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Abstract
Modern cosmology proposes the existence of some unknown substance constituting
85% of the mass of the universe. This substance has been named dark matter and
has been hypothesised to be composed of an as of yet unknown weakly interacting
particle. Recently, the use of graphene as target material for the direct detection
of dark matter has been suggested. This entails the study of the dark matter in-
duced ejection of graphene valence electrons. In this thesis, we calculate the rate
of graphene valence electron ejection under the assumption of different dark matter
models, specifically where the squared modulus of the scattering amplitude scales
like |q|2 or |q|4, where q is the momentum transfer. These models have not pre-
viously been considered. We initially derive analytic expressions for the electron
ejection rate of these models, which we then evaluate numerically through the use
of Python. The ejection rate is then plotted as a function of the electron ejection
energy. We find that the electron ejection rate declines less rapidly in the models
studied here than in the case of a constant scattering amplitude, i.e. the only case
previously studied. The main challenge in these calculations is the high complexity
of multidimensional integrals, the evaluation of which necessitated approximately
15,000 core hours.

Keywords: Dark matter, WIMP, SHM, Graphene, Scattering amplitude, Electron
ejection rate

Sammandrag
Modern kosmologi anför att det existerar någon okänd substans som utgör ungefär
85% av massan i universum. Denna substans kallas mörk materia och har hypo-
tiserats bestå av hittills okända svagt interagerande partiklar. Nyligen har bruket
av grafen som strålmål vid direkt detektion av mörk materia föreslagits. Denna
metod innebär att valenselektronutstötning i grafen som inducerats av mörk mate-
ria studeras. I följande kandidatuppsats beräknar vi elektronutstötningshastigheten
vid antagande av olika modeller för mörk materia, mer specifikt modeller där be-
loppet av spridningsamplituden i kvadrat är proportionell mot |q|2 eller |q|4, där
q är överföringsrörelsemängden. Dessa modeller har aldrig tidigare studerats. Ini-
tialt härleder vi ett analytiskt uttryck för elektronutstötningshastigheten för dessa
modeller, som vi därefter evaluerar numeriskt med hjälp av Python. Utstötning-
shastigheten plottas sedan som en funktion av elektronens utstötningsenergi. Vi
erfar att utstötningshastigheten avtar långsammare för de studerade modellerna än
då spridningsamplituden är konstant, d.v.s. det enda tidigare studerade fallet. Den
främsta utmaningen i dessa beräkningar är den höga komplexiteten i de flerdimen-
sionella integralerna, vars evaluering krävde ungefär 15 000 kärntimmar.

Nyckelord: Mörk materia, WIMP, SHM, Grafen, Spridningsamplitud, Elektronut-
stötningshastighet
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Analytisk härledning av utstötningshastigheten

Bakgrund
Under 1900-talet observerades flera kosmologiska fenomen som trots introduktio-
nen av den generella relativitetsteorin var oförklarliga. Allt fler tecken tydde på att
universum innehåller en stor mängd odetekterad massa. Med bättre teknologi växte
hypotesen om mörk materia (DM), och motsvarande DM-partiklar, fram [6].

Svagt växelverkande massiva partiklar (WIMP) är hypotetiska potentiella DM-
partiklar. De antas vara icke-baryoniska och icke-relativistiska, samt enbart inter-
agera med observerbar materia genom gravitation och svag växelverkan. WIMP-lika
partiklar förutspås finnas i en förlängning av standardmodellen genom supersymme-
tri, där det för varje fermion finns en boson med samma kvanttal, och vice versa [14].

Standard Halo Model (SHM) är en hypotetisk modell som utgår från att DM föl-
jer samma gravitationella lagar som baryonisk materia och anför att DM samlas i
hopar. Dessa hopar bildar gravitationella brunnar som baryonisk materia faller in
i. Från SHM följer att DM-densiteten är högst i mitten av galaxer och att 85% av
massan hos varje galax utgörs av DM [16].

För närvarande pågår, och planeras, experiment världen över i jakt på en DM-
partikel. Nyligen har en ny realisation av direkt detektion, en av flera detektions-
metoder, som använder tvådimensionella strålmål föreslagits. Den främsta fördelen
med denna metod är att den medför en direkt korrelation mellan DM-partikelns
infallsriktning och elektronens utstötningsriktning, information som går förlorad i
tredimensionella strålmål [20]. En detektorprototyp som kan realisera denna metod
med grafen som strålmål, PTOLEMY, är för närvarande under utveckling [21].

Syfte och avgränsningar
Syftet med följande kandidatuppsats var att beräkna utstötningshastigheten för
DM-inducerad elektronutstötning med grafen som strålmål. Utöver ett konstant
samband mellan spridningsamplitudenM och överföringsrörelsemängden q studera-
des även fallen |M|2 ∝ |q|2 och |M|2 ∝ |q|4. Enbart rent beroende av q undersöktes.
Hela projektet har genomförts i enlighet med WIMP- och SHM-hypotesen.

Analytisk härledning av utstötningshastigheten
Ett explicit uttryck för utstötningshastigheten kan härledas analytiskt utifrån kvant-
mekanisk och matematisk teori. Vi börjar med att introducera en DM-partikel med
rörelsemängd p och spinn s samt en elektron med rörelsemängd k och spinn r. Vi
kan beteckna dessa partiklars initialtillstånd vid tidpunkten t = −∞ med |i〉 samt
sluttillstånd vid t = +∞ med |f〉. Vi inför därefter tidsutvecklingsoperatorn S som
avbildar |i〉 på S |i〉 vid tidpunkten t = +∞. Matriselementet Sfi definieras enligt

Sfi = 〈f |S |i〉
V 2 , (0.1)
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Analytisk härledning av utstötningshastigheten

där 1/V 2 är en normaliseringskonstant. Övergångsannolikheten från |i〉 till |f〉 ges
enligt Pi→f = |Sfi|2. Vi kan nu definiera det differentiella tvärsnittet dσ samt den
differentiella utstötningshastigheten dR så att

dR = P

T · n
= PV

T
= vreldσ, (0.2)

där vrel är DM-partikelns initialhastighet relativt jorden och n är DM-densiteten i
fasrummet. Utstötningshastigheten kan alltså beräknas genom integration av ekva-
tion (0.2). Vidare kan matriselementet Sfi uttryckas enligt

Sfi = (2π)4δ(4)(p′ + k′ − p− k) iM√
2Ep2Ek2Ep′2Ek′

, (0.3)

där M = M(p′, k′, p, k) är elektronernas DM-inducerade spridningsamplitud [22].
Vi kan nu införa Hamiltonoperatorn i interaktionsbildenHI och motsvarande Hamil-
tondensitet H . Vidare kan initial- och sluttillståndet definieras enligt |i〉 = |p, e1〉
och |f〉 = |p′, e2〉, vilket ger Sfi enligt

Sfi =
ˆ
d3x 〈p′, e2|HS(x) |p, e1〉

ˆ ∞
−∞

dt ei(Ef−Ei)t. (0.4)

Genom projektion på enhetsvektorerna kan vi nu införa tillståndsvektorerna |k〉 och
|k′〉, som båda utgör kompletta baser för en fri elektron. Ekvation (0.3) ger då

Sfreefi = −i(2π)δ(Ef − Ei) 〈p′,k′|
ˆ
d3xHS(x) |p,k〉 (0.5)

och jämförelse av dessa ekvationer kan användas för att förenkla det uttryck för Sfi
som ges i ekvation (0.4). Vi inför dessutom rörelsemängdsöverföringen q = p−p′ =
k′ − k samt ett ortogonalt komplement till denna, v⊥el . Notera att eftersom p och k
är linjärt oberoende kan vi definieraM(p− q,k + q,p,k) =M(q,v⊥el). Detta kan
nu appliceras på ekvation (0.2) för att uttrycka den differentiella DM-inducerade
elektronutstötningshastigheten. Om vi sedan integrerar detta uttryck över q och
inför den reciproka gittervektorn ` får vi ett uttryck för vrelσ(`′, `) enligt

vrelσ(`′, `) =
ˆ
q

d3q

(2π)3 (2π)δ(Ef − Ei)

∣∣∣∣∣∣∣
ˆ

k

d3k

(2π)3ψ
∗
2(`′,k + q)M(q,v⊥el)

4mχme

ψ1(`,k)

∣∣∣∣∣∣∣
2

(0.6)
där M(q,v⊥el) = (4

√
πmχme/µeχ)

√
σ̄eFDM(q,v⊥el) [20]. Här betecknar mχ och me

massan för en DM-partikel respektive elektron, µeχ den reducerade massan, och σ̄e
ett referenstvärsnitt. Detta sätts in i ekvation (0.6), vilket ger ett uttryck för ut-
stötningshastigheten som sedan kan specificeras för utstötning av valenselektroner
i grafen genom interaktioner med DM-partiklar. Tillståndet för en utstött elektron
kan beskrivas som en plan våg i positionsrummet. Detta kan implementeras i ut-
trycket för vrelσ(`′, `), som därefter kan Fouriertransformeras från en integral över
rörelsemängden k till en integral över rumskoordinaten x. Resultatet av detta är
detsamma som Fouriertransformen ψ(`,q − kf ). Vi kan använda detta uttryck för
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Beräkning av utstötningshastigheten

att omformulera ekvation (0.6). Vi multiplicerar även med d3kf
(2π)3V för att senare

kunna summera över alla slutgiltiga elektronrörelsemängder kf. Detta ger att

vrelσ(`, `′) = σ̄e
µ2
eχ

ˆ
q

d3q

4π

ˆ

kf

d3kf

(2π)3

∣∣∣FDM(q,v⊥el)
∣∣∣2 ∣∣∣ψ̃1(`,q − kf)

∣∣∣2 × δ(Ef −Ei). (0.7)

Vi noterar att detta uttryck är ekvivalent med ekvation (5) i [20]. Slutligen summerar
vi över de fyra valenselektronerna hos grafen med hänsyn till spindegenerationen hos
varje band, vilket ger

R = 2
∑

i=π,σ1,σ2,σ3

ρχ
mχ

NCAuc

ˆ

1BZ

d2`

(2π)2d
3vg(v)vrelσi(`). (0.8)

Värden för samtliga kända storheter anges i enligthet med [20] och [23].

Hittills har vi antagit att M är oberoende av rörelsemängdsöverföringen q, i en-
lighet med [20], och definierat formfaktorn därefter. Detta behöver dock inte vara
fallet. M måste uppfylla invarians vid translation i rummet, vid tredimensionella
rotationer och vid Galileitransformationer. Under dessa villkor kanM skrivas som
en linjärkombination av 14 olika termer beroende av q, v⊥el , Se och Sχ, vilka finns
givna i [24]. Från detta följer att fallen |M|2 ∝ |q|2 och |M|2 ∝ |q|4, bland andra,
även kan beräknas.

Beräkning av utstötningshastigheten
I syfte att effektivisera den numeriska utvärderingen av utstötningshastigheten i ek-
vation (0.8) kan ett antal omskrivningar genomföras. Notera först att eftersom en-
bart kontaktinteraktioner betraktas låter vi FDM = 1. Därefter kan volymintegralen
över v skrivas om i sfäriska koordinater projicerade på överföringsrörelsemängdens
riktning. Utstötningshastigheten kan då skrivas enligt

dR

d ln(Eer)
= 2

∑
band

ρχNcAucσ̄e
mχµ2

eχ

ˆ

1BZ

d2`

(2π)2

ˆ

Ωkf

dΩkf

(2π)3
k3

f
(2π)2

qmaxˆ
qmin

d3q

4π
π

q
η(vmin)

∣∣∣ψ̃i(`,q − kf)
∣∣∣2

(0.9)
där η(vmin) definieras enligt

η(vmin) =
ˆ

Ωqv

dΩqv

ˆ
v>vmin

dvvg(v). (0.10)

Summan löper över elektronbanden i grafen π, σ1, σ2, σ3. Notera att η(vmin) kan ut-
värderas analytiskt. När dessa omskrivningar genomförts kvarstår vågfunktionerna
för valenselektronerna i grafen. Den stationära Schrödingerekvationen för vågfunk-
tionerna kan formuleras enligt

HC = Ei(`)SC, (0.11)
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Resultat

där H är en överföringsmatris och S är en överlappsmatris, för varje energiband i.
Bandenergin för respektive band kan beräknas genom att lösa ekvation (0.11). Där-
efter kan motsvarande egenvektor C beräknas. Både bandenergierna och egenvek-
torerna tabellerades över ett rutnät i det reciproka rummet. Blochvågfunktionerna
normaliserades därefter analytiskt med hjälp av de tabellerade värdena.

Efter de förberedande stegen implementerades uttrycket för ekvation (0.9), och
samtliga tabellerade värden, i Python för numerisk beräkning av utstötningshas-
tigheten. Mer specifikt genomfördes detta genom att betrakta kf i en loop. För varje
kf evaluerades en lambda-funktion för gittervektorn `. Denna integrerades sedan
över rörelsemängdsrummet q och differentialvinkeln Ωkf , vilket skapade en matris
i reciproka rummet över första Brillouinzonen. Påföljande integration över första
Brillouinzonen evaluerades som en summa multiplicerat med differentiella areaele-
mentet d2`. Detta gav den slutgiltiga numeriska evalueringen av ekvation (0.9) för
ett givet kf. Utstötningshastigheten kunde till sist plottas som en funktion av kine-
tiska energin Eer = k2

f /2me. Modifikationen av spridningsamplituden genomfördes
genom att omdefiniera formfaktorn enligt FDM = A1|q| respektive FDM = A2|q|2,
där A1 och A2 är okända modellparametrar. I dessa fall ansattes parametrarna så
att utstötningsfaktorn fick samma startvärde för samtliga fall.

Resultat
I Figur 0.1 ses den totala utstötningshastigheten för samtliga atomband som en
funktion av Eer för varje undersökt fall, dvs |M |2 ∝ 1, |M |2 ∝ |q|2 och |M |2 ∝ |q|4.

Figur 0.1: Den totala differentiella utstötningshastigheten för en inkommande DM-
partikel medmχ=100 MeV och σ̄e = 10−37cm2, för varje spridningsamplitud. Utstöt-
ningshastigheten plottas som en funktion av den kinetiska energin hos de utstötta
elektronerna, Eer. Det kan ses att utstötningshastigheten avtar långsammare för
högre potenser av |q|.
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Diskussion

Här framgår att den primära skillnaden mellan de olika fallen är att för |q| av högre
grad följer det att utstötningshastigheten avtar långsammare då Eer ökar. Vida-
re finns en oanselig skillnad i energin för vilken utstötningshastigheten maximeras
mellan de olika fallen.

Diskussion
Det är väsentligt att notera att storleken av utstötningshastigheten är godtycklig för
samtliga studerade fall, eftersom σ̄e, A1 och A2 är okända modellparametrar. Detta
innebär att komparativa slutsatser nödvändigtvis måste dras från kurvornas kva-
litativa egenskaper. Även analys av eventuell experimentell mätdata bör utgå från
kurvornas beteende snarare än storlek. Som tidigare nämnts är den huvudsakliga
skillnaden mellan de olika fallen att utstötningshastigheten avtar långsammare då
|q| har högre potens. Dessutom förskjuts kurvans maxvärde något åt höger. Dessa
skillnader är väntade eftersom |q| ökar med ökande elektronenergi, vilket utstöt-
ningshastigheten nu är mer dominant beroende av. Dessa typer av beroende har
aldrig tidigare undersökts, och implementationen av dem bidrar därför direkt till
forskning inom detektion av DM-partiklar.

En genomgående problematik för detta projekt var beräkningsrestriktioner. Ett fler-
tal metoder undersöktes och applicerades i syfte att motverka dem. Dock kvarstod
problemet i viss mån även i den slutgiltiga metoden. Initialt jämfördes olika bibliotek
för integration i Python, i syfte att finna den mest effektiva. I slutändan identifie-
rades mpmath som det med bäst prestanda, vilket sedan användes genom arbetet.
Vidare genomfördes ett försök att med hjälp av biblioteket Cython kompilera koden
som C -kod och därigenom förkorta exekveringstiden. Eftersom mpmath är skrivet
i Python gav detta ingen betydelsefull förbättring. Ett ytterligare tillvägagångssätt
var parallellisering av koden, där beräkningen fördelades över olika kf. Ytterligare
samtidig parallellisering av ` hade krävt fördelning av matriser mellan kärnor, något
som hade komplicerat programmet avsevärt.

Som tidigare nämnts har endast fall då M enbart beror av q undersökts. Mer ex-
plicit har beroende av v⊥el utelämnats. Skulle detta utelämnande hävas hade antalet
beräkningsbara interaktionstyper ökat. Konkret hade detta inneburit att interak-
tioner mellan DM-partiklar och valenselektroner i grafen i fall då DM-partiklarna
modelleras som toroida (eng. anapole), elektriska och magnetiska dipoler kan under-
sökas. Notera att detta skulle kräva en markant ökning av beräkningskapaciteten.
Vidare skulle integralen över hastighet v inte längre vara analytiskt evaluerbar.

xvii
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1
Introduction

As cosmological theory and technology have progressed the existence of undetected
matter in the universe has become increasingly apparent and ultimately irrefutable.
This unidentified substance is now known as dark matter and the exact nature of this
substance is yet to be determined. Several detection experiments are currently being
developed and performed worldwide. In order to enable accurate data analysis from
these experiments, computational simulations of interactions between dark matter
and target materials are being performed as well. In the following chapter the history
of dark matter is presented, as well as a summary of the contemporary state of dark
matter detection techniques and research. Finally, a specific detection method using
graphene as target material is explained, especially in regard to the purpose of the
following thesis.

1.1 A Brief History of Dark Matter
In 1687 Isaac Newton forever changed our understanding of the cosmos when he
published his law of gravity [2]. This theory can, in great detail, describe the plan-
etary orbits. It does, however, fail to explain the small variations observed in for
example the orbit of Mercury. This was later resolved by general relativity, published
by Albert Einstein in 1915 [3]. As astronomic knowledge progressed, astronomers
gradually developed a cosmological model of the universe. However, throughout the
19th and 20th century, astronomers continually made as of yet inexplicable obser-
vations. Slowly, a hypothesis of some unknown, invisible cosmological substance
began to form.

More and more signs of this unknown substance emerged. Astronomers studied
the uneven distribution of stars and pondered the space between them. Did the
dark regions arise due to the scarcity of stars, or some absorbing matter? While
still speculative at best, the idea of dark matter began to gain traction. The first to
attempt an estimation of the amount of dark matter was Lord Kelvin. He regarded
stellar systems in the galaxy as particles in a gas and applied the thermodynamic
models this assumption entailed. In doing this he was able to establish a relation
between the size of a galaxy and the velocity dispersion of the stars, as well as an
upper limit of the mass density. This work inspired the French astronomer Henri
Poincaré, who based on this result argued that the amount of dark matter should
be less than or equal to that of visible matter [4]. This result was later countered
by another astronomer, Fritz Zwicky, who during the 1930s studied the redshift of
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galaxy clusters. As a result of these studies, Zwicky estimated the total mass, as
well as the observable luminous mass, of the clusters. He subsequently calculated
the mass-to-light ratio to be approximately 500 [5]. Further estimations would later
be added to the list and little agreement could be found within the astronomical
community. Despite this, one thing was becoming increasingly clear: dark matter
exists [6].

As cosmological studies advanced, the evidence for the existence of invisible, unde-
tected matter accumulated. In the late 1930s, astronomer Horace Babcock studied
the rotation curve of the Andromeda Galaxy. He reported an estimated mass-to-
light ratio of 50. However, his report suggested something much more consequential.
He seemed to have discovered that the mass-to-light ratio increased radially. More-
over, Babcock measured an inexplicably high circular velocity at large radii. This
all seemed to suggest a large amount of mass in the outer parts of galaxies. A model
lacking dark matter is unable to account for these results [7]. As more powerful
technologies developed, the 1970s proved to be a revolutionary time in the field of
dark matter. Among others, astronomers Vera Rubin and Kent Ford used a new
optical spectrometer. Their results, which were later confirmed in 1978, showed that
most galaxies must contain about 6 times more mass than has been detected [8].
Concurrently, astrophysicist Ken Freeman compared the radii at which galactic ro-
tation curves were theoretically predicted to peak with photometric observations.
His remarkable findings were that the rotation curves peaked at a larger radii than
predicted, and thus concluded that galaxies must contain more mass than what
was detectable [9]. The evidence for dark matter was becoming progressively in-
disputable. As cosmology advanced, further evidence emerged in other phenomena,
such as the cosmic microwave background [10] and gravitational lensing [11].

The overwhelming evidence of the existence of undetected mass eventually prompted
a well-established use of the term dark matter (DM) as a hypothesis to explain the
discrepancy between the observable luminous matter and the matter needed to sus-
tain the gravitational attraction necessary in the outermost region of spiral galaxies.
A term that had previously been used as a vague description of some ambiguous
physical phenomenon transformed into a specific substance, with at least some well-
known properties. It was evident that DM interacts with regular matter through
gravity, but not through the electromagnetic force. Speculation regarding the ex-
act nature of the elusive substance quickly arose. The hypothesis of a DM particle
emerged. Suddenly, the DM problem was no longer strictly in the hands of astron-
omy, but particle physics as well. The Standard Model of particle physics was closely
examined in search of a potential DM particle. Unlike other particles, neutrinos are
long lived and do not interact with other matter through electromagnetic or strong
force. Based on this, neutrinos quickly became the primary DM candidate [12].
However, by the middle of the 1980s numerical calculations could be used to sim-
ulate how a large number of DM particles behave in an expanding universe. The
role of DM in the formation of large cosmological structures could be evaluated and
the results showed that neutrinos were no longer realistic as DM particles, as DM
is known to be cold and due to the extremely small rest mass of neutrinos, they are
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necessarily hot [13]. As neutrinos had been the only known feasible DM candidate,
particle physicists started to entertain the thought of extending the Standard Model.
The idea of weakly interacting massive particles emerged and quickly became the
leading hypothesis.

The history of dark matter has reflected the history of cosmological and techno-
logical progress. As the knowledge and tools of astronomy progressed, the idea of
dark matter transformed from a vague speculation of something unknown into a
well defined hypothesis, and acceptance of the DM hypothesis grew rapidly. What
remains is definite proof, i.e. detection. As of today, any still viable DM candidate
has yet to be detected. The future of particle physics will thus be determined by
the results of the countless detection experiments being performed and developed
worldwide.

1.2 Contemporary State of Dark Matter Research
In the following sections two hypotheses of the composition and distribution of DM,
as well as the current state of DM detection, is presented. Both of the described
hypotheses are assumed throughout the remainder of this thesis.

1.2.1 Weakly Interacting Massive Particles
Weakly interacting massive particles (WIMPs) are hypothetical particles. They are
assumed to interact with observable luminous matter through gravity and weak nu-
clear force only, and to be non-baryonic and cold. Non-baryonic matter is matter
that is not made up of baryons, i.e. particles composed of an odd number of quarks,
and a cold particle species is non-relativistic. WIMP-like particles are predicted
to exist through a so called supersymmetric extension of the Standard Model. Su-
persymmetry is a spacetime symmetry stating that for every fermion there exists a
boson with the same quantum numbers, and vice versa. This would entail a number
of electrically neutral, weakly interacting particles. Any such particle that is stable
could be cosmologically abundant and thus a likely DM candidate. No such particle
has as of yet been detected [14]. DM detection will be discussed in greater detail in
Section 1.2.3.

1.2.2 Standard Halo Model
As has been discussed, galaxies and galaxy clusters have been a great source for
evidence of the existence of DM. As cosmological studies advanced it became clear
that DM played an important role in the formation and structure of galaxies. In
regard to this, the so called Standard Halo Model of DM (SHM), modelling the
velocity distribution of DM particles, has been gaining wider acceptance. Working
from the widely held belief that DM obeys gravitational laws the same way as bary-
onic matter, this hypothesis states that DM clumps and clusters around galaxies,
forming gravitational wells which baryonic matter falls into. These overdensities
then contain the galaxy. Under the simplifying assumptions that the halo density
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is spherical, the DM distribution is smooth and the halo is isothermal, it can be
shown that M(r) ∝ r and ρ(r) ∝ r−2, where M(r) is the total DM mass within
the radius r and ρ(r) is the radial DM distribution. This entails that the density
of DM is largest in the center of galaxies. As it turns out, the distribution ρ(r)
approximately fits and explains the studied behaviour of the rotational curve [15].
Consequently, this implies that galaxies must consist of about 85% DM for the halo
model to conform [16].

1.2.3 Dark Matter Detection
The experimental detection of DM particles is necessary in order to confirm the
WIMP hypothesis. Since there is no electromagnetic interaction between DM and
baryonic matter, physicists are unable to observe DM by conventional means. This
does not mean DM is undetectable, even though it has yet to be detected directly.
Presently, the primary methods of DM detection are direct detection, in-direct de-
tection and collider searches [6]. Direct detection experiments search for signals
of DM–nucleus or DM–electron interactions in underground detectors. This is, for
instance, attempted in the XENON research project at the Gran Sasso National
Laboratory in Italy [17]. Indirect detection experiments search for particles, such as
photons or positrons, produced by DM annihilations in our galaxy, or in nearby satel-
lite galaxies. This is, for example, attempted using pair-conversion telescopes with
the Fermi Large Area Telescope [18]. Collider searches are performed in particle
accelerators by searching for DM production signals in the final state of proton–
proton collisions. The ATLAS detector at CERN uses the Large Hadron Collider to
attempt this method of detection [19]. None of these methods have thus far reported
any unambiguous detection of DM particles.

Very recently a new realisation of the direct detection method has been suggested.
It relies on the use of two-dimensional materials, such as graphene, as detector tar-
gets. In an experiment based on this method, the energy deposited in the detector
by DM-electron scattering can cause the ejection of valence-band electrons from the
graphene target. The energy and direction of the ejected electron can be measured
with a combination of position, time-of-flight, and energy deposition measurements.
The main advantage of using graphene is that it is two-dimensional. This entails a
direct correlation between the direction of the incoming DM particle and the direc-
tion of the ejected electron, which would be lost via secondary electron scatterings
in 3D target materials [20]. Furthermore, since this method utilises ejection of elec-
trons, rather than nuclear recoils, it enables the detection of lower energy depositions
than previous experimental setups. A prototype of an experiment that can realise
this suggested method, PTOLEMY, is currently in a research and developmental
stage. The PTOLEMY detector, like the XENON research project, is located in the
Gran Sasso National Laboratory [21].

In a 2017 publication of a proposed experimental method, implementable in the
PTOLEMY detector, Yonit Hochberg et al. [20] derived a numerical approximation
for the DM induced ejection rate of graphene valence electrons, based on a number
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of assumptions. Most notable is the assumption that the scattering amplitude M
is independent of the momentum transfer q = p−p′, where p and p′ are the initial
and final DM momenta.

1.3 Purpose Statement and Limitations
The purpose of this thesis was to compute the DM induced electron ejection rate in
direct detection experiments using graphene as a target material, as in the case of
the proposed PTOLEMY detector. Previous studies on the same topic have worked
under the assumption of a constant dependence of the scattering amplitude on the
momentum transfer. In this thesis this assumption has been lifted and the cases
of |M(q)|2 ∝ |q|2 and |M(q)|2 ∝ |q|4 have been studied as well. These scattering
amplitudes are expected in models where DM particles are regarded as fermions
and interact with electrons via the exchange of pseudo-scalar particles, or in models
where DM has spin 0 and interactions violate parity and charge conjugation parity.
The point of studying these models is to produce theoretical results with which
to compare future experimental data. From these comparisons conclusions can be
drawn regarding the properties of DM particles. Due to the numerical unfeasibility
within the scope of this thesis as well as time limitation, the dependence on any
other contribution of DM particle momenta has not been regarded. All assumptions
have been made in accordance with the WIMP and SHM hypotheses, see sections
1.2.1 and 1.2.2 respectively.
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2
Analytical Derivations

The intention of the following chapter is to present a theoretical background and an
analytical derivation of the rate of DM particle induced electron ejection. This rate
will be evaluated numerically in the forthcoming chapters. To achieve the analytical
expression for the rate we start by introducing a time evolution operator to our
initial and final states and thereupon apply a Hamiltonian density in the interaction
picture as well as a scattering amplitude. This will eventually generate the ejection
rate through some analytical manipulation. By convention, everything is expressed
in terms of natural units.

2.1 Rate of Electronic Ejection
The behaviour of the DM–electron interactions are highly dependent on whether the
electrons are bound or not. In this case, we are mainly interested in bound electrons.
However, as we will see, the forthcoming analytical derivation is somewhat simplified
by studying DM interactions with free electrons first. For this reason, both cases
are considered in succession in the following sections.

2.1.1 Dark Matter Particle Interactions with Free Electrons
We will start by introducing a notation for the linearly independent states of free
particles, where |p, s〉 describes a DM particle with momentum p and spin s while
|k, r〉 describes an electron with momentum k and spin r. From the definition of
scalar products it follows that

〈p′, s′|p, s〉 = (2π)3δ(3)(p′ − p)δss′

〈p, s|p, s〉 = (2π)3δ(3)(0) =
ˆ
d3x = V,

(2.1)

where V is the volume of three-dimensional space. While formally divergent, it will
disappear in our final results. The combined DM–electron states at times t = +∞
and t = −∞ can be expressed by the tensor product between the state vector of the
DM particle and the state vector of the electron at t = +∞ and t = −∞, i.e.

|i〉 = |p, s〉 ⊗ |k, r〉 = |p, s,k, r〉
|f〉 = |p′, s′〉 ⊗ |k′, r′〉 = |p′, s′,k′, r′〉 .

(2.2)

We let |i〉 and |f〉 denote the initial and final state, respectively. We now introduce
the S matrix, which is the time evolution operator that maps |i〉 onto S |i〉 at
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t = +∞. We define the matrix element Sfi as

Sfi = 〈f |S |i〉
V 2 , (2.3)

where 1/V 2 acts as normalisation. The probability of a transition from the initial
state |i〉 to the final state |f〉 is then

Pi→f = |Sfi|2 = |〈f |S |i〉|
2

V 4 . (2.4)

After introducing the momentum transfer q = p−p′ = k′−k, the total probability
is thus given as

P (p) = |Sfi|
2

V 4 · V
d3p′

(2π)3 = |Sfi|
2

V 4 · V
d3q

(2π)3 , (2.5)

where the differential terms are the number of particles around the respective mo-
mentum. A differential cross section can be defined as

dσ = P

T · Flux , (2.6)

where T is the formally divergent factor, T =
´
dt. Analogously to V , it will not

appear in our final results. A cross section is a measure of the probability that
certain particles, in this case DM particles and electrons, interact. We can now
define the differential ejection rate as

dR = P

T · n
= PV

T
= vreldσ, (2.7)

where vrel is the initial velocity of a DM particle, relative to the observer on earth,
and n is the number density of the DM particles. By applying equation (2.5) onto
(2.7), and subsequently integrating that expression, we get the ejection rate as

R = vrelσ =
ˆ
q

|Sfi|2

V 2T

d3q

(2π)3 . (2.8)

We will remember this result for later and momentarily focus on the transition from
|i〉 to |f〉 through Sfi. In accordance with [22], Sfi can be expressed as

Sfi = (2π)4δ(4)(p′ + k′ − p− k) iM√
2Ep2Ek2Ep′2Ek′

(2.9)

whereM =M(p′, k′, p, k) is the DM induced electron scattering amplitude and Ej,
j = p′, k′, p, k, are energies. Here, M is a complex value such that the absolute
square of the amplitude gives the probability of an electron transitioning from |i〉 to
|f〉. The absolute square of Sfi can now be calculated, resulting in

|Sfi|2 = |M|2

16EpEkEp′Ek′

∣∣∣(2π)4δ(4)(p′ + k′ − p− k)
∣∣∣2. (2.10)
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By definition
δ(4)(p′ + k′ − p− k) =

ˆ
d4x

(2π)4 e
i(p′+k′−p−k)·x. (2.11)

Note that the delta function in equation (2.11) is four dimensional. We now have,∣∣∣(2π)4δ(4)(p′ + k′ − p− k)
∣∣∣2 =

=
[
(2π)4

(ˆ
d4x

(2π)4 e
i(p′+k′−p−k)·x

)]
(2π)4δ(4)(p′ + k′ − p− k) =

=
ˆ
d4x(2π)4δ(4)(p′ + k′ − p− k) =

= TV (2π)4δ(4)(p′ + k′ − p− k),

(2.12)

By combining equations (2.4), (2.10) and (2.12), the transition probability from |i〉
to |f〉 for one DM particle and one electron is given as

Pi→f = T

V 3 (2π)4δ(4)(p′ + k′ − p− k) |M|2

16EpEkEp′Ek′
. (2.13)

This expression can now be used to calculate the ejection rate in the case of DM
particle interaction with free electrons, in accordance with equations (2.6) and (2.8).
This will, however, not be necessary for the purpose of this thesis.

2.1.2 Bound Graphene Valence Electrons
The interactions studied thus far have been between a DM particle and a free elec-
tron. Let us now consider the case of an electron bound in graphene. We can once
again apply a time evolution operator to an initial and final state, now according to

Sfi = −i 〈f |HI |i〉 . (2.14)

Here, HI is the Hamiltonian given in the Interaction picture, which is a formulation
of quantum mechanics where both states and operators are dependent on time. By
definition, a state vector in the Interaction picture is given by

|ψI〉 = eH0,St |ψS(t)〉 , (2.15)

where |ψS(t)〉 is a state vector and H0,S is an interaction free Hamiltonian. The
subindex S signifies that these are given in the Schrödinger picture, i.e. the quantum
mechanical formulation where states are dependent on time, but operators are not.
Furthermore, the Hamiltonian in the Interaction picture is given by

HI = eiH0,StHS(x)e−iH0,St, (2.16)

where HS(x) is the Hamiltonian in the Schrödinger picture. The Hamiltonian can
also be described as a function of the Hamiltonian density HI as

HI =
ˆ
d4xHI(x). (2.17)
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By applying equations (2.16) and (2.17) on equation (2.14), Sfi can now be expressed
as

Sfi = −i 〈f | eiH0t

ˆ
d4xHI(x)e−iH0t |i〉 . (2.18)

We define H0 as the Hamiltonian for the system with no interaction, i.e. HI = 0,
and thus the total Hamiltonian for the system is given as

Htot = H0 +HI . (2.19)

When t → ±∞, the interaction Hamiltonian will approach 0. Since energy is the
eigenvalue of the Hamiltonian, it follows that

Htot |i〉 = H0 |i〉 = Ei |i〉
Htot |f〉 = H0 |f〉 = Ef |f〉 .

(2.20)

We now introduce a new notation for our initial and final states as

|i〉 = |p, e1〉
|f〉 = |p′, e2〉 ,

(2.21)

where e1 and e2 are the initial and final states of the electron, respectively. If we
use this new notation, and split up the four dimensional integral in equation (2.18)
into three dimensions of space and one dimension of time, Sfi can be written as

Sfi =
ˆ
d3x 〈p′, e2|HS(x) |p, e1〉

ˆ ∞
−∞

dt ei(Ef−Ei)t. (2.22)

Sfi can be manipulated further by inserting the so called resolution of the identity,
given by

1 =
ˆ

d3k

(2π)3 |k〉 〈k| =
ˆ

d3k′

(2π)3 |k
′〉 〈k′| , (2.23)

into equation (2.22). Since the resolution of the identity is equal to the identity
element, inserting it into the expression has no effect on it’s value. The vector states
|k〉 and |k′〉 constitute a complete basis of free electron states and can therefore be
described as virtual free particles. The insertion of resolution of the identity gives

Sfi = −i(2π)δ(Ef − Ei)
ˆ
d3x

ˆ

k

d3k

(2π)3

ˆ

k′

d3k′

(2π)3 〈e2|k′〉 〈k′,p′|HS(x) |k,p〉 〈k|e1〉 .

(2.24)
We can here identify 〈e2|k′〉 =

√
V ψ∗j (k′), the momentum space wave function of

the electron in state j, and will use that evaluating notation henceforth. Let us now
recall Sfi for the case of a free electron, i.e equation (2.9). By applying the same
analytical steps as above on this expression, we get

Sfreefi = −i(2π)δ(Ẽf − Ẽi) 〈p′,k′|
ˆ
d3xHs(x) |p,k〉 . (2.25)
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Here, Ẽi and Ẽf denote the initial and final energy in the case of a free electron.
It follows from the delta function that energy must be conserved for free electron
scattering. We therefore define the scattering amplitude M(p′,k′,p,k) for that
case, in accordance with equation (2.9), as

Sfreefi = (2π)4δ(Ẽf − Ẽi)δ3(p′ + k′ − p− k)M(p′,k′,p,k)
4mχme

. (2.26)

Here, the mass-energy relation in the non-relativistic limit, i.e. E = m, has been
applied. Comparing the two expressions for Sfreefi results in

〈p′,k′|
ˆ
d3xHs(x) |p,k〉 = i(2π)3δ3(p′ + k′ − p− k)M(p′,k′,p,k)

4mχme

. (2.27)

We can once again introduce the momentum transfer q = p − p′ = k′ − k. Since
p′+ k′−p−k = k′−k−q, we can discard the k′ integral in the expression for Sfi
when we apply equation (2.27) onto (2.24). We then get

Sfi = (2π)V δ(Ef − Ei)
ˆ

k

d3k

(2π)3ψ
∗
2(k + q)M(p− q,k + q,p,k)

4mχme

ψ1(k), (2.28)

where ψ1 and ψ2 are the wave functions for a graphene valence electron before and
after ejection. By reflecting on our starting point in equations (2.4), (2.5) and (2.7)
we realise that |Sfi|2 is of specfic interest and thus we want to square the absolute
value of equation (2.28). Note that when δ(Ef − Ei) is squared a factor T/(2π) is
obtained. Thereby, |Sfi|2 can be rewritten as

|Sfi|2 = T (2π)V 2δ(Ef − Ei)

∣∣∣∣∣∣∣
ˆ

k

d3k

(2π)3ψ
∗
2(k + q)M(p− q,k + q,p,k)

4mχme

ψ1(k)

∣∣∣∣∣∣∣
2

.

(2.29)
Finally, we can now calculate the differential rate of DM induced electron ejection
by applying equation (2.29) to equation (2.7) according to

dR(q) = |Sfi(q)|2
TV 2

d3q

(2π)3 =

= d3q

T (2π)3T (2π)δ(Ef − Ei)

∣∣∣∣∣∣∣
ˆ

k

d3k

(2π)3ψ
∗
2(k + q)M(p− q,k + q,p,k)

4mχme

ψ1(k)

∣∣∣∣∣∣∣
2

=

= δ(Ef − Ei)
d3q

(2π)2

∣∣∣∣∣∣∣
ˆ

k

d3k

(2π)3ψ
∗
2(k + q)M(p− q,k + q,p,k)

4mχme

ψ1(k)

∣∣∣∣∣∣∣
2

.

(2.30)
By integrating over q and introducing the electron lattice momentum `, we arrive
at an expression for vrelσ(`′, `) as

vrelσ(`′, `) =
ˆ
q

d3q

(2π)2 δ(Ef−Ei)

∣∣∣∣∣∣∣
ˆ

k

d3k

(2π)3ψ
∗
2(`′,k + q)M(p− q,k + q,p,k)

4mχme

ψ1(`,k)

∣∣∣∣∣∣∣
2

(2.31)

13



2. Analytical Derivations

For reasons of linear independence,M(p− q,k + q,p,k) =M(q,v⊥el). The vector
v⊥el is further defined in equation (2.40). What remains to be done is to introduce
the definition ofM, in accordance with Hochberg et al. [20], as

M(q,v⊥el) = 4
√
πmχme

µeχ

√
σ̄eFDM(q,v⊥el), (2.32)

where µeχ is the reduced mass of a DM particle and an electron, and σ̄e is a reference
cross section. The form factor FDM = 1 describes short range, or contact, interaction
but will here be kept as a variable for the purpose of generalisation. If this is
substituted into equation (2.31) we get

vrelσ(`′, `) = σ̄eπ

µ2
eχ

ˆ
q

d3q

(2π)2

∣∣∣∣∣∣∣
ˆ

k

d3k

(2π)3ψ
∗
2(`′,k + q)FDM(q,v⊥el)ψ1(`,k)

∣∣∣∣∣∣∣
2

× δ(Ef − Ei).

(2.33)

The energy required to eject a valence electron is given by its binding energy −Ei(`)
and the work function Φ, which is the energy needed to escape from the Fermi level.
The initial and final state energies, Ei and Ef , can therefore be expressed as,

Ei = mχ +me + mχ

2 v2 + Ei(`) + Φ

Ef = mχ +me + |mχv− q|2

2mχ

+ Eer,
(2.34)

where Eer and |mχv−q|2
2mχ are the kinetic energies of the electron and the DM particle,

respectively, after ejection. Ef−Ei can thus be expressed as Eer+Ei(`)+Φ+ q2

2mχ −
qv cos θqv. For the sake of simplicity Ef − Ei will be used as notation throughout
most of this thesis. Equation (2.33) can now be specified further by noting that the
wave function of the ejected, and thereby free, electron is well described by a plane
wave in position space, i.e.

ψ∗2(r) = 1√
V
e−ikf·r. (2.35)

By applying equation (2.35), we can now Fourier transform equation (2.33) from an
integral over momentum k to an integral over space coordinates r and subsequently
note that the space integral over r gives the Fourier transform of ψ1 at (`,q − kf).
This results in an expression for the cross section as

vrelσ(`) = σ̄eπ

µ2
eχ

ˆ

kf

d3kf

(2π)3

ˆ
q

d3q

(2π)2V
∣∣∣FDM(q,v⊥el)

∣∣∣2
∣∣∣ψ̃1(`,q − kf)

∣∣∣2
V

× δ(Ef − Ei).

(2.36)
This expression has been multiplied by d3kf

(2π)3V to account for the number of states
with momentum around kf. In doing this the V cancels out, resulting in

vrelσ(`) = σ̄eπ

µ2
eχ

ˆ

kf

d3kf

(2π)3

ˆ
q

d3q

(2π)2

∣∣∣FDM(q,v⊥el)
∣∣∣2 ∣∣∣ψ̃1(`,q − kf)

∣∣∣2×δ(Ef−Ei). (2.37)
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Since the outgoing electron has no lattice momentum, we omit the variable `′ from
the expression. Equation (2.37) is equivalent to equation (5) in the correlative article
by Hochberg et al. [20], which was discussed in section 1.2.3. We can now sum over
the four valence electrons and account for the spin degeneracy of each band, and
finally get

R = 2
∑

i=π,σ1,σ2,σ3

ρχ
mχ

NCAuc

ˆ

1BZ

d2`

(2π)2

ˆ
v

d3vg(v)vrelσi(`). (2.38)

The DM velocity distribution g(v) is measured in the laboratory frame, a more
detailed description of which can be found in Appendix A.1. Furthermore, ρχ = 0.4
GeV/cm3 is the local galaxy DM density, mχ = 100 MeV is the mass of a DM
particle used in all calculations of this thesis, and NC = 5 · 1025 kg−1 is the atomic
density of graphene. Auc = 3

√
(3)a2/2 is the area of the unit cell of graphene, i.e

a hexagonal and two-dimensional cell with carbon-carbon bond length a = 1.42 Å.
All values of known physical quantities have been set in accordance with Hochberg
et al. [20] and [23].

2.1.3 Modification of the Scattering Amplitude
Up until this point we have, in accordance with Hochberg et al. [20], assumed that
the scattering amplitude M does not depend on the momentum transfer q, apart
from the q dependence in the general form factor FDM(q,v⊥el). Equation (2.37)
can however be generalised in terms of a squared spin-averaged electron ejection
amplitude |M1→2|2, the definition of which is presented in equation (2.41) [24].
Using this, equation (2.37) can be rewritten as

vrelσ = 1
16m2

χm
2
e

ˆ
q

d3q

(2π)3 |M1→2|22π × δ(Ef − Ei). (2.39)

For |M1→2|2 to be physically realistic a few conditions apply. First of all, it should
be invariant under spacial translation and three dimensional rotation. Furthermore,
invariance under Galilean transformation, i.e. a coordinate transformation between
reference frames differing by constant relative motion, is required. Assuming these
restrictions, |M1→2|2 can be composed out of 14 different combinations of q, v⊥el , Sχ
and Se, which can be seen in Table I in [24]. Here, Sχ and Se are the electron and
DM particle spin operators and v⊥el is defined as

v⊥el = v− q
2µeχ

− k
2me

. (2.40)

Note that v⊥el is only introduced for the sake of analytical derivation and will not be
regarded in any numerical evaluation. In [24] the interaction between DM particles
and atomically bound electrons is regarded, and thus the expression for the spin
averaged transition amplitude for the electron with quantum numbers nl is given as

∣∣∣Mnl
1→2

∣∣∣2 =
4∑
i=1

Rnl
i

(
v⊥el ,

q
me

)
W nl
i (k′,q). (2.41)
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2. Analytical Derivations

We, however, are studying electrons bound in graphene, which reside in the four
energy bands π, σ1, σ2 and σ3. Instead of the quantum numbers n and l, our am-
plitudes are given for these bands. The DM response functions Rnl

i will nonetheless
remain unchanged regardless of how the electrons are bound. The first response
function Rnl

1 is given as

Rnl
1

(
v⊥el ,

q
me

)
≡ c2

1 + c2
3
4

( q
me

)2 (
v⊥el

)2
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3
4

( q
me
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)2
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7
4
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)2
+ c2
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4

( q
me

)2
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12
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2
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15
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me

)2
+
(
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5 + 2c13c14 + 2c12c15
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q
me

)2
,

(2.42)

where ci, i = 1, ..., 15, are coefficients. Here, the original relation between M and
q, as assumed in section 2.1.2, corresponds to ci = 0 for i > 1. As mentioned, due
to time limitation and numerical unfeasibility within the scope of this thesis, only
terms where the scattering amplitude is independent of v⊥el , i.e. |M1→2(q))|2 ∝ q2

and |M1→2(q))|2 ∝ q2, will be studied. For physical context, these scattering am-
plitudes are expected in models where DM particles are regarded as fermions and
interact with electrons via the exchange of pseudo-scalar particles, or in models
where DM has spin 0 and interactions violate parity and charge conjugation parity.

Since we are only interested in events in which an electron is ejected, and the wave
functions are spin-independent, our analogue of the first atomic response function
W nl

1 (k′,q) is given as

W j
1 (`,kf,q) =

∣∣∣ψ̃j(`,q − kf)
∣∣∣2 . (2.43)

where j corresponds to the different energy bands. Here the same operation as
in the derivation of equation (2.36) was used to evaluate the integral over k by
noting that the integral is the Fourier transform of the initial electron wave function
ψj(r) evaluated at q−kf. The expression for the first term of |M1→2|2, i.e. equation
(2.41), can now be substituted into equation (2.39), integrating over the final electron
momentum kf and yielding

vrelσj(`) = 1
16m2

χm
2
e

ˆ

kf

d3kf

(2π)3

ˆ
q

d3q

(2π)3R
j
1

(
v⊥el,

q
me

) ∣∣∣ψ̃j(`,q − kf)
∣∣∣2 × 2πδ(Ef −Ei).

(2.44)

By comparing this expression with equation (2.37) we see that the difference is an
overall factor and the replacement of |FDM |2 with Rj

1.
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3
Computation of the Ejection Rate

The following sections describe the numerical evaluation of the analytically derived
DM induced electron ejection rate, both before and after the modification of the
scattering amplitudeM, as described in section 2.1.3.

3.1 Recasting the Ejection Rate for Numerical
Evaluation

In order to enable and facilitate the numerical evaluation of the DM induced ejection
rate, the derived expression can be reformulated. Furthermore, the eigenvectors and
band energies of the pertinent wave functions can be calculated and tabulated prior
to the final computation. These steps are described in the following sections.

3.1.1 Analytical Manipulations
To aid the numerical integration, a number of algebraic and analytical manipulations
can be performed. As has been discussed, since only short range interactions are of
interest, we let

FDM(q,v⊥el) = 1, (3.1)

in accordance with [24]. Note that the following derivation is valid only when FDM is
independent of v⊥el . To emphasise this, the notation FDM(q) for the form factor will
be used henceforth. With that in mind, the volume integral over v can be rewritten
in spherical coordinates projected onto the direction of q according to

ˆ
d3v =

ˆ
dvv2

ˆ 2π

0
dφ

ˆ 1

−1
d cos θqv. (3.2)

Using this formulation, as is described in detail in Appendix A.2, the ejection rate
can be rewritten as

dR

d ln(Eer)
= 2

∑
i=π,σ1,σ2,σ3

ρχ
mχ

NcAuc
σ̄e
µ2
eχ

ˆ

1BZ

d2`

(2π)2

ˆ
dΩkf

(2π)3
k3

f
2

qmaxˆ
qmin

d3q

4π
π

q
η(vmin)×

|FDM(q)|2
∣∣∣ψ̃i(`,q − kf)

∣∣∣2 ,
(3.3)
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3. Computation of the Ejection Rate

where η(vmin) is defined as

η(vmin) =
ˆ
dΩqv

ˆ
v>vmin

dv · vg(v). (3.4)

Under the assumption that the DM velocity distribution, g(v), takes the form of a
Maxwell-Boltzmann distribution with an upper limit at the galactic escape velocity,
in accordance with [24], η(vmin) can by evaluated analytically. These calculations
are performed in Appendix A.3, and result in

η1(vmin) = v2
0π

2v⊕Nη

(
− 4e−v2

esc/v02
v⊕ +

√
πv0

[
erf

(
vmin + v⊕

v0

)
− erf

(
vmin − vE

v0

) ])

η2(vmin) = v2
0π

2v⊕Nη

(
− 2e−v2

esc/v02(vesc − vmin + v⊕) +
√
πv0

[
erf

(
vesc
v0

)
−

erf
(
vmin − v⊕

v0

) ])
,

(3.5)

where η1(vmin) and η2(vmin) correspond to vmin < vesc − v⊕ and vmin > vesc − v⊕,
respectively. Moreover, erf is the Gauss error function, which is a non-elementary
function defined as

erf(x) = 1√
π

ˆ x

−x
e−t

2
dt = 2√

π

ˆ x

0
e−t

2
dt. (3.6)

The normalisation constant Nη is given as

Nη = v3
0π

[
erf

(
vesc
v0

)
− 2vesc

v0
exp

[
−
(
vesc
v0

)2
]]
. (3.7)

This reformulated and somewhat simplified expression for the ejection rate, given
in equation (3.3), streamlines the numerical evaluation and eliminates the delta
function. The specifics of vmax and vmin, as well as the velocity distribution g(v),
are presented in Appendix A.1.

3.1.2 Calculations of the Wave Function Parameters
Once the described reformulations have been applied the only remaining compo-
nents of the ejection rate that need to be specified are the wave functions of the
graphene valence electrons. As has been discussed, these electrons appear in four
different bands: π, σ1, σ2 and σ3. The normalisation of the π band can be calculated
analytically and expressed as

Ñπ(`) =
√√√√ (2π)3

1 + s
∑3
j=1 cos(ϕ` + r ·Rj)

(3.8)

by assuming a tight-binding model. Here, ϕ` = − arctan(Im(f(`))/Re(f(`))) de-
scribes the angles of the phase factor f(`) = ei`·R1 + ei`·R2 + ei`·R3 and the overlap,
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3. Computation of the Ejection Rate

s, between the atomic orbitals is set to s = 0.129, in accordance with [26]. However,
in momentum space the phase factor picks up an extra momentum term as f(`+k).
For further detail see appendix B.1.3. The band energy for the different bands,
Eband(`), can be calculated by solving for the different energy eigenvalues in

det |H − Eband(`)S| = 0. (3.9)

The overlapping integral matrix, S, and the transfer integral matrix, H, for the π
band are defined as

S =
(

1 sf(`)
sf(`)∗ 1

)
, H =

(
ε2p tf(`)

tf(`)∗ ε2p

)
, (3.10)

where s = 0.129 is the overlap integral and t = −3.03 eV is the transfer integral
between nearest neighbours. Moreover, ε2s = −8.87 eV is given relative to ε2p and
hence ε2p = 0 is chosen for the sake of simplicity [20]. The calculation of the π band
energy, which is performed in detail in Appendix B.1.2, results in

Eπ(`) = ε2p ± t|f(`)|
1± s|f(`)| . (3.11)

Note that only the negative solution, corresponding to the valence band, is necessary
for the purpose of this thesis. The valence energy band for π is plotted in Figure B.2.

The normalisation of the σi wave functions can similarly be performed under the
assumption of a tight-binding model, evaluated in Euclidean space. Thus, 〈ψσi |ψσi〉
should be evaluated over its closest neighbours, where

ψσi = Ci



φ2s(r)
φ2px(r)
φ2py(r)

1√
3
∑
j φ2s(r−Rj)ei`·Rj

1√
3
∑
j φ2px(r−Rj)ei`·Rj

1√
3
∑
j φ2py(r−Rj)ei`·Rj


. (3.12)

Ci is the eigenvector derived from solving equation (3.9) for each respective energy
band, see figure B.2. Note that the band energies are plotted for −Ei(`). These
calculations are described in detail in Appendix B.1. From the tight-binding model
the overlap 〈φ(r−Ri)|φ(r−Rj)〉 = 0 for i 6= j and all atomic wavefunctions φ(r),
resulting in Nσ(`) =

√
(2π)3/nσ(`), where nσ(`) is given as

nσ(`) =C∗1C1 + C∗2C2 + C∗3C3 + 3(C∗4C4 + C∗5C5 + C∗6C6)
2 Re

[
SssC

∗
1C4 + SspC

∗
1C5 + SspC

∗
1C6 + SspC

∗
2C3 + SσC

∗
2C5+

SπC
∗
2C6 + SspC

∗
3C4 + SπC

∗
3C5 + SσC

∗
3C6

3∑
j=1

ei`·Rj

]
.

(3.13)

The overlap parameters, Sss, Ssp, Sσ and Sπ, are specified in Table B.1. The band
energy can be found for each σ by solving for the energy eigenvalues in equation
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3. Computation of the Ejection Rate

(3.9). In the case of the σ bands, S and H are 6 × 6 matrices, derived from the
3 × 3 submatrices given in Appendix B.1.2. Note again that only the negative
solutions, corresponding to the valence bands, are of interest in this thesis. Due
to the complexity of this calculation, the eigenvalues and the band energies require
numerical evaluation and tabulation for each respective σ band over a reciprocal
grid in the first Brillouin zone.

3.2 Numerical Evaluation of the Ejection Rate
It is important to note that although all analytical derivations, most notably in
Chapter 2, have assumed natural units, all physical quantities have been expressed
in SI units. For the sake of continuity, all computations have been performed using
SI units. This conversion of units entails a division by a factor of ~ for each of the
momenta kf and q, in order to achieve the correct dimensions.

While all preparatory calculations of the σ eigenvectors and their band energies
were tabulated using Wolfram Mathematica, the evaluation of the DM induced elec-
tron ejection rate was performed using Python and is publicly available at [27]. After
the preambulatory reformulation of equation (2.39) to the more computable form
seen in equation (3.3), the differential rate was evaluated for each band separately.
The differential ejection rate depends on a multidimensional integral accordning to

ˆ

1BZ

d2`

ˆ

∂Ωkf

dΩkfk
3
f

qmaxˆ
qmin

d3q

q
η(vmin) × |FDM(q)|2

∣∣∣ψ̃i(`,q − kf)
∣∣∣2 . (3.14)

Due to the complexity of the calculations, the code was run in parallel over the cores
of the computer. In each thread, every value of kf was regarded in a loop and a
lambda function of the lattice vector ` was created. This enabled the utilisation of
Gauss-Legendre quadrature, defined by the library mpmath. This lambda function
was then integrated over the differential angle Ωkf . Each such integration contained
an additional integration over momentum space q, which relates to v through the
delta function such that vmin = Eer+Ei(`)+Φ

q
+ q

2mχ . This integral was performed
with integration limits as specified in Appendix A.4. In equation (3.14), the two
inner integrals were evaluated on a 17 × 17 grid over the first Brillouin zone. All
points were then multiplied by its discretised differential area d2` and subsequently
summed over, thus approximating the last integral over the lattice momentum in the
first Brillouin zone. This yielded the final numerical evaluation of equation (3.3) for
a given kf and thereby the values of the ejection rate could be plotted as a function
of Eer = k2

f /2me.
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3. Computation of the Ejection Rate

3.3 Implementation of the Modified Scattering Am-
plitudes

The implementation of the additional interaction cases was, for the leading response
function Rj

1

(
v⊥el ,

q
me

)
, simply a matter of replacing the previous DM form factor,

given in equation (2.44). Note again that due to the additional v and q dependence,
the analytical evaluation of η(vmin) was no longer possible. Furthermore, this lead
to a significant increase in computation time, a discussion of which is presented in
section 5.2. As has been explained, a result of this is the limitation to contributions
from terms solely dependent on q, i.e. |M1→2|2 ∝ |q|2 and |M1→2|2 ∝ |q|4. These
modifications are achieved by redefining the form factor FDM as

FDM(q) = A1 |q| and FDM(q) = A2 |q|2 , (3.15)

for each respective case. Here, the coupling constants A1 and A2 govern the strength
of the interactions and are modifications of σ̄e in equation (2.32). These constants
only contribute a multiplicative factor to the whole expression and does not influence
the qualitative behaviour. Thus they are parameters to the model and have in this
thesis, where applicable, been set to align the starting points of the ejection rates
with different FDM , to allow for clearer comparison of the qualitative behaviour.
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4
Numerical Results

In this chapter, all computed ejection rates are presented. Initially, the case of a
scattering amplitude independent of the momentum transfer, which has previously
been studied by Hochberg et al. [20], is shown. This will allow for the comparison
of the obtained results with previous findings. Secondly, the ejection rates for each
of the described scattering amplitudes are presented as well.

4.1 Ejection Rate for a Constant Scattering Am-
plitude

As has been explained, the DM induced electron ejection rate has previously been
computed for |M|2 ∝ 1 by Hochberg et al. [20]. However, there seems to be an
inconsistency in the normalisation of the wave functions in their article, which will
be discussed in more detail in section 5.1. For the sake of comparison, this case
has thus been computed both with and without the correction of this normalisation.
The corresponding ejection rates can be seen in Figure 4.1. Note that the corrected
normalisation has been used for all other computations.

(a) With corrected normalisation (b) Without corrected normalisation

Figure 4.1: The differential ejection rates for an incoming DM particle with
mχ=100 MeV, σ̄e = 10−37cm2 and FDM = 1, shown for each valence band as well
as their joint contribution. The corrected normalisation has been applied to (a)
while it has been omitted in (b). The differential rate is plotted in units of ejected
electrons per kg of graphene and year, as a function of kinetic energy of the ejected
electrons, Eer. Note that σ1 and σ2 dominate at higher electron ejection energies.
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Here it is apparent that correcting the normalisation yields only a slight difference.
This dissimilarity is most visible at the starting point of the rates, where the σ1
and π bands coincide without the implementation of the correction while they sep-
arate with this implementation. In both cases, the same quantitative behaviour is
apparent, including the higher contribution of σ1 and σ2 to the total rate for large
electron ejection energies.

4.2 Ejection Rates for the Modified Scattering
Amplitudes

In addition to comparing the case of |M|2 ∝ 1 to previously published work, this
case was also compared to the ejection rates given for |M|2 ∝ |q|2 and |M|2 ∝ |q|4.
These three cases are plotted for each respective valence band in Figure 4.2.

(a) The ejection rates for the π band (b) The ejection rates for the σ1 band

(c) The ejection rates for the σ2 band (d) The ejection rates for the σ3 band

Figure 4.2: The differential ejection rate for an incoming DM particle withmχ=100
MeV and σ̄e = 10−37cm2, for each scattering amplitude. The rates are given for
every valence band respectively and are plotted in units of ejected electrons per kg
of graphene and year, as a function of kinetic energy of the ejected electrons, Eer.
It can here be seen that the rate decreases less rapidly for |q| of higher powers.
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By studying Figure 4.2, it is apparent that initially there is little to no difference
between the different scattering amplitudes. As the energy Eer increases, however,
some dissimilarities appear. For each valence band, it is clear that the differential
ejection rate decreases less rapidly for |M|2 ∝ |q|2 and even less so for |M|2 ∝ |q|4.
Moreover, the ejection rate reaches its peak for a slightly higher kinetic energy Eer
as the scattering amplitude is proportional to |q| of a higher power. This difference
is, however, minor. The identified differences are reaffirmed by studying the total
ejection rate of each scattering amplitude, as shown in Figure 4.3.

Figure 4.3: The total differential ejection rate for an incoming DM particle with
mχ=100 MeV and σ̄e = 10−37cm2, for each scattering amplitude. The rates are
plotted in units of ejected electrons per kg of graphene and year, as a function of
kinetic energy of the ejected electrons Eer. Once again it is apparent that the rate
decreases less rapidly for |q| of higher powers.

Here, it is once again clear that while the difference is slight, there is a clear distinc-
tion in the rapidity of decline of the ejection rate for each scattering amplitude.
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5
Conclusions

This chapter aims to discuss the computed ejection rates, both in relation to pre-
viously published results and comparatively for the different scattering amplitudes.
Furthermore, the computational challenges and the multiple strategies to aid these
are discussed as well. Lastly, some possibilities of further research are presented.

5.1 Comparison of the Ejection Rates
In the following sections the calculated DM induced electron ejection rates are com-
pared for different cases. Initially, the corresponding results are compared to those
achieved by Hochberg et al. [20]. Thereafter, the ejection rates for each of the
specified scattering amplitudes are compared.

5.1.1 Comparison with Previous Published Results

Since the ejection rate for |M|2 ∝ 1 has previously been computed by Hochberg et
al. [20] their results can be compared with those generated within this thesis. As
has already been noted, the wave function, specifically the Bloch function ΦB de-
scribed in equation (B.2), was not correctly normalised by Hochberg et al. [20]. As
presented in Appendix B.1, a factor of 1/

√
3 arises since ΦB is a sum over the three

nearest atomic neighbours. However, the general Bloch wave function in Hochberg
et al. [20], defined in (B.1), is correctly normalised. Since Hochberg et al. [20] have
not published any code nor primary data, it is not possible to determine what nor-
malisation was used to obtain the results of their article. At the very least, the
theory around the Bloch normalisation in Hochberg et al. [20] is misleading and
possibly somewhat incorrect. This discrepancy may be the origin of some differ-
ences between the results generated by Hochberg et al. [20] and those of this thesis.
However, as is clear in Figure 4.1, correcting this normalisation yields only a slight
change of the ejection rate.

By comparing Figure 4.1 with Figure 1 in [20], it is clear that their results dif-
fer from the results presented here, even when the normalisation is performed by
their specifications. Most noticeable is that the relative sizes of the ejection rates
for each band in Figure from Hochberg et al. 4.1 do not correspond to the results
of Hochberg et al. [20]. Moreover, the relative contribution from each valence band
does not directly correspond to the ordering of the binding energies given from least
to most bound as π, σ3, σ2, σ1, seen in Figure B.2. This contradicts the presumption
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that the π electron should have the greatest ejection rate for low electron ejection
energies since it is the most loosely bound band. However, since the energy con-
tributes to both the limits on q and vmin, this discrepancy entails more than a simple
scalar correction. The qualitative properties of each band does, however, conform
for the different results. For instance, in Figure 4.1 σ1 and σ2 can be seen to have
the greatest contribution at large electron ejection energies. This observation is
physically realistic since σ1 and σ2 are 2s dominated and will thus have a larger
spread in momentum, and will thereby contribute more for higher kinetic energies
of the ejected electrons. Overall, this comparison suggests that the computations
differ only slightly between this thesis and Hochberg et al. [20].

5.1.2 Impact of Different Scattering Amplitudes
By comparing the ejection rates for each of the specified cases, i.e. |M|2 ∝ 1,
|M|2 ∝ |q|2 and |M|2 ∝ |q|4, a few clear differences can be seen. First of all, it is
important to note that the magnitudes of the rates are somewhat arbitrary, since σ̄e
and Ai, i = 1, 2, as defined in (3.15), are unknown model parameters. Note that the
relative sizes of the different valence bands within the same case should nonetheless
remain, as these are determined by the same parameters. In order to specify these
factors, the models have to be fitted to any future experimental data, possibly from
the PTOLEMY detector, with regard to their magnitudes. This ambiguity entails
a greater emphasis on the qualitative properties of the ejection rates. As has been
described, the main differences between the cases are the decrease of ejection rate as
the electron energy increases and, to a lesser degree, the kinetic energy needed for
the maximum ejection rate. More precisely, it has been seen that as the scattering
amplitude is proportional to |q| of a higher power, the decline lessens in rapidity.
This property is expected since the momentum transfer |q| increases with increasing
electron energy and as the power of |q| increases, the scattering amplitude is more
dominantly dependent on this quantity.

The implementation of a momentum transfer dependence in the scattering ampli-
tude under the use of graphene as target material for direct detection of DM has
not previously been considered. The calculations in this thesis are thus unique and
extend the calculations performed by Hochberg et al. [20]. Thereby the number of
theoretical models with which future experimental data can be compared has been
extended. This thesis is therefore directly contributing to current research within
detection of DM which will hopefully yield groundbreaking results in the near future.

5.2 Computational Challenges
Throughout the course of this project, computational limits constituted a crucial
and persisting restriction. Even in the simplest case, with FDM set to 1, the com-
bined calculations were on the verge of the limit of feasibility with the available
computers. A number of different computational methods were attempted in order
to speed up the calculations, the most notable of which are described here. In spite
of countless attempted variations of the method, the calculations remained a com-

28



5. Conclusions

putational challenge.

The initial approach to the computational difficulties was an evaluation of the perfor-
mance of different libraries for computing integrals in Python. After benchmarking,
it was found that mpmath gave the best results with regard to computation speed,
and thus it was subsequently used in the code. Another approach, though not fully
explored, was changing the implementation language to one with shorter compila-
tion time, such as C. This can be done without necessitating rewriting of the code by
using the Cython library. This allows for compilation of Python code into C code,
yielding a significant boost in computation speed. Such an alteration was attempted
but generated no significant improvement since the mpmath library, which handled
the integration, was written in Python. For this reason, if the computations of this
thesis are to be repeated, it might be preferential to consider an integration method
more compatible with Cython, or change the implementation language altogether.

Furthermore, a grid was utilised to perform the integral over the lattice momen-
tum ` to further decrease overall computation time. This reduced the number of
nested integrals without significant impact on the result. An additional response
to the problem was parallelisation, which was used heavily. The calculation of

dR
d ln(Eer) is easily parallelisable for different kf and even different `. Parallelisation
over ` was, however, not fully examined. In order to do this, another solution for the
management of data shared between parallel executions would have to be developed.

Despite these efforts, the final calculations required extensive computational re-
sources, as approximately 15,000 core hours were used throughout this project. As
the final method still required significant computational power, any future recre-
ations could be approached with additional approximations. Since the qualitative
behaviour of the differential rates for different scattering amplitudes over Eer seems
uncomplicated for the cases studied, one might suggest fixating Eer, thus only per-
forming the calculation for the kinetic energy yielding the highest contribution. This
would, however, not reveal the differences in rate decline with regard to the scatter-
ing amplitudes discussed in section 5.1.2. A further suggestion is to set the incoming
DM velocity distribution g(v) to a delta function, which would in all certainty aid
the general case discussed in section 2.1.3, where the analytical evaluation of the v
integral is not applicable. Making the grid over ` more sparse is not a preferable
approach due to the complicated dependence on ` for the band energies and the
constants C, as described in Figure B.1, although it might be possible for the π
band. Finally, any results obtained from further numerical approximations of the
calculations should be compared with the results of this thesis to determine if the
current precision level is motivated.

5.3 Further research
As has been discussed, the constraints of time and computational resources restricted
this thesis to cases where the scattering amplitudeM is only dependent on the mo-
mentum transfer q. This specifically entailed that no terms dependent on v⊥el were
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studied. In further research, this limitation ought to be rescinded, thus extending
the amount of computable cases. This would enable the evaluation of interactions
between DM particles and graphene valence electrons when DM is regraded as an
anapole, magnetic dipole and electric dipole, in accordance with [25]. Such stud-
ies would require considerably more computational power as η(vmin) would not in
general be analytically rewritable, possibly introducing a new momentum trans-
fer dependent integral. Furthermore, the integral over the velocity v would not be
analytically evaluable through the reformulation in Appendix A.2, since v⊥el is depen-
dent on v. However, while these factors entail a significant computational burden,
they by no means render the calculations impossible. With a strategic method and
adequate computational power, these cases both can and should be studied.
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A
Physical Properties of Dark

Matter

In the following appendix the distribution and limitations of the DM velocity is pre-
sented. Furthermore, a more computable reformulation of the DM induced electron
ejection rate is derived. Lastly, limits of the momentum transfer are presented as
well.

A.1 Velocity Distribution of Dark Matter

The physical properties of DM have been assumed to be in accordance with the SHM
hypothesis. This entails that the velocity distribution of DM follows a Maxwell-
Boltzmann distribution boosted from the galactic rest frame into the laboratory
frame. The velocity can, however, not be infinite. The distribution is thus truncated
at a maximal velocity given by the galactic escape velocity, vmax = vesc +v⊕, i.e. the
minimal velocity necessary to escape the gravitational influence of the Milky Way.
The velocity distribution, g(v), is then given as

g(v) = 1
Nescπ3/2v3

0
exp

[
−(v + v⊕)2

v2
0

]
×Θ (vesc − |v + v⊕|) , (A.1)

where Nesc ≡ erf(vesc/v0)−2(vesc/v0) exp(−v2
esc/v

2
0)/
√
π is a normalisation constant.

Furthermore v0 = 220 km/s is the orbital velocity of the sun and vesc = 544 km/s
is the galactic escape velocity. The velocity of the Earth, and thus the observer, in
the galactic rest frame is v⊕ ≈ 244 km/s [24].

As has been explained, the DM velocity distribution in the local halo has a maximal
velocity, placing an upper boundary vmax = vesc + v⊕ on the integration limit. The
ionisation of bound electrons also necessitate a lower limit of the velocity such that
vmin < vmax = vesc + v⊕. This minimal velocity is given as

vmin(kf, q, `) = kf
2/(2me) + Ei(`) + Φ

q
+ q

2mχ

(A.2)

and is derived in Appendix A.2. Thus, v ∈ (vmin, vmax) constitute an integration
interval in section 3.2.
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A.2 Reformulation of the Ejection Rate
From the steps shown in Section 2.1.2 we have derived the DM induced electron
ejection rate as

R = 2
∑

i=π,σ1,σ2,σ3

ρχ
mχ

NcAuc

ˆ
d2`

(2π)2

ˆ
d3vg(v)vσi(`), (A.3)

i.e. equation (2.38). We denote the contribution from each band with Ri, i =
π, σ1, σ2, σ3, and thus we have

Ri = σ̄e
µ2
eχ

ˆ
d3kf

(2π)3

ˆ
d3q

4π
∣∣∣FDM(q,v⊥el)

∣∣∣2 ∣∣∣ψ̃i(`,q − kf)
∣∣∣2

× δ
(
Eer + Ei(`) + Φ + q2

2mχ

− qv cos θqv
)
.

(A.4)

Here we have specified the difference between final and initial energies Ef−Ei. Note
that Eer = k2

f /2me. Let us now consider the integral over the incoming velocity v.
This tridimensional integral can be rewritten in spherical coordinates. A preferential
approach is to project the coordinate system onto the direction of q. We then get

ˆ
d3v =

ˆ
dvv2

2πˆ

0

dφ

1ˆ

−1

d cos θqv. (A.5)

Before we implement this change of variables into equation (A.4), let us study the
delta function. It can be rewritten as

1
qv
δ

(
cos θqv −

Eer + Ei(`) + Φ
qv

+ q

2mχv

)
. (A.6)

The delta function now demands that

cos θqv = Eer + Ei(`) + Φ
qv

+ q

2mχv
< 1, (A.7)

where the inequality follows from the definition of cosine. From this we can calculate
a lower bound on v as

vmin = Eer + Ei(`) + Φ
q

+ q

2mχ

, (A.8)

which is the origin of the expression given in equation (A.2). The change of variables
can now be implemented into equation (A.5), which gives

R = 2
∑

i=π,σ1,σ2,σ3

ρχ
mχ

NcAuc
σ̄e
µ2
eχ

ˆ
d2`

(2π)2

ˆ
d3kf

(2π)3

ˆ
d3q

4π
2π
q

ˆ
v>vmin

dv
v2

v
g(v)×

∣∣∣FDM(q,v⊥el)
∣∣∣2 ∣∣∣ψ̃i(`,q − kf)

∣∣∣2 .
(A.9)
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Let us now, for the sake of simplification, define a function

η =
ˆ

v>vmin

dΩqv

ˆ
dv · vg(v), (A.10)

and then get

R = 2
∑

i=π,σ1,σ2,σ3

ρχ
mχ

NcAuc
σ̄e
µ2
eχ

ˆ
d2`

(2π)2

ˆ
d3kf

(2π)3

ˆ
d3q

4π
π

q
η(vmin)

×
∣∣∣FDM(q,v⊥el)

∣∣∣2 ∣∣∣ψ̃i(`,q − kf)
∣∣∣2 .

(A.11)

We recall that Eer = k2
f /2me and can now study the integral over kf. This is another

tridimensional integral which can also be rewritten in spherical coordinates as
ˆ
d3kf =

ˆ
k2

f dkf

ˆ
dΩkf , (A.12)

where Ωkf is the solid angle. From the definition of Eer we get

k2
f dkf = mekfdEer −→ dEer = 2kfdkf

2me

. (A.13)

We also know that
dEer = Eerd ln(Eer), (A.14)

and thus
dkf = kf

2 d ln(Eer). (A.15)

In combination with equation (A.12), we thus have
ˆ

d3kf

(2π)3 = 1
(2π)3

k3
f

2

ˆ
d ln(Eer)

ˆ
dΩkf . (A.16)

If we implement this last change of variables we finally get

dR

d ln(Eer)
= 2

∑
i=π,σ1,σ2,σ3

ρχ
mχ

NcAuc
σ̄e
µ2
eχ

ˆ
d2`

(2π)2

ˆ
dΩkf

(2π)3
k3

f
2

vmaxˆ
vmax

d3q

4π
π

q
η(vmin)

×|FDM(q,v⊥el)
∣∣∣2 ∣∣∣ψ̃i(`,q − kf)

∣∣∣2 .
(A.17)

A.3 Analytical Evaluation of η
By regarding the velocity distribution, described in Appendix A.1, with a single,
overall normalisation constant Nη, we get

g(v) = 1
Nη

exp
[
−(v + v⊕)2

v2
0

]
×Θ (vesc − |v + v⊕|) . (A.18)
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In accordance with equation (A.1) and [28], Nη is then given as

Nη = v3
0π
[
erf(vesc

v0
)− 2vesc

v0
e
−( vesc

v0
)2
]
. (A.19)

From equation (A.1), and consequently (A.18), the minimal velocity vmin is given as

vmin = Eer + Ei(`) + Φ
q

+ q

2mχ

. (A.20)

Furthermore, η(vmin) is defined as

η(vmin) =
ˆ
d3v

v
g(v)Θ(v − vmin). (A.21)

We also get

η(vmin) = 1
Nη

ˆ
2πd cos θdvχvχ exp

(
−
v2
χ + vesc − 2vv⊕ cos θ

v2
0

)
Θ(vχ−vmin)Θ(vesc−vχ).

(A.22)
In order to solve the equality between equations (A.21) and (A.22) we need to
consider the following two cases:1. vmin < vesc − v⊕

2. vesc − v⊕ < vmin < vesc + v⊕.
(A.23)

Through some algebraic manipulation, this gives us the solutions η1(vmin) and η2(vmin)
as

η1(vmin) = v2
0π

2v⊕Nη

(
− 4e−v2

esc/v02
v⊕ +

√
πv0

[
erf

(
vmin + v⊕

v0

)
− erf

(
vmin − vE

v0

) ])

η2(vmin) = v2
0π

2v⊕Nη

(
− 2e−v2

esc/v02(vesc − vmin + v⊕) +
√
πv0

[
erf

(
vesc
v0

)
−

erf
(
vmin − v⊕

v0

) ])
.

(A.24)
These solutions are equal when vmin = vesc − v⊕.

A.4 Limits of the Momentum Transfer Integral
The delta function places a restriction on the values of the momentum transfer q.
Since the minimal energy needed for ionisation must exceed Eer +Ei(`) + Φ, we can
now, from equation (A.20), derive a range of allowed momentum transfer. This is
done by inferring cos θqv = 1 and recalling that the minimum DM velocity vmin in
the laboratory reference frame must fulfill vmin < vmax = vesc + v⊕. The resulting
integration limits placed on q are then given as

qmax = mχvmax +
√
m2
χv

2
max −

mχ

me

k2
f − 2mχ (Ei(`) + Φ)

qmin = mχvmax −
√
m2
χv

2
max −

mχ

me

k2
f − 2mχ (Ei(`) + Φ).

(A.25)
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B
Physical Properties of Graphene

The following appendix describes the definition, Fourier transform and normalisa-
tion of the wave functions of graphene valence electrons. Furthermore, the lattice
structure and first Brilluoin zone of graphene are presented.

B.1 Wave Functions of Graphene
Graphene has four valence electrons, occupying 2s2p3 orbitals. Unhybridised pz
orbitals create covalent π bonds while 2s hybridisation with px and py orbitals form
σ bonds. In general, a tight binding Bloch function is given by

Φj(`, r) = 1√
N

∑
N

ei`·RNϕj(r−RN), (B.1)

where j = 1, · · · , n and ϕj is the atomic orbital. In accordance with the tight
binding model, the sum only runs over the closest atoms, which in graphene are
three other carbon atoms. The position vectors of the nearest atoms, R1, R2 and
R3, are defined in Figure B.3 of appendix B.2. For every atomic orbital φ, it follows
that

ΦA(`, r) = φ(r),

ΦB(`, r) = f(`)√
3
φ (r−Rj) ,

(B.2)

where f(`) = ∑3
j=1 e

i`·Rj . The eigenfunctions are expressed by a linear combination
of the Bloch functions according to

Ψi(`, r) =
n∑
j=1

Cij(`)Φj(`, r). (B.3)

The stationary Schrödinger equation,

HΨi = Ei(`)Ψi, (B.4)

is satisfied for all eigenfunctions. Here, H is the crystal Hamiltonian and Ei(`) is
the band energy. By denoting S as the overlapping integral matrix and H as the
transfer integral matrix, equation (B.4) can be expressed as

HCi = Ei(`)SCi, (B.5)

from which the band energies Ei and corresponding eigenvectors Ci can be calcu-
lated.
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B.1.1 The π band Wave Function
The unhybridised π orbital is given by the wave function

ψπ(`, r) ≈ Nπ(`) (φ2pz(r)C1 + C2f(`)φ2pz (r−Rj)) , (B.6)

where the wave function for the 2pz orbital is hydrogenic and thus given by

φ2pz(r) = N2pza
−3/2
0

r

a0
eZ

2pz
eff r/2a0 cos θ. (B.7)

Here, a0 = 0.529 Å is the Bohr radius and Z2pz
eff = 4.03 is the 2pz specific effective

potential. Furthermore, the Fourier transform of ψπ is given as

F(ψπ)(`,k) = Ñπ(`) (C1 + C2f(` + k))F(φ2pz)(k), (B.8)

where the Fourier transform of the 2pz orbital can be approximated by

F(φ2pz)(k) ≈ Ñ2pza
3/2
0

a0kz(
a2

0|k|2 +
(
Z2pz

eff /2
)2
)3 . (B.9)

The coefficients as well as the π band energy can be calculated from equation (B.5).
The overlapping integral matrix and the transfer integral matrix for π are

S =
(

1 sf(`)
sf(`)∗ 1

)
, H =

(
ε2p tf(`)

tf(`)∗ ε2p

)
, (B.10)

where s = 0.129 is the overlap integral and t = −3.03 eV is the transfer integral
between nearest neighbours. Moreover, ε2s = −8.87 eV is given relative to ε2p and
hence ε2p = 0 is chosen for the sake of simplicity [20].

Solving for the eigenenergy in equation (B.5) results in

Eπ(`) = ε2p ± t|f(`)|
1± s|f(`)| , (B.11)

where ± correspond to valence and conductivity bands, respectively. The corre-
sponding eigenvector to these eigenenergies is given as

C(`) =
(
C1(`)
C2(`)

)
= 1√

2

(
1
± eiϕ`√

3

)
(B.12)

B.1.2 The σ band Wave Functions
The σ wave functions are linear combinations of 2s, 2px and 2py orbitals as a result
of the sp2 hybridisation in graphene. These orbitals are hydrogenic and thus given
by
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φ2px(r) = N2px,2pya
−3/2
0

r

a0
e−Z

2px/2py
eff r/2a0 sin θ cosϕ,

φ2py(r) = N2px,2pya
−3/2
0

r

a0
e−Z

2px/2py
eff r/2a0 sin θ sinϕ,

φ2s(r) = N2sa
−3/2
0

(
1− Z2s

effr

a0

)
e−Z

2s
effr/2a0 .

(B.13)

The Fourier transform of the 2s orbital can be calculated analytically, while the
Fourier transforms of the 2px and 2py orbitals can only be approximated. These
Fourier transforms result in

φ̃2px(k) ≈ Ñ2px,2pya
3/2
0

a0kx(
a2

0|k|2 +
(
Z

2px/2py
eff /2

)2)3 ,

φ̃2py(k) ≈ Ñ2px,2pya
3/2
0

a0ky(
a2

0|k|2 +
(
Z

2px/2py
eff /2

)2)3 ,

φ̃2s(k) = Ñ2sa
3/2
0

a2
0|k|2 − (Z2s

eff/2)2(
a2

0|k|2 + (Z2s
eff/2)2)3 ,

(B.14)

with orbital specific effective potentials, Z2px/2py
eff = 5.49 and Z2s

eff = 4.84, as given
by Hochberg et al. [20].

As presented in [26], and further detailed by Hochberg et al. [20], the band en-
ergies are obtained from equation (B.5). For σ, the S and H matrices are obtained
by assembling the sub matrices SAA, SAB, SBA, SBB and HAA, HAB,HBA, HBB.
The sub matrices for S are given as

SAA =

 1 0 0
0 1 0
0 0 1

 SAB =

 Sss Sspx Sspy
−Sspx Spxpx Spxpy

−Sspy Spxpy Spypy

 , (B.15)

with matrix elements as

Sss = Sss

(
ei`xa + 2e−i`xa/2 cos

(√
3`ya
2

))

Sspx = Ssp

(
−ei`xa + e−i`xa/2 cos

(√
3`ya
2

))

Sspy = −i
√

3Sspe
−i`xa/2 sin

(√
3`ya
2

)

Spxpx = −Sσei`xa + (3Sπ − Sσ)
2 e−i`xa/2 cos

(√
3`ya
2

)

Spxpy = i
√

3
2 (Sσ + Sπ) e−i`xa/2 sin

(√
3`ya
2

)

Spypy = Sπe
i`xa + (Sπ − 3Sσ)

2 e−i`xa/2 cos
(√

3`ya
2

)
.

(B.16)
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The sub matrices of H are given as

HAA =

 ε2s 0 0
0 ε2p 0
0 0 ε2p

 ,HAB =

 Hss Hspx Hspy
−Hspx Hpxpx Hpxpy
−Hspy Hpxpy Hpypy

 , (B.17)

with elements given in accordance with [26]. The AA transfer matrices are iden-
tical to the BB matrices. AB and BA are the overlap matrices, where BA is the
hermitian transpose of AB for both S and H. HAB is obtained by replacing S
with H and the S constants with H constants in equation (B.16). Both the overlap
constants S and the transfer constants H, can be found in table B.1. For further
details see Hochberg et al [20] and [26]. These analytical expressions can now be
used to describe the eigenenergies associated with the wave functions of σ, and thus
the Fourier transformed wave functions used in equation (2.37). The final wave
functions ψ̃σi are composed of a superposition of the valence orbitals 2px, 2py and
2s as shown in equation (B.18).

ψσi = Ci



φ2s(r)
φ2px(r)
φ2py(r)

1√
3
∑
j φ2s(r−Rj)ei`·Rj

1√
3
∑
j φ2px(r−Rj)ei`·Rj

1√
3
∑
j φ2py(r−Rj)ei`·Rj


(B.18)

Ci = [C1, C2, C3, C4, C5, C6]i represents the eigenvector associated with the each va-
lence band. These can be calculated from the secular equation (B.5) for any given `.
The coefficients describing the superposition as well as the eigenenergies were tabu-
lated on a 500×500 grid over the first Brillouin zone to aid the numerical calculation.

The overlap and transfer parameters used in the calculations where provided by
Hochberg et al. [20] and are shown in Table (B.1).

Table B.1: Overlap and transfer parameters used in the calculations of σ band
energies and wave functions.

S value H value (eV)
Ssp 0.16 Hsp −5.58
Sss 0.21 Hss −6.77
Sσ 0.15 Hσ −5.04
Sπ 0.13 Hπ −3.03

The eigenvector components of the σ bands are plotted for reference in Figure B.1
over the first Brillouin zone. Since σ1 and σ2 are 2s dominated, a larger contribution
from C1,4 is expected. The σ3 band, on the other hand, is largely affected by the
C2,5 and C3,6 maps.

VIII



B. Physical Properties of Graphene

(a) σ1

(b) σ2

(c) σ3

Figure B.1: Weighted contribution from 2s, 2px and 2py for each respective σ
shown by scalar factor and with the first Brillouin zone for reference. Note that σ1
is mostly dominated by 2s, as is σ2, while σ3 is mostly comprised by a combina-
tion of 2px and 2py. Every graph represents two eigenvector elements: one for the
contribution from ΦA and one for ΦB.
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The binding energy of each valence band over the first Brillouin zone can be plotted
in relation to the high symmetry points K, Γ and M , shown in Figure B.2. The
σ2 and σ3 bands are mostly contributed to from near the edge of the first Brillouin
zone, manifesting in a larger contribution to the differential rate from this area.

Figure B.2: Electronic band structure in the valence bands of graphene plotted
against ` with high-symmetry points K, Γ and M labelled. These symmetry points
are visualised in the figure to the right.

B.1.3 Normalisation of the Wave Functions
The normalisation constants for the atomic orbital wave functions, 2s, 2px, 2py and
2pz are given as

N2px,2py =

√
Z

2px/2py
eff

7

π
, N2pz =

√
Z2pz

eff
7

π
, N2s =

√
Z2s

eff
5

π
. (B.19)

The Fourier transformed wave function for the π band must also be unit normalised.
The normalisation constant in equation (B.8) is possible to calculate analytically.
This is done according to

(2π)3 =
〈
Ψ̃π

∣∣∣Ψ̃π

〉
= Ñπ(`)2

〈C1ΦA + C2ΦB|C1ΦA + C2ΦB〉 =

=Ñπ(`)2 [C1C
∗
1 〈ΦA|ΦA〉+ C2C

∗
2 〈ΦB|ΦB〉+ C1C

∗
2 〈ΦA|ΦB〉+ C∗1C2 〈ΦB|ΦA〉] .

(B.20)
Here [C1, C2] is the eigenvector of the secular equation (B.5) for π. Both the first
and second term, i.e. C1C

∗
1 〈ΦA|ΦA〉 and C2C

∗
2 〈ΦB|ΦB〉, are equal to 1/2, since ΦA

and ΦB are unit normalised. The two last terms of equation (B.20) can be rewritten
as

1
2(e−iϕ` + eiϕ`) 〈ΦA|ΦB〉 = s

3∑
i

cos (ϕ` + r ·Ri), (B.21)
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where s = 0.129 is the overlap parameter given by Hochberg et al. [20]. This results
in a complete Bloch wave normalisation, with a normalisation constant given as

Ñπ(`) = (2π)3/2√
1 + s

∑3
i (cos(ϕ` + r ·Ri))

. (B.22)

Similar calculations can be made for the σ bands, although since the calculations are
analogous with those of the π band, these are left to be performed by an interested
reader. In Euclidean space, this calculation yields

Nσ(`) = (2π)3/2√
nσ(`)

, (B.23)

where
nσ(`) =C∗1C1 + C∗2C2 + C∗3C3 + 3(C∗4C4 + C∗5C5 + C∗6C6)

2 Re
[
SssC

∗
1C4 + SspC

∗
1C5 + SspC

∗
1C6 + SspC

∗
2C3 + SσC

∗
2C5+

SπC
∗
2C6 + SspC

∗
3C4 + SπC

∗
3C5 + SσC

∗
3C6

3∑
j=1

ei`·Rj

]
.

(B.24)

The overlap parameters are presented in Table B.1.

B.2 First Brillouin Zone
The integration over the reciprocal space, d2`, was restricted to the first Brillouin
zone of a graphene crystal. Graphene has a 2D honeycomb structure with a carbon-
carbon bond of length a = 1.42 Å, as shown in Figure B.3. The unit vectors of the
primitive cell can be defined as

a1 = a

√
3

2
(√

3, 1
)

a2 = a

√
3

2
(√

3,−1
)
.

(B.25)

From this the reciprocal lattice vectors can be derived according to

b1 = 2π
a
√

3

(
1√
3
,−1

)

b2 = 2π
a
√

3

(
1√
3
,−1

)
.

(B.26)

Both of these vectors have the same length given as

|b1| = |b2| = b = 4π
3a . (B.27)

By using this in combination with Figure B.3, the reciprocal length

c = 4π
3
√

3a
(B.28)
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can be found. From this, the first Brillouin zone is defined in the shape of a hexagon
with vertices in the positions (0, c), (

√
3c
2 , c2), (

√
3c
2 ,− c

2), (0,−c), (−
√

3c
2 ,− c

2) and
(−
√

3c
2 , c2) in Cartesian coordinates. The first Brillouin zone is shown in Figure B.3,

where b1, b2 and c are presented as well.

Figure B.3: Honeycomb structure of graphene (left) and the corresponding first
Brillouin zone (right). On the left, a1 and a2 are the unit vectors of the primitive cell.
R1, R2 and R3 are the vectors describing the positions of the nearest neighbours
for each atom. On the right, b1 and b2 are the unit vectors of the first Brillouin
zone.
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