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Centralized collision avoidance system for automated vehicles
A safety system utilizing classic reachability analysis and model predictive control
Andreas Hahlin
Anton Olsson
Department of Electrical Engineering
Chalmers University of Technology

Abstract
This master’s thesis examines the possibility of utilizing classic Reachability Analysis
(RA) together with Model Predictive Control (MPC) in order to create a Centralized
Collision Avoidance System (CCAS) for automated vehicles. With minimal intrusion
to a preexisting system, the CCAS engage when a collision risk is detected and averts
it. Implementation and evaluation were performed in Volvo cars’ existing Simulation
Platform for Active Safety (SPAS).
The CCAS is designed and evaluated for a traffic intersection scenario consisting
of a vehicle with unknown future behaviour and two vehicles with known future
behaviour which also could be controlled by the CCAS. The created CCAS utilizes
classic RA to predict the future reachable sets of positions of the vehicle with un-
known behaviour up to a prediction horizon Hx. If a collision risk is detected, the
MPC derives new trajectories for the controllable vehicles in order for them to avoid
any collision risks.
Though the CCAS was successfully implemented into SPAS, it was concluded that
the vehicle with unknown behaviour must have a restricted uncertainty while using
classic RA as its reachable sets grows too rapidly for the CCAS to be minimally
intrusive to the preexisting system. It was further derived that the initial velocities
at which all vehicles enter the intersection at proved to have a large effect on the
CCAS’s feasibility to avoid the collision. Though solvable, it further increases the
intrusiveness to the preexisting system. It is concluded that a successful method
to derive the minimum prediction horizon Hx was implemented based on resulting
simulations.

Keywords: Collision avoidance, active safety, safety system, centralized control,
reachability analysis, model predictive control, MPC.
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Preliminaries

This preliminary chapter starts by presenting used abbreviations and are then fol-
lowed by mathematical notations categorized by association.

Abbreviations

CCAS Centralized Collision Avoidance System
RA Reachability Analysis
MPC Model Predictive Control
FMPC Fast Model Predictive Control
LQR Linear Quadratic Regulator
ITS Intelligent Traffic System
iTRANSIT intelligent Traffic mANagement System based on ITS
SPAS Simulation Platform for Active Safety
CV Constant Velocity
BM Bicycle Model
G-representation Generator Representation
H-representation Half Space Representation
I-representation Interval Representation
V-representation Vertex Representation
LP Linear Programming
ODE Ordinary Differential Equation
CoG Center of Gravity

General notations

N Natural numbers
R Real valued numbers
I Real valued intervals
�̇ Time derivative
�̄ Maximum value

¯
� Minimum value
�BM Matrix associated with the BM
�CV Matrix associated with the CV model
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Model notations

n ∈ N Number of state variables
m ∈ N Number of control inputs
nc ∈ N Number of controlled outputs
A ∈ Rn×n System matrix
B ∈ Rn×m Input matrix
C ∈ Rnc×n Output matrix
X ∈ Rn State vector
U ∈ Rm Input vector
fuc ∈ Rm Model of uncontrollable vehicle
fNL ∈ Rm Nonlinear model
M ∈ R Mass
Iz ∈ R Moment of interia around z-axis
Cf ∈ R Corning stiffness, front
Cr ∈ R Corning stiffness, rear
C ∈ R Length between CoG and front
L ∈ R Length of vehicle
W ∈ R Width of vehicle
lf ∈ R Length between CoG and front axis
lr ∈ R Length between CoG and rear axis
δ ∈ R Steering angle
Fx ∈ R Applied force
a ∈ R Applied acceleration
X ∈ R Global position
Xr ∈ R Global reference position
Y ∈ R Global position
Yr ∈ R Global reference position
VX ∈ R Global velocity
VY ∈ R Global velocity
x ∈ R Local longitudinal position
y ∈ R Local lateral position
Vx ∈ R Local longitudinal velocity
V const
x ∈ R Constant longitudinal velocity
Vy ∈ R Local lateral Velocity
Ψ ∈ R Heading
ω ∈ R Yaw rate

Reachability analysis notations

Z ⊂ Rn Zonotope
c ∈ Rn Center of zonotope
g ∈ Rn Generator
Zred ⊂ Rn Reduced Zonotope
Ẑ ⊂ Rn Unreduced part of zonotope
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Ž ⊂ Rn Reduced part of zonotope
φ ⊂ Rn Polytope
Π ∈ Rn×n Scaling matrix
v ∈ R Inverse volume
X0 ⊂ Rn Initial set
U ⊂ Rm Input set
H ⊂ Rn Homogeneous solution
V ⊂ Rn Increment of particular solution
P ⊂ Rn Particular solution
R ⊂ Rn Local reachable set
r ⊂ R2 Local reachable set of velocities
Rp ⊂ R2 Global reachable set of positions
Ruc ⊂ R2 Global reachable set
F ∈ In×n Correction matrix
E ∈ In×n Error matrix
p0 ⊂ I Position set
Ψ ⊂ I Heading angle set
M I ∈ I2×2 State transformation interval matrix
M ∈ R2×2 Rotation matrix
M̄ ∈ R2×2 Maximum value of rotation matrix

¯
M ∈ R2×2 Minimum value of rotation matrix
d ∈ I2×1 Dimension of vehicle
p ∈ R2 Global position
∆X ∈ Rn State deviation
∆X ∈ R X deviation
∆Y ∈ R Y deviation
∆Vx ∈ R Vx deviation
∆Vy ∈ R Vy deviation
∆Ψ ∈ R Ψ deviation
∆ω ∈ R ω deviation
∆p ∈ R2×1 p deviation
V̄x ∈ R Maximum initial Vx in RA

¯
Vx ∈ R Minimum initial Vx in RA
V̄y ∈ R Maximum initial Vy in RA

¯
Vy ∈ R Minimum initial Vy in RA
Ψ̄ ∈ R Maximum initial Ψ in RA

¯
Ψ ∈ R Minimum initial Ψ in RA
ω̄ ∈ R Maximum initial ω in RA

¯
ω ∈ R Minimum initial ω in RA
p̄ ∈ R2×1 Maximum initial p in RA

¯
p ∈ R2×1 Minimum initial p in RA
Φ ∈ R Heading angle amplitude
CH ∈ R1×2 Half space weights
CX ∈ R Individual weights
CY ∈ R Individual weights
dH ∈ R Half space constants
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XH ∈ R Intersection point between half space and reference trajectory
YH ∈ R Intersection point between half space and reference trajectory
t ∈ R Time step
η ∈ R Number of Taylor terms
ε ∈ R Metric
ng ∈ R Number of generators

Model predictive control notations
Notations associated with the complete MPC setup:

na ∈ N Number of actors
i ∈ N Actor number
Hx ∈ N Prediction horizon
Hu ∈ N Control horizon
nz ∈ N Length of optimization vector
D ∈ R Delay
J ∈ R Cost
z ∈ Rnz Optimization column vector
H ∈ Rnz×nz Weighting matrix
Aeq ∈ RnHxna×nz Equality constraint matrix
Beq ∈ RnHxna Equality constraint column vector
Ain ∈ R(2nHx+2mHu)na×(2nHx+2mHu)na Inequality constraint matrix
Bin ∈ R(2nHx+2mHu) Inequality constraint column vector

Notations associated with each vehicle i:

Ai
eq ∈ RnHx×nHx Equality constraint matrix

Bi
eq ∈ RnHx Equality constraint column vector

Āi
inX ∈ RnHx×(nHx+mHu) Upper bound inequality constraint

¯
Ai
inX ∈ RnHx×(nHx+mHu) Lower bound inequality constraint

B̄i
inX ∈ RnHx Inequality constraint matrix for actor i

¯
Bi
inX ∈ RnHx Inequality constraint matrix for actor i

Āi
inU ∈ RmHu×(nHx+mHu) Inequality constraint matrix

¯
Ai
inU ∈ RmHu×(nHx+mHu) Inequality constraint matrix

B̄i
inU ∈ RmHu Inequality constraint matrix

¯
Bi
inU ∈ RmHu Inequality constraint matrix

Qi ∈ RnHx×nHx Weighting matrix over time of the states
qi ∈ Rn×n Weighting matrix of individual time instance
qi ∈ Rn×n Weight of individual states
Ri ∈ RmHu×mHu Weighting matrix over time of the input
ri ∈ Rm×m Weighting matrix of individual time instance
ri ∈ Rm×m Weight of individual input
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Prediction horizon notations

Hx ∈ N Prediction horizon
h ∈ N Additional time steps
THx ∈ R Prediction time
Th ∈ R Additional prediction time
db ∈ R Possible breaking distance in Hx steps
da ∈ R Possible acceleration distance in Hx steps
dh ∈ R Distance between trajectory point at Hx and worst case zonotope at Hx + h
∆db ∈ R Additional distance due to multiple potential collisions
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1
Introduction

This chapter introduces and motivates the thesis. A general explanation of the
project is presented in Section 1.1. The background of the thesis is given in Section
1.2 and the problem is described in Section 1.3. The confines of the project is estab-
lished in Section 1.5 in order to make the project manageable. An overview of the
implemented Centralized Collision Avoidance System (CCAS) is given in Section 1.4
providing the reader with an overview of the project’s components and the informa-
tion flow between those. In Section 1.6 similar bodies of work are presented which
have supported decisions taken during the thesis. This is followed by Section 1.7
that presents scientific contributions. The chapter ends with Section 1.8 presenting
the structure of the thesis.

1.1 Centralized Collision Avoidance System con-
cept

This thesis presents the development of a CCAS with the purpose of preventing col-
lision risks in a traffic intersection scenario between controllable and uncontrollable
vehicles, the full scenario is detailed in Section 1.3. A controllable vehicle refers to
the CCAS ability to convey new trajectories to it, in position over time, while an
uncontrollable vehicle has an unknown and uncontrollable trajectory.

The CCAS intervene the controllable vehicles’ preset course in the case the CCAS
detects a collision risk. The detection is performed by utilizing over-approximated
models for the future states of all vehicles in the scenario. The predictions are
kept as narrow as they can be trusted given the available information at the time,
ensuring that the CCAS remains minimally intrusive to the preexisting trajectories
by not being over sensitive.

The reachable sets of states for the uncontrollable vehicle are determined by utilizing
classic Reachability Analysis (RA) which utilizes a representative vehicle model,
taking into account the uncertainty in its future behaviour. In contrast to stochastic
RA, classic RA has no added probable assumptions to narrow the reachable sets and
instead includes all reachable sets based on the uncertainty in states and/or inputs
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1. Introduction

of the model.

In the case of a detected collision risk, Model Predictive Control (MPC) is used
to derive new trajectories for the controllable vehicles which will avoid the future
positions in the intersection were a collision otherwise could have occurred. The
trajectories are solved under one shared cost function in order to achieve coordinated
movements between the controllable vehicles.

The added system is referred to as the Centralized Collision avoidance system be-
cause all communication is centralized to a server in the near vicinity of the inter-
section on which all computations are performed. The CCAS is created, integrated
and evaluated in Volvo cars’ existing Simulation Platform for Active Safety (SPAS).

1.2 Background

Technological development have led to vehicles and its surrounding infrastructure
to become increasingly more intelligent, expanding the potential to handle more
intricate and potentially dangerous traffic situations autonomously in real time.
Volvo Cars are active contributors in this development of new safety features, helping
to improve the safety and well being in society. During year 2017, Volvo cars’ Drive
Me project will introduce self-driving cars that will run in ordinary traffic situations
in Gothenburg [1]. These new developments have opened up for new concepts such
as the CCAS that utilizes these vehicles in a new combined way rather than having
them work individually. This alteration is an unique and previously untested form of
traffic safety regulation for a real traffic setting which incentivize a thorough study
of its functionality from a control theory aspect.

In this project, a CCAS is created and implemented as a part of the collaboration
research project iTRANSIT (intelligent TRAffic maNagement System based on ITS
(intelligent traffic system)), financed by Vinnova. The project involves Volvo Cars,
SP, Chalmers, ÅF, and AstaZero with the main objective of aggregating different
kinds of traffic data into a centralized view on a server, enabling increased traffic
management and support for automated driving[2, 3].

The created CCAS utilizes RA and MPC where RA has previously been used mainly
within the fields of aircrafts and MPC has its origin in the process industry, but could
today be found in a lot of other applications [4, 5].

1.3 Problem description

The CCAS is specifically designed for the traffic intersection scenario illustrated in
Figure 1.1a. The scenario consists of the uncontrollable vehicle V1 and the two con-
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1. Introduction

trollable vehicles V2 and V3, all providing the centralized server with their present
dynamical state at fixed time intervals. RA is then used to predict the reachable
sets of states of the uncontrollable vehicles as shown in Figure 1.1b. In the case of
a detected collision risk, i.e. the predefined trajectories of the controllable vehicles
are within the reachable sets, new safe trajectories are calculated using MPC.

(a) Investigated traffic intersection
scenario.

(b) RA applied for the investigated
scenario.

Figure 1.1: Traffic intersection scenario for which the CCAS is specifically designed
for. The scenario consists of the uncontrollable vehicle V1 for which RA is applied
and the controllable vehicles V2 and V3 having predefined trajectories which can be
altered by the centralized server.

The involved vehicles operates under these specific conditions:

• V1 is uncontrollable and enters the intersection from below with unknown
trajectory.

• V2 and V3 are restricted to the confines of the road.

• V2 is controllable and enters the intersection from the left with the goal of
leaving the intersection to the right.

• V3 is controllable and enters the intersection from the right with the goal of
leaving the intersection to the left.

• Trajectories for V2 and V3 can be updated at fixed time intervals throughout
the scenario.

The conditions associated with the server are defined as:

• The state of all vehicles provided to the server are available at fixed time
intervals.

• The computational performance in the centralized server is large and is not
evaluated.
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1. Introduction

• Information between the server and involved vehicles is associated with a con-
stant but adjustable transfer delay.

To keep the CCAS minimally intrusive, the smallest prediction horizonHx is wanted,
referring to how far ahead in time the comparison between the reachable sets and
trajectories are made. This discrete number of steps ahead in time defines the last
time step for both the RA and MPC. The reason being that the larger the prediction
horizon Hx, the larger the reachable sets becomes as the uncontrollable vehicle will
have time to cover a larger area. Hence, if the prediction horizon is chosen too large,
the CCAS will intervene unnecessarily often.

Based on this problem formulation, the main research questions that this thesis will
answer are

1. Can classic RA together with MPC be utilized in an algorithm for a CCAS?

2. How large velocities can the vehicles entering the intersection have while main-
taining feasible solutions?

3. How can the prediction horizon Hx be determined in order to have minimum
intrusion to the ordinary controls of the controllable vehicles?

To answer the research questions a CCAS utilizing classic RA and MPC is created
and evaluated for a worst case scenario challenging the derived prediction horizon.
The evaluation is performed for three different velocities of the involved vehicles.

1.4 Centralized Collision Avoidance System overview

An overview of how the the CCAS is implemented is illustrated in Figure 1.2 con-
taining the three main components RA, collision risk detection and MPC illustrated
as blocks. With this structure, the RA algorithm calculates the future sets of states
up to some specified prediction horizon Hx that the uncontrollable vehicle could
reach, based on its present dynamical state. These sets are then compared against
the trajectories of the controllable vehicles in the collision risk detection block. If
a collision risk is detected, the MPC calculates new safe trajectories based on the
reachable sets as constraints, which are then sent to the controllable vehicles.
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1. Introduction

Figure 1.2: Flow chart showing the structure of the CCAS. Applying RA to the
uncontrollable vehicle in order to gain its reachable sets, comparing those to the
controllable vehicles trajectories, solving for new trajectories for the controllable
vehicles if collision risks were detected, then passing them on instead, otherwise
passing the originals.

1.5 Scope and limitations

This thesis addresses how the two main theories RA and MPC are adapted for the
problem description given in Section 1.3. The development and results of the RA,
MPC, collision detection algorithm as well as the determination of the minimum
prediction horizon needed are presented. The following limitations are set for the
thesis in order to keep the project focused:

• Only longitudinal control of the controllable vehicles through acceleration or
breaking is considered as control inputs. The longitudinal axis of the control-
lable vehicles coincide with the global x-axis of the scenario.

• In order to generalize the problem, the uncontrollable vehicle is assumed to
move perpendicularly to the controllable vehicles at the point of a detected
collision risk, being equally inclined to diverge left or right towards either of
the controllable vehicles.

• The measured states of the vehicle provided to the server are assumed to be
ideal, i.e. without any uncertainties.

• In the scenario in Section 1.3, it is given that the uncontrollable vehicle has an
unknown trajectory. Therefore, no driver model for the uncontrollable vehicle
is assumed and only classical RA is investigated. Only higher velocities for
all vehicles in the scenario are considered as it is more representative of a real
traffic intersection.
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1. Introduction

1.6 Related work

The RA part of this thesis is mainly based on the doctoral thesis [6] that starts by
presenting elementary set representations and mathematical operations commonly
used in RA. Classic as well as stochastic RA are introduced and the thesis ends with
presenting results from practical implementations of stochastic RA in autonomous
cars proving the applicability of the theory for scenarios involving road following,
vehicle following, intersection crossing and lane changing. The main difference be-
tween classic and stochastic RA is that the latter also formulates the probability of
that a set is occupied. This approach becomes useful in that it shrinks the sets of
occupied states by excluding sets with low probability to be true. In order to use the
stochastic RA, probabilities of the sets has to be assigned. This could be done with
the use of a driver model as done in [7] which argues that traffic participants tends
to follow the same path for different kind of scenarios, the only thing that varies
between different drivers are the speed and acceleration. The restrictions that are
indirectly made by introducing a driver model might become useful for standard
scenarios where vehicles follows the common paths.

One problem when applying RA is that the model of the system might be nonlinear.
This implies that the superposition principle is not valid and has to be circumvented.
A common approach is to linearize the system around an operating point and use
that as an approximation of the system around that region. This idea could also
be applied for RA which is proposed in [8] which presents an algorithm that, based
on the Lagrange remainders from the linearization, decides whether the linearized
system is representative enough or have to be re-linearized. By using a nonlinear
model, a more representative response of the system could be achieved which might
result in narrower reachable sets.

In [9], an online method for verifying whether two automated vehicles might collide
by use of RA are presented. For this, a nonlinear model are used for the controllable
vehicle and a simpler model is used for the uncontrollable vehicle. In this case, the
uncontrollable vehicle is assumed to follow traffic regulations restricting the sets of
future occupied states. For the controllable vehicle, linearizations are calculated in
advance. The results of this article shows how this method could be implemented
in an system executed online in the vehicles, proving the potential of implementing
stochastic RA solutions.

A reoccurring choice for achieving control of scenarios that includes constraints and
future predictions have been MPC [10, 11]. In [10], a simple nonlinear Bicycle Model
(BM) is used to describe the dynamics of a nonholonomic wheeled mobile robot and
with use of MPC trying to follow a predefined trajectory. The article proves the
concept by presenting successful simulation results.

The superior functionality of MPC compared to linear control is highlighted in
[12] which involves control of multiple vehicles for a platooning motion through
traffic. Its functionality is further emphasized in [13] in comparison to using a Linear
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1. Introduction

Quadratic Regulator (LQR) for traffic flow optimization and in [14] compared to anti
windup. The drawback with MPC is the computational burden in comparison to
previously mentioned options. Precomputed strategies such as Fast Model Predictive
Control (FMPC) exists [15] which performs most computations once to generate a
look up table.

1.7 Scientific contributions

A method for how the combination of RA and MPC can be used for traffic safety
regulation by restricting the MPC with the reachable sets achieved from the RA is
presented. No single study was found that utilizes the combination of the two fields
for such an application.

New insight is provided into how linear RA can be used instead of nonlinear RA.
The proposition to add an over approximating transformation interval matrix into
the linear RA algorithm to circumvent the issue of nonlinearity is presented.

A mathematical analysis which determines the minimum prediction horizon needed
as described in Section 1.3 is presented together with an ad hoc solution used in the
implementation.

The possibility of introducing a CCAS as an extension to the specific ITS environ-
ment at Volvo cars is presented.

1.8 Outline of the thesis

The introductory Chapter 1 presents the background the thesis. Then in chapter
2, the necessary theory of the RA and MPC is covered. Chapter 3 explains the
approach that has been applied to the problem. Towards the end of the thesis,
Chapter 4 presents the outcome of the implementation. The results are discussed
in Chapter 5 followed with conclusions of the project in Chapter 5. The thesis
then ends with 6, reflecting on the most relevant future work based on previous
conclusions.

7



1. Introduction

8



2
Reachability Analysis and Model

Predictive Control Theory

In order to be able to create and implement the RA and MPC blocks which form
the basis of the CCAS as shown in Section 1.4, underlining theory for the RA and
MPC are presented in this chapter. In Section 2.1, the concept of RA is clarified
and mathematical set operations used are presented. In Section 2.2, the necessary
background and steps to set up the MPC is provided.

2.1 Reachability analysis

In order to predict future state of a system by use of RA computationally efficient
sets are needed. In this thesis, the sets used to represent the states of the uncontrol-
lable vehicle takes the form of zonotopes. A zonotope is a special case of polytope
with the difference being that a zonotope are centrally symmetric and hence easier
to represent mathematically. An introduction to zonotopes and how these are repre-
sented is given in Section 2.1.1. Mathematical operations on those sets are provided
in Section 2.1.2 and can be found in [6].

2.1.1 Zonotopes

To describe the zonotopes, generator representation (G-representation) is used through-
out this thesis and is a commonly used set representation for RA due to its superior
computationally efficiency and scalability to higher dimensional state space repre-
sentations [6, 16, 17]. However, other set representations exists such as interval
representation (I-representation), half space representation (H-representation) and
vertex representation (V-representation).

An example of a zonotope is presented in Figure 2.1a. This two dimensional set could
intuitively be described by an interval consisting of a lower an upper limit in each
dimension, which encloses the set. An other way of representing the same set would
be to describe the set as a center vector along with a number of additional vectors,

9
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called generators, that could be scaled with the factor −1 ≤ βi ≤ 1. This is what is
called a G-representation of a zonotope, see figure 2.1b. The G-representation of a
n dimensional zonotope Z is defined as

Z =
{
X ∈ Rn | X = c +∑e

i=1 βig(i) − 1 ≤ βi ≤ 1
}

(2.1)

where c ∈ Rn is the centre of the set and g(i) ∈ Rn a generator with its associated
scaling factor βi and e ∈ N. The immediate advantage of a G-representation is the
possibility to describe a set without perpendicular facets, allowing for a more narrow
set representation.

The H-representation of a zonotope is defined as

ZH =
{
X ∈ Rn | CHX ≤ dH

}
(2.2)

where CH ∈ Rq×n and dH ∈ Rq×1 and q are the number of half-spaces.

(a) Interval representation. (b) G-representation

Figure 2.1: An illustration of a zonotope in two dimensions. To the left, the set is
represented with I-representation limiting the set with lower and upper bounds. To
the right, the set is represented with G-representation for which the center vector
and generators forms its basis.

2.1.2 Operations on zonotopes

Mathematical operations on zonotopes are used in RA. Here, the operations on the
general, n dimensional, zonotopes Z1 = (c(1),g(1), . . . ,g(e)) and Z2 = (c(2), f(1), . . . , f(u))
are clarified. Also conversions between different set representations are presented.

10
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2.1.2.1 Addition

The addition of the two zonotopes Z1 and Z2 are defined as

Z1 + Z2 = (c(1) + c(2),g(1), . . . ,g(e), f(1), . . . , f(u)) (2.3)

where the resulting center of the new zonotope are defined as the addition of the
two centers c(1) and c(2) followed by the concatenated set of generators from Z1 and
Z2.

2.1.2.2 Multiplication

The linear transformation, or matrix multiplication, of a general matrix M and a
zonotope Z1 is defined as

M Z = (Mc(1),Mg(1), . . . ,Mg(e)), M ∈ Rn×n (2.4)

where the linear transformation operates on each component, i.e. the center and
each generator, of the zonotope individually.

2.1.2.3 Convex hull

The over approximated convex hull operator acting on the two zonotopes Z1 and
Z2 are defined as

CH(Z1,Z2) = 1
2(c(1) + c(2),g(1) + f(1), . . . ,g(e) + f(e)),
c(1) − c(2),g(1) − f(1), . . . ,g(e) − f(e))

(2.5)

and results in a zonotope which encloses the two zonotopes Z1 and Z2.

2.1.2.4 G to I represenation

The box operator, defined as

box (Z) = [c−∆g, c + ∆g], ∆g =
e∑
i=1
|g(i)| (2.6)

over approximates a zonotope Z with an interval aligned with the unit vectors of
the coordinate system.

11



2. Reachability Analysis and Model Predictive Control Theory

2.1.2.5 G to H representation

A theorem that describes the conversion from G-representation to H-representation
of a zonotope utilizing the n-dimensional cross product is found in [6]. The n-
dimensional cross product of the n − 1 linearly independent vectors forming a ma-
trix S ∈ Rn×(n−1) results in a vector that is orthogonal to the n − 1 vectors. By
introducing the matrix S[i] ∈ R(n−1)×(n−1) where the superscript denotes that the
i-th row is removed from S, the n-dimensional cross product is defined as

nX(S) =
[
detS[1] . . . (−1)i+1 detS[i] . . . (−1)n+1 detS[n]

]T
(2.7)

In a similar way, the matrix G<γ,...,η> can be introduced where the superscript
γ, . . . , η denotes that the generators with the indices e − n + 1 are removed from
the generator matrix G = [g(1), . . . ,g(e)] whose e number of generators are assumed
to be independent. The set representation conversion resulting in H-representation
CH and dH are given by

CH =
[
C+

−C+

]
where C+ =


C+

1
...

C+
ν

 and C+
i = nX(G<γ,...,η>)T

||nX(G<γ,...,η>)||2
(2.8)

dH =
[
d+

d−
]

=
[
C+c + ∆d
−C+c + ∆d

]
where ∆d =

p∑
ν=1
|C+g(ν)| (2.9)

where the index i goes from 1 to ν =
(

e
n−1

)
.

2.2 Model predictive control

If a collision is detected in CCAS, new safe trajectories for the controllable vehicle are
calculated by using MPC. In Section 2.2.1 an introduction to the MPC framework is
presented in order to clarify its main elements consisting of the model, cost function,
equality constraints and inequality constraints. The model which the MPC utilizes
are discussed in Section 2.2.2. The cost function are presented in Section 2.2.3
and the equality and inequality constraints are presented in Section 2.2.4 and 2.2.5
respectively.

2.2.1 Model predictive control framework

MPC is a quadratic optimization problem which relies on predictions based on a
linear time invariant model defined as

X(k + 1|k) = A(k|k)X(k|k) + B(k|k)U(k|k) (2.10)
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where X(k|k) is the state vector for the system with the system and input matrices
Ai and Bi respectively describing the evolution of the system. The model formulates
future desired dynamics for the system up to a prediction horizon Hx by repeatedly
reusing the model to define all proceeding time steps. A set of the control inputs
up to a control horizon Hu is included to the optimization problem in order to
achieve the desired outcome depending on the system. Hu can be defined up to
Hx but control inputs defined past Hu are ordinarily considered to be constant.
Solving the optimization problem results in a sequence of control inputs that can
be applied for each time step. By the concept of receding horizon however, only
the most current input is applied after which the process is repeated at every new
time step. Ordinarily there are physical limitations that have to be considered in
order to sustain feasible solutions, in that case those limitations are formulated as
a sequence of lower bounded linear equations.

The MPC uses a quadratic optimization problem, meaning that all optimization
variables are squared by them self. They are also individually weighted by some
scalar values. The MPC then attempts to minimize the summation of these squared
and scaled variables, therefore the scalar weights formulates priority between those.
This can be structured in a standard form

min
z
J(k|k) = 1

2z
T (k|k)H(k|k)z(k|k)

s.t.

Aeqz(k|k) = Beq(k|k)
Ainz(k|k) ≤ Bin(k|k)

(2.11)

where z is a vector containing the states and inputs to be minimized, individually
weighted by scalar values in the diagonal matrix H(k|k). The matrices Aeq and
Beq(k|k) formulates the desired dynamics of the system while the linear inequality
constraints formed by the Ain and Bin(k|k) matrices set the limitations [18].

A useful aspect of the MPC is that it can solve a shared optimization problem
between different sub systems, allowing control over the interaction between the
different systems. Assuming that all subsystems are linear and time invariant then
changes the equation 2.10 to

Xi(k + 1|k) = A(k|k)iXi(k|k) + B(k|k)iUi(k|k) (2.12)

for i = 1, 2, . . . , na where na is the number of subsystems.
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2.2.2 Error model

As the MPC solves a minimization problem, desired states need to be introduced
as the offset from their desired outcome. By doing so the error from the desired
outcome is instead minimized. These error states, denoted X̃(k|k), describes the
deviation between the state X(k|k) of the system that is to be controlled and the
reference Xr(k|k) describing the desired outcome. The error model then becomes

X̃(k|k) = X(k|k)−Xr(k|k) (2.13)

In an ideal case, X̃(k|k) becomes zero at which a desired behaviour is achieved.

2.2.3 Cost function

To set up the cost function, both the vector of controlled variables, z(k|k), and
diagonal weighting matrix H(k|k) have to be defined. The vector z(k|k) contains
the future error state vectors X̃(k)i and inputs U(k)i for each vehicle i = 1, 2, . . . , na
up to the prediction and control horizon Hx and Hu respectively and is defined as

z(k|k) = [X̃1(k + 1|k), X̃1(k + 2|k), . . . , X̃1(k +Hx|k),
U1(k|k),U1(k + 1|k), . . . ,U1(k +Hu|k),
X̃2(k + 1|k), X̃2(k + 2|k), . . . , X̃2(k +Hx|k),
U2(k|k),U2(k + 1|k), . . . ,U2(k +Hu|k),

. . .

X̃na(k + 1|k), X̃na(k + 2|k), . . . , X̃na(k +Hx|k),
Una(k|k),Una(k + 1|k), . . . ,Una(k +Hu|k)]T

(2.14)

The quadratic cost of the vehicles is weighted by the diagonal matrix H that assigns
weights on the error state vector and input vector for each vehicle accordingly

H(k|k) =



Q1(k|k) 0 · · · 0
0 R1(k|k)

Q2(k|k)
... R2(k|k) ...

. . .
Qna(k|k) 0

0 · · · 0 Rna(k|k)


(2.15)

14



2. Reachability Analysis and Model Predictive Control Theory

The error state weighting matrix Qi is defined for each vehicle i as

Qi(k|k) =


qi(k + 1|k) 0 · · · 0

0 qi(k + 2|k) ...
... . . . 0
0 · · · 0 qi(k +Hx|k)

 (2.16)

and for each specific element 1, . . . , n in the state vector by the matrix

qi(k + j|k) =


qi1(k + j|k) 0 · · · 0

0 qi2(k + j|k) ...
... . . . 0
0 · · · 0 qin(k + j|k)

 (2.17)

where the weight could be set for each individual time step j = 1, 2, . . . , Hx.

In the same way, the weighting matrix Ri in the H matrix is defined as

Ri(k|k) =


ri(k|k) 0 · · · 0

0 ri(k + 1|k) ...
... . . . 0
0 · · · 0 ri(k +Hu|k)

 (2.18)

in turn consisting of the matrices

ri(k + l|k) =


ri1(k + l|k) 0 · · · 0

0 ri2(k + l|k) ...
... . . . 0
0 · · · 0 rim(k + l|k)

 (2.19)

where ri1(k + l|k), . . . , rim(k + l|k) are scalar weights on each individual element of
the control inputs 1, . . . ,m for each time step l = 0, 1, . . . , Hu.

The linear sum of quadratic variables, as a result of the diagonal matrix multiplica-
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tions, is expressed as

J = 1
2

Hx∑
j=1

(
(X̃1(k + j|k))Tq1(k + j|k)(X̃1(k + j|k))+

(X̃2(k + j|k))Tq2(k + j|k)(X̃2(k + j|k)) + . . .+
(X̃na(k + j|k))Tqna(k + j|k)(X̃na(k + j|k))

)
+

1
2

Hu∑
l=0

(
(U1(k + l|k))T r1(k + l|k)(U1(k + l|k))+

(U2(k + l|k))T r2(k + l|k)(U2(k + l|k)) + . . .+
(Una(k + l|k))T rna(k + l|k)(Una(k + l|k))

)
(2.20)

where the derivation of this expression is found in Appendix A.

2.2.4 Equality constraints

The error state to be minimized in order to achieve the desired dynamics for each
subsystem are defined as

X̃i(k +Hx|k) =
= AXi(k +Hx − 1|k) + BUi(k +Hx − 1|k)−Xi

r(k +Hx|k)
= A(AXi(k +Hx − 2|k) + BUi(k +Hx − 2|k))+

BUi(k +Hx − 1|k)−Xi
r(k +Hx|k)

...
= AHxXi(k|k) + AHx−1BUi(k|k) + AHx−2BUi(k + 1|k) + · · ·+

BUi(k +Hx|k)−Xi
r(k +Hx|k)

= AHxXi(k|k) +
Hx−1∑
i=0

ABUi(k + i|k)−Xi
r(k +Hx|k) (2.21)

where the index i and time step is omitted for the matrices A and B for simplicity.

This sum is then reoriented and stacked into a matrix representation forming the
matrices Ai

eq and Bi
eq(k|k) as

Ai
eq =



I 0 . . . 0 −B 0 . . . 0
0 I ... −AB −B 0
... . . . ... −A2B −AB . . .

0 ... ...
0 . . . . . . 0 I −AHx−1B −AHx−2B . . . −B


(2.22)
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Bi
eq(k|k) =



AXi(k|k)−Xi
r(k + 1|k)

A2Xi(k|k)−Xi
r(k + 2|k)

...

AHxXi(k|k)−Xi
r(k +Hx|k)

 (2.23)

The complete equality matrices Aeq and Beq(k|k) are formed by concatenating the
matrices Ai

eq and Bi
eq(k|k) for all individual systems, as

Aeq =


A1
eq 0 · · · 0
0 A2

eq

...
... . . . 0
0 · · · 0 Ana

eq

 Beq(k|k) =


B1
eq(k|k)

B2
eq(k|k)
...

Bna
eq (k|k)

 (2.24)

2.2.5 Inequality constraints

The inequality constraints describes physical limitations on both states and inputs
to the system. Given that there is an upper bound Xi(k|k) ≤ X̄i(k|k), then the
inequality constraint is formulated as

X̃i(k|k) = Xi(k|k)−Xi
r(k|k)

⇔
X̃i(k|k) + Xi

r(k|k) = Xi(k|k) ≤ X̄i(k|k)
⇔

X̃i(k|k) ≤ X̄i(k|k)−Xi
r(k|k)

(2.25)

which is stacked for each time step forms the inequality function for all restricted
states

Āi
inX =


I 0 . . . 0
0 I ...
... . . .
0 . . . I

∣∣∣∣∣∣∣∣∣∣∣︸ ︷︷ ︸
Hx

0 . . . 0
... 0 ...

. . .
0 . . . 0


︸ ︷︷ ︸

Hu

(2.26)
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B̄i
inX(k|k) =



X̄i(k + 1|k)−Xi
r(k + 1|k)

X̄i(k + 2|k)−Xi
r(k + 2|k)

...

X̄i(k +Hx|k)−Xi
r(k +Hx|k)

 (2.27)

Given that the inputs are also subjected to an upper constraint Ui(k|k) ≤ Ūi(k|k),
then the stacked upper bounded inequality matrix is similarly defined as

Āi
inU =


0 . . . 0
... 0 ...

. . .
0 . . . 0

∣∣∣∣∣∣∣∣∣∣∣︸ ︷︷ ︸
Hx

I 0 . . . 0
0 I ...
... . . .
0 . . . I


︸ ︷︷ ︸

Hu

(2.28)

B̄i
inU(k|k) =



Ūi(k|k)
Ūi(k + 1|k)

...

Ūi(k +Hu|k)

 (2.29)

Lower bounds will also be of interest but in order to keep the standard notation
Ai
inz(k|k) ≤ Bi

in(k|k), the lower bound constraints must be reoriented

X̃i(k|k) = Xi(k|k)−Xi
r(k|k)

⇔
X̃i(k|k) + Xi

r(k|k) = Xi ≥
¯
Xi(k|k)

⇔
−X̃i(k|k) ≤ −(

¯
Xi(k|k)−Xi

r(k|k))

Ui(k|k) ≥
¯
Ui(k|k)

⇔
−Ui(k|k) ≤ −

¯
Ui(k|k)

(2.30)

which equates to previous upper bounded inequality constraints except for the addi-
tion of minus signs and upper bound parameters being exchanged for lower bounds.
All these inequality constraints are then stacked to form the complete inequality
constraint definition
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Ai
in =


Āi
inX

−
¯
Ai
inX

Āi
inU

−
¯
Ai
inU

 Bi
in(k|k) =


B̄i
inX(k|k)

−
¯
Bi
inX(k|k)

B̄i
inU(k|k)

−
¯
Bi
inU(k|k)

 (2.31)

The complete inequality matrices Ain and Bin are formed by structuring the matri-
ces Ai

in and Bi
in diagonally as

Ain =


A1
in 0 · · · 0
0 A2

in

...
... . . . 0
0 · · · 0 Ana

in

 Bin(k|k) =


B1
in(k|k)

B2
in(k|k)
...

Bna
in (k|k)

 (2.32)
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3
Development of the Centralized
Collision Avoidance System

This chapter describes the development of the CCAS building on the theory in
Chapter 2 based on the problem described in Chapter 1. First a motivation for
what vehicle models that are used representing the controllable and uncontrollable
vehicles is made in Section 3.1. The created RA algorithm which is based on [6]
is then presented in Section 3.2. Section 3.3 describes the workings of the collision
risk detection algorithm and Section 3.4 highlights the Linear Programming (LP)
problem that arises in connection with the collision risk detection. This is followed by
Section 3.5 that explains the setup of the MPC. Finally, the effect of the prediction
horizon length for minimum intrusion is underlined in Section 3.6, along with its
necessary condition to keep it minimized and how it was implemented.

3.1 Vehicle models

In order to model a vehicle different models can be used. Usually a simple but
representative model is desired in order to model the dynamics of interest. Common
model assumptions and the notations used in the mathematical models are presented
in Section 3.1.1. A nonlinear BM model is then presented in Section 3.1.2 followed
by the linear BM presented in Section 3.2.2. Finally a simple but representative
model used to model the controllable vehicles are presented in Section 3.1.4.

3.1.1 Modelling a vehicle

The considered vehicles in this thesis consists of four wheeled cars and two different
types of models are utilized: the BM and the Constant Velocity (CV) model. One
assumption for the BMs are that the steering angle δ of the front wheels are equal,
i.e. δouter = δinner = δ. This is a commonly used simplification and why it is refereed
to as a bicycle model. In practice, each wheel will have different traveling radii as
depicted in figure 3.1a along with the dimensions used to describe all vehicles in
the scenario. As the name indicates, the BM could be associated with a bicycle
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consisting of a rear wheel that is fixed in the longitudinal direction of the vehicle
and a front wheel used for steering, see figure 3.1b. In contrast to the CV model,
the BM takes into account that the vehicle cannot move sideways without moving
forward which makes the model more representative for a turning vehicle.

The BM describes the vehicles local dynamics along its Cartesian coordinate frame
with its origin fixed in its centre of gravity (CoG) and its longitudinal axis point-
ing towards the front of the vehicle and its lateral axis pointing towards the left
of the vehicle according to Figure 3.1a. These axes are generalized as the local
x- and y-coordinates respectively. The local z-axis are perpendicular to both the
x- and y-axis, pointing upwards from CoG. The global coordinate frame are the
standard Cartesian coordinate system aligned with the intersection scenario as pre-
viously depicted in Figure 1.1a with the global X- and Y -axes pointing right and
up respectively.

The dynamics of a vehicle depends on its speed and hence, different bicycle models
could be used for different speeds which provides better representations of the dy-
namics of the vehicle. For low speeds the assumption that the vehicle follows the
direction of its wheels could be made. This is excluded for higher speeds represen-
tation as this is to be considered in this thesis, limiting the lower speeds to 5m/s or
higher. In that case, the slip angle are nonzero which results in a force perpendicular
to the direction of the wheels, implying that the corning stiffness has to be included
in the model [19].

Discussion with people at Volvo cars led to assuming that all vehicles are able to
apply steering angles of δ ∈ [−45, 45] degrees and accelerations of a ∈ [−4, 2]m/s2.
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(a) Steering angles and dimensions
of the vehicle.

(b) Bicycle model with its associated
parameters.

Figure 3.1: To the left, a the vehicle are depicted together with its dimensions,
steering angles and the global and local coordinate frame. To the right, the bicycle
model with its associated parameters are illustrated.

3.1.2 Nonlinear bicycle model

A nonlinear BM used for a path following MPC framework is found in [20] yielding
a successful result and was therefor adopted to this thesis. The state of the model
consists of the global positions X and Y , local velocities Vx and Vy heading angle
Ψ and heading angle rate ω defined in accordance to Figure 3.1b. The dynamics of
the model, taking an applied force Fx and steering angle δ as input, are described
by the set of Ordinary Differential Equations (ODE)

fNL =



Ẋ

Ẏ

V̇x

V̇y

Ψ̇

ω̇


=



Vx cos(Ψ)− Vy sin(Ψ)

Vx sin(Ψ)− Vy cos(Ψ)
Fx

2M (cos(δ) + 1)− Cf

M
(δ − Vy+lfω

Vx
) sin(δ) + ωVy

Fx

2M sin(δ)− Cf

M
(δ − Vy+lfω

Vx
) cos(δ) + Cr

M
(−Vy+lfω

Vx
) cos(δ)− ωVx

ω

Fxlf
2Iz

sin(δ) + Cf lf
Iz

(δ − Vy+lfω
Vx

) cos(δ)− Crlr
Iz

(−Vy+lfω
Vx

) cos(δ)


(3.1)
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The annotations Cf and Cr denotes the corning stiffnesses of the front and rear
wheels respectively, M is the mass and Iz is the moment of inertia around the z-
axis. Finally, lf and lr are the lengths between the CoG and the front and rear
wheel axis respectively.

3.1.3 Linear bicycle model

A simpler linear bicycle model whose state vector only consists of the local position
y and velocity Vy together with the heading angle Ψ and heading angle rate ω is
found in [19]. This model is linear allowing linear mathematical operations to be
applied. A linear state space representation of this model are formulated as

ẊBM = ABMXBM + BBMUBM (3.2)
where

ABM =


0 1 0 0
0 −2Cf +2Cr

MV const
x

0 −Vx − 2Cf lf−2Crlr
MV const

x

0 0 0 1
0 −2Cf lf−2Crlr

IzV const
x

0 −2Cf l
2
f +2Crl2r

IzV const
x

 BBM =


0

2Cf

M

0
2Cf lf
Iz

 (3.3)

XBM =
[
y Vy Ψ ω

]uc
UBM = δ (3.4)

having the steering angle δ as input. This model assumes that the longitudinal
velocity V const

x is kept constant.

3.1.4 Constant velocity model

A model that does not take the heading angle of the vehicle into account is the
CV model. This is a simple model that in the one dimensional case, describes the
movement of the CoG of an object along a straight path. The state XCV of the
model

ẊCV = ACVXCV + BCVUCV (3.5)
where

ACV =
[
0 1
0 0

]
BCV =

[
0
1

]
(3.6)

XCV =
[
x Vx

]uc
UCV = a (3.7)

consist of the local position x and velocity Vx along the longitudinal direction of the
vehicle. The input to the model is the acceleration a.
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3.2 Reachability analysis

Initially the nonlinear BM was considered to be used for the RA as this would allow
for more narrow reachable sets. It was however excluded as being to computationally
demanding as it requires nonlinear RA, further motivated under chapter 4. It is still
included in Section 3.2.1 as the approach of using nonlinear RA is most relevant for
discussing future work.

An other approach based on linear RA was investigated, focusing on a model which
was based on the linear BM and the CV model and whose state consisted of the
longitudinal and lateral velocities together with the heading and yaw rate which
is presented in Section 3.2.2. Since the velocities in this new model is defined in
the local coordinate frame of the vehicle, a state transformation interval matrix,
presented in Section 3.2.3, which is based on a rotation matrix is implemented in
the created RA algorithm found in Section 3.2.4. To facilitate the computational
burden of the algorithm, a function described in Section 3.2.5 that reduces the
number of generators representing the set are implemented and could be executed
for fixed time steps throughout the execution of the algorithm.

3.2.1 Nonlinear reachability analysis

The nonlinear model presented in section 3.1.2 was implemented in a nonlinear RA
algorithm available at [21] and the underlying theory of the algorithm are found in
[8]. A conceptual flowchart of the algorithm illustrated in Figure 3.2. The main
idea with the nonlinear RA algorithm is to linearize the system around a certain
operating point, from which the linearization error L and metric L̄ could be calcu-
lated. The linearization error is then compared to the metric specifying whether the
linearization of the system around the operating point is still representative enough
or not. If not, the reachable set is splitted into two sets both containing a new
linearization point from which the process is repeated. When all eventually splitted
sets are approved, the new reachable set is calculated. The process iterates until the
desired final time is reached.
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Figure 3.2: A conceptual flowchart of the preexisting nonlinear RA algorithm
for with the nonlinear BM is implemented. Firstly, the model is linearized after
with the linearization error and metric L̄ are calculated. If the linearization is not
representative enough the reachable set are splitted, otherwise a new reachable set
are achieved.

3.2.2 Linear bicycle model

The main idea of the linear RA approach is to solve the local reachable sets of the
uncontrollable vehicle and then transform these sets in an over approximating way
in order to get its global coordinates. To this end there is no point in calculating
the local coordinates as it was only the local changes in position that are used
together with their associated orientation at that point in time, working from the
initial global position. To form a linear model used for the linear RA algorithm,
the position states of the BM and CV model presented in section 3.1.3 and 3.1.4
are excluded and the remaining states from the two models are concatenated. By
merging the two models, the RA algorithm returns zonotopes of matching sizes. The
resulting model fuc yields the state space representation

fuc =



V̇x

V̇y

Ψ̇

ω̇


=



0 0 0 0

0 −2Cf +2Cr

MV̄ const
x

0 −V̄ const
x − 2Cf lf−2Crlr

MV̄ const
x

0 0 0 1

0 −2Cf lf−2Crlr
IzV̄ const

x
0 −2Cf l

2
f +2Crl2r

IzV̄ const
x





Vx

Vy

Ψ

ω


+



1 0

0 2Cf

M

0 0

0 2Cf lf
Iz


a
δ



(3.8)

with the state consisting of the local velocities Vx and Vy, the global heading angle Ψ
and the heading angle rate ω. The input to the model is the longitudinal acceleration
a and steering angle δ. Note that the previously defined V const

x is replaced with V̄ const
x

which is an over approximation of the longitudinal velocity that is restricted to be
constant for the BM in section 3.1.3 to be valid.

For a given prediction horizon Hx and maximum acceleration ā, the maximum ve-
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locity that could be achieved was given by

V̄ const
x = V const

x + ātHx (3.9)

where t was the sampling time. This over approximation ensures the worst possible
dynamic outcome of the model during the execution of the RA algorithm.

3.2.3 State transformation interval matrix

The model used in the RA algorithm describes the velocity of the vehicle in its
local coordinate frame. Hence, a transformation to the global coordinate frame
is needed for further computations. In this case, a state transformation interval
matrix is introduced based on a rotation matrix. A priori, the heading angle of the
uncontrollable vehicle Ψ is set to zero. During the execution of the RA algorithm,
this angle would take different values spanning an interval depending on the applied
inputs to the model and its evolution through time.

In the general case, an arbitrary point p = [x, y] in R2 rotated θ radians counter
clockwise around the origin is expressed as protated = M(θ)p where the rotation
matrix is defined as

M(θ) =
[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
(3.10)

In this particular case, the rotation matrixM is evaluated for two cases depending of
the heading angle interval ΨI = [

¯
Ψ, Ψ̄] resulting in the state transformation interval

matrix

M I =
[

¯
M, M̄

]
(3.11)

The values of the interval matrix are achieved by evaluating the maximum and
minimum value of each element in the rotation matrix for angles within the interval.
In the first case, ΨI contains the angle Ψ = 0 and the lower limit and upper limit
of the state transformation matrix are calculated to be

Case 1
0 ∈ ΨI ¯

M =
[
cos(Φ̄) − sin(Ψ̄)
sin(

¯
Ψ) cos(Φ̄)

]
M̄ =

[
1 − sin(

¯
Ψ)

sin(Ψ̄) 1

]
(3.12)

where

Φ̄ =

|Ψ̄|, if |
¯
Ψ| < |Ψ̄|

|
¯
Ψ|, otherwise ¯

Φ =

|¯Ψ|, if |
¯
Ψ| < |Ψ̄|

|Ψ̄|, otherwise

An illustration for the first case can be seen in Figure 3.3.
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Figure 3.3: An illustration of the heading angle interval ΨI that includes the
heading angle Ψ = 0. From this interval, the elements of the rotation matrix can
individually be evaluated in order to form the state transformation interval matrix.

In the second case Ψ = 0 is not contained in ΨI and hence, the state transformation
interval matrix was calculated to be

Case 2
0 /∈ ΨI ¯

M =
[
cos(Φ̄) − sin(Ψ̄)
sin(

¯
Ψ) cos(Φ̄)

]
M̄ =

[
cos(

¯
Φ) − sin(

¯
Ψ)

sin(Ψ̄) cos(
¯
Φ)

]
(3.13)

Given the initial position of the uncontrollable vehicle, the now global changes in
position could be added for every step forward in time, representing the global
reachable set of positions the uncontrollable vehicle might occupy.

3.2.4 Reachability analysis algorithm

The implemented RA algorithm is based on Algorithm 2 in [6] where also a more
detailed explanation of the functions in the algorithm and related proofs could be
found. The algorithm assumes that the origin is contained in the input set U and
before the execution of the the implemented algorithm, the accessible data from the
scenario have to be prepared.

Given the measured state of the uncontrollable vehicle,

X = [X, Y, Vx, Vy,Ψ, ω]uc (3.14)

with its associated uncertainties

∆X = [∆X ,∆Y ,∆Vx ,∆Vy ,∆Ψ,∆ω]uc (3.15)
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the initial set X0 and input set U are defined as

X0 =



[
¯
Vx, V̄x][
¯
Vy, V̄y

]
[
¯
Ψ, Ψ̄]

[
¯
ω, ω̄]


U =

[
¯
δ, δ̄]

[
¯
a, ā]

 (3.16)

where

¯
Vx = Vx −∆Vx V̄x = Vx + ∆Vx (3.17)

¯
Vy = Vy −∆Vy V̄y = Vy + ∆Vy (3.18)

¯
Ψ = −∆Ψ Ψ̄ = ∆Ψ (3.19)

¯
ω = ω −∆ω ω̄ = ω + ∆ω (3.20)

noting that heading angle defined in X0 only consists of the uncertainties of the
measured heading, i.e. the vehicle is forced to be aligned along the global x-axis
with its CoG in the origin. After each iteration of the algorithm, the final result is
rotated back to the initial orientation of the vehicle.

From the measured state, the set p0 describing the initial global position of the
vehicle was defined as

p0 =
[
¯
p, p̄

]
¯
p = p−∆p

p̄ = p + ∆p

(3.21)

where

p =
[
X
Y

]
∆p =

[
∆X

∆Y

]
(3.22)

The vehicle dimensions used in the algorithm is defined as the set

d =

[C − L,C][
−W

2 ,
W
2

]
 (3.23)

where L, W and C were introduced in section 3.1.3.

With this data available together with the prediction horizonHx defining the number
of time instances to be predicted and the time interval t the algorithm can be
executed. The sets used in the algorithm can be found in Table 3.1 and a series
of figures illustrating the initialization of the algorithm can be seen in Figure 3.4

29



3. Development of the Centralized Collision Avoidance System

for which the velocity or position dimension are considered. The initial state of the
vehicle can be seen in Figure 3.4a.

Table 3.1: Sets used in the RA algorithm

Notation Description
X0 Initial set
U Input set
H Homogeneous reachable set
V Increment of particular reachable set
P Particular reachable set
R Local reachable set
Rp Unbiased global reachable set of positions
Ruc Biased global reachable set
r Subset of local velocities

The first step of Algorithm 1 is to calculate the initial sets. The initial homogeneous
set H0 is calculated with the convex hull operator, defined in chapter 2, enclosing the
initial set and the propagated initial set together with a correction term F defined
as

F =
η∑
i=2

[(i
−i
i−1 − i

−1
i−1 )ti, 0]A

i

i! + E(t) (3.24)

as shown in Figure 3.4b and 3.4c. The matrix exponential is used for the state
propagation and approximated with an η-order Taylor expansion

eAt = I + At+ 1
2!(At)

2 + 1
3!(At)

3 + . . .+ 1
η! (At)

η (3.25)

The correction term is introduced to compensate for the discretization error E due to
the omitted terms of the Taylor series and the assumption that the state propagates
linearly between two consecutive time instances. This implies that the reachable set
will be over approximated to ensure that all possible occupied states are enclosed
by the set. The discretization error is defined as

E(t) = [-1,1] (||A||∞t)
η+1

(η + 1)!
1

1− ε (3.26)

where [-1,1] is an interval matrix whose elements consist of the interval [-1, 1] and
the condition

ε = ||A||∞t
η + 2 < 1 (3.27)

had to be fulfilled by a sufficiently large choice of η according to [6].
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Based on the input set U and the discretization error E , V0 and P0 are calculated
which in this particular case are equal due to the independence of the two concate-
nated models as shown in Figure 3.4d. By adding the two sets, H0 and P0, the
initial reachable set R0 is formed, illustrated in Figure 3.4e.

The uncertainty in position and the dimensions are added as illustrated in Figure
3.4f. The convex hull operator then encloses this set and the vehicle’s change in
position, i.e. the time step t multiplied with the subset r0 defined as

rk =
{

(Vx, Vy) | Vx, Vy ∈ Rk

}
∀k ∈ N (3.28)

and showed in Figure 3.4g and 3.4h. Together they are rotated back and the previ-
ously removed bias in position is reintroduced resulting in Ruc

0 , see Figure 3.4i.

For the succeeding time instance, H0 and V0 are propagated by use of the matrix
exponential, forming H1 and V1. The new increment V1 is then added to the previ-
ously calculated P0 and the new particular solution P1 is achieved. Once again, H1
and P1 are added to form the reachable set Ruc

1 which is rotated and added with the
bias. This process iteratively continued up to time instance k = Hx. Note that the
index annotation of the sets refers to the set within the time interval [kt, (k + 1)t].

During the execution of the algorithm, the number of generators in P is reduced
with the function GeneratorReduction described in section 3.2.5 in order to reduce
the computational burden. The box operator used in the algorithm is presented in
chapter 2 together with elementary operations such as addition and matrix trans-
formation and the interval rotation matrix M presented in section 3.2.3.

Input: X0,X0,U , d,Hx, t
Output: Ruc

H0 = CH(X0, e
AtX0) + FX0

V0 = ∑η
i=0

(
Aiti+1

(i+1)! U
)

+ E(t)tU
P0 = box (V0)
R0 = H0 + P0
Rp

0 = CH(∆p + d, r0t)
Ruc

0 = M(X0)Rp
0 + p

for k = 1, . . . , Hx do
Hk = eAtHk−1
Vk = eAtVk−1
Pk = Pk−1 + box (Vk)
Rk = Hk + Pk
Rp
k = Rp

k−1 +M I(Rk)rkt
Ruc
k = M(X0)Rp

k + p
end
Algorithm 1: Reachability analysis algorithm showing the structure of the algo-
rithm for the linear RA with the state transformation interval matrix.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.4: Initialization steps of RA algorithm, Algorithm 1.

3.2.5 Generator reduction

Due to the operation Pk = Pk−1 + box (Vk) in Algorithm 1, the number of generators
in the zonotope Pk increases linearly according to Equation (2.3). In order to limit
this growth and the computational burden, the function GeneratorReduction is
implemented which in an over-approximated fashion encloses the zonotope by over-
representing the larger generators, eliminating the need for the smaller ones. The
concept behind the algorithm and the used heuristic can be found in [6].
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The created function assumes that the generators of the zonotope, whose number of
generators is reduced, are not aligned with each other. If so, the two generators are
replaced by the sum of the two. The generators are then sorted in a descending order
and the zonotope is split into two, i.e. Z = Ẑ + Ž where larger generators belongs
to Ẑ and the smaller to Ž and the centre of the original zonotope Z is inherited by
any of the two. By then over approximate Ž by the parallellotope Φ = Πbox (Π−1Ž)
a resulting zonotope with a reduced number of generators is achieved as

Zred = Ẑ + Φ (3.29)

To form the parallelotope, the matrix Π consisting of a selection of generators from
Ž had to be determined. The selection was based on an exhaustive search of finding
the ng generators maximizing the heuristic

v = |det
[
g(i1), . . . ,g(ing )

]
|−1 (3.30)

representing the inverse volume spanned by those.

3.3 Collision risk detection

The collision detection algorithm operates at the top of the CCAS which individu-
ally checks the most current desired trajectory point from the controllable vehicles,
determining if they intersect with the reachable set of the uncontrollableed vehi-
cle. In this case the implemented CCAS takes over and alter the trajectories of
the controllable vehicles to stay clear. The trajectories describes only the future
positions of the controllable vehicles’ CoG, therefore the physical dimensions of the
vehicles must be included to ensure safe passage. This means that the algorithm
must compare two sets to one another.

Instead of adding the dimensions to each controllable vehicle, by instead mirroring
its dimensions in reference to it longitudinal direction, the dimensions could be
directly added to the reachable set of the uncontrollable vehicle before checking for
the collision risk. This allows the collision detection to be performed directly with
the desired trajectory provided as CoGs. The set addition is illustrated in Figure
3.5 where the length C was added to the left, the length L − C to the right and
the width evenly distributed on the top and bottom of the set. This is done using
zonotope arithmetics.

Before the comparison could be done, the reachable set of the uncontrollable vehicle
had to be converted to a H-representation, both to match the structure used by the
MPC but also because checking a G-representation directly is obscure. This conver-
sion is done as presented in Section 2.1.2.5 such that the half plane representation
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(a) Controllable vehicle and its future trajectory together with the
zonotope of the uncontrollable vehicle at time instance Hx.

(b) CoG for the controllable vehicle and the expanded zonotope of
the uncontrollable vehicle at time instance Hx.

Figure 3.5: Controllable vehicle’s dimensions added to the last zonotope of the
uncontrollable vehicle in order to be able to only compare the controllable vehicles
CoG to the to the resulting set.

CHXr =
[
CX CY

] [Xr

Yr

]
≤ dH (3.31)

is achieved. The matrix CH row-wise scales the values of Xr, corresponding to
the reference trajectory point to be evaluated, which resulting values must remain
below the values in the column vector dH to be inside the set. The matrix CH can
be divided into the individual columns CX and CY for each coordinate Xr and Yr
respectively. There is a total of two times ng number of half planes to check where
ng is the number of generators of the zonotope. If the trajectory point is within all
half planes then it must be within the set, otherwise the CCAS remains dormant.

3.4 Linear programming problem

The reachable sets of the uncontrollable vehicle is used to define the inequality
constraints to the MPC, confining the altered trajectories from the MPC to safe
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areas only. The MPC only handles convex inequality constraints and the resulting
sets from the RA are convex but describe the forbidden area. The MPC needs the
allowed set which becomes the opposite area as depicted in Figure 3.6a which is
non-convex. Figure 3.6b depicts how the mirrored convex constraints H1 and H2
would tell the MPC to simultaneously stay to the left side of H1 and to the right of
H2, telling it that the controllable vehicles must exist at two places at once which
is physically impossible.

(a) The opposite non-convex set. (b) Half planes H1 and H2 which to-
gether become non-convex.

Figure 3.6: Illustration of convex reachable sets from the RA algorithm, shoving
opposite facets and how they causes contradictions to the MPC.

To remedy this issue a LP problem is formulated to select the relevant side of the
set and discarding the rest, resulting in a convex set to pass to the MPC.

The LP problem sorts the shortest distances out of the set and checks in an as-
cending order if they are feasible given the limited amount of control input for the
given direction based on the worst case outcome from section 3.6 for the given sce-
nario. In turn this means that for strictly longitudinal control the trajectories of the
controllable vehicles will be parallel to the global x-axis. Then the best option is
formulated as the shortest distance out of the set along the global x-axis. The LP
problem is formulated as

YH = Yr

⇒ min(|Xr −XH |) = min(|Xr −
dH −CyYH

Cx

|) = min(|Xr −
dH −CyYr

Cx

|)
(3.32)

where Xr, Yr,Cx and Cy are defined in Section 3.3 while XH and YH corresponds to
the intersecting point on the half plane and the trajectory of the controllable vehicle.
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3.5 Model predictive control

In order to acquire the desired behaviour of the system, several aspects had to
be evaluated and tuned for the MPC. In Section 3.5.1 all practical selections to
implement the MPC are included. In Section 3.5.2 it is presented how the choice of
the individual weights affect the behaviour of the system. Lastly in Section 3.5.3 it
is derived how the transfer delays from the server to the controllable vehicles could
be generically defined.

3.5.1 Practical choices

Having a generic implementation of the MPC algorithm allows for more flexibility
with the SPAS environment as it during the course of this project have been in
development itself. Therefore the prediction horizon and the linear model can be
arbitrarily chosen. Since only longitudinal control is considered, the CV model
along that dimension is used as it has a dimensionally small representation. The
solver used for the MPC is taken from Matlab’s mpcqpsolver as it is the only viable
option at the time of the projects development that could achieve the projects needs,
supporting C-code generation and the handling of changeable inequality constraints
that would be active for time instances between k + 1 and k +Hx.

3.5.2 Weighting matrices

All control inputs, being acceleration at different time steps for each controllable
vehicle, up to the prediction horizon Hx are applied, meaning that the control hori-
zon equals the prediction horizon in length minus one as the last input wont have
an effect on the system.

To keep the prediction horizon as short as possible it was desirable to ensure that
as much of the available control input remain available in that limited time span.
The weighting matrix H is therefore formulated such that earlier control inputs are
considered cheaper and therefore used to their fullest. By always utilizing the most
of the earliest control inputs, all the energy are made available for the limited time
horizon for any further observed collision risks. This is illustrated in Figure 3.7
where consecutively observed collision risks demands more energy for deceleration,
allowing at most all defined control input for the given time horizon.
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(a) First control input. (b) Intermediate control
input.

(c) Maximum control
input.

Figure 3.7: Applied control inputs over one simulation for three time instances
in case of maximum input demands. The left figure illustrates the applied control
input sequence to be applied in order to avoid the collision. Since maximum control
input are applied for the first time instance, the system is able to handle consecutive
collision risks as illustrated in the middle figure. The maximum control input that
can be applied are illustrated in the right figure.

3.5.3 Transfer delay

The server on which the CCAS is implemented is associated with a constant transfer
delay, denoted D, between the controllable vehicles and the server. Its inclusion to
the CCAS is seen in the model of the controllable vehicles, in turn shifting the
equality constraints in Equation 2.10 as

X(k + 1|k) = AX(k|k) + BU(k −D|k) (3.33)

with the appearance of the control input U(k − D|k) being a total of D steps
behind its associated state X(k|k). Any control input that describe a time before
the current time would have to already been applied and is therefore not included.
This results in a D number of shifts down in the right half of the equality matrix Ai

eq

corresponding to the columns that places the control inputs, but otherwise remained
unchanged as seen in Equation 3.34 where a delay by one shifted the right side of
the matrix down
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Ai
eq =



I 0 . . . 0 0 0 . . . 0
0 I ... −B 0 0
... . . . ... −AB −B . . .

0 ... ...
0 . . . . . . 0 I −AHx−2B −AHx−3B . . . 0


(3.34)

The last D number of control inputs will not have time to effect the system which
can be seen by the last D number of columns in Ai

eq being all zeros. These control
inputs could be removed from the problem entirely. However, they are kept for a
more generic implementation.

3.6 Prediction horizon

With the goal of presenting two different approaches to derive the necessary predic-
tion horizon Hx, this section explains how a minimally intrusive prediction horizon
is derived. In 3.6.1 all general and important aspects that must be clarified are in-
troduced. In 3.6.2 an analytic problem statement and the necessary condition that
has to be fulfilled in order for the prediction horizon to be sufficient are presented.
Then to this extent, an ad hoc solution is presented in 3.6.3 that is implemented in
SPAS and evaluated for a worst case scenario.

3.6.1 Important points

In order to come up with a value for Hx, it has to be assumed that the reachable
sets of the controllable vehicles grows faster than the reachable sets of the uncon-
trollable vehicle. After solving for new trajectories for the controllable vehicles given
an observed collision risk after Hx time steps, there is a risk of further observed col-
lision risks after that point as the uncontrollable vehicle will take time to pass the
intersection and may be moving towards one of the controllable vehicles. To handle
the issue of consecutive collision risks, enough energy must have been defined to
handle the largest amount of additional collision detections, denoted h. The times
associated with the prediction horizon Hx and the number of additional collision
detections are referred to as THx and Th respectively.
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3. Development of the Centralized Collision Avoidance System

3.6.2 Analytic approach

The reachable sets Rc and Ruc of the controllable and uncontrollable vehicles re-
spectively can be formulated as

Rc
Hx

=
{
X(THx) =

THx∫
0
f(X(τ),U(τ))dτ | X(0) ∈ X c

0 ,U ∈ U c
}

(3.35)

Ruc
Hx

=
{
X(THx) =

THx∫
0
f(X(τ),U(τ))dτ | X(0) ∈ X uc

0 ,U ∈ Uuc
}

(3.36)

where the model f could be defined as the nonlinear BM fNL presented in section
3.1.2. In that case, the initial set X c

0 ,X uc
0 ⊂ R6×1 and input set U c,Uuc ⊂ R2×1.

Here, the dimensions of the vehicle is included in the initial set X0.

From these sets, the subsets

r c =
{

(X, Y ) | X, Y ∈ Rc
}

(3.37)

r uc =
{

(X, Y ) | X, Y ∈ Ruc
}

(3.38)

are introduced, consisting of the global position of the sets Rc and Ruc respectively.
Then, by assuming that r c grows faster than r uc, that is

||r ck ||2 − ||r ck−1||2 > ||r uck ||2 − ||r uck−1||2 ∀k > 1 (3.39)

it is possible to ensure that a collision always could be avoidable if the condition

r cHx+h \ r ucHx
/∈ ∅ (3.40)

is fulfilled, i.e. the reachable positions of the controllable vehicles at time step Hx+h
must be outside the possible positions of the uncontrollable vehicle’s reachable set
at time step Hx.

3.6.3 Practical approach

In a practical setting, the reachable set of the uncontrollable vehicle is over approxi-
mated by use of the RA algorithm presented in section 3.2.4 producing the set Ruc.
This set is extended with the dimensions of the controllable vehicles as described
in section 3.3. To describe the dynamics of the controllable vehicles the discrete
version of the CV model is used.

From the given scenario the uncontrollable vehicle is assumed to move perpendicu-
larly to the controllable vehicles, with their longitudinal direction aligned with the
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3. Development of the Centralized Collision Avoidance System

global X-axis. This means that the width of the reachable set of the uncontrollable
vehicle must be smaller than the change in the sets of the controllable vehicles. For
the longitudinal control case there is no practical implication of having both vehicles
in the scenario as they did not risk of intersecting with each other, as they are on
completely separate lanes. The worst case is therefore focused on the controllable
vehicle approaching from the left as the worst case could only come true for one of
the controllable vehicles.

A worst case scenario is a placement of the controllable vehicles trajectory in refer-
ence to the reachable set of the uncontrollable vehicle that barely gives the control-
lable vehicle enough time to alter its future position to either side of the uncontrol-
lable vehicles reachable set, after which the uncontrollable vehicle continues to steer
towards the controllable vehicle. This results in the longest additional time Th that
the controllable vehicle must continue to move away as depicted in figure 3.8. As
it is assumed that the controllable vehicle can accelerate faster than the uncontrol-
lable vehicle, if it initially clear the reachable set of the uncontrollable vehicle in Hx

steps, then it will be able to continue to do so and therefore do not need a further
evaluation.

Figure 3.8: Worst case point of collision detection and needed alteration in order
to place it outside the reachable set.

The distance V0THx corresponds to the unaltered distance between the controllable
vehicle and the point of collision detection given that the original trajectory have
had no change in velocity for the upcoming Hx steps. The distance db is the needed
minimum amount of change in the controllable vehicles future position to clear the
reachable set of the uncontrollable vehicle in Hx steps while ∆db is the additional
distance that it in worst case must clear in the additional time Th before the collision
risk will have passed. The remaining distance that closes the gap dh results in the
longest distance it is allowed to reach from its initial position to clear the worst case.
The difference in heights RoofHx and Floorh indicates that a collision risk can still
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3. Development of the Centralized Collision Avoidance System

be observed at proceeding time steps.

The formulation of change in distance is based on the discrete version of the CV
model based on sampling time t, resulting in

V0THx = dh + db + ∆dh (3.41)

dh ≤ V0(THx + Th) + 1
2¯
a(THx + Th)2 (3.42)

⇔ db = V0THx − (dh + ∆dh) ≥ −(V0Th + 1
2¯
a(THx + Th)2 + ∆dh) (3.43)

Inversely to the longest allowed distance dh, db had a minimum distance to clear that
must be at least as large as to cover the total width dw of the uncontrollable vehicle’s
reachable set together with the longest reachable distance da through acceleration,
that is

db ≥ dw − da (3.44)

These equations are implemented in an algorithm which recursively solves for the
needed prediction horizon Hx to clear an increasing number of waiting time steps
h, stopping if the collision risk have passed or if the controllable vehicle have been
able to completely break. In that case it is assumed in similar manner as with
acceleration, that it will be able to continuously move away from the uncontrollable
vehicle as it can decelerate more.

Output: Hx

Hx = 1
h = 0
while RoofHx ≥ Floorh and dh ≥ 0 do

while db ≤ dw − da do
Hx = Hx + 1

end
while db ≥ dw − da and RoofHx ≥ Floorh and dh ≥ 0 do

h = h+ 1
end

end
Algorithm 2: Minimum prediction horizon algorithm showing the pseudo code for
how the minimally intrusive prediction horizon Hx is derived.

In Algorithm 2, each incremented prediction horizonHx or additional time Th results
in new distances according to equations (3.41) to (3.44). The algorithm is later
penalized to achieve the same necessary prediction horizon, but with the added
delay D as mentioned earlier. The practical approach is necessary as there are a
multitude of variables and approximations used to formulate the reachable set of
the uncontrollable vehicle. A visualization of the algorithm is shown in Figure 3.9
where the extended waiting time Th is increased until the area "neither", which
represents the position in the reachable set unable to avoid the worst case scenario,
is eliminated.
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3. Development of the Centralized Collision Avoidance System

(a) A few consecutive collision detec-
tions.

(b) Maximum consecutive collision
detections.

Figure 3.9: Zones of a sets for feasible choices in case of a detected collision
risk. Region "neither" representing unsolvable, "either" solvable by either breaking
or accelerating, "break" solvable by only breaking, "accelerating" solvable by only
accelerating and "detection" representing the observed point of the collision detection
for a increasing number of collision detections h.
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4
Results

This chapter present the main results of the implementation of the CCAS from
the implementation described in Chapter 3. The results from the approach of using
nonlinear and linear RA are presented in Section 4.1 and 4.2 respectively. The result
from the full implementation are then presented in Section 4.3.

4.1 Nonlinear RA algorithm

The result from the nonlinear BM implementation in the nonlinear RA algorithm
presented in Section 3.2 can be seen in Figure 4.1 together with the solution of
solving the system of ODEs. The input set consists of the steering angles and
accelerations that could be set by the driver. In this case, the steering angles used
in the RA algorithm and the system solved by the ODE solver are set to ±5o
and ±45o respectively and an acceleration of −4m/s2 to 2m/s2. The result shows
that the high nonlinearity of the model caused the algorithm to grind to a halt for
any larger steering angles than ±5o degrees which is clearly just a portion of the
maximum steering angle of ±45o that could be set by the driver.
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Figure 4.1: Outcome of the nonlinar RA algorithm for the critical steering angle
δ = ±5o compared to the solution from the ODE solver in Matlab for the desired
steering angle δ = ±45o.
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4.2 Linear RA algorithm

The result of Algorithm 1 acting on the linear BM ft is presented in Figure 4.2.
To evaluate the result of the algorithm, its outcome was compared to the solution
of solving the system of ODEs, i.e. the model. Here, the steering angles and
accelerations are set to ±45o and −4m/s2 to 2m/s2 respectively. From the figure,
it can be seen that the sets produced by the algorithm encloses the solution of the
ODE solver which is to be expected due to the over approximation property of the
RA.

It should be noted that the comparison between the outcome of the algorithm and
the solutions achieved by the ODE solver assumes that the model is representative
enough of the uncontrollable vehicle which only holds around the added assumptions
for which it is made.

Figure 4.2: Outcome of the linear RA algorithm and ODE solver in Matlab for
a steering angle of ±45o and allowed accelerations of −4m/s2 to 2m/s2. It is clear
that the RA over approximates the solution of solving the set of ODEs.

4.3 Full implementation

In order to evaluate the complete CCAS, the restrictions described in Section 4.3.1
was introduced. These restrictions made in possible to show the overall functionality
of the implemented system as presented in Section 4.3.2. To validated the correctness
of the derived length of the prediction horizon, the control inputs calculated by the
MPC was investigated and are presented in Section 4.3.3.
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4.3.1 Evaluation setup

The greatest challenge for the CCAS proved to be that the smallest prediction
horizonHx needed is already large given the limited control inputs of the controllable
vehicles. This is because of the uncontrollable vehicle’s ability to quickly cover a
large area when it has a completely unknown behaviour. The needed assumption
in Equation (3.39) therefore breaks if the uncontrollable vehicle is on par with the
controllable vehicles in applicable control inputs.

To simply be able to move out of the minimum set consisting of both vehicles
dimensions as seen in Figure 3.5, roughly 1.7 seconds would be needed given that
the prediction horizon algorithm with no uncertainties of the uncontrollable vehicle,
and control inputs for the controllable vehicle limited to −4m/s2 to 2m/s2, and
an initial velocity for both uncontrollable and controllable vehicles set to 50km/h.
This is an already large prediction horizon to apply RA to, as the uncontrollable
vehicle would be able to cover a lot of ground in that time if it have large variation
in control inputs, demanding an even larger prediction horizon to cope with it. This
results in a CCAS that has to take over relatively early from the intersection.

The simulations in SPAS are therefore focused on moderate uncertainty of the un-
controllable vehicles behavior in order to acquire feasible solutions that shows the
full functionality of the implementation. No uncertainty in acceleration of the uncon-
trollable vehicle are assumed, focusing on a minor uncertainty of 1 degree in steering
angle. Though a small value, given the minimum prediction horizons length, any
larger could be considered unreasonable assuming the uncontrollable vehicle can not
drive of the road before reaching the intersection.

Three different commonly used speed limits are tested, 30, 50 and 70km/h shared
by all vehicles in the scenario. The uncontrollable vehicle is set to move as close to
the most challenging path it could take for the MPC to barley have enough time to
move the controllable vehicles out of the way.

4.3.2 Evaluation of the Centralized Collision Avoidance Sys-
tem

The Figure 4.3 shows the point forward from when the CCAS is activated by a
collision detection risk, each for the different initial velocities of 30, 50 and 70km/h
respectively. The figures depicts a bird-eye view of the intersection, showing the
reachable sets that must be averted for each controllable vehicle and their resulting
altered trajectory. They show how the reachable sets rapidly expands for more
challenging scenarios but also that the implementation successfully averting the
collision risks. The left vehicle is facing the largest challenge as it had to continuously
back up in order to stay out of each new reachable set. The vehicle coming from
the right on the other hand was just close enough to accelerate past the reachable
set and has thereafter safely moved past the intersection.
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As the Figures 4.3a to 4.3c show, the MPC successfully calculates new trajectories
that the remainder of SPAS follows correctly. After the pending collision passed, the
controls are restored to the original setup in SPAS. The desired trajectories of the
controllable vehicles are completely based on the predefined scenario, causing each
new desired trajectory that they present to be unaffected by the alterations done
by the MPC. As a result, the MPC has to hold on to the controls for an extended
Hx steps in order to ensure that all its derived trajectory points are applied. After
these extra sets of iterations the controls are returned.

4.3.3 Optimal control

To show that the applied input is used to its fullest, Figure 4.4 shows how it is
not succeeded by a larger applied input for the remainder of the additionally ob-
served collision risks. Therefore that input is used up to its fullest and therefore all
formulated energy are applicable.
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Figure 4.3: Triggered scenarios with vehicles for different initial velocities showing
the propagation of the uncontrollable vehicles reachable sets with the last one being
biased by the controllable vehicles dimensions. Presenting How detected collision
risks are continuously kept outside the reachable sets with x marking the point of
collision risk detection and rings shoving the allocation of those points.
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(a) 30km/h (b) 50km/h

(c) 70km/h

Figure 4.4: Applied control signals for the left incoming vehicle, for scenarios with
different initial velocities. Showing over the time of the simulation how the applied
control input is saturated during the time the CCAS takes over.
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5
Conclusion

A successful CCAS was implemented into the SPAS environment. Able to formulate
the non-convex sets from the RA to convex counterparts, select the most feasible way
out of the predicted reachable set along the controllable vehicles longitudinal trajec-
tory and shows enough energy to handle the formulated worst case amount of waiting
time Th. However, based on the results it was concluded that the implemented col-
lision avoidance system only achieves feasible solutions when the uncertainty of the
uncontrollable vehicle’s behaviour is limited, due to the otherwise rapidly expanding
sets of the RA. The attempt to use nonlinear RA in order to get narrower sets could
not be utilized due to the high non-linearity of the model, completely halting the
algorithm for any larger control inputs. Though a nonlinear RA would narrow the
sets, they would still be expanding rapidly due to the large unknown behaviour of
the uncontrollable vehicle. The described unknown behaviour of the uncontrollable
vehicle should therefore be changed in order to allow for sufficiently small reachable
sets.

The initial velocities of all vehicles in the defined scenario have a large effect on the
CCAS as the reachable sets increases rapidly at larger velocities. Though solvable,
the effect could be deemed intrusive to the ordinary controls of the controllable
vehicles at larger velocities as the CCAS would be taking over increasingly often.

The minimum prediction horizon was derived successfully based on resulting simu-
lations where the ad hoc solution determined the needed prediction horizon given
the applied setup. The ad hoc solution is however specific to the defined scenario
and to be used by other scenarios, a different formulation has to be made.
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6
Future Work

The main result of this thesis have been that classical RA is an insufficient approach
without a form of driver model for the uncontrollable vehicle. Stochastic RA would
allow the prediction horizon to be shortened into a feasible time frame for the MPC
to be capable of still avoiding the collision risks. This however breaks away from the
thesis original problem formulation as collision avoidance would not be guarantee,
but probable.

The reachable sets could be narrowed if nonlinear RA could be applied. Though to
utilize nonlinear RA a less nonlinear model would likely be needed as the computa-
tion time proved very large for the used BM, alternatively these sets could possibly
be computed offline and stored in memory. It is also possible that given a sufficient
driver model then the reachable sets from nonlinear RA would never be that large,
and therefore not as computationally demanding.

Including lateral control to the controllable vehicles would also shorten the needed
prediction horizon as the MPC could move the trajectories in two dimensions, allow-
ing to take the shortest path out of the set, not only along the controllable vehicles
longitudinal trajectories. Because of the confining area of the road however, not
all that much additional freedom can be added as the controllable vehicles would
reasonably have to keep to the confines of the road. The computational burden of
the MPC would also significantly increase as all positions of the controllable vehicles
in reference to each other as well as to the borders of the intersection would have to
be included as additional constraints.

A general explanation for the needed prediction horizon was presented and an ad
hoc solution was implemented for the given scenario. For future work, refinement
of the ad hoc solution to work for more general cases could be of interest. This
could also be said about the existing general formulation as it does not include the
limiting area of the intersection to limit the reachable sets.

51



6. Future Work

52



Bibliography

[1] (2017, jan) Drive me – the self-driving car in action |
volvo cars. [Online]. Available: http://www.volvocars.com/intl/about/
our-innovation-brands/intellisafe/autonomous-driving/drive-me

[2] A. Effekta. (2016, dec) itransit - intelligent traf-
fic management system based on its. [Online]. Avail-
able: http://www.vinnova.se/sv/Resultat/Projekt/Effekta/2009-02186/
iTRANSIT---intelligent-TRAffic-maNagement-System-based-on-ITS/

[3] H. Karlsson, “Application within ffi - effektiva och uppkopplade transportsys-
tem,” mar 2015.

[4] Y. Yang, J. Zhang, K. q. Cai, and M. Prandini, “A stochastic reachability
analysis approach to aircraft conflict detection and resolution,” in 2014 IEEE
Conference on Control Applications (CCA), Oct 2014, pp. 2089–2094.

[5] G. C. Nunes, “Design and analysis of multivariable predictive control applied
to an oil-water-gas separator: A polynomial approach,” Ph.D. dissertation,
University of Florida, 2001.

[6] M. Althoff, “Reachability analysis and its application to the safety assessment
of autonomous cars,” Ph.D. dissertation, Technischen Universität München,
2010.

[7] D. Greene, J. Liu, J. Reich, Y. Hirokawa, A. Shinagawa, H. Ito, and T. Mikami,
“An efficient computational architecture for a collision early-warning system for
vehicles, pedestrians, and bicyclists,” IEEE Transactions on Intelligent Trans-
portation Systems, vol. 12, no. 4, pp. 942–953, Dec 2011.

[8] O. S. Matthias Althoff and M. Buss, “Reachability analysis of nonlinear sys-
tems with uncertain parameters using conservative linearization,” 47th IEEE
Conference on Decision and Control, 2008.

[9] M. Althoff and J. M. Dolan, “Online verification of automated road vehicles
using reachability analysis,” IEEE Transactions on Robotics, vol. 30, no. 4, pp.
903–918, Aug 2014.

53

http://www.volvocars.com/intl/about/our-innovation-brands/intellisafe/autonomous-driving/drive-me
http://www.volvocars.com/intl/about/our-innovation-brands/intellisafe/autonomous-driving/drive-me
http://www.vinnova.se/sv/Resultat/Projekt/Effekta/2009-02186/iTRANSIT---intelligent-TRAffic-maNagement-System-based-on-ITS/
http://www.vinnova.se/sv/Resultat/Projekt/Effekta/2009-02186/iTRANSIT---intelligent-TRAffic-maNagement-System-based-on-ITS/


Bibliography

[10] W. F. L. Felipe Kühne, João Manoel Gomes da Silva Jr., “Mobile robot trajec-
tory tracking using model predictive control,” SBAI / II IEEE LARS, 2005.

[11] Y. S. Rajashekar Chandru, “Motion planning for autonomous lane change ma-
noeuvre with abort ability,” Master’s thesis, Chalmers University of Technology,
SE-412 96 Gothenburg, 2016.

[12] R. Kianfar, B. Augusto, A. Ebadighajari, U. Hakeem, J. Nilsson, A. Raza,
R. S. Tabar, N. V. Irukulapati, C. Englund, P. Falcone, S. Papanastasiou,
L. Svensson, and H. Wymeersch, “Design and experimental validation of a
cooperative driving system in the grand cooperative driving challenge,” IEEE
Transactions on Intelligent Transportation Systems, vol. 13, no. 3, pp. 994–
1007, Sept 2012.

[13] M. Kutil, “Modeling and optimization of traffic flow in urban areas,” Ph.D.
dissertation, Czech Technical University, jan 2010.

[14] M. M. S. José A. De Doná, Graham C. Goodwin, “Anti-windup and model
predictive control: Reflections and connections,” European Journal of Control,
pp. 467–477, 2000.

[15] S. B. Yang Wang, “Fast model predictive control using online optimization,”
IEEE Transaction on Control Systems Technology, vol. VOL. 18, no. NO. 2,
pp. 267–278, 2010.

[16] M. Althoff, “On computing the minkowski difference of zonotopes,” eprint
arXiv:1512.02794, 2015.

[17] G. A., “Reachability of uncertain linear systems using zonotopes,” in Morari
M., Thiele L. (eds) Hybrid Systems: Computation and Control. Springer, 2005,
p. 302.

[18] L. Wang, Model Predictive Control System Design and Implementation Using
MATLAB. Springer, 2009.

[19] R. Rajamani, Vehicle Dynamics and Control. Springer, 2006.

[20] J. R. Ida Petersson, “Automotive path following using model predictive con-
trol,” Master’s thesis, Chalmers University of Technology, 2014.

[21] M. Althoff. (2016). [Online]. Available: http://www6.in.tum.de/Main/
SoftwareCORA

54

http://www6.in.tum.de/Main/SoftwareCORA
http://www6.in.tum.de/Main/SoftwareCORA


A
MPC

The full generic cost function is formulated as

J =1
2

(
(X̃1(k + 1|k))TQ1(k + 1|k)(X̃1(k + 1|k))+

(X̃1(k + 2|k))TQ1(k + 2|k)(X̃1(k + 2|k)) + . . .

+ (X̃1(k +Hx|k))TQ1(k +Hx|k)(X̃1(k +Hx|k))+
(U1(k|k))TR1(k + 1|k)(U1(k|k))+
(U1(k + 1|k))TR1(k + 2|k)(U1(k + 1|k)) + . . .

+ (U1(k +Hu|k))TR1(k +Hu|k)(U1(k +Hu|k))+
(X̃i(k + 1|k))TQi(k + 1|k)(X̃i(k + 1|k))+
(X̃i(k + 2|k))TQi(k + 2|k)(X̃i(k + 2|k)) + . . .

+ (X̃i(k +Hx|k))TQi(k +Hx|k)(X̃i(k +Hx|k))+
(Ui(k|k))TRi(k + 1|k)(Ui(k|k))+
(Ui(k + 1|k))TRi(k + 2|k)(Ui(k + 1|k)) + . . .

+ (Ui(k +Hu|k))TRi(k +Hu|k)(Ui(k +Hu|k))
)

= 1
2

(
Hx∑
j=1

(
(X̃1(k + j|k))TQ1(k + j|k)(X̃1(k + j|k))+

(X̃2(k + j|k))TQ2(k + j|k)(X̃2(k + j|k)) + . . .

+ (X̃i(k + j|k))TQi(k + j|k)(X̃i(k + j|k))
)
+

Hu∑
l=0

(
(U1(k + l|k))TR1(k + l|k)(U1(k + l|k))+

(U2(k + l|k))TR2(k + l|k)(U2(k + l|k)) + . . .

+ (Ui(k + l|k))TRi(k + l|k)(Ui(k + l|k))
))

(A.1)

with its variables previously defined in chapter 2.
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