

Large scale news article clustering
Master of Science Thesis
Computer Science: Algorithms, Languages and Logic

MARCUS LÖNNBERG
LOVE YREGÅRD

Chalmers University of Technology
Department of Computer Science and Engineering
Gothenburg, Sweden June 2013

The Authors grant to Chalmers University of Technology the non-exclusive right to pub-
lish the Work electronically and in a non-commercial purpose make it accessible on the
Internet. The Authors warrant that they are the authors to the Work, and warrant that
the Work does not contain text, pictures or other material that violates copyright law.

The Authors shall, when transferring the rights of the Work to a third party (for ex-
ample a publisher or a company), acknowledge the third party about this agreement. If
the Authors has signed a copyright agreement with a third party regarding the Work,
the Authors warrant hereby that they have obtained any necessary permission from this
third party to let Chalmers University of Technology store the Work electronically and
make it accessible on the Internet.

Large scale news article clustering

MARCUS LÖNNBERG
LOVE YREGÅRD

© MARCUS LÖNNBERG, June 2013.
© LOVE YREGÅRD, June 2013.

Examiner: PETER DAMASCHKE

Chalmers University of Technology
Department of Computer Science and Engineering
SE-412 96 Göteborg
Sweden
Telephone: +46 (0)31-772 1000

Cover: Objects in an hierarchical clustering.

Department of Computer Science and Engineering
Gothenburg, Sweden June 2013

Abstract

In this thesis we examined different approaches on how to cluster news articles so that
two articles which are covering the same information would belong to the same cluster.
We examined already existing algorithms and pre-processing steps as well as developed
our own. Our requirements were that the algorithm should be able to handle a vast
amount of articles, produce clusters of high quality and do this in a short amount of
time.

We managed to come up with an algorithm which was quite fast and could produce
clusters of high quality. We also developed two different optimization methods in order
to speed up the clustering algorithms even more. We found that these methods improved
the runtime performance greatly for two of the algorithms while the cluster quality was
not significantly affected.

Sammanfattning

I denna rapport undersökte vi olika angreppssätt på hur man skulle kunna klustra ihop
nyheter så att två artiklar som förmedlar samma information skulle tillhöra samma klus-
ter. Vi undersökte redan existerande algoritmer och förbehandlingssteg samt utvecklade
egna metoder. Våra krav var att algoritmen skulle kunna hantera en stor mängd artiklar,
producera kluster av hög kvalitet och kunna göra detta på kort tid.

Vi lyckades utveckla en egen algoritm som var någorlunda snabb och kunde produ-
cera kluster av hög kvalitet. Dessutom utvecklade vi två olika optimeringsmetoder för
att ytterligare öka klustringhastigheten. Vi fann att dessa metoder kraftigt förbättrar
tidsprestandan för två av algoritmerna medan klustringkvaliteten inte påverkades nämn-
värt.

Acknowledgements

We would like to thank all employees at Squeed who have supported us during the
project. In particular we want to thank our supervisor Peter Lindh who have been a
helpful hand during the entire project. We also would like to thank our examiner and
supervisor Peter Damaschke for taking us on and having helpful discussions with us.

Contents

List of Figures iii

List of Tables iv

List of Algorithms v

1 Introduction 1
1.1 Project aims . 2
1.2 Method . 2
1.3 Thesis outline . 3

2 Representation and similarity measures 4
2.1 Representation of articles . 4
2.2 Similarity measures . 5

2.2.1 Euclidean distance . 5
2.2.2 Cosine similarity . 5
2.2.3 Extended Jaccard similarity . 6
2.2.4 Same source penalty . 7
2.2.5 Publication date difference penalty 7

2.3 Normalization . 7
2.3.1 Normalization when using Cosine similarity 7

3 Pre-processing 9
3.1 Stop words . 9
3.2 Stemming . 10
3.3 Pruning of rare words . 11
3.4 Weighting of words . 11
3.5 Truncation . 13
3.6 Named entities . 13

i

CONTENTS

4 Clustering algorithms 14
4.1 k-means . 14
4.2 Hierarchical Agglomerative Clustering . 15
4.3 Bisecting k-means . 18
4.4 Dynamic Hierarchical Compact Algorithm 19
4.5 Dynamic Hierarchical Star . 21
4.6 Incremental Clustering Algorithm . 24

5 Comparison reductions 25
5.1 Corner reduction . 25
5.2 Word set reduction . 27

6 Results 29
6.1 Data sets . 29

6.1.1 Quality data set . 30
6.1.2 Performance data set . 31

6.2 Evaluation of clustering quality . 31
6.3 Pre-processing evaluation . 33

6.3.1 Pruning of rare words . 33
6.3.2 Truncation . 34
6.3.3 Application of same source- and time difference penalties 34
6.3.4 Weighting of terms in titles . 35
6.3.5 Weighting of extracted named entities 35
6.3.6 Different term weighting methods 36
6.3.7 Different similarity measure methods 36

6.4 Algorithms . 37
6.4.1 Experimental setup . 37
6.4.2 Clustering quality . 38
6.4.3 Clustering performance . 39

7 Conclusion 41
7.1 Future work . 42

Bibliography 43

A Benchmarks 46
A.1 Pruning . 47
A.2 Truncation . 47
A.3 Source and time penalties . 48
A.4 Weighting of titles . 49
A.5 Clustering with named entities . 49
A.6 Weighting methods . 50
A.7 Similarity measures . 51
A.8 Algorithms . 51

ii

List of Figures

2.1 Cosine similarity in three dimensions. 6

4.1 Clustering result of HAC that were prematurely stopped when the simi-
larity between clusters were too low. The dashed circles represents clusters. 16

4.2 Similarity measurement between two clusters using single link. 17
4.3 Chain created between the clusters a, b, c and d. 17
4.4 Similarity measurement between two clusters using complete link. 18
4.5 Hierarchical Compact Algorithm example. 20
4.6 The clustering step of HSA. 22

5.1 The corner areas in the case of three dimensions. 26
5.2 The different corner areas with different values for γ. One of the areas in

each figure is shaded for clarification. 27

6.1 Distribution of cluster sizes. 31

iii

List of Tables

6.1 Our testing data sets. 29
6.2 Source and time penalty for the 2005 articles set. 35
6.3 Source and time penalty for the 5011 articles set. 35
6.4 Different similarity measures for the 2005 articles set. 36
6.5 Different similarity measures for the 5011 articles set. 37
6.6 Different clustering algorithms and reductions on the Q2 data set with

5011 elements. 38
6.7 Algorithms with reduction methods on the P1 data set with 25 586 elements. 39
6.8 Algorithms with reduction methods on the P2 data set with 44 971 elements. 39

A.1 Pruning for the 2005 articles set . 47
A.2 Pruning for the 5011 articles set . 47
A.3 Truncation for the 2005 articles set . 48
A.4 Truncation for the 5011 articles set . 48
A.5 Source and time penalty for the 2005 articles set 48
A.6 Source and time penalty for the 5011 articles set 48
A.7 Different title weights for the 2005 articles set 49
A.8 Different title weights for the 5011 articles set 49
A.9 Different weights on named entities for the 2005 articles set 49
A.10 Different weights on named entities for the 5011 articles set 50
A.11 Different tf methods (with idf) for the 2005 articles set 50
A.12 Different tf methods (with idf) for the 5011 articles set 50
A.13 Different tf methods (without idf) for the 2005 articles set 51
A.14 Different tf methods (without idf) for the 5011 articles set 51
A.15 Different similarity measures for the 2005 articles set 51
A.16 Different similarity measures for the 5011 articles set 51
A.17 Different clustering algorithms and reductions on the Q2 data set with

5011 elements. 52
A.18 Algorithms with reductions on the P1 data set with 25 586 elements. . . . 52
A.19 Algorithms with reductions on the P2 data set with 44 971 elements. . . . 53

iv

List of Algorithms

1 k-means . 15
2 Hierarchical Agglomerative Clustering . 16
3 Hierarchical Compact Algorithm (HCA) . 20
4 Dynamic Hierarchical Compact Algorithm (DHCA) 21
5 Algorithm for creating clusters in HSA . 22
6 Updating the stars . 23
7 Insertion of a single object with the Incremental Clustering Algorithm . . . 24

v

1
Introduction

In our modern society we deal with a lot of information from different sources on the
Internet. News articles is a common source of information, which can be found on
different news sources such as online newspapers, blogs or other types of news websites.
However, several news sources may cover the same news category and consequently
publish similar articles, i.e. they cover the same information.

For a person who frequently reads the articles from at least two news sources it would
be convenient if all those sources’ articles could be read at a single location. It would
also be preferable in the case with similar articles that only one of them are presented to
the reader. Furthermore, it would also be desirable if the reader could access all similar
articles easily. This would be beneficial e.g. for source criticism and finding further
information about the same topic.

To better describe what we mean with similar articles we consider two cases. When
it comes to news articles, they should cover the same event and describe it with similar
information, i.e. their information should not differ strongly. When articles do not cover
a certain event, for example a review, an opinion or a discussion, then articles should be
considered as similar if they share a very similar viewpoint about the same topic.

The objective of this project is to create a system where a user can read news articles
from multiple sources and where similar articles are grouped together. The system should
only present one article from each group, but at the users request it should also present
the other articles from a group.

The system we intend to build should support many users, where each user can
specify which news sources the user wants to follow. An advantage with this approach is
that all users will contribute with their own sources which will help create larger groups
of similar articles, and thereby users may find similar articles from sources they are not
following.

In order for users to rely on the system it must produce groups of articles that are
flawless. Therefore it is important that the system creates groups of articles that follow
our definition of similar articles and do so consistently.

1

CHAPTER 1. INTRODUCTION

Since the system should handle many users there will also be many sources and
consequently many articles. It is therefore important that our system can process a vast
amount of articles. It is also crucial that this can be done at a high rate so there is only
a short delay between the time of publication and the time the articles are grouped in
the system.

The concept of grouping text documents (in our case news articles) together belongs
to the field of document clustering. There are several different ways to cluster documents
and a few of them will be investigated in this project.

1.1 Project aims
The overall goal with the project is to develop a system that functions as previously
described. However, this thesis will only focus on the clustering processes that can be
used within the system. Our intention is to examine already existing algorithms and if
we deem it necessary and possible we will also develop our own. Most decisions within
the project will be taken with the system in consideration.

Regarding the clustering process, our goal is to find a solution that creates clusters
with high quality and does so with a good runtime performance. With high quality
we mean that the clusters should follow our definition of similar articles to a very high
degree and there should be few occurrences of misplaced articles.

For the runtime performance we have a soft goal of being able to cluster 100 000
articles in a short amount of time (less than an hour). This should be doable on a
normal computer with inexpensive hardware.

A limitation in this thesis is that we will only work with articles which are written
in English.

1.2 Method
This project have been carried out at the company Squeed in Gothenburg. The original
idea behind the project originates from a few years ago when Marcus Lönnberg, one of
the authors of this thesis, thought that it was both tedious and redundant to see similar
articles from different news sources when following many RSS feeds. He thought that
it must be possible to build a solution that eliminates this problem. The idea was then
both expanded and limited in order to be suitable as a master’s thesis.

In the beginning of the project we began studying relevant theory, starting with
text representation, similarity measurements and a few clustering algorithms. While
the research was performed we implemented methods and algorithms that we thought
could be useful for the project. This led to the discovery that some pre-processing
was necessary in order to get clusters of high quality. Thus, we also studied various
pre-processing methods.

While we were focusing on clustering algorithms we realized that most of the ex-
amined algorithms made large amounts of comparisons between articles. This made us

2

CHAPTER 1. INTRODUCTION

focus on incremental approaches where all articles not have to be available from start
but can be added over time.

We examined some incremental clustering algorithms which produced clusterings of
good quality. However, they were not as fast as we would like it to be. Therefore, we
developed our own algorithm which we named Incremental Clustering Algorithm. Our
intentions were that it would be both incremental and simple.

We also started thinking about possible ways to reduce the number of comparisons
between the articles. Inspired by centroids from the k-means algorithm and deep knowl-
edge about the Cosine similarity measurement, we tested various ideas for reducing the
number of comparisons. This evolved to two different approaches which turned out to
work great in combination with the Incremental Clustering Algorithm.

During the entire project, extensive testing was carried out in order to see which
methods that worked and which did not. At the end of the project we chose to redo a
selection of the tests in order to make a fair comparison of them in this thesis.

1.3 Thesis outline
The rest of this thesis is outlined as follows. Chapter 2 describes how texts can be
represented in order for a computer to be able to compare them. In chapter 3 we ex-
amine different pre-processing steps which are used to improve the text representation.
Chapter 4 covers several existing clustering algorithms and we also present a new algo-
rithm. Chapter 5 presents our reduction methods that is used to speed up the clustering
algorithms. Chapter 6 presents our test results for various pre-processing steps and the
algorithms with and without our reduction methods. In chapter 7 we draw conclusions
about our work and present future work. Finally, appendix A contains the full details
of our test results.

3

2
Representation and similarity

measures

In order to be able to divide a set of articles into clusters we need a method which allows
us to compare them. Unfortunately two articles can not be compared directly but must
be represented in a way so that a computer will be able to do these comparisons. In this
chapter we will present how to represent the articles in order for a computer to compare
them as well as several comparison methods.

2.1 Representation of articles
There are several ways one can represent a text so that a computer can compare them.
Throughout this thesis the texts are represented using the vector space model which is a
widely used model for representing texts [1]. A text is, with this representation, modeled
as an n-dimensional vector, where n is the number of unique terms through the set of
texts which is to be clustered [1]. Each component of the vector corresponds to one of
the unique terms. As for now, each component contains the number of occurrences of
the corresponding term in the text. From here on, the document vector created from
document d will be denoted as ~Wd.

However, there is a flaw with this representation model. By representing a text as a
bag of words where only the number of occurrences for each unique word is saved, the
context in which the word was found is lost. For example, both “The rabbit is faster
than the turtle” and “The turtle is faster than the rabbit” will have exactly the same
representation even though they do not express the same thing. But as long as two texts
do not contain exactly the same terms as well as exactly the same term frequency they
will not have the same representation.

4

CHAPTER 2. REPRESENTATION AND SIMILARITY MEASURES

2.2 Similarity measures
With the text representation model presented in the previous section, we now want to
be able to measure how similar articles are. There exists several methods to do so and
a few of them will be presented in the following subsections.

2.2.1 Euclidean distance

The Euclidean distance is the “ordinary” distance between two points [2]. E.g. the dis-
tance between two points on a two-dimensional plane or two points in a three-dimensional
space. In the case with text clustering one usually deals with more than just three di-
mensions (if not always, since the number of dimensions is equal to the number of
different words in the corpus). Given two document vectors, ~Wa = (at1 , at2 ,...,atn) and
~Wb = (bt1 , bt2 ,...,btn), the Euclidean distance is calculated in the following way [2]:

DE(~Wa, ~Wb) =

√√√√ n∑
i=1

(ati − bti)2

where t1 to tn represent all terms in the corpus and ati and bti represent the weight for
term ti in ~Wa and ~Wb respectively. The Euclidean distance is a non-negative number,
with 0 representing that the vectors are equal and a number greater than 0 represents
the level of dissimilarity.

Euclidean distance is a simple similarity measure but performs poorly in comparison
to Cosine similarity and extended Jaccard similarity [3] which will be described in the
coming sections.

2.2.2 Cosine similarity

When using the Cosine similarity measure one assumes that the direction of the doc-
ument vectors is more important than their length and the distance between them [4].
Also Cosine similarity is one of the most commonly used similarity measures for text
clustering [2] and have been shown to be (together with the extended Jaccard similarity
measure) the best similarity measure to “capture human categorization behavior” for
high-dimensional data [3].

This method involves, as the name reveals, the cosine of the angle between the two
term vectors. A three-dimensional case is shown in figure 2.1a where each axis represents
the weight of a unique term and the vectors are displayed according to their term weights.
The angle α between the vectors is then calculated and the cosine function is applied to
α as shown in figure 2.1b.

Given two document vectors, ~Wa and ~Wb, the Cosine similarity is calculated as
follows [2]:

simC(~Wa, ~Wb) =
~Wa • ~Wb

‖ ~Wa‖‖ ~Wb‖

5

CHAPTER 2. REPRESENTATION AND SIMILARITY MEASURES

α

(a) Two document vectors.

α

cosα

1

1

(b) The cosine value of α. The vectors are of length 1.

Figure 2.1: Cosine similarity in three dimensions.

where the numerator is the dot product of the vectors and the denominator is the product
of the Euclidean norm of each vector. The Euclidean norm for ~Wd is defined as:

‖ ~Wd‖ =
√
~Wd • ~Wd

where the inner product is the dot product.
The value of similarity is bounded by [0,1], with 1 meaning that the vectors are

pointing the exact same direction and 0 means that they are totally independent of each
other, that is, they do not have any words in common.

2.2.3 Extended Jaccard similarity

To better understand the extended Jaccard similarity we start by presenting the binary
Jaccard coefficient. The input to this similarity measure is two sets, Sa and Sb, and the
binary Jaccard coefficient measures the proportion that overlaps between these sets [5].
The binary Jaccard similarity is defined as [6]:

simBJ = |Sa ∩ Sb|
|Sa ∪ Sb|

That is, the number of shared element in the sets divided by the total number of different
elements.

But in the case of text clustering one will most probably not have binary vector
components in the document vectors. The similarity measure must be modified in order
to accept vectors with non-negative real numbered vector components. This similarity
measure is known as the extended Jaccard similarity measure and is calculated in the
following way [2]:

simJ(~Wa, ~Wb) =
~Wa • ~Wb

‖ ~Wa‖2 + ‖ ~Wb‖2 − ~Wa • ~Wb

6

CHAPTER 2. REPRESENTATION AND SIMILARITY MEASURES

The extended Jaccard similarity method compares the weight of shared terms against
the weight of terms which are present in only one of the articles [2]. Note that the
modified similarity measure will produce the same result as simBJ when the input vectors
only consist of binary vector entries [5].

As in the case with Cosine similarity the result from simJ is a value bound by [0,1],
with 1 meaning that the vectors are equal and 0 that they have no terms at all in
common [2].

2.2.4 Same source penalty

To our knowledge it is very uncommon that a news source publishes two or more articles
about the same event with the same information, i.e. duplicate articles. If this is assumed
to generally be true, then articles that seem similar and are from a single source is either
from two separate events or less likely is the same event where one of the articles is
updated.

Based on this, a penalty can be added to the similarity measure between two articles
from the same source. The advantage with this is that the possibility that such articles
are clustered together is reduced. However, the penalty should be low enough so that
articles that are either corrections or only slightly updated can be clustered together.

2.2.5 Publication date difference penalty

Too further distinguish between events that are similarly described in articles we have
successfully tried a method where we penalize similarity measurements between two
articles that are published long time apart. The idea behind this is that events are
usually covered by media just within a few days after an event has occurred.

Based on this, we have constructed a penalty that increases the longer time it is
between two articles publishing dates. The penalty is not active until the difference is
more than 2 days and after that increases linearly until a 40 % reduction in the similarity
measure is reached after 14 days where it flattens out.

If media mentions the same event again in an article it is typically with more infor-
mation which we should distinguish from the already clustered articles.

2.3 Normalization
In section 2.2.2 the Cosine similarity measure was described. As it only makes use of
the direction of the vector, we will in the following subsection describe how to normalize
the vectors in order to speed up the similarity calculations.

2.3.1 Normalization when using Cosine similarity

As mentioned in section 2.2.2, when using the Cosine similarity method one assume that
the direction of the document vectors is more important than their length [4]. To speed
up the calculation of this method one can normalize the document vectors and represent

7

CHAPTER 2. REPRESENTATION AND SIMILARITY MEASURES

them as unit vectors (i.e. vectors of length one). The document vector for document
d, ~Wd, is normalized by dividing each vector component with the value of its Euclidean
norm. In short, the vector is normalized using the following calculation:

~Wnd =
~Wd

‖ ~Wd‖

where ~Wd represents the original vector and ~Wnd represents the corresponding normal-
ized vector.

With normalized input vectors, it is easy to realize that the Cosine similarity can be
computed as follows:

simC(~Wna, ~Wnb) = ~Wna • ~Wnb

which does not result in a different value than the original computation, but solely results
in a performance boost for the clustering algorithm if similarity measures are calculated
frequently.

8

3
Pre-processing

In the last chapter we introduced how one can represent a text as a vector and how a
computer is able to compare them. Unfortunately the representation, as it was presented
in section 2.1, is quite poor. Some words may not be as important as other in order to
distinguish one text from another. Also, some words may be closely related and should
be treated as equal. These and some other problems will be discussed in this chapter.

3.1 Stop words
Stop words are words that are removed before processing texts. In our case we remove
words that are frequently occurring in texts and which also not carries any information
on their own. Some common stop words in the English language are: an, and, by, for,
from, of, the, to and with.

In document clustering these kind of words are removed from the corpus in order to
give both a better and faster clustering [7]. The reason why it gives faster clustering is
because the number of dimensions are reduced and consequently the similarity measure-
ments (as described in section 2.2) will have to do fewer calculations. The quality of a
clustering can be improved since documents will not be clustered simply because they
contain words such as “the” or “to”.

One should be aware of that using stop words also can have a negative effect on the
clustering. For example when the words “it” and “us” are classified as stop words in docu-
ments containing words like “IT specialist” or “US government”. In such cases important
information could potentially be lost, since both “IT” and “US” are information-bearing
words [8].

9

CHAPTER 3. PRE-PROCESSING

3.2 Stemming
When working with the vector space model (as described in section 2.1) each text is
represented as a bag of words. However, the words found in a text often have several
morpholigical variants [9] (a noun often have different forms when used in singular and
plural and a verb often have different form depending on tense, such as jump and jumped).
Each variant of a word is treated separately even though they can be considered as equal
in the case of clustering.

When calculating the similarity between two articles (as described in section 2.2)
the algorithm will see e.g. computer and computers as two completely different words.
Consequently these words will not contribute to that two articles (one with many occur-
rences of computer and the other with many occurrences of computers) will be treated
as similar. We have the same problem with words like walk and walked, happy and
happiness, and John and John’s (possessive form) as well.

To solve the presented (and other) problems, stemming can be applied to a word. In
the English language the stem of a word is written to the left followed by zero or more
suffixes [10] (as in the case with with computers). In some cases the stem is also altered
when the word changes form (as in the case happy-happiness), but in those cases it
usually occurs on the right hand end [10]. The stemming process’ task is to remove
these suffixes.

A prefix can also be added to a word, but this will often change the meaning of the
word [10] (as in happy-unhappy) so those will not be removed in the stemming process.

The most commonly used stemmer which strips English words of its suffixes is the
Porter stemmer [6]. The inventor’s paper about the algorithm (Martin Porter’s An
algorithm for suffix stripping, 1980) has been cited over 6000 times [11].

In this project we have chosen to use another stemmer1 by Martin Porter which after
quick and shallow testing seemed to be better than the original Porter algorithm for our
purpose. E.g. the word nightly was stemmed to night with the alternative stemmer and
to nightli by the Porter stemmer. Also the following words is stemmed to the same word
by the alternative algorithm but not by the Porter stemmer:

proceed
proceeded
proceeding
proceedings

stem−−−→ proceed

The Porter stemmer stemmed preceed to proce which is clearly not to our advantage.
The fact that some stemmed words are not "real" words is not a problem in the case of
clustering as long as words with equivalent meaning are stemmed to the same word.

Problems that the stemming process will not solve is to group synonyms (different
words that have the same meaning such as annual and yearly) together. Also by re-
moving the suffixes there is a chance that homonyms (a word which may have different

1http://snowball.tartarus.org/

10

CHAPTER 3. PRE-PROCESSING

meaning) are introduced [10]. E.g. both politics and polite are both stemmed to polit.
Also computer and compute are stemmed to comput even though the original words
necessarily not have anything to do with each other.

Another problem is some irregular verbs (such as go, went, gone) which will not be
stemmed to the same word. Neither will the plural form of some words be stemmed
to the same word as the singular form of the word. An example is wife stem−−−→ wife and
wives stem−−−→ wive.

How the stemming is done will not be covered here as it lies outside the scope of this
thesis.

3.3 Pruning of rare words
Pruning of rare words means that if a (stemmed) word appears less frequently than a
certain pre-defined threshold throughout the corpus (a collection of documents) which
should be clustered the term should be removed. The idea behind this is that rare terms
does not contribute very much to the similarity, consequently they do not help finding
appropriate clusters [12].

It has also been discussed that even if the rare words help distinguish a document
from another, the separation would probably be too fine to be useful. This would result
in several clusters that only contain a single or two documents [13].

Pruning based on the number of documents a certain word appears in have been
shown not to affect the clustering result very much at all [12].

3.4 Weighting of words
Manning et al. [6] discussed that a term which occurs twenty times in an article is most
likely not twenty times more significant than a term which is only found once. In order
to achieve a good clustering, the words of the articles will need to be weighted. One
way to achieve this is by using tf-idf (term frequency - inverse document frequency)
weighting.

The term frequency, tft,d, of term t in document d can in a very simple case be
expressed as the number of occurrences of the term t in d, but in such a case the problem
described above will still remain. A common modification is to use the logarithm of the
term frequency instead of the original term frequency itself [6]. That is:

tft,d =

 1 + log(tf’t,d) if tf’ t,d > 0
0 otherwise

where tf t,d is the newly weighted value and tf’ t,d is the "true" term frequency.
However, just using the term frequency is not always enough. The problem is that

all different terms have the same weight. A specific term which is found in most of the
articles in the corpus will probably not help the algorithm to distinguish an article from
another. This is very similar to the case of stop words where it is already known that

11

CHAPTER 3. PRE-PROCESSING

those terms will not help separating articles from each other. Thus, the significance of
terms occurring in many articles should be lower than for other words.

Also, two articles sharing a not very common term tend to be more similar to each
other than two articles sharing a more common term. Consequently one can argue that
these words are more important and therefore should have a higher weight.

This can be achieved by using the inverse document frequency. It has been suggested
that the inverse document frequency for term t can be calculated using the following
formula [6]:

idft = log N

dft

where N is the total number of documents in the corpus and dft is the number of
documents which contains the term t at least once. The inverse document frequency
contributes to that a common term receives a low weight while an uncommon term
receives a higher weight.

With known term frequency and inverse document frequency it is now possible to
combine them and produce a new weight for each term in each document. The document
vectors can by that be reweighted as:

tf-idfd = (tft1,d × idft1 , tft2,d × idft2 , ..., tftv ,d × idftv)

where d is a document in the corpus and t1, t2, ... , tv represent the terms found in
the corpus. For convenience, in the remainder of this thesis, the document vector for
document d will be denoted ~Wd regardless of the selected weighting method.

For the case which is examined in this thesis where articles arrive continuously,
there will probably not be possible to set a new weight for all words in all articles as
new articles arrive (the inverse document frequency is calculated using all articles). In
such a case only the term frequency for each article may be used (as it only depends
the corresponding article itself). However, this might not be a problem. Schütze and
Silverstein [7] mentions that preliminary studies indicated that the inverse document
frequency even could impair the cluster quality.

Another way to weight the terms in an article could be by using the information about
where in the article a term is found. The title have a lot of information about the article,
thus giving the words found there higher weight would probably be advantageously for
the clustering step.

Further is the inverted pyramid story structure a common way to structure an arti-
cle [14]. When using the inverted pyramid story structure one puts the most newsworthy
information of an article in the beginning and the details at the end. With such a story
structure it would probably be preferable to give terms located in the beginning of an
article higher weight than those located at the end.

12

CHAPTER 3. PRE-PROCESSING

3.5 Truncation
As discussed in section 2.2, all terms in two document vectors which shall be compared
are used to calculate the similarity. In order to reduce the time the similarity calculation
require we can remove the least significant terms from each document vector, or rather,
we keep the t most significant terms from each document vector. By removing a term
we mean setting the weight for the term to 0 in that specific document vector.

It has been discussed that truncation of document vectors will not give any significant
speed boost as the vectors rarely contain a lot of different terms [7]. However, it has also
been shown that the clustering quality is not reduced when truncating the vectors. The
quality of the clustering was preserved when taking only the 50 most significant terms
into account when performing the similarity calculations [7].

3.6 Named entities
The similarity between articles for our problem should in the best case rely on the
information the articles contains. But as the vector space model is used, the similarity
instead depends on which words are used to relay the information. In an attempt to
combine information extraction from articles together with bag of words, we have used
named entity recognition (NER).

Named entities are parts of a text that have been classified into predefined categories
such as organizations, persons, places, dates, quantities, etc [15]. In the below example
entities for a person, an organization and a location have been highlighted.

Barack Obama was previously a member of the Senate, but is now the president of
the United States of America.

We have included Stanford Named Entity Recognizer as a part of our pre-processing.
The model we used for the NER system classifies each word as either a regular word
or a part of a location, person or organization [16]. Entities of those types are often
represented by several words and for this reason does our solution collect all subsequent
words of the same entity type in order to create an entity.

Our approach to handling entities is to treat them as if each entity were a regular
word, even if the entity consists of several words. The count is adjusted so entities should
gain a high weight and therefore have more effect on the similarity. In the case where
there are two identical words, where one of them is marked as an entity and the other
as a regular word, we distinguish them from each other and they are treated as separate
words.

As an example, consider a text where the location US and the word us appears.
Even though we ignore case they will not match, provided that US is correctly marked
as an entity.

13

4
Clustering algorithms

In the previous chapters we have learned how to create a good representation of a text
and also how to compare these representations in order to find how similar two texts are.
However, we are still missing a method how to divide a collection of texts into different
clusters. In this chapter we will explain some already known clustering algorithms which
performs this task as well as present a new one. The clustering algorithms presented in
this chapter is not specific for text clustering, so when cluster objects are mentioned one
can think of articles instead.

4.1 k-means
k-means is perhaps the most well known clustering algorithm. This algorithm does not
only need the objects which are to be clustered, it also requires a value k which is the
number of clusters we want the algorithm to produce. It uses a partitioning approach
and starts with initializing k centroids by placing them in the term space [6]. A centroid
is thus, in this case, just another document vector but with no underlying document,
where each vector component is given a weight. This given weight could be a random
value which means that the positioning of the centroid in the term space also would be
random.

After the initializing of the centroids have been done, a process begins where all
documents are compared to all centroids. Each document is then linked to its closest
centroid, according to the Euclidean distance (see 2.2.1). When all documents have been
linked, all centroids are moved so they are centered with respect to its linked documents
by using the following equation:

~µ(Ω) = 1
|Ω|

∑
x ∈ Ω

~Wx

where ~µ(Ω) represents the new position of centroid ~µ which is linked to the set of

14

CHAPTER 4. CLUSTERING ALGORITHMS

documents Ω.
This process is repeated until some stopping criteria is met, which typically is when

no document links to a new centroid between iterations. That is, each object is compared
to each new centroid and linked to the closest one. The centroids position is then once
again updated, if no document is linked to a new centroid we are done.

After the last iteration has been done the resulting clusters are formed by the linked
documents for each centroid. The pseudocode for k-means is shown in algorithm 1.

Algorithm 1: k-means
Data: A set of clusterable objects and the number of clusters which should be

produced, k
Result: k clusters containing the input objects

1 for i← 1 to k do
2 Initialize centroid ~µi with random values for all dimensions of the input

objects
3 end
4 while stopping criteria is not met do
5 For each centroid ~µi create an empty collection Ωi

6 For each object ~xn find the closest centroid ~µj that minimizes the Euclidean
distance and store the object in Ωj

7 Each centroid is recomputed using ~µi(Ωi) according to equation 4.1
8 end
9 Return all k Ω which is the resulting clusters

4.2 Hierarchical Agglomerative Clustering
Hierarchical Agglomerative Clustering (HAC) is a form of hierarchical clustering where a
hierarchy of clusters is built in a bottom-up manner [6]. Firstly, the algorithm creates a
singleton cluster for every input object. Then it iteratively merges the two most similar
clusters into a single cluster. This procedure is repeated until there is only one cluster
left. To determine the similarity between two clusters a linkage criterion is used (which
soon will be discussed). The result is a tree structure where the root is the last cluster

15

CHAPTER 4. CLUSTERING ALGORITHMS

and the leaves are the input objects. The pseudocode is shown in algorithm 2.
Algorithm 2: Hierarchical Agglomerative Clustering

Data: A collection of clusterable objects
Result: A tree structured hierarchy where the leaves represents the clustered

objects
1 Place each objects in its own cluster and place the clusters in a list containing
active clusters

2 while more than one active cluster do
3 Find the two most similar clusters according to a linkage criterion
4 Create a new cluster containing the two clusters
5 Remove the two clusters from the list of active clusters
6 Add the new cluster to the list of active clusters
7 end
It is possible to prematurely stop the algorithm when the similarity between clusters

is too low, this is useful when the top of the whole hierarchy is not needed. In that case
the result would be a set of clusters where each cluster is the root of a tree structure
and each leaf is a single clusterable object, see example in figure 4.1.

Figure 4.1: Clustering result of HAC that were prematurely stopped when the similarity
between clusters were too low. The dashed circles represents clusters.

There exists several known linkage criteria which is used with the HAC algorithm.
The following four methods uses different approaches to decide the similarity between
two clusters given a similarity measure [1].

Single link

Single link, also known as nearest neighbor, works by finding the most similar pair of
objects that are not yet in the same cluster and merging their clusters together [6].

16

CHAPTER 4. CLUSTERING ALGORITHMS

Another way to describe the operation is that when comparing two clusters it only uses
the similarity between the two most similar objects, one from each cluster, see figure 4.2.

Figure 4.2: Similarity measurement between two clusters using single link.

The following formula shows how the calculations are done. Ci and Cj is clusters to
be compared and sim is a similarity measure where a higher value means more similar.

simSL(Ci, Cj) = max
x ∈ Ci, y ∈ Cj

sim(~Wx, ~Wy)

A possible downside with how single link works is that it can create chains of clusters,
see figure 4.3. In such a case one may notice that the objects found at each end of the
chain will not be very similar to each other. Therefore single link is unsuitable for
isolating spherical clusters [6].

a

b

c

d

Figure 4.3: Chain created between the clusters a, b, c and d.

Complete link

Complete link works in a similar manner as single link, but instead of finding the max-
imum similarity between any two objects from different cluster, it instead finds the
least similar objects from two clusters (see figure 4.4) and uses that value as similarity
measurement [6]. The calculations are done as follows:

simCL(Ci, Cj) = min
x ∈ Ci, y ∈ Cj

sim(~Wx, ~Wy)

A disadvantage of the complete link method is that a single element that deviates
from the other objects in a cluster, an outlier, may have a big impact on the final outcome
of a clustering [17].

17

CHAPTER 4. CLUSTERING ALGORITHMS

Figure 4.4: Similarity measurement between two clusters using complete link.

UPGMA

Unweighted Pair Group Method with Arithmetic Mean (UPGMA) is an approach where
the similarity between two clusters is determined by the average similarity of all cross
cluster object measurements [17]. The calculations for this method is shown in the
follwing formula:

simUPGMA(Ci, Cj) = 1
|Ci||Cj |

∑
x ∈ Ci

∑
y ∈ Cj

sim(~Wx, ~Wy)

The most prominent advantage with this method compared to single and complete
linkage is that it, as the name hints, takes an average of the similarities between the
clusters and not only the similarity of single objects.

Group average

Group average also known as Group-Average Agglomerative Clustering (GAAC) is sim-
ilar to UPGMA in the way that it computes an averaged value. However, their inner
workings is very different. When comparing two clusters it computes the similarity be-
tween all objects in the clusters, including similarities between objects that are within
the same cluster [6].

GAAC is defined as follows:

simGA(Ci, Cj) = 1
(|Ci|+ |Cj |)(|Ci|+ |Cj | − 1)

∑
x ∈ Ci ∪Cj

∑
y ∈ Ci ∪Cj , x 6= y

~Wx · ~Wy

4.3 Bisecting k-means
Bisecting k-means uses a combination of the two clustering types, hierarchical and par-
titional clustering [18]. Unlike the Hierarchical Agglomerative Clustering algorithm, the
cluster hierarchy is built in a top-down manner when using this algorithm. The algo-
rithm starts with all objects put in a single cluster which is then divided into two new
clusters using the k-means algorithm (see 4.1) with k = 2. It then continues recursively

18

CHAPTER 4. CLUSTERING ALGORITHMS

dividing clusters until a certain criteria is fulfilled. In the original algorithm the criteria
is that only a certain amount of clusters should be created.

However, an augmented version of the algorithm that is tailored for document clus-
tering have been proposed [19]. There are three areas of the algorithm that they have
been augmented. A bootstrapping aggregating procedure which performs the k-means
algorithm several times to decide the starting positions for the centroids based on the
medians from the aggregating runs have been added.

The second area proposes that instead of bisecting the largest cluster it calculates
the standard deviation of each cluster to pick the one that is most sparsely packed. The
reason for this is because otherwise the algorithm will yield a result where all cluster
sizes are very similar, which is not realistic for real world data.

The last modification is a criteria of termination that stops the algorithm when the
similarity of clusters objects reaches a certain termination value, γ.

4.4 Dynamic Hierarchical Compact Algorithm
Just like the Hierarchical Agglomerative Clustering method is the Dynamic Hierarchical
Compact Algorithm (DHCA) [20] also both agglomerative and, as the name reveals,
hierarchical. This algorithm is, unlike the previously discussed algorithms, also dynamic.
This means that the algorithm is incremental (new objects can be added over time) but
also that the algorithm will produce the same result regardless which order the objects
are added [21]. The other algorithms require all data to be known before the clustering
starts.

The original algorithm (without the ability to update the clustering) is just called
Hierarchical Compact Algorithm (HCA) [20]. It is based on graphs and makes use of
three specific types of graphs called the β-similarity graph, the maximum β-similarity
graph and the U-max-S graph.

The β-similarity graph is an undirected graph where each vertex represents a cluster
and where an edge exists between vertex i and vertex j if the similarity between the
corresponding clusters is at least β, where β is a predefined value. The similarity between
clusters are calculated using UPGMA linking (explained in section 4.2). A cluster is said
to be a β-isolated cluster if its similarity to all other clusters is less than β. The maximum
β-similarity graph and the U-max-S graph will soon be explained.

The algorithm works as follows: start with putting all objects in clusters on their
own and create a β-similarity graph. In figure 4.5a one can see the 0.1-similarity graph
for a collection of clusters. Following the definition of the 0.1-similarity graph, there are
only edges between those vertices where the similarity is at least 0.1.

When the β-similarity graph is created, create a directed graph with the same vertices
as the β-similarity graph. For each vertex, create an edge pointing to the vertex which
it is most similar to according to the β-similarity graph. That is, the most similar vertex
with a similarity measure of at least β. This newly created graph is the maximum
β-similarity graph.

With the maximum β-similarity graph one can produce the U-max-S graph which is

19

CHAPTER 4. CLUSTERING ALGORITHMS

basically the undirected version of the maximum β-similarity graph (all parallel edges
are also removed).

0.5

0.1

0.7
0.6

0.9

0.6

0.5
0.3

0.8

0.4 0.40.7

0.1

0.4

0.6

0.5

0.3
0.9

(a) The 0.1-similarity graph with each
weight shown.

(b) The U-max-S graph with the new clus-
ters shown with dashed lines.

Figure 4.5: Hierarchical Compact Algorithm example.

Find the connected clusters in the U-max-S graph and combine them to new clusters
(as shown in figure 4.5b). With the newly created clustes, create a new β-similarity
graph. If all clusters are β-isolated the clustering is done, else the U-max-S graph will
have to be produced again in order to cluster more. The pseudocode for this method is
shown in algorithm 3 [20]. The clustering complexity of this algorithm is O(n2) where
n is the number of objects to be clustered [20].

Algorithm 3: Hierarchical Compact Algorithm (HCA)
Data: Clusterable objects
Result: Clusters in a tree structure where the leafs are the objects

1 Place all objects in their own clusters
2 level← 0
3 Create the β-similarity graph, G0, for the current clusters
4 while not all vertices in Glevel are β-isolated do
5 Create the U-max-S graph, Ulevel, using Glevel
6 Find the connected elements in Ulevel and combine them to new clusters
7 level← level + 1
8 Create the β-similarity graph, Glevel, for the newly created clusters
9 end

Updating the cluster hierarchy

The algorithm presented in algorithm 3 requires all objects, which is to be clustered, to
be available in advance. However, it can be extended to handle adding and removing
of objects. Given a hierarchy of clusters (calculated using the Hierarchical Compact
Algorithm) and an element to be added (or removed), the clusters at all layers of the

20

CHAPTER 4. CLUSTERING ALGORITHMS

hierarchy will need to be updated. The pseudocode for the updating step is presented
in algorithm 4 [20].

Algorithm 4: Dynamic Hierarchical Compact Algorithm (DHCA)
Data: Clusterable object to be added (or removed) and a hierarchy of clusters

previously built
Result: Clusters in a tree structure where the leafs are the objects

1 Place the new object in its own cluster (or remove the cluster in the lowest level)
2 level← 0
3 Update the β-similarity graph, G0
4 while not all vertices in Glevel are β-isolated do
5 Update the U-max-S graph, Ulevel
6 Find the connected elements in Ulevel and update the clusters if necessary
7 level← level + 1
8 Update the β-similarity graph, Glevel, with the clusters created from Ulevel−1
9 end

10 Remove remaining levels greater than level from the hierarchy if such exists
The β-similarity graph at the lowest level is updated by adding the new element to

a singleton cluster (or by removing the singleton cluster containing the element) and
updating the edges. The U-max-S graph is then updated using the updated maximum
β-similarity graph. Note that if an edge is removed from the U-max-S graph a cluster
may no longer be connected and should therefore be split. Also if an edge is added and
the two endpoints are in different clusters, these clusters should be merged.

With the U-max-S graph updated, the β-similarity graph for the next level can be
updated using the updated clusters. This process will go on until all vertices in the
β-similarity graph is β-isolated. If the process terminates before the top-level of the
hierarchy is reached the remaining levels should be removed.

4.5 Dynamic Hierarchical Star
The Dynamic Hierarchical Star Algorithm [21] works in a similar manner as the Dy-
namic Hierarchical Compact Algorithm but creates clusters which may overlap. Having
overlapping clusters means that one or more elements may belong to several clusters
which may be desirable in some cases.

As with DHCA, we start with an algorithm which is not able to update the clustering.
This algorithms will later be extended in order to handle new objects being added and
removed. That algorithm is known as Hierarchical Star Algorithm (HSA) [22]. The
pseudocode for HSA looks exactly like the algorithm for HCA with the exception that
the combining step at line 6 in algorithm 3 differs. Instead of combining all connected
elements in the U-max-S graph, HSA makes use of the minimum dominating set of the
U-max-S graph.

The dominating set of a graph G = (V,E) is a set D such that all vertices v ∈ V is
either in D or is adjacent to a vertex u ∈ D. Thus, the minimum dominating set is a set

21

CHAPTER 4. CLUSTERING ALGORITHMS

D which is as small as possible. But this problem is NP-complete [23], hence we can not
expect to find the best solution (in a reasonable time) but merely an approximation.

A cluster is created by the elements in the dominating set together with their ad-
jacent vertices. This means that if a vertex is adjacent to more than one element in
the dominating set, that vertex will also be a member of multiple clusters. A greedy
approximation algorithm for creating as few clusters as possible have been proposed.
The pseudocode for this algorithm is found in algorithm 5 [22].

Algorithm 5: Algorithm for creating clusters in HSA
Data: An undirected graph, G
Result: The minimum dominating set of the given graph

1 while not all vertices in G are covered do
2 Place all vertices in G with the greatest number of uncovered adjacent

vertices in a set called M0
3 Put the vertices of M0 with minimum degree in a set called M
4 For each element in M create a cluster containing that element as well as its

adjacent vertices. All these vertices are now considered covered
5 end
6 Remove all duplicate clusters

In figure 4.6a an illustration of an U-max-S graph is presented and the clusters created
using the algorithm in algorithm 5 can be seen in figure 4.6b.

As one might see from the proposed algorithm each cluster is composed of a middle
vertex (the star) and l vertices connected to it (the star’s satellites). Note that l might
be 0 in the case when there are no vertices connected to the star. With this structure,
the chance that clusters will chain (creating a "long" cluster of elements) will therefore
be lower than for other algorithms.

(a) The U-max-S graph which should be
divided into clusters.

(b) The resulting clusters. The stars of the
clusters are shown with black fillcolor.

Figure 4.6: The clustering step of HSA.

22

CHAPTER 4. CLUSTERING ALGORITHMS

Updating the cluster hierarchy

The extension of HSA which is able to add and remove objects from the cluster hierarchy
is called Dynamic Hierarchical Star (DHS) [21]. As in the case with DHCA, when new
elements are added (or removed) all clusters at all levels of the clustering hierarchy will
need to be updated. The pseudocode for this looks exactly like the one presented in
algorithm 4 with the exception of line 6.

Instead of finding all connected vertices and updating our clusters (or creating new
clusters) we want to update the current star cover which represents our current clusters.
In this incremental approach it would be beneficial if this could be done without having
to reset all stars in order to find the new stars in the updated U-max-S graph. The
pseudocode that achieves exactly this is presented in algorithm 6 [21].

Algorithm 6: Updating the stars
Data: The new U-max-S graph, U = (V,E), a set N containing added vertices, a

set R containing removed vertices as well as two sets, NE and RE,
representing added and removed edges respectively. The old stars are still
marked in U

Result: The stars for U
1 Create a queue Q, Q← N
2 foreach star s ∈ V do
3 if ∃v : (s,v) ∈ RE then
4 Remove the star marking from s
5 Add s and all its neighbors to Q. Also add v unless v ∈ R
6 end
7 end
8 foreach star s ∈ V do
9 if ∃v, v′ : (v,v′) ∈ NE ∧ (s,v) ∈ E then

10 Remove the star marking from s
11 Add s and all its neighbors to Q
12 end
13 end
14 while Q 6= ∅ do
15 Extract the vertex, v, with the greatest degree from Q
16 if v is not marked as a star ∧ (v does not have any star neighbors ∨ the

degree of v ≥ the degree of all its star neighbors) then
17 Mark v as a star
18 foreach star neighbor, s, of v with lower degree than v do
19 Remove star marking from s
20 Put all neighbors of s into Q
21 end
22 end
23 end

23

CHAPTER 4. CLUSTERING ALGORITHMS

4.6 Incremental Clustering Algorithm
Incremental Clustering Algorithm (ICA) is our own algorithm that we have developed.
The algorithm is very simple although we have not seen the algorithm being described
earlier. Our intention behind it was to design an algorithm that was quick and supported
incremental data, in other words it had to support adding more articles to the data set
after the clustering had been started.

The algorithm processes one object at a time and places it in either an existing
cluster or creates a new one. To decide which, it compares the input object with all
existing clusters using the UPGMA method (as explained in section 4.2). For the most
similar cluster it checks if that similarity is above a predefined threshold value β. If that
is the case, it adds the new object into that cluster. Otherwise a new cluster will be
created that only contains the new object. For the first object a new cluster will always
be created. The pseudocode for this algorithm is found in algorithm 7.

Algorithm 7: Insertion of a single object with the Incremental Clustering Algo-
rithm

Data: A new object o to be added, a set C containing all current clusters and a
threshold β

Result: A set of clusters
1 if C is empty then
2 Create a new cluster which only contains o and add it to C
3 else
4 Calculate the similarity between o and each cluster c ∈ C using UPGMA
5 Find the cluster c ∈ C which o is most similar to
6 if the similarity is greater than β then
7 Add o to cluster c
8 else
9 Create a new cluster which only contains o and add it to C

10 end
11 end
12 return C

It is obvious that for each new object that the algorithm processes it has to compare
that object to all other objects. The algorithm will consequently perform a lot of com-
parisons between objects in the long run which is not desirable. In the next chapter we
will investigate the possibility to reduce the number of similarity calculations in order
to improve the runtime performance for this and other algorithms.

24

5
Comparison reductions

From previous chapters we have enough information in order to start clustering. How-
ever, we still have a problem that running the clustering algorithms takes plenty of
time.

From our measurements we concluded e.g. that the Incremental Clustering Algo-
rithm (presented in section 4.6) spent about 95 % of the running time doing similarity
measures. In this chapter we will present two (to our knowledge) new methods which
will reduce the number of comparisons between text objects and thus obtain a better
runtime performance.

5.1 Corner reduction
This method to reduce the number of comparisons between objects (in this case doc-
ument vectors) requires that the algorithm uses Cosine similarity as its the similarity
measure. It is based on the idea that when the document vectors are normalized (as
discussed in section 2.3.1) the objects to be clustered can be seen as if they are lying
on the surface of a n-dimensional sphere (where n is the number of unique words in the
corpus after the pre-processing).

Instead of comparing an object to all other objects on the spheres surface, why not
limit the comparisons to the objects in the current object’s proximity and assume that
all other are not very interesting for now? As described in section 2.2.2, two objects are
similar if the angle between the document vectors is small. If the angle is small, the
objects are also close to each other on the surface of the sphere. But how can we decide
which objects are close to the current object?

The idea is that we divide the surface of the sphere into several areas and check
which area or areas an object resides in. A first attempt is to measure the angle between
an object and all the vectors which are representing just one term (the corners). The
corner which the object is closest to will be the area to which the object belongs. The

25

CHAPTER 5. COMPARISON REDUCTIONS

corner areas will, in the case of three dimensions, look like as presented in figure 5.1. An
object should only be compared with the objects in the same area as itself. In this way
the number of comparisons will be lowered.

Figure 5.1: The corner areas in the case of three dimensions.

A problem with this method occurs if two object which are very similar to each other
are placed in different areas. If that happens those two points will not be compared and
thereby will probably not end up in the same cluster (of course this depends on the
clustering method).

A second attempt is that if the Cosine similarity between an object and a corner
is above a certain threshold value the object should belong to that area. With that
approach an object may belong to several areas simultaneously. An object should then
be compared to all objects in the areas it belongs to. Since an object may belong to
several areas at the same time the problem that two very similar objects will not be
compared will be a lot lower.

But what is a reasonable value for the threshold? With a vector length of one, the
average weighting value for a specific term in the document vector would be m = 1√

n

where n is the number of dimensions in the document vector. For a document vector
with three dimensions and 1√

3 as threshold value, the different areas would be divided
as shown in figure 5.2a. Here we see that an object may belong to one, two and even all
three areas (in the case that all weights are exactly evenly distributed).

If a user wants a possibly better clustering quality in exchange for clustering speed
one might want to do the overlapping areas larger. This can be done by introducing a
new variable γ, which we multiply with m in order to change the threshold value. To
alter the threshold to be less strict the γ variable should be less than 1. The areas for a
document vector of three dimensions and the threshold value set to 1√

3 ·γ (where γ < 1)
would be divided as shown in figure 5.2b.

On the other hand, if the time is important one might want to do fewer comparisons
in order to speed up the algorithm. In this case we should multiply m with γ where
γ > 1. The overlapping areas will be smaller and there is also a chance that an object
will not be a member of any area if the weights are roughly evenly distributed, as seen
in figure 5.2c.

If an object is not a member of any area it will not be compared to any other object

26

CHAPTER 5. COMPARISON REDUCTIONS

(a) γ = 1 (b) γ < 1 (c) γ > 1

Figure 5.2: The different corner areas with different values for γ. One of the areas in each
figure is shaded for clarification.

and is consequently doomed to create a cluster on its own. To overcome this problem,
if an object does not belong to any area it will be assigned an area as if γ was set to 1.
With this method, all objects will be member of at least one area and the chance for an
object to be compared to other objects is greater.

How to alter the clustering algorithms

To alter an algorithm to benefit from corner reduction is easy. As with the case with
the Incremental Clustering Algorithm (presented in section 4.6) all cluster will belong
to the corner area in which its member objects belongs to. That is, if the new object to
be added, o, is in the same corner area as any of a cluster’s, C, members, then o should
be compared with C. If no member of a cluster, C, belongs to the same corner area as o
they should not be compared and thereby there is no chance for o to be a member of C.

Dynamic Hierarchical Compact (section 4.4) have also been altered to benefit from
corner reduction. As with corner reduction in the Incremental Clustering Algorithm a
cluster will be a member of the same corner areas as its member objects. For each level
in the algorithm, an object (or cluster) is only compared to the objects (or clusters)
residing in the same corner area.

The performance and resulting clustering quality of these two altered algorithms
will be examined in chapter 6. But corner reduction is of course not restricted to
these algorithms but can be implemented to work with e.g. Hierarchical Agglomerative
Clustering.

5.2 Word set reduction
Our other optimization approach is Word set reduction, named after its usage of sets of
words (dimensions) to approximate the similarity between a document and a cluster.

The way it works is that for each cluster a set of dimensions is created, a Word set,
which contains all dimensions of the documents that belongs to the cluster. A dimension

27

CHAPTER 5. COMPARISON REDUCTIONS

belongs to a cluster if any of the articles in the cluster have a weight over zero. The
Word set is later utilized when a new document should be added to a cluster.

As described in the Clustering algorithms chapter there are some algorithms that
use group-average or a similar method to compare a cluster with an incoming document
inorder to decide their similarity. This is often combined with a threshold β that the
similarity needs to fulfill in order to cluster documents together. Instead of performing
the full similarity measure which often compares the input document with all documents
in the cluster, the Word set is used to make a single comparison between the cluster and
the input document using an altered Cosine similarity, see equation 5.1 where Sc is the
Word set for cluster c and ~W = (w1, w2, · · · , wn) is the input documents word vector.

simC(~W, Sc) =
∑
x∈Sc

w2
x

‖ ~W‖2
(5.1)

This single comparison is compared to a threshold γ, which says if the cluster should
be considered as a candidate or not. If a cluster is considered as a candidate then the
real similarity comparison is performed. The idea is that γ should be chosen so that it
filters out clusters that should yield a too low similarity when the full similarity is done
and compared to β.

If there is only a few number of documents in a cluster then it is usually better
to do the full similarity instead of the approximation. In the case when a cluster only
contains a single document it will take about equal the amount of time to calculate the
real similarity and the approximation and in that case it is obviously better to use the
real similarity, which does not need to be recomputed later if it turns out that the cluster
is a candidate.

The regular Cosine similarity (section 2.2) measures the similarity between two doc-
uments by taking the dot product of the weight vectors. The dot product takes the sum
of all shared dimensions with the product of each of the documents weights. Our altered
Cosine similarity in equation 5.1 makes a similarity between a document and a Word
set. Since the Word set only contains dimensions and not any weights a dot product
can not be performed. Instead it takes the sum of the square weight from the document
for all shared dimensions between the document and the Word set. The reason why it
makes a good approximation is because dimensions with a high weight in the document
also have a high impact on the similarity as in the regular Cosine similarity.

28

6
Results

In this chapter we will evaluate the different pre-processing steps as well as the clustering
algorithms and comparison reductions presented in the previous chapters. In order to
do so we have created several test data sets which we will compare our clustering results
to. We will also present different measurements to evaluate the cluster quality.

6.1 Data sets
To test the pre-processing methods and clustering algorithms, we have constructed two
data sets with news articles. One of the data sets is focused on quality where the clusters
fully meet our specification. The other set is focused on having a great amount of articles
in order to test the performance of the algorithms.

Both data sets have been used to create two smaller subsets, and all these data sets
are presented in table 6.1.

Name Articles Reference clusters
Quality 1 (Q1) 2 005 263
Quality 2 (Q2) 5 011 562
Performance 1 (P1) 25 686 2 916
Performance 2 (P2) 44 971 5 685

Table 6.1: Our testing data sets.

In the beginning of our project we looked for clustered data sets of articles which could
be used for testing. However, we could not find any data sets that fit our specification
of how a cluster should be created (see Introduction). The best we could find was the

29

CHAPTER 6. RESULTS

Google News website1 that aggregates news from many news sources and creates clusters
of articles that covers the same event. We concluded that sometimes their clusters align
with our specification and other times they do not do it fully, but often it was close
enough. Therefore we decided to use those clusters as a starting point.

Since Google does not provide a simple way to access their clustering data we had
to scrape their site in order to get their clusters of articles. The only information we got
from Google about the web articles were their title and URL.

To gather more data we decided to also download articles from RSS (Really Simple
Syndication) feeds from some selected sources. RSS feeds usually gives us the title,
publication date, brief description and a URL for each article. The purpose of adding
these additional articles were to have access to a greater amount of articles and to have
some singleton clusters, in order to represent a realistic case.

It is important to note that in order to get the text of an article we download the
articles page and use software to extract the article text. The process of extracting article
text is not perfect [24] and thus our articles can be faulty. For example, only some parts
of the article text is extracted or wrong part of the page is extracted. To minimize the
effect of this problem we have performed some automatic and manual cleanup of the
articles. The cleanups also removed all non-English articles and articles that had a body
shorter than 150 characters.

6.1.1 Quality data set

Since we could not find any reference set that met our definition of how clusters should
be defined, we decided to create our own based on the data we had collected. The
data set was manually created and checked in order to ensure correctness. To speed up
the process we utilized the Incremental Clustering Algorithm (see section 4.6) and then
refined the result by hand.

We did some minor filtering of the articles, mostly it was on articles where we could
not with a high certainty decide whether an article should belong in a cluster or not.
For example, we completely ignored some sports that we had insufficient knowledge
of, as well as some economy news, especially related to stocks. There were also some
occurrences of articles that were more of a summarization of several articles, such as the
most read news a specific day. Those were removed since we did not consider them as
“real” articles.

We also tried to make the set realistic with various sizes of the clusters, ranging from
singleton clusters up to 59 articles in a cluster, see figure 6.1.

The result was two data sets Q1 and Q2, see table 6.1, where Q1 is a subset of Q2.
1http://news.google.com

30

CHAPTER 6. RESULTS

1 3 5 7 9 11 13 15 17 19 21 23 25 27 31 46 59

0

20

40

60

80

100

120

Number of articles in each cluster

N
um

be
r
of

cl
us
te
rs

Figure 6.1: Distribution of cluster sizes.

6.1.2 Performance data set

To be able to test how the algorithms scale we decided to construct a data set with a
high number of articles. We had access to over 100 000 articles that we had downloaded,
but we choose to limit the data set to 45 000 articles. The reasoning behind this was
that since we run the clustering single threaded on our own machines we could not allow
for too long running times.

Out of the full data set a subset of about 25 000 articles was used. This will be used
to see how the running time is affected with a different amount of data.

The data sets can be found in table 6.1 as P1 and P2.

6.2 Evaluation of clustering quality
To evaluate the cluster quality of the resulting clusters from the cluster algorithms we
will have to introduce some measurements. In this thesis we make use of the F-measure,
purity and entropy measures. In order to understand F-measure we will have to discuss
precision and recall which are two of the most frequently used measuring methods in
the field of information retrieval [6].

In information retrieval precision (P) is defined as the fraction of the retrieved ele-
ments that are relevant and recall (R) is defined as the fraction of the relevant elements
which are retrieved [6]. That is:

P (c, o) = |c ∩ o|
|c|

= Number of relevant elements retrieved
Number of retrieved elements

31

CHAPTER 6. RESULTS

and
R(c, o) = |c ∩ o|

|o|
= Number of relevant elements retrieved

Number of relevant elements
where c is the set of the retrieved elements and o is the set of relevant elements.

But there is a trivial way to get a good recall value. Just return all documents for
any query to the system [25]. To overcome this problem we introduce the F-measure
which combines both recall and precision. The F-measure is defined as:

F1(c, o) = 2 · P (c, o) ·R(c, o)
P (c, o) +R(c, o)

In the equation above the F-measure is denoted F1 because the recall and precision
is weighted equally. That is not always the case, sometimes one might want to weight
one or the other higher. This is done in the following way [25]:

Fα(c, o) = (1 + α) · P (c, o) ·R(c, o)
α · P (c, o) +R(c, o)

Thus, F0.5 means that the precision has higher weight than the recall and F2 means
that the recall is weighted higher than the precision. In the remainder of this thesis we
will only be working with the F1 value.

In order to make this work together with clustering we will have to make use of our
reference clusters (presented in section 6.1), which can be seen as our set of relevant
elements. We will from here on denote the reference clusters O. Needless to say, we
will also have to make use of the calculated clusters from the clustering algorithm (C),
which can be seen as our set of retrieved elements. Now the F-measure is calculated in
the following way [25]:

F1 =
∑
o∈O

|o|
n

max
c∈C

F1(c, o)

where n is the total number of elements in the collection which is clustered.
As mentioned earlier we also make use of the purity and entropy measurements.

Purity is the percentage of documents which is in the correct cluster. That is, each
computed cluster is associated with the reference cluster from which it has the most
number of objects [26]. We sum up the number of correctly placed objects and divide
with the total number of objects. The formular looks like this [25, 26]:

Purity = 1
n

∑
o∈O

max
c∈C
|o ∩ c|

where n once again is the total number of objects which have been clustered. A purity
close to 0 indicates a bad clustering while a perfect clustering has a purity value equal
to 1 [26].

Entropy measures the distribution of objects from each reference cluster within a
computed cluster [25]. The entropy for a clustering is defined as:

Entropy = − 1
log k

∑
o∈O

1
n

∑
c∈C
|o ∩ c| · logP (c, o)

32

CHAPTER 6. RESULTS

where k represents the number of reference clusters.
A low entropy value indicates that the computed clusters does not contain objects

from a lot of different reference clusters. Thus, we strive for a low entropy value.

6.3 Pre-processing evaluation
In appendix A we have presented the results of our benchmarks with different param-
eters for our pre-processing steps and we will in this section discuss those results. The
benchmarking was done using the Hierarchical Compact Algorithm (presented in sec-
tion 4.4). When nothing else is stated the following parameters for pre-processing are
used:

• Terms which occurs 5 times or less throughout the corpus is removed.

• The document vectors are truncated such that they only contain the 100 most
significant terms.

• Terms found in the title will be counted twice.

• Named entity extraction will not be used.

• The term frequency (tf) in the document vectors are weighted using (1+log4(tft))×
idft. The idft is calculated as:

idft = log4
N

dft

where N is the total number of documents in the corpus and dft is the number of
documents which contains the term t at least once.

• The similarity measure used in the benchmarking is Cosine similarity without any
penalties if two articles are published by the same source or if there is long time
between publications.

The motivation to that we use Hierarchical Compact Algorithm with these pre-
processing steps are that after some quick testing it seemed to give a acceptable results
with a reasonable runtime performance.

6.3.1 Pruning of rare words

In section A.1 are the results from when the pruning value was alternated. The values
we tested ranges from 0 to 30. Our testing does not show any significant improvement in
the clustering quality when changing the pruning values. But we see a big dimensionality
reduction already at small pruning values, meaning that the majority of the words in
the article collection does only occur very few times.

A pruning value of 3 seems to be the best one in the case when clustering 2005 articles
and a pruning value of 10 seems to be the best when we clustered 5011 articles. These

33

CHAPTER 6. RESULTS

values can be explained with that noise (including spelling mistakes) is removed which
does not help the algorithm to distinguish one event from another. On the other hand, a
too large value may remove words which are important for the articles and consequently
impair the cluster quality.

6.3.2 Truncation

The results from the tests where we alternated the truncation value is found in sec-
tion A.2. We did tests with no truncation at all as well as only keeping the t most
significant words. t was given different values ranging from 50 to 150. As with the case
with pruning, our tests did not show any significant change in the clustering quality for
our different values of t. Even the in parameter β had a quite steady value.

This is most probably because the least significant terms in the document vector
does not have any great impact on the similarity calculations between the articles. As
long as the most significant term weights for each document vector are kept one can
expect that the cluster quality will not be reduced.

The runtime performance was not affected very much by the truncation (not seen in
the test result tables). In the case with 5011 articles the runtime performance boost was
less than 5 % when comparing no truncation to truncating such that only the 50 most
significant terms was kept.

6.3.3 Application of same source- and time difference penalties

In table 6.2 and table 6.3 are the results from when we penalized the similarity measure
if the articles were published by the same source or if long time had passed between the
article publications. More detailed tables are found in section A.3.

If two articles are published by the same source the similarity measure will receive a
15 % penalty. When it comes to the publication time difference, the similarity measure
will not receive a penalty if the difference is at most 2 days. After that the penalty will
increase linearly until a 40 % penalty have been reached after 14 days where it flattens
out.

To come up with these values we first thought about what would be reasonable
values. Then several tests were conducted in order to come up with the final values
which showed the best results.

Our tests reveal that by applying the penalties to the similarity measurements the
cluster quality will be improved. All our quality measurements are improved when using
the penalties. The computed clusters are more pure and does overall contain less articles
from different reference clusters.

34

CHAPTER 6. RESULTS

Penalties β F-measure Purity Entropy

Off 0.30 0.964 0.976 0.061
On 0.30 0.974 0.987 0.037

Table 6.2: Source and time penalty for the 2005 articles set.

Penalties β F-measure Purity Entropy

Off 0.295 0.944 0.960 0.091
On 0.290 0.958 0.975 0.064

Table 6.3: Source and time penalty for the 5011 articles set.

6.3.4 Weighting of terms in titles

The results from when we alternated the weight of the terms found in title is presented
in section A.4. We tested to not take the title into account at all and then also tests
where each term in the title were counted 1, 2, 4, 8 and 16 times. We could observe
from our test results that counting each term in the title about 8 times yields the best
resulting clustering.

The most likely reason why this values results in good clustering is because a lot of
information about the article is found in title. Not taking the title into account at all
results in a worse clustering quality as important occurrences of terms are not registered.
We could also observe that giving the terms in the title too much weight also results in
quality deterioration. A plausible explanation to this is because important terms in the
body of the article will lose their meaning when the terms in the title have such a heavy
weight.

6.3.5 Weighting of extracted named entities

The extracted named entities will in our representation be added as new words to our
document vector. As in the case with the title weights, we tested to count each entity
found x times. In our tests we set x to 0, 2, 4 and 8. The results can be found in
section A.5.

By inspecting the test results one may see that a greater weight on the entities
results in an impaired clustering quality. This might be due to we introduce noise into
the document vectors which affect the similarity measures negatively. Another plausible
explanation is that articles which for example involves the same person will be more
similar to each other even if they do not describe the same event. Consequently may
such articles end up in the same cluster even though they should not.

35

CHAPTER 6. RESULTS

6.3.6 Different term weighting methods

Here we tested four different term weighting methods. The ones we tested were tf ,
√
tf ,

1 + log4(tf) and 1 + log2(tf) where tf is the term frequency. We did all these tests two
times. First we combined them with the inverse document frequency and then without it
in order to see how much the inverse document frequency affected our clustering quality.
The test results are found in section A.6.

Term weighting combined with inverse document frequency

Our tests show that both the
√
tf and 1 + log4(tf) weighting methods yields quite

similar clustering. But both the tf and 1 + log2(tf) weighting methods results in better
clustering, especially the 1 + log2(tf) weighting. It seems like the difference in term
frequency in an article is more important than we originally thought. However, it appears
that some smoothing still is needed to reduce the weight of the most frequently occurring
terms.

Term weighting without inverse document frequency

According to our tests it seems like the 1+log2(tf) weighting method results in the best
clustering quality also in the case when not used with the inverse document frequency.
Furthermore, once again the

√
tf and 1 + log4(tf) weighting methods performs worst.

One may also notice that the cluster quality is slightly worse in comparison to the
cases where also the inverse document frequency was used. It appears that giving terms
which occurs infrequently a greater weight than those who appears often is a good
approach. However, the quality is still quite good in comparison to the cases where
also the inverse document frequency were in use. One may consequently argue that the
inverse document frequency should not be used at all, as it will change over time as new
articles are are added to the clustering.

6.3.7 Different similarity measure methods

Table 6.4 and table 6.5 shows the test result from our comparisons between the Cosine
similarity measure and the Jaccard similarity measure. The results are also found in
more detail in section A.7. Our test results show that the clustering algorithm returns
clusters of similar clustering quality while using either the Cosine or Jaccard similarity
measure.

Similarity measure F-measure Purity Entropy

Cosine 0.964 0.976 0.061
Jaccard 0.962 0.975 0.062

Table 6.4: Different similarity measures for the 2005 articles set.

36

CHAPTER 6. RESULTS

Similarity measure F-measure Purity Entropy

Cosine 0.944 0.960 0.091
Jaccard 0.949 0.961 0.091

Table 6.5: Different similarity measures for the 5011 articles set.

6.4 Algorithms
In order to see how well the clustering algorithms from chapter 4 performs we have
conducted a comparison between them. We have tested their clustering quality and
measured their running times on our different data sets.

All test results can be found in A.8, the data that follows in this section is a subset
out of those results.

6.4.1 Experimental setup

From the previous section about pre-processing (section 6.3) we have concluded that the
highest quality should be achieved when using the following options:

• Titles are counted 8 times.

• Cosine similarity are used along with penalties.

• The terms are weighted using (1 + log2(tf))× idf .

• The pruning value is set to 3.

• The truncation value is set to 100.

The mentioned options have been used in all clustering algorithm tests.
All algorithms have been written in the programming language Scala. Some of our

implementations are better optimized than others. However, this should only affect the
running time, the evaluation measures should remain unaffected of this.

All tests have been performed on a single computer that used a Intel Core i7 2.7 GHz
(4 cores) processor. The tests ran on a single thread in order to limit the optimization
differences. The JVM that was used had its heap size limited to 4 GB and was restarted
for each test.

Time measurements is measured between the start of a clustering process until it
completes, neither the pre-processing steps nor evaluation measurements are included.

Hierarchical Agglomerative Clustering with GAAC linkage have been excluded due
to unreasonable running times on the Q2 data set. For k-means the expected number of
clusters were given as input. Since k-means and Bisecting k-means are nondeterministic
algorithms, we ran each of these tests five times and selected the test which produced
the clustering with maximum F-measure. All other algorithms were run with a β value

37

CHAPTER 6. RESULTS

which produced roughly the same amount of clusters as reference clusters, with as high
F-measure as possible.

6.4.2 Clustering quality

In order to test how well the algorithms clusters articles we have tested them with the
data set Q2. The data set contains a reasonable amount of articles divided into different
sizes of clusters (see 6.1.1). Table 6.6 contains the results.

Algorithm β γ Time (s) F-measure Purity Entropy

HAC complete-link 0.20 408.581 0.939 0.964 0.089
HAC single-link 0.34 369.133 0.928 0.929 0.144
HAC UPGMA 0.28 353.762 0.965 0.973 0.063
k-means 334.696 0.883 0.919 0.180
Bisecting k-means 5e−5 23.332 0.588 0.630 0.978
HSA 0.36 259.137 0.966 0.982 0.046
HCA 0.35 113.310 0.964 0.980 0.050
ICA 0.28 10.630 0.962 0.975 0.058

HCA with Corner red. 0.36 1.4 5.100 0.963 0.982 0.045
ICA with Corner red. 0.28 1.4 1.023 0.962 0.975 0.058
ICA with Word set red. 0.28 0.05 1.632 0.961 0.975 0.056
Table 6.6: Different clustering algorithms and reductions on the Q2 data set with 5011
elements.

Starting with the worst result, Bisecting k-means performed very badly. The reason
for this could be that articles that belongs to the same reference clusters is at some point
divided between the two centroids and have no possibility to be merged together again.

k-means had some help since we had to give it the number of clusters it should create.
It performed quite well, not as good as the other algorithms which all had F-measures
above 0.9. The entropy is high and the reason behind that is probably that the centroids
are not evenly distributed to cover the reference clusters.

Regarding the Hierarchical Agglomerative Clustering all three linkage criteria shows
good results. Single-link have most likely created chains since it has a higher entropy
compared to the other two. Out of the three, UPGMA have the best measurements
and this is related to that it takes all articles in a cluster into account when it performs
similarity measurements.

HSA, HCA and ICA shows almost equally good F-measures.
Over the entire test HSA shows the absolute best result with the highest F-measure

and purity as well as the lowest entropy.

38

CHAPTER 6. RESULTS

As when it comes to the reductions methods (presented in chapter 5) we can see
that the quality is quite stable even when those are applied. However, we observed
that the resulting clusters are not exactly the same as when the algorithms did not use
any reduction method at all. But those differences occurred very rarely throughout the
resulting clusters.

6.4.3 Clustering performance

Since we have aimed to build a large scale system that could handle a vast amount of
articles, we need a clustering process that can cluster articles at a high rate. In order to
compare the algorithms we have used the data sets Q2, P1 and P2.

The result from the Q2 test can be found in table 6.6. This is the only performance
test where all algorithms have been tested.

Test results for P1 and P2 can be found in table 6.7 and 6.8. Those tests only include
HCA with Corner reduction as well as ICA without any reduction as well as with both
applied separately. All other algorithms were too slow to cluster the number of articles
present in those data sets.

Algorithm β γ Time (s)

HCA with Corner reduction 0.30 1.4 150.198
ICA 0.23 353.096
ICA with Corner reduction 0.23 1.4 25.723
ICA with Word set reduction 0.23 0.05 53.906

Table 6.7: Algorithms with reduction methods on the P1 data set with 25 586 elements.

Algorithm β γ Time (s)

HCA with Corner reduction 0.30 1.4 517.328
ICA 0.23 1 127.040
ICA with Corner reduction 0.23 1.4 87.232
ICA with Word set reduction 0.23 0.05 172.269

Table 6.8: Algorithms with reduction methods on the P2 data set with 44 971 elements.

From table 6.6 one can see that ICA is the absolute fastest algorithm, when not
looking at the reduction method results. Bisecting k-means was also very fast, but did
not achieve a good clustering quality and its result is therefore not relevant. Thus, HCA
was the second fastest algorithm but was, with that data set, ten times as slow as ICA.

The Q2 data set is 5011 articles, a 1/20 of the amount of articles that we wanted to be
able to cluster in less than an hour (see the Introduction). If the algorithms would have

39

CHAPTER 6. RESULTS

a linear time complexity then it would only be ICA and HCA that could possibly achieve
the runtime performance goal, based on the test results from table 6.6. To be clear, the
time complexity of the algorithms is not linear to the number of articles. Therefore, we
performed larger tests on the P1 and P2 data sets.

As seen in table 6.7 and table 6.8, when running ICA with either reduction method
the running times have reduced to just a small fraction compared to ICA without any
reduction. The Word set reduction in ICA gives about 6.5 times performance boost over
the unchanged algorithm. Corner reduction is slightly better and gives between 10-14
times performance boost compared to ICA. We could also observe that the runtime
performance of HCA is greatly improved when using Corner reduction. It managed to
cluster more than 25 000 articles in 150 seconds while it spent 113 seconds to cluster
only 5000 articles without any reduction.

40

7
Conclusion

In this thesis we examined different approaches on how to cluster news articles so that
articles covering the same information would end up in the same cluster. The requirement
was that the algorithm should produce clusters of high quality and to do so with good
runtime performance. We investigated several pre-processing methods as well as various
clustering algorithms to achieve this.

Regarding the pruning pre-processing step, our tests showed that pruning advanta-
geously could be applied. This seemed to remove some noise and consequently made the
similarity measures more reliable.

When it comes to the similarity measures used we could see that when using either
the Cosine similarity measure or the extended Jaccard similarity measure the algorithm
returned clustering results of equal quality. However, when applying penalties to sim-
ilarity measure that was published by the same source or if long time passes between
publications we observed that the quality was greatly improved.

The weighting of words showed us that it was a good idea to count the words found
in the title several times as it boosted the quality a bit. We also observed that by
extracting named entities and giving weight to them actually degraded the clustering
quality. But the perhaps most interesting result when it comes to the weighting is that
the inverted document frequency only improved the clustering quality a little. Thus,
one may remove it altogether in order to skip reweighting all terms as new articles are
added.

All of the examined algorithms showed quite bad running times. Although there
seems to be a lot to gain by using our reduction methods which improved the running
time greatly.

Our tests also showed that the Incremental Clustering Algorithm (presented in sec-
tion 4.6) returned clusters of high quality. In combination with the different similarity
reduction methods (chapter 5) it could do so in very short time, without significantly
affecting the clustering quality. It was much faster than the Hierarchical Compact Al-
gorithm while the cluster quality was just slightly reduced.

41

CHAPTER 7. CONCLUSION

Even if we managed to achieve good clusterings during our tests one should be aware
that it is hard (if not impossible) to guarantee a flawless result. However, our tests shows
that it is possible to cluster news articles with high accuracy and to do so with good
runtime performance.

We think that we with the Incremental Clustering Algorithm in combination with
our reduction methods have met both the quality and runtime performance requirements
for this project.

7.1 Future work
There are lots of additional problems to address regarding this bigger problem. Some of
our ideas that we would like to see further investigation are the following.

As for the pre-processing part it would be interesting to find synonyms and combine
them to a single word in the document vector. If this could be done with high precision
we think that the similarity measures could be more reliable and consequently one can
expect better clustering quality.

It would also be interesting if the relationship between words could be used in the
similarity measures. For example, the words ambulance and hospital are not synonyms
but both words belongs to the medical care area. If this could be used when performing
the similarity measure then the clustering might get better.

The context of the words is something else which could be taken into account. In
this thesis we used the vector space model which represents the text as a bag of words.
But by actually using the information in the article and not just the words present in
it, the similarity measurement might distinguish an event from another even better and
thus one might expect a boost in the clustering quality.

We have with good result explored two approaches for reducing the number of com-
parisions that is done in the clustering algorithms. We think that further developments
can be done in this area in order to improve the runtime performance of different algo-
rithms.

Lastly we think that an alternative to the inverted document frequency should be
examined. This method should not require all articles term weights to be updated as
new articles arrive over time.

42

Bibliography

[1] W. B. Frakes, R. Baeza-Yates, Information Retrieval: Data Structures & Algo-
rithms, Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1992.

[2] A. Huang, Similarity measures for text document clustering, in: Proceedings of
the Sixth New Zealand Computer Science Research Student Conference (NZC-
SRSC2008), Christchurch, New Zealand, 2008, pp. 49–56.

[3] A. Strehl, J. Ghosh, R. Mooney, Impact of similarity measures on web-page clus-
tering, in: Proceedings of the AAAI Workshop on AI for Web Search, AAAI, 2000,
pp. 58–64.

[4] S. Zhong, Efficient online spherical k-means clustering, in: Proceedings of IEEE
Int. Joint Conf. Neural Networks (IJCNN 2005), Vol. 5, 2005, pp. 3180–3185 vol. 5.

[5] A. Strehl, Relationship-based Clustering and Cluster Ensembles for High-
dimensional Data Mining, Ph.D. thesis, The University of Texas at Austin (2002).

[6] C. D. Manning, P. Raghavan, H. Schütze, An Introduction to Information Retrieval,
Online Edition, Cambridge University Press, 2009.

[7] H. Schütze, C. Silverstein, Projections for efficient document clustering, in: Pro-
ceedings of the 20th International ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval, 1997, pp. 74–81.

[8] L. Dolamic, J. Savoy, When stopword lists make the difference, Journal of the
American Society for Information Science and Technology 61 (1) (2010) 200–203.

[9] N. Sandhya, Y. Sri Lalitha, V. Sowmya, K. Anuradha, A. Govardhan, Analysis of
stemming algorithm for text clustering, IJCSI International Journal of Computer
Science Issues 8 (5) (2011) 352–359.

[10] M. F. Porter, Snowball: A language for stemming algorithms, online; accessed 21st
of February 2013 (2001).
URL http://snowball.tartarus.org/texts/introduction.html

43

http://snowball.tartarus.org/texts/introduction.html
http://snowball.tartarus.org/texts/introduction.html

BIBLIOGRAPHY

[11] Google scholar search, online; accessed 21st of February 2013.
URL http://scholar.google.com/scholar?q=%22Martin+Porter%22

[12] A. Hotho, S. Staab, G. Stumme, Wordnet improves text document clustering, in:
In Proc. of the SIGIR 2003 Semantic Web Workshop, 2003.

[13] J. Sedding, D. Kazakov, Wordnet-based text document clustering, in: Proceedings
of the 3rd Workshop on RObust Methods in Analysis of Natural Language Data,
Association for Computational Linguistics, 2004, pp. 104–113.

[14] K. Blake, Inverted pyramid story format, online; accessed 15th of February 2013.
URL http://kelab.tamu.edu/spb_encyclopedia/data/Inverted%20pyramid%
20story%20format.pdf

[15] E. Marsh, D. Perzanowski, MUC-7 Evaluation of IE Technology, in: Message
Understanding Conference Proceedings, 1998.
URL http://www-nlpir.nist.gov/related_projects/muc/proceedings/muc_7_
proceedings/marsh_slides.pdf

[16] The Stanford Natural Language Processing Group, Stanford Named Entity Recog-
nizer (NER), online; accessed 8th of May 2013.
URL http://www-nlp.stanford.edu/software/CRF-NER.shtml

[17] Y. Zhao, G. Karypis, U. Fayyad, Hierarchical clustering algorithms for document
datasets, Data Mining and Knowledge Discovery 10 (2) (2005) 141–168.

[18] M. Steinbach, G. Karypis, V. Kumar, A comparison of document clustering tech-
niques, in: KDD workshop on text mining, 2000, pp. 525–526.

[19] Y. Hatagami, T. Matsuka, Text mining with an augmented version of the bisecting
k-means algorithm, in: Proceedings of the 16th International Conference on Neural
Information Processing: Part II, Springer-Verlag, 2009, pp. 352–359.

[20] R. Gil-García, J. Badía-Contelles, A. Pons-Porrata, Dynamic hierarchical compact
clustering algorithm, in: A. Sanfeliu, M. Cortés (Eds.), Progress in Pattern Recog-
nition, Image Analysis and Applications, Vol. 3773 of Lecture Notes in Computer
Science, Springer Berlin Heidelberg, 2005, pp. 302–310.

[21] R. Gil-García, A. Pons-Porrata, Dynamic hierarchical algorithms for document clus-
tering, Pattern Recognition Letters 31 (6) (2010) 469–477.

[22] R. Gil-García, J. Badía-Contelles, A. Pons-Porrata, A general framework for ag-
glomerative hierarchical clustering algorithms, in: Proceedings of the 18th Interna-
tional Conference on Pattern Recognition (ICPR’06), Vol. 2, 2006, pp. 569–572.

[23] M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the Theory
of NP-Completeness, W. H. Freeman & Co., New York, USA, 1979.

44

http://scholar.google.com/scholar?q=%22Martin+Porter%22
http://scholar.google.com/scholar?q=%22Martin+Porter%22
http://kelab.tamu.edu/spb_encyclopedia/data/Inverted%20pyramid%20story%20format.pdf
http://kelab.tamu.edu/spb_encyclopedia/data/Inverted%20pyramid%20story%20format.pdf
http://kelab.tamu.edu/spb_encyclopedia/data/Inverted%20pyramid%20story%20format.pdf
http://www-nlpir.nist.gov/related_projects/muc/proceedings/muc_7_proceedings/marsh_slides.pdf
http://www-nlpir.nist.gov/related_projects/muc/proceedings/muc_7_proceedings/marsh_slides.pdf
http://www-nlpir.nist.gov/related_projects/muc/proceedings/muc_7_proceedings/marsh_slides.pdf
http://www-nlp.stanford.edu/software/CRF-NER.shtml
http://www-nlp.stanford.edu/software/CRF-NER.shtml
http://www-nlp.stanford.edu/software/CRF-NER.shtml

BIBLIOGRAPHY

[24] C. Kohlschütter, P. Fankhauser, W. Nejdl, Boilerplate detection using shallow text
features, in: Proceedings of the third ACM international conference on Web search
and data mining, ACM, 2010, pp. 441–450.

[25] N. O. Andrews, E. A. Fox, Recent developments in document clustering, Technical
Report TR-07-35, Computer Science, Virginia Tech. (2007).

[26] M. Deepa, P. Revathy, Validation of document clustering based on purity and en-
tropy measures, International Journal of Advanced Research in Computer and Com-
munication Engineering 1 (3) (2012) 147–152.

45

A
Benchmarks

In section A.1 through section A.6 we have evaluated the different pre-processing steps.
They were evaluated using the Hierarchical Clustering Algorithm. When nothing else is
stated the following parameters for pre-processing were used:

• Terms which occurs 5 times or less throughout the corpus is removed.

• The document vectors are truncated such that they only contain the 100 most
significant terms.

• Terms found in the title will be counted twice.

• Entity extraction will not be used.

• The term frequency (tf) in the document vectors are weighted using (1+log4(tft))×
idft. The idft is calculated as:

idft = log4
N

dft

where N is the total number of documents in the corpus and dft is the number of
documents which contains the term t at least once.

• The similarity measure used in the benchmarking is Cosine similarity without any
penalties if two articles are published by the same source or if there is long time
between publications.

In the following tables the Cluster column presents how many clusters that were
produced and the Perfect column presents how many of the produced clusters that were
perfect. With a perfect cluster we mean that the cluster contains exactly the same
elements as a corresponding reference cluster. The β column represents what value the
β in parameter was set to during the clustering.

46

APPENDIX A. BENCHMARKS

A.1 Pruning

Pruning β Words
remaining

F-measure Purity Entropy Clusters Perfect

0 0.23 19668 0.963 0.974 0.062 270 192
1 0.25 12056 0.964 0.972 0.068 258 191
3 0.28 7925 0.967 0.977 0.058 262 192
5 0.30 6358 0.964 0.976 0.061 266 188
10 0.34 4470 0.959 0.973 0.064 273 184
15 0.37 3613 0.957 0.975 0.063 286 179
30 0.39 2396 0.960 0.975 0.065 275 184

Table A.1: Pruning for the 2005 articles set

Pruning β Words
remaining

F-measure Purity Entropy Clusters Perfect

0 0.235 32288 0.949 0.963 0.088 579 372
1 0.255 19195 0.949 0.962 0.090 562 371
3 0.280 12851 0.949 0.963 0.086 570 381
5 0.295 10379 0.944 0.960 0.091 572 375
10 0.315 7522 0.950 0.965 0.084 569 382
15 0.320 6107 0.946 0.961 0.093 566 375
30 0.340 4211 0.946 0.961 0.094 569 358

Table A.2: Pruning for the 5011 articles set

A.2 Truncation
In the following tables the Mean length column represents the mean length of the docu-
ment vectors.

47

APPENDIX A. BENCHMARKS

Truncation β Mean
length

F-measure Purity Entropy Clusters Perfect

No truncation 0.31 105.2 0.963 0.976 0.061 269 186
150 0.31 97.9 0.961 0.976 0.060 272 183
125 0.31 92.6 0.962 0.977 0.057 274 186
100 0.30 83.4 0.964 0.976 0.061 266 188
75 0.31 69.1 0.962 0.977 0.059 273 185
50 0.31 49.1 0.962 0.976 0.059 270 183

Table A.3: Truncation for the 2005 articles set

Truncation β Mean
length

F-measure Purity Entropy Clusters Perfect

No truncation 0.300 106.7 0.949 0.961 0.089 569 374
150 0.300 98.8 0.949 0.962 0.088 564 377
125 0.295 93.0 0.948 0.960 0.090 569 375
100 0.295 83.6 0.944 0.960 0.091 572 375
75 0.290 69.2 0.945 0.960 0.092 567 373
50 0.295 48.0 0.945 0.964 0.089 571 369

Table A.4: Truncation for the 5011 articles set

A.3 Source and time penalties

Penalties β F-measure Purity Entropy Clusters Perfect

Off 0.30 0.964 0.976 0.061 266 188
On 0.30 0.974 0.987 0.037 273 199

Table A.5: Source and time penalty for the 2005 articles set

Penalties β F-measure Purity Entropy Clusters Perfect

Off 0.295 0.944 0.960 0.091 572 375
On 0.290 0.958 0.975 0.064 578 392

Table A.6: Source and time penalty for the 5011 articles set

48

APPENDIX A. BENCHMARKS

A.4 Weighting of titles

Title weight β F-measure Purity Entropy Clusters Perfect

0 0.285 0.953 0.969 0.075 273 168
1 0.295 0.963 0.976 0.060 269 185
2 0.300 0.964 0.976 0.061 266 188
4 0.310 0.961 0.974 0.062 267 191
8 0.320 0.968 0.980 0.049 272 202
16 0.320 0.966 0.979 0.053 271 196

Table A.7: Different title weights for the 2005 articles set

Title weight β F-measure Purity Entropy Clusters Perfect

0 0.260 0.945 0.957 0.102 559 344
1 0.285 0.945 0.960 0.094 575 358
2 0.295 0.944 0.960 0.091 572 375
4 0.300 0.948 0.961 0.088 567 381
8 0.305 0.952 0.967 0.078 572 391
16 0.305 0.952 0.964 0.081 556 396

Table A.8: Different title weights for the 5011 articles set

A.5 Clustering with named entities

Entities weight β F-measure Purity Entropy Clusters Perfect

0 0.300 0.964 0.976 0.061 266 188
2 0.310 0.954 0.973 0.070 265 181
4 0.300 0.952 0.972 0.073 268 177
8 0.235 0.937 0.958 0.101 269 166

Table A.9: Different weights on named entities for the 2005 articles set

49

APPENDIX A. BENCHMARKS

Entities weight β F-measure Purity Entropy Clusters Perfect

0 0.295 0.944 0.960 0.091 572 375
2 0.290 0.942 0.963 0.094 562 346
4 0.285 0.936 0.963 0.095 577 334
8 0.235 0.923 0.947 0.128 583 302

Table A.10: Different weights on named entities for the 5011 articles set

A.6 Weighting methods

With idf

Penalties β F-measure Purity Entropy Clusters Perfect

tf × idf 0.445 0.962 0.979 0.056 271 186
√
tf × idf 0.315 0.964 0.976 0.061 267 188

(1 + log4(tf))× idf 0.300 0.964 0.976 0.061 266 188
(1 + log2(tf))× idf 0.345 0.969 0.978 0.054 258 200

Table A.11: Different tf methods (with idf) for the 2005 articles set

Penalties β F-measure Purity Entropy Clusters Perfect

tf × idf 0.455 0.947 0.966 0.085 566 350
√
tf × idf 0.310 0.946 0.962 0.091 571 363

(1 + log4(tf))× idf 0.295 0.944 0.960 0.091 572 375
(1 + log2(tf))× idf 0.350 0.954 0.967 0.081 554 386

Table A.12: Different tf methods (with idf) for the 5011 articles set

50

APPENDIX A. BENCHMARKS

Without idf

Penalties β F-measure Purity Entropy Clusters Perfect

tf 0.440 0.956 0.973 0.074 269 179
√
tf 0.335 0.960 0.973 0.072 265 179

1 + log4(tf) 0.320 0.954 0.968 0.079 270 177
1 + log2(tf) 0.370 0.965 0.977 0.060 270 190

Table A.13: Different tf methods (without idf) for the 2005 articles set

Penalties β F-measure Purity Entropy Clusters Perfect

tf 0.465 0.942 0.960 0.107 567 331
√
tf 0.340 0.954 0.968 0.081 565 355

1 + log4(tf) 0.325 0.952 0.964 0.088 567 355
1 + log2(tf) 0.375 0.953 0.966 0.081 564 367

Table A.14: Different tf methods (without idf) for the 5011 articles set

A.7 Similarity measures

Similarity measure β F-measure Purity Entropy Clusters Perfect

Cosine 0.30 0.964 0.976 0.061 266 188
Jaccard 0.17 0.962 0.975 0.062 267 188

Table A.15: Different similarity measures for the 2005 articles set

Similarity measure β F-measure Purity Entropy Clusters Perfect

Cosine 0.295 0.944 0.960 0.091 572 375
Jaccard 0.160 0.949 0.961 0.091 565 370

Table A.16: Different similarity measures for the 5011 articles set

A.8 Algorithms
See 6.4.1 for the setup that was used for the following tests.

51

APPENDIX A. BENCHMARKS

Quality tests with data set Q2

Algorithm β γ Time (s) F-measure Purity Entropy Clusters Perfect

HAC complete-link 0.20 408.581 0.939 0.964 0.089 553 336
HAC single-link 0.34 369.133 0.928 0.929 0.144 565 396
HAC UPGMA 0.28 353.762 0.965 0.973 0.063 570 404
k-means 334.696 0.883 0.919 0.180 562 204
Bisecting k-means 5e−5 23.332 0.588 0.630 0.978 448 2
HSA 0.36 259.137 0.966 0.982 0.046 608 405
HCA 0.35 113.310 0.964 0.980 0.050 594 403
HCA with Corner 0.36 1.4 5.100 0.963 0.982 0.045 614 403
ICA 0.28 10.630 0.962 0.975 0.058 586 406
ICA with Corner 0.28 1.4 1.023 0.962 0.975 0.058 587 405
ICA with Word set 0.28 0.05 1.632 0.961 0.975 0.056 597 403

Table A.17: Different clustering algorithms and reductions on the Q2 data set with 5011
elements.

Performance tests with data set P1

Algorithm β γ Time (s) F-measure Purity Entropy Clusters Perfect

HCA with Corner 0.30 1.4 150.198 0.581 0.623 0.919 2936 307
ICA 0.23 353.096 0.582 0.618 0.917 2878 285
ICA with Corner 0.23 1.4 25.723 0.582 0.618 0.917 2891 286
ICA with Word set 0.23 0.05 53.906 0.590 0.633 0.878 3052 276

Table A.18: Algorithms with reductions on the P1 data set with 25 586 elements.

52

APPENDIX A. BENCHMARKS

Performance tests with data set P2

Algorithm β γ Time (s) F-measure Purity Entropy Clusters Perfect

HCA with Corner 0.30 1.4 517.328 0.539 0.580 1.048 5321 519
ICA 0.23 1 127.040 0.540 0.575 1.045 5195 485
ICA with Corner 0.23 1.4 87.232 0.540 0.576 1.044 5222 481
ICA with Word set 0.23 0.05 172.269 0.549 0.592 0.996 5523 465

Table A.19: Algorithms with reductions on the P2 data set with 44 971 elements.

53

	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Project aims
	Method
	Thesis outline

	Representation and similarity measures
	Representation of articles
	Similarity measures
	Euclidean distance
	Cosine similarity
	Extended Jaccard similarity
	Same source penalty
	Publication date difference penalty

	Normalization
	Normalization when using Cosine similarity

	Pre-processing
	Stop words
	Stemming
	Pruning of rare words
	Weighting of words
	Truncation
	Named entities

	Clustering algorithms
	k-means
	Hierarchical Agglomerative Clustering
	Bisecting k-means
	Dynamic Hierarchical Compact Algorithm
	Dynamic Hierarchical Star
	Incremental Clustering Algorithm

	Comparison reductions
	Corner reduction
	Word set reduction

	Results
	Data sets
	Quality data set
	Performance data set

	Evaluation of clustering quality
	Pre-processing evaluation
	Pruning of rare words
	Truncation
	Application of same source- and time difference penalties
	Weighting of terms in titles
	Weighting of extracted named entities
	Different term weighting methods
	Different similarity measure methods

	Algorithms
	Experimental setup
	Clustering quality
	Clustering performance

	Conclusion
	Future work

	Bibliography
	Benchmarks
	Pruning
	Truncation
	Source and time penalties
	Weighting of titles
	Clustering with named entities
	Weighting methods
	Similarity measures
	Algorithms

