpec refills it with all the failed conjectures and repeats the loop if any
new conjecture was proven in the last iteration. The purpose of this is
to try to prove these conjectures with a larger background theory than it
might have had available in the earlier attempts.

When all discovered conjectures are proven, or one iteration has been
done without any new success, HipSpec is done with the theory explo-
ration part. After this, HipSpec attempts to prove the user specified con-
jectures, using the background theory.

2.3.4 TIP: Ton of Inductive Problems

TIP (Tons of Inductive Problems) is a benchmark suite for inductive the-
orem provers [7], whose purpose is to provide a common test suite for
many different provers. It consists of hundreds of problems, which are
expressed in the TIP language (which is an extension of the SMT-LIB lan-
guage).

17

3 Implementation

Here follows a description of the project’s implementation. It covers de-
sign/implementation of a proof format, storing the proofs into a persis-
tent library, extracting features from the library and finally using machine
learning on the features in order to find the most probable induction order.

3.1 Proof output

The main design goal of the proof format is to keep it at a high abstraction
level without too many details. In this way, it is more like a proof plan than
a complete proof.

By leaving out low-level details, the representation becomes signifi-
cantly simpler. Directly translating low-level proofs between different
provers is very difficult, since they often have differences in their inter-
nal logic and in the inference rules they implement. Instead, the chosen
high-level approach allows different provers to reconstruct the proof from
the proof plan if required, following the same approach as Sledgehammer
and Metis [19, 13].

Since HipSpec proves conjectures by induction, it is necessary to store
the induction variable(s). Furthermore, since HipSpec works by invoking
external theorem provers, it is necessary to store how the prover was in-
voked (the input arguments). It was decided to not store the output of
the external provers, as the input is sufficient for running the prover again
and reproducing the results.

Thus, our format includes these pieces of information:

• Induction variable(s) (stored as De Bruijn indices1)

• Induction method (structural, recursion, ...)

• Lemmas used by prover

• External prover identifier (e.g. z3-4.4.0)

• Internal prover identifier (e.g. hipspec-0.1)

1The first occurring variable is renamed to 0, the second to 1 and so forth. For example,
λx y . y would be translated to λ0 1 . 1

18

Proof . Proof : : = ”(” LemmasUsed IndVars
IndMethod Prover Prover ”) ” ;

IndVars . IndVars : : = ”[” [I n t e g e r] ”] ” ;
I n d S t r u c t u r a l . IndMethod : : = ” s t r u c t u r a l ” ;
LemmasUsed . LemmasUsed : : = ”[” [LemmaName] ”] ” ;
Prover . Prover : : = Symbol ;

Figure 2: The BNFC grammar for a proof

([lemma−155 , lemma−49, lemma−60] [0] s t r u c t u r a l z3−4.4 .0
emna−0.1)

Figure 3: An example proof

The actual BNFC grammar can be seen in Figure 2. An example proof
as rendered in this grammar can be seen in Figure 3.

3.2 Persistent library

HipSpec was extended to output proofs to a persistent library that keeps
track of everything HipSpec has ever proven. This kind of functionality
exists in many other theorem provers, and is essential for gathering data
for use in machine learning.

Whenever HipSpec is invoked with the flag –output=/path/to/library, it
loads the library from that path. If the proof attempt succeeds, the library
is extended with new proofs: both of the original conjecture, as well as of
any lemmas that were proven along the way.

The library keeps track of functions, data types and lemmas. When-
ever a new lemma is added, any functions and data types ocurring in that
lemma are also added. If two functions/data types share the same name,
they are assumed to be equal, and the newest one will be discarded. In
this implementation, it is the user’s responsibility to make sure function
names are unique. The reason for this is that checking function equality is
difficult, and it is left as further work.

Ensuring that lemmas are not duplicated in the library required a little
more work. Firstly, lemmas were extended to optionally have a name.

19

Secondly, HipSpec was extended to check whether a lemma already exists
before adding it. This involves both looking at the name of the lemma,
and comparing the lemma’s body with all other lemmas in the library.

In order to be able to test equality of lemmas, a trick is needed. When a
lemma is added to the library, we begin by assigning new names to all (lo-
cal) identifiers in the lemma’s body. (For example, consider L1 = λq w.q
and L2 = λa b.a, which are identical except for their variable names -
since they are both renamed using the same scheme, they would both
be renamed to λx y.x). Then, the lemmas’ bodies are compared. Since
all lemmas in the library are reduced according to the same scheme, it is
guaranteed that alpha equivalent terms will be identified.

3.3 Feature extraction

Several different schemes were implemented for extracting features from
lemmas. The feature extraction module loads a persistent library from a
file, and then runs one or several feature extraction schemes on all lemmas
contained therein.

Both so-called symbolic and abstract features can be collected, as well
as some metadata regarding the structure of a lemma or its functions. All
features are binary (either present or non-present), and are represented as
strings.

3.3.1 Overview

There are four basic feature extraction schemes. There are also four ana-
lytical schemes, one for each basic scheme. Schemes can be used in any
combination, as long as at least one scheme is used. The basic schemes
are:

• ls: Symbolic features from lemmas. Used by analytical scheme als.

• la: Abstract features from lemmas. Used by analytical scheme ala.

• fs: Symbolic features from functions. Used by analytical scheme afs.

• fa: Abstract features from functions. Used by analytical scheme afa.

20

Given an extraction depth, the four basic schemes extract features from
the body of a lemma. The analytical schemes use the features from their
corresponding basic scheme to build new features, with metadata about
the lemma.

Figure 4: Overview of how the basic schemes and the analytics schemes
interact with each other.

21

Lemma and function features Lemma features are extracted from the bod-
ies of lemmas, while function features are extracted from function defini-
tions.

Function features are necessary for seeing that lemmas are talking about
similar functions. Since induction often is made on the arguments of func-
tions, how the functions are defined might affect the proofs. Therefore, the
assumption here is that similar function features might implicate similar
proofs.

Symbolic and abstract features Symbolic features are the symbols that
can be directly read from a lemma or a function. For example, the lemma
rev xs == qrev xs [] contain symbols such as rev, qrev, == and list (which is
the type of the variable xs). If for example depth 2 is used, symbolic fea-
tures such as rev(list) or ==(rev,qrev) would occur. Our hypothesis is that
symbolic features are useful to find lemmas with the same components.
See 3.3.2 for more detail.

Abstract features are built up the same way as symbolic features, but use
more abstract notations. The purpose is to communicate term structure
rather than the specific components of a lemma or function. For example,
given the lemma example from earlier, rev would instead be denoted as
Func and list would be Var. Depth is also used here, so instead of rev(list),
the feature would be Func(Var).

The structural information given by abstract features could potentially
be useful in finding lemmas similar in structure, but using different func-
tions and types, for example different lemmas on tail recursion. See 3.3.3
for more detail.

Analytical schemes Every basic scheme has an analytical scheme which
can be used to generate metadata from the set of features of that basic
scheme. This metadata may contains information about the most popular
feature, and some other features depending on chosen scheme. See 3.3.4
for more detail.

The working hypothesis here is that different metadata features could
be useful in finding lemmas and functions that differ a lot, but have some
important structural features in common.

22

Inverse document frequency Term Frequency–Inverse Document Frequency
(TF-IDF) was used for assigning weights. TF-IDF is a technique for assign-
ing feature weights on a feature-by-feature basis, based on how often the
feature occurs in all samples. This means that popular features, such as Var
or Func which occur in virtually every lemma, are assigned less weight.

3.3.2 Symbolic features

The symbolic features of a lemma concern the concrete symbols occuring
in it. For example, the lemma rev xs == qrev xs [] contains the concrete
symbols rev, qrev, xs, [] and ==.

To begin with, a lemma is converted into a big tree of all its terms. For
example, the lemma rev xs == qrev xs [], where xs and [] are of type list,
would generate the tree seen in figure 5.

Figure 5: A term tree for rev xs == qrev xs [], and how it is converted into
6 smaller subtrees of depth 1-2. Note how two trees are identical – these
duplicates will later be removed.

As we can see, the variable xs is replaced by its type list. This tree
is then split up into all possible subtrees with a maximum depth, in this
example of depth 2. Note that this is similar to how feature extraction is
done in Sledgehammer [1].

When having a set of trees, we extract features from each one of them.
Each feature is represented as a string with the either the type or the func-
tion name. A function application will not only be represented alone, but

23

also with combinations of the arguments. For the subtrees above, we can
see what features are generated in Figure 6.

Figure 6: The resulting symbolic lemma features. As we can see, no dupli-
cates remain here.

Symbolic function features are generated the same way as for lemmas.
There are, however, some types of features not occuring in lemmas which
occur in functions. One example of this is pattern matching on arguments,
specifying different function bodies. This is represented by the match fea-
ture. See Figure 7 for the function features from rev xs == qrev xs [].

24

Figure 7: The resulting symbolic function features, from the functions rev
and qrev.

3.3.3 Abstract features

Abstract features for functions and lemmas are generated using the same
tree-based approach as symbolic features. However, the strings generated
do not contain any concrete symbols from the lemma/function, but rather
an abstract representation of it, in order to only show its structure.

For example, the lemma rev xs == qrev xs [] as we saw in a previous
section, would, given a depth of 2, generate the abstract features shown
in Figure 8. The abstract features of the functions of the same lemma are
shown in Figure 9.

25

Figure 8: The resulting abstract lemma features from rev xs == qrev xs [].

Figure 9: The resulting abstract function features from rev xs == qrev xs [].

Different functions or data types are not distinguished in the abstract
feature extraction schemes, leading to fewer features compared to sym-
bolic feature extraction.

The abstract symbol Func is used for named function application. There
are two other cases relating to functions. Firstly, when a type signature for
a function is the only information stated in a lemma or function. For ex-
ample, filter(a:=>Boolean, list), which takes a function from type a to type
Bool and a list, would be represented by Func(FuncType, Var). Secondly,
when lambda functions are used in a lemma or function then they are rep-
resented by the Lambda feature.

26

3.3.4 Analytical features

Analytical features contain metadata that is derived by analysing symbolic
and abstract features for a lemma or function. Different analytical schemes
are run over different sets of features, so a set of symbolic lemma features
are not analysed the same way as a set of symbolic function features, for
example.

One feature that is run for every analytical scheme is popular, which
is the most popular feature generated (before removing duplicates). This
is dependent on depth. For example, in rev(rev(rev(xs))) == rev(xs), the
most popular 1-depth symbolic feature is rev.

Lemmas containing the same most popular feature are more similar,
and are more probable to have more similar proof data. This feature is
prefixed with abstract when in an abstract analytical scheme.

Analysing symbolic features When analysing symbolic lemma features,
the following structural information is made features:

• associative: If the lemma is stating the associativity property. The
rule for this is that the lemma fulfills the condition of being f a (f b c)
== f (f a b) c.

• commutative: If the lemma is stating the commutativity property.
The rule for this is that the lemma fulfills the condition of being f a b
== f b a.

The motivation for having these features is that lemmas on commu-
tativity and associativity are generally very similar, which might indicate
similar proofs.

A note on extraction depth When running the module, the user can se-
lect the depth which is used when building subtrees as seen in section
3.3.2. Some analytical results are independent of this depth. For example,
when exploring the inner function depth of a lemma, its body is explored
independently from the abstract features generated. However, other ana-
lytical results such as length of features are affected by the depth.

27

Analysing abstract features Abstract features are analysed in a similar
way to symbolic features. Abstract lemma features are only analysed with
the most popular feature. However, abstract function features are also
analysed with the two following features:

• nArgs: the number of arguments of a function. The number of ar-
guments of functions tells us something about functions, and the
lemma using them, from a structural point of view. If functions con-
tain more arguments, this might indicate another way approach to
proving a lemma.

• tailRecursive: in this project, a function is defined as tailRecursive if
a function has a body, for some pattern, which is f args = f otherargs
(meaning that the top-level function of its own body must be itself),
and that at least one of the arguments in the body is a function ap-
plication.

3.4 Machine learning for induction variable selection

We have described how to populate a library with successful lemma proofs
and to extract features and store them in a database. Now, it is time to ex-
tend HipSpec to learn from the data, and use the knowledge to classify
new lemmas.

Learning To learn from the data, the idea is to use supervised learning
on lemmas in order to divide them into classes. More specifically, the vari-
able(s) that the HipSpec did induction on when it proved the lemma is
used as the class. Hence, we will divide the set of lemmas into the classes
”first variable”, ”second variable, ”first and second variable”, and so on.

Since the induction variable(s) are the classes, it is straightforward to
find out which induction variable to use for a new lemma: simply extract
features from the lemma, and see which induction variable it is most sim-
ilar to (by classifying).

An implementation of Bernoulli Naive Bayes from the scikit-learn pack-
age [22] is used. This is fed with all previously proven lemmas, and the
induction variable(s) they were proven with. The classifier is fitted to the
data, and then saved to disk.

28

Classifying Whenever HipSpec tries to prove a conjecture, it should now
find the induction variable order. This is done in the following way:

1. Extract features from the conjecture

2. Load the trained classifier from disk

3. Classify the conjecture by feeding the features into the classifier

The output is an ordering of the ways of doing induction, for example
”[[1], [0], [0,1]]”, or ”[second, first, first and second]”. HipSpec then exe-
cutes the external theorem provers in this order. This can be seen as adding
a step to the main HipSpec loop which asks for the induction variables, as
seen in Figure 10.

Figure 10: The main HipSpec loop now also invokes classify.py when prov-
ing a conjecture to get the induction ordering. Original picture from [6],
but modified with showing classify.py.

29

4 Results and evaluation

This chapter describes the results of this project, and discusses possible
sources of improvement. The machine learning experiments and their re-
sults are also presented and discussed in detail.

4.1 Evaluating the proof output

The proof output format did become very abstract, more akin to a proof
plan than a proof. We recall the criteria specified by Böhme and Weber
[3] (see section 2.2.2). Although these criteria are better suited for more
low-level proofs, some of them are nonetheless useful for evaluating our
format.

The format is human-readable, in particular because lemma names
were also added to HipSpec, and thus could be used when referring to
lemmas. A possible improvement for readability, though, would be to
store induction variables as strings rather than De Bruijn indices (e.g. ”xs”
rather than ”0”).

Another criterion, defined by ourselves, was that the proof plans should
allow the user to reproduce a more detailed proof if needed. This is accom-
plished by storing which prover was used and which arguments it was
invoked with. Worth noting is that we do not store the concrete proof obli-
gations the external prover proved (the actual base case and step case(s)),
but these can easily be derived given the expression and the induction
variable(s).

4.2 Evaluating HipSpec’s performance

After HipSpec had been extended to choose induction variable based on
which class the current lemma was predicted to belong to, it was time to
run it on many lemmas and see how it fared.

A framework was built that runs HipSpec on every .smt2-file in a di-
rectory. After each run, it writes to a log file where it reports how long it
took to run, whether it succeeded or failed, and whether it was actually
proved using the predicted induction variable.

Halfway through the project, though, we realised that HipSpec exe-
cutes all possible induction attempts for a lemma in parallel. This means

30

that the induction order does not matter, and thus that a speedup would
not result from solving the induction selection problem. This fact rendered
this evaluation method unusable, so other methods were tried as well.

4.3 Evaluation of supervised learning

Different feature extraction schemes were evaluated by how well they per-
formed at predicting the induction variables during supervised learning.
A framework was built which enumerates all possible machine learning
configurations and then tests each one using 5-fold cross-validation. Fea-
ture extraction schemes and depth were varied.

After running all configurations, the framework prints all of them to
the screen, sorted by success rate. Now, the actual experiments performed
within this framework will be described.

4.3.1 Guessing induction variable

This test tried to predict which induction variable lemmas were proven
with (e.g. first, second, first and second, ...). Because many lemmas in the
data set were proven without induction (see 4.5.2), these were filtered out
beforehand and therefore not included in the test.

Setup As sample data, 96 lemmas proven by induction were used. These
were assigned the induction variable(s) they were proven with as labels,
with 66 of the lemmas having just the first variable as induction variable.
Bernoulli Naive Bayes was used as algorithm, and inverse document fre-
quency was used to give different feature weights. Different combinations
of all 8 schemes were tried at each depth level from 1 to 3.

Results The best result was using depth 2 with only the als scheme, at
72.47 percent. See Table 1 for the top 20 best results.

31

Accuracy Depth Schemes
0.7247 2 als
0.7161 2 ala, afs, als
0.7161 2 afs, als
0.7055 2 ala, als
0.7055 1 la, afa, als
0.6987 2 ala, afa, afs, als
0.6974 2 afa, afs, als
0.6968 1 la, ala
0.6968 1 la, als
0.6955 3 fa, ls, ala, afa, afs, als
0.6955 3 fa, ls, ala, afa, afs
0.6955 3 fa, ls, ala, afa, als
0.6955 3 fa, ls, ala, afa
0.6955 3 fa, ls, ala, afs, als
0.6955 3 fa, ls, ala, afs
0.6955 3 fa, ls, ala, als
0.6955 3 fa, ls, ala
0.6955 3 fa, ls, afa, afs, als
0.6955 3 fa, ls, afa, afs
0.6955 3 fa, ls, afa, als

Table 1: The 20 best results out of 765 combinations.

4.3.2 First or other induction variable

Following the previous experiment, it would be interesting to see if bet-
ter estimations would come from just having two classes, given the small
sample size available. All lemmas which used another induction variable
combination than just the first variable were grouped together as one class.

Setup As sample data, 96 lemmas proven by induction were used. These
were assigned either variable 0 or other variable combination. Bernoulli Naive
Bayes was used as algorithm, and inverse document frequency was used
to give different feature weights. Different combinations of all 8 schemes
were tried at each depth level from 1 to 3.

32

Results The best result was using depth 2 with only the als scheme, at
71.89 percent. See Table 2 for the top 20 best results.

Accuracy Depth Schemes
0.7189 2 als
0.7089 2 fa, afs, als
0.7089 2 afs, als
0.7089 1 la, afs
0.7084 3 als
0.6984 2 ala, als
0.6984 1 fa, la, afa, afs
0.6984 1 fa, la, afs, als
0.6984 1 fa, la, afs
0.6984 1 la, als
0.6984 1 la
0.6979 3 fa, ls, ala, als
0.6979 3 fa, ls, als
0.6884 3 ala, als
0.6879 3 fa, la, ls, ala, afa, afs, als
0.6879 3 fa, la, ls, ala, afa, als
0.6879 3 fa, la, ls, ala, als
0.6879 3 fa, la, ls, afa, afs, als
0.6879 3 fa, la, ls, afa, als
0.6879 3 fa, la, ls, afa

Table 2: The 20 best results out of 765 combinations.

4.3.3 Discussion on supervised learning experiments

The best results for both experiments are almost exactly equal to guessing
three more lemmas correctly, compared to just guessing the first variable
for every lemma which would give 68.75 percent correct.

Despite some small success, the results are by far not good enough to
really show that the induction variable can be estimated by these feature
extraction schemes. It is worth noting that both of these experiments pre-
supposes that it is possible to correctly predict a lemma’s induction needs
based on its similarity to other lemmas. This may be a faulty assump-

33

tion: it is possible that no meaningful correlation exists between induction
variables and term structure.

In other words, this evaluation method may not be sufficient to assess
a feature extraction scheme’s general fitness – if this method reports unsat-
isfactory results, it is still possible that the feature extraction scheme may
be useful for other tasks. This is why another kind of validation was also
performed.

4.4 Evaluation of unsupervised learning

An unsupervised clustering algorithm was also run for the different fea-
ture extraction schemes, and the resulting clusters were examined by hand.
The results of this method are harder to quantify, but it has the advantage
that it is not dependent upon the induction variable selection problem.

In all clustering tests, we used 50 lemmas from the prod benchmarks.
The K-means algorithm was used to generate clusters, and inverse doc-
ument frequency was used to weight the features. When comparing the
resulting clusters, they were checked manually to see if any patterns could
be discerned between lemmas in the same cluster.

4.4.1 Clustering lemmas using function features

Setup The parameters scheme, depth and clusters were varied according
to Table 3.

34

Number Scheme Depth Clusters
1 fa 1 2
2 fa 2 2
3 fa 3 2
4 fa 1 8
5 fa 2 8
6 fa 3 8
7 fa 1 20
8 fa 2 20
9 fa 3 20

10 fs 1 2
11 fs 2 2
12 fs 3 2
13 fs 1 8
14 fs 2 8
15 fs 3 8
16 fs 1 20
17 fs 2 20
18 fs 3 20

Table 3: Experimental combinations for lemma clustering using function
features. Highlighted rows indicate interesting results.

Results While most combinations showed no or non-conclusive patterns,
some the highlighted combinations (with the color green, numbers 4, 7
and 8) from Table 3 consistently formed the following cluster (where lem-
mas on tail-recursion are bold):

• revflat xs = qrevflat xs []

• rev (qrev xs []) = xs

• length (xs++xs) = double (length xs)

• qrev (qrev xs []) [] = xs

• rotate (length xs) xs = xs

• fac n = qfac n b

35

• (n*m) = mult2 n m Z

• (n‘elem‘ys) => (n‘elem‘(xs++ys))

Yellow highlighting indicate similar clustering but not quite as good.
Combination number 5 formed the above cluster with an extra lemma.

Orange highlighting indicate stable, consistent clustering but not as
good as yellow or green. Combinations 13-15 formed the following stable
cluster, while the other lemmas on tail-recursion were shattered among
other lemmas:

• qrev (qrev xs []) [] = xs

• rotate (length xs) xs = xs

• fac n = qfac n b

• (n*m) = mult2 n m Z

• (n‘elem‘ys) => (n‘elem‘(xs++ys))

Discussion The above results indicate that abstract function features are
better for grouping tail-recursive lemmas than symbolic function features.
However, we found no clear explanation to why this was the case.

4.4.2 Clustering lemmas using lemma features

Setup The parameters scheme, depth and clusters were varied according
to Table 4.

36

Number Scheme Depth Clusters
1 la 1 2
2 la 2 2
3 la 3 2
4 la 1 8
5 la 2 8
6 la 3 8
7 la 1 20
8 la 2 20
9 la 3 20

10 ls 1 2
11 ls 2 2
12 ls 3 2
13 ls 1 8
14 ls 2 8
15 ls 3 8
16 ls 1 20
17 ls 2 20
18 ls 3 20

Table 4: Experimental combinations for lemma clustering using function
features. Highlighted rows indicate interesting results.

Results Combination 1 consistently created the following cluster (tail-
recursive lemmas are bold):

• length (xs++ys) = length (ys++xs)

• half (length (xs++ys)) = half (length (ys++xs))

• even (n+m) = even (m+n)

• even (length (xs++ys)) = even (length ys+length xs)

• rev xs = qrev xs []

• revflat xs = qrevflat xs []

• length (xs++xs) = double (length xs)

37

• qrev (qrev xs []) [] = xs

• rotate (length xs) xs = xs

• fac n = qfac n b

• (n*m) = mult2 n m Z

• (n‘elem‘ys) => (n‘elem‘(xs++ys))

Combination 2 created the same cluster, but also with additional tail-
recursive lemma rev (qrev xs []) = xs.

Orange combinations indicate that clustering of some of the tail-recursive
lemmas were successful, but they were generally less than six. The tail-
recursive vs. non-tail-recursive 1-to-1 ratio in these clusters maintained
relatively stable for all highlighted combinations.

Discussion These results indicates that abstract lemma features are no-
tably better at clustering lemmas on tail-recursion. This goes in line with
the previous results from the experiments in section 4.4.1, where the ab-
stract features were slightly better than symbolic features.

For abstract lemma features, the feature Const were occurring almost
only in the tail-recursive lemmas, which might have helped the cluster-
ing in this experiment, but despite this, it did not cluster as well as with
abstract function features.

Further comparing the results to section 4.4.1, this suggests that func-
tion features are better to cluster and isolate lemmas on tail-recursion.
This might depend on more information about the functions and that tail-
recursive functions distinguish themselves in some way.

4.4.3 Clustering lemmas using analytical features

Setup After experimenting with symbols and abstract features, we tested
clustering using the analytical extraction schemes, which create features
based on the symbolic features or abstract features. The parameters scheme,
depth and clusters were varied according to Table 5.

38

Number Scheme Depth Clusters
1 ala 1 2
2 ala 2 2
3 ala 3 2
4 ala 1 8
5 ala 2 8
6 ala 3 8
7 ala 1 20
8 ala 2 20
9 ala 3 20

10 als 1 2
11 als 2 2
12 als 3 2
13 als 1 8
14 als 2 8
15 als 3 8
16 als 1 20
17 als 2 20
18 als 3 20
19 afa 1 2
20 afa 2 2
21 afa 3 2
22 afa 1 8
23 afa 2 8
24 afa 3 8
25 afa 1 20
26 afa 2 20
27 afa 3 20
28 afs 1 2
29 afs 2 2
30 afs 3 2
31 afs 1 8
32 afs 2 8
33 afs 3 8
34 afs 1 20
35 afs 2 20
36 afs 3 20

39

Table 5: Experimental combinations for lemma clustering using function
features. Highlighted rows indicate interesting results.

Results Using combinations 22, 23 and 26 consistently formed the fol-
lowing cluster (lemmas on tail-recursion are bold):

• length (xs++ys) = length (ys++xs)

• half (length (xs++ys)) = half (length (ys++xs))

• even (n+m) = even (m+n)

• even (length (xs++ys)) = even (length ys+length xs)

• revflat xs = qrevflat xs []

• rev (qrev xs []) = xs

• length (xs++xs) = double (length xs)

• qrev (qrev xs []) [] = xs

• rotate (length xs) xs = xs

• fac n = qfac n b

• (n*m) = mult2 n m Z

• (n‘elem‘ys) => (n‘elem‘(xs++ys))

Combinations number 6 and 9 consistently formed a similar cluster:

• half (length (xs++ys)) = half (length (ys++xs))

• even (n+m) = even (m+n)

• even (length (xs++ys)) = even (length ys+length xs)

• rev xs = qrev xs []

• qrev (qrev xs []) [] = xs

• rotate (length xs) xs = xs

40

• fac n = qfac n b

• (n*m) = mult2 n m Z

• (n‘elem‘ys) => (n‘elem‘(xs++ys))

Discussion The cluster formed by combinations 22, 23 and 26 is the same
as the one formed by abstract lemma features in section 4.4.2, despite
analysing abstract function features in this case. In addition, both pre-
sented clusters here contain some additional lemmas like the clusters from
section 4.4.2 also do. These results might indicate that analytic schemes
cluster lemmas in similar ways as lemma features, with the same draw-
backs such as worse isolation in comparison to function feature clustering.

It is worth noting that only abstract analytic schemes, ala and afa, seem
useful when clustering tail-recursive lemmas. This is in line with previous
experiments, in section 4.4.1 and section 4.4.2. Here, it is also reasonable
to assume that the feature tailRecursive from the afa scheme is helping.

4.4.4 Clustering functions

Setup 31 functions, the same used in the 50 earlier clustering lemmas,
were used as input data to a K-means clustering algorithm. Inverse docu-
ment frequency was used to weight the features. The parameters scheme,
depth and clusters were varied according to Table 6.

41

Number Scheme Depth Clusters
1 fa 1 2
2 fa 2 2
3 fa 3 2
4 fa 1 8
5 fa 2 8
6 fa 3 8
7 fa 1 20
8 fa 2 20
9 fa 3 20

10 fs 1 2
11 fs 2 2
12 fs 3 2
13 fs 1 8
14 fs 2 8
15 fs 3 8
16 fs 1 20
17 fs 2 20
18 fs 3 20

Table 6: Experimental combinations for function clustering. Highlighted
rows mark where the function exp, mult and rotate where consistently clus-
tered together.

Results Many of the experiments consistently grouped the function exp,
rotate and mult together, with varying number of other lemmas accompa-
nying them. No clear pattern for tail-recursive functions were found.

Discussion Again, the abstract feature scheme seems more consistent
and reliable. However, we did not observe the same patterns for tail-
recursive functions here as we did with their lemmas.

4.5 Discussion of results

There may be several contributing factors to the lack of satisfying machine
learning results. The size and quality of the data led to a small sample size,

42

in combination to potentially too many features. These potential factors
are discussed in this section.

4.5.1 Size of data

In general, having had more data would have been beneficial. Contrary to
what the name suggests, TIP (Tons of Inductive Problems) contains as of
yet only 385 lemmas, which may not be enough to discover useful corre-
lations.

Additionally, the part of TIP that could be proven by HipSpec was fur-
ther restricted to 229 lemmas. The reason for this is that the development
version of HipSpec/QuickSpec was used, which cannot prove as many
lemmas as the stable version. This resulted in fewer lemmas being avail-
able for supervised learning, since our supervised learning required in-
duction variable(s) as labels.

4.5.2 Incorrect data

Another problem with the supervised learning data is that right now, Hip-
Spec ”mislabels” some lemmas as not having used induction despite them
having done so. This is because of how theory exploration works.

Given a user-stated lemma, the theory exploration might find a gen-
eralized variant of that lemma, and prove it using induction. Then, the
original user-stated lemma would technically be proven without induc-
tion, since the induction took place in the proof of the generalized lemma.

This sort of ”indirect induction” is not captured in the current model;
hence, only 96/229 lemmas are proven by induction from our point of
view, and thus only 96 lemmas are available as training data for the su-
pervised learning evaluation. Modelling this indirect induction in some
fashion would probably increase the amount of available data.

4.5.3 Feature extraction

In addition to having too little data, it is possible that we had too many
features. For some of the test runs, it turned out that we had more features
than data points; that is, the dimensionality was higher than the sample
size. This is generally a warning sign within machine learning, and might
have affected the results. In these cases, it could be helpful to perform

43

Principal Component Analysis (PCA) in order to reduce the number of
dimensions, but this was regrettably skipped in this work due to lack of
time.

Another relevant observation is that all of the lemma features used in
this work are binary – i.e., either present or non-present. We suspect that
this might also impact the results, and be further motivation for using a
dimension reducing technique such as PCA.

44

5 Related work

Machine learning has been used successfully in several applications. Here
we will cover two improvements that have been done to theorem provers,
MeSh and ACL2(ml), how they differed from us and how they performed
in comparison.

5.1 MeSh

The fact selector of Sledgehammer, MeSh, uses machine learning in order
to solve the premise selection problem, i.e. the task of filtering out relevant
lemmas for the current proof goal [1]. How MeSh does feature extraction
is described in section 2.2.3, and it was a big inspiration for the feature
extraction done in this project.

The results of MeSh seem promising. In its evaluation, it is reported
to be more performant than older methods, both when comparing results
directly from the supervised learning, and when used in real-life testing
of running times.

Hence, one could say that they were successful in solving the premise
selection problem. In contrast, we tried to solve the induction selection
problem but did not succeed. This could stem from a number of reasons.
Firstly, Isabelle contains a much larger theory than TIP, and thus they had
more data at their disposal. Secondly, and more importantly, it is not cer-
tain that the induction selection problem even is solvable (see 4.3.3).

5.2 ACL2(ml)

Another related project is ACL2(ml), which is an extension to the ACL2
prover [11]. It first uses unsupervised learning to cluster lemmas, and then
these clusters are used for generating new lemmas that are (hopefully)
useful for the current proof goal.

The feature extraction done in ACL2(ml) is quite involved: for exam-
ple, it represents term trees with adjacency matrices and it uses recurrent
clustering. In contrast, the features in this project are merely strings.

Additionally, the ACL2(ml) project uses dense matrices as input to their
machine learning algorithm. This refers to feature matrices, and it means
that they reduce the total number of features to a small amount which is

45

done using a custom-built technique. This project, on the other hand, uses
sparse matrices for representing features which is much simpler.

ACL2(ml) did achieve some success with their clustering: their ap-
proach scaled well when more data was added (the principal clusters re-
mained the same), and lemmas within clusters generally had similar proofs.
Compared to us, they had access to more data, and they had a more robust
way of evaluating the performance of their clustering.

5.2.1 Clustering comparison with HipSpec

In the paper on ACL2(ml) [11], 996 lemmas were clustered using a much
more complicated feature extraction method than that of this project. A
working hypothesis of this project was that it could be made much sim-
pler.

Their experiments showed that the following three lemmas about func-
tion equivalence of recursive and tail-recursive functions were consistently
grouped together:

• fact-tail n = fact n

• fib-tail n = fib n

• power-tail n = power n

We added these three lemmas and their functions to our 50 lemmas
and 31 functions, and tested clustering similar to the previously described
experiments.

We noted, as for lemma clustering, that all scheme combinations gen-
erally clustered the above lemmas together in the larger cluster, and not
together with the other lemmas on tail recursion. Besides that, the clusters
were very similar to how they formed without these added lemmas and
functions.

Considering these results, we can not conclude that our feature extrac-
tion works as well as ACL2(ml). Therefore, the hypothesis was not veri-
fied.

46

6 Further work and conclusions

This chapter describes possible future extensions to HipSpec made possi-
ble by this report and summarizes its main contributions.

6.1 Further work

This project has laid the ground work for future implementations in Hip-
Spec using machine learning. Here, we suggest suitable additions that can
now be implemented, and improvements to the work done in this project.

6.1.1 More and better data

In general, we judge that we had too little data. This could be alleviated
by TIP growing in size, including lemmas from more branches of mathe-
matics. It would also be possible to add more data sources (i.e. Isabelle
theories) for the machine learning.

Additionally, when the newest HipSpec version has matured, more
data will be available for supervised learning. For induction classification
only 96 lemmas were used, but this figure could be increased much if Hip-
Spec managed to prove more lemmas (and if cases of ”indirect induction”
are modelled, see 4.5.2).

6.1.2 Conjecture ordering

Now that the persistent library is in place, other problems besides induc-
tion selection can be tackled. One such problem is to decide the order in
which to prove conjectures within the HipSpec loop.

This order is important, since there generally can be many dependen-
cies between the conjectures. Some of the conjectures might be easy to
prove, and thus should be proven early, while other conjectures are more
complicated and require other lemmas as background theory, and thus
should be proven late.

The conjecture order is currently decided analytically (smaller conjec-
tures are attempted before bigger conjectures). This could potentially be
improved by using machine learning to decide the order, to make theory
exploration run faster.

47

6.1.3 Theory exploration

We recall that HipSpec uses QuickSpec to generate conjectures from rele-
vant function definitions. It could be possible to utilise machine learning
in order to make QuickSpec discover more relevant lemmas.

When invoking the newest version of QuickSpec, it is possible to sup-
ply a schema that roughly specifies the shape that conjectured lemmas
ought to take. It could be possible to use machine learning in order to
generate such a schema, by first finding similar theorems, and then look-
ing at the lemmas they use in their proofs.

6.1.4 Utilising clustering

The results from clustering are not only of theoretical interest, but may
also be of practical use. For example, our results indicate that it is rela-
tively easy to cluster lemmas that talk about tail recursive functions. This
could possibly be used when proving such lemmas, since proofs of lem-
mas about tail recursive functions usually begin by proving a generalisa-
tion of the lemma.

Another potential usage of clustering is to use a cluster to find premises
for a proof of a lemma. If a lemma is clustered together with other lem-
mas, it might mean that some proof similarities exist. In Sledgehammer,
a k-nearest neighbour algorithm is used to find other lemmas similar to
the proof goal [1]. It would be interesting to test these feature extraction
schemes for a similar case.

One could also, in the way done in ACL2(ml), use the clusters as a basis
for symbolically generating potential premises.

6.2 Conclusion

The goals of this project was to lay the groundwork for utilising machine
learning in HipSpec and to evaluate how machine learning might be used.

The groundwork consisted of defining a high-level format for proofs.
Furthermore, a persistent library was implemented, where HipSpec stores
everything it succeeds to prove (in the aforementioned proof format).

These changes allow HipSpec to remember what has happened in the
past, and they allow the user to collect data regarding proven lemmas.

48

This is fundamental functionality if one wants to leverage previously proven
lemmas in new proof attempts, for example through machine learning.

On the machine learning side, a module for feature extraction from
lemmas was implemented, as well as several different feature extraction
schemes. This module is now used internally in HipSpec, but can also
easily be invoked as a standalone module, for future machine learning
implementations.

Finally, several experiments with supervised and unsupervised learn-
ing were performed. We did not succeed in solving the induction selection
problem, either because of lack of data or because no correlation between
induction variables exists. However, one experiment with unsupervised
learning succeeded in clustering lemmas on tail recursive functions. This
shows that using machine learning within theorem proving could be suc-
cessful, and that further work is warranted.

All in all, a solid foundation has been built that enables future work
on many other machine learning applications in addition to the ones tried
here. Also, our results suggest that there is cause for hope for machine
learning within theorem proving.

49

References

[1] Jasmin Christian Blanchette; David Greenaway; et al. “A learning-
based fact selector for isabelle/HOL”. In: Journal of Automated Rea-
soning (2016). Pending publication.

[2] Kenneth I Appel and Wolfgang Haken. Every planar map is four col-
orable. Vol. 98. American mathematical society Providence, RI, 1989.

[3] Sascha Böhme and Tjark Weber. “Designing proof formats: A user’s
perspective”. In: Proof eXchange for Theorem Proving (2011), pp. 27–32.

[4] Koen Claessen and John Hughes. “ICFP ’00 Proceedings of the fifth
ACM SIGPLAN international conference on Functional program-
ming”. In: ACM, 2000, pp. 268–279.

[5] Koen Claessen, Nicholas Smallbone, and John Hughes. “QuickSpec:
Guessing formal specifications using testing”. In: Tests and Proofs.
Springer, 2010, pp. 6–21.

[6] Koen Claessen et al. “Automating inductive proofs using theory ex-
ploration”. In: Automated Deduction–CADE-24. Springer Berlin Hei-
delberg, 2013, pp. 392–406.

[7] Koen Claessen et al. “TIP: Tons of Inductive Problems”. In: Proceed-
ings of the Conference on Intelligent Computer Mathematics (CICM) 2015.
2015, pp. 333–337.

[8] Leonardo De Moura and Nikolaj Bjørner. “Z3: An efficient SMT solver”.
In: Tools and Algorithms for the Construction and Analysis of Systems.
Springer, 2008, pp. 337–340.

[9] Thomas Hales et al. “A formal proof of the Kepler conjecture”. In:
arXiv preprint arXiv:1501.02155 (2015).

[10] John Harrison. “HOL Light: A tutorial introduction”. In: Formal Meth-
ods in Computer-Aided Design. Springer. 1996, pp. 265–269.

[11] Jónathan Heras et al. “Proof-pattern recognition and lemma discov-
ery in ACL2”. In: Logic for Programming, Artificial Intelligence, and Rea-
soning. Springer. 2013, pp. 389–406.

[12] Thomas Hillenbrand et al. “Waldmeister-high-performance equa-
tional deduction”. In: Journal of Automated Reasoning 18.2 (1997), pp. 265–
270.

50

[13] Joe Hurd. “First-order proof tactics in higher-order logic theorem
provers”. In: Design and Application of Strategies/Tactics in Higher Or-
der Logics, number NASA/CP-2003-212448 in NASA Technical Reports
(2003), pp. 56–68. URL: http://www.gilith.com/research/papers/
metis.pdf.

[14] Moa Johansson. “Theory Exploration for Interactive Theorem Prov-
ing”. In: 4th International Workshop on Artificial Intelligence for Formal
Methods (AI4FM 2013). Ed. by Grov, G., Maclean, E. and Freitas, L.(cit.
on p. 5). 2013.

[15] Moa Johansson et al. “Hipster: integrating theory exploration in a
proof assistant”. In: Intelligent Computer Mathematics. Springer, 2014,
pp. 108–122.

[16] Cezary Kaliszyk, Josef Urban, and Jirı Vyskocil. “Efficient seman-
tic features for automated reasoning over large theories”. In: IJCAI.
Vol. 15. 2015, pp. 3084–3090.

[17] Laura Kovács and Andrei Voronkov. “First-order theorem proving
and Vampire”. In: Computer Aided Verification. Springer. 2013, pp. 1–
35.

[18] Daniel Kühlwein et al. “MaSh: machine learning for Sledgeham-
mer”. In: Interactive Theorem Proving. Springer, 2013, pp. 35–50.

[19] Lawrence C Paulson and Jasmin Christian Blanchette. “Three years
of experience with Sledgehammer, a practical link between auto-
matic and interactive theorem provers”. In: IWIL-2010 (2010).

[20] Piotr Rudnicki. “An overview of the Mizar project”. In: Proceedings
of the 1992 Workshop on Types for Proofs and Programs. 1992, pp. 311–
330.

[21] Stephan Schulz. “System Description: E 1.8”. In: Proc. of the 19th
LPAR, Stellenbosch. Ed. by Ken McMillan, Aart Middeldorp, and An-
drei Voronkov. Vol. 8312. LNCS. Springer, 2013.

[22] Scikit-learn. Mar. 29, 2016. URL: http://scikit-learn.org/stable/.

[23] Scikit-learn Clustering. May 21, 2016. URL: http://scikit-learn.
org/stable/modules/clustering.html#k-means.

[24] Scikit-learn KMeans. May 4, 2016. URL: http://scikit-learn.org/
stable/modules/generated/sklearn.cluster.KMeans.html.

51

http://www.gilith.com/research/papers/metis.pdf
http://www.gilith.com/research/papers/metis.pdf
http://scikit-learn.org/stable/
http://scikit-learn.org/stable/modules/clustering.html#k-means
http://scikit-learn.org/stable/modules/clustering.html#k-means
http://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
http://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html

[25] Tobias Nipkow; Lawrence C Paulson; Markus Wenzel. Isabelle/HOL:
a proof assistant for higher-order logic. Springer, 2002. URL: http://
isabelle.in.tum.de/doc/tutorial.pdf.

[26] Harry Zhang. “The optimality of naive Bayes”. In: AA 1.2 (2004),
p. 3. URL: http://www.cs.unb.ca/~hzhang/publications/FLAIRS04ZhangH.
pdf.

52

http://isabelle.in.tum.de/doc/tutorial.pdf
http://isabelle.in.tum.de/doc/tutorial.pdf
http://www.cs.unb.ca/~hzhang/publications/FLAIRS04ZhangH.pdf
http://www.cs.unb.ca/~hzhang/publications/FLAIRS04ZhangH.pdf

A Readme for this project’s ML extensions

A.1 Prerequisites

• Python 2.7+

• PostgreSQL

A.2 batch.py

python batch . py /path/to/ d i r e c t o r y /path/to/ l i b r a r y . l i b

Runs ‘emna‘ on all problems in a directory. Useful for building a .lib file, or
for evaluating how emna performs. Outputs useful information for each
problem into ‘./batch.log‘.

A.3 Choose induction variables by machine learning

When you have a .lib file that you want to use in order to make predictions
of induction variables, run:

1. extractFeatures

2. learn

Subsequent invocations of ‘emna‘ will use the generated classifier to choose
induction order.

A.3.1 extractFeatures.hs

e x t r a c t F e a t u r e s /path/to/ l i b r a r y . l i b depth
fea ture−e x t r a c t i o n−schemes

Extracts features from the given library into the PostgreSQL database. Will
wipe the database beforehand, so use with care! Looks for the environ-
ment variables ‘HS DB NAME‘, ‘HS DB HOST‘, ‘HS DB USERNAME‘ and
‘HS DB PASSWORD‘.

A note on filtering and induction variables:
• In extractFeatures.hs, you can select whether or not to filter away

lemmas with no induction variable. This is done by the function
filterNonInductiveLemmas.

53

• In FeatureExtraction.hs, in the function insertLemmas, you can choose
if you will group all non-first-variable-only-lemmas as one group by
using the statement which returns either [0] or [1].

• Make sure to recompile after these changes before running any tests.

A.3.2 extractFunctionFeatures.hs

Works like extractFeatures.hs, but only with fs, fa, afa and afs extraction
schemes.

A.3.3 create classifier.py

python c r e a t e c l a s s i f i e r . py [/ path/to/data]

Creates ‘classifier.pkl‘ from the data currently in the PostgreSQL database.

A.3.4 use classifier.py

Used only internally by HipSpec, there should be no need to call this directly.

python u s e c l a s s i f i e r . py s t r i n g i f i e d F e a t u r e s [/ path/to/data]

Reads ‘classifier.pkl‘ and classifies ‘stringifiedFeatures‘ by it, returning the
most probable classes on stdout.

A.4 Evaluating feature extraction schemes

A.4.1 supervised.py

python supervised . py

Runs cross-validation of supervised learning. Evaluates many different
configurations and prints a table of results to screen.

The script varies feature extraction schemes, depths and ML engines.
To change which combinations it tries, you should edit the script.

A.4.2 unsupervised.py

python unsupervised . py number of c lus ters path/to/ l i b . t i p l i b
depth [f e a t u r e e x t r a c t i o n schemes]

54

Runs an unsupervised clustering algorithm, given some feature extrac-
tions schemes and depth, and prints the resulting clusters to screen.

Example invocation:

python s c r i p t s /unsupervised . py 8 ./ data/ l i b . t i p l i b 4 l a l s

A.5 Other files

A.5.1 db.py

Used only internally by other scripts, there should be no need to call this directly.
Connects to the local PostgreSQL database, and supplies utility func-

tions for reading lemmas/classes/features from it.

A.5.2 tables.sql

Contains definitions of PostgreSQL tables.

55

	Introduction
	Background and literature review
	Implementation
	Results and evaluation
	Related work
	Further work and conclusions
	Readme for this project's ML extensions

