
Automatic View Compensation
Master’s thesis in Communication Engineering

RICKARD DAHL

Department of Electrical Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2018

Master’s thesis 2018:NN

Automatic View Compensation

RICKARD DAHL

Department of Electrical Engineering
Division of Signal processing and Biomedical engineering

Computer vision and medical image analysis research group
Chalmers University of Technology

Gothenburg, Sweden 2018

Automatic View Compensation
RICKARD DAHL

© RICKARD DAHL, 2018.

Supervisor: Carl Toft, Department of Electrical Engineering
Examiner: Carl Olsson, Department of Electrical Engineering

Master’s Thesis 2018:NN
Department of Electrical Engineering
Division of Signal processing and Biomedical engineering
Computer vision and medical image analysis research group
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX
Gothenburg, Sweden 2018

iv

Automatic View Compensation
RICKARD DAHL
Department of Electrical Engineering
Chalmers University of Technology

Abstract
Controlling the luminance in the tunnel threshold zone is a challenging task. On
one hand the luminance in the threshold zone needs to be high enough for a driver
experiencing significant glare to be able to detect a possible obstacle located in the
relatively dark threshold zone and stop in time to avoid an accident. On the other
hand there are demands to keep the luminance as low as possible to reduce the
energy consumption.
In order to control the luminance in the threshold zone, the glare experienced by
the driver needs to be estimated. This is done by measuring the equivalent veiling
luminance Lseq. Ideally Lseq would be measured at the stopping distance, 1.5m
above the road surface and in the middle of the road with the camera centered on
the tunnel opening. In practice however, the camera often needs to be mounted on
a height of 5− 7m to avoid staining and vandalism and it sometimes also needs to
be placed on the side of the road. This camera positioning leads to a significant Lseq
error.
In this thesis a view transformation method aimed at automatically reducing the
Lseq error is presented. The method is based on Depth Image Based Rendering,
which requires a camera pose for a virtual view as well as the depth map for the
original view. Depth maps of a scene are rarely available however and for this reason
a monocular depth map estimation method is proposed. The depth estimation
method is based on detecting Maximally Stable Extremal Regions and classifying
the regions according to detected line segments.
The proposed view transformation method has been evaluated on a small number
of scenes and the error reduction is as high as 40− 85%. There are however several
issues that require future improvements, including: a long computation time, high
occurrence of errors in the estimated depth maps and errors in the centering of
the diagram used for the Lseq computation. Nevertheless, the proposed approach
can with a few minor adjustments be implemented in the luminance measurement
system and be used in practice.

Keywords: Luminance, threshold zone, glare, Lseq, view transformation, Depth Im-
age Based Rendering, depth map estimation.

v

Acknowledgements
To begin with, I am thankful for all the help and support I’ve received from my
examiner Carl Olsson and from my supervisor Carl Toft.
I would also like to thank the employees at Cipherstone Technologies AB for helping
in making this thesis a reality and for contributing to a friendly and welcoming
atmosphere at the workplace. First I would like to thank Kenneth Jonsson, the
CEO of Cipherstone Technologies AB, without whom the thesis work would not be
possible. Kenneth has not only been very helpful in helping me to understand the
project and how it relates to the product/system as a whole but has also been kind
and helpful in many other ways. I also owe my deepest gratitude to Suryanarayana
Murthy Muddala for providing invaluable expertise in computer vision, for giving
me important advice with regards to how to prioritize the different parts of the thesis
work and for helping me to stay on track. Furthermore I would like to thank David
Tingdahl for sharing his expertise on BRDFs (Bidirectional Reflectance Distribution
Functions). Last but not least, I want to thank Chanadrashekhar Nasurade, the
embedded software programmer at Cipherstone Technologies AB. Although his field
of expertise is not computer vision, he has contributed greatly by helping me with
the measurement gathering part of the work and has also contributed to a positive
atmosphere in the office.

Rickard Dahl, Gothenburg, June 2018

vii

Contents

List of Figures xi

List of Tables xvii

1 Introduction 1
1.1 Background . 1
1.2 Purpose . 6
1.3 Limitations . 6
1.4 Overview . 7

2 Related Works 9

3 Theory 15
3.1 Projective Geometry . 16

3.1.1 Vanishing Points . 18
3.1.2 Image Transformations . 18
3.1.3 Camera Geometry . 22
3.1.4 Virtual View Generation . 24

3.2 Inpainting . 26
3.3 Line and Line Segment Detection . 27

3.3.1 Line Segment Detector (LSD) 27
3.4 Segmentation . 28

3.4.1 Thresholding . 28
3.4.2 GrabCut . 29
3.4.3 Hierarchical Feature Selection (HFS) 30

3.5 Maximally Stable Extremal Regions (MSER) 30
3.6 Field of view . 31

3.6.1 Depth from Field of View . 31
3.7 Luminance . 33

3.7.1 Equivalent Veiling Luminance 35

4 Implementation 39
4.1 Input . 40
4.2 Line segment detection . 42
4.3 Vanishing point estimation . 43
4.4 Maximally Stable Extremal Regions (MSER) 44

4.4.1 Finding the tunnel opening 46

ix

Contents

4.5 Road and Sky Detection . 48
4.5.1 Hierarchical Feature Selection (HFS) Segmentation 48
4.5.2 Thresholding . 49
4.5.3 Finding the road and sky regions 50

4.6 Region classification . 51
4.6.1 Line histograms . 51
4.6.2 Classification of line histograms 53

4.7 Region refinement . 54
4.8 Finding the tunnel outline and tunnel walls 57

4.8.1 Finding the tunnel outline shape 58
4.8.2 Finding the tunnel walls . 59

4.9 Grouping and refinement of depth regions 60
4.10 Depth Map Estimation . 63

4.10.1 Depth Map based on Field of View 64
4.10.2 Adding the tunnel walls . 65
4.10.3 Adding vertical depth regions 66

4.11 The Camera Geometry . 67
4.12 Warping . 69

4.12.1 Inpainting . 73
4.13 Defining the Equivalent Veiling Luminance region 75
4.14 Equivalent Veiling Luminance computation 77

5 Data Gathering 79
5.1 Camera hardware and software . 79
5.2 Camera Calibration . 80
5.3 Measurement Gathering . 82

6 Results 85
6.1 Error Reduction Metric . 85
6.2 Reduction of Equivalent Veiling Luminance Error 86
6.3 Effect of Inpainting . 92
6.4 Effect of depth map . 93

6.4.1 Comparison with reference depth maps 94
6.4.2 Changing the resolution of the depth map 97

6.5 Computational Performance . 98

7 Discussion and Conclusion 101
7.1 Improvements in the depth map estimation 101
7.2 Reducing the computation time . 103
7.3 Future Work . 103
7.4 Conclusion . 104

Bibliography 105

x

List of Figures

1.1 Overview of different tunnel regions. The threshold region is at lo-
cated at the start of the tunnel. The luminance Lth in the threshold
zone is controlled based on the equivalent veiling luminance Lseq mea-
sured at the stopping distance from the tunnel. 2

1.2 Camera view used when computing Lseq at the Gnistäng Tunnel
scene. The camera is centered on the tunnel opening. Note that
the Lseq pattern is shown here. The Lseq computation is described in
detail in Section 3.7.1. 3

1.3 Relative luminance error as a function of horizontal or vertical dis-
placement in pixels. The figure is taken from [3]. Permission to use
this and other figures from the research project was granted by Ken-
neth Jonsson (one of the authors). 4

1.4 a) shows the street view (2m above the road centered in the middle
of the right lane) and b) shows the view on the right side of the road
and approximately 7m above the road. The figure is taken from [3]. . 4

1.5 Lseq measured from the camera mounting position. The image has
been color-coded using the jet colormap. Blue corresponds to low
luminance values and red to corresponds to high luminance values. . . 5

1.6 Lseq measured from the ideal position (driver’s view). This figure uses
the same color coding as Figure 1.5. 5

1.7 Lseq in the warped view. The image at the camera mounting position
has been warped by approximating the image by a small number of
planes and applying homographies to warp the planes. This figure
uses the same color coding as Figure 1.5. 6

3.1 Image coordinate system. Note that y-axis is pointing down. 15
3.2 An example of a case where a vanishing point can easily be deter-

mined. Note that the train tracks, despite being parallel, seem to
converge to a single point. This is the vanishing point. This image
was downloaded from from https://www.maxpixel.net/Train-Tracks-
Railroad-Tracks-Railway-Pine-Trees-1245906 and was shared under
the Creative Commons Zero (CC0) license. 18

3.3 Example of a depth map. Note that this depth map was manually de-
fined in GNU Image Manipulation Program (GIMP) and only defines
the depth for some of the objects in the scene. 26

xi

List of Figures

3.4 Histogram and the triangle threshold M . Note that this is a dummy
example. The actual threshold and lines may differ in reality. Refer
to [34] for a better illustration. 29

3.5 Horizontal field of view αh. f is the focal length and W is the width
of the camera sensor. 31

3.6 The basic camera setup. Here the blue region represents the part of
the scene that is visible in the camera. 32

3.7 Trigonometric relationships between an object located at x̃ = (i, j)T
in the image and the corresponding 3D coordinate X̃ = (X, Y, Z)T . . 33

3.8 Image showing the pixel values chosen by algorithm 1. 35
3.9 Diagram for Lseq computation. Each zone in the diagram produces

an equal amount of stray light for a given average luminance. 36

4.1 The four main steps in the implementation. Note that the inpainting
step is optional. 39

4.2 The image with the shortest exposure time. 41
4.3 The image with the next shortest exposure time. 41
4.4 The image with the next longest exposure time. 41
4.5 The image with the longest exposure time. 42
4.6 Line segments detected for the two darkest images. 42
4.7 Line segments detected for the two brighest images. 43
4.8 Estimated vanishing point. The line segments from the different ex-

posure images were first combined into a single container. Then the
vertical or nearly vertical line segments and the horizontal or nearly
horizontal line segments were removed. The estimation is based on
the remaining line segments. 44

4.9 MSER for the two darkest exposure images shown on a white back-
ground. Note that only the outer MSER are shown. 45

4.10 MSER for the two brightest exposure images shown on a white back-
ground. Note that only the outer MSER are shown. 45

4.11 Bounding rectangle approximations of the MSER in the next darkest
exposure image. 46

4.12 Bounding rectangle approximations of the MSER in the next darkest
exposure image after removal of the inner bounding rectangles. 46

4.13 Bounding rectangle approximations of the MSER in the brightest
exposure image after removal of the inner bounding rectangles. 47

4.14 HFS segmentation of the Gnistängtunneln scene for the next bright-
est exposure image. The parameters used are: slicSpixelSize = 20,
numSlicIter = 5, spatialWeight = 1.0, segEgbThresholdI = 0.08,
minRegionSizeI = 250, segEgbThresholdII = 0.28 andminRegionSizeII =
400. 49

4.15 Thresholding of the next darkest exposure image. The threshold is
computed using the Triangle method. 49

4.16 (a) shows the mask used for the detection of the sky region and (b)
shows the mask used for the detection of the road region. 50

4.17 Road region and sky region masks. 51

xii

List of Figures

4.18 Bounding rectangle for one of the detected MSER and the corre-
sponding line segments. 52

4.19 The line histogram for the line segments shown in Figure 4.18. Clearly,
the vertical or near vertical line segments contribute with most of the
magnitude, implying that it probably is a vertical region. 53

4.20 GrabCut mask for the pole MSER detected in the next darkest ex-
posure image. Here the background is assigned grayscale value 65,
the foreground is assigned grayscale value 255 and the probably fore-
ground region is assigned grayscale value 175. The reason why the
uppermost and lowermost parts of the mask are not assigned as back-
ground is because it is assumed that the object may actually be taller
than the MSER. 55

4.21 Regions approximated by using GrabCut in the darkest and next
darkest exposure images. The number of iterations for the GrabCut
algorithm is 10. 56

4.22 Regions approximated by using GrabCut in the next brightest and
brightest exposure images. The number of iterations for the GrabCut
algorithm is 10. 57

4.23 Depth region mask obtained from GrabCut. 57
4.24 Visualization of the GrabCut mask for tunnel outline approximation. 58
4.25 Best tunnel outline approximation and the corresponding depth re-

gion mask. The number of iterations in the GrabCut segmentation
algorithm is 7. 59

4.26 Approximation of the tunnel opening. The tunnel bounding rectangle
is shown in red and the left and right tunnel walls are approximated
as triangles. The polygon coordinates are also drawn. 60

4.27 Depth regions obtained after region classification and region mask cre-
ation and after the tunnel outline approximation. The region bound-
ing boxes are also shown. 61

4.28 Depth regions after grouping into depth region sets. 63
4.29 Depth region sets after refinement. 63
4.30 Field of view based depth map. N = 256 and Zfar = 250 in this case. 65
4.31 Depth map with the tunnel walls included. 66
4.32 Complete depth map with all of the depth regions included. 66
4.33 Geometry for a typical tunnel scene viewed from the side. The com-

putation of the pitch θx is listed in equation (4.19). 69
4.34 Geometry for a typical tunnel scene viewed from above. The compu-

tation of the yaw θy is listed in equation (4.20). 69
4.35 Warped image of the Gnistängstunneln scene. The parameters c̃ =

(−7.5, 5.5, 0.0)T and θ = (3.78◦, 6.29◦, 0.0◦)T were used in this case. . 72
4.36 The incomplete inpainting mask after filling the it with zeros at the

defined pixel values in the warped image. 73
4.37 Mask showing the outline of the warped image region. 74
4.38 Final inpainting mask. 74
4.39 The inpainted warped image. The radius was set to 3 in this case. . . 74

xiii

List of Figures

4.40 Lseq diagram shown in the warped view of the next brightest exposure
image. 75

4.41 A visualization of the height estimation procedure. The red dots show
the polygon coordinates and the blue dots show the points x̃top and
x̃bot. 76

4.42 Two of the half-elliptic masks used when defining the subregions in
the Lseq diagram. 77

4.43 Mask with defined regions in the warped image and the visualization
of the luminance image for the warped view. 77

5.1 A checkerboard pattern attached to a solid flat surface. 80
5.2 Detected corners in the checkerboard image. 81
5.3 Two views of the Fiskholmsmotet scene (shown in [61]). The road

level view is approximately directly below the view above the road.
Both views are roughly centered on a truck in the scene. 83

5.4 Laser measurement device Nikon Forestry Pro. 83

6.1 Two views of the Gnistängstunneln scene. For the view above the
road, Lseq ≈ 65.33cd/m2, and for the road level view, Lseq ≈ 114.10cd/m2.
Note that there is a large time difference between the two images,
which may overestimate or underestimate the differences in Lseq. . . . 86

6.2 Lseq in warped view for the Gnistängstunneln scene. Here, c̃ =
(tx, ty, tz)T = (−7.5, 5.5, 0.0)T and θ = (θx, θy, θz)T = (3.78◦, 6.29◦, 0.0◦)T .
The measured luminance is Lseq ≈ 85.18cd/m2. 87

6.3 Two views of the Fiskholmsmotet Mid scene. For the view above the
road, the luminance is Lseq ≈ 176.93cd/m2 and for the road level view
the luminance is Lseq ≈ 249.12cd/m2. 88

6.4 Lseq in the warped view for the Fiskholmsmotet Mid scene. Here the
translation and rotation was approximated to be, c̃ = (tx, ty, tz)T =
(−11.0, 7.6, 0.0)T and θ = (θx, θy, θz)T = (3.5◦,−2.0◦, 0.0◦)T . The
measured luminance is Lseq ≈ 264.43cd/m2. In this case the lumi-
nance value is overestimated compared to the road level luminance
value which is Lseq ≈ 249.12cd/m2. 88

6.5 Lseq in the warped view for the Fiskholmsmotet Mid scene when
setting D = 100 instead of D = 73. The measured luminance is
Lseq ≈ 216.79cd/m2. 88

6.6 The two views of the Fiskholmsmotet Left scene. For the view above
the road, the luminance is Lseq ≈ 184.31cd/m2 and for the road level
view the luminance is Lseq ≈ 249.12cd/m2. 89

6.7 Lseq in the warped view for the Fiskholmsmotet Left scene. Here
the translation and rotation is approximately c̃ = (tx, ty, tz)T =
(−4.0, 7.6, 0.0)T and θ = (θx, θy, θz)T = (4.0◦,−5.0◦, 0.0◦)T . The
measured luminance is Lseq ≈ 222.80cd/m2. 89

6.8 The two views of the Lindholmen West scene. For the view above
the road, the luminance is Lseq ≈ 285.83cd/m2 and for the road level
view the luminance is Lseq ≈ 329.64cd/m2. 90

xiv

List of Figures

6.9 Lseq for the warped view of the Lindholmen West scene. Here the
translation and rotation is approximately c̃ = (tx, ty, tz)T = (−7.2, 6.8, 0.0)T
and θ = (θx, θy, θz)T = (3.5◦, 3.0◦, 0.0◦)T respectively. The measured
luminance is Lseq ≈ 310.11cd/m2. 90

6.10 Two views of the Lindholmen East scene. The luminance values are
Lseq ≈ 195.44cd/m2 and Lseq ≈ 224.70cd/m2 for the view above the
road and the view at road level respectively. 91

6.11 Lseq for the warped view of the Lindholmen East scene. The trans-
lation is approximately c̃ = (tx, ty, tz)T = (8.5, 6.8, 0.0)T and the
rotation is approximately θ = (θx, θy, θz)T = (3.0◦,−1.5◦,−0.5◦)T
respectively. The measured luminance is Lseq ≈ 220.36cd/m2. 91

6.12 Inpainted version of the warped view at the Gnistängstunneln scene.
Here the measured luminance is Lseq ≈ 85.65cd/m2. 92

6.13 Inpainted version of the warped view at the Fiskholmsmotet Mid
scene. For the inpainted image the measured luminance is Lseq ≈
264.34cd/m2. 92

6.14 Inpainted version of the warped view at the Fiskholmsmotet Left
scene. The measured luminance is Lseq ≈ 222.61cd/m2. 92

6.15 Inpainted version of the warped view at the Lindholmen West scene.
In this case the measured luminance is Lseq ≈ 309.68cd/m2. 93

6.16 Inpainted version of the warped view at the Lindholmen East scene.
Lseq ≈ 220.34cd/m2 in this case. 93

6.17 The depth maps for the Gnistängstunneln scene. Zfar = 250 for the
two depth maps. 94

6.18 Warped view of the Gnistängstunneln scene that results when using
the reference depth map. Here the luminance is Lseq ≈ 87.65cd/m2 . 94

6.19 The depth maps for the Fiskholmsmotet Left scene. In this case
Zfar = 150. 95

6.20 Warped view of the Fiskholmsmotet Left scene using the reference
depth map. Here Lseq ≈ 211.98cd/m2. 95

6.21 View of Lundbytunneln above the road. The measured luminance is
Lseq ≈ 47.60cd/m2 . 96

6.22 The depth maps for the Lundbytunneln scene. In this case Zfar = 150. 96
6.23 Warped view of Lundbytunneln (using estimated depth map). Here,

c̃ = (tx, ty, tz)T = (6.8, 7.7, 0.0)T and θ = (θx, θy, θz)T = (5.0◦,−1.5◦,−1.0◦)T .
The measured luminance is Lseq ≈ 64.31cd/m2. 97

6.24 Warped view of Lundbytunneln (using the reference depth map). The
measured luminance is Lseq ≈ 50.28cd/m2. 97

xv

List of Figures

xvi

List of Tables

3.1 Radial angles in the Lseq diagram. 36

4.1 Summary of the parameters for defining the virtual camera view po-
sition and orientation. 68

6.1 Summary of the Lseq values (in cd/m2) and the corresponding error
values and error reduction metric for different scenes. 91

6.2 Comparison of Lseq values and rates of error reduction for the warped
views with or without inpainting. The inpainting radius chosen was 3. 93

6.3 Influence of depth resolution N on Lseq and on the error reduction R. 98
6.4 Computation time for different parts in the code. 99

xvii

List of Tables

xviii

1
Introduction

1.1 Background

Intelligent Transport Systems (ITS) can be defined as the use of various technologies
such as wireless communication and computer vision/image analysis to among other
things monitor traffic, improve traffic safety and reduce congestion [1]. Applications
include monitoring the number of vehicles on a road and varying of the speed lim-
its depending on the traffic conditions or weather conditions. Another important
application of ITS is automatic control of tunnel lighting.

The most recent recommendations for tunnel lighting were presented by the Inter-
national Commission on Illumination (Commission internationale de l’éclairage (or
CIE for short)) in the CIE 88:2004 report [2]. According to the recommendations,
a tunnel can be divided into several regions as shown in Figure 1.1. The threshold
zone is an especially complicated region for lighting control. On one hand the driver
might be perceiving significant glare due to sunlight (thus reducing visibility) and
on the other hand the driver needs to be able to discern a possible object (such as
another vehicle) located in the threshold zone and stop in time to avoid an accident.
Furthermore, it takes some time for the eyes to adjust when going from a bright
environment to a dark one which means that the light level transition cannot be
too abrupt. Finally, there is also a desire to keep the light level as low as possible
to reduce energy consumption and thus reduce costs of the lighting and the impact
on the environment. For these reasons it is important to automatically control the
luminance in the threshold zone Lth.

1

1. Introduction

Figure 1.1: Overview of different tunnel regions. The threshold region is at located
at the start of the tunnel. The luminance Lth in the threshold zone is controlled
based on the equivalent veiling luminance Lseq measured at the stopping distance
from the tunnel.

According to the recommendations in [2], the Equivalent veiling luminance Lseq (or
alternatively the L20 value) needs to be measured in order to determine the threshold
luminance Lth. Lseq should be measured at the stopping distance (the distance that
is required for the vehicle to stop, defined as the sum of the reaction distance and the
braking distance) corresponding to the speed limit before the tunnel. The camera
should be placed around 1.5 meters above the road (corresponding to the average
driver position) and in the middle lane of the same side of the road as the tunnel
opening. The exact details for how Lseq is then computed are given in Section 3.7.1.
In practice however, this camera positioning is difficult (if not impossible) to achieve.
To avoid staining and vandalism, the luminance measurement device (for instance
a camera) needs to be mounted at a significant height above the road (usually 5-7
meters). In some cases the device (camera) can not be mounted above the middle
of the road and instead needs to be placed on the side of the road. In order for
the device (camera) to then be centered on the tunnel opening, the device (camera)
needs to be rotated, thus also introducing an angle error. To reduce costs the current
infrastructure (traffic poles) often needs to be reused. As such the real distance to
the tunnel might differ from the stopping distance. This difference can however be
easily compensated for (as long as it is small enough).
To investigate the error sources and practical considerations for this kind of camera
installation for Lseq (or L20) measurement, a research project [3] was conducted by
Cipherstone Technologies AB in cooperation with SP Technical Research Insitutute
of Sweden and the University of Gothenburg. The Lseq measurements were carried
out from April 2015 to the end of that year on the Gnistäng Tunnel site in Gothen-
burg (the location is shown in [4]). The camera was placed on a pole approximately
68 meters from the tunnel opening (which is close to the stopping distance), near
the right side of the road and approximately 7 meters above the road. The camera
was then centered on the tunnel opening as shown in Figure 1.2.

2

1. Introduction

Figure 1.2: Camera view used when computing Lseq at the Gnistäng Tunnel scene.
The camera is centered on the tunnel opening. Note that the Lseq pattern is shown
here. The Lseq computation is described in detail in Section 3.7.1.

Some of the key findings of the research project [3] include:
• The impact of traffic on the luminance estimation is significant [3]. In the

research project a comparison was made between luminance measurements for
images with traffic and corresponding images without traffic. The traffic was
filtered out from the original images using traffic compensation. It was shown
that usually the relative error is around 8-10 percent but can at high traffic
levels increase to even 70 percent or more. Therefore, Cipherstone Technolo-
gies AB currently filter out the traffic from the images before measuring the
luminance.

• In [3] it was noted that in order to center the camera on the tunnel from the
mounting position (5 to 7 meters above the road surface), the camera rotation
angle relative to the road surface (x-axis rotation or pitch) becomes 4◦-10◦ [3].
It was then shown that in the angle range of interest the luminance value for
asphalt has a strong angle-dependency and furthermore it was shown that the
luminance value also varies depending on the type of asphalt and depending
on whether the asphalt is dry or wet. This phenomenon is best described
by Bidirectional Reflection Distribution Functions (BRDFs). BRDFs describe
how much light is reflected in a given direction vr for a surface of a particular
material, based on the light level at an incoming direction vi [5] [6].

• As shown in Figure 1.3 a failure to center the Lseq region on the tunnel opening
can lead to a significant luminance error [3].

• Finally, as shown in Figure 1.4, there is a significant difference between the
parts of the scene that can be seen from the practical camera position (5 to 7
meters above the road and sometimes also not centered to be above the middle
lane) and the ideal camera position (1.5 meters above the road, centered on
the middle lane) [3]. Because of this difference there is an error introduced in
the Lseq measurement.

3

1. Introduction

Figure 1.3: Relative luminance error as a function of horizontal or vertical displace-
ment in pixels. The figure is taken from [3]. Permission to use this and other figures
from the research project was granted by Kenneth Jonsson (one of the authors).

Figure 1.4: a) shows the street view (2m above the road centered in the middle of
the right lane) and b) shows the view on the right side of the road and approximately
7m above the road. The figure is taken from [3].

After the research project, an experiment was conducted at Cipherstone Technologies
AB to measure the error between Lseq at the camera position and the Lseq at the
the ideal Lseq measurement position. As shown in figures 1.5 and 1.6 the relative
error between Lseq measured at the practical position and Lseq measured at the ideal
position was around 43.2% (note however that the photos were taken approximately
30 minutes apart).

4

1. Introduction

Figure 1.5: Lseq measured from the camera mounting position. The image has
been color-coded using the jet colormap. Blue corresponds to low luminance values
and red to corresponds to high luminance values.

Figure 1.6: Lseq measured from the ideal position (driver’s view). This figure uses
the same color coding as Figure 1.5.

A further investigation was then done at Cipherstone Technologies AB to see if the
Lseq error can be reduced by warping the original view down to a view similar to
the driver’s view. This was done by approximating the scene by a small number of
planes and then for each plane applying a homography to warp that plane (refer to
Section 3.1.2 for a theoretical background of homographies). This type of warped
image is shown in 1.7. As can noted from the figure, the relative luminance error
was reduced to 25.5%. It can also be noted that the image contains major artifacts
(distortions).

5

1. Introduction

Figure 1.7: Lseq in the warped view. The image at the camera mounting position
has been warped by approximating the image by a small number of planes and
applying homographies to warp the planes. This figure uses the same color coding
as Figure 1.5.

The work presented in this report was done at Cipherstone Technologies AB and
builds upon the research project [3] and the subsequent experiments carried out by
Cipherstone Technologies AB.

1.2 Purpose
The purpose of the report is to describe a method developed for automatically
warping images captured from a camera view above the road, down to the ideal
position on the street level and to evaluate the Lseq error reductions for this method.
The method is based on Depth Image Based Rendering (DIBR), which is a warping
method that requires a depth map. To this end, the report also presents a somewhat
novel (albeit not yet fully developed) method of depth estimation for a tunnel or road
scene from a single camera view. The depth estimation method is based on finding
potentially useful image regions and classifying them according to detected line
segments within these regions. In order to evaluate the quality of the proposed depth
map estimation method, a comparison is made with manually created reference
depth maps and the effects of the depth maps on the warped view and the value of
Lseq are studied.

1.3 Limitations
Originally one of the goals of the project was also to study the Bidirectional Reflec-
tion Distribution Function (BRDF) for asphalt. The study of this problem would
include gathering measurement data at sites with significant proportions of asphalt

6

1. Introduction

and to estimate the luminance for asphalt as a function of height or angle relative to
road surface. This would also include investigating how to handle dry road surfaces
and how to handle wet road surfaces. However, due to time constraints this part of
the project did not get completed.

1.4 Overview
The rest of the report is divided as follows: Chapter 2 Related Works gives an
overview of related work in various relevant subjects, including projective geometry,
3D image warping, depth map estimation and segmentation. For more in-depth
information refer to the sources cited. Chapter 3 Theory describes the general
theory behind the different techniques/algorithms used in the implementation of
the work. Among other things it includes a short introduction to some of the
topics in projective geometry, a summary of various segmentation methods that
have been used and a description of how the Equivalent veiling luminance (Lseq)
is computed. For a detailed description of the how these methods are used in
practice for the implementation refer to Chapter 4 Implementation. This chapter
describes the whole pipeline, from input images to output Lseq value for the warped
view. Chapter 5 Data Gathering describes the hardware, software and methods
used for data gathering. The data gathered comes in two forms: Photos of different
scenes and various distance and height measurements in that scene. The results are
presented and analyzed in Chapter 6. Other than a comparison of Lseq for different
views (view above road, road level view and warped view) there is also a comparison
between the proposed depth map estimation method and manually created reference
depth maps. Finally, Chapter 7 contains a discussion about the results, suggestions
for future work and more.

7

1. Introduction

8

2
Related Works

Projective Geometry is one of the fundamental topics in Computer Vision. A well-
regarded introduction to how Projective Geometry can be applied to Computer
Vision is given in [7]. The book covers key topics in Single View Geometry such as
vanishing points, vanishing lines, homographies, single view metrology and camera
geometry, and also key topics in Multiple View Geometry such as epipolar geometry,
warping between different camera poses (geometrical 3D warping) and 3D recon-
struction from multiple camera views. There is a rich body of research focusing on
various of the topics covered in the book.
One of the key topics of the thesis is generation of a virtual view from a single
image. A theoretical description of virtual view generation is given in [7]. A survey
of various techniques for generating virtual views is presented in [8]. In general
the techniques for generating a virtual view of a scene can be divided into three
categories [9]:

• Image Based Rendering (IBR) [9]. The new view is generated using two or
more existing views of the scene.

• Reconstructing a 3D model of the scene and viewing the 3D model from the
desired position and with the desired rotation [9].

• Depth-Image Based Rendering (DIBR) [9]. The view is generated using the
texture/color information from an image and the depth information provided
in the form of a depth map.

Image Based Rendering has mostly been ignored in this thesis since only one view/im-
age of the scene is available.
There are numerous methods for 3D reconstruction from one or more views of the
scene [7] [5]. Once again, the focus has been put mostly on the methods that re-
quire only one image/view. In [10], Criminsi et. al describe how to make affine 3D
measurements in a single projective view of a scene and use these measurements
to reconstruct a 3D model. Their method requires the computation of a vanish-
ing line for a plane and the computation of a vertical vanishing point. Another
method of 3D reconstruction from a single projective image is presented by Wang
et. al in [11]. They present a way to recover both the internal parameters of the
camera and the camera pose relative to a world coordinate system. A 3D model
can then be constructed by approximating the scene by planar patches. These and
other similar methods primarily work well for structured (man-made) environments.
Furthermore, the methods usually require some user interaction (or at least prior
knowledge). In [11] for instance, specification of three pairs of line segments which
have equal lengths is required. Finally, for these methods to be useful there has
to be a way to easily and automatically find the correct camera pose (position and

9

2. Related Works

orientation) and the 3D models have to be in the correct perspective projection
view.
Depth-Image Based Rendering is the virtual view generation method used in the
implementation. The fundamental part of any DIBR technique is 3D image warping
(also known as geometrical 3D warping) and it is described in numerous sources,
including [7], [9], [12] and [13]. A very common application of DIBR is the generation
of stereoscopic images or video for 3DTV [12] [13] [14]. The two key issues with
DIBR is that the warped views contain artifacts in the form of holes and ghosting
(edge color spilling over to adjacent pixels) and that a depth map is required for the
warping. Hole-filling (inpainting) and depth map generation are two major research
topics on their own.
There are many different approaches to inpainting ranging from simple interpolations
to advanced hole-filling combining several different techniques (including the use of
the depth map) to generate a warped view with as few artifacts as possible. In [15],
Telea describes a relatively fast and efficient method of inpainting technique based
on the Fast Marching Method. Although the method is applied to filling of scratches
in photographs, it can also successfully be applied to hole-filling in a warped image.
Fehn [12] presents a whole pipeline for 3DTV based on DIBR. He combines linear
interpolation and Gaussian smoothing of the depth map with existing hole-filling
techniques. The most advanced of the inpainting approaches mentioned here is given
by Muddala et. al in [13]. Although their approach produces excellent results, it
is quite complicated (it requires many different steps such as boundary extraction,
foreground-background classification and block matching) and very slow.
As previously mentioned one of the problems that one needs to solve when using
DIBR is the acquisition of a depth map. One of the more reliable methods of acquir-
ing a depth map is by using laser-based sensors [16] [17]. This approach however
is pretty costly [17] and the resulting depth maps generally have low resolutions
[18] (not to mention that requiring extra equipment can be cumbersome). Depth
maps can instead be acquired using cameras and computer vision/image analysis
techniques.
Depth maps are commonly created using multiple cameras but this approach is
both complex and costly [18]. It requires accurate calibration of the cameras and
the estimation of the relative poses (differences in position and orientation) of the
cameras. The least expensive and least complex approach to estimating depth from
multiple cameras is to use of a stereo camera. A stereo camera consists of two
lenses with the same orientation (rotation) but separated by a small horizontal
distance. The depth map is then created by first estimating the disparity between
different views (disparity is inversely proportional to the depth and is one of the
cues used by humans in depth perception), which is done by finding correspondences
(corresponding image coordinates).
Depth maps can also be estimated from a single image, this is known as monocular
depth and it relies on monocular depth cues such as motion, defocus, focus and
geometry [18]. Due to the assumption of a static scene there is no need to consider
depth map estimation from motion.
Depth estimation from defocus relies on the fact that distant objects appear blurrier
in an image compared to closer objects. An example of a method using the defocus

10

2. Related Works

cue for depth estimation is presented by Zhuo and Sim in [19]. In their approach
they first re-blur the input image using a Gaussian filter and then they compute
the ratio of gradients between the original image and the blurred image. From this
they then estimate the defocus amount at each part in the image. An issue with
defocus-based depth estimation methods is the requirement that the background in
an image has to be blurry to some extent [18].
An example of a depth estimation method using the focus cue is described by Haque
et al. in [18]. They first estimating the focus at each pixel in the image using 2D
Gaussian-Hermite moments and then apply Bayesian matting on the sparse focus
map obtained.
Both defocus- and focus-based methods seem to work pretty well for color images
but not for grayscale images. Whether this is actually the case or not has not been
investigated in this thesis. In either case, the remaining option is depth estimation
from geometry. An important benefit of depth from geometry is that it is for the
most part independent of the type of input image (color or grayscale).
There exist numerous approaches to monocular depth estimation from geometry.
These methods usually combine estimation of geometric entities such as vanishing
points and vanishing lines with some form of segmentation.
Zhao et al. [20] describe a simple geometric depth map generation method based on
finding the vanishing point in the scene and finding the lines that intersect at the
vanishing point. The depth is then estimated using only a few planes. They also
combine this method with a depth from motion method to track moving objects.
A somewhat similar method is presented by Battiato et al. in [21]. This method
combines a geometrical depth map based on a detected vanishing point with a qual-
ititave depth map obtained by color segmentation and classification of regions into
sky, mountain and other regions. Similarily to in [20], the vanishing point is used
as basis for generating gradient depth planes, although in [21] the location of the
vanishing point is used to classify the geometric type of the scene. In [22], Fan et
al. also detect a vanishing point and classify the geometrical scene type accord-
ingly. They then combine the depth map generated by gradient depth planes with
an image labelling method based on the grayscale intensities in the image.
An approach quite different from the ones mentioned above is described by Jung et
al. in [23]. They first create a staircase depth map by tracing the lines in an edge
detection image. Then the depth map is refined using edge preserving smoothing.
Another quite different approach is presented in [17] by Kazmi et al.. Their method
can be used to compute a depth map for a road viewed from a camera located
at a significant height above the road. Based on the lane lines in the image they
derive a 1D projective transformation for the depth computation. In [24], a scene-
independent depth estimation method based on field of view is presented. It requires
beforehand knowledge of the camera height and the field of view of the camera but
it can be used to fairly accurately compute overall distances (depths), heights and
widths in the image. The method alone however cannot be used to create a decent
depth map since it does not take into account the scene structure (walls, objects,
sky etc.).
More advanced geometry-based depth map estimation methods tend to rely on some
form of supervised machine learning. Saxena et al. [16] use Markov Random Fields

11

2. Related Works

(MRF) to learn the local plane parameters. Their approach not only estimates the
depth but can also be used for 3D reconstruction of a scene. Hoiem et al. use a
Conditional Random Field (CRF) model to segment the image using hierarchical
segmentation and generate two different depth estimates: the minimum depth esti-
mate and the maximum depth estimate. They then use these depth estimates to find
the occlusion boundaries in the image (the boundaries between different occluding
objects). Zhang and Yan [26] also use machine learning for hierarchical segmenta-
tion and use it to label objects as ground, sky or standing object. Each standing
object is further classified by the number of vanishing points (no vanishing point,
vanishing point on one side and vanishing points on both sides). The output of their
method is both a depth map and the recovery of the occlusion boundaries in the
image. In [9], Zhang and Yan build upon [26] and present an entire DIBR pipeline
consisting of segmentation and region labelling, depth map estimation, warping and
inpainting. The segmentation method consists of watershed segmentation followed
by a feature-based hierarchical segmentation process. Based on this, the regions
are labelled as ground, sky or standing objects. The depth estimation makes use of
vanishing points in a similar way as in [26].
The depth map estimation method in the thesis combines several of the ideas men-
tioned above but does so in a somewhat novel way. The works related to the specific
methods used for the depth estimation are summarized below.
Lines are one of the key image features, providing important geometrical information
about an image. The classic method for line detection which is still used to this
day was developed by Duda and Hart [27]. In their method (The Hough (Line)
Transform) lines are represented according to the distance to the origin (radius)
and orientation (angle). Lines are detected through voting scheme in a 2D array
with the radius on one axis and the angle on the other axis. One of the drawbacks of
the Hough Transform is that it is fairly slow in general. The Progressive Probabilistic
Hough Transform (PPHT) is a method presented by Matas and Kittler [28] aimed
at addressing this problem. Unlike the Hough Transform, it detects line segments
rather than lines. Instead of going through all (or most) pixels in the image (which
is the case in [27]), the method selects pixels randomly and then a line voting scheme
is used only for the selected pixels. A problem with both [27] and [28] is that these
methods require tuning of several parameters (not to mention the parameter tuning
required for the edge detection image that is the input to these methods). One
line segment detection method that solves most of the problems associated with the
Hough Transform and probabilistic variants of the Hough Transform is presented by
von Gioi et al. in [29]. The line segment detector (LSD) method not only provides
accurate results with a low number of false detections but it is also linear-time and
requires no tuning of parameters.
Vanishing points are another important source of geometric information about a
scene and are important in various applications including camera calibration and
depth map estimation (as noted in the preceding paragraphs). There is a wide body
of research on topic of estimation of vanishing points. Chappero et al. [30] combine
the results of three different methods to detect vanishing points: Hough Transform,
Gradient-based method and Mean-Shift Segmentation followed by Hough Trans-
form. Each of the methods result in a voting matrix (which shows the distribution

12

2. Related Works

of where a vanishing point is most likely to be located) and the voting matrices
are then weighted together to determine the vanishing point. Kong et al. [31] use
a voting scheme based on confidence-weighted Gabor filters to detect a vanishing
point and then use a vanishing point constrained edge detection method to find the
boundaries of a road. Another vanishing point detection method focused on road
images is presented by Wu et al. in [32]. Line segments are first detected using
the LSD method, followed by removal of lines that are most likely irrelevant (nearly
horizontal or nearly vertical lines for instance). The line segments are then weighted
according to their lengths and orientations. Finally a voting scheme is employed to
find the vanishing point. The methods mentioned so far can be used only to find a
single vanishing point in the image. The method developed by Nieto and Saldago
[33] can however be used to find multiple vanishing points simultaneously. They use
an orientation-based error function (for detected line segments or for gradients) and
combine robust methods such as MSAC or MLESAC with non-linear optimization.
Segmentation is the grouping of an image into (hopefully) meaningful regions and
is one of the key topics in computer vision/image analysis [37]. Thresholding is
the simplest segmentation method but has a major drawback: A threshold has to
be selected. There are however methods for automatic threshold selection (based
on the image histogram for instance) such as the one described by Zack et al. in
[34]. Watershed segmentation is one of the common types of segmentation. Meyer
[35] describes a version of watershed segmentation based on image markers (initial
labels for regions in the image). GrabCut [36] (developed by Rother et al.) is a
background-foreground segmentation based on Gaussian Mixture Models (GMMs)
and energy minimization. It is accurate in general but requires some user input (for
instance a few pixels marked as background and a few pixels marked as foreground).
The Hierarchical Feature Selection (HFS) segmentation method [37] (developed by
Cheng et al.) is an advanced but fast segmentation method. The method uses
learned Support Vector Machine (SVM) features and combines Simple Linear Iter-
ative Clustering (SLIC) with Efficient Graph Based (EGB) segmentation.
A related area of computer vision/image analysis is blob detection. Blob detection
is used to find regions in an image that are (hopefully) interesting in some way. The
Maximally Stable Extremal Regions (MSER) method [38] was proposed by Matas
et al. for the purpose of matching correspondences between stereo image pairs.
The first step in the algorithm is to threshold the image for all possible grayscale
levels. The regions in different threshold images are then either expanded or kept
unchanged depending on the change in the region area. The final stable regions
in the image are the blobs/regions detected by MSER. Nistér and Stewénius [39]
present a linear-time MSER algorithm.
The final topic of this section is the luminance estimation for threshold zone in
a tunnel. A guide for tunnel lighting, including the method for estimating the
threshold zone luminance Lth based on calculating either the Lseq or the L20 value
in an image is provided in [2] by Commission Internationale de l’Éclairage (CIE). In
[3], a research study was done by Jonsson et al. to investigate different sources of
error in the calculation of Lseq for a camera centered at the tunnel opening mounted
7 meters above the road plane and on the side of the road. One of the conclusions
of the report was that the main source of error in the Lseq calculation is due to the

13

2. Related Works

camera pose (camera position and orientation) difference between the ideal camera
pose for measuring Lseq and the camera pose used in practice.

14

3
Theory

This chapter presents some of the theory that is important for understanding the
implementation of the project. How this theory is used in practice is described in
Chapter 4. Note that some of the sections in this chapter are fairly brief. The main
reason for this is that they describe techniques that already have implementations in
the OpenCV library (which was used in the project) and thus have not been imple-
mented (programmed) as part of the project. Therefore, a thorough understanding
of these specific techniques is not required to understand the rest of the report.
Refer to the sources for more detailed information about the techniques used. At
any rate, before the theory is presented, it is important to take note of some basic
conventions used in this report.
Throughout the report (unless stated otherwise), vectors are represented in column
form x = (x1, x2, · · ·)T and matrices are thus post-multiplied, i.e. b = Ax. Another
thing to note is the image coordinate system shown in Figure 3.1. The origin of the
coordinate system is at the upper-left corner in the image and the y-axis is pointing
down rather than up. For an image of size W × H, the bottom right coordinate
is (x, y) = (W − 1, H − 1). Finally, how the 3D coordinate system is defined is
usually clear from the context. In most cases however, it is assumed that the Z-axis
is pointing in the same direction as the camera and that the X- and Y-axes represent
horizontal and vertical displacement respectively.

Figure 3.1: Image coordinate system. Note that y-axis is pointing down.

15

3. Theory

3.1 Projective Geometry

As previously mentioned in Chapter 2, projective geometry is one of the corner-
stones of computer vision. It is defined as the "branch of mathematics that deals
with the relationships between geometric figures and the images, or mappings, that
result from projecting them onto another surface" [41]. A key reason why projective
geometry is so important in computer vision is because images are a result of projec-
tions of the observed 3-dimensional world into a 2-dimensional image plane [7]. By
analyzing geometric concepts using projective geometry a mathematical description
of the relationships between the 3-dimesional world and a 2-dimensional image can
be obtained.
Projective geometry can be viewed as an extension of Euclidean geometry [7]. Al-
though Euclidean geometry satisfactorily describes fundamental geometric concepts
such as angles and shapes of objects, it fails to adequately describe various other ge-
ometric concepts. One such example is the intersection of two parallel lines. While
all other types of line intersections (in two dimensions) can easily be handled in Eu-
clidean geometry, the intersection of two parallel lines is a special case. Two parallel
lines are said to meet at a point at infinity (also referred to as an "ideal point") but
such a point is not defined in Euclidean geometry. Projective geometry expands
upon Euclidean geometry by also including points at infinity/ideal points.
Points in projective geometry are notated using homogeneous coordinates (also
known as projective coordinates) [7]. In contrast to Cartesian coordinates, which
are defined by ordered n-tuples (where n is the number of dimensions), homogeneous
coordinates are defined by ordered (n+1)-tuples. Thus in the one-dimensional pro-
jective space P1 a coordinate point is defined as x = (x,w)T . Similarly, in P2 the ho-
mogeneous coordinates are defined as x = (x, y, w)T and in P3 as X = (X, Y, Z,W)T ,
and so on.
Homogeneous coordinates have some special properties. Firstly, a non-zero multiple
of a homogeneous coordinate is still the same homogeneous coordinate [7]. For
instance (2x, 2y, 2)T is the same coordinate as (x, y, 1)T . More generally (kx, ky, k)T
is considered to be the same coordinate point as (x, y, 1)T . Secondly, points at
infinity (or ideal points) are represented as (x, y, 0)T .
A homogeneous coordinate can be converted into a Cartesian (inhomogeneous) coor-
dinate by first dividing all the entries in the (n+1)-tuple by the value in the last entry
and then only keeping the first n entries in the tuple. For instance an Cartesian/in-
homogeneous coordinate in R2 can be obtained as follows: x̃ = (x/w, y/w)T . A
Cartesian coordinate on the other hand is converted to a homogeneous coordinate
by extending the n-tuple to an (n+1)-tuple where the last entry is either 1 or 0
(depending on if the point is finite or if the point is at infinity). For instance a
Cartesian coordinate x̃ = (x, y)T can be converted to a homogeneous coordinate
x = (x, y, 1)T
The use of homogeneous coordinates is fundamental to many (if not most) of theo-
rems and results in projective geometry and often results in more eloquent mathe-
matical descriptions of geometric objects and relationships. One key example that is
used several times in the implementation of the project is the relationship between
2-dimensional lines and points.

16

3. Theory

The most general description of a line in two dimensions is given by ax+by+c = 0 [7].
In homogeneous coordinates a two-dimensional line is notated as l = (a, b, c)T . The
intersection point of any two two-dimensional lines l1 and l2 is given as x = l1 × l2,
regardless if the lines are parallel or not. Similarly, a two-dimensional line passing
through two homogeneous points x1 and x2 is computed as l = x1 × x2.
Planes are another key geometric entity in projective geometry [7]. A plane in
3-space is given by

π1X + π2Y + π3Z + π4 = 0 (3.1)

and is represented using homogeneous coordinates as

π = (π1, π2, π3, π4)T . (3.2)

Equation (3.1) can be homogenized and written as follows

π1X1 + π2X2 + π3X3 + π4X4 = 0, (3.3)

or in a concise form as

πTX = 0, (3.4)

where X has been replaced by X1/X4, Y by X2/X4 and Z by X3/X4.
The plane equation can also be written in Euclidean form [7] as follows

n · X̃ + d = 0, (3.5)

where n = (π1, π2, π3)T is the plane normal, X̃ = (X, Y, Z)T is the inhomogeneous
3D coordinate, d = π4 and X4 = 1. The distance from the origin of the coordinate
system to the plane is then defined as D = d/‖n‖.
A special type of plane that is among other things useful when analyzing virtual
view generation (see Section 3.1.4) is the plane at infinity π∞ [7]. It is defined as
π∞ = (0, 0, 0, 1)T and it contains all ray directions d = (X1, X2, X3, 0)T .
Projective geometry as applied to computer vision can be divided into several parts:
Single View Geometry, Two-View Geometry, Three-View Geometry and n-View
Geometry [7]. The main differences between these topics is the number of camera
views available. Single View Geometry is most important in the context of this
thesis because as previously mentioned in the introduction only one camera view
is available in the final product. However, some basic understanding of Two-View
Geometry is also important because it gives inslight into how two camera views are
related and how a camera view can be can be warped to desired virtual view and why
simple 2D transformations (including homographies) are not enough for general view
transformations. The main topics of interest in this overview of projective geometry
are: Vanishing Points, Image Transformations, Camera Geometry and Virtual View
Generation.

17

3. Theory

3.1.1 Vanishing Points
One of the characteristic features of projecting the 3-dimensional world into an
image (perspective projection) is that objects that have seemingly infinite extent
may have finite extent in the image [7]. This can be seen by observing parallel
lines (for instance the rails of a train track shown in Figure 3.2) and noting that
in the distance the lines seem to converge to a single point. It turns out that
this type of point, referred to as a Vanishing Point, is a very important geometric
concept in computer vision since it provides much information about the geometric
structure in structured environments [33]. Vanishing points can for instance be used
for single view metrology, estimation of the calibration matrix K (see Section 3.1.3
for the definition of K) from a single view and even as part of monocular depth map
estimation.

Figure 3.2: An example of a case where a vanishing point can easily be deter-
mined. Note that the train tracks, despite being parallel, seem to converge to
a single point. This is the vanishing point. This image was downloaded from
from https://www.maxpixel.net/Train-Tracks-Railroad-Tracks-Railway-Pine-Trees-
1245906 and was shared under the Creative Commons Zero (CC0) license.

3.1.2 Image Transformations
In the most general terms a 2D image transformation is a mapping from image
coordinates in the source image to image coordinates in the destination image [40].
In other words a mapping

T : R2 → R2 (3.6)
is applied to each image coordinate x = (x, y)T :

18

3. Theory

(x′, y′)T = T (x, y). (3.7)

Although there exist many non-linear 2D image transformations, the transforma-
tions of interest in this case are linear transformations of homogeneous coordinates.
This type of transformation, known as a projectivity (and sometimes also called a
homography or a projective transform) [7], is an invertible mapping

h : P2 → P2 (3.8)

from an input homogeneous coordinate x to an output homogeneous coordinate x′
such that

x′ = h(x) = Hx, (3.9)

where H is a general non-singular 3×3 matrix, commonly referred as a homography
matrix. Equation (3.9) can also be written as

x
′
1
x′2
x′3

 =

h11 h12 h13
h21 h22 h23
h31 h32 h33

x1
x2
x3

 . (3.10)

H has up to 9 non-zero entries but it has only the eight independent ratios since
multiplication of the matrix with a scale factor results in the same transformation [7].
The most important specializations of the projective transform and their geometric
properties are described in the following paragraphs (described in order from the
most specialized to the most generalized transformation).
Isometries. Isometries are one of the simplest specializations of the projective
transform and are defined as follows

x
′

y′

1

 =

ε cos θ − sin θ tx
ε sin θ cos θ ty

0 0 1

xy

1

 , (3.11)

where θ is the angle of rotation of the 2D image plane, tx and ty are the translations
of the x and y coordinates respectively. When ε = 1 the transformation is composed
solely of a translation and rotation. On the other hand if ε = −1 the transformation
is also composed of a reflection. The main geometric properties preserved by the
transformation (also known as invariants) are areas, lengths and angles.
Similarity transformations. Similarity transformations (also called similarities)
are defined as follows [7]

x
′

y′

1

 =

s cos θ −s sin θ tx
s sin θ s cos θ ty

0 0 1

xy

1

 . (3.12)

The main difference between isometries and similarities is the added scale factor
s which represents isotropic (uniform) scaling [7]. A more concise way to write
equation (3.12) is as follows

19

3. Theory

x′ = HSx =
[
sR t
0T 1

]
, (3.13)

where R is a 2× 2 rotation matrix, t is a 1× 2 translation vector and 0T is a 2× 1
zero vector. Neither of the three operations performed by the matrix (rotation,
translation and isotropic scaling) changes the shape of geometric objects [7]. The
scaling does not change angles but it does change the area and length of objects.
The ratio of two areas or the ratio of two lengths are however invariants (preserved
by the transformation).
Affine transformations. The next generalization is given by affine transforma-
tions, defined as [7] x

′

y′

1

 =

a11 a12 tx
a21 a22 ty
0 0 1

xy

1

 (3.14)

and can be written more compactly as

x′ = HAx =
[
A t
0T 1

]
x, (3.15)

where A is any non-singular 2 × 2 matrix. Except for translation, rotation and
scaling, affine transformations can also deform objects by non-isotropic scaling in
the x and y directions and by shearing. Because the shape of objects is changed by
a general affine transformation, angles and ratio of lengths are no longer invariants.
Three important invariants preserved by affine transformations are parallel lines
(parallel lines are mapped to other parallel lines), ratio of lengths of parallel line
segments and ratio of areas.
Projective transformations. The final specialization and the most general linear
2D transformation operating on homogeneous coordinates is the projective trans-
formation [7]. It was previously stated in equation (3.10) and can be written in a
more compact form as

x′ = HPx =
[
A t
vT υ

]
x, (3.16)

where v = (v1, v2)T represents the projective part of the transformation and υ is a
scalar. As mentioned before, only the ratio of the eight independent elements is of
importance and the transformation thus has eight degrees of freedom (dof).
The homography matrix defining the projective transformation can be computed
by four point point pairs (point correspondences) under the condition that no three
points are collinear (are on the same line) [7]. To see why this is the same note that
equation (3.10) can be re-written in inhomogeneous form as

x′ = x′1
x′3

= h11x+ h12y + h13

h31x+ h32y + h33
, (3.17)

y′ = x′2
x′3

= h21x+ h22y + h23

h31x+ h32y + h33
. (3.18)

20

3. Theory

Multiplying both equations by the denominators gives the following

x′(h31x+ h32y + h33) = h11x+ h12y + h13, (3.19)

y′(h31x+ h32y + h33) = h21x+ h22y + h23. (3.20)
It can be noted that these two equations are linear in the elements of H and since
there are eight degrees of freedom, 4 point correspondences are required.
3D Projective Transformations
Projective transformations in 3 dimensions are defined in an analogous fashion. A
projectivity in 3 dimensions is an invertible mapping [7]

h : P3 → P3, (3.21)
such that

X′ = h(X) = HX, (3.22)
where X is the input 1 × 4 homogeneous coordinate, H is a general non-singular
4× 4 matrix and X′ is the output homogeneous coordinate [7]. The specializations
of the projectivity are listed below.
An Euclidean transformation matrix is defined as[

R t
0T 1

]
, (3.23)

where 0 is a 1× 3 zero vector, t = (tX , tY , tZ)T is a 3-dimensional translation vector
and R is a 3D rotation matrix of size 3× 3 [7].
The next generalization is a similarity, defined as follows[

sR t
0T 1

]
, (3.24)

where s is a unifrom scaling factor [7].
Next follows the affine transformation[

A t
0T 1

]
, (3.25)

where A is an arbitrary non-singular 3× 3 matrix [7].
Finally, a general 3-dimensional projective transform can be written as[

A t
vT υ

]
, (3.26)

where v is a general 1× 3 vector and υ is a scalar [7].
It is worth noting that the rotation matrix R for a 3D projective transformation is
significantly more complicated to define. There are in fact several different ways to
represent a rotation in 3 dimensions, including through Euler angles, exponential
twist and quaternions [5]. In this report Euler angles are used to represent 3D
rotations.

21

3. Theory

Using the Euler angle representation a 3D rotation (around the origin) can be com-
pletely determined by three angles: pitch θx, yaw θy and roll θz, corresponding to
rotation angles around the X-axis, Y-axis and Z-axis respectively [6]. The three
angles can be converted to a rotation matrix as follows

R = RzRyRx, (3.27)
where Rx, Ry and Rz are the rotation matrices for rotations around the X-axis,
Y-axis and Z-axis respectively and are defined in

Rx =

1 0 0
0 cos θx − sin θx
0 sin θx cos θx

 , (3.28)

Ry =

 cos θy 0 sin θy
0 1 0

− sin θy 0 cos θy

 (3.29)

and

Rz =

cos θz − sin θz 0
sin θz cos θz 0

0 0 1

 . (3.30)

3.1.3 Camera Geometry
A camera is an object that projects the 3D world into a 2D image [7]. Although
there exist several types of cameras, the most common type is central projection,
given in its’ most general form by the following equation:

x = PX, (3.31)
where x is a homogeneous 2D image coordinate, P is a 3× 4 matrix referred to as
the camera matrix and X is a homogeneous 3D world coordinate [7]. The camera
matrix can be decomposed as follows

P = K[R|t] = KR[I| − C̃], (3.32)
where R is a 3 × 3 rotation matrix, C̃ is the camera origin (camera centre) in
inhomogeneous 3D coordinates, t = −RC̃, I is the identity matrix and K is a 3× 3
matrix known as the calibration matrix and contains the intrinsic parameters of the
camera [7]. Both the rotation R and the camera origin C̃ (the combination of both
is known as the camera pose) are set relative to a world coordinate system. It is
common practice to set one of the cameras at the origin of the world coordinate
system with the camera pointing in the Z direction (no rotation). This is known as
the canonical position and the camera matrix is in this case given by

P = K[I|0], (3.33)
where R = I and C̃ = 0 is the 3 × 1 zero vector [7]. The poses (positions and
rotations) for the other cameras are then set relative to this camera.

22

3. Theory

As previously mentioned, K is the calibration matrix and contains the intrinsic
parameters of the camera [7]. The simplest form of the calibration matrix is defined
as follows

K =

f f
1

 , (3.34)

where f is the focal length of the camera in pixels (f can also be given as in a metric
unit (usually millimeters)) [7]. The focal length is defined as the distance between
the camera centre and the image plane in the direction of the camera Z-axis (known
as the principal axis). The image plane is given in Euclidean coordinates as Z = f .
The point at which the principal axis (camera Z-axis) intersects with the image
plane is known as the principal point x̃0 = (x0, y0)T [7]. In the calibration matrix
given in equation (3.34) it is assumed that the origin of the image coordinate system
is at the principal point. However, in practice this is rarely the case. The following
generalization takes this discrepancy into account

K =

f x0
f y0

1

 . (3.35)

Equation (3.35) assumes that the pixels in the camera are square-shaped, but in
practice many cameras have non-square pixels (due to flaws in the camera sensor)
[7]. In those cases the camera calibration matrix can be generalized as follows:

K =

fx x0
fy y0

1

 , (3.36)

where fx and fy are the focal lengths in pixel units in the x and y directions re-
spectively. The focal lengths can be calculated from the focal length in metric units
fm (the metric distance between the camera centre and the image plane) as follows:
fx = fmmx and fy = fmmy where mx and my are the the numbers of pixels per
metric unit in the x and y directions respectively.
The calibration matrix is given in its’ most general form by

K =

fx s x0
fy y0

1

 , (3.37)

where s is the skew parameter [7]. s 6= 0 means that the x- and y-axes of the camera
are not perpendicular. Non-zero skew only occurs in unusual cases such as when
taking a photo of a photo.
Note that the parameters in the calibration matrix K are defined in pixel units. It
is however possible to convert these parameters to metric units. For instance, the
focal length f in pixel units can be converted to the focal length metric units fm
either by

fm = f

m
, (3.38)

23

3. Theory

where m is the number of pixels per metric unit (usually millimeter) or by

fm = fsp, (3.39)
where sp is the pixel size (usually in micrometers).
The camera matrix has many unique properties that will not be listed here (refer
to [7] for more theoretical background) but a property of key importance is back-
projection, in other words the projection of a 2D image coordinate x to 3D using
the camera matrix P [7]. Before defining the back-projection it is important to
note that all depth (Z-coordinate) information is lost when a 3D coordinate X is
forward projected using equation (3.31). Therefore, a simple back-projection does
not retrieve the full 3D coordinate X. Instead, an image coordinate x is back-
projected to a ray, which can be written as the join of two points on the ray from
the camera centre C to the 3D coordinate X as follows

X(λ) = P+x + λC, (3.40)
where P+ is the pseudo-inverse of the camera matrix. The pseudo-inverse is defined
as P+ = P T (PP T)−1 and has the property that PP+ = I where I is the identity
matrix. To confirm that P+x is a point on the ray note that P (P+x) = Ix = x.
Thus, P+x is forward-projected to x as expected.

3.1.4 Virtual View Generation
Virtual view generation is the process of generating an arbitrary new view of a
scene from an existing image [7]. This can be done by first defining a camera matrix
for the second view relative to the first view. A common way to do this is to set
the first camera at the origin with no rotation, in other words setting C = 0 and
R = I as described in Section 3.1.3. The first camera matrix can then be defined as
P = K[I|0] and the second one (corresponding to the virtual view) can be defined
as P ′ = K ′[R|t]. When generating a virtual view it is usually assumed that the same
camera is used for the virtual view as for the original view, thus one can usually set
K ′ = K.
Assuming that x = (x, y, 1)T is the normalized homogeneous coordinate in the first
(original) view, then from

x = PX = K[I|0]X (3.41)
the inhomogeneous world 3D coordinate is given as X̃ = (X, Y, Z)T = ZK−1x [7].
The 3D-coordinate X can then be forward projected using the camera matrix for
the warped view P ′ as follows [7]

x′ = P ′X = K ′[R|t]X = K ′RK−1x +K ′t/Z. (3.42)
It can be noted that the first term in equation (3.42) takes account of the rotation
and the change of the internal parameters and that it only requires knowledge of
the image position in the original view [7]. The second term on the other hand
takes account of the camera translation and depends on the depth of the point Z
but does not depend on the image coordinate in the original view. Thus, a general

24

3. Theory

transformation between two arbitrary camera views requires not only knowledge of
the camera matrices but also the depth information, which in practice means that in
most cases the depth information is required to perform the transformation. But it
can also be noted that an exception to this rule is if there is no translation between
the cameras (t = 0T) or when Z =∞. A more formal description of this exception
is given below.
It is shown in [7] that the images of points Xπ on a plane π are related by a projective
transformation H as follows

x′ = Hx = K ′(R− tnT/d)K−1x, (3.43)
where n is the plane normal and d is the orthogonal distance from the first camera
to the plane [7].
A particularly important projective transformation of this kind is the infinite ho-
mography H∞, which is induced by the plane at infinity π∞ (π∞ was defined in
Section 3.1) [7]. This homography can be derived by the following limiting process

H∞ = lim
d→∞

H = lim
d→∞

K ′(R− tnT/d)K−1 = K ′RK−1. (3.44)

Equation (3.42) can thus be re-written as follows [7]

x′ = K ′RK−1x +K ′t/Z = H∞x +K ′t/Z. (3.45)
The importance of this is result is two-fold: Firstly, if there is no translation between
the cameras, i.e. t = 0, no explicit depth information Z is needed and the views
are related by a simple homography [7]. Secondly, points far away (for instance the
sky) can be approximated as having Z = ∞ and thus can be seen as points on
π∞ (because of the inverse depth 1

Z
, the error will be negligible). This makes sense

intuitively considering that points closer to the camera appear to be more affected
by translation than points further away.
An alternative way to define warping between two arbitrary camera views, which
does not require that one of the cameras is set at the origin, is given in [13]. Instead
of defining the camera matrix P as a 3×4 matrix, it can be defined as a 3-dimensional
4× 4 homography matrix as follows

P = KI3×4

(
R t
0 1

)
, (3.46)

where K is the 3 × 3 calibration matrix, R is the 3 × 3 rotation matrix, t = −RC̃
as before, I3×4 is the 3 × 4 identity matrix and 0 is a 1 × 3 zero-vector. The main
difference between this representation of the camera matrix and the previous one
defined in Section 3.1.3 is that one row of has been added to make it a 4× 4 matrix
and thus a 3-dimensional homography matrix. According to [13] the homography
matrix is invertible and given by

P−1 =
(
R−1K−1 −R−1t

0 1

)
. (3.47)

The overall transformation from 2D coordinates in the first view x to 2D coordinates
in the second view x′ is given by [13]

25

3. Theory

Z ′x′ = ZP ′P−1(x), (3.48)

where Z is the depth value in the original view, Z ′ is the depth value in the warped
view and P and P ′ are the 4 × 4 camera matrices for the original view and the
virtual view respectively.

3.2 Inpainting

As described in Section 3.1.4, in general an arbitrary new view of the scene can
be generated provided that the depth information (Z-values) is known. In practice
this requires both the original image (also referred to as the texture) I providing
the color information and a depth map D which is an image of indices where each
index corresponds to a depth value (see Figure 3.3 for an example). The process of
generating a virtual view from an image and a depth map is referred to as Depth
Image Based Rendering (DIBR) [13].

Figure 3.3: Example of a depth map. Note that this depth map was manually
defined in GNU Image Manipulation Program (GIMP) and only defines the depth
for some of the objects in the scene.

There are two types of artifacts produced by DIBR: ghosting and holes [13]. Ghost-
ing is a result of misalignment of the texture (color information) and the depth map
(which is a consequence of inaccuracies in the depth map). It is visible in the im-
age in the form of color information at the edges being spilled over to regions with
discontinuities in the depth. This is mostly a minor issue and can be glossed over

26

3. Theory

for the most part. Holes on the other hand are a more severe type of artifact which
significantly degrades the quality of the warped image.
Holes can be classified into cracks, disocclusions and out-of-field areas [13]. Cracks
are small holes which are usually 1-2 pixels wide and occur due to rounding of warped
floating-point image coordinates to the nearest integer values. Disocclusions on the
other hand are caused by significant differences in depth values between neighboring
objects and tend to cause much larger holes in the warped image. Finally, out-of-
field areas occur at the boundaries of the warped image and are caused by the lack
of color (and depth) information at those regions in the original image.
The process of filling holes in an image is known as inpainting, it is not only applied
in DIBR but has also other applications such as scratch removal [5]. The main use
for inpainting in the thesis is for a more decent visualization of the warped view.
After all what is most important in the thesis is a more accurate estimation of the
luminance value which can be obtained by warping the original view rather than
a good visualization of the warped view (as shown in Section 6.3, the influence
of inpainting on the Lseq value is minimal). Consequently, only one method of
inpainting is used in the implementation, namely "An Image Inpainting Technique
Based on the Fast Marching Method" by Telea. Refer to the source [15] for a detailed
description of the technique.

3.3 Line and Line Segment Detection

As previously mentioned in Chapter 2, lines are an important source of geometric
information about a scene. This is especially true for structured environments (i.e.
environments with many man-made structures). Furthermore, line segments can
also be used to approximate the shapes of curved objects. For these reasons there is
a rich body of literature covering the topic of line detection or line segment detection.
The method of line segment detection chosen in the implementation is "LSD: A Fast
Line-Segement Detector with a False Detection Control", presented by von Gioi et
al. in [29].

3.3.1 Line Segment Detector (LSD)
The Line Segment Detector (LSD) method is a linear-time method for line segment
detection [29]. It yields accurate results, with only a small number of false detections
and unlike traditional line or line segment detection methods such as Hough Trans-
form [27] and Probablistic Hough Transform [28] it requires no parameter tuning.
The first step in the LSD algorithm/method is to apply a region growing algorithm
on the image [29]. Initially every pixel in the image is marked as not visited. For a
pixel marked as not visited, a region growing algorithm is applied. Adjacent pixels
that have approximately the same gradient orientation (within an angle threshold τ)
are added to the line-support region. Once there are no longer any adjacent pixels
to add based on the threshold then the algorithm terminates. The pixels included
in the region are marked as visited and are not used as starting points for the region
growing algorithm.

27

3. Theory

In the next step, each region is approximated using a rotated rectangle. This rect-
angle is defined by the center point, the orientation, the length and the width [29].
The center point is assigned by computing the center of mass and the orientation
is defined by the first inertia axis. The length and width of the rectangle are then
selected in such a way that the rectangle covers the whole line-support region.
The final step in the LSD method is a validation step [29]. To determine whether a
line segment is valid, the Number of False Alarms (NFA) is first computed based on a
binomial distribution. If the NFA is smaller than a threshold ε then the line segment
is added to a list of valid line segments, otherwise the line segment is rejected and
the pixels in the region are marked as not valid. The not valid pixels cannot be used
as starting points in the region growing algorithm but can be included in regions
with other starting points. For further details about the method refer to [29].

3.4 Segmentation
Segmentation is one of the key areas of and most widely studied problems in image
analysis/computer vision [5] and is related to cluster analysis in statistics. It is
the problem of dividing an image into a number of (hopefully) meaningful regions.
Some segmentation techniques divide the image into just two regions, sometimes
referred to as background/foreground segmentation. Other segmentation techniques
instead divide the image into an arbitrary number of regions. The complexity of the
segmentation techniques vary from simple thresholding to advanced segmentation
based on supervised learning techniques.
The following subsections briefly describe the segmentation techniques used in the
project, namely Thresholding, GrabCut and Hierarchical Feature Selection (HFS).
For more detailed information about the techniques refer to the sources.

3.4.1 Thresholding
The simplest method of segmentation is thresholding. Thresholding is defined as
follows:

T (x, y) =

M, if I(x, y) > ε

0 otherwise
(3.49)

x is the image column coordinate and y is the image column coordinate, I(x, y)
is the current pixel value, T (x, y) is the output pixel value, ε is a threshold (pixel
value) and M 6= 0, usually 2n − 1 where n is the number of bits per pixel.
There are several drawbacks with thresholding but one of the primary issues is the
difficulty in selecting a correct (good enough) threshold value ε. There are however
several methods for automatically selecting the threshold based on the histogram
(pixel value distribution) of the image [43] [44]. The triangle method [34] (as it’s
commonly referred to) is one such method.
In the triangle method, the first step is to find the peak (highest value) of the
histogram of the grayscale image [34] [43]. The next step is to find the farthest end
of the histogram, defined as the bin corresponding to either the darkest or brightest

28

3. Theory

pixel value in the image depending on which one of these two bins is furthest away
from the peak in the histogram. A line between the peak of and this bin is then
created. The threshold M is then set as the pixel value that maximizes the distance
between this line and the histogram. An illustration of this is shown in Figure 3.4.

Figure 3.4: Histogram and the triangle threshold M . Note that this is a dummy
example. The actual threshold and lines may differ in reality. Refer to [34] for a
better illustration.

3.4.2 GrabCut

GrabCut is a semi-interactive method of segmenting color images into foreground
and background for color images [36]. The method requires only minor user inter-
action in the form of using a rectangle to delineating the region to be segmented.
In some cases however the result can be improved using additional user interaction
in the form of pixels marked as foreground or background.
The method can be summarized as follows: For each of the two labels, foreground
and background, a Gaussian Mixture Model (GMM) is created [36]. Each Gaussian
mixture has full-covariance and K components. The image region is then segmented
using iterative energy minimization which improves the initial foreground/back-
ground labeling of the pixels, eventually leading to convergence (i.e. the GMMs do
not change after more iterations). For more details about the technique refer to [36].

29

3. Theory

3.4.3 Hierarchical Feature Selection (HFS)

Hierarchical Feature Selection (HFS) segementation is the most advanced segmen-
tation technique used in the implementation of the project. Unlike the previous
segmention methods mentioned, HFS segmentation segments the image into an ar-
bitrary number of regions/classes.
In the first step of the algorithm the image is divided into superpixels using Simple
Linear Iterative Clustering (SLIC) [37] [45]. Each superpixel represents a small
image region with roughly similar color and texture.
Then in the next step, a graph node is assigned for each superpixel [37] [45]. The
weights of the edges (connections between nodes) are computed based on feature
weights learned using a Support Vector Machine (SVM) model. Efficient Graph
Based image segmentation (EGB) is then applied on the graph to merge different
regions. The result of the EGB is then post-processed by merging regions that are
smaller than a certain area into a neighboring region.
EGB can be repeated one or more times on the result to get a more coarse segmen-
tation [37] [45].

3.5 Maximally Stable Extremal Regions (MSER)

One of the key parts in the implementation of the thesis is the detection of potentially
useful regions in the image. This is done using the Maximally Stable Extremal
Regions (MSER) region detector. The following analogy is useful in describing the
idea behind MSERs [38]:
Imagine viewing all possible thresholdings of a grayscale image starting from the
lowest threshold t = 0 up to t = 255 [38]. The first image It = 0 will appear entirely
white. As the threshold is increased, black regions start appearing and growing.
These correspond to local intensity minima. Eventually the minima will merge
and in the end the last thresholded image will be entirely black. The connected
components (mergings of different regions) obtained through this process are referred
to as the set of all maximal regions. The set of all minimal regions can be obtained by
reversing the process, i.e. starting from the highest threshold t = 255 and decreasing
the threshold until t = 0 is reached. A MSER is then defined as a region for which
the region area A does not change significantly over a range of thresholds ∆.
More formally, the variation q for a region R at a specific threshold t is defined as
[38]

qt = (ARt+∆ − ARt−∆)/ARt . (3.50)

The region is then considered maximally stable if it satisfies qt > qt−1 and qt < qt+1,
i.e. if it is a local minimum [38].
For more details refer to the original paper [38].

30

3. Theory

3.6 Field of view
Field of view (FOV) is defined as the set of angles (horizontal and vertical) that
determine to what extent a scene (part of the 3D world) is visible from a particular
point and in a particular direction [46]. Humans for instance have a binocular field
of view of around 140 degrees. In many cases, the vertical field of view αv differs
from the horizontal field of view αh.
Figure 3.5 shows the horizontal field of view αh is related to the camera sensor width
W and focal length f [5] [6]. From the figure it can be noted that

tan αh2 = W

2f . (3.51)

From this it follows that αh can be calculated as

αh = 2 arctan W2f . (3.52)

The corresponding equation for the vertical field of view αv is

αv = 2 arctan H

2f , (3.53)

where H is the height of the camera sensor.

Figure 3.5: Horizontal field of view αh. f is the focal length and W is the width
of the camera sensor.

3.6.1 Depth from Field of View
The field of view is an important component in the depth estimation method pro-
posed by Salih and Malik in [24]. Along with the vertical and horizontal field of
views αv and αh, the method also requires knowledge of the camera height h and
the camera rotation angle relative to the ground θ as defined in equation (3.54),
where θx is the camera X-axis rotation (or pitch). Using these inputs and a couple

31

3. Theory

of trigonometric relationships it is shown that the 3D coordinates X̃ = (X, Y, Z) on
the ground plane can be recovered. It is also possible to recover the heights and
widths of objects in the scene but this is of less interest for the application. Note
however that the method does not take into account occlusions. In other words,
objects on the ground plane blocking the view (for instance vertical objects such as
signs) are treated as being part of the plane and are assigned the same depth as if
they would be part of the plane. Therefore, it is important to estimate the depth
for objects located on the plane separately.

θ = 90◦ − θx (3.54)

The basic geometry for the camera setup is shown in 3.6. In the Figure it is shown
that the part of the scene viewed by the camera is defined by the vertical and
horizontal fields of view αv and αh.

Figure 3.6: The basic camera setup. Here the blue region represents the part of
the scene that is visible in the camera.

Now, consider an object located at x̃ = (i, j)T in the image and its’ corresponding
3D coordinate X̃ = (X, Y, Z)T . The trigonometric relationships for this are shown
in Figure 3.7.

32

3. Theory

Figure 3.7: Trigonometric relationships between an object located at x̃ = (i, j)T
in the image and the corresponding 3D coordinate X̃ = (X, Y, Z)T .

The vertical angle ψ and the rotation angle φ are defined in equations (3.55) and
(3.56) respectively. Here H is the image height and W is the image width. The
angular steps (due to one pixel displacement) in the vertical and horizontal directions
are given by αv

H
and αh

W
respectively. Assuming that the point (X, Y)T = (0, 0)T

is located directly beneath the camera, the 3D coordinate (X, Y, Z)T can then be
computed using equations (3.57)-(3.59). For more details refer to the original paper.

ψ = θ +
(
H

2 − j
)(

αv
H

)
(3.55)

φ =
(
i− W

2

)(
αh
W

)
(3.56)

Y = h tanψ (3.57)

X = Y tanφ (3.58)

Z =
√
h2 + Y 2 +X2 (3.59)

3.7 Luminance
Luminance is defined as the luminous intensity Iv per unit surface area A [47]. This
can be written mathematically as shown in equation (3.60). Luminance is measured
in candela per square meters or cd/m2.

Lv = dIv
dA

(3.60)

A camera can be viewed as a non-ideal lux meter (device for measuring luminance)
since it maps luminance values into pixel intensities [48]. An image captured by a

33

3. Theory

typical camera only covers a small dynamic range (range of luminances, given as a
ratio of the highest luminance value with the lowest luminance value), for instance
100 : 1. For a real-life scene however, the dynamic range can be as high as 106 : 1.
A method to significantly increase the dynamic range of a luminance measurement
with a camera is to create High Dynamic Range (HDR) images.
The basic idea of HDR imaging is to photograph a scene at several different expo-
sure times (refer to Section 5.1 for an explanation of exposure times) [48]. Longer
exposure times give brighter images and vice versa. The pixel values (at specific
exposure times) however still need to be mapped to actual luminance values. This
is done by measuring the camera calibration curve, for instance using an integrating
sphere or a Munsell ColorChecker Chart [5].
For the specific cameras used in the product, the calibration curve can be approx-
imated by four linear regions at different exposure times. At a specific pixel co-
ordinate (x, y), the luminance L(x, y) is computed as shown in equation (3.61).
Here I(x, y) is the pixel value in exposure image number i and ki and mi are the
parameters defining the linear approximation.

L(x, y) = ki · I(x, y) +mi (3.61)
The complete luminance computation algorithm is listed in algorithm 1. Here the
order of images is from the brightest (with longest exposure time) to the darkest
(with shortest exposure time). For each pixel (x, y) the algorithm selects the bright-
est possible image Ii that fulfills Ii(x, y) ≤ τ where τ = 255 · t. Here t is a scale
factor, usually 0.9. In other words, the algorithm selects the pixel from the bright-
est image possible for which the pixel value is not saturated or close to saturated.
Based on the chosen image Ii, the luminance L(x, y) is calculated using equation
(3.61). Note also that the boolean foundExp is set to true to prevent the luminance
calculation to be repeated for darker images.

Algorithm 1 Grouping of depth regions into depth region sets
function LuminanceImage(InputImages)

Initialize L as an image of size W ×H with values 0.0
for y = 0 to y = H − 1 do

for x = 0 to x = W − 1 do
foundExp=false
for i = 0 to length(InputImages) do

if foundExp=false && InputImages[i] ≤ τ then
L(x, y) = ki · InputImages[i](x, y) +mi

foundExp=true
end if

end for
end for

end for
end function

The result is a matrix/image containing the luminance value, which cannot be easily
visualized. However, the pixel values chosen from the different exposures can be

34

3. Theory

visualized as shown in Figure 3.8.

Figure 3.8: Image showing the pixel values chosen by algorithm 1.

3.7.1 Equivalent Veiling Luminance
According to the CIE88:2004 guide, the luminance Lth in the threshold zone (start of
the tunnel) should be adjusted in such a way that the driver (at the stopping distance
away from the tunnel) is able to perceive any obstacles located at the tunnel entrance
[2]. The visibility of an object is determined by its’ perceived contrast Cperceived,
defined according to the guide as

Cperceived = Lo,p − Lr,p
Lr,p

, (3.62)

where Lo,p is the perceived luminance for the object and Lr,p is the perceived lumi-
nance of the road surface near the obejct [2]. The definitions of Lo,p and Lr,p are
given in equations (3.63) and (3.64). Here Lo,intrinsic is the intrinsic luminance for
the object, Lr,intrinsic is the intrinsic luminance for road surface, Latm is the lumi-
nance contribution from the atmosphere, Lws is the luminance contribution of the
windscreen, τatm is a factor representing atmospheric losses, τws is a factor repre-
senting the luminance loss due to the windscreen and Lseq is the equivalent veiling
luminance. From the equations it can be noted that the intrinsic luminances are af-
fected both by atmospheric transmission losses and losses due to the windscreen and
that the atmospheric luminance contribution is affected by transmission through the
windscreen.

Lo,p = τws · τatm · Lo,intrinsic + τws · Latm + Lws + Lseq (3.63)

35

3. Theory

Lr,p = τws · τatm · Lr,intrinsic + τws · Latm + Lws + Lseq (3.64)

The equivalent veiling luminance Lseq is the total estimated luminance contribution
from outside the 2◦ view cone of sharp vision [2]. Light sources outside the 2◦ cone
are partially scattered in the eye, thus disturbing the perception of Lo and Lr.
Although there exist special devices for measuring Lseq, it is also possible to calculate
Lseq using Holiday-Stiles formula [2]. The idea is to use a polar diagram consisting
of 12 × 9 = 108 zones as shown in Figure 3.9. Each zone is scaled in such a way
that for a given average luminance it produces equal amounts of stray light in the
eye. Or stated another way: Zones further away from the centre need to be larger
in order to produce to produce the same amount of stray light compared to zones
closer to the centre. The specific radial angles defining the different rings in the
diagram are listed in Table 3.1. Given the radial angle φ, the vertical field of view
αv and the image height H, the radius r of a ring is computed using equations (3.65)
and (3.66).

Figure 3.9: Diagram for Lseq computation. Each zone in the diagram produces an
equal amount of stray light for a given average luminance.

Ring Centre 1 2 3 4 5 6 7 8 9
Angle of
opening 2.0◦ 3.0◦ 4.0◦ 5.8◦ 8.0◦ 11.6◦ 16.6◦ 24.0◦ 36.0◦ 56.8◦

Table 3.1: Radial angles in the Lseq diagram.

36

3. Theory

x = H/2
tan(αv/2) (3.65)

r = tan(φ/2) · x. (3.66)

The luminance contribution for a zone is computed as

Lije = (τws · Lij) + Lws, (3.67)

where Lij is the average luminance in that zone. The total luminance or Lseq is then
calculated by summing the luminances for all the zones as follows:

Lseq = 5.1 · 10−4∑
i,j

Lije. (3.68)

Note that the 2◦ circle in the middle is not included in the Lseq computation [2].
Once Lseq has been computed, the threshold luminance Lth is computed according
to [2] as

Lth = Lm
1
Cm

(
ρ
πqc
− 1

)
− 1

, (3.69)

where

Lm = τws · Latm + Lws + Lseq
τws · τatm

. (3.70)

Here Cm is the desired minimum perceived contrast, usually around 28%. ρ is an
reflection factor for a reference object (obstacle) in the tunnel. It is usually assumed
that the reference object is a cube with a 0.2m long side, yielding diffuse reflections
and with ρ = 0.2. Finally, qc = L/Ev is the contrast revealing coefficient, defined
as the ratio of the road surface luminance L and the vertical illuminance Ev. The
vertical illuminance is defined according to [2] as the illuminance "at a particular
location at a height of 0.1m above road surface, in a plane facing and at right angles
to the direction of oncoming traffic".

37

3. Theory

38

4
Implementation

This chapter describes the overall pipeline of the implementation, from input images
to output Lseq value for the resulting warped view. Essentially, the implementation
consists of four main parts as shown Figure 4.1. First, the depth map for the
scene is estimated. This is the most complicated part of the implementation and
is summarized below and described in detail in Sections 4.1 to 4.10. Once the
depth map has been created, the original images are warped to a new view using
the principle of Depth Image Based Rendering (DIBR). First the camera geometry
for the scene is defined as described in Section 4.11. Then the image is warped
using the estimated depth map and the camera poses as described in Section 4.12.
The warped view contains holes and can thus be inpainted as described in Section
4.12.1 but this an optional step, which is useful for visualization but does not yield
improved Lseq results (refer to Section 6.3 for the analysis). In the final step, the
Lseq value is computed. This is done by first creating the Lseq diagram in the warped
view as described in section 4.13 and then computing the Lseq value in the warped
view, which is described in Section 4.14.

Figure 4.1: The four main steps in the implementation. Note that the inpainting
step is optional.

As mentioned above, the depth map estimation is the most complicated of the four
main parts in the implementation. Once the input images have been loaded (Section
4.1), two types of features are extracted from the images: Line segments using the
Line Segment Detector (LSD) method (Section 4.2) and Maximally Stable Extremal
Regions (MSERs), refer to Section 4.4.
The implementation differs slightly depending on whether or not the scene contains
a tunnel. For the product/application only tunnel scenes are relevant but the Lseq
error reduction has also been evaluated on scenes without tunnels. If the scene has a
tunnel, the tunnel opening is first detected using the bounding boxes for the MSER
regions as described in 4.4.1. If instead the scene is without a tunnel, the vanishing
point of the scene is detected from the detected line segments as described in Section
4.3. Either the tunnel opening or the vanishing point is used to divide the scene
in the vertical direction: Above and below the tunnel opening or above and below
the end of the road. This is then used as basis for detecting the sky and road parts

39

4. Implementation

in the image as described in Section 4.5. The sky and road regions are detected in
order to reduce the number of false vertical region detections. It could after all be
the case that a MSER is classified as vertical despite being part of the road plane
or the sky, which is undesirable.

The next step in the depth map estimation is region classification using the detected
line segments as described in Section 4.6. Once a region has been classified as
vertical, the shape of the region is refined using the Grabcut Foreground/Background
segmentation algorithm. This is described in Section 4.7. The tunnel outline and
tunnel walls are detected separately using the detected tunnel opening as basis
(section 4.8). The final step before the actual depth map creation is to potentially
group together detected depth regions as described in Section 4.9.

Once all the depth regions in the image has been detected the remaining part of the
depth map estimation is to create the depth map. First a depth map based on the
field of view method proposed by Salih and Malik in [24] is created as described in
Section 4.10.1. The method gives the depth for the road plane. Then the tunnel
walls are added to the depth map as described in Section 4.10.2. Finally, the other
detected depth regions are added to the depth map (Section 4.10.3).

The project was implemented using the OpenCV C++ library. For the sake of
brevity not all of the OpenCV methods/algorithms used in the implementation
have been described in the previous chapter. This includes for instance contour
finding, bounding box extraction and polygon approximations of contours. For more
details about various OpenCV functions, methods and classes refer to the OpenCV
documentation [49].

The images used in this chapter are from the Gnistängstunneln scene which was
the scene for the research study mentioned in the introduction [3]. It represents the
ideal type of scene for the application.

4.1 Input

Using the HDRmode, the camera takes series of four monochrome (grayscale) photos
of sizeW×H = 960×600, where each photo has a different exposure time. Therefore,
the input to the system are four photos rather than just one photo. This is taken
advantage of in the implementation by extracting different types of information from
the images with the different exposure times. As described in Section 5.1, a shorter
exposure time gives a darker image. An example of a series of images with differing
exposures is shown in Figures 4.2 to 4.5.

40

4. Implementation

Figure 4.2: The image with the shortest exposure time.

Figure 4.3: The image with the next shortest exposure time.

Figure 4.4: The image with the next longest exposure time.

41

4. Implementation

Figure 4.5: The image with the longest exposure time.

4.2 Line segment detection

Once the four images have been loaded, the next step in the implementation is to
detect the line segments in the images. This is done using the OpenCV implemen-
tation of the LSD Line Segment Detector [50] (refer to Section 3.3.1 for a theoretical
background). The only parameter that can be controlled in the OpenCV implemen-
tation is the level of refinement: either there is no refinement, standard refinement
or advanced refinement. A lower level of refinement gives more line segments but the
line segments are in general less reliable (false detections become more common).
Consequently, advanced line segment refinement is used in the implementation. Fig-
ures 4.6 and 4.7 show the line segments detected for the different images.

(a) Line segments for darkest exposure
image.

(b) Line segments for next darkest expo-
sure image.

Figure 4.6: Line segments detected for the two darkest images.

42

4. Implementation

(a) Line segments for the next brighest
exposure image.

(b) Line segments for the brightest expo-
sure image.

Figure 4.7: Line segments detected for the two brighest images.

The detected line segments are used in several parts of the implementation including
vanishing point estimation and region classification (see Section 4.6).

4.3 Vanishing point estimation

Vanishing points are used in the implementation for two different purposes depend-
ing on whether or not the road scene contains a tunnel. For a scene with a tunnel,
a vanishing point is used to estimate the depth of the tunnel walls as described in
Section 4.8.2. For a scene without a tunnel on the other hand, a vanishing point
is estimated to roughly determine the y-coordinate at which the road ends. This is
later used to detect the road and sky regions in the image as described in Section
4.5.
The implementation uses the source code [51] for the MSAC vanishing point estima-
tion method proposed by Nieto and Saldago in [33]. Without tweaking the core of
the source code there are only two parameters that can be changed: The maximum
number of line segments used for the vanishing point estimation and the mode for
the vanishing point estimation, either LS (Least Squares, which is a modified version
of the approach proposed by Košecká and Zhang in [42]) or NIETO (the approach
proposed by Nieto and Saldao in [33]). In general it can be noted that a relatively
large number of maximum line segments together with the LS method tend to yield
the most reliable results. However, the result is also highly dependent on the line
segments used as input for this method. For instance when estimating the vanishing
point for a road scene viewed roughly in the direction of the traffic it is a good idea
to remove the vertical or nearly vertical line segments and the horizontal or nearly
horizontal line segments since these are likely to be outliers.
Figure 4.8 shows the estimated vanishing point for the Gnistängstunneln scene.
The line segments from all of the exposure images have been combined into a single
container but the vertical or nearly vertical and the horizontal or nearly horizontal
lines have been removed. Note that this is the approach used for estimating the
vanishing point for scenes without tunnels as mentioned above.

43

4. Implementation

Figure 4.8: Estimated vanishing point. The line segments from the different expo-
sure images were first combined into a single container. Then the vertical or nearly
vertical line segments and the horizontal or nearly horizontal line segments were
removed. The estimation is based on the remaining line segments.

4.4 Maximally Stable Extremal Regions (MSER)
The next step in the implementation is the detection of Maximally Stable Extremal
Regions (MSER) in the image (refer to Section 3.5 for a theoretical background).
This is done for all four exposure images since more regions can be detected this
way. In the OpenCV implementation of MSER there is a total of four parameters
that need to be set to extract regions in a grayscale image [52]:

1. ∆ is the number of gray levels for which a region needs to be stable to be
considered a maximally stable region (see Section 3.5 for the definition). A
higher ∆ gives a lower number of regions.

2. The minimum area, Amin. MSER regions with areas smaller than Amin are
removed.

3. The maximum area, Amax. MSER regions with areas larger than Amax are
removed.

4. Maximum variation vmax. MSER regions with variation larger than vmax are
removed. In the OpenCV MSER implementation the variation is defined as
vt = (ARt −ARt−∆)/ARt−∆ where t is the threshold, R is a region and A is the
region area. Note that this definition of variation differs from the one defined
in Section 3.5. A lower vmax gives a lower number of regions.

The major weakness of using MSER for region detection is the need to set these four
parameters. It becomes especially apparent when there are four images to adjust the
parameters for. There are however a few simple guidelines. For the darkest image
there are barely any regions detected so the settings should be as low as possible,
in other words ∆ = 1, a low Amin, a high Amax and vmax close to 1. As the images
get brighter it seems to be a good idea to increase ∆ and to decrease vmax. If the

44

4. Implementation

scene has many objects of different sizes it is a good idea to have a high range of
Amin to Amax but this can on the other hand lead to a larger number of irrelevant
regions being detected. In the end, the specific settings are quite dependent on the
scene geometry and the scene brightness.
The detected MSER for the Gnistängstunneln scene are shown in Figures 4.9 and
4.10.

(a) MSER for the darkest exposure im-
age. The parameters are ∆ = 1, Amin =
20, Amax = 10000 and vmax = 0.99.

(b) MSER for the next darkest expo-
sure image. The parameters are ∆ = 1,
Amin = 30, Amax = 5000 and vmax = 0.4.

Figure 4.9: MSER for the two darkest exposure images shown on a white back-
ground. Note that only the outer MSER are shown.

(a) MSER for the next brightest expo-
sure image. The parameters are ∆ = 5,
Amin = 200, Amax = 2000 and vmax =
0.25.

(b) MSER for the brightest exposure im-
age. The parameters are ∆ = 5, Amin =
100, Amax = 4000 and vmax = 0.6.

Figure 4.10: MSER for the two brightest exposure images shown on a white
background. Note that only the outer MSER are shown.

The MSER can be approximated using several shapes such as bounding rectangles,
rotated rectangles, bounding circles and polygons. For the purpose of depth esti-
mation the MSER are approximated by bounding rectangles. Figure 4.11 shows the
bounding rectangles for the MSER for the next darkest exposure image.

45

4. Implementation

Figure 4.11: Bounding rectangle approximations of the MSER in the next darkest
exposure image.

It can be noted that Figure 4.11 contains many inner MSER regions. These inner
regions are redundant for the purpose of depth estimation and are therefore removed.
Figure 4.12 shows the remaining bounding rectangles for the MSER for the next
darkest exposure image after removal of the inner bounding rectangles.

Figure 4.12: Bounding rectangle approximations of the MSER in the next darkest
exposure image after removal of the inner bounding rectangles.

4.4.1 Finding the tunnel opening
As can be seen in Figure 4.10, the MSER for the tunnel opening can be obtained
from the brightest exposure image. This makes sense considering that the brightest

46

4. Implementation

exposure image is for the most part oversaturated (white) with the exception of
dark regions such as the tunnel opening (refer back to Figure 4.5). As shown in
Figure 4.13, the tunnel opening is well approximated by a bounding rectangle if
the tunnel opening is rectangular. When the shape of the tunnel opening is not
rectangular the shape estimation becomes more complicated. Depending on the
quality of the detected MSERs it could be possible to estimate the shape of the
tunnel using a convex polygon. However, the implementation currently only contains
the estimation of the tunnel opening shape for rectangular tunnel openings.

Figure 4.13: Bounding rectangle approximations of the MSER in the brightest
exposure image after removal of the inner bounding rectangles.

Although the tunnel opening has been approximated by a shape such as a bounding
rectangle it is not yet clear which of the bounding rectangles belongs to the tunnel
opening. However, it is known that the camera is centered on the tunnel opening and
therefore a reasonable assumption is that the tunnel opening contains the midpoint
in the image x̃mid = (W/2, H/2) where W is the image width and H is the image
height. The correct bounding rectangle can then easily be found by going through
the list of all bounding rectangles and finding the bounding rectangle containing
x̃mid (note that this requires the inner bounding rectangles to be filtered out as
described in Section 4.4).
Finding the tunnel opening is important for several reasons. Firstly, it is useful for
depth estimation since the shape approximation of the tunnel can be used together
with a detected vanishing point inside the tunnel to find the tunnel walls as described
in Section 4.8.2 and by knowing the tunnel opening location and shape it is also
possible to find the outer outline of the tunnel as described in Section 4.8.1. Secondly,
it provides another important hint about the geometry of the scene since it can be
assumed that the road is located below the tunnel opening and that the sky is
located above the tunnel opening. This is useful for detecting the road and sky
regions in the scene as described in Section 4.5. Finally, the line segments contained
inside the tunnel can be excluded from the rest of the depth estimation pipeline.

47

4. Implementation

4.5 Road and Sky Detection

This section describes how to find the road and sky regions in the scene. The
purpose of this step is to reduce the number of false detections of potential vertical
depth regions in the image by removing the MSER from the sky and removing
line segments from the road. After all, the road itself can be approximated as a
single plane and does not contain any vertical objects other than vehicles (which as
mentioned in Section 1.1 are compensated for in the application anyway) and the
sky is very far away and can be thought of as belonging to the plane at infinity as
described in Section 3.1.4.
The process of finding the road and sky regions in the image can be divided into
three steps: Segmentation using Hierarchical Feature Selection (HFS), Thresholding
using the Triangle threshold and matching of segmented regions with the thresholded
regions.

4.5.1 Hierarchical Feature Selection (HFS) Segmentation

The Hierarchical Feature Selection (HFS) method is used for a general segmentation
of the image. Just as the other segmentation methods used it is part of the OpenCV
library [53]. As described in Section 3.4.3, the segmentation method has two steps:
First the image is divided into a number of superpixels using Simple Iterative Linear
Clustering (SLIC) and then two iterations of Efficient Graph Based segmentation
(EGB) are used.
The implementation of HFS requires setting 7 different parameters:

1. slicSpixelSize. The size of the superpixels when initializing SLIC is approxi-
mately slicSpixelSize× slicSpixelSize.

2. numSlicIter, the number of iterations for SLIC.
3. spatialWeight is the third parameter required for SLIC. A higher value results

in a segmentation with more local consistency.
4. segEgbThresholdI is used in the second stage of the algorithm (first EGB

stage). It is a threshold used on the edge weights when merging adjacent
nodes. A higher value tends to give more regions.

5. minRegionSizeI, is another parameter used in the first EGB stage. Regions
with less than minRegionSizeI are merged into adjacent regions.

6. segEgbThresholdII serves the same purpose as segEgbThresholdI but for the
second EGB stage.

7. minRegionSizeII serves the same purpose asminRegionSizeI but for the second
EGB stage.

Given that HFS requires 7 parameters, it is hard to find any simple rules describing
what values might be useful.
Figure 4.14 shows the HFS segmentation of the Gnistängstunneln scene for the next
brightest exposure image. As can be seen from the figure, the road and the sky
regions are segmented quite accurately.

48

4. Implementation

Figure 4.14: HFS segmentation of the Gnistängtunneln scene for the next bright-
est exposure image. The parameters used are: slicSpixelSize = 20, numSlicIter =
5, spatialWeight = 1.0, segEgbThresholdI = 0.08, minRegionSizeI = 250,
segEgbThresholdII = 0.28 and minRegionSizeII = 400.

Once the image has been segmented, masks are created for each segmented region
and the segmented regions are sorted by the number white pixels (value 255) con-
tained in the region, from largest number of pixels to the smallest number of pixels.
This is useful later when extracting the road and sky regions from the image as
described in Section 4.5.3.

4.5.2 Thresholding

One of the interesting things in either the darkest or the next darkest exposure
image is that both the road lines and the sky clearly stands out from the other parts
in the image. Either the darkest or the next darkest exposure image is therefore
thresholded. The threshold is calculated automatically using the Triangle method
described in Section 3.4.1. The result is shown in Figure 4.15.

Figure 4.15: Thresholding of the next darkest exposure image. The threshold is
computed using the Triangle method.

49

4. Implementation

4.5.3 Finding the road and sky regions
Either the vanishing point or the tunnel bounding rectangle can be used to divide the
scene into two parts based on the y-coordinates. The sky is assumed to be located
above the vanishing point or the tunnel bounding rectangle while the road is assumed
to be located below the vanishing point or the tunnel bounding rectangle. Based
on this assumption two masks are created. The mask used for the sky detection
Iupper consists of a black background with a white rectangle drawn above either the
vanishing point y-coordinate or the upper bounding rectangle y-coordinate. The
mask for the road detection Ilower on the other hand contains only the thresholded
parts below the vanishing point or below the tunnel bounding rectangle. Both of
these masks are shown in Figure 4.16.

(a) Mask used for the sky region detec-
tion. It consists of a black image with a
white rectangle drawn above the vanish-
ing point y-coordinate or the upper tun-
nel bounding rectangle y-coordinate.

(b) Mask used for road detection. It was
created by drawing a black rectangle in
the thresholded image. The black rect-
angle is located above either the vanish-
ing point y-coordinate or the lower tunnel
bounding rectangle y-coordinate.

Figure 4.16: (a) shows the mask used for the detection of the sky region and (b)
shows the mask used for the detection of the road region.

After the creation of the two masks, the next and final step is to find the HFS
region masks with the highest numbers of overlapping pixels. This is done using
the & (AND) operation, which results in masks where only overlapping (white)
pixels remain. To detect the sky region the upper mask Iupper is ANDed with the
HFS segmentation region masks Ireg,i. The region mask Ireg,i for which the highest
number of white pixels remain after the AND operation is assumed to be the mask
for the sky region. The road region is detected in a similar manner but using Ilower
instead of Iupper.
The resulting road and sky region masks are shown in Figure 4.17. Note that in
this case that the sky region mask does not contain the whole sky region due to
the pole in the scene separating the sky into two parts as was shown in Figure
4.14. In this case a better approximation of the sky region could be obtained by
simply keeping the part of the thresholded image shown in Figure 4.15 that is above
the tunnel bounding rectangle. However, in general this method of finding the sky

50

4. Implementation

region based on the HFS provides much better results.

(a) Road region mask. (b) Sky region mask.

Figure 4.17: Road region and sky region masks.

4.6 Region classification
As previously mentioned, the sky and road regions in the image are detected in the
first place to reduce the number of false vertical depth region detections. This is
done by removing the MSER within the sky region mask and by removing the line
segments within the road region mask and within the tunnel bounding rectangle.
Alternatively, either the MSER or the line segments could be removed from both
regions. In either case, the remaining MSER are assumed to be potential regions
that may have vertical depth (or be considered standing object using the terminology
from [9]), such as for instance lamp posts, signs, poles and buildings. In the current
implementation only the MSER from the next darkest exposure image are used for
the purpose of region classification and subsequent region refinement and depth map
estimation.
The proposed approach to classify the remaining MSER into different geometric
classes is based on the line segments within the region bounding rectangles. More
specifically, the line segments are placed into different bins depending on their angles,
forming what is here referred to as a line histogram.

4.6.1 Line histograms
A line histogram is defined in this report as the line segment magnitude (length)
distribution as a function of the line segment orientations (angles). For each line
segment, the orientation (angle) and the magnitude (length) is computed. The
resulting magnitude is added to the bin corresponding to the orientation.
The computation of a line histogram is summarized in Algorithm 2. Here vec is
the line segment container. Each line segment is defined by the two end points
x̃0 = (x0, y0)T and x̃1 = (x1, y1)T and has a orientation −90 ≤ θ ≤ 90 (note that the
y-axis is pointing down in the image coordinate system and as a consequence, the
line orientations are flipped compared to the familiar Euclidean coordinate system).
Once the angle has been computed the corresponding bin index binIndex is assigned

51

4. Implementation

based on the angle range for each bin binDist (note that vertical or near vertical
line segments are assigned bin index 0). Finally, the line segment magnitude is
computed using the familiar Euclidean 2-dimensional distance formula and is added
to the assigned bin.

Algorithm 2 Line Histogram
for i = 0 to i = length(vec)− 1 do

θ = arctan (y1−y0)
(x1−x0)

if (θ ≥ −90 && θ ≤ −90 + binDist/2) ||
(θ ≥ 90− binDist/2 && θ ≤ 90) then

binIndex = 0
else

binIndex = ((θ + 90− binDist/2)/binDist) + 1
end if
magnitude=

√
(y1 − y0)2 + (x1 − x0)2

lineHistogram[binIndex]=lineHistogram[binIndex] + magnitude
end for

Figure 4.18 shows the line segments within a bounding rectangle for one of the
detected MSER and Figure 4.19 shows the corresponding line histogram. Each bin
in the line histogram has an angle range of 10◦ and there is thus a total of 18 bins.
Bin 0 corresponds to vertical or near vertical (−90 ≤ θ ≤ −85 or 85 ≤ θ ≤ 90) line
segments, bin 1 to line segments with orientations −85 ≤ θ ≤ −75, bin 2 to line
segments with orientations −75 ≤ θ ≤ −65, and so on. The total magnitude for
the horizontal line segments (−5 ≤ θ ≤ 5) is shown in bin 9. In the line histogram
shown in Figure 4.19 there is a large peak at bin 0 meaning that vertical or near
vertical line segments contribute to most of the magnitude, which in turn implies
that it probably is a vertical region.

Figure 4.18: Bounding rectangle for one of the detected MSER and the corre-
sponding line segments.

52

4. Implementation

Figure 4.19: The line histogram for the line segments shown in Figure 4.18.
Clearly, the vertical or near vertical line segments contribute with most of the mag-
nitude, implying that it probably is a vertical region.

It could be argued that an alternative approach would be to simply count the line
segments in each orientation bin instead of summing the magnitudes. However,
it could be the case that there are only a few long line segments with a specific
orientation but many more short line segments, leading to a result that is far less
robust and more difficult to interpret. Anyway, the number of line segments in each
bin is also stored in the current implementation and is used along with the line
histogram to classify the regions as described below.

4.6.2 Classification of line histograms
Once the line histogram has been computed, the next step is to classify the region.
Currently, a region can be classified as one of four classes: Useless, Ambiguous,
Vertical and Other. The classification procedure is presented in Algorithm 3 and
can be described as follows:
First the total number of line segments in the histogram is counted. If the number
of line segments nlines is 1 then the region is classified as Useless because a single
line segment provides very unreliable information. After this, the number of bins
with non-zero values is counted. If the number of bins with non-zero values Nnz

is larger than half of the total number of bins, i.e. if Nnz > Ntot/2, then the
region is classified as Ambiguous. The reasoning behind this is that if there are line
segments with many different orientations it is hard to make use of this information
to make a solid judgment regarding how the depth should be assigned. This usually

53

4. Implementation

happens for objects that have ambiguous depth such as trees. In the final step,
the line histogram indices are sorted by the bin magnitudes in decreasing order.
Therefore, the first element in the sorted container is the index for the peak in the
histogram. The region is then classified as Vertical if either the peak is at index 0
(corresponding to vertical or near vertical line segments) or if the peak is at index
Nbins/2 (corresponding to horizontal or near horizontal line segments) and there is
at least one vertical or nearly vertical line segment (i.e. bin 0 has a value 6= 0).
Otherwise the region is classified as classified as Other.

Algorithm 3 Line Histogram Classification
function classifyLineHist(lineHist)

lhClass=Other
if nlines ≤ 1 then

lhClass=Useless
return lhClass

end if
if Nnz > Ntot/2 then

lhClass=Ambiguous
return lhClass

end if
indices=sortIndices(lineHist)
if indices[0] = 0 || (indices[0] = Nbins/2 && lineHist[0] 6= 0) then

lhClass=Vertical
end if
return lhClass

end function

The classification method described above is in some ways arbitrary and there is
certainly a lot of room for experimentation and improvements. Currently, only
regions classified as Vertical are considered as valid for the depth estimation.

4.7 Region refinement
The regions classified as Vertical are treated as regions with vertical depth (or stand-
ing objects). However, the MSER estimations of the regions are usually somewhat
inaccurate. This can be seen in Figures 4.9 and 4.10. In the MSER images for the
next darkest and next brightest exposures, it can be clearly seen that the lower right
part of the large pole on the right side of the image is missing. The proposed ap-
proach to improve the region estimations is to use GrabCut foreground-background
segmentation (refer back to Section 3.4.2 for a theoretical background) for all the
exposure images and to select the best matching region approximation based on the
best matching line histogram.
As mentioned in Section 3.4.2 the GrabCut segmentation method is semi-interactive
and requires some prior knowledge. In OpenCV this prior knowledge can be provided
in two ways to the GrabCut algorithm [54]. The first and simplest way is to input
a rectangle to delimitate the region of interest. Only the part of the image inside

54

4. Implementation

the rectangle is segmented into foreground and background. The other method is
to input an explicit mask with some pixels marked as background (value 0), some
pixels marked as foreground (value 1) and the other pixels marked either as probably
background (value 2) or probably foreground (value 3). This second method is more
accurate than the rectangle method but the drawback is that more prior information
is required. However, as described below, there is already enough prior information
available in the implementation to use the second method.
The GrabCut mask for a region classified as Vertical is created in the following
way: First the bounding rectangle for the MSER is enlarged both in the x- and
y-directions by a number of pixels εx and εy respectively. Initially the bounding
rectangle was defined by the upper left corner coordinate x̃up,left = (x0, y0)T and the
lower right corner coordinate x̃down,right = (x1, y1)T = (x0 + W − 1, y0 + H − 1)T
where W is the width of the rectangle and H the height of the rectangle. After the
enlargement the rectangle is defined by the corner points x̃′up,left = (x0− εx, y0− εy)
and x̃′down,right = (x1 + εx, y1 + εy). Once the new rectangle has been created, a new
mask of the same size as the rectangle is created and filled with value 3 (probably
foreground). Then, the background (value 0) is drawn on the mask in the form of
two rectangles on the left and right ends of the mask. The background rectangles
have width εx and the same height as the mask. Finally, the MSER points are drawn
in the mask with value 1 (foreground). A visualization of the GrabCut mask for the
pole MSER is shown in Figure 4.20.

Figure 4.20: GrabCut mask for the pole MSER detected in the next darkest ex-
posure image. Here the background is assigned grayscale value 65, the foreground is
assigned grayscale value 255 and the probably foreground region is assigned grayscale
value 175. The reason why the uppermost and lowermost parts of the mask are not
assigned as background is because it is assumed that the object may actually be
taller than the MSER.

After the GrabCut mask has been created, GrabCut segmentation is done for all of
the exposure images resulting in slightly different region approximations as shown in

55

4. Implementation

Figures 4.21 and 4.22. To determine which of the four region approximations is "op-
timal", the differences between the line histogram for the MSER bounding rectangle
Lmser and the line histogram for the line segments within the region approximations
Lreg,j are calculated as

δj =
N−1∑
i=0

abs(Lmser[i]− Lreg,j[i]) (4.1)

where N is the number of bins and j is the exposure image number. The region
approximation which has the lowest error δj is considered to be the best region
approximation and is later used in the depth map. In this case the best region
approximation was obtained from the brightest exposure image. The corresponding
mask is shown in Figure 4.23. It can be noted that the GrabCut approximation
chosen contains some parts of the background (trees). A way to improve the result
would be to instead approximate the MSER by rotated rectangles and then create
GrabCut masks based on rotated rectangles instead of regular bounding rectangles.
This has however not been implemented yet.

(a) GrabCut for the darkest exposure im-
age.

(b) GrabCut for the next darkest expo-
sure image.

Figure 4.21: Regions approximated by using GrabCut in the darkest and next
darkest exposure images. The number of iterations for the GrabCut algorithm is
10.

56

4. Implementation

(a) GrabCut for the next brightest expo-
sure image.

(b) GrabCut for the brightest exposure
image.

Figure 4.22: Regions approximated by using GrabCut in the next brightest and
brightest exposure images. The number of iterations for the GrabCut algorithm is
10.

Figure 4.23: Depth region mask obtained from GrabCut.

4.8 Finding the tunnel outline and tunnel walls

In the implementation there are two regions in the image that are treated separately
from the other depth regions, namely the tunnel outline and the tunnel walls. These
are treated separately because the tunnel opening has previously been located as
described in Section 4.4.1 and there is more geometric information available when
compared to the other depth regions.

57

4. Implementation

4.8.1 Finding the tunnel outline shape
Since the rectangle approximating the tunnel opening has been detected it can be
assumed that the tunnel outline (outer part of the tunnel opening) is located left of,
right of and above the rectangle (and that the road is located below the rectangle).
Therefore, based on this assumption a GrabCut mask, such as the one shown in
Figure 4.24, is created. The first step in creating this mask is to expand the tunnel
bounding rectangle significantly in the left, right and upper directions and then
to create a mask with the new expanded rectangle size and initialize it with value
3 (probably foreground). After this, the region defined by the tunnel rectangle is
painted with value 0 (background). The background is also painted on the edges
of the mask with a thickness touter. Finally, the foreground (value 1) is painted in
the mask in the form of three strips of thickness tinner around the tunnel bounding
rectangle.

Figure 4.24: Visualization of the GrabCut mask for tunnel outline approximation.

Just as in Section 4.7, the GrabCut segmentation is done for all of the exposure
images and the best tunnel outline is chosen based on the lowest error. In this case
however there is no reference line histogram available. Therefore, the error function
has been defined in a different way:

εj =
N−1∑
i=0

Lreg,j[i]− sv − sh. (4.2)

where j is the exposure image number, Lreg,j is the line histogram for the current
region approximation, N is the number of bins and sv and sh are sums defined as

sv = L[N/2− 1] + L[N/2] + L[N/2 + 1] (4.3)

and

sh = L[0] + L[1] + L[N − 1] + L[N − 2]. (4.4)

The reasoning behind this error function is that a tunnel outline with a rectangular
shape mostly contains vertical or near vertical and horizontal or near horizontal line
segments. Thus a good approximation of the shape for a rectangular tunnel outline
should have a line histogram with high magnitudes for the bins corresponding to
vertical or near vertical line segments and horizontal or near horizontal line segments,

58

4. Implementation

resulting in a small error εj. The tunnel outline approximation with the lowest error
εj is shown in Figure 4.25 along with the depth region mask.

(a) Best tunnel outline approximation
(from the next brightest exposure image).

(b) The corresponding depth region
mask.

Figure 4.25: Best tunnel outline approximation and the corresponding depth re-
gion mask. The number of iterations in the GrabCut segmentation algorithm is
7.

4.8.2 Finding the tunnel walls
The approach taken to find the tunnel walls differs significantly from the approaches
used to find the vertical depth regions and the tunnel outline. Rather than relying
on line histogram, the method is based on the vanishing point.
In the first step, the vanishing point in the tunnel xvp is estimated using the MSAC
method. The line segments inputted to the MSAC method are taken from the bright-
est exposure image. Only the line segments that are within the tunnel bounding rect-
angle and have orientations within the ranges −85◦ ≤ θ ≤ −10◦ and 10◦ ≤ θ ≤ 85◦
are used for the estimation.
Once the vanishing point has been estimated, the lines outlining the left and right
walls are computed as

lleft = xll × xvp (4.5)

and

lright = xlr × xvp, (4.6)

where xll is the lower left corner of the rectangle and xlr is the lower right corner
of the rectangle. The point of intersection of the lines with the upper rectangle line
lr,up are defined as

xl = lr,up × lleft (4.7)

and

xr = lr,up × lright, (4.8)

59

4. Implementation

where lr,up is computed as

lr,up = xul × xur. (4.9)

Here, xul and xur are the upper left and upper right corners of the rectangle.
The left and right walls can then be defined as polygons with three inhomogeneous
coordinates (i.e. triangles) (see equations (4.10) and (4.11)).

pleft = [x̃ll, x̃l, x̃ul] (4.10)

pleft = [x̃lr, x̃r, x̃ur] (4.11)

The resulting polygon approximations of the walls are shown in Figure 4.26.

Figure 4.26: Approximation of the tunnel opening. The tunnel bounding rectangle
is shown in red and the left and right tunnel walls are approximated as triangles.
The polygon coordinates are also drawn.

4.9 Grouping and refinement of depth regions

The obtained depth regions so far (excluding the tunnel walls which are handled
separately) are shown in Figure 4.27. From the figure it can be seen that depth
regions that in actuality have the same depth (such as the different parts of the
pole on the right side) or very similar depth (such as the tunnel outline and the
signs above the tunnel) are in different depth regions. This is a problem because as
described in Section 4.10, the depth for a vertical object is sampled directly from
below the bounding rectangle of that region. Thus for instance if a part of the pole
is treated as a different region it will be considered to have a different depth than
the other parts. To avoid this situation the depth regions are grouped together
vertically as described in Algorithm 4

60

4. Implementation

Figure 4.27: Depth regions obtained after region classification and region mask
creation and after the tunnel outline approximation. The region bounding boxes are
also shown.

The algorithm begins with the creation of an empty container for the depth region
sets (depth region groupings). After this the setIds container is initialized to -1.
This container keeps track of the set number a specific depth region belongs to and
when the value is -1 it means that the depth region does not belong to any set.
After the initialization the function loops through all the depth regions, which have
prior to the function call been sorted from bottom to top based on the bottom y-
values of the bounding rectangles. If the current depth region is not part of a set
yet, i.e. if setIds[i] = −1, then a new depth set containing the current depth region
is added to the container with the depth sets depthSets. The region is then given
the current set ID setId. After that the current set ID is incremented. In this way
the next depth set will be given a new set ID. In the inner loop a search is done
to find matching depth regions. In the first if-statement a check is done to see if
the depth region does not belong to a depth set yet and if the regions are close
enough vertically, i.e. if the top y-coordinate for bounding rectangle i is not further
than εy away from the bottom y-coordinate for bounding rectangle j. Inside the
if-statement two boolean variables are evaluated to determine if there also is any
overlap between the regions in the x-direction. If conditions in the inner if-statement
are fulfilled then there is both overlap in the vertical and horizontal directions. In
that case depth region j is added to the depth region set and the set number is set
to that of region i.
The result of the algorithm is illustrated in Figure 4.28. It can be noted that the
depth regions for the pole have been grouped together and that the signs over the
tunnel entrance are in the same depth set as the tunnel outline. The results however
are not yet entirely satisfactory considering the large gap that can be seen between
two of the depth regions on the pole. There is also a depth region inside the tunnel
which should not be there.

61

4. Implementation

Algorithm 4 Grouping of depth regions into depth region sets
function findDepthSets(depthRegs, εy, εx)

Initialize depthSets container as empty
Initialize setIds container to -1
setId = 0
for i = 0 to i = length(depthRegs)− 1 do

if setIds[i] = −1 then
Add new depth set containing DepthRegs[i] to depthSets
setIds[i]=setId
setId=setId+1

end if
curr=depthRegs[i].boundingRect
for j = i+ 1 to j = length(depthRegs)− 1 do

next=depthRegs[j].boundingRect
if setIds[j] = −1 && curr.ytop + εy ≥ next.ybot then

nextRegThinner=
(next.xleft ≥ curr.xleft && next.xleft ≤ curr.xright) ||
(next.xright ≥ curr.xleft && next.xright ≤ curr.xright)
nextRegWider= next.xleft ≥ curr.xleft − εx
&& next.xright ≤ curr.xright + εx
if nextRegThinner || nextRegWider then

setIds[j]=setIds[i]
add depthRegs[j] to depthSets[setIds[i]]

end if
end if

end for
end for

end function

62

4. Implementation

Figure 4.28: Depth regions after grouping into depth region sets.

The depth region inside the tunnel can easily be removed based on the tunnel
bounding rectangle but the closing of gaps in sets of depth regions is slightly more
complicated and involves adding rectangular depth regions in-between the existing
depth regions where there exists a gap. For the sake of brevity the exact details are
left out. The result of the refinements is shown in Figure 4.29.

Figure 4.29: Depth region sets after refinement.

4.10 Depth Map Estimation
Once all the depth regions in the image have been detected it is finally time to
actually create the depth map. First, a depth map is created based on the field of
view method described in Section 3.6.1. As previously mentioned this depth map

63

4. Implementation

only measures the depth on the plane (in this case the road) and does not take into
account that objects located on the plane have other depth values. Next, the depth
for the tunnel walls is added to the depth map. In the final step, all of the detected
vertical depth regions are added.

4.10.1 Depth Map based on Field of View
As mentioned in Section 3.6.1, the field of view based method of depth estimation
requires four parameters: the vertical field of view αv, the horizontal field of view
αh, the height of the camera h and the camera angle relative to the road θ. As is
mentioned in Section 5.1, the vertical and horizontal fields of view are properties of
the camera and lens and for the specific camera and lens. The parameters h and θ
on the other hand vary depending on the scene. The camera height h is assumed to
be given while the camera angle θ can be calculated from θx (the pitch angle) which
is either assumed to be given or can be computed as described in Section 4.11.
The depth (Z-value) for an image coordinate x̃ = (x, y)T is computed using equations
(3.55) to (3.59). It would be possible to directly compute the Z-values when warping
but the main issue would be that the depth value would only valid for points on
the plane (points on the road) and be invalid in all other cases (such as for vertical
objects). Instead, the depth values (Z-values) are stored in a lookup table T of
length N and the depth map D stores the indices to the lookup table (0 to N − 1)
for all image coordinates. Thus, the depth value Z is obtained from the look-up
table as follows

Z = T [D[x, y]]. (4.12)

The value at index i in the look-up table is calculated as

T [i] = Zfar − i
Zfar − Znear

N − 1 , (4.13)

where Zfar is a user-defined maximum depth for the scene and Znear is the nearest
depth value in the image. Znear is computed using the field of view depth estimation
method for x̃near = (W/2, H − 1)T where W is the image width and H is the image
height.
The depth map index at x̃ = (x, y)T is computed from the depth Z using equation
(4.14) as follows:

D[x, y] =

0, if Z > Zfar or Y < 0
(N − 1) Zfar−Z

Zfar−Znear
, otherwise

. (4.14)

Checking for Y < 0 is necessary because for some unknown reason the field of view
method can give negative Y values, resulting in an incorrect depth map.
The field of view based depth map for the Gnistängstunneln scene is shown in Figure
4.30. Darker pixels represent points further away from the camera. The pixels with
value 0 (black) have depth Z = Zfar and can be thought of as points on the plane
at infinity.

64

4. Implementation

Figure 4.30: Field of view based depth map. N = 256 and Zfar = 250 in this case.

4.10.2 Adding the tunnel walls

As previously mentioned in Section 4.8.2, the left and right tunnel walls are repre-
sented by two polygons pleft and pright respectively. For convenience the definitions
of the polygons are repeated below. They are

pleft = [x̃ll, x̃l, x̃ul] (4.15)

and

pleft = [x̃lr, x̃r, x̃ur]. (4.16)

Here x̃ll, x̃lr, x̃ul and x̃ur are the corners of the tunnel bounding rectangle (lower left,
lower right, upper left and upper right respectively). x̃l and x̃r are the intersections
of the upper rectangle line with the left and right wall lines respectively.
The depth for a tunnel wall is computed along the line segment between the first
and second points in the polygon. This is the line segment delineating the boundary
between the road and the tunnel wall. For each point (xi, yi)T on the line, the depth
value at one unit below, i.e. at (xi, yi + 1)T , is sampled. A vertical line segment
with the sampled depth D[xi, yi + 1] is then drawn from (xi, yi)T to the upper line
of the bounding rectangle. The result of adding the depth for both of the walls is
shown in Figure 4.31.

65

4. Implementation

Figure 4.31: Depth map with the tunnel walls included.

4.10.3 Adding vertical depth regions

In the final step of the depth map creation, the regions with vertical depth are
added. The depth for a vertical depth region set is computed along the lower line
of the set bounding rectangle r. For each point (xi, ybottom)T on the line, the depth
index value at one unit below is sampled from the depth map D. This depth value
is then assigned for all the points directly above (same x-coordinate) that are within
the bounding rectangle and for which the mask M is defined (i.e. where it has value
255 or white). The procedure is summarized in Algorithm 5 and the complete depth
map is shown in Figure 4.32.

Figure 4.32: Complete depth map with all of the depth regions included.

66

4. Implementation

Algorithm 5 Drawing of vertical depth regions
function addDepthRegions(D, depthSets)

for i = 0 to i = length(depthSets)− 1 do
r=depthSets.getRect()
M=depthSets.getMask()
xstart = r.x
xend = r.x+ r.width− 1
ybottom = r.y + r.height− 1
ytop = r.y
ysample = ybottom + 1
for x = xstart to x = xend do

depth = D[ysample, x]
for y = ytop to y = ybottom do

if M[x,y]=255 then
D[x,y]=depth

end if
end for

end for
end for

end function

4.11 The Camera Geometry

As described in Section 3.1.4, the generation of a virtual view requires not only
a depth map but also two camera matrices P for P ′ for the original and virtual
positions respectively. In the implementation, the original camera view is set at
origin and points in the Z direction. Thus, the camera matrix is defined as

P = K[I|0], (4.17)

where K is the calibration matrix estimated through calibration (refer to Section
5.2 for the estimated calibration matrix), I is the identity matrix and 0 is the 3× 1
zero vector.
The camera matrix for the virtual view P ′ is then defined relative to P as

P ′ = K[R|t] = KR[I| − C̃] (4.18)

where C̃ = (cx, cy, cz)T is the position of the virtual view relative to the origin and
R is the rotation matrix. As described in Section 3.1.2, the rotation matrix can
be defined by three angles θx (pitch), θy (yaw) and θz (roll). There are thus in
total 6 parameters (cx, cy, cz, θx, θy and θz) defining the difference in position and
orientation between the two views. The functions of the parameters are summarized
in Table 4.1.

67

4. Implementation

Parameter Function Positive value Negative value
cx X-axis translation Translation right Translation left
cy Y-axis translation Translation down Translation up

cz Z-axis translation Translation forward
(zoom in)

Translation backward
(zoom out)

θx
Rotation around the

X-axis
Rotation of the
view upwards

Rotation of the
view downwards

θy
Rotation around the

Y-axis
Rotation of the

view right
Rotation of the

view left

θz

Rotation around the
Z-axis (same as

2D image rotation)
Clockwise rotation Counter-clockwise

rotation

Table 4.1: Summary of the parameters for defining the virtual camera view position
and orientation.

How these parameters are obtained may differ from case to case. However, if the
distance to the middle of the road (x-axis distance to the middle of the tunnel) dx,
the height of the camera above the road surface h, the tunnel height H and the
distance to the tunnel D are given, then cx, cy, θx and θy can easily be calculated.
Figures 4.33 and 4.34 show the geometry for a typical tunnel scene. In this case the
camera is assumed to be on the right side of the road, which means that cx = −dx.
If the camera would be on the left side of the road then cx = dx. The desired
height over the road surface for the virtual view is hvirt = 1.5 which means that
cy = h − hvirt. In Figures 4.33 and 4.34 it is assumed that the camera that the
camera is centered on the tunnel opening. Therefore, the angles θx and θy can be
calculated using

θx = arctan h−H/2
D

(4.19)

and

θy = arctan dx
D

(4.20)

respectively. In this case the angles are positive but for a camera placed on the left
side of the road, θy would be negative. If the camera is mounted parallel to the
road plane then the roll θz can be assumed to be negligible. Usually it can also be
assumed that there is no Z-axis translation, i.e. cz = 0.

68

4. Implementation

Figure 4.33: Geometry for a typical tunnel scene viewed from the side. The
computation of the pitch θx is listed in equation (4.19).

Figure 4.34: Geometry for a typical tunnel scene viewed from above. The compu-
tation of the yaw θy is listed in equation (4.20).

4.12 Warping
Once the depth map has been estimated and the camera matrices have been defined,
the original view of the scene is warped using the warping procedure in Algorithm
6. The algorithm only includes the relevant parts of the warping function. In the
actual implementation however there are several masks created, some of which are
important for the inpainting and others for the luminance estimation. These will be
described later.
The function takes in five parameters: the 4×4 camera matrices P and P ′ described
in Section 3.1.4, the image to be warped I, the depth map D and the lookup table
T . Both I and D are of size W ×H

69

4. Implementation

Since the size of the warped image is not known beforehand, the purpose of the
first double for-loop is to find the minimum and maximum warped coordinates
(xmin, ymin) and (xmax, ymax). At the start of the inner loop, the depth is obtained
by first retrieving the depth map value at the current coordinate x̃ = (j, i)T and
then using this value as the index to the lookup table. Afterwards, the projected
coordinates x̃′ = (x, y)T are obtained by calling the ProjectedCoordinates function.
The function computes the warped coordinates as

Z ′x′ = ZP ′P−1(x), (4.21)

This is done in two steps: first the image coordinate x = (j, i, 1)T is back-projected
to (X, Y)T using the the depth Z and the inverse of the projection matrix for the
original view, i.e. P−1. Then, the 3D coordinate X = (X, Y, Z, 1)T is projected
to x′ = (x′, y′, w)T using the camera matrix for the virtual view P ′. Finally, the
inhomogeneous coordinates are obtained as x̃′ = (x, y)T = (x′/w, y′/w)T . Once the
projected coordinate point has been obtained, the maximum and minimum warped
coordinates are updated if needed. To avoid re-doing the warping computation in
the second loop, the projected coordinates x and y are stored in the matrices projX
and projY respectively.
After the first double for-loop, the warped image is initialized as an empty (black)
image of size δx × δy, where δx = xmax − xmin and δy = ymax − ymin. Furthermore,
the matrix Ztrue of size δx × δy is also created. This matrix is used in the second
double for-loop to keep track of the lowest depth at the warped coordinate x̃′. It
could after all be the case that two or more coordinates x̃ with different depths Z
are warped to the same point x̃′. In that situation only the closest point (i.e. with
the lowest depth) should be drawn in the warped image.
At the start of the second loop, the depth value Z is retrieved similarly to how it
was done in the first loop. Then the warped coordinates x and y are retrieved from
the matrices projX and projY . The warped coordinates x and y are then shifted
by xmin and ymin respectively. This is required to keep the warped coordinates x
and y within the ranges of the defined coordinates in the image, i.e. 0 ≤ x ≤ δx− 1
and 0 ≤ y ≤ δy − 1. It could after all be the case that the warped coordinates
are negative or that the minimum coordinates xmin or ymin are larger than 0. An
extra check is then done to make sure that the coordinates indeed are within defined
coordinate range for the warped image. In the final part of the loop, the value in
the original image I at coordinate (j, i)T is copied to the warped image Iw at the
warped coordinate (x, y)T and the depth value stored in Ztrue is updated. If the
depth value at Ztrue has not yet been assigned then it is simply given the value Z.
Otherwise, if the current depth value Z is smaller than the value already stored in
Ztrue, then the stored depth value is updated to Z and a new pixel value is assigned
at (x, y)T in the warped image. As mentioned above this is needed in order to only
show the closest pixel at each coordinate (x, y)T in the warped image (the points
further away are occluded).
The result of warping using this method is shown in Figure 4.35. In this case it
was assumed that c̃ = (cx, cy, cz)T = (−7.5, 5.5, 0.0)T and that θ = (θx, θy, θz)T =
(3.78◦, 6.29◦, 0.0◦)T . The distance between the camera and the middle of road was
estimated from measurement in a map to be around dx = 7.5m. In the intro-

70

4. Implementation

Algorithm 6 Depth-Image Based Warping
function warp(P, P’, I, D, T)

Initialize projX to an empty matrix of size W ×H with values 0.0
Initialize projY to an empty matrix of size W ×H with values 0.0
xmin =∞
xmax = −∞
ymax =∞
ymin = −∞
for i = 0 to i = H − 1 do

for j = 0 to W − 1 do
d=D[j, i]
Z=T[d]
(x, y) = ProjectedCoordinates(P, P’, j, i, Z)
if x < xmin then

xmin = x
end if
if x > xmax then

xmax = x
end if
if y < ymin then

ymin = y
end if
if y > ymax then

ymax = y
end if
projX[i,j]=x
projY[i,j]=y

end for
end for
δx = xmax − xmin
δy = ymax − ymin
Initialize Iw to image of size δx × δy with values 0
Initialize Ztrue to a matrix of size δx × δy with values 0.0

end function

71

4. Implementation

function warp (continuation)(P, P’, I, D, T)
for i = 0 to i = H − 1 do

for j = 0 to W − 1 do
d=D[i,j]
Z=T[d]
x=projX[i,j]
y=projY[i,j]
x = x− xmin
y = y − ymin
if x ≥ 0 && x < δx && y ≥ 0 && y < δy then

if Ztrue[x, y] = 0.0 then
Ztrue[x, y] = Z
Iw[x, y] = I[j, i]

else
if Z < Ztrue[x, y] then

Ztrue[x, y] = Z
Iw[x, y] = I[j, i]

end if
end if

end if
end for

end for
end function

duction it was mentioned that the distance of the camera to Gnistängstunneln is
approximately D = 68m and the height of the camera is approximately h = 7m.
Furthermore, it is known that the height of the tunnel is around H = 5m. Using
these relations it is possible to recover both the virtual camera position and the
pitch and yaw angles (see equations (4.19) and (4.20)).

Figure 4.35: Warped image of the Gnistängstunneln scene. The parameters c̃ =
(−7.5, 5.5, 0.0)T and θ = (3.78◦, 6.29◦, 0.0◦)T were used in this case.

72

4. Implementation

4.12.1 Inpainting

As can be seen in Figure 4.35, the warped image contains many holes where there
are no pixel values defined. The small holes are caused by rounding of the warped
coordinates into the nearest integers and the larger holes are disocclusions caused
by large differences in the depth value. The holes in the image can closed with
inpainting. This step is not strictly necessary for the pipeline as a whole but can
certainly improve the visualization of the result.
In OpenCV there are two built-in inpainting methods [55]: A Navier-Stokes based
inpainting method and The Fast Marching Based inpainting method [15]. The in-
painting function requires two parameters: the mask to defining the points to be
inpainted and the radius around each point defining the size of the pixel neighbor-
hood to be considered when inpainting. The method by which the inpainting mask
for the warped image is defined is described below:
First, the inpainting mask MI is initialized as a completely white image of the
same size as the warped image. Then, the mask is assigned the value 0 (black)
for all warped coordinates (all points that are defined in the in the warped image).
The mask so far is shown in Figure 4.36. It can be seen that the boundaries in
the inpainting mask are white and this is clearly undesirable since the boundaries
should not be inpainted. To remove the white regions at the boundaries in the
inpainting mask MI , the so called outline mask MO is created to delineate the
defined boundaries in the warped image.

Figure 4.36: The incomplete inpainting mask after filling the it with zeros at the
defined pixel values in the warped image.

The first step in creating the outline maskMO is to threshold the warped image such
that the pixels with non-zero values in the warped image are assigned the value 255
(white). Next, 5 iterations of a closing morphological operation are applied on the
threshold mask MT to close most of the gaps in the mask (refer to [56] for a short
summary of different morphological operations). After this, the largest contour in
the mask is found and this contour is drawn on the empty (black) outline mask
image as white (255). The resulting outline mask is shown in Figure 4.37.

73

4. Implementation

Figure 4.37: Mask showing the outline of the warped image region.

In the final step, the coordinates in MI for which MO has pixel value 0 are filled
with with black color. The resulting inpainting mask is shown in Figure 4.38.

Figure 4.38: Final inpainting mask.

The result of inpainting the warped image is shown in Figure 4.39. Note that the
result is good enough for the small holes but there are major artifacts for the large
holes.

Figure 4.39: The inpainted warped image. The radius was set to 3 in this case.

74

4. Implementation

4.13 Defining the Equivalent Veiling Luminance
region

The theory behind the Equivalent Veiling Luminance (Lseq) estimation is described
in Section 3.7. For images which have not been warped, the theory can be ap-
plied without any significant changes to compute the luminance. However, warped
images require some extra considerations. The main difficulty with estimating the
luminance in the warped image is that the image size differs from the original image
size. The warped image shown in Figure 4.39 is of size Ww×Hw = 1324×478 while
the original image is of size W × H = 960 × 600. The warped image is thus both
shorter and wider and thus has a different aspect ratio (ratio of width and height).
Furthermore, the vertical distance from the middle of the tunnel to the bottom of
the image ∆y,bot = ybot − ytunnel usually differs from the vertical distance from the
middle of the tunnel to the top of the image ∆y,top = ytunnel − ytop. Although a
mathematically robust way to define the Lseq region in the warped image may exist,
in the implementation an empirical method is used.
First note that the Lseq region in the warped image should be defined in such a way
that it roughly approximates the Lseq diagram for the street view. Also note that
the radius for the Lseq region in unwarped views is calculated based on the image
height and that the region is circular. In the warped view it is not possible (or
rather not desirable) to define a circular region in the same way. Instead, the region
consists of two semi-ellipses of different sizes. The pattern is shown in Figure 4.40
and the method by which it was created is described below.

Figure 4.40: Lseq diagram shown in the warped view of the next brightest exposure
image.

The first step in creating the Lseq diagram for the warped view is to estimate the
height and width of the main region in the warped image. The main region is
defined as the region in the image containing most of the pixels. In Figure 4.40 the
main region has roughly the same height and width as the image, but in some cases,
objects with vertical depth may be warped outside of the main region (especially if
the depth for a region has been estimated incorrectly). In either case, the outline of
the main region in the image is approximated from the outline mask MO shown in
Figure 4.37.

75

4. Implementation

The widthWreg is simply found by approximating the region by a bounding rectangle
and by setting the width of the region to the same width as the rectangle. The pro-
cedure for finding the region height is on the other hand slightly more complicated.
First, the contour for the outline mask MO is roughly approximated by a polygon.
Then, between each pairs of polygon coordinates a line segment is created. The
algorithm then finds the lines directly below and directly above the warped tunnel
center coordinate. Then, the algorithm finds the highest point x̃top = (xtop, ytop)T
on the line segment above and the lowest point x̃bot = (xbot, ybot)T on the line seg-
ment below. These two points are assumed to be the highest and lowest points
in the image region and the height is found as the difference in the y-values, i.e.
Hreg = ybot − ytop.

Figure 4.41: A visualization of the height estimation procedure. The red dots
show the polygon coordinates and the blue dots show the points x̃top and x̃bot.

Once the height and width of the main region in the warped image has been esti-
mated, the next step is to create the masks defining the different subregions in the
Lseq diagram. For this purpose, half-circle masks are used. The inner and outer
radius of each half-circle mask is calculated using equations (3.65) and (3.66) as
described in Section 3.7.1. In this case the region height Hreg is used rather than
the image height H. Then, the upper and lower half-circle masks are scaled. The
upper half-circle mask is scaled by ytun−ytop

Hreg/2 in the y-direction and by Wreg/Hreg in
the x-direction. The lower half-circle mask on the other hand, is scaled by ybot−ytun

Hreg/2
in the y-direction and by Wreg/Hreg in the x-direction. The reason why the scaling
in the y-direction is different for the two masks is because the vertical distance be-
tween the top of the region and the center of the tunnel may differ from the vertical
distance between the center of tunnel and the bottom of the region. The x-scaling
is defined somewhat arbitrarily but it makes intuitive sense considering that it is
almost the same as the aspect ratio for the warped image.

After the scaling, the masks have an elliptic shape as shown in Figures 4.42.

76

4. Implementation

(a) Upper half-elliptic mask. (b) Lower half-elliptic mask.

Figure 4.42: Two of the half-elliptic masks used when defining the subregions in
the Lseq diagram.

4.14 Equivalent Veiling Luminance computation
Once the Lseq region for the warped view has been defined it is fairly straightforward
to compute the Lseq value for the warped view. The brightest exposure image is
first warped and the computed warped coordinates are re-used to warp the other
exposure images. Finally, the luminance image is computed using the same method
was described in Section 3.7 with the exception that only the points at which the
warped image has defined values are included. Figure 4.43 shows the mask with the
defined regions in the warped image and the visualization of the luminance image.
The computed luminance value is shown in Figure 4.40.

(a) Mask showing the regions in the
warped image that have defined pixel val-
ues.

(b) Visualization of the luminance image
for the warped view.

Figure 4.43: Mask with defined regions in the warped image and the visualization
of the luminance image for the warped view.

77

4. Implementation

78

5
Data Gathering

The primary purpose of this chapter is to describe practical methods used in the
development work and for data gathering. Section 5.1 describes the hardware (cam-
eras) and software used in the project along with some of the different camera
settings. In Section 5.2, the method used to calibrate the cameras is presented. The
methods used in the measurement gathering (gathering of photos) is described in
Section 5.3.

5.1 Camera hardware and software

A camera setup used during the development work consists of four components:
A USB 3.0 monochrome (grayscale) machine vision camera, a wide-angle lens, a
tripod and an optical filter. The optical filter halves the amount of light reaching
the camera and is required for correct measurements of Lseq.
Unlike consumer cameras, the camera used does not have a Graphical User Interface
(GUI) and is not powered by a battery. To power the camera and to control the
camera settings it needs to be connected to a computer through a USB 3.0 port.
The camera settings are mainly controlled through the FlyCapture software [57].
FlyCapture can be used to control several important settings such as the number of
frames per second (fps), the brightness value and the exposure value. The exposure
value setting together with the fps value control how long time the camera is exposed
to light when capturing a photograph (known as the exposure duration or shutter
time), which partially determines the brightness of the photo (a longer duration
gives a brighter image and vice versa). An important mode available for the camera
is HDR (High Dynamic Range). Using the HDR mode, the camera captures groups
of 4 images where each image has an independent exposure value setting. This
setting is essential for luminance measurements.
The focal length of a camera is determined by the lens [5]. In most cases (at least
for consumer cameras) the camera lens is built-in and cannot be changed. In this
case however the lens is separate from the camera sensor and consequently there is
more flexibility in choosing a proper lens for the application.
The lens used for the development of the project has two important settings: focus
and f-number, both of which are controlled by wheels on the lens. Focus determines
the distance at which points in the image are the sharpest. Points that are not in
focus tend to be blurrier. For the purposes of the measurement gathering the focus
was set to ∞ since the camera needs to be focused on objects far away (such as a
tunnel opening at the stopping distance). The second wheel on the lens controls the

79

5. Data Gathering

f-number, which is defined as

N = f

d
, (5.1)

where f is the focal length and d is the lens diameter (also known as the aperture)
[5].
The common way to write the f-number is in the f/# format where f is the focal
length and # is the aperture explicitly given as a number (usually in millimeters),
for instance f/1.4, f/2, f/2.8 etc [5]. A decrease of the f-number by a factor of

√
2

has roughly the same effect as the an increase of the exposure duration by a factor
of 2. Consequently, the f-number is another setting that controls the brightness of
the image.
For this particular combination of camera and lens, the vertical field of view is
approximately αv = 47.4◦ and the horizontal field of view is approximately αh = 72◦.

5.2 Camera Calibration
As mentioned in Section 3.1.3, the internal parameters of the camera are contained
in the calibration matrix K [7]. The process of estimating K is known as camera
calibration. Although there exist various approaches for estimating the calibration
matrix based on for instance vanishing points, a very common method is to use a
checkerboard pattern as shown in Figure 5.1. The checkerboard pattern was printed
out on an A4 paper and taped on a flat solid surface. The checkerboard pattern
consists of 10×7 squares (9×6 corners) where each square has S = 2.6cm = 0.026m
long sides.

Figure 5.1: A checkerboard pattern attached to a solid flat surface.

80

5. Data Gathering

The calibration was done using the calibration.cpp OpenCV sample code (see [58]
for a thorough explanation of the code). This program requires a small number of
images of the same calibration (checkerboard) pattern at different positions or with
different orientations [58]. In theory only 2 images would be enough to calibrate
the camera. Due to noise however, 10 or more images are recommended. Overall a
total of 15 photos of the checkerboard pattern were captured, although some of the
images were not good enough and were thus not included in the calibration.
The first step in the calibration is finding the inner corners of the checkerboard as
shown in Figure 5.2 [58]. Then, the checkerboard points x̃ are converted into 3D
coordinates as X̃ = (X, Y, Z)T = (jS, iS, 0)T where j is the corner number in the
x-direction, i is the corner number in the y-direction and S is the length of one side
of a square. Z is set to zero because the corners are located on the same plane and
thus do not have a different depth (the calibration pattern surface is flat). Finally,
the image coordinates and the corresponding 3D coordinates for the different images
are used as input to the calibrateCamera OpenCV function [59].

Figure 5.2: Detected corners in the checkerboard image.

The code sample was only slightly modified to allow for the assumption of non-
square pixels, i.e. fx 6= fy. It was assumed that there is no skew, i.e. s = 0. This
resulted in the following calibration matrix for one of camera used:

K =

fx 0 x0
fy y0

1

 =

685.2 0 476.8
0 685.9 308.8
0 0 1

 (5.2)

There are a few interesting points to note about the estimated calibration ma-
trix. Firstly, the principal point x̃0 = (x0, y0)T is roughly at the image center

81

5. Data Gathering

x̃mid = (W/2, H/2)T = (480, 300)T . This is typically the case for most cameras [5].
Furthermore, note that the ratio of the focal lengths is a = fy

fx
≈ 1.0009, which means

that the pixels are almost square. Finally, the focal length (assuming f = fx ≈ fy)
is approximately fm = fsp = 685.2 · 5.86 · 10−5m = 4.02mm.

5.3 Measurement Gathering

An important but difficult part of the project was to gather relevant measurements
needed to evaluate the result. Ideally the Lseq measurements would be gathered at a
scene with a tunnel, with one camera viewing the tunnel from 5−7m above the road
and possibly also with a horizontal displacement relative to the middle of the road
in the direction of traffic and the other camera simultaneously capturing photos of
the tunnel 1.5m above the road in the middle of the road in the direction of the
traffic. Both cameras would be placed at the stopping distance from the tunnel.
However, in practice such measurements are costly, difficult and impractical. There
are only a few major road tunnels available in the Göteborg area and only a few
of them can be photographed from above by a pedestrian. None of them however
can be photographed at road level by a pedestrian (photographing the tunnel from
a car is possible, albeit difficult). The closest example to a successful measurement
of this kind for Lseq was done at the Gnistängstunneln site mentioned in Section
1.1 but even in that case the measurement was not ideal due to the 30 minute time
difference between the measurements. To do an experiment of similar quality for
other tunnel scenes would possibly require new installations. On the other hand,
the camera system is going to be installed at new tunnel sites in the near future,
which means that such data may become available for future comparisons.
In practice, the measurements were almost exclusively gathered at road scenes with-
out tunnels. Where possible, images of the scene both from above the road and at
road level were taken. In most cases however, only the view from above was easily
available.
Most of the measurements were done for the purpose of the evaluation of the Lseq
error reduction. This required both a view from above the road (usually at a height
of more than 5 meters and with a pitch angle between 3 and 10 degrees) and a view
at road level (ideally in the middle of the road but if not possible (due to traffic) then
on the side of the road). The images were first gathered above the road and then at
the road level. In both cases the cameras were to the extent possible centered on the
same point in the scene. The images were captured when the scene was mostly free
from traffic to avoid traffic affecting the Lseq values. Even though there was a time
difference of several minutes between the photos of the scene above the road and the
photos of the scene at road level, it can safely be assumed that this does not have a
significant impact on the Lseq values as the weather conditions had not changed in
any significant way. An example of a view from above and the corresponding road
level view is shown in Figure 5.3.

82

5. Data Gathering

(a) View of the scene above the road. (b) View at road level.

Figure 5.3: Two views of the Fiskholmsmotet scene (shown in [61]). The road
level view is approximately directly below the view above the road. Both views are
roughly centered on a truck in the scene.

Several metric measurements were also gathered for each view of a scene. The Nikon
Forestry Pro laser measurement device [60] shown in Figure 5.4 was used for this
purpose. It was primarily used for measuring the height of the camera above the
road and sometimes also the horizontal distance to the point on which the camera
was centered. In general, distances in a scene can be measured from some online
maps, for instance at [62] or [63]. The pitch angle was estimated by reading the
pitch axis scale on the tripod (both the pitch and yaw can be changed for the tripod
and the roll can be changed by adjusting the legs of the tripod).

Figure 5.4: Laser measurement device Nikon Forestry Pro.

83

5. Data Gathering

84

6
Results

In this chapter, the results of the proposed method to reduce the Lseq error are
evaluated and analyzed. The chapter is divided into several sections as follows:
In Section 6.1, an relative (percental) metric for the reduction of the Lseq error is
proposed. The main results are presented in Section 6.2. This section contains a
comparison between the Lseq errors for views above the road, views at road level and
warped view. In Section 6.3, the effects of inpainting on the result are discussed.
The influence of the depth map on the Lseq error reduction is investigated in Section
6.4. This section includes a comparison between reference depth maps manually
created in The GNU Image Manipulation Program (GIMP) and the depth maps
created automatically in the implementation. Finally, in Section 6.5, the computa-
tional performance of the proposed method is analyzed and discussed. The results
presented in this chapter are further discussed in a broader way in Chapter 7.

6.1 Error Reduction Metric
In this section the metrics used in the evaluation of the Lseq error reduction are
presented. The metrics are relative (percental) rather than absolute.
The first two metrics

Ecam = abs(Lstreet − Lcam)
Lstreet

(6.1)

and

Ewarped = abs(Lstreet − Lwarped)
Lstreet

(6.2)

measure the the percental error for the view from above the road and the warped
view respectively. Here, Lcam, Lstreet and Lwarped are the luminance values for the
view above the road, for the road level view and for the warped view respectively.
Based on these two metrics, the relative error is defined as

Erel = Ewarped
Ecam

. (6.3)

Finally, the percental error reduction is then given as

R = 1− Erel. (6.4)

85

6. Results

6.2 Reduction of Equivalent Veiling Luminance
Error

The proposed error reduction metric is evaluated at five scenes, namely at the
Gnistängstunneln scene (see [4]), at two locations in the Fiskholmsmotet scene (see
[61]) and at two locations in the Lindholmen Stairs scene (see [64]). Ideally the met-
ric should be evaluated at more scenes (and at different weather conditions) but this
is the data that is currently available. Since the Gnistängstunneln scene represents
the ideal scene for the application, it is the scene that is analyzed most thoroughly
in the subsequent sections.
The two views of the Gnistängstunneln scene are shown in Figure 6.1 and the warped
view is shown in Figure 6.2. Computing the errors gives Ecam ≈ 0.427 = 42.7% and
Ewarped ≈ 0.253 = 25.3%. Thus, the resulting error reduction is R ≈ 0.407 =
40.7%. The resulting error of the homography-based warping approach mentioned
in Section 1.1 and shown in Figure 1.7 is Ewarped,hom ≈ 0.255 = 25.5% and the error
reduction is thus Rhom ≈ 0.403 = 40.3%. Thus, there is only a minor difference
between the two methods but the homography-based warping method has severe
artifacts/distortions. The original source code for the homography-based warping
method is missing and as a consequence the method will not be evaluated on the
other data. In any case, note that the Lseq diagram in both warped views differs
somewhat compared to the Lseq diagram in the street view. Either way, in both
warped views there is a higher proportion of road and sky, which is probably the
main cause of the error reduction. The error could probably be reduced further by
taking into account the Bidirectional Reflectance Distribution Function (BRDF) for
asphalt.

(a) View of the Gnistängstunneln scene
above the road. Here the height is h ≈
7m

(b) View of the Gnistängstunneln scene
at road level.

Figure 6.1: Two views of the Gnistängstunneln scene. For the view above the
road, Lseq ≈ 65.33cd/m2, and for the road level view, Lseq ≈ 114.10cd/m2. Note
that there is a large time difference between the two images, which may overestimate
or underestimate the differences in Lseq.

86

6. Results

Figure 6.2: Lseq in warped view for the Gnistängstunneln scene. Here, c̃ =
(tx, ty, tz)T = (−7.5, 5.5, 0.0)T and θ = (θx, θy, θz)T = (3.78◦, 6.29◦, 0.0◦)T . The
measured luminance is Lseq ≈ 85.18cd/m2.

The second scene in the evaluation is referred here to as Fiskholmsmotet Mid. In
this case the images were first captured above the road, slightly right of the middle
and then at road level on the left side. The two views are shown in Figure 6.3 and
the corresponding warped view is shown in Figure 6.4. In this case the errors are
Ecam ≈ 0.289 = 28.9% and Ewarped ≈ 0.061 = 6.1%. The error reduction is thus
R ≈ 0.788 = 78.8%. Note that in this case the Lseq value for the warped view is
overestimated. This is mainly because the Lseq region is not centered correctly. The
centering of the Lseq region in the warped view depends on the depth value used
when warping the point at which the Lseq diagram is centered in the original view.
The depth value is set to the distance to the center point D. Here D = 73 was used
(which is close to the actual distance). However, by using for instance D = 100,
the Lseq region is closer to being centered correctly as shown in Figure 6.5. Note
that in this case the Lseq value is not overestimated but the error reduction has
decreased to RD=100 = 0.547 = 54.7%. A probable cause of this error is that the
field of view depth map does not take into account occlusions. Therefore, although
the distance to the truck on which the Lseq diagram is centered on may be D = 73,
the depth value that should be used could instead be the absolute distance on the
ground plane not considering occlusions (i.e. the distance assuming there would not
be a truck in the scene). The error in the centering could also be caused by errors
in the depth map (for instance if the pitch angle θx is underestimated then the Z
values in the scene are overestimated). In summary, it is important to center the
diagram correctly in the warped view to avoid overestimating the Lseq value.

87

6. Results

(a) View above the road (h ≈ 9.2m) in
the Fiskholmsmotet Mid scene.

(b) View at road level in the
Fiskholmsmotet Mid scene.

Figure 6.3: Two views of the Fiskholmsmotet Mid scene. For the view above the
road, the luminance is Lseq ≈ 176.93cd/m2 and for the road level view the luminance
is Lseq ≈ 249.12cd/m2.

Figure 6.4: Lseq in the warped view for the Fiskholmsmotet Mid scene.
Here the translation and rotation was approximated to be, c̃ = (tx, ty, tz)T =
(−11.0, 7.6, 0.0)T and θ = (θx, θy, θz)T = (3.5◦,−2.0◦, 0.0◦)T . The measured lu-
minance is Lseq ≈ 264.43cd/m2. In this case the luminance value is overestimated
compared to the road level luminance value which is Lseq ≈ 249.12cd/m2.

Figure 6.5: Lseq in the warped view for the Fiskholmsmotet Mid scene when setting
D = 100 instead of D = 73. The measured luminance is Lseq ≈ 216.79cd/m2.

The third scene analyzed in this section is the Fiskholmsmotet Left scene. As shown

88

6. Results

in Figure 6.6, the images used in this comparison mostly differ by vertical translation;
the view above the road is almost directly above the view at road level. The warped
view is shown in Figure 6.7 (note that D = 100 was used in this case). Here the
errors are Ecam ≈ 0.260 = 26.0% and Ewarped ≈ 0.106 = 10.6%. The error reduction
is thus R ≈ 0.594 = 59.4%.

(a) View of the Fiskholmsmotet Left
scene from above the road (at h ≈ 9.2m).

(b) View at road level in the
Fiskholmsmotet Left scene.

Figure 6.6: The two views of the Fiskholmsmotet Left scene. For the view above
the road, the luminance is Lseq ≈ 184.31cd/m2 and for the road level view the
luminance is Lseq ≈ 249.12cd/m2.

Figure 6.7: Lseq in the warped view for the Fiskholmsmotet Left scene. Here the
translation and rotation is approximately c̃ = (tx, ty, tz)T = (−4.0, 7.6, 0.0)T and θ =
(θx, θy, θz)T = (4.0◦,−5.0◦, 0.0◦)T . The measured luminance is Lseq ≈ 222.80cd/m2.

The fourth scene included in this evaluation is the Lindholmen West scene, shown
in Figure 6.8 and the corresponding warped view is shown in Figure 6.9. Here,
Ecam ≈ 0.133 = 13.3%, Ewarped ≈ 0.059 = 5.9% and R ≈ 0.554 = 55.4%. Note that
the centering of the Lseq diagram in the warped view is slightly wrong but despite
this, the Lseq diagram approximates the Lseq diagram for the road level view quite
well.

89

6. Results

(a) View of the Lindholmen West scene
from above the road. The height above
the road surface is h ≈ 8.4m.

(b) View at road level in the Lindholmen
West scene.

Figure 6.8: The two views of the Lindholmen West scene. For the view above the
road, the luminance is Lseq ≈ 285.83cd/m2 and for the road level view the luminance
is Lseq ≈ 329.64cd/m2.

Figure 6.9: Lseq for the warped view of the Lindholmen West scene. Here the
translation and rotation is approximately c̃ = (tx, ty, tz)T = (−7.2, 6.8, 0.0)T and
θ = (θx, θy, θz)T = (3.5◦, 3.0◦, 0.0◦)T respectively. The measured luminance is Lseq ≈
310.11cd/m2.

Finally, the result is also presented for the Lindholmen East scene. The two original
views of the scene are shown in Figure 6.10 and the result after warping is shown
in Figure 6.11. In this case, the errors are Ecam ≈ 0.133 = 13.3% and Ewarped ≈
0.019 = 1.9%. The error reduction is as high as R ≈ 0.852 = 85.2%. Note however
that the warped view contains some artifacts due to errors in the estimated depth
map.

90

6. Results

(a) View of the Lindholmen East scene
from above the road. In this case the
height above the road surface is h ≈
8.4m.

(b) View at road level in the Lindholmen
West scene.

Figure 6.10: Two views of the Lindholmen East scene. The luminance values are
Lseq ≈ 195.44cd/m2 and Lseq ≈ 224.70cd/m2 for the view above the road and the
view at road level respectively.

Figure 6.11: Lseq for the warped view of the Lindholmen East scene. The trans-
lation is approximately c̃ = (tx, ty, tz)T = (8.5, 6.8, 0.0)T and the rotation is ap-
proximately θ = (θx, θy, θz)T = (3.0◦,−1.5◦,−0.5◦)T respectively. The measured
luminance is Lseq ≈ 220.36cd/m2.

The results of the comparison are summarized in Table 6.1.

Scene Lcam Lstreet Lwarped Ecam Ewarped R
Gnistängstunneln 65.33 114.10 85.18 42.7% 25.3% 40.7%
Fiskholmsmotet Mid 176.93 249.12 264.43 28.9% 6.1% 78.8%
Fiskholmsmotet Left 184.31 249.12 222.80 26.0% 10.6% 59.4%
Lindholmen West 285.83 329.64 310.11 13.3% 5.9% 55.4%
Lindholmen East 195.44 224.70 220.36 13.3% 1.9% 85.2%

Table 6.1: Summary of the Lseq values (in cd/m2) and the corresponding error
values and error reduction metric for different scenes.

91

6. Results

6.3 Effect of Inpainting
As previously mentioned, inpainting is an optional step in the pipeline. It is mostly
a way to improve the visual quality. However, it is of interest to also investigate how
inpainting affects the Lseq error reduction and if it is worth the effort. The effect of
inpainting on the Lseq value is thus analyzed for the scenes presented in Section 6.2.
The inpainted versions of the warped views for the Gnistängstunneln scene and the
scenes at Fiskholmsmotet and Lindholmen are shown in figures 6.12 to 6.16. A
comparison of the Lseq values and the error reduction metrics R for the inpainted
warped views and the warped views with no inpainting is presented in Table 6.2.
Overall it can be noted that the Lseq values are very similar and thus that the rates of
error reduction are about the same. In those cases where the result has improved, it
is an improvement of ≤ 1%. Considering the extra computational cost of inpainting
(which is discussed in Section 6.5), it is certainly not worth the effort.

Figure 6.12: Inpainted version of the warped view at the Gnistängstunneln scene.
Here the measured luminance is Lseq ≈ 85.65cd/m2.

Figure 6.13: Inpainted version of the warped view at the Fiskholmsmotet Mid
scene. For the inpainted image the measured luminance is Lseq ≈ 264.34cd/m2.

Figure 6.14: Inpainted version of the warped view at the Fiskholmsmotet Left
scene. The measured luminance is Lseq ≈ 222.61cd/m2.

92

6. Results

Figure 6.15: Inpainted version of the warped view at the Lindholmen West scene.
In this case the measured luminance is Lseq ≈ 309.68cd/m2.

Figure 6.16: Inpainted version of the warped view at the Lindholmen East scene.
Lseq ≈ 220.34cd/m2 in this case.

Scene Lno inpaint Linpaint Rno inpaint Rinpaint

Gnistängstunneln 85.18 85.65 40.7% 41.7%
Fiskholmsmotet Mid 264.43 264.34 78.8% 78.9%
Fiskholmsmotet Left 222.80 222.61 59.4% 59.1%
Lindholmen West 310.11 309.68 55.4% 54.4%
Lindholmen East 220.36 220.34 85.2% 85.0%

Table 6.2: Comparison of Lseq values and rates of error reduction for the warped
views with or without inpainting. The inpainting radius chosen was 3.

6.4 Effect of depth map
The most demanding and complicated part of the implementation is the depth map
estimation. It is therefore important to analyze the effect that a depth map has
on the warped view and the resulting error reduction. This is done by comparing
the estimated depth map with a reference depth map for some scenes and also by
changing the resolution of the depth map (the number of distinct depth levels). As
previously mentioned, the reference depth maps were created manually in GIMP.
This was done based on the field of view depth map. The reference depth maps
do not contain the correct depth for all of the objects in the scene as the depth
can in some cases be quite difficult to define manually, besides, the proposed depth
estimation method is not intended to recover the depth of objects such as trees or
terrain that have more ambiguous depth.

93

6. Results

6.4.1 Comparison with reference depth maps
A comparison of the proposed depth map resulting from the proposed depth estima-
tion method and the reference depth map for the Gnistängstunneln scene is shown
in Figure 6.17. From the figure it can be noted that the proposed depth estimation
method fails to recover the depth of several vertical objects in the scene such as the
lamps and the sign on the left side of the image. Furthermore, the depth for the
pole was not correctly recovered using the proposed method.

(a) The depth map created for the
Gnistängstunneln scene using the pro-
posed depth estimation method.

(b) Reference depth map for the
Gnistängstunneln scene.

Figure 6.17: The depth maps for the Gnistängstunneln scene. Zfar = 250 for the
two depth maps.

The warped view using the reference depth map is shown in Figure 6.18. In this
case the error reduction has increased from R ≈ 40.7% to R ≈ 45.8%. Note however
that this reduction of the error is probably mostly due to the larger Lseq region in
the this image compared to the warped image based on the estimated depth map.
This implies that the current method of finding the Lseq region in the warped image
needs to be replaced by a better one. Regardless, the increase in the reduction of
the Lseq error is relatively minor.

Figure 6.18: Warped view of the Gnistängstunneln scene that results when using
the reference depth map. Here the luminance is Lseq ≈ 87.65cd/m2

94

6. Results

A reference depth map is also available for the Fiskholmsmotet Left scene. The two
depth maps (estimated and reference) are shown in Figure 6.19. It can be noted that
the proposed depth estimation method does not find any vertical depth region. This
is because the MSER parameters were set in such a way as to avoid false detections.
It is probably possible to tweak the parameters in order to obtain a better depth
map estimation but the need to tweak (many) parameters highlights a weakness in
the method.

(a) The depth map created for the
Fiskholmsmotet Left scene using the pro-
posed depth estimation method.

(b) Reference depth map for the
Fiskholmsmotet Left scene.

Figure 6.19: The depth maps for the Fiskholmsmotet Left scene. In this case
Zfar = 150.

As shown in Figure 6.20, the estimated Lseq value using the reference depth map
is slightly lower than the Lseq value shown in Figure 6.7. The Lseq error reduc-
tion is Rtrue,warped ≈ 42.7% when using the reference depth map compared to
Rwarped ≈ 59.4% when using the estimated depth map. Although the proposed
depth estimation method yields a better result in this case, it might not always be
the case. It is still a good idea to use an as accurate depth map as possible to get a
more accurate view transformation.

Figure 6.20: Warped view of the Fiskholmsmotet Left scene using the reference
depth map. Here Lseq ≈ 211.98cd/m2.

The final scene for which a reference depth map is available is the Lundbytunneln
scene (see [65]). For this scene only the view above the road shown in Figure 6.21
is available and thus no comparison of the Lseq values or the error reduction can

95

6. Results

be done. However, it is still important to compare the depth maps considering
that this scene contains a tunnel and is thus the type of scene that is important
for the application. As shown in Figure 6.22 there is a major difference in quality
between the estimated depth map and the reference depth map. The proposed depth
estimation method has several flaws in this case.
The first flaw is that the method works poorly when it comes to finding large struc-
tural elements in the scene. In this case there are walls on both sides of the road,
the tunnel opening is directly cut into the mountain and there is terrain and vege-
tation at a significant height above the road surface. The second flaw is that the the
method does not yet handle the case when there are two tunnel openings and two
clearly separated road regions. Finally, the tunnel opening shape is a combination
of a rectangular part and a semi-circular part but the current implementation only
works for rectangular tunnel shapes. For this specific scene some user interaction
can be useful. For instance, each wall can be defined by a polygon with four points
and the depth can be drawn using vertical lines as was done for when defining the
depth for the tunnel walls (refer back to Section 4.8.2).

Figure 6.21: View of Lundbytunneln above the road. The measured luminance is
Lseq ≈ 47.60cd/m2

(a) The depth map created for the
Lundbytunneln scene using the proposed
depth estimation method.

(b) Reference depth map for the Lundby-
tunneln scene.

Figure 6.22: The depth maps for the Lundbytunneln scene. In this case Zfar =
150.

96

6. Results

The resulting warped views are shown in figures 6.23 and 6.24. There is a major
difference in quality between the two warped views. Although the road level Lseq
value is unknown, it is much more probable that the warped view using the reference
depth map gives a closer result (or at least the overestimation of the Lseq value can
be avoided). After all, the Lseq diagram in Figure 6.23 is centered above the tunnel
opening (due to the faulty depth estimation) instead of being centered at a point
inside the tunnel opening as in Figure 6.24.

Figure 6.23: Warped view of Lundbytunneln (using estimated depth map). Here,
c̃ = (tx, ty, tz)T = (6.8, 7.7, 0.0)T and θ = (θx, θy, θz)T = (5.0◦,−1.5◦,−1.0◦)T . The
measured luminance is Lseq ≈ 64.31cd/m2.

Figure 6.24: Warped view of Lundbytunneln (using the reference depth map).
The measured luminance is Lseq ≈ 50.28cd/m2.

6.4.2 Changing the resolution of the depth map

The warped views presented so far all use depth maps with N = 28 = 256 unique
values stored in the look-up table. This is a convenient value to use considering
that a depth map typically uses 8 bits and 8-bit images are easy to visualize. It is
entirely possible to use a higher depth resolution (higher value of N) but the depth
map needs to be stored in a 16-bit format, thus doubling the storage requirement.
As shown in Table 6.3, this is generally not worth it. In most cases a higher N gives
a worse result.

97

6. Results

N Lseq R
256 85.18 40.7%
512 84.78 39.9%
1024 85.47 41.3%
2048 84.74 39.8%

Table 6.3: Influence of depth resolution N on Lseq and on the error reduction R.

6.5 Computational Performance

Another important aspect in the evaluation of the implementation is the compu-
tational performance. Currently, the camera used in the final product runs at 70
fps, which means it captures series of four images with different exposure times 17.5
times per second. The luminance is computed for each series of four images. Under
the assumption that the computer in the system only spends its’ computational
power on warping the view and evaluating the Lseq value in the warped view, the
available computation time is 1s/17.5 ≈ 0.057s = 5.7ms. However, since the system
uses traffic compensation it means that a depth map for a scene can be computed
just once and be re-used when warping the images. Furthermore, as discussed in
chapter 7, an alternative is to warp back the Lseq diagram defined in the warped
view back to the original view. In any case, the computational performance for the
current implementation is evaluated and analyzed in this section.
In total the time required to run the program for the Gnistängstunneln scene is
approximately 4.630s. Note however that the program contains many redundant
parts and has not been optimized. What is more interesting than absolute value
(which will differ depending on the computer hardware anyway) is the computation
time for specific parts of the implementation.
The computational time (both in seconds and percentage of total time) for most
parts of the program are listed in Table 6.4 (for a detailed description of the differ-
ent parts in the implementation refer back to chapter 4). In total the parts listed
correspond to 90.93% of the program running time. The depth map estimation takes
in total around 3.671s and corresponds to 79.29% of the running time. Once the
depth map for the scene has been estimated, the warping and the Lseq computa-
tion in the warped image (including defining the Lseq region in the warped image)
takes 0.36s = 36ms. This is only 7.7% of the computational time. Although the
time required for warping, defining the Lseq region and computing the luminance
exceeds the desired 5.7ms (of course, the computation time will differ when using
the hardware in the product), the computation can be simplified by warping back
the luminance region to the original view as discussed in chapter 7.
Also note that the values presented in Table 6.4 are for the case of no inpaint-
ing. When inpainting is used the computation time increases to around 40s, which
combined with the very minor difference in Lseq value makes inpainting entirely
redundant.

98

6. Results

Part of the implementation Computation time (s) Computation time (%)
Luminance for original and

road view 0.174 3.76%

Line segment detection 0.272 5.88%
MSAC 0.050 1.08%

MSER and bounding
rectangle filtering 0.594 12.85%

HFS 0.642 13.87%
Sky & Road Region Detection 0.101 2.19%
Finding vertical depth regions 1.609 34.74%

Finding tunnel outline 0.280 6.05%
Depth sets and

refinement 0.015 0.33%

Finding tunnel walls 0.034 0.73%
Field of view depth 0.050 1.07%

Adding tunnel wall depth 0.005 0.10%
Adding depth for other regions 0.019 0.42%

Warping first image and
creation of masks 0.053 1.14%

Warping other images 0.039 0.84%
Warped luminance image 0.024 0.52%
Lseq region in warped image 0.243 5.33%

Lseq computation in
warped image 0.001 0.03%

Total 4.630 100%

Table 6.4: Computation time for different parts in the code.

99

6. Results

100

7
Discussion and Conclusion

In this report a method of Lseq error reduction for tunnel scenes is proposed. The
proposed method uses Depth Image Based Rendering to warp the original view of the
scene above the road, down to a virtual road level view of the scene. Warping using
Depth Image Based Rendering requires two main components: the camera pose for
the virtual view and a depth map for the original view. The camera pose can be
obtained by measurements in the scene but the depth map is usually far harder to
obtain. Since a depth map for a specific scene is rarely available, a monocular depth
estimation method based on depth from field of view and vertical region detection
has also been proposed and evaluated.
The method was evaluated on different scenes and the Lseq error reduction was more
than 40%. However, the proposed approach has several flaws, including occasional
major errors in the depth map estimation (compared to ground truth depth maps),
flaws in the Lseq diagram in warped views and a long computation time. It is
therefore important to discuss possible ways to improve the current implementation
and also alternative approaches to solving the problem.

7.1 Improvements in the depth map estimation
The proposed depth estimation method has several flaws, including the need to tune
many parameters, sensitivity to false detections, failure to recover more structural
scenes and computational complexity. Several potential ways to improve the depth
map estimation have already been mentioned in the previous chapters.
Currently only the MSERs detected in the next darkest exposure image are used
when finding potential vertical depth regions in the scene. By combining the MSERs
detected in all of the images it would be possible not only to detect more vertical
depth regions but also to reduce the number of false detections.
The proposed region classification method based on line histograms is also flawed
since it fails to detect many of the regions with vertical depth and has a high
number of misclassifications. More experimentation can be done to improve the
region classification. The misclassifications are however partially also caused by
incorrect segmentation of the scene using HFS, leading to incorrect road region
and sky masks. This can be partially solved using fine-tuning of HFS and MSER
parameters but both of these methods are difficult to tune since they require setting
many parameters.
Once a region has been classified as "Vertical" it is segmented into foreground and
background using GrabCut. Currently a GrabCut mask with rectangular shape is

101

7. Discussion and Conclusion

defined for each vertical region. However, in some cases the region is far better
approximated by a rotated rectangle. Creating a GrabCut mask based on a rotated
rectangle would lead to a better approximation of the region shape. An even better
way to improve the approximation of the region shape would be to trace the region
outline using the line segments in the region.
Another source of error in the depth map is incorrect grouping of depth regions
into depth sets. It would probably make much more sense to group depth regions
together based on possible connecting line segments rather than a threshold.
As mentioned in Section 6.4.1, the proposed depth estimation method fails to detect
large structural objects in the scene, for instance long walls or a tunnel openings
directly cut into a mountain. It would be possible to detect larger objects in the
scene by increasing the maximum area Amax for the MSER algorithm but that may
lead to new potential MSER that can be misclassified as vertical. Furthermore, the
current region classification system tends to fail to classify large regions as vertical
because they contain many more line segments (with many different orientations)
compared to small regions. It is entirely possible that combining the line histogram
classification with vanishing point detection would lead to a better result. After all,
a vertical vanishing point would most likely indicate that the region is vertical. In
any case, if a failure to detect large structural elements in a scene occurs it may be
a good idea to manually create polygons approximating the regions. The depth can
then by drawn using vertical depth lines similarly to how was done when drawing
the tunnel wall depth in Section 4.10.2.
Another flaw in the current depth estimation method is that the tunnel wall depth is
only estimated correctly under the assumption that the tunnel shape is rectangular.
In reality however there are many tunnels with non-rectangular shapes. This issue
can be solved by first detecting the correct tunnel shape and then implementing
algorithms to find the tunnel walls for different shapes.
Finally, the current method assumes that there is only one tunnel opening visible
in the scene but this is not always the case. An easy solution to the problem is to
find the correct bounding rectangle (or other shape) for the second tunnel opening.
This however requires knowledge of the location of the second tunnel opening in the
image.
There may be some ways to reduce the computation time required for the depth map
estimation. As shown in Section 6.5, roughly one third of the computational cost is
dedicated to finding potential regions with vertical depth. The most computation-
ally demanding method/algorithm in this part of the code is GrabCut. GrabCut
could however be replaced (at the cost of a slightly worse region shape approxima-
tion) by another foreground/background segmentation method such as Watershed
Segmentation (which is significantly faster). Another way to reduce the computa-
tion time is to store the line segments in a grid structure. Currently, to find the line
segments within each MSER requires searching through a list of all line segments.
However, if the line segments would be stored in a grid instead, then the search
would be limited to only the parts of the grid where the MSER is located. This
would greatly speed up the search. Finally, the computation time required for HFS
can be greatly reduced by using the GPU/CUDA implementation of the algorithm
rather than the CPU implementation.

102

7. Discussion and Conclusion

7.2 Reducing the computation time

Currently, the computation time required for the Lseq estimation is many times more
than what is available in the product. Even if the performance requirements would
be slightly reduced by computing Lseq less often and thus dedicating more time to the
computation, there still would not be enough time to run the whole implementation.
However, as previously mentioned, the system uses traffic compensation. This means
that in most practical cases the scene can be assumed to be static (unless the camera
is moved of course). The assumption of a static scene implies that the depth map
for a scene can be created once and used each time the image needs to be warped.
Furthermore, under the assumption of a constant depth map and that the view
is warped to the same camera pose every time, the computation can be further
simplified. After all, each warped image will have the same size as the previous one
and each time the image will be warped in the same way (have the same warped
coordinates as the previous image). Moreover, the mask defining pixels with valid
values in the warped image can be created once and re-used each time. The Lseq
diagram can also be pre-computed and applied on the warped images. Finally, there
is also the possibility to warp back the Lseq diagram to the original camera view
and calculating the luminance value in the original view. After this warped back
Lseq diagram has been computed, it can be stored and re-used. Thus in summary,
the computation time can be greatly reduced by pre-computation and it should
be entirely possible to do computation of the Lseq value within the assigned time
slot. Pre-computation also implies greater flexibility in choosing a depth estimation
method and in defining a more correct Lseq diagram in the warped view (for instance
re-centering the diagram if it is centered incorrectly).

7.3 Future Work

As mentioned in Section 7.1, there are many ways to improve the proposed depth
map estimation method. However, an alternative is to implement an already existing
depth map estimation method. As mentioned in Chapter 2, it is probably best to
use a geometrical depth estimation method. A suggestion is to use the line-tracing
depth estimation method proposed by Jung et al.. If supervised machine learning is
a possibility then the methods/algorithms proposed by Zhang and Yan in [26] or [9]
could be implemented. These two methods yield very good depth estimation results.
Since the depth map would be pre-computed there is no need to worry about the
computational performance for the method chosen.
In Section 7.2 it was mentioned that the ultimate reduction of computation time can
be achieved by computing the Lseq value in the original view using the warped back
Lseq diagram. This method of measuring the Lseq value has not been implemented
yet but it would not require a lot of work. It can be done by using the warped depth
map and applying an inverse warping transformation in two steps as follows: Back-
projecting the warped 2D coordinates for the Lseq region masks using the warped
depth and the inverse of the camera matrix for the warped view, i.e. P ′−1, and then
forward projecting the 3D coordinates (X ′, Y ′, Z ′) using the original camera matrix

103

7. Discussion and Conclusion

P . Note that before warping back the Lseq diagram it might be a good idea to find
a better and more reliable method to define it in the warped view or to re-center
the diagram manually.
An obvious direction for future work is to gather more measurement data and eval-
uate the proposed approach on this data. Ideally the data should be gathered at
more scenes, specifically at scenes where there is an easy way to obtain both a view
of the scene from above the road and a view at road level. Since the view of the
scene from road level is usually hard to obtain for a pedestrian it might be a good
idea to instead take images of the scene in a car similarly to how it was done for
the Gnistängstunneln scene. This approach has the added benefit that the effect
of the windscreen on the Lseq measurement can be included. Ideally the measure-
ments should be done for tunnels, which is not always possible. However, since the
luminance measurement product will be installed at a few tunnel sites in the near
future, such measurements may become available. So far all of the measurements
presented were gathered when the weather was sunny. However, it is important to
study the effectiveness of the proposed method for different weather conditions such
as partially cloudy, entirely cloudy, wet/rainy weather, wet road but sunny and so
on. It may be the case for instance that there is not a large difference in Lseq values
between the views when it is cloudy and that the proposed method in that case does
not yield a significant reduction of the error.
The final direction of future work is to study the Bidirectional Reflectance Distribu-
tion Function (BRDF) for asphalt, both in the case of dry asphalt and in the case of
wet asphalt. This was originally going to be a part of the project but there was not
enough time to study this problem in detail. The study could involve estimating
the BRDF as a function of height or angle and then applying the BRDF to the
luminance computation to obtain a higher reduction of the Lseq error.

7.4 Conclusion
In conclusion, the proposed warping method in its’ current implementation reduces
the Lseq error significantly. The error reduction is close to the error reduction ob-
tained using ground truth depth maps. Even though the implementation has many
flaws, it is perfectly viable for implementation in the luminance measurement system
using pre-computation. The best way to reduce the Lseq error further is probably
to apply the BRDF for asphalt on the luminance measurement. Using better depth
maps only reduces the error slightly but on the other hand wrong parameters and
false detection of depth regions may degrade the result of the proposed depth esti-
mation method. It is therefore recommended to switch to a more robust and more
reliable depth estimation method or alternatively allow for some user interaction to
improve the estimated depth maps.

104

Bibliography

[1] ITS JPO Website Home Page [Online]. Available:
https://www.its.dot.gov/about/faqs.htm

[2] W. Adrian et al., "Guide for the Lighting of Road Tunnels and Underpasses,",
CIE, 2004.

[3] K. Jonsson et al., "Final report - Traffic compensated luminance estimation,"
Cipherstone Technologies AB, SP and University of Gothenburg, Göteborg,
Västra Götaland, Final Rep., 2015.

[4] (2017, June). Göteborg, Västra Götalands län - Google Maps [Online]. Available:
https://www.google.com/maps/@57.6763654,11.8954671,3a,57.6y,180.22h,79.3
1t/data=!3m6!1e1!3m4!1sNrfQF0uwq0iS-9snXyg3Hg!2e0!7i13312!8i6656

[5] R. Szeliski, Computer Vision Algorithms and Applications Szeliski. London,
UK: Springer, 2011.

[6] T. Akenine-Möller, Real-Time Rendering, 3rd ed. Miami: CRC Press, 2008.
[7] R. Hartley and A. Zisserman, Multiple View Geometry in computer vision, 2nd

ed. Cambridge, UK: Cambridge University Press, 2003.
[8] H. Shum and S. B. Kang, "Review of image-based rendering techniques," in

Proc. SPIE 4067, Visual Communications and Image Processing 2000, 2000
©SPIE. doi: 10.1117/12.386541

[9] S. Zhang and S. Yan, "View Transformation based on a Single Outdoor Image,
"IJARS, vol. 10, no. 5, pp. 225-233, May, 2013.

[10] A. Criminsi et al., "Single View Metrology," IJCV, vol. 40, no. 2, pp. 123-148,
Nov., 2000.

[11] G. Wang et al., "Camera Calibration and 3D reconstruction from a single view
based on scene constraints," IVC, vol. 23, no. 1, pp. 311-323, Mar., 2005.

[12] C. Fehn, "Depth-image-based rendering (DIBR), compression, and transmission
for a new approach on 3D-TV," in Proc. SPIE 5291, Stereoscopic Displays and
Virtual Reality Systems XI, San Jose, CA, 2004, pp. 92-104.

[13] S. M. Muddala et al., "Virtual view synthesis using layered depth image gener-
ation and depth-based inpainting for filling disocclusions and translucent dis-
occlusions," JVCIR, vol. 38, pp. 351-366, July, 2016.

[14] Y. Zhao et al., "An Overview of 3D-TV System Using Depth-Image-Based Ren-
dering," in 3D-TV System with Depth-Image-Based Rendering Architectures,
Techniques and Challenges. New York: Springer, 2013, ch. 1, pp. 3-35.

[15] A. Telea, "An Image Inpainting Technique Based on the Fast Marching
Method," in JGT, vol. 9, no. 1, pp. 23-34, Apr., 2004.

[16] A. Saxena et al., "Learning 3-D Scene Structure from a Single Still Image," in
2007 IEEE 11th Int. Conf. Computer Vision., Rio de Janeiro, 2007, pp. 1-8.

105

Bibliography

[17] S. M. Kazmi et al., "Exploiting a scene calibration mechanism for depth estima-
tion," in 2012 3rd Int. Conf. Image Processing Theory, Tools and Applications.,
Piscataway, NJ, 2012, pp. 421-425.

[18] S. Haque et al., "Gaussian-Hermite moment-based depth estimation from single
still image for stereo vision," JVCIR, vol. 41, pp. 281-295, Nov., 2016.

[19] S. Zhuo and T. Sim, "Defocus map estimation from a single image," Pattern
Recognition, vol. 44, no. 9, pp. 1852-1858, Sept. 2011.

[20] D. Zhao et al., "Depth map extraction based on geometry," in 2012 Proc. IEEE
Southeastcon., Orlando, FL, 2012, pp. 1-5.

[21] S. Battiato et al., "3D stereoscopic image pairs by depth-map generation," in
Proc. 2nd International Symposium 3D Data Processing., Thessaloniki, 2004,
pp. 124-131

[22] Y. Fan et al., "A 2D-to-3D Image Conversion System Using Block Slope Pattern
Based Vanishing Point Detection Technology," in 2012 International Symposium
on Computer, Consumer and Control., Taichung, 2012, pp. 321-324.

[23] Y. J. Jung et al., "A novel 2D-to-3D conversion technique based on relative
height-depth cue," in Proc. SPIE 7237, Stereoscopic Displays and Applications
XX., 2009 ©SPIE. doi: 10.1117/12.806058

[24] Y. Salih and A. S. Malik, "Depth and Geometry from A Single 2D Image Using
Triangulation," in 2012 IEEE International Conference on Multimedia and Expo
Workshops., Melbourne, VIC, 2012, pp. 511-515.

[25] D. Hoiem et al., "Recovering Occlusion Boundaries from an Image," IJCV, vol.
91, no. 3, pp. 328–346, Feb., 2011.

[26] S. Zhang and S. Yan, "Depth estimation and occlusion boundary recovery from
a single outdoor image," Opt Eng, vol. 51, no. 8, Aug., 2012.

[27] R. O. Duda and P. E. Hart, "Use of the Hough transformation to detect lines
and curves in pictures," Communications of the ACM, vol. 15, no. 1, pp. 11-15,
Jan., 1972.

[28] J. Matas et al., "Robust Detection of Lines Using the Progressive Probabilistic
Hough Transform," CVIU, vol. 78, no. 1, pp. 119-137, Apr., 2000.

[29] R. G. von Gioi et al., "LSD: A Fast Line Segment Detector with a False Detec-
tion Control," TPAMI, vol. 32, no. 4, pp. 722-732, Apr., 2010.

[30] E. J. Chappero et al., "Vanishing Point estimation from monocular images".
[31] H. Kong et al., "Vanishing point detection for road detection," in 2009 IEEE

Conf. Computer Vision and Pattern Recognition., Miami, FL, 2009, pp. 96-103.
[32] Z. Wu et al., "A Novel Line Space Voting Method for Vanishing-Point Detection

of General Road Images," vol. 16, no. 7, pp. 948-960, June, 2016.
[33] M. Nieto and L. Salgado, "Real-time robust estimation of vanishing points

through nonlinear optimization," in Proc. SPIE 7724, Real-Time Image and
Video Processing 2010., Brussels, 2010, pp. 772402-7724014.

[34] G. W. Zack et al., "Automatic measurement of sister chromatid exchange fre-
quency," JHC, vol. 25, no. 7, pp. 741-753, July, 1977.

[35] F. Meyer, "Color image segmentation," in Int. Conf. Image Processing and its
Applications., Maastricht, 1992, pp. 303-306.

106

Bibliography

[36] C. Rother et al., ""GrabCut": interactive foreground extraction using iterated
graph cuts," ACM Transactions on Graphics (TOG), vol. 23, no. 3, pp. 309-314,
Aug., 2004.

[37] M. Cheng et al., "HFS: Hierarchical feature selection for efficient image seg-
mentation," in European Conference Computer Vision., Amsterdam, 2016, pp.
867-882.

[38] J. Matas et al., "Robust wide-baseline stereo from maximally stable extremal
regions," IVC, vol. 22, no. 10, pp. 761-767, Sept., 2004.

[39] D. Nistér and H. Stewénius, "Linear time maximally stable extremal regions," in
ECCV ’08 Proc. 10th European Conference Computer Vision, Marseille, 2008,
pp. 183-196.

[40] W. Burger and M. J. Burge, "Geometric Operations," in Digital Image Process-
ing An Algorithmic Introduction Using Java, 2nd ed. London, UK: Springer,
2016, ch. 21, pp. 513-514.

[41] B. Artman. (2018, May 11). Projective geometry | Britannica.com [Online].
Available: https://www.britannica.com/science/projective-geometry

[42] J. Košecká and W. Zhang, "Video compass," LNCS, vol. 2353, pp. 476-490,
Jan., 2002.

[43] K. Sharkey and R. Beare. (2012, Janunary 27). Histogram-based Thresholding
| The Kitware Blog [Online]. Available: https://blog.kitware.com/histogram-
based-thresholding/

[44] M. Sezgin and B. Sankur, "Survey over image thresholding techniques and quan-
titative performance evaluation," JEI, vol. 13, no. 1, pp. 146-168, Mar., 2004.

[45] (2018, June 7). OpenCV: Hierarchical Feature Selection for Efficient Image
Segmentation [Online]. Available:
https://docs.opencv.org/trunk/dc/d29/group__hfs.html

[46] D. Chandler and R. Munday, A Dictionary of Media and Communication, 2nd
ed. Oxford, UK: OUP, 2016.

[47] R. J. Koshel. (2014). Luminance - AccessScience from McGraw-Hill Education
[Online]. Available:
https://www-accessscience-com.proxy.lib.chalmers.se/content/391200

[48] M. Safdar et al., "Obtaining Absolute Scene Luminance using HDR Imaging,"
LNEE, vol. 369, pp. 133-138, Jan., 2016.

[49] (2018, May 21). OpenCV API Reference - OpenCV 2.4.13.6 documentation
[Online]. Avaiable: https://www.docs.opencv.org/2.4/modules/refman.html

[50] (2018, May 25). OpenCV: cv::LineSegmentDetector Class Reference [Online].
Available: https://docs.opencv.org/trunk/db/d73/classcv_1_1LineSegmentD
etector.html

[51] M. Nieto. (2012, March 31). Vanishing point detection C++ source code |
Marcos Nieto’s Blog [Online]. Available:
https://marcosnietoblog.wordpress.com/2012/03/31/vanishing-point-
detection-c-source-code/

[52] (2018, May 22). OpenCV: cv::MSER Class Reference [Online]. Available:
https://docs.opencv.org/trunk/d3/d28/classcv_1_1MSER.html

107

Bibliography

[53] (2018, Feb 23). OpenCV: cv::hfs::HfsSegment Class Reference [Online]. Avail-
able: https://docs.opencv.org/3.4.1/d2/de0/classcv_1_1hfs_1_1HfsSegment.
html

[54] (2018, May 26). Miscellaneous Image Transformations - OpenCV 2.4.13.6 doc-
umentation [Online]. Available: https://docs.opencv.org/2.4/modules/imgproc
/doc/miscellaneou0s_transformations.html?highlight=grabcut#grabcut

[55] (2018, May 29). Inpainting - OpenCV 2.4.13.6 documentation [Online]. Avail-
able: https://docs.opencv.org/2.4/modules/photo/doc/inpainting.html

[56] (2018, May 30). Image Filtering - OpenCV 2.4.13.6 documentation [Online].
Available: https://docs.opencv.org/2.4/modules/imgproc/doc/filtering.html?h
ighlight=morphologyex#morphologyex

[57] FLIR Downloads [Online]. Available:
https://eu.ptgrey.com/support/downloads/10984/

[58] (2018, May 31). Camera calibration With OpenCV - OpenCV 2.4.13.6 docu-
mentation [Online]. Available:
https://docs.opencv.org/2.4/doc/tutorials/calib3d/camera
_calibration/camera_calibration.html

[59] (2018, May 31). Camera Calibration and 3D Reconstruction - OpenCV 2.4.13.6
documentation [Online]. Available:
https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_
3d_reconstruction.html#calibratecamera

[60] (2018). Nikon | Sport Optics | Forestry Pro [Online]. Available:
http://imaging.nikon.com/lineup/sportoptics/laser/forestrypro/index.htm

[61] (2017, June). Fiskhamnsgatan - Google Maps [Online]. Available:
https://www.google.com/maps/@57.6991065,11.9288457,3a,75y,58.65h,86.56t/
data=!3m6!1e1!3m4!1snLFiOz0iEe7XjmySkXuFxQ!2e0!7i13312!8i6656

[62] Kartor, vägbeskrivningar, flygfoton, sjökort & mycket mer på eniro.se [Online].
Available: https://kartor.eniro.se

[63] Interaktiv karta - hitta.se [Online]. Available: https://www.hitta.se/kartan
[64] (2017, July). Lundby Hamngata - Google Maps [Online]. Available:

https://www.google.com/maps/@57.7172471,11.9519538,3a,75y,44.81h,88.65t/
data=!3m6!1e1!3m4!1snttz9ssjaraDDYu3lhb3rA!2e0!7i13312!8i6656

[65] (2017, May). Lundbytunneln - Google Maps [Online]. Available:
https://www.google.com/maps/@57.7103876,11.923793,3a,75y,291.87h,80.03t/
data=!3m6!1e1!3m4!1sw_Q0ZnpYAag1cJiWU5E7ng!2e0!7i13312!8i6656

108

	List of Figures
	List of Tables
	Introduction
	Background
	Purpose
	Limitations
	Overview

	Related Works
	Theory
	Projective Geometry
	Vanishing Points
	Image Transformations
	Camera Geometry
	Virtual View Generation

	Inpainting
	Line and Line Segment Detection
	Line Segment Detector (LSD)

	Segmentation
	Thresholding
	GrabCut
	Hierarchical Feature Selection (HFS)

	Maximally Stable Extremal Regions (MSER)
	Field of view
	Depth from Field of View

	Luminance
	Equivalent Veiling Luminance

	Implementation
	Input
	Line segment detection
	Vanishing point estimation
	Maximally Stable Extremal Regions (MSER)
	Finding the tunnel opening

	Road and Sky Detection
	Hierarchical Feature Selection (HFS) Segmentation
	Thresholding
	Finding the road and sky regions

	Region classification
	Line histograms
	Classification of line histograms

	Region refinement
	Finding the tunnel outline and tunnel walls
	Finding the tunnel outline shape
	Finding the tunnel walls

	Grouping and refinement of depth regions
	Depth Map Estimation
	Depth Map based on Field of View
	Adding the tunnel walls
	Adding vertical depth regions

	The Camera Geometry
	Warping
	Inpainting

	Defining the Equivalent Veiling Luminance region
	Equivalent Veiling Luminance computation

	Data Gathering
	Camera hardware and software
	Camera Calibration
	Measurement Gathering

	Results
	Error Reduction Metric
	Reduction of Equivalent Veiling Luminance Error
	Effect of Inpainting
	Effect of depth map
	Comparison with reference depth maps
	Changing the resolution of the depth map

	Computational Performance

	Discussion and Conclusion
	Improvements in the depth map estimation
	Reducing the computation time
	Future Work
	Conclusion

	Bibliography

