
Methods for Servo Position Control
Comparison and evaluation of robust solutions with

different control implementations

Bernardo T. Barata & Klas Lundgren
Department of Electrical Engineering

Chalmers University of Technology
Göteborg, Sweden 2019

1

Methods for Servo Control
Comparison and evaluation of robust solutions with different control implementa-
tions
KLAS LUNDGREN
BERNARDO BARATA

c© KLAS LUNDGREN, 2019.
c© BERNARDO BARATA, 2019.

Supervisors: Daniel Chädström, Jakob Fjellström, Joel Strand, Aros Electronics AB
Examiner: Nikolce Murgovski, Department of Electrical Engineering

Master’s Thesis 2019:NN
Department of Electrical Engineering
Division of Division name
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX
Gothenburg, Sweden 2019

2

Abstract

Proportional-Integral-Derivative (PID) control is the most abundant type of control
used in Industry, yet control theory has progressed with different control options
that are not necessarily explored in practical contexts. This project aims to show
how other controllers fare in contrast to the benchmark. The mechanical section
of the Permanent Magnet Synchronous Motor (PMSM) was the considered system
plant. Four controllers were designed and put through multiple tests of distur-
bance and robustness and reference tracking. Reference tracking included both a
step input, for fixed sudden changes, and a sine wave input, for constantly varying
setpoints. Robustness and disturbance tests included an added step load torque,
white noise on sensor readings, increased delays, varying inertia, cogging torque
and stick-slip friction. The selected controllers were the Linear Quadratic Inte-
gral (LQI) controller, the Implicit Model Predictive Controller (MPC), the Explicit
Model Predictive Controller (EMPC) and Cascade Proportional-Integral Controller
(Cascade PI). These controllers were analyzed for certain key parameters, including
how much total error they produced and how fast they responded. All simulations
were run on Matlab and Simulink and the controllers were designed to be exported
into code that could be used in embedded products for future applications. It was
noted that every controller had their own strengths and weaknesses but for the
performance standards that were requested, the Explicit MPC had the best results.
Implicit MPC, however, is the recommended option as a general rule. This study has
the potential to help improve the control that already exists for the PMSM motor or,
at the very least, increase awareness to explore other options for control.

Keywords: PMSM, MPC, EMPC, LQI, Motor, Cascade PI

3

Contents

List of Figures 7

List of Tables 9

1 Introduction 10

1.1 Background . 10

1.2 Research Questions / Objectives . 11

1.3 Scope . 11

1.4 Thesis Outline . 11

2 Theory 13

2.1 PMSM Motor . 13

2.2 Motor Model . 14

2.2.1 Inverter Model . 14

2.2.2 Sensor Model . 15

2.3 Electrical Section . 16

2.4 Mechanical Section . 18

2.5 State-space Derivation . 18

2.6 Discretization . 19

2.7 Constraints . 20

2.8 Nonlinearities . 20

2.9 Proportional-Integral-Derivative Controller 21

4

2.10 Linear-Quadratic-Integral Controller . 23

2.11 Implicit Model Predictive Controller . 24

2.12 Explicit Model Predictive Controller . 25

3 Methods 27

3.1 Materials used . 27

3.2 Schematics . 27

3.3 Proportional-Integral-Derivative Controller implementation 29

3.4 Linear-Quadratic-Integral Controller implementation 31

3.5 Implicit Model Predictive Controller implementation 31

3.6 Explicit Model Predictive Controller implementation 32

3.7 Simulation Execution . 33

4 Results 35

4.1 Controller Setup . 35

4.2 Reference Tracking . 36

4.3 Step Load Torque Disturbance Rejection 42

4.4 Reference Tracking and Disturbance Rejection simulation result values 46

4.5 Sensor Noise Disturbance Rejection . 48

4.6 Nonlinearities . 49

4.6.1 Cogging Torque and Stick-slip Friction 49

4.7 Robust Testing . 52

4.7.1 Inertia J . 52

5

4.7.2 Delays . 53

5 Discussion 55

6 Conclusion 57

Bibliography 58

6

List of Figures

1 Cross-section of a permanent magnet rotor with an outer rotor [4]. . . 13

2 Overall schematic of the Aros PMSM motor. 14

3 PWM example [6]. 15

4 abc, αβ and dq frames [12] . 17

5 Friction torque response. 21

6 Control setup for PID [18]. 22

7 MPC prediction overview [22]. 24

8 Setup Motor Control. 28

9 Nonlinearities that were considered for the simulations. 28

10 Controller section. 29

11 Cascade PI structure used in the simulations 30

12 Control setup for LQI [21]. 31

13 Step input reference tracking θm for Cascade PI. 36

14 Velocity and Torque responses. 37

15 Sine wave input reference tracking θm for Cascade PI - one period. . . 37

16 Step input reference tracking θm for LQI. 38

17 Velocity and Torque responses. 38

18 Sine wave input reference tracking θm for LQI. 39

19 Step input reference tracking θm for Implicit MPC. 39

20 Velocity and Torque responses. 40

7

21 Sine wave input reference tracking θm for Implicit MPC. 40

22 Step input reference tracking θm for Explicit MPC. 41

23 Velocity and Torque responses. 41

24 Sine wave input reference tracking θm for Explicit MPC. 42

25 Step Load Torque Disturbance θm for Cascade PI. 43

26 Velocity and Torque responses. 43

27 Step Load Torque Disturbance θm for LQI. 44

28 Velocity and Torque responses. 44

29 Step Load Torque Disturbance θm for Implicit MPC. 45

30 Velocity and Torque responses. 45

31 Step Load Torque Disturbance θm for Explicit MPC. 46

32 Velocity and Torque responses. 46

33 Simulation results for PI and LQI. 48

34 Simulation of results for MPC and EMPC. 49

35 Simulation results for PI with nonlinearities. 50

36 Simulation results for LQI with nonlinearities. 50

37 Simulation results for MPC with nonlinearities. 51

38 Simulation results for EMPC with nonlinearities. 52

39 Total Error for different values of inertia. 53

40 Simulation results for different values of inertia. 53

41 Simulation results for different values of delay Implicit MPC. 54

42 Simulation results for different values of delay for Explicit MPC. . . . 54

8

List of Tables

1 Cascade PI simulation results. 47

2 LQI simulation results. 47

3 MPC simulation results. 47

4 EMPC simulation results. 48

5 Noise Disturbance simulation results. 49

6 Cascade PI simulation results w/ nonlinearities. 50

7 LQI simulation results w/ nonlinearities. 51

8 MPC simulation results w/ nonlinearities. 51

9 EMPC simulation results w/ nonlinearities. 52

9

1 Introduction

1.1 Background

In many industrial products there is some degree of control that is required in order
to achieve stable and precise system functionality. Despite advancements in Control
theory throughout the decades, the most widespread controller in industry today is
still the Proportional-Integral-Derivative (PID) controller [1], with much of its tun-
ing being derived from trial-and-error methods focused on the specific application
outcomes of the product.

PID controllers are conceptually simpler to adapt to problems under fixed condi-
tions and can provide satisfying results when correctly tuned [1]. On the other hand,
they supposedly lack robustness in comparison to other control methods within sce-
narios that include unexpected variations or certain non-linearities [2]. It would,
therefore, be interesting to compare different control structures to a tuned PID con-
troller and analyze their performance for a specific system.

In this comparative study, the end application is the Permanent Magnet Syn-
chronous Motor (PMSM) developed at Aros Electronics. The main intention is to
control the position of the motor to accurately follow a desired trajectory. The system
as a whole can be decomposed into two main control sections - an electric current
control section and a torque control section.

The thesis work was initially focused on literature research, wherein most of
the efforts were placed on: Understanding how permanent magnet motors work,
which controllers would be worth investigating and implementing, understanding
the theory behind all the desired controllers, how to actually set up the controllers
to function, how broad the thesis would be in terms of whether it would cover the
full 3-phase alternating current Field Oriented Control (including current control of
the motor) or if it would be specialized on the mechanical DC control portion of the
motor, how to convert all the code used in simulation to code that would be usable
in actual motor systems, which constraints would have to be considered to closely
replicate the motor’s functionality and how to assess each controller’s performance
and compare them with each other via objective parameters.

This study was ultimately decided to be focused on the torque control. The cho-
sen controllers to be analyzed are: a Linear-Quadratic-Integral (LQI), an implicit
(online) Model Predictive Controller (MPC), an explicit (offline) MPC controller and,
as stated previously, a PID controller.

10

1.2 Research Questions / Objectives

The primary objective is to assess how each controller performs under different in-
put signals as well as with varying disturbances and system non-linearities.

This assessment involves specific criteria that each controller is judged on. These
criteria are: Maximum Torque, Maximum Speed, Torque Root-Mean-Square, Total
Error, Maximum Error, Rise Time and Settling Time. The two inputs that are used
are the step and sine wave. The former is used to observe how fast a controller
tracks and stabilizes to a given static reference value. The latter is used to ob-
serve how fast and accurately a controller can track a constantly changing reference
value. Both are important to characterize a controller’s behavior.

The non-linearities in the system that are considered are: cogging Torque and
stick-slip friction. These are added later in the simulations to understand how they
affect the performances.

The questions in this study are, therefore:

• Does the PID controller outperform the other controllers in general?

• Which controller is overall the most appropriate for this application?

• What are the best and worst features of each controller for this application?

1.3 Scope

This thesis is limited to the torque control of the PMSM motor. It will not cover the
Current control, which is assumed to give a fast and stable response.The controller
selection will be restricted to LQI, PID, MPC and EMPC.

1.4 Thesis Outline

This thesis is split into two big sections - Modelling and Control - followed after by
Results and Discussion.

The Modelling section describes the PMSM motor system as a whole unit, ex-
plaining the core parts and their respective functions. The description places em-
phasis on the electrical sector to cover the current control and the mechanical sector

11

to delve into torque control. The Control section gives an overview of the different
employed control schemes, how they are actually implemented in the system and
also covers other technicalities involved in the schematics.

Lastly, the simulation results are presented and discussed.

12

2 Theory

2.1 PMSM Motor

A Permanent Magnet Synchronous Motor is a motor that contains permanent mag-
nets that generate constant motor flux attached to the rotor part and whose torque
motion is produced by supplying alternating current to different parts of the stator
winding so as to produce a rotating magnetic field [3].

The process of supplying current to separate parts of the stator in sequence is
called commutation. The rotor part supplies a constant magnetic field while the
stator supplies a rotating magnetic field, which induces the rotor to rotate alongside
it [4].

As the rotor starts rotating, its poles lock in synchronously to the rotating mag-
netic field once it reaches synchronous motor speed ωs, defined (in angular velocity)
as

ωs = 2π
f

pp
(1)

where f is the AC current frequency and pp is the number of pole pairs of the rotor.
From that point on, the synchronous speed of the rotor depends on the supplied AC
frequency [4].

Figure 1: Cross-section of a permanent magnet rotor with an outer rotor [4].

13

2.2 Motor Model

The working schematic for the PMSM motor used at Aros Electronics is shown in
Figure 2, which applies to the generality of PMSM motors simulation-wise. This is
not the environment used in the thesis but rather the whole setting in which it is
integrated, giving an overview of the entire system.

Figure 2: Overall schematic of the Aros PMSM motor.

The subsystems that stand out from the schematic are: the controllers, the in-
verter model, the electrical model of the motor, the mechanical model with respec-
tive load response and lastly the sensor model.

The motor itself works on 3-phase Alternating Current (AC) but since it is far
more practical to control states via Direct Current (DC) values, then an inverter is
applied to handle the conversion between DC reference values to actual working AC
signals for the motor. Sensors are then used to interpret motor state values into DC
form.

2.2.1 Inverter Model

The inverter in consideration is a three-phase Pulse-Width-Modulation (PWM) In-
verter, its purpose is to convert a DC reference signal into a functional AC signal for
the remainder of the model.

Pulse-Width-Modulation is a technique that utilizes on-off switches with varying
duty cycles to represent more complex alternating signals [5].

14

Figure 3: PWM example [6].

As shown in Figure 3, the duty cycle of the pulsing signal gives information about
the original signal over the pulsing signal’s period. The higher the frequency of the
pulsing signal, the higher the accuracy in representing the original signal. These
Duty Cycle values are obtained by comparing the original signal with a triangular
carrier wave, if the signal has a higher value than the wave - it outputs a HIGH
value, otherwise it outputs a LOW value [7]. Since this is a three-phase PWM
inverter, then it is necessary to have enough switches to handle outputting a pulsing
signal for each phase, which would be separated by 120◦.

Lastly the PWM three-phased signal is passed through a Low-pass filter to yield
an approximation of an AC signal based on the referenced DC signal.

2.2.2 Sensor Model

The sensor is essentially an encoder which is used to derive the angular position
from the motor’s behavior. Its behavior was observed directly from one of Aros’s
sensor simulated models

15

The way it works is fairly simple. By following the equation,

θ = θm − b
θm
2π
c · 2π (2)

it starts by obtaining the angle θ in between a full cycle interval of [0, ..., 2π] from
the current mechanical angle θm, by removing the amount of redundant rotations it
has performed already

Then, by knowing the encoder’s Cycles Per Revolution value (CPR), the amount
of radians per encoder count is calculated

Encθ =
2π

4 · EncCPR
(3)

With these two variables, it is possible to obtain a rough idea of which index of the
encoder’s count range the position lies in

Index = b θ

Encθ
c (4)

Lastly, it is important to figure out the actual edge that separates two indexes in
the encoder. To this effect, the ideal edge is derived and then the encoder error is
accounted for also.

θIdeal−edge = Index · Encθ +
Encθ

2
(5)

θReal−edge = θIdeal−edge + Encerror (6)

So if θ is below this real edge value, then the encoder value is the previously calcu-
lated index, if it is above it then the encoder value is the next index. The position
encoder value is then fed back into the controller.

2.3 Electrical Section

The electrical part of the model involves controlling the flowing current in order to
produce a torque reference for the mechanical part. However, since the reference
input voltage is a three-phased AC signal, it would be desirable to transform this
signal into a reference frame that resembles DC signals so as to facilitate the control
process and to compute the torque reference [8].

To this effect, Clarke and Park transformations are applied on the input voltage
Uabc to obtain Udq0, the input voltage in the Direct-Quadrature frame. The Clarke
transform starts by changing the frame from a fixed stator three-phased (abc) ref-
erence to a fixed stator orthogonal two-phased (αβ) reference [9].

16

UαUβ
U0

 =

2
3
−1
3

−1
3

0 1√
3
−1√
3

1
3

1
3

1
3

UaUb
Uc

 (7)

The Park transform then changes the fixed stator two-phased reference to a rotating
two-phased reference (dq) by using the instantaneous flux angle θ from the motor
model [10]. UdUq

U0

 =

 cos(θt) sin(θt) 0
−sin(θt) cos(θt) 0

0 0 1

UαUβ
U0

 (8)

After this conversion, the direct-quadrature values of the current are obtained through
the differential equations:

i̇d =
Ud −Rs · id + ωm · iq · Lq

Ld
(9)

i̇q =
Uq −Rs · iq − ωm(id · Ld + ΨPM)

Lq
(10)

where Ld and Lq are the direct and quadrature axis synchronous inductances, ΨPM

is the flux produced by the permanent magnets, Rs is the stator resistance and ωm is
the angular velocity obtained from the motor. These currents can then be controlled
by the controller [11].

Figure 4 shows the difference in reference frames after the transformations

Figure 4: abc, αβ and dq frames [12]

17

To compute the torque reference (electromagnetic torque) from these values the
following equation is used

Te =
3pp

2
· (iqid(Ld − Lq) + ΨPM iq) (11)

where pp is the amount of pole pairs considered in the PMSM motor [13].

2.4 Mechanical Section

The mechanical dynamics are simply expressed straight from Newton’s rotational
laws as

J
dωm
dt

= Te − TL − bωm (12)

where J is the inertia, ωm is the angular velocity measured from the motor, TL is a
constant load torque and b is the mechanical damping constant [14].

This is the focus of the thesis for which the controllers are designed - given a
position reference, the mechanical section of the motor is controlled to yield fast and
stable convergence to the desired setpoint.

2.5 State-space Derivation

As mentioned before, the control is focused on the mechanical section of the motor -
to this effect the electrical section is simplified through the use of a first-order trans-
fer function that approximates the passage of reference torque to actual mechanical
Torque.

The equation in the mechanical section of the report can be altered so that it
becomes:

J
dωm
dt

= Tm − TL − bωm (13)

in which the load torque TL is considered to be an input coming from the load. By
considering the aforementioned transfer function as

G(s) =
1

τT s+ 1
(14)

where τT is a time constant given by Aros Electronics that represents the observed

18

delay while assuming close to ideal current control, then

τT
dTm
dt

= −Tm + Tref (15)

in which Tm is the mechanical torque and Tref is the input torque reference.

The two main states to be controlled are then the angular velocity ωm and the
mechanical torque Tm, while the last state is the desired output variable - angular
position θm.

dθm
dt

= ωm (16)

Given these differential equations and by defining the state vector as x = [θm, ωm, Tm]T

and the input vector as u = [Tref , TL]T , the state-space is immediately derived as

ẋ =

0 1 0
0 − b

J
1
J

0 0 − 1
τT

x+

 0 0
0 1

J
1
τT

0

u (17)

As for the output, it depends on the controller that is used since some controllers
require all state information but generally speaking the desired output is only the
angular position θm, therefore

y =
[
1 0 0

]
x+

[
0 0

]
u (18)

2.6 Discretization

Since the controller, in reality, handles digital values read from the sensors and not
actual continuous values of the states, then it is necessary to convert the state-space
from continuous time to discrete time for a more accurate representation. From the
continuous state-space representation:

ẋ(t) = Ax(t) +Bu(t) (19)

By multiplying with the factor e−At, rearranging the equation and substituting
d
dt
e−Atx(t) = e−Atẋ(t)− e−AAx(t), the eqatuion becomes:

d

dt
e−Atx(t) = e−AtBu(t) (20)

Finally by integrating both sides and considering a Zero-order-hold (input main-
tained constant between sampling instants) one obtains the solution:

x(tn) = eA(tn−tn−1)x(tn−1) +

∫ tn

tn−1

eA(tn−t)B dt · un−1 (21)

Since this equation is dependent on tn − tn−1, or, in other words, the sampling time
Ts of the continuous values, then its choice heavily affects the outputs [15].

19

For the controllers in this thesis the choice of controller sampling time was
Tc = 0.001s. Given that the state-space constants that were considered before were
valued as τT = 10−3, J = 3.5 · 10−5 and b = 1e · 10−4, then the discretized state-space
is

x(k + 1) =

1 10−3 1.3821 · 0.0105
0 1 18.03
0 0 0.3679

x(k) +

0.0038 0.0143
10.5 28.53

0.6321 0

u(k) (22)

However, the actual sensor sampling time - so the sample time from the continuous
plant Tp is faster than that of the controllers. The sensor sampling time is consid-
ered to be Tp = 0.0001s

2.7 Constraints

Since this is a real physical system, constraints on the states and inputs have to be
considered during the controller design given that it is not an ideal motor.

The primary constraint is that the torque reference must be within the range
[−1, 1] N · m as this is the maximum allowed input torque for the motor. It is de-
fined as a hard constraint, so exceeding it is strictly not possible. The other con-
straint is on the maximum angular velocity ωm, which should be within the bounds
[−2π · 50, 2π · 50] rad.s−1. This is defined as a soft constraint, as it can technically be
exceeded despite not being favorable and potentially causing mechanical problems.
Another factor that can be seen as a constraint is the inherent computational de-
lays that have to be considered. Delays from the sampling process are inserted in
the schematics.

2.8 Nonlinearities

As is common in most real systems, there are often non-linear factors that have to be
accounted for during run-time. In this thesis, two experimentally observable non-
linearities are explored in the simulations: stick-slip Friction and cogging torque.

When the stator and rotor pole teeth of a Permanent Magnet motor are aligned
in a certain position and there is no actuator involved, there exists some break-away
force to go from that aligned position to the next aligned position. That force is the
cogging torque [16].

Once the motor is actuated, especially at low speeds, the cogging torque can
be somewhat impactful, causing a ripple effect on the output position - inducing

20

undesired oscillatory behaviour [16]. The cogging torque is designed to be

τcog = 0.1 cos(6 · pp · θ) = 0.1 cos(18 · θ) [N ·m] (23)

where in this case the pole pairs (pp) of the PMSM are 3.

The stick-slip friction is basically representative of a high inertial friction at the
start of the motor’s movement which then immediately declines past a certain rota-
tional speed ωm. It creates a jerk-like effect when transitioning from static behavior
to dynamic [17]. For the simulations it is designed to produce a Friction Torque bωm
which is as shown in Figure 5, for an example of a time-proportionally increasing
ωm from [−5, 5] rad · s−1 (such that it follows a ωm = t − 5 function), over a span of
10s simulation time,

Figure 5: Friction torque response.

2.9 Proportional-Integral-Derivative Controller

The PID controller is one of the most straightforward control schemes to incorporate
into a system. As the name suggests, it contains a proportional, an integral and a
derivative component - each with their own functionality.

In a controlled system, the process variable to be controlled is fed back to the
Plant and is compared to its desired set point, resulting in an error signal. As in

21

Fig. 6, the PID components act on both the process variable and the resulting error.

Figure 6: Control setup for PID [18].

The proportional component is characterized by the proportional Gain Kc which
produces a proportional response relative to the amount of existing error. The more
one increases KC the higher the response becomes, resulting in a faster control
system response to a certain set point. If the gain is increased too much, however,
then even for slight errors the response can become too significant - resulting in
oscillatory behavior as the system’s Steady-state never closely stabilizes towards
the set point. Further increasing Kc will render the system unstable [18].

The integral component is characterized by the integral time Parameter Ti fol-
lowed by an integrator. Its purpose is to sum the error over time such as to induce
an increasing response unless the set point is tracked accurately - which creates in-
centive for the Steady-state error to drive towards zero. If the integral component’s
gain is too high, depending on the system’s physical limitations, then an integral
windup can occur - wherein the integral part’s demands on the system are too high
as the error accumulated becomes too dense resulting in saturated feedback. In
turn this can lead to high overshoots in the response [18].

The derivative component is characterized by the derivative time parameter Td
followed by a derivative block, which acts directly on the process variable. The
derivative response is then dependent on the derivative of the variable, so the rate
of change. The higher the Td the more the system responds to variations - which,
in turn, suggests that to achieve more stable responses low values of Td are more
favorable. In this thesis the derivative component is set to 0, as it did not appear
to be necessary for the application in question - the controller is then only PI-based
[18].

22

2.10 Linear-Quadratic-Integral Controller

The LQI control algorithm aims to optimally determine the control signal that mini-
mizes a defined cost function while following any existent constraints in the system.
As the name suggests, it is intended to be used on a linear system and its cost func-
tion is of quadratic nature [19]. It also includes an extra integration state which
serves to reduce the steady-state error to zero when tracking a reference.

This cost function J , for an infinite-time horizon and a discrete state-space, can
be generally expressed as:

J =
∞∑
n=0

xTQx+ uTRu (24)

in which x corresponds to the states of the state-space with the addition of an in-
tegral state xi - which is the discrete integration of the error between the reference
and the desired state to be tracked xref − x, u corresponds to the input and Q and R
are their respective diagonal weight matrices. Q and R are selected based on how
much one intends to penalize deviations on the states or the plant input [19].

Once the cost function is defined, it is then necessary to solve it as an optimal
minimization problem, such that:

min u J =
∞∑
n=0

xTQx+ uTRu

s.t. x(k + 1) = Ax(k) +Bu;

x(0) = x0

(25)

where A and B are the two matrices that define the state-space and x0 is the initial
state.

There are several methods to obtain a solution to this minimization problem, one
of them is via the Discrete Algebraic Ricatti Equation (DARE) [20]. Since the cost
function is of infinite-time horizon, the optimal control solution can be defined as

u = −(R +BTPB)−1BTPAx = −Kdx (26)

P becomes constant and can be derived from the DARE equation iteratively:

P = ATPA− (ATPB)(R +BTPB)−1(BTPA) +Q (27)

Since the end goal is to track a position reference for the motor then, in fact, the
optimal control solution is applied such that

u = Kd

[
x
xi

]
(28)

23

where xi is the integration state, so the integral of the error xref − xp, xref is the
reference input for the position state and xp would be the position state (taken from
the general x state vector) [21].

2.11 Implicit Model Predictive Controller

The general working principle of model predictive controllers is to generate pre-
dicted outputs ŷ(t + k|t) from past inputs and outputs via the system’s model and
compute predicted future inputs u(t + k|t) by optimizing a cost function so as to re-
duce the predicted error as much as possible. The first predicted input from the
most optimal sequence of predicted inputs is then utilized as the next actual control
input in the system model.

Figure 7: MPC prediction overview [22].

As seen in Fig. 7, the prediction values for the outputs are generated over a span
of N time steps, known as the Prediction Horizon. The control input values can be
computed within this scope but they have their own respective range of M values,
known as the Control Horizon. Typically M ≤ N , in the case where M < N the
computed control inputs are assumed to be constant after the Mth-time step.

For the Implicit MPC controller, these calculations are done online - meaning
that the sequence of predicted outputs and control inputs is calculated on the fly,

24

which can potentially be quite computationally demanding since they are performed
for every time step [22]. The first predicted output is calculated based on the sys-
tem’s linearized model

x̂(t+ 1|t) = Ax(t) +Bû(t|t) (29)
ŷ(t+ 1|t) = Cx̂(t+ 1|t) (30)

In the following predicted outputs there is a dependency on the previously computed
predictions, and this goes on and on over the span of the prediction horizon

x̂(t+ 2|t) = Ax̂(t+ 1|t) +Bû(t+ 1|t) (31)

ŷ(t+ 2|t) = Cx̂(t+ 2|t) (32)
To obtain the optimal control inputs there is a quadratic cost function that is aimed
to be minimized - for the unconstrained case it typically looks as follows:

V =
N∑
n=1

‖ŷ(t+ i|t)− r(t+ i|t)‖2Q(i) +
M∑
n=0

‖δû(t+ i|t)‖2R(i) (33)

where N is the prediction horizon, M is the control horizon, r(k+ i|t) is the predicted
reference value, Q(i) and R(i) are the respective weights and δû(t+ i|t) = û(t+ i|t)−
û(t) are the control input increments [23].

The equations can then be inserted into the cost function and rearranged to
obtain an expression which is dependent only on the known information and the
control input increments, which can then be altogether minimized to obtain the
optimal increments and therefore acquire the optimal sequence of control inputs.
Constraints on the states and control inputs can also be rearranged into a system of
equations that is dependent only on the control input increments and can therefore
be added as well into the cost function.

2.12 Explicit Model Predictive Controller

The theory behind the Explicit version of MPC is the same at its core as the Implicit
version. The point where it diverges from the Implicit controller lies on its major
advantage regarding computational complexity, all the calculations are performed
beforehand and, in turn, memory capacity becomes the primary setback.

To be able to achieve this, the cost function in the MPC controller can be con-
verted into a Multiparametric Quadratic Programming (mp-QP) problem. In this
form it incorporates all of the constraints and, when solved, outputs a span of dif-
ferent regions that encompass the optimal inputs for different combinations of state
values (the entire state space). With this collection of critical regions it then be-
comes straightforward during run time to assess which is the optimal input, all it

25

takes is feeding in the current state information and retrieving the control input
that is mapped to those states [24].

The cost function and all the constraints can be converted into an mp-QP problem
as such:

min U
1

2
U ′HU + x′(t)FU +

1

2
x′(t)Y x(t)

s.t. GU ≤ W + Sx(t)
(34)

where U = [u(t), u(t+1), ..., u(t+N−1)]′ is the array of all the necessary control inputs
for computing the predicted outputs and also the variable to optimize. H, F, G, W
and S are matrices formed by reorganizing the cost function and inequalities into
this expression, such that H = H ′ � 0 is satisfied. N is the prediction horizon taken
into account for the calculations. The term 1

2
x′(t)Y x(t) can actually be disregarded

since it has no impact on the optimization [25].

The algorithms that actually solve the mp-QP problem are based on the Karush-
Kuhn-Tucker conditions (KKT) [24]:

HU + Fx(t) +G′λ = 0

λi(G
iU −W i − Six(t)) = 0

GU ≤ W + Sx(t)

λ ≥ 0

(35)

in which λ ∈ Rq,∀i = 1, ..., q are the Lagrange multipliers.

To compute the critical regions, an initial state vector x0 is selected and the
quadratic program is solved. Then, for the optimal solution U(x0) the active and in-
active constraints are verified. For active constraints the following subset is formed

G̃z(x) = S̃x(t) + W̃ (36)

and for inactive the following subset is formed

Ĝz(x) ≤ Ŝx(t) + Ŵ (37)

In parallel, two subvectors are formed for the Lagrange multipliers ˜λ(x) ≥ 0 and
ˆλ(x) = 0 [24]. From these and with some substitutions via the KKT conditions,

an expression for z(x) and ˜λ(x) can be derived and by imposing constraints the
polyhedral set (critical region) CR0 can be formed

CR0 = {x ∈ Rn : λ̃(x) ≥ 0, Ĝz(x) ≤ Ŝx(t) + Ŵ} (38)

By applying different constraints more critical regions are formed for different groups
of states. Therefore, a map of states to optimal control inputs is eventually created
[24].

26

3 Methods

3.1 Materials used

To perform all the simulations and to obtain all the results for the study, it was
necessary to use two laptops with Matlab and Simulink installed. Schematics from
Aros Electronics aided in understanding how to proceed with the control implemen-
tations. The Multi-parametric Toolbox (MPT) and Parametric Optimization Toolbox
(POP) were initially installed to compute the Explicit Model Predictive Controllers
but were later discarded in favor of the Matlab’s Model Predictive toolbox. Chalmers
Library as well as article searching on Google provided all the required literature
resources.

All simulations and control testing were performed through Matlab and Simulink
with help from the supervisors involved in this study. Weekly meetings with both
Aros and Chalmers supervisors were scheduled to keep track of what had been done
as well as to figure out the following steps in line. Most of the consumed study time
was put into several attempts at manually tuning as well as searching for analytical
ways to tune and optimize the controllers.

3.2 Schematics

These are the schematics that were used to run all the simulations. In Figure 8, the
general setup of the motor control is given. The two distinct reference inputs are
seen on the left-hand side feeding into the controller subsystem, which delivers its
output to the plant subsystem. The output of the plant subsystem is extracted from
a sensor, discretizing it, and subsequently fed into the measurement subsystem, in
which the sensor noise is added to the signal. Its output once again is taken back to
the controller subsystem. On the right-hand side the state and references are saved
as external variables and plotted together.

27

Figure 8: Setup Motor Control.

In Figure 9, the schematic for the plant nonlinearities are shown - these are
included in the Plant subsystem. The cogging torque and the friction torque are
added directly to the torque state so as to replicate the effects during run-time.

Figure 9: Nonlinearities that were considered for the simulations.

In Figure 10, the controller subsystem is shown, in which all the 4 different
controllers are run in parallel and the output is toggled according to the desired
output. The states that are inputs to the subsystem have an added delay to replicate
delays in sensor reading.

28

Figure 10: Controller section.

3.3 Proportional-Integral-Derivative Controller implementa-
tion

The choice of design for this thesis was to arrange and tune two PI controllers in a
cascade structure as in Figure 11

29

Figure 11: Cascade PI structure used in the simulations

The reasoning behind this is that typically a cascade organization of controllers
is favorable for when there is a state that has a relatively slow control loop and
another with a relatively fast control loop [26] - such is the case with the angular
position θm and angular velocity ωm, respectively.

Despite the drawback of added complexity with having to tune two PI controllers,
the cascaded nature of the controller helps reduce oscillatory behavior, non-linear
factors and disturbance that come into play [26].

Another design aspect that is introduced in Figure 11 is a feed-forward supple-
ment, where the input for the second PID is the sum of the output of the first PID
with the angular position measurement scaled by the position proportional com-
ponent as well as with the angular velocity measurement - and the output of the
second PID is summed with the angular velocity scaled with the velocity propor-
tional component. This aims to further reduce disturbances in the states by feeding
forward information about the disturbed state to the controllers [27].

Tuning was performed with the help of [28]. The position control PI was defined
with gains Kpθ = αθ and Kiθ = α2

θ while the PI relative to the speed control had
as gains Kpω = Jαω and Kiω = Jα2

ω - with this relationship between the gains and
some trial-and-error tuning it was possible to obtain a stable adequate response for
αθ = 50 and αω = 200.

30

3.4 Linear-Quadratic-Integral Controller implementation

The gainKd for the LQI is directly calculated through the Matlab’s Linear-Quadratic-
Integral control command

Kd = lqi(SY S,Q,R) (39)

which handles all the steps mentioned before. It is then just necessary to add a
discrete integration block of gain 1 along with the controller sampling time Tc to the
error between the position state and its reference and feed it alongside the other
states to the gain block as in Figure 12.

Figure 12: Control setup for LQI [21].

Tuning was performed such that there would be a relatively much higher penalty
on the position θm state than the others, the velocity and torque were kept with very
low penalty as accurate tracking was prioritized. The integration error state was
given a very high penalty such as to minimize deviations in steady-state as much
as possible. The plant input weight was chosen to be relatively high as well to avoid
big variations in the system. The chosen weights were Q = [1, 0.00001, 0, 10000] and
R = 1.

3.5 Implicit Model Predictive Controller implementation

To create and simulate with an MPC controller both Simulink and the Matlab Model
Predictive Control Toolbox were used. The reason for this is that all the code used
is easily converted into C-code which can then be used for practical applications.

It is possible to create a controller via the command line and use it directly on
the MPC toolbox’s Simulink block. However, Matlab’s MPC toolbox includes an
additional software called MPC Designer, which is user-friendly and very powerful
in helping construct the controller alongside constraints and added disturbances as

31

it provides instant visual feedback of the controller’s response to inputs according
to the designed controller parameters.

By correctly inserting the desired sample time, control and prediction horizons,
constraints and weights the controller can be tuned according to the system’s needs.
Once that is accomplished, one can simply export the controller and use the MPC
Simulink block to perform simulations.

The chosen value for the prediction and control Horizon for the simulations was
2, the reason being that since Implicit MPC can be a reasonably computational-
heavy algorithm and the motors might have limited processing power, then it would
be favorable to obtain satisfying results with the least amount of computational
power necessary to avoid any big performance issues when transferring the con-
troller to a real motor.

The chosen weights for the plant outputs (so in this case all the states x(t)) were
Q = [10.8, 0.027, 0]. Since x = [θm, ωm, τm]T , then this implies a high penalty on
position deviation from its respective reference and low penalty on the velocity and
torque. This gives higher priority to position tracking rather than conserving torque
within its constraints. As for the plant input’s weight (the manipulated variable, or
the output of the controller) and input rate of change weight, they were chosen to
have a value of 0.1 for both.

3.6 Explicit Model Predictive Controller implementation

One of the most straightforward ways to design an Explicit MPC controller is to first
design an Implicit one and then convert it via Matlab’s MPC toolbox functions.

One can use MPC Designer once more to obtain the desired system response and
then export the controller and convert it. The prediction horizon in this case was
chosen to be 10 while the control horizon was kept at 4. The reason behind this is
that since an Explicit controller is pre-computed, then it is of interest to expand the
amount of predicted outputs in order to reduce the error - this does, however, imply
a bigger sized controller and even the pre-computed time can be significantly high if
the horizon is too vast. The control horizon was left at 4 since typically it’s the first
control inputs that have the highest impact on the response, the others can at times
be just a computational burden than actually being worth optimizing. The chosen
weights considering these horizons were: Q = [6.767, 0.027, 0]

With the exported implicit controller, it is then necessary to generate a range
of parameter bounds for the controller conversion. This is achieved by using the

32

command:
Range = generateExplicitRange(MPCobj) (40)

Since the parameters are mostly already constrained, the range values were set to
be rather high - the states x have bounds of [−1000, 1000], the reference has bounds
of [−100, 100] and the manipulated variables have as bounds [−10, 10]. This was
to ensure that the explicit controller worked as it should, since by restricting the
bounds close to constraint values caused unstable behavior. The explicit controller
is obtained by using the command:

EMPCobj = generateExplicitMPC(MPCobj, range) (41)

3.7 Simulation Execution

The controllers are tested for multiple different scenarios to assess how well they
perform under different stimuli and how comparatively robust they are. It’s impor-
tant to mention that the controllers were designed to deliver no overshoot and as
fast settling to the reference (while minimizing the steady-state error) as much as
possible, these were the highest prioritized features. The two main situations that
are analyzed are reference tracking and disturbance rejection.

Reference tracking involves receiving an input trajectory that the desired plant
output variable (in this case the angular position θm) should approximate as much
as possible. The two types of inputs that are considered are the step function and
the sine wave.

The step function is useful to clearly evaluate how fast the controller adapts to
a sudden change as well as how fluidly it stabilizes to that new fixed value. On
the other hand the sine wave is interesting to use as an input due to its oscillatory
nature, since in some motor applications the reference values are constantly varying
- it is then practical to observe how closely the controller follows the variations.
The time constant τc is also measured to give an idea of the system bandwidth
for that controller, or, in other words, to get an idea of at beyond which frequency
does the system start to decay if the input’s frequency changes. The bandwidth is
then calculated by calculating the cutoff frequency f3db, the frequency at which the
magnitude of the steady-state response drops by half or −3db, it is then f3db = 1

2πτc

The variables that are considered for the reference tracking are: rise time (step)
- how long it takes for the controller value to go from 10% to 90% of the reference
value, settling time (step) - the time it takes for the controller to stabilize to values
such that |θm − θref | < 0.0005, max torque - highest amount of used torque recorded
during execution, max error - highest amount of instant error recorded , total error -

33

accumulated value of error over the entire execution, max speed - maximum amount
of angular velocity ωm during execution and torque RMS - Root Mean Square value
of the torque for power expenditure purposes.

Regarding disturbance rejection, the controllers are tested for both sensor noise
rejection as well as load torque rejection. The former concerns noise that is pre-
sented as the output is extracted from the sensor, so it’s considered to be output
noise. The latter concerns a step Load torque which is added directly to the plant as
an external disturbance,

The variables that are tested for the disturbance rejection are: settling time
(load torque), max torque, max speed, total error, max error and torque RMS. These
two scenarios are then repeated with the insertion of the cogging Torque and stick
friction non-linearities to analyze how they impact the controllers’ performances.

Robust testing is also performed to evaluate how the controllers perform under
different values of inertia J and different delay values when reading from the sen-
sors.

34

4 Results

4.1 Controller Setup

For all the following simulations the controller setup parameters are listed below.

The proportional and integral gains used for these simulations are as follows:

Pθ = 50

Iθ = 2500

Pω = 0.007

Iω = 1.4

The weights used for the LQI controller, which are - by order - respective to the
angular position θm, the angular velocity ωm, the torque τm, the integral state of the
position error and the output of the controller (input to the plant) u are as follows:

Q1 = 1

Q2 = 0.00001

Q3 = 0

Q4 = 10000

R = 1

The Implicit MPC’s prediction and control horizon were set to 2 for the simulations.
The weights for the parameters - ordered as: Manipulated Variable u (output of
controller), Rate of change of u, angular position, angular velocity and torque - are
defined as:

MV = 0.00135

Rate = 0.739

Q1 = 10.8

Q2 = 0.027

Q3 = 0

The Explicit MPC’s prediction horizon was set to 10 and the control horizon was set
to 4 for the simulations. The resulting size of the controller was 1.6 MB. The weights
for the parameters - ordered as: Manipulated Variable u (output of controller), rate
of change of u, angular position, angular velocity and torque - are defined as:

MV = 0.135

35

Rate = 0.739

Q1 = 6.767

Q2 = 0.027

Q3 = 0

4.2 Reference Tracking

The tracking of a reference regarding angular position θm for a step input of am-
plitude 2 radians (rads) and a sine wave input of amplitude 1 rad is shown below
for all the controllers. The time constants τc were measured for each response and
they are τc−PI = 0.01783, τc−LQI = 0.02124, τc−MPC = 0.01246 and τc−EMPC = 0.01075
for the Cascade PI, LQI, Implicit MPC and Explicit MPC, respectively. There-
fore, their respective system’s bandwidths are fc−PI = 8.926Hz, fc−LQI = 7.493Hz,
fc−MPC = 12.77Hz and fc−EMPC = 14.8Hz.

For Cascade PI, the step input plots for the angular position θm response, me-
chanical torque τm and angular velocity ωm are shown in Figures 13, 14a and 14b.
The sine wave input plot for the angular position θm response is given in Figure 15.

Figure 13: Step input reference tracking θm for Cascade PI.

36

(a) Step Reference tracking τm. (b) Step Reference tracking ωm.

Figure 14: Velocity and Torque responses.

Figure 15: Sine wave input reference tracking θm for Cascade PI - one period.

For LQI, the step input plots for the angular position θm response, mechanical
torque τm and angular velocity ωm are shown in Figures 16, 17a and 17b. The sine
wave input plot for the angular position θm response is given in Figure 18.

37

Figure 16: Step input reference tracking θm for LQI.

(a) Step Reference tracking τm. (b) Step Reference tracking ωm.

Figure 17: Velocity and Torque responses.

38

Figure 18: Sine wave input reference tracking θm for LQI.

For Implicit MPC, the step input plots for the angular position θm response, me-
chanical torque τm and angular velocity ωm are shown in Figures 19, 20a and 20b.
The sine wave input plot for the angular position θm response is given in Figure 21.

Figure 19: Step input reference tracking θm for Implicit MPC.

39

(a) Step input reference tracking τm. (b) Step input reference tracking ωm.

Figure 20: Velocity and Torque responses.

Figure 21: Sine wave input reference tracking θm for Implicit MPC.

For Explicit MPC, the step input plots for the angular position θm response, me-
chanical torque τm and angular velocity ωm are shown in Figures 22, 23a and 23b.
The sine wave input plot for the angular position θm response is given in Figure 24.

40

Figure 22: Step input reference tracking θm for Explicit MPC.

(a) Step input reference tracking τm. (b) Step input reference tracking ωm.

Figure 23: Velocity and Torque responses.

41

Figure 24: Sine wave input reference tracking θm for Explicit MPC.

4.3 Step Load Torque Disturbance Rejection

The rejection response for an added load torque, represented by a step function of
amplitude 0.5 N · m while keeping all state references to zero is presented in the
following plots.

For Cascade PI, the angular position response is shown in Figure 25. The respec-
tive torque and velocity responses are shown in Figures 26a and 26b.

42

Figure 25: Step Load Torque Disturbance θm for Cascade PI.

(a) Step Load Torque Disturbance τm. (b) Step Load Torque Disturbance ωm.

Figure 26: Velocity and Torque responses.

For Cascade PI, the angular position response is shown in Figure 27. The respec-
tive torque and velocity responses are shown in Figures 28a and 28b.

43

Figure 27: Step Load Torque Disturbance θm for LQI.

(a) Step Load Torque Disturbance τm. (b) Step Load Torque Disturbance ωm.

Figure 28: Velocity and Torque responses.

For Implicit MPC, the angular position response is shown in Figure 29. The
respective torque and velocity responses are shown in Figures 30a and 30b.

44

Figure 29: Step Load Torque Disturbance θm for Implicit MPC.

(a) Step Load Torque Disturbance τm. (b) Step Load Torque Disturbance ωm.

Figure 30: Velocity and Torque responses.

For Explicit MPC, the angular position response is shown in Figure 31. The
respective torque and velocity responses are shown in Figures 32a and 32b.

45

Figure 31: Step Load Torque Disturbance θm for Explicit MPC.

(a) Step Load Torque Disturbance τm. (b) Step Load Torque Disturbanceωm.

Figure 32: Velocity and Torque responses.

4.4 Reference Tracking and Disturbance Rejection simula-
tion result values

The tested parameters for each controller that were obtained from the simulation
results are found in the tables below. Max error is ignored for the step response as,
since there is no overshoot, the maximum error would be at the instant when the
step switches from 0 to 1. Max torque, max speed, torque RMS, settling time and

46

rise time are neglected for the Sine case since they’re either not applicable or the
variations in torque and speed are too small to be of interest (due to the gradually
varying nature of the input).

For the Cascade PI, the results are shown in Table 1:

Cascade PI Results
TEST CASE Max

Error
Max
Torque

Max
Speed

Total
Error

Torque
RMS

Settling
Time

Rise
Time

Step X 0.707 99.703 389 0.0239 0.206 0.03
Sine 0.0156 X X 388.75 X X X
Load Dist. Rej. 0.227 0.788 37.483 61.907 0.434 0.178 X

Table 1: Cascade PI simulation results.

For LQI, the results are shown in Table 2:

LQI Results
TEST CASE Max

Error
Max
Torque

Max
Speed

Total
Error

Torque
RMS

Settling
Time

Rise
Time

Step X 0.387 92.79 394.17 0.0184 0.09 0.024
Sine 0.0158 X X 394 X X X
Load Dist. Rej. 0.357 0.707 42.24 76.71 0.434 0.081 X

Table 2: LQI simulation results.

For Implicit MPC, the results are shown in Table 3:

MPC Results
TEST CASE Max

Error
Max
Torque

Max
Speed

Total
Error

Torque
RMS

Settling
Time

Rise
Time

Step X 0.997 165.04 259.86 0.0432 0.078 0.02
Sine 0.0084 X X 205 X X X
Load Dist. Rej. 0.0547 0.882 20.149 12.478 0.4352 0.083 X

Table 3: MPC simulation results.

For Explicit MPC, the results are shown in Table 4:

47

Explicit MPC Results
TEST CASE Max

Error
Max
Torque

Max
Speed

Total
Error

Torque
RMS

Settling
Time

Rise
Time

Step X 0.999 206.97 200.9 0.0541 0.039 0.011
Sine 0.005 X X 119 X X X
Load Dist. Rej. 0.0506 0.839 19.299 11.933 0.435 0.068 X

Table 4: EMPC simulation results.

4.5 Sensor Noise Disturbance Rejection

White noise was simulated by using Simulink’s Band-Limited White Noise block,
characterized by a noise power of 0.0001, added to all the state readings. This
was added during reference tracking to observe how the controllers adapt to change
despite the sensor noise, the angular position responses are shown in Figures 33
and 34.

(a) Noise PI. (b) Noise LQI.

Figure 33: Simulation results for PI and LQI.

48

(a) Noise MPC. (b) Noise Explicit MPC.

Figure 34: Simulation of results for MPC and EMPC.

Noise disturbance
Measurement PI LQI MPC EMPC
Max Error 2.0235 2.1748 2.1295 2.0111
Total Error 2496.8 6097.1 3175.5 1491.3

Table 5: Noise Disturbance simulation results.

4.6 Nonlinearities

4.6.1 Cogging Torque and Stick-slip Friction

The same scenarios of 2 rads step reference tracking and 0.5 N ·m step load torque
rejection are repeated but with the addition of the cogging torque and stick-slip
friction.

For Cascade PI, the angular position response plots are shown in Figure 35 and
the values are presented in Table 6. Reference tracking maintains a similar be-
haviour when compared to its linear counterpart, however, disturbance rejection
causes oscillations as the controller attempts to drive the signal back to the refer-
ence.

49

(a) Cascade PI Reference Tracking
with nonlinearities.

(b) Cascade PI Disturbance Rejec-
tion with nonlinearities.

Figure 35: Simulation results for PI with nonlinearities.

Cascade PI with Nonlinearities
TEST CASE Max

Error
Max
Torque

Max
Speed

Total
Error

Torque
RMS

Settling
Time

Rise
Time

Step X 0.940 112.21 389.6 0.0384 0.19 0.034
Load Dist. Rej. 0.271 0.917 46.982 61.903 0.435 0.176 X

Table 6: Cascade PI simulation results w/ nonlinearities.

For LQI, the angular position response plots are shown in Figure 36a nd the
values are presented in Table 7. Similarly to Cascade PI, its reference tracking
performance is comparatively close to the linear one, however, disturbance rejec-
tion causes oscillations as the controller attempts to drive the signal back to the
reference.

(a) LQI Reference Tracking with
nonlinearities.

(b) LQI Disturbance Rejection with
nonlinearities.

Figure 36: Simulation results for LQI with nonlinearities.

50

LQI with Nonlinearities
TEST CASE Max

Error
Max
Torque

Max
Speed

Total
Error

Torque
RMS

Settling
Time

Rise
Time

Step X 0.761 103.38 397.52 0.0325 0.114 0.022
Load Dist. Rej. 0.371 1.0571 49.795 77.806 0.435 0.125 X

Table 7: LQI simulation results w/ nonlinearities.

For Implicit MPC, the angular position response plots are shown in Figure 37a
nd the values are presented in Table 8.

(a) MPC Reference Tracking with
nonlinearities.

(b) MPC Disturbance Rejection with
nonlinearities.

Figure 37: Simulation results for MPC with nonlinearities.

MPC with Nonlinearities
TEST CASE Max

Error
Max
Torque

Max
Speed

Total
Error

Torque
RMS

Settling
Time

Rise
Time

Step X 1.492 168.69 260.77 0.0526 0.098 0.021
Load Dist. Rej. 0.0428 0.899 18.005 12.093 0.436 0.074 X

Table 8: MPC simulation results w/ nonlinearities.

For Explicit MPC, the angular position response plots are shown in Figure 38a
nd the values are presented in Table 9.

51

(a) EMPC Reference Tracking with
nonlinearities.

(b) EMPC Disturbance Rejection
with nonlinearities.

Figure 38: Simulation results for EMPC with nonlinearities.

EMPC with Nonlinearities
TEST CASE Max

Error
Max
Torque

Max
Speed

Total
Error

Torque
RMS

Settling
Time

Rise
Time

Step X 1.492 207.45 199.95 0.0588 0.067 0.011
Load Dist. Rej. 0.0408 0.867 17.492 11.923 0.436 0.061 X

Table 9: EMPC simulation results w/ nonlinearities.

4.7 Robust Testing

4.7.1 Inertia J

For an inertia J value ranging from [0.5, 7.5] · 10−5 kgm2, the controllers were simu-
lated with the same 2 rads step reference tracking and their total errors, rise time
and settling time were compared with each other as the inertia was increased. Fig-
ures 39 and 42 show to what values the different controllers tend towards with this
variation.

52

Figure 39: Total Error for different values of inertia.

(a) Rise Time for different values of iner-
tia.

(b) Settling Time for different values of
inertia.

Figure 40: Simulation results for different values of inertia.

4.7.2 Delays

For delay values ranging from [0, 1]ms, the controllers maintained functionality that
was approximately very similar to their normal behaviour. The only two cases that
differed were Implicit and Explicit MPC. Implicit MPC showed stable behaviour up
until a delay of 0.7ms, while Explicit MPC maintained stability up until a delay of
1ms. Since the sensor’s sampling time of the plant process is Tp = 0.1ms, then this
corresponds to 7 and 10 samples of delay respectively.

53

(a) Reference Tracking response for a de-
lay of 0.5 ms.

(b) Reference Tracking response for a de-
lay of 1 ms.

Figure 41: Simulation results for different values of delay Implicit MPC.

(a) Reference Tracking response for a de-
lay of 0.5 ms.

(b) Reference Tracking response for a de-
lay of 0.9 ms.

Figure 42: Simulation results for different values of delay for Explicit MPC.

54

5 Discussion

Starting off by checking the case of no added non-linearities, one can make some ob-
servations about the differences in performance between the controllers that stand
out the most.

Firstly, when it comes to total error, the Explicit MPC controller is dominant
as on average it outperformed the others in the reference tracking and disturbance
rejection scenarios. Implicit MPC was second best, followed by Cascade PI and LQI.
It was expected that the model predictive controllers would be better at minimizing
the amount of error due to the fact that they do not utilize just a simple cost function
or a set of gains to correct deviations, the algorithms behind them are more complex
- taking more parameters into account - and they compute the most optimal path
for predicted possible trajectories. Despite that LQI is faster at converging to the
steady-state than Cascade PI, the latter is faster at reacting to the change in the
reference initially, which leads to less total error by a small margin. This is due to
the fact that if both controllers start with states that are initially zero, Cascade PI
has a proportional component that will act directly on the change of input (error)
thus giving a response with practically no delay, on the other hand LQI depends
on the integrator to output a different value so it is delayed by a controller sample
time Tc at the start. Interestingly, besides LQI having a lower settling time than
Cascade PI it actually has a higher time constant τc, this can be attributed to its
very high weight on the integration state which helps it reach the setpoint earlier
than Cascade PI.

In contrast to this observation, LQI had the lowest values of torque RMS and
its max torque was lower than the others. It is therefore less taxing power-wise.
This is due to the tuning being limited to avoid overshoot as much as possible and
perhaps an alternative structure for the LQI would have been more appropriate
(e.g. Cascaded), as the weights that were used were the ones that were seemingly
best despite its relative slowness as to what it could be. In other words, attempts
at increasing its speed, which would imply more torque usage, led to breaches in
terms of overshoot. As for settling time, Explicit MPC leads in performance followed
closely by Implicit MPC while Cascade PI and LQI lag a bit behind - the reasoning
supporting it is the same as in the total error comparison.

Regarding sensor noise disturbance, Explicit MPC ranks once more at the top,
showing the lowest amount of total error followed by Cascade PI, Implicit MPC and
LQI. The variations in handling the noise were not as significant to analyze as in the
other scenarios but it’s interesting to see that Cascade PI is one of the controllers
that handles the noise the best. This is likely due to the feedforward mechanism
that was implemented, which aims to lessen the impact of noise overall.

55

In the added nonlinearities scenario, Explicit MPC once again ranks first, fol-
lowed by Implicit MPC, Cascade PI and LQI. The controllers all function well re-
gardless of the nonlinearities, with some observable slight changes in performance.
The biggest highlight of this scenario is the torque usage given the nonlineari-
ties. All controllers had an increase in torque RMS, which is natural since there
are added forces that have to be compensated for to meet the setpoint. Curiously,
the max torque on the model predictive controllers (which is taken from the plant
via sensors) exceeded in value when compared to the constraint limits of the input
torque to the plant, which are in effect and in fact do restrict the controllers’ outputs.
This is likely because of the magnets’ pulling effect from the cogging torque.

Finally, regarding robust testing relative to varying inertia J , LQI is the most
robust followed closely by Cascade PI. Implicit MPC shows a lot of error for the
lowest values of inertia and Explicit MPC does not even work for a certain interval
of initial inertia values even though it shows the lowest registered total error within
its functional range - this is most definitely due to its pre-computed nature which
assumes that a fixed state-space will be kept on run-time. When it comes to delays,
Implicit MPC was the least robust followed then by Explicit MPC - this would lead
one to believe that their predictive nature causes them to be very reliant on accurate
responses time-wise.

The controllers each have their own pros and cons, there is not one that can be
considered the outright best. Cascade PI is easy to implement, can provide fairly
good results and is quite robust as far as delays and changing inertia is concerned.
LQI is also fairly easy to implement and is also at the top of robustness, it excelled in
torque usage but suffered somewhat in terms of actual performance relative to the
others. Explicit MPC had the best overall performance, followed closely by Implicit
MPC - however, despite being the best at handling Step Torque Load disturbance
they both lacked in robustness when compared to the other two controllers.

It is worth mentioning that the weights on the plant input or controller output
of the model predictive controllers is highly correlated to how much delay they can
handle versus how well they perform with disturbances. The higher one increases
the weight, the worse the performance is with added disturbances and vice-versa
with the delays. It was opted to favor better performance with added disturbances.

Another important comment is to mention how increasing the prediction and
control horizons on the Implicit MPC could further improve its performance, these
were kept low due to the unknown amount of available computational power. LQI
could have also potentially improved in performance with more exploration in the
tuning.

56

6 Conclusion

This thesis was meant to cover the comparison between different controllers for
the same plant and to determine which of them had the most appealing features
for the applications that Aros Electronics has in store for the PMSM motor. As
stated previously, it was desirable to design controllers which provided responses
with no overshoot, negligible steady-state error and as rapid settling to the set-point
as possible.

From the simulations, one can draw some important findings. Model predictive
controllers appear to have a significantly impressive performance for the system
at hand. The Explicit MPC has the objectively best results but it’s interesting to
note that the Implicit MPC was not far behind despite a cut on its prediction and
control horizons. Although they had worse results, Cascade PI and LQI are still
very reliable options and have their own strengths.

If there is enough available computational power to integrate an Implicit MPC
in a motorized system, then it appears to be the most appealing option. It would not
require additional memory as its Explicit counterpart and, if there are enough com-
putational resources, the performance can still be further increased beyond what
was observed. If computational power is a bottleneck resource and memory is not a
problem, then Explicit MPC is favored.

This thesis was limited to and focused on the mechanical section of the motor, to
concentrate on achieving the best results possible while under the assumption that
the current control of the electrical section is satisfyingly functional. It would be
interesting to observe the controllers’ behaviors on the actual real motors and com-
pare them to the simulated environments and see if the observations made would
still hold. It would also be worth looking into modelling the full motor system with
included current control despite the added complexity and nonlinear aspects - pos-
sibly a topic to dive into in future projects.

57

Bibliography

[1] Vance Vandoren. To PID or not to PID. Sept. 2017. URL: https://www.
controleng.com/articles/to-pid-or-not-to-pid/.

[2] B.Pradeepa. R.Kiruthiga. P.B.Nevetha. H.Kala. S.Abirami. P.Sujithra. “Per-
formance Comparison of Different Controllers for Flow Process”. In: Interna-
tional Journal of Computer Applications 90 (). DOI: https://pdfs.semanticscholar.
org/8fcc/0f4a72b3664504e4c57fa1eb1489dfb64624.pdf.

[3] Gordon R. Slemon. “Electric motor”. In: Encyclopaedia Brittanica (2018). URL:
https://www.britannica.com/technology/electric-motor/Synchronous-
motors.

[4] Hampus Isaksson. Patrik Önnheim. “High Precision Positioning and Very Low
Velocity Control of a Permanent Magnet Synchronous Motor”. MA thesis. De-
partment of Automatic Control, Lund University, 2015.

[5] Janet Heath. PWM: Pulse Width Modulation: What is it and how does it
work? Apr. 2017. URL: https://www.analogictips.com/pulse-width-
modulation-pwm/.

[6] Aswinth Raj. What is PWM: Pulse Width Modulation. Sept. 2018. URL: https:
//circuitdigest.com/tutorial/what-is-pwm-pulse-width-modulation.

[7] Nazmul Islam Raju. Md. Shahinur Islam. Ahmed Ahsan Uddin. “Sinusoidal
PWM Signal Generation Technique for Three Phase Voltage Source Inverter
with Analog Circuit Simulation of PWM Inverter for Standalone Load Micro-
grid System ”. In: International Journal of Renewable Energy Research 3 ().

[8] Mathworks. Clarke and Park Transforms. URL: https://se.mathworks.
com/solutions/power-electronics-control/clarke-and-park-
transforms.html.

[9] Mathworks. Clarke Transform. URL: https://se.mathworks.com/help/
physmod/sps/ref/clarketransform.html.

[10] Mathworks. Park Transform. URL: https://se.mathworks.com/help/
physmod/sps/ref/parktransform.html.

[11] Mukesh Kumar. Bhim Singh. B.P.Singh. “Modeling and Simulation of Perma-
nent Magnet Brushless Motor Drives using Simulink”. In: (Dec. 2002).

[12] Texas Instruments. Clarke Park Transforms on the TMS320C2xx. Tech. rep.
Texas Instruments, 1997.

[13] Marek Stulrajter. Valeria Hrabovcova. Marek Franko. “Permanent Magnets
Synchronous Motor Control Theory”. In: Journal of Electrical Engineering 58
(), pp. 79–84.

58

https://www.controleng.com/articles/to-pid-or-not-to-pid/
https://www.controleng.com/articles/to-pid-or-not-to-pid/
https://doi.org/https://pdfs.semanticscholar.org/8fcc/0f4a72b3664504e4c57fa1eb1489dfb64624.pdf
https://doi.org/https://pdfs.semanticscholar.org/8fcc/0f4a72b3664504e4c57fa1eb1489dfb64624.pdf
https://www.britannica.com/technology/electric-motor/Synchronous-motors
https://www.britannica.com/technology/electric-motor/Synchronous-motors
https://www.analogictips.com/pulse-width-modulation-pwm/
https://www.analogictips.com/pulse-width-modulation-pwm/
https://circuitdigest.com/tutorial/what-is-pwm-pulse-width-modulation
https://circuitdigest.com/tutorial/what-is-pwm-pulse-width-modulation
https://se.mathworks.com/solutions/power-electronics-control/clarke-and-park-transforms.html
https://se.mathworks.com/solutions/power-electronics-control/clarke-and-park-transforms.html
https://se.mathworks.com/solutions/power-electronics-control/clarke-and-park-transforms.html
https://se.mathworks.com/help/physmod/sps/ref/clarketransform.html
https://se.mathworks.com/help/physmod/sps/ref/clarketransform.html
https://se.mathworks.com/help/physmod/sps/ref/parktransform.html
https://se.mathworks.com/help/physmod/sps/ref/parktransform.html

[14] Emil Klintberg. “Comparison of Control Approaches for Permanent Magnet
Motors”. MA thesis. Department of Energy and Environment, Chalmers Uni-
versity, 2013.

[15] Christopher J. Damaren. AER1503H Spacecraft Dynamics and Control II,
University of Toronto, Positive Real Design. URL: http://arrow.utias.
utoronto.ca/˜damaren/aer506h.html#plan.

[16] Precision Microdrives. Cogging Torque In Permanent Magnet Motors. URL:
https://www.precisionmicrodrives.com/content/cogging-torque-
in-permanent-magnet-motors/.

[17] Danielle Collins. What is stick-slip? Dec. 2016. URL: https://www.linearmotiontips.
com/faq-what-is-stick-slip/.

[18] National Instruments. PID Theory Explained. May 2019. URL: http://www.
ni.com/sv-se/innovations/white-papers/06/pid-theory-explained.
html.

[19] Francesco Sabatino. “Quadrotor control: modeling, nonlinear control design,
and simulation”. MA thesis. Department of Electrical Engineering, KTH Uni-
versity, 2015.

[20] Anton A. Stoorvogel. Ali Saberi. “The Discrete Algebraic Riccati Equation and
Linear Matrix Inequality”. MA thesis. 1998.

[21] MathWorks. Linear-Quadratic Integral Control. URL: https://se.mathworks.
com/help/control/ref/lqi.html.

[22] Eduardo Camacho. Carlos Bordons. Model Predictive Control. Springer, 2012.
[23] P.E. Orukpe. “Model Predictive Control Fundamentals”. In: Nigerian Journal

of Technology 31 (2012), pp. 139–148.
[24] Alberto Bemporad. “Explicit Model-Predictive Control”. In: Encyclopedia of

Systems and Control (2014).
[25] Junho Lee. Hyuk-Jun Chang. “Analysis of explicit model predictive control

for path-following control”. In: (2018). DOI: https://doi.org/10.1371/
journal.pone.0194110.

[26] Jacques Smuts. A Tutorial on Cascade Control. Mar. 2015. URL: http://
blog.opticontrols.com/archives/105.

[27] Dimitry Gorinevsky. EE392m: Control Engineering Methods for Industry, Stan-
ford University - Lecture 5: Feedforward. 2002. URL: https://web.stanford.
edu/class/archive/ee/ee392m/ee392m.1034/Lecture5_Feedfrwrd.
pdf.

[28] Lennart Harnefors. Control of Variable-Speed Drives. Västerås : Applied Sig-
nal Processing and Control, Department of Electronics, Mälardalen Univer-
sity, 2002.

59

http://arrow.utias.utoronto.ca/~damaren/aer506h.html#plan
http://arrow.utias.utoronto.ca/~damaren/aer506h.html#plan
https://www.precisionmicrodrives.com/content/cogging-torque-in-permanent-magnet-motors/
https://www.precisionmicrodrives.com/content/cogging-torque-in-permanent-magnet-motors/
https://www.linearmotiontips.com/faq-what-is-stick-slip/
https://www.linearmotiontips.com/faq-what-is-stick-slip/
http://www.ni.com/sv-se/innovations/white-papers/06/pid-theory-explained.html
http://www.ni.com/sv-se/innovations/white-papers/06/pid-theory-explained.html
http://www.ni.com/sv-se/innovations/white-papers/06/pid-theory-explained.html
https://se.mathworks.com/help/control/ref/lqi.html
https://se.mathworks.com/help/control/ref/lqi.html
https://doi.org/https://doi.org/10.1371/journal.pone.0194110
https://doi.org/https://doi.org/10.1371/journal.pone.0194110
http://blog.opticontrols.com/archives/105
http://blog.opticontrols.com/archives/105
https://web.stanford.edu/class/archive/ee/ee392m/ee392m.1034/Lecture5_Feedfrwrd.pdf
https://web.stanford.edu/class/archive/ee/ee392m/ee392m.1034/Lecture5_Feedfrwrd.pdf
https://web.stanford.edu/class/archive/ee/ee392m/ee392m.1034/Lecture5_Feedfrwrd.pdf

	List of Figures
	List of Tables
	Introduction
	Background
	Research Questions / Objectives
	Scope
	Thesis Outline

	Theory
	PMSM Motor
	Motor Model
	Inverter Model
	Sensor Model

	Electrical Section
	Mechanical Section
	State-space Derivation
	Discretization
	Constraints
	Nonlinearities
	Proportional-Integral-Derivative Controller
	Linear-Quadratic-Integral Controller
	Implicit Model Predictive Controller
	Explicit Model Predictive Controller

	Methods
	Materials used
	Schematics
	Proportional-Integral-Derivative Controller implementation
	Linear-Quadratic-Integral Controller implementation
	Implicit Model Predictive Controller implementation
	Explicit Model Predictive Controller implementation
	Simulation Execution

	Results
	Controller Setup
	Reference Tracking
	Step Load Torque Disturbance Rejection
	Reference Tracking and Disturbance Rejection simulation result values
	Sensor Noise Disturbance Rejection
	Nonlinearities
	Cogging Torque and Stick-slip Friction

	Robust Testing
	Inertia J
	Delays

	Discussion
	Conclusion
	Bibliography

