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Semi-PhysicalModellingApproach for anExhaustAftertreatment SystemofHeavy
Duty Diesel Engines
Badhri Narayanan Ankam Sekhar
Department of Mechanics and Maritime Sciences
Chalmers University of Technology

Abstract

The aim of this thesis work was to establish a kinetic and heat transfer model for
the Diesel Oxidation Catalyst (DOC) using GT-Suite. The kinetic model was cali-
brated using a transient Part Load Map (PLM) driving cycle. The inhibition func-
tions of the reactions were tuned to obtain a good curve fitting of reaction species.
When a different drive cycle was applied, the model predictability was poor. The
result demands a requirement for better heat transfermodelling. A detailed exter-
nal Heat transfer model was set up for this purpose. The results were better and
the model was found to account for thermal mass variations in the system. The
flow along the DOCwas non-uniform, a 2 DOCmodel was established to account
for the unequal inlet flow split and improved thermal mass understanding of the
model. The results of the 2 DOC model however were inferred to be the same as
1 DOC. A discussion of results and a future outlook are presented.

Keywords: Catalyst Brick, Thermal Mass, DOC, EATS, Kinetic Modelling, Ther-
mal Modelling, Heat Transfer, Inhibition Function
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Introduction

Diesel Engines are predominantly used in heavy duty vehicles due to their relia-
bility and efficiency. NO, CO and Hydrocarbons (HC) produced during combus-
tion are harmful for the health [3]. The advent of catalytic exhaust aftertreatment
systems have significantly reduced emissions. However, emission regulations for
non-road vehicles are becoming more stringent every year, according to the Euro
V regulation standards, the permissible limits for HC+NOx is 7.5 g/kWh and CO
is 8 g/kWh [4]. Continuous improvements have been made by the automotive
industry to develop testing and measurement rigs to understand the behaviour
of systems but the resources and efforts that go into real-time physical testing are
tremendous.

Model based prediction systems have proven to be a useful tool in EATS calibra-
tion and optimization. EATS models help study the effects of various system pa-
rameters with less effort and shorter time than an engine test cell [5].

Various EATSmodels have been established before but the accuracy of themodels
is questionable either due to the lack of predictability or the reproducibility of the
model. Ideally, a model could have different set of kinetic parameters that would
give equivalent results. However, it becomes hard to build a consistent model that
would perform well in different drive cycles. Therefore, this thesis work concen-
trates on modifying an existing model to obtain an improved model with better
accuracy and applicability across various engine drive cycles.

The EATS system transmits the exhaust gas into the environment. The system
is concealed in a closed cabinet called the muffler to provide noise attenuation.
The muffler is made of various materials such that they exhibit high mechani-
cal strength and withstand high temperatures. Mild carbon steel with aluminum
coating is typically used in the EATS systems to be protected from corrosion [6].
There are various design parameters considered while designing a muffler. One
of themain functionality is tomuffle down the noise, it is typically done by having
a resonating chamber that reduced the sound pressure [7]. Generally, the muffler
design is such that the exhaust gases are forced to pass through a series of geo-
metric changes which causes a significant amount of backpressure. Backpressure
has to be reduced to avoid power losses [7]. It is also equally challenging to have
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1. Introduction

the smallest muffler size and the lowest cost without sacrificing functionality.

1.1 Background

One of the primary parts of a vehicle’s EATS system is the Diesel Oxidation Cat-
alyst (DOC). CO and HC are oxidized into harmless gases (CO2, H2O). NOx
compounds are reduced to N2 in the Selective Catalytic Reduction (SCR) cata-
lyst which is located later in the EATS system. A goodNO2:NO ratio is proven to
improve the conversion efficiency of the SCR and a modern DOC setup supports
it by converting NO into NO2 [6].

Figure 1.1: AVolvo Penta stageVD13 Engine connected to an Exhaust After Treat-
ment System (EATS) with a Urea tank

The Euro VI emission standards noted that reduction in NOx from diesel engines
were necessary for maintaining the air quality [8]. Portable Emission Measure-
ment System (PEMS) were mounted onboard to quantify the unexpected rise in
NOx levels and it was found that the NOx reductions were insufficient. It was
further concluded that this was because the NEDC drive cycle used to gaugue the
emissions did not capture the full range of the load map [8]. Hence, In this study
a Part Load Map (PLM) driving cycle is used due to is highly transient nature.

2



1. Introduction

VIRTEC (VIrtual TEst Cell) is a test rig which is a computer based engine testing
cell designed by Volvo Penta, where a virtual engine is setup and its behaviour
is simulated using computer aided tools. The objective of this thesis work is to
establish a model to predict the Exhaust After-Treatment System (EATS) species
of a heavy duty D13 diesel engine based on material specifications and inlet data
only. This would drastically minimize the cost and effort put into physical mea-
surements and testing. In this project, a 1D reactor model is designed and the
heat, mass and reaction kinetics parameters are calibrated to provide good data
predictability for various commonly prevalent engine drive cycles. Themodel has
to be integrated with other virtual engine components and hence has to be robust
in terms of accuracy, stability and speed.

The reactions in theDOCsystemare highly temperature sensitive. Theflow through
this particular system of study is not uniform, thus making the modelling pro-
cess more complex and challenging. The scope of this thesis work is hence to
develop a GT-Suite model that would be capable of accurately predicting exhaust
aftertreatment performance for various engine driving cycles. A detailed ther-
malmass model will be established, the obtained results will then be calibrated
against measured dataset to obtain a better fit. Later, a validation of the model
will be performed over a different engine driving cycle and further improvements
will be done. Further, an approach formodelling the non-uniform flow behaviour
will also be presented.

1.2 Literature

This similar problem has been tackled by multiple researchers before. A genetic
algorithmwas developed by Hansen et al. in Matlab [9]. The pre-exponential fac-
tor and activation energies for 10 reactions were simultaneously optimized. There
was a difference of at most 10% in the conversion prediction. Forsthuber et al. es-
tablished a 1D combustion model to evaluate tail pipe emissions, the prediction
was still worse by a 100 ppm of species concentration [4]. Katare et al. established
a hybrid DOC model with kinetic and statistical tools [10]. A good data fit was
observed however the model accuracy fell by +-5 %when it was validated against
data of different fuel injection rates. A QSmodelling approach was taken by Tang
et al. where a solver was setup for heat and mass transport calculations along
different regions of the system [11]. This model was observed to have a good pre-
dictability.
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1. Introduction

Tremendous amount of research has been conducted in EATS modelling before,
but they seem to be either empirical and system specific or lack physical insight.
In general, most of these models even if they have good predictability, seem to
fail when a varied set of driving cycles are applied. This is due to the fact that
the model is built and tuned only to handle dataset within a particular range of
operating conditions. This thesis work hence concentrates on producing a good
and an efficient model that would performwell inmost practical engine operating
scenarios.

1.3 Objectives

The key objectives of this thesis work are:

• Establish a 1D GT-Suite model to predict the behaviour of temperature and
reaction species concentration in a DOC

• Establish a detailed Heat Transfer model to capture the thermal mass varia-
tions of the system

• Improve the model interms of model predictability and applicability across
various drive cycles

• Validate the feasibility of the model against a Non-Road Transient Cycle
(NRTC) drive cycle

• Develop a model to account for the flow maldistribution in a DOC

4



Theory

The Diesel Oxidation Catalyst (DOC) is the first component of a typically used
automotive Exhaust Aftertreatment System (EATS). The primary goal of the DOC
is to reduce the amount of CO by oxidation using catalysts such as PGM.

2.1 Mass and Heat Transport

The exhaust gas flows axially through themonolithwhile themass and heat trans-
port occurs both in the axial and radial direction.

According to the Two film theory [12], the catalytic process in heterogeneous cat-
alysts happen through the following steps:

1. There exists a boundary layer between the catalyst surface and the bulk gas
as the gas starts flowing through the reactor.

2. Transport in axial direction occurs through convection
3. The reaction species in the bulk of the gas diffuses radially to the boundary

layer. This is called external diffusion
4. When the species are on the surface of the catalyst, surface reactions take

place.
5. The reaction species on reaching the surface of the catalyst site, further dif-

fuse through the pores structure in the catalyst. This is called internal diffu-
sion

6. The formed product diffuses out to the bulk gas along the same path.

Figure 2.1: The 2 Film theory explaining the flow of reaction species to and from
the catalyst site [12]
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2. Theory

The other governing equations as followed by Gamma Technologies [13] are:

Solid Phase Energy:

ψs
∂Ts

∂t
= ∂

∂z
(fsbλsb

∂Ts

∂z
+ hS(Tg − Ts)−

nrct∑
j=1

∆Hjrj + P

V
+ hxSx(Tx − Ts)) (2.1)

Gas Phase Energy:

ερguCpg
∂Tg

∂z
= hS(Ts − Tg) (2.2)

Continuity:

∂

∂z
(ρgν) = 0 (2.3)

Momentum:

ε
∂p

∂z
+ ερgν

∂ν

∂z
= −Sf 1

2ρgν
2 (2.4)

The boundary condition at the surface connects thewashcoat solution to the chan-
nel gas problem, at x=0:

ρsDe,i
∂ωi

∂x
= km,i(ωi − ωg,i) (2.5)

The heat and mass transfer coefficients are related to a single Nusselts number.
The Nusselt Number is a constant and it is based on the assumption that the chan-
nel flow rate is laminar and well-understood. It is calculated using the equation

h = Nu
λg

Dh

(2.6)

km,i = Sh
ρgDi,m

Dh

(2.7)

The dependant variables mentioned above are determined by

∑
k

θk = 1(foreachsite) (2.8)

Ak
∂k

∂t
=

∑
j

σkjajrj (2.9)

ερgν
δωi

δz
= km,iS(ωs,i − ωg, i) (2.10)
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2. Theory

2.2 Reaction Kinetics

The basic reactions that occur in a DOC are Eqn (2.13-2.17). The global kinet-
ics mechanism was followed as suggested by Voltz [14] with improvements sug-
gested by Khosravi et.al [15]. At low temperatures the chemisorption of HC and
CO species aremore favouredwhile the surface coverage pattern shifts as the tem-
perature increases. This phenomenon is vice versa for NOx adsorption and des-
orption [16]. This emphasizes on the need for a temperature specific model that
would capture variations in different temperature domains. As Almqvist [1] and
Cen [2] discussed in their thesis works, the activation energy and pre-exponential
factors for reactions involved were observed to be different in different research
papers. Hence, a system specific reaction kinetics model for different temperature
domains was developed.
The rate of reactions are typically modelled using Langmuir Hinshelwood reac-
tion mechanisms Eqn 2.11 shows the basic reactions involved in the DOC
The rate constant k take the Arrhenius form:

k = Aexp
−Ea
RT (2.11)

Reaction rates are solved using local gas concentrations in the washcoat surface.
The overall rate of the reaction is calculated using:

r = k[concentration]order

G(i) (2.12)

CO + 0.5O2 −→ CO2 (2.13)
C3H6 + 4.5O2 −→ 3CO2 + 3H2O (2.14)

NO + 0.5O2 −→ NO2 (2.15)
DF + 19.4O2 −→ 13.5CO2 + 11.8H2O (2.16)

H2 + 0.5O2 −→ H2O (2.17)

Due to the complex nature of diesel fuel, the composition of diesel fuel was ap-
proximated to 40% propylene, 30% hydrocarbons adsorbed onto the catalyst sur-
face and 30% hydrocarbons present in the gas phase. This proportion was ob-
tained fromobservations and recommendationsmade by Sampara [16] andAlmqvist

7



2. Theory

[1]. The mole fractions of H2, H2O, propylene and diesel fuel were calculated ac-
cording to Eqn 2.18-2.19 based on recommendations made by Gamma Technolo-
gies

[Propylene] = [HC].0.4
3 [DieselFuel] = [HC].0.3

13.5 (2.18)

[H2] = [CO]
3.5 [H2O] = [CO2] (2.19)

Reactions in DOC are highly competitive. Voltz [14] introduced the concept of
inhibition functions which are non linear terms that the rate expression is divided
by. These functions pave way for accurately tuning the simulation curves to best
match the measured data in model based prediction.

rCO = kCO
[CO].[O2]0.5

G(1)G(2)

rNO = kNO
([NO].[O2]0.5 − [NO2])G(4)

G(2)G(3)G(5)

rprop = kprop
[Propylene].[O2]

G(1)G(2)

rDF = kDF
[DF ].[O2]
G(1)G(2)

(2.20)

COinhibition : G(1) = (1 + [ACOinh].exp
[EaCOinh]

T [CO])2

HCinhibition : G(2) = (1 + [AHCinh].exp
[EaHCinh]

T )([DFads] + [DFvap])2

NOinhibitionG(3) = 1 + [ANOinh.exp
[EaNOinh]

T [NO]

ConversionfactorfromKeqtoKc =
√

101325
R.T

NOOxidationequilibriumconstantKeq = 1.510−4exp
6864

T

(2.21)

2.3 Drive Cycles

Inorder to have a global model that would be capable of performing equally well
at all exhaust flow conditions, the engine is exerted in almost all possible ways
such as to replicate all possible practical vehicle operating scenarios. Engine drive
cycles are widely used in assessing the performance of an engine in various cate-
gories such as fuel consumption and emissions.
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2. Theory

In this thesis, the Part Load Map (PLM) drive cycle will be used to develop the
kineticmodel since the variations in operating conditions are highly transient. The
heat transfer model will be developed using the C1 drive cycle. Model validation
will later be performed in the Non-Road Transient Cycle (NRTC).
Fig. 2.2 shows the torque and speed map of various drive cycles

Figure 2.2: The Torque and Speed map for PLM, C1 and NRTC driving cycles

2.4 Assumptions

• Axial mass and heat transport in the gas phase occurs through convection
only

• Axial heat conduction along the monolith happens through conduction
• Heat transfer through radiation is negligible inside and outside themonolith
• Diffusion mass transfer was assumed to be negligible
• The pressure drop across the reactor is negligible
• Ideal gas behaviour.

9



2. Theory

2.5 Solver Theory

GT-Suite considers quasi steady approximation when the QS flow solver is used.
This is due to the short residence time of exhaust gas through the reactor. QS
solver can resolve large time steps for faster computational time.

The ’Advanced Adaptive’ chemistry solver was used to solve chemical equations.
This solver is based on an adaptive mesh methodology and uses numerical meth-
ods specifically designed for catalytic reactors [13].

The catalyst wall temperature is automatically calculated by the QS solver. In-
order to have a smooth wall temperature profile, the catalyst brick is internally
discretized into small tanks. Based on practice, a smooth wall temperature profile
was obtained for a discretization length of 5mm.

In the external heat transfer model, the solver is set to RADAU a 3 stage, 5th or-
der DAE solver for numerical robustnuss and its improved ability to handle stiff
kinetics and heat transport.

The frequency of measured data was 1s and hence a simulation time step of 1s
was chosen to accurately model the transient flow behaviour.

The exhaust gas flowhas reaction species concentration in the order of ppm. Hence,
for better accuracy, the error tolerance was set to 1E-6.
The total error was calculated cumulatively, the difference betweenmeasured and
predicted values were squared and added consecutively for each point as shown
in the following equations

Total Absolute Error Function = Fi

∫ t
0(ymeasured − ypredicted)2

Total Relative Error Function = Fi

∫ t
0( ymeasured−ypredicted

max(abs(ymeasured,1E−17)))
2(2.22)

Where Fi is the weighting factor of species i.

10



Methodology

3.1 Modelling Approach

Typically the engine is tested under different drive cycles to exert the engine into a
wide range of conditions inorder to determine its behaviour in a transient real life
environment. A transient drive cycle called Part LoadMap (PLM) was used to es-
tablish the kinetic model and the C1 cycle was used to establish the heat transport
model. This model was later validated using NRTC drive cycle. Table 3.1 shows
the test plan followed

Table 3.1: Test Plan for model building
Criteria Calibration Validation

Kinetic Parameters PLM NRTC
Heat Transfer Parameters C1 PLM & NRTC

GT-Suite was used to model the 1D heat andmass behaviour. The reaction kinetic
parameters from Almqvist´s model [1] were used as an initial guess. The thermal
insulation layers in the catalyst brick was specified according to specifications ob-
tained from Volvo Penta.

Reaction kinetics were tuned majorly using the Activation Energy and the Pre-
exponential factors of important reactions in DOC. It could further be observed
from Almqvist’s model [1] that the predictability reduces at low temperatures.
The reaction could be strongly inhibiting at these regions and hence the inhibi-
tion functions of all the major chemical reactions were tuned.

3.2 Model Setup

AGT-Suite ’Catalyst Brick’ componentwas used to represent aDOC reactor. ’End-
FlowInletSpecies’ component was used to incorporate inlet flow conditions such
as temperature, mass flow and concentration of the exhaust gas. The gas then
passes through an inlet cone which expands the flow area to the DOC reactor.
The gas then flows similarly out of the reactor to the outlet component as shown

11



3. Methodology

in Fig 3.1. In-between components, the ’nocond’ element is used to avoid heat
dissipation along the pipes and connections. ’SurfaceReactions’ component was
used to implement reactions inside the DOC.

Figure 3.1: The GT-Suite DOC model with flow connections

3.2.1 Physical Specifications

The geometric specifications of the monolith was incorporated as provided by the
supplier. The basic model has only 1 DOC catalyst brick with flow connections.
The ’CalculatedWall Temperature’ option was selected for GT-Suite to calculate a
wall temperature in each tank. TheDOCmuffler contains several insulation layers
consisting of different materials as shown in Fig 3.2, the thermal insulation layers
were specified according to material property information given by supplier.

12



3. Methodology

Figure 3.2: Thermal insulation layers surrounding the DOC to form the muffler

The active catalyst site specifications were obtained from the supplier and are not
displayed here due to confidentiality reasons. The chemical reactions and the gen-
eral inhibition terms were entered as discussed earlier. The geometric parameters
of the catalyst brick and the muffler were entered as shown in Table 3.2.1

Table 3.2: Monolith and Insulation Layer specifications

Name Value

Frontal Area xx in2

Reactor Length xx in
Channel Shape xx
Cell Density xx cpsi

Washcoat Thickness xx in

Support Material xx mm
Stainless Steel xx mm

Air gap xx mm
Tin xx mm

Insulation Material xx mm

13



3. Methodology

3.2.2 1 DOC Heat Transfer Model

The thermal mass variations along the reactor was modelled since the tempera-
ture predictions are poor interms of response and lag. An external heat transfer
model was developed in GT-Suite to define the thermal interactions in the system.

Typically, 1D catalyst models are developed for fastness and simplicity. However,
they only predict the fundamental axial behaviour of the catalyst channel and do
not strictly account for the change in temperature, concentration and flow in the
radial direction. It is thus not possible for 1D models to understand the thermal
mass variations along the catalyst channels. To resolve the shortcomings of 1D
catalyst models, an external heat transfer model (1D+1D) is hence developed to
tune the thermal mass properties of insulation layers around the catalyst walls.

The system is highly temperature dependent and hence a detailed external heat
transfer model was setup. GT-Suite has the flexibility to design each thermal in-
sulation layer separately as ’Thermal primitives’. The mode of heat interaction
between these layers has to be specified, as shown in the Fig 3.3. When external
heat transfer model is setup, the solver calculates only 1 distinct wall temperature
for a thermal connection. Based on practice and previous experience, a discretiza-
tion length of 5mmproduced a smoothwall temperature profile. Hence, the DOC
reactor was split into 23 tanks (114.3/5=23) each of which is an axial-subvolume
of 5mm long representing a reactor of total length 114.3mm as seen in Fig 3.4. The
computational penalty in this model was high, but this method of modelling was
observed to consider the thermal mass behaviour of the system and provided a
better means to control it.

14



3. Methodology

Figure 3.3: External Heat transfer model - GT-Suite representation with thermal
connections

Figure 3.4: The 1 DOC model with 23 catalyst subvolumes and thermal connec-
tions

3.2.3 2 DOC Heat Transfer Model

According to Almqvist [1], there is flowmaldistribution in the system under con-
sideration. This phenomenon has to be accounted for since a real world system
will almost always not have a uniformwell-mixed flow. Fig 3.5 shows the distribu-
tion of flow in the DOC inlet. A 2 channel catalyst brick system is devised for this
purpose to account for flow and heat distribution. In this fictitious model it is hy-
pothesized that there is a large DOC and there exists a small DOC inside the large
DOC which transfers heat between each other. This way, it is believed that the
thermal mass heat up in the monolith could be more precisely modelled. More-
over, on looking at the flow maldistribution in Fig 3.5, it could be approximated
that around 40% of the flow goes upward and the remaining goes downward.
Hence, a distribution fudge factor α was devised to account for the discrepancy

15



3. Methodology

in exhaust gas flow distribution. Fig 3.6 shows the GT-Suite model with 2 DOCs
and heat exchange connections between them. According to this model, the flow
is split into 0.4 (α) and 0.6 (1-α) times and sent into 2 different DOCs with sim-
ilar geometric properties proportionally scaled by a ratio of α. This setup will
by all means collectively represent the specifications of a single DOC reactor. Fig
3.7 shows a schematic representation of the model. By way of modelling 2 DOCs
there is more scope for the solver to individually solve the poor flow regime sec-
tion to obtain a more accurate solution in the nearly stagnant region.

Figure 3.5: CFD simulation over inlet velocity to DOC. Blue indicates -20% of
average velocity and red indicates +20% of average velocity.

Figure 3.6: GT-Suite representation of the 2 DOC model
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3. Methodology

Figure 3.7: Front view schematic representation of the 2DOC model with insula-
tion layers

3.2.4 Activation Energy and Pre-exponential Factors

There are 4main reactions taking place in the DOC. The activation energy and the
pre-exponential factors for each reaction were optimized.

The followingworkingmethodologywas implemented. First, the pre-exponential
factors alone were tuned. Then the pre-exponential and the activation energies
while keeping the inhibition functions constant. Later all three terms were opti-
mized together. This was performed inorder to get a good starting point for con-
sequent optimization runs and also to account for interactions of these parameters
one at a time.
After the heat transfer parameters were optimized, the kinetic parameters were
re-optimized by following the same procedure as mentioned above.

17



3. Methodology

3.2.5 Integrated Design Optimizer

The Integrated Design Optimizer (IDO) by GT-Suite is used to minimize the total
error functions for temperature and species prediction.

Depending on the system, there could exist multiple local optima. It is often not
possible to know the complexity of the system, since the point of convergence is
dependent on the initial conditions given. GT-Suite however has sophisticated op-
timization search techniques to converge at a global minima. For optimization in-
volving less than 3 independent parameters, the Simplex algorithmwas used and
for complex scenarios with more parameters, the Genetic Algorithm was used.

The genetic algorithm is particularly robust in searching the grid space for the
point of global minimum. However, in a scenario where a good initial condition
is not known or when multi-objective optimization runs are performed, the op-
timizer had to be run for multiple evolution until a satisfactory minimum was
obtained.

GT-Suite also provides the ability to run parallel iterations. Tasks are equally dis-
tributed among different cores of the processor to simultaneously perform mul-
tiple iterations at a time. This reasonably reduces computational time when run-
ning large simulations.

To resolve this issue, 2 methods were followed. In the first method, every op-
timization run was first simulated to minimize absolute error and the obtained
optimum values were used as an initial starting point to perform a 2nd optimiza-
tion to minimize the relative error. In the second method, each species term was
treated as an individual error term and was minimized using multi-objective op-
timization.

It is important to not have very small data points for the concentration terms. This
could cause problems when minimising the relative error since the error term
could be extremely large due to a low concentration point and the optimizer will
be rendered incapable of judging the difference in error which may make it to
lose feasible optimal parameters. For this purpose, data was processed for all the
measured concentration terms entered in the total error function by removing the
very small near zero values.
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Results and Discussion

4.1 Low Torque Region

Fig 4.1 shows the PLM drive cycle low torque region. As marked in the figure, It
could be noticed that the torque goes to 0 for certain speed conditions and some-
times also becomes negative. Almqvist’s and Cen’s models consistently had low
predictability in exactly these regions. When drive cycle experiments are con-
ducted, the engine is exerted in every possible manner inorder to observe the
exhaust flow behaviour is all practical conditions. However, a negative torque
implies that engine traction occurs and the engine runs in idle speed. The gas
flow at this time is influenced by the prevailing flow conditions. Since the species
prediction is bad exactly in this location, it is possible that this engine condition
influences the exhaust flow.

Figure 4.1: The PLM low Torque region showing the 0 and negative torque sce-
nario

It it highly likely that the reaction species CO, NOx andHC go through the reactor
untreated at these low temperature and low mass flow region above 24000s [17]
Etheridge et. al noticed that kinetic parameters which predict the same behaviour
when the temperature is increasing, give different predictions when the temper-
ature is decreasing. Besides, if lower concentrations are encountered in the drive
cycle thanwere used for kinetic development; kinetic parameterswhich give equiv-
alent predictions at higher concentration may give different predictions at lower
concentration [18].
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4. Results and Discussion

4.2 Inhibition Functions

From Almqvist’s results, Fig A.1, A.2, A.3 [1], it is clear that the species prediction
becomes poor after 17000s. This was suspected to be due to the strong inhibiting
nature of the chemical reaction. This was also noted to be the low temperature
region and hence parametric optimization was performed only in the last 10000s.
On tuning the inhibition functions, the species prediction has vastly improved as
shown in Fig 4.2 , the NOx prediction above 17000s until 24000s has improved.

Figure 4.2: NOxflowalong the reactor for a PLMdatasetwith improved inhibition
functions

Although the predictability in the low temperature regions for CO and HC are
maintained as shown in Fig 4.3, 4.4 it is still insufficient. Since the reactions in the
DOC competewith one another, the rates of the reaction for HC andNOoxidation
are highly interdependent. Hence, a detailed optimization has to be performed by
defining the error terms individually for all the species and minimizing the error
terms using multi-objective optimization.
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4. Results and Discussion

Figure 4.3: CO flow along the reactor for a PLM dataset with improved inhibition
functions

Figure 4.4: HC flow along the reactor for a PLM dataset with improved inhibition
functions
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4. Results and Discussion

Table 4.1: List of old and new parametric values of inhibition functions.
Parameter Name Old Values New Values

Ea HC inh 1.67 E4 1.7 E4
A HC inh 2.12 E-12 1.40 E-12
Ea CO inh -1.49 E4 4.16 E4
A CO inh 248 24
Ea NO inh 5.7 E3 4.94 E3
A NO inh 0.25 0.94

4.3 Steady State Points

Inorder for the model to better understand the curve patterns, it was decided to
calibrate the model for steady state (SS) data points of the PLM drive cycle and
later use these parameters on the large PLM dataset. Hence, 90 steady state data
points were obtained by averaging values every 300s and the kinetic parameters
were tuned. The results improved, but the species predictions were still not satis-
factory. As shown in Fig 4.5, the NOx prediction is better than Almqvist’s model
but isn’t any better in comparison with the low temperature model as shown ear-
lier. In general, from Fig 4.6, 4.7 the model overpredicts the concentration profile.

Figure 4.5: NOx flow along the reactor for a PLM dataset with SS tuned kinetic
parameters
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4. Results and Discussion

Figure 4.6: CO flow along the reactor for a PLM dataset with SS tuned kinetic
parameters

Figure 4.7: HC flow along the reactor for a PLM dataset with SS tuned kinetic
parameters

4.4 Heat Transfer Model

A simple Matlab code was developed to determine the time lapse, τ taken by the
inlet temperature to reach the same temperature in measured outlet. The matlab
code and calculation method is shown in Appendix. The plot is shown in Fig 4.8
where it could be seen that there exists a vast time lag indicative of poor thermal
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response of the model. Also, the peaks in time lags can be correlated with the rise
in temperature error response as shown in Fig 4.9

Figure 4.8: Thermal lag Time constant τ required for inlet temperature to reach
the same outlet temperature

Figure 4.9: The error in temperature prediction for the PLM drive cycle

Hence, it was suspected that the 1D model was failing to capture thermal mass
variations along the reactor. Aswe could see fromFig 4.10 the temperature predic-
tion in C1 cycle not only is poor, but has random bumps in prediction. The wall
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temperature solution in this case is automatically calculated by GT-Suite. From
Fig 4.11 it could be seen that the reason for this sudden temperature shoot is be-
cause of the mismatch between exhaust gas temperature and solid internal wall
temperature. In reality, when the hot exhaust gas flows through the reactor, there
is thermalmass heat-up because of which themonolith wall temperature rises. In-
turn, the catalyst wall convects heat through the insulation layers and also back
into the reactor. In this case, the solid temperature is too low to retain enough
heat and thus is the reason for the temperature lag observed earlier. The gas and
the solid temperatures should hence follow the same pattern with a small shift in
magnitude. This heat flow is clearly not understood by the 1D model. From Fig
4.11 it is clear that the solid temperature is very different from the gas temperature.
This is indicative of poor heat transfer estimation by the model.

Figure 4.10: Temperature prediction for C1 drive cycle using the 1DOC 1brick
model
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4. Results and Discussion

Figure 4.11: Temperatures of the catalyst wall and the exhaust gas for a C1 driving
cycle

Inorder to account for this problem, a 2D model which would account for axial
heat dispersion was developed. The discretization of individual tanks and the
representation of individual thermal mass elements was believed to improve the
thermal mass understanding and provide the user with more means of control-
ling the system.

Since the C1 drive cycle has sudden changes in temperature curves and the tem-
perature difference between the inlet andmeasuredwas very small atmost places,
the C1 cycle was chosen to calibrate heat transfer parameters of this model. The
major heat transfer parameters that were tunedwere the specific heat of corderite,
the heat transfer coefficient between all the thermal mass terms of the insulation
layers (this is a single value, since the heat transfer coefficients between the ther-
mal masses were the same) and the Heat Transfer coefficient multiplier between
the gas phase and the solid wall.

A multi-objective parametric optimization was performed to minimize both the
total temperature error and the temperature difference between the solid and the
gas temperature. Evidently, from Fig 4.12 it could be seen that the temperature
prediction has reasonably improved, most importantly the temperature lag be-
tween the solid and gas temperature has been resolved as shown in Fig 4.13 .
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On re-optimizing the kinetic parameters, the species predictions have further im-
proved since the reactions are highly temperature dependant.

Figure 4.12: Temperature prediction for a C1 drive cycle using the improved 1
DOC thermal model

Figure 4.13: Solid and exhaust gas temperatures for the 1 DOC thermal model
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Fig 4.14, 4.15, 4.16 shows the verification of the thermal model using the PLM
dataset.

Figure 4.14: NO prediction for PLM drive cycle using the 1 DOC thermal model

Figure 4.15: CO prediction for a PLM drive cycle using the 1 DOC thermal model
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Figure 4.16: HC prediction for a PLM drive cycle using the 1 DOC thermal model

4.5 2 DOCModel

A similar approach was taken in the 2 DOC model, where the heat transfer pa-
rameters were optimized and later the reaction kinetics. After the parametric op-
timization, from Fig 4.17, 4.18 it could be observed that the temperature fit has
slightly improved but the species prediction shown in Fig 4.19, 4.20, 4.21 are the
same as for the 1 DOCmodel. This is probably because themass flow distribution
was handled much better by the model with the flow split factor α and continual
heat exchange between the catalysts provides the model with more flexibility to
solve thermal mass variations.
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Figure 4.17: T prediction for PLM drive cycle using the 1 DOC thermal model

Figure 4.18: T prediction for PLM drive cycle using the 2 DOC thermal model
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Figure 4.19: NO prediction for PLM drive cycle using the 2 DOC thermal model

Figure 4.20: CO prediction for a PLM drive cycle using the 2 DOC thermal model
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Figure 4.21: HC prediction for a PLM drive cycle using the 2 DOC thermal model

The 2 DOCmodel was developed to accurately understand the heat transport and
flow behaviour of the system. Moreover, in the 2 DOC model, since the external
heat transfer parameters were calibrated specifically for an individual subvolume
of the whole reactor, it was anticipated that the solver would face a simpler prob-
lem than earlier models, which provides more scope for the model to resolve re-
action parameters much more precise and efficient.

Although, on comparing the 1 and 2 DOCmodels, the 2 DOCmodel has the same
predictability as the 1 DOC model interms of species concentration as shown in
Table 4.2. The temperature prediction however has improved by a considerable
amount. On the contrary, this model is also highly temperature sensitive and
could cause thermal instability of thermal mass components in particular loca-
tions. A detailed investigation of where instabilities occur and the physical sig-
nificance of the occurrence is up for future research. The 2 DOC model uses the
RADAU solver which is robust but computationally expensive. The long simu-
lation times makes this model less robust in terms of integrating with online fast
running enginemodels, However the capacity of themodel to account for varying
flow regimes and thermal mass makes the model more reliable in terms of accu-
racy. Since it is uncertain as to why the species prediction of this model hasn’t
improved, without further research it is not possible to conclude on the reliability
of this model.
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Table 4.2: shows the reduction in total absolute error of species and temperature
after each modelling approach for a PLM driving cycle

Species Previous Work Inhibition Function 1DOC HT model 2DOC HT model

CO 6.88 E-6 2.04 E-6 1.42 E-6 1.43 E-6
HC 1.21 E-5 1.06 E-5 1.65 E-7 1.64 E-7
NO 8.19 E-4 5.33 E-5 3.55 E-5 3.20 E-5

Temperature 731831 634336 425347 343430

Figure 4.22: Normalized absolute error for a PLM driving cycle after each mod-
elling step

4.6 Model Validation

One of the key objectives of this thesis work was to develop a consistent model
that would be capable of giving the similar performance with all drive cycles.
The model was hence validated with an NRTC drive cycle. Figures 4.23,4.24,4.25
shows the species prediction using the 1 DOCmodels. On comparingwith results
fromAlmqvist [1], it could be clearly seen that the prediction accuracy for HC and
NOx have vastly increased.
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Figure 4.23: COprediction for aNRTCdrive cycle using the 1DOC thermalmodel

Figure 4.24: HCprediction for aNRTCdrive cycle using the 1DOC thermalmodel
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Figure 4.25: NOprediction for aNRTCdrive cycle using the 1DOC thermalmodel

On looking at the temperature prediction in Fig 4.26, a lag still exists. The tem-
perature predictability of the 1 DOC model for the NRTC drive cycle is the exact
same as Fig 4.26. On detailed observation, it could be seen that the temperature
response and pattern of the inlet curve and the measured outlet curves are very
different. There seems to be a lag in temperature response and the sharp peaks are
not followed by themeasured outlet curve at all. Themodel uses the inlet temper-
ature as a basis for temperature prediction and hence the simulated temperature
has a similar pattern to that of the inlet. So, this lag that is observed could be be-
cause of the measurement sensor at the outlet. It is possible that the nature of the
sensor is that it doesn’t capture sharp variations in temperature. Further, it could
also be because of the fact that there could be good mixing for a drive cycle like
NRTC.
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Figure 4.26: T prediction for a NRTC drive cycle using the 2 DOC thermal model
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Conclusion

Common assumptions made in developing 1D reactor models are flow unifor-
mity and negligible axial temperature gradient. These are serious assumptions
that would severely affect the accuracy and consistency of the model. Hence, 1D
models in general would be less reliable for modelling purposes. As discussed in
this thesis, a semi-physical 2Dmodel can possibly performwell and providemore
control over EATS modelling.

The 2DOCmodel has to be further investigated in terms of physical andnumerical
behaviour. The physical correlation of the distribution factor α has to be further
understood. The reduction in temperature error by the 2 DOC model proves fur-
ther scope for optimizing the predictability of the 2 DOC model.

For future measurements, both the gas temperature and the wall temperature
could be measured to understand the effect of wall temperature on the model
and between different drive cycles.

Simulation was performed on NRTC dataset from different test rigs, however the
same type of prediction error in temperature was noticed. The exact nature of this
problem is not completely known and would be an interesting avenue to investi-
gate in future studies.
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Appendix

A.0.1 Results from Almqvist [1]

Figure A.1: CO flow for a PLM drive cycle from Almqvist´s [1] model

Figure A.2: NO flow for a PLM drive cycle from Almqvist´s [1] model
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Figure A.3: HC flow for a PLM drive cycle from Almqvist´s [1] model

A.0.2 Results from Cen [2]

Figure A.4: CO flow for a PLM drive cycle from Cen´s [2] model
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Figure A.5: HC flow for a PLM drive cycle from Cen´s [2] model

Figure A.6: NO flow for a PLM drive cycle from Cen´s [2] model
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Figure A.7: Temperature for a PLM drive cycle from Cen´s [2] model

A.0.3 Matlab Program

Amatlab codewas developed to determine the time lag τ . The inlet andmeasured
outlet data are first imported to the matlab workspace. Inlet and outlet tempera-
tures are assigned to a vector. A variable was defined to specify the search dura-
tion which would dictate the resolution of the search region. The code will check
if the difference between an inlet value and 500 consecutive measured value is 0.
This will be performed by themeans of a for loop and is calculated for every single
inlet data point. If there exists a difference between inlet andmeasured values, the
time taken for the inlet value to reach the corresponding measured value is deter-
mined and stored into a new variable named temp. If the program cannot find
the corresponding measured temperature for a stipulated inlet temperature, then
it treated as ’NaN’. This is because, there exists a lag and increasing the search
space further would only give us wrong results since on further search the inlet
temperature would eventually match a measured temperature of a different re-
gion. The temp variable measured is the time lag τ and is plotted against the time
series of the dataset.
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