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Abstract

The sitting position and seat belt orientation of passengers in automobiles can be
crucial in the event of a collision. In order to warn passengers of unsafe positions,
deep learning models in the form of neural networks can be used to identify the
seat belt from image data. Performance of neural networks can be increased by
improving the model (model-centric approaches) or by improving the data used to
train the model (data-centric approaches).

In this thesis we compare the segmentation performance gains from model-centric
approaches to data-centric approaches including stratified sampling, data balancing,
label error reduction and active learning. No new model architecture was found that
improved performance, but the model training time was sped up by four times with-
out performance loss. Stratified sampling, data balancing and label error reduction
did not improve performance significantly.

In active learning, images to be labeled were selected according to the model’s uncer-
tainty. Several uncertainty metrics were used, all leading to an improvement when

using active learning. The best result showed that we achieved 95% and 99% of the
best baseline performance using 19% and 23% less data respectively.

Keywords: computer vision, image segmentation, active learning, data-centric Al.
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1

Introduction

This chapter presents the background and context of the thesis.

1.1 Background

In 2012, AlexNet [4], a Deep Convolutional Neural Network (DCNN) achieved a
state-of-the-art result in the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) [5]. Since then, most of the rescarch in computer vision has been fo-
cused on deep learning and DCNN’s. Deep learning has shown great promise in
computer vision tasks such as image classification and object detection [1]. Figure
1.1 illustrates the rapid increases in performance at the ILSVRC challenge from
2011-2017.

Top Image Classification Competetion Results
at ILSVRC year

0.3

25.8%

0.25}

0.2 |

0.15|

0.1

Top-5 Classification Error

2011 2012 2013 2014 2015 2016 2017

& & & & Lo &F
& P & ST
& <P

o
Figure 1.1: Classification error from the winning entries 2011-2017 in the image
classification task at the ILSVRC challenge [1].

In each edition of the ILSVRC challenge, breakthroughs in DCNN architecture have
driven the increases in performance. The ResNet architecture introduced skip con-
nections for learning in networks with hundreds of layers [6]. GoogLeNet, or In-
ceptionvl, introduced Inception modules, allowing more efficient computation and
enabling deeper networks [7]. We refer to the practice of developing new models in
order to increase performance as a model-centric approach.
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Although there is still room for increases in performance, in particular for object
detection, based on the rate of improvement following ResNet in 2015 it is clear
that we face diminishing returns from efforts to develop new model architectures.
Thus it is worth considering alternative ways to improve performance. In particu-
lar, improving the quality of the training dataset is one approach that has recently
seen increasing interest from researchers in the field. We refer to this practice as a
data-centric approach.

The traditional, model-centric approach is to keep the data fixed and iteratively
improve the model, wheras the data-centric approach is to keep the model fixed and
iteratively improve the data.

1.2 Purpose

We will employ techniques on a supervised learning task at Volvo Cars. Volvo Cars
are using image data for semantic segmentation, segmenting the passenger seat belt,
as seen in figure 1.2.

Figure 1.2: Segmentation of passenger’s seat belt. Red markings are the true,
annotated location and yellow markings are the predicted location of the seat belt.

To develop a successful machine learning model, one would ideally improve both
the model and the dataset used to train the model. However, in practice it might
be more feasible to concentrate efforts on one of the two approaches. Due to the

2
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extensive research that has already been done on model-centric approaches, we will
primarily investigate data-centric approaches. The posed research questions are as
follows:

« What increases in performance in semantic segmentation follow from model-
centric approaches?
o What are the possible data-centric approaches?
— What increases in performance follow from removing uncertainty in the
data?
— What increases in performance follow from modelling the uncertainty in
the data?

The results will be generated using a computer vision model developed at Volvo
Cars, applied to a proprietary dataset. Thus we can evaluate our practices in a
real-world scenario.

1.3 Previous work

Andrew Ng has recently proposed that if one aims to improve the accuracy of a
machine learning model, it might be more beneficial to improve the dataset used
to train the model rather than fine tuning the model itself [8][9]. The data can be
improved quantitatively or qualitatively.

Improving data quantitatively entails collecting more data. One study has shown
that performance in computer vision tasks such as segmentation and classification
increases logarithmically with dataset size [10]. However, Andrew Ng exemplifies
that spending effort on increasing the amount of data by 200% may only be as ben-
eficial as improving the quality of 12% of the dataset. This result demonstrates that
qualitative assessments are important as well. The importance of data collection
compared to annotation for image segmentation has been studied in previous work
[11]. However, this comparison benchmarked dataset sizes starting from 10000 data
points, meaning there is still a need for benchmarks on smaller datasets.

Andrew Ng presents three ways to ensure high data quality. The first two approaches
say that data labels should be consistent and accurate. Consistent labeling could
be exemplified by two images of cats with labels in the form of bounding boxes,
where the bounding boxes should have the same margin around the cats in both
pictures. Accurate labels would mean that the bounding boxes are present in every
cat picture and that they are not misplaced. The third approach is related to both
quality and quantity and says that the dataset should include all important cases.
For a cat dataset, important cases could be kittens, adult cats, white cats, black
cats and cats without tails.

A data-centric approach with recent developments that can be classified as both

quantitative and qualitative is active learning (AL). Active learning entails iter-
atively labeling data based on what data is informative to a model, rather than

3
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randomly labeling a subset of the data initially. Active learning coupled with unsu-
pervised pre-training can reduce time spent on manually labeling in medical image
classification tasks by 90% [12]. Similarly, in traffic segmentation tasks different
active learning strategies have been benchmarked with results showing possible la-
beling time reductions of up to 33.6% [13].

1.4 Goals

Our overarching goal is to investigate whether model-centric approaches or data-
centric approaches are more beneficial for seat belt segmentation. The goal can be
divided into two sub-goals including (1) investigating how much different approaches
improve the accuracy of the model, and (2) evaluating how practical each approach
is based on a trade-off between accuracy and resources needed.

The approaches we will investigate include:
1. Modifying neural network model architecture.
2. Increasing dataset quality by removing poorly labeled data points.
3. Increasing dataset balance using stratified sampling and balancing.
4. Active learning.

We will benchmark models with different architectures, backbones and numbers of
parameters. We will also benchmark the impact of dropout regularization.

As suggested by Andrew Ng, qualitative improvements to our dataset should include
ensuring labels are consistent and accurate. This can be done by making sure each
data point is labeled according to a contract that establishes how labeling should
be done in general cases and edge cases. We will improve quality by removing data
points that do not follow said contract.

Data quality will also be investigated in tandem with data quantity through active
learning. We will benchmark a subset of the active learning strategies benchmarked
in previous work [13] with the contribution being benchmarks in a new domain.

We will investigate the importance of data balance in two ways. First we will make
sure the training data contains the same number of images of every person. We will
also mirror the distribution of the people in the training data to the distribution in
the test data that represents a real world scenario.

1.5 Ethics

Producing a dataset that covers all scenarios that a trained model would encounter
in practice can be difficult. For instance, to cover all types of passengers would re-
quire a dataset with people of every skin color, of different height and with different
clothing styles. Datasets can encode gender and ethnic biases, and machine learning
models trained on these datasets can then exhibit these biases themselves [14]. In

4
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two prevalent image datasets, Adience and [JB-A, a majority of the identified indi-
viduals are light-skinned (86.2% and 79.6% in Adience and IJB-A respectively). An
evaluation of gender classification models showed that dark-skinned females were
misclassified with error rates of up to 34.7%, wheras light-skinned males were mis-
classified with a maximum error rate of 0.8% [15]. This stark contrast shows that
it is important to verify that the training dataset is representative of the popu-
lation as a whole, and to verify that the results of the model generalize well to
under-represented subpopulations in the original dataset.
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Theory

In the following sections, the theory behind the methods used are presented.

2.1 Machine learning

A machine learning model is an algorithm that takes input data and should be able
to learn and predict the value, or label/annotation, associated with that data. The
input data could be images of cats and dogs which should be processed by a model
that predicts whether a given image should be labeled as depicting a cat or a dog.
An input image can be represented as a feature vector, with elements being the color
values for each pixel, and the label or class being a number, 0 for a cat and 1 for a dog.

Sophisticated machine learning models have a set of parameters that determine the
behaviour and predictions for the model given an input. These parameters are up-
dated to produce better predictions in the training procedure for the model in a
procedure that constitutes the learning process for the model. Models that learn
to predict labels by training on data with given labels are called supervised mod-
els, and the goal is usually to be able to generalize and predict labels on unseen data.

In order to train and evaluate machine learning models we usually split our available
data into three sets; a training set, a validation set and a test set. The training set
is used to train the model, the validation set is used to evaluate and select a model
during training that is expected to perform well on the test set which is used for final
evaluation. The datasets can be expanded and altered in order to improve model
performance using augmentation and by modifying the balance of the datasets.

2.1.1 Data augmentation

Data augmentation entails duplicating existing training data with some transfor-
mation in order to provide new diverse data when training a model. The new data
points are representative for the vicinity of their original data points, hence allowing
us to improve model generalization. However, domain expertise is required in order
to select suitable augmentations and define a vicinity around each data point.
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2.1.2 Stratified sampling and data balance

When randomly splitting a dataset with multiple classes into training, validation
and test sets there is a risk that the classes will have different distributions in each
set. This could mean that the validation set cannot provide an evaluation that is
representative of the test set, and a model trained with said training set might not
be able to generalize to the dissimilar validation set. The datasets can be modified
to have the same class distribution using stratified sampling [16]. This is done by
dividing the entire dataset into subgroups, or strata, one for each class, and then
sampling randomly inside each group. The number of data points of each group
should reflect the size of the group. A dataset can be stratified over not just classes
but also features and characteristics. For a dog breed recognition task one could
stratify over the classes (breeds) but also characteristics like fur color.

After stratifying data one could also balance the data which means making sure
each class has the same number of data points inside some set. Balancing can be
beneficial for models that weigh each data point equally, since minority classes might
otherwise be ignored [17]. However, balancing is typically only used on the training
set, meaning the distribution will be different to the validation and test set. Hence,
balancing might reduce performance. Balancing is typically not used in validation
or test sets since the balance in these sets should reflect the way the data is balanced
in reality.

Balancing can be done using e.g. oversampling or undersampling [18][19]. Over-
sampling means replicating data points from scarce classes either directly or using
augmentation. Undersampling entails removing data from abundant classes. Un-
dersampling introduces loss of information and diversity from the dataset, but the
loss can be minimized by only removing data points with similar features.

2.1.3 Principal component analysis

Principal component analysis (PCA) is a method used to reduce dimensionality
of data [20]. Dimensionality reduction for points in 3D space could simply entail
projecting the points down to 2D space. In general, a target dimensionality (number
of components) is chosen based on how much information in the data is aimed to be
preserved, in other words how much variance is explained. Dimensionality reduction
is useful for illustrating the characteristics of a given dataset that resides in higher
dimensions, for example a collection of images.

2.1.4 K-means clustering

Machine learning can be used to cluster data into multiple separate groups. In k-
means clustering an arbitrary number £ is chosen which is the number of groups
the data should be clustered into [21]. The clustering is initiated by placing k cen-
ter points (centroids) in the data space and assigning each data point to a group
corresponding to its closest centroid. The clustering is improved iteratively by repo-
sitioning the centroids until the total sum of distances from each centroid to their

8
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assigned data points are minimized. K-means clustering can be done on data with-
out knowledge of the label associated with each data point, which is why it is referred
to as an unsupervised machine learning method. Clustering can be useful for getting
an understanding of the characteristics of a given dataset.

2.2 Neural networks

Neural networks are machine learning models that consist of interconnected nodes,
inspired by the network of neurons in the brain. Each node receives input from some
set of nodes, processes it, and sends an output to another set of nodes according to
figure 2.1.

Figure 2.1: Example of a node with input z,...,z,,, activation function o, and
output y. The activation function is denoted by o and applied on the weighted sum
z of the input x and a bias 1 to form its output.

The output of each node is its activation function o applied to a weighted sum of
its inputs including a constant bias term wy according to equation 2.1. Each node
has an individual weight vector w. These weights are adaptable and are how the
network learns.

y = o(2) = olwn + 3 wyay) (2.1)
j=1
Nodes are typically aggregated into layers, with each layer performing a different
transformation on its input. Formally, a fully connected neural network consists of
L layers where layer [ applies a non-linear transformation on its input 2z to produce
its output v, a vector of units v:

np—1
o =00y = aO(3 whol ™) (2.2)
j=0

An artificial neural network, or multi-layer perceptron, is illustrated in figure 2.2.
o is an activation function. Commonly used activation functions include Rectified
Linear Unit (ReLU), equation 2.3, and sigmoid functions, equation 2.4.

o(z) = max(0, ) (2.3)

o(z) = (24)
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1% hidden layer L' hidden layer
input layer N

RN
DA

Figure 2.2: Network graph of an (L+1)-layer perceptron (artificial neural network)
with D input units and C' output units. The {*" hidden layer contains 7; hidden
units. Each node 7 in hidden layer [ is calculated according to o = cr(l)(zi(l)) =

CT(Z) (anfol w(l),v(.l_l)).
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output layer

Figure 2.2 illustrates a fully connected neural network, where each node in any given
layer is connected to each node in the previous layer. Each connection between nodes
has a unique weight, leading to a large number of parameters in the network, which
must be learned in order to approximate some function. Furthermore, in images
with spatial features such as edges and corners, a fully connected neural network
would inefliciently have to learn the same feature on each occurrence in the image.
Therefore, in order to utilize neural networks on large inputs such as image data,
convolutional neural networks (CNN) were introduced.

Many state-of-the-art deep learning models used in computer vision today are some
form of convolutional neural network. A convolutional neural network is a neural
network that contains at least one convolutional layer.

Due to the large number of inputs in image data (a 224 x 224 RGB image contains
224 x 224 x 3 = 150528 values), it is unfeasible to utilize fully connected layers. In-
stead, convolutional layers are used, which are fully connected locally. These layers
learn filters that identify features such as edges, corners and other spatial patterns.
See figure 2.3.

The example in figure 2.3 illustrates a single 2D filter. In practice, since an image
has 3 channels (RGB values), the filter would also operate along the depth of the
image. Each convolutional layer also typically has several filters, thus producing a
3D output, with depth corresponding to the number of filters. The resolution of
the output can be smaller or equal to the input. The output resolution is smaller
when the filter strides over multiple pixels, meaning skipping some possible patches
of pixels. The resolution can be preserved by padding the input with zero value
elements such that the filter can fit its center over every pixel in the original input,

10
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Figure 2.3: Example of a 2D filter K applied to a single-channel, 2D image I. The
resolution is preserved between the input image I and the output image I * K even
when applying the filter K to different regions of the image by padding I with zeros.
The red region is convoluted by the blue filter to produce the value highlighted in
green.

most importantly the edge pixels, and stride over all of these exactly once. CNN
architectures typically contain several stacked convolutional layers with each layer
containing an increasing number of filters. Thus in each convolutional layer, the
output feature map is deeper than that of the input, but of a lower resolution.

CNNs also typically contain some form of pooling layer, which downsamples inputs
without a learnable filter, instead aggregating by choosing the average or maximum
value as output. Downsampling essentially summarizes what features each region
contains which reduces the amount of parameters needed in following layers. Figure
2.4 illustrates a maximum pooling layer.

-

Figure 2.4: Example of a maximum pooling layer.
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CNNs were further developed in the form of residual networks [6], which utilize skip
connections, as seen in figure 2.5.

11
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Figure 2.5: Skip connection.

Rather than designing the network so that layers directly fit some mapping, we
let the layers fit a residual mapping. Denoting the desired underlying mapping as
H(z), we design the network so that the stacked nonlinear layers fit a mapping of
F(x) := H(x) — x. Utilizing a skip connection, the original mapping is recast into
F(x) + x. The idea is that it is easier to optimize the residual mapping F(x) than
to optimize the original mapping H(z). In the extreme case where the identity
mapping would be optimal, it would be easier to push the residual mapping F(z) to
zero than to fit an identity mapping using nonlinear layers. Thus, skip connections
enable much deeper networks.

2.2.1 Backpropagation

In order for a neural network to learn a function, one typically uses gradient methods
to find model parameters (network weights) that minimize a loss function. These
methods require computation of the gradients of the model parameters w.r.t. the
loss function. Backpropagation is an algorithm to compute these gradients efficiently
in neural networks using the chain rule. Computational effort is saved by reusing
values from forward propagation and from previously backpropagated layers in the
chain rule. Performing backpropagation on the entire dataset once is referred to as
en epoch. The entire dataset can be recycled multiple times for multiple epochs to
train a model for a longer period of time.

Consider a neural network f(x, W) with input vector (including bias) x = [1, x1, ..., ]
and weights W = [W(l) LW (L)}. We can compute the gradient of the loss function
L(W:x,y) with respect to the weights W) in layer L as follows:

12
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2.2.2 Optimization

Having computed gradients using backpropagation, gradient methods can be used
to optimize the weights with respect to the loss function. One often uses stochastic
methods such as stochastic gradient descent (SGD). These methods are stochastic
in the sense that network weights are updated after backpropagating a randomly
selected portion of the data in the form of a batch. Network weights are updated
with a step size proportional to the gradient, using a learning rate »:

W« W — 3, VwL(W;x,y) (2.8)

In this project, we utilize the Adam optimizer [22]. Rather than keeping the learn-
ing rate 7 fixed as in gradient descent, Adam computes individual adaptive learning
rates for different parameters from estimates of first and second moments of the
gradients. The algorithm calculates an exponential moving average of the gradient
and the squared gradient, with parameters §; and (8, controlling the decay rates
of these moving averages. After correcting the averages for bias, they are used to
update the parameters.

2.2.3 Regularization

A common issue when training machine learning models is how to balance under-
fitting and overfitting. Underfitting means the model is too simple and unable to
learn complexities in data. Overfitting is the opposite problem where the model is
so complex that it can learn diverse training data, but also too complex to manifest
a general understanding that translates well to new data. Underfitting can be mit-
igated by using more parameters in the model while overfitting is mitigated using
what is called regularization strategies.

Regularization can be done by punishing complex models, by exposing models to
more diverse data and by designing models to be less complex inherently. A Com-
plex model can be punished in the loss function that scores a model by reducing
score based on the length of the model parameter vector. Diverse data used to force
models to generalize can be introduced using augmentation. Two ways of designing
an inherently less complex model is by using batch normalization and dropout.

13
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Algorithm 1 Adam
Require: «: Stepsize
Require: (31, 5y € [0,1): Exponential decay rates for the moment estimates
Require: f(#): Stochastic objective function with parameters 6
Require: 6,: Initial parameter vector
myg < 0 (Initialize first moment vector)
vg < 0 (Initialize second moment vector)
t < 0 (Initialize timestep)
while 6; not converged do
t+—t+1
gt + Vo fi(0i—1) (Get gradients w.r.t. stochastic objective at timestep t)
my < Simy1 + (1 — B1)g: (Update biased first moment estimate)
vy < Bovy_1 + (1 — B2)g? (Update biased second raw moment estimate)
1y < my/(1 — %) (Compute bias-corrected first moment estimate)
0 < v /(1 — B) (Compute bias-corrected second raw moment estimate)
0y < 0, 1 — amy/(v/0; + €) (Update parameters)
end while
return 0; (Resulting parameters)

The dropout procedure entails randomly omitting nodes in a neural network, as
illustrated in figure 2.6. In each forward pass, and in each dropout layer indepen-
dently, nodes to be dropped out are selected randomly (according to a Bernoulli
distribution) with probability p. The idea behind dropout as a regularization tech-
nique is that we force the model to be able to make accurate predictions even if some
nodes are omitted. Why these omissions may produce a less complex model is that
nodes might not be able to specialize on a specific type of feature in the training
data, instead nodes may have to generalize and be able to detect more features [23].

N

W AN '
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Ve

7

Figure 2.6: Fully connected network before (left) and after (right) dropout in
layers 1, 2, and 3.

J

Batch normalization regularizes models by randomly altering the values that make
up each training data point. Randomizing data point values may reduce the model’s
ability to memorize data and exploit this knowledge the next time the data point is
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used in training. The values for each training data point is altered by normalizing
over every image inside each training batch. Normalization can be done by shifting
and scaling the values for the data points such that are distributed with 0 as mean
and standard deviation 1 [24].

2.3 Image segmentation

In computer vision, image segmentation is the task of partitioning an image into
multiple segments, typically locating objects and boundaries. A class label is as-
signed to each pixel in the image. The number of output classes is pre-determined.
In this project, there are 2 possible class labels: seatbelt and background.

2.3.1 Fully convolutional networks (FCN)

CNNs such as AlexNet, the VGG net and GoogLeNet were trained for the task of
image classification, with a single image-level label as output. Fully convolutional
versions of these networks, in contrast, predict dense outputs from arbitrary-sized
inputs, i.e. they make a prediction at each pixel [25]. This is done by replacing fully
connected layers near the end of the network with convolutional layers, preserving
spatial coordinates.

One prevalent family of fully convolutional networks is DeepLab, the latest version
being DeepLabv3+ [26].

Fully convolutional networks are an application of transfer learning, using a pre-
trained model for a task different from what it was originally trained for. Transfer
learning enables the use of deep learning in tasks with limited data. In this project,
we train on our model on a dataset of 259 images, whereas the pre-trained ResNet
encoder was trained on ImageNet, a data set consisting of more than 14 million
labeled images. Thus, transfer learning enables us to quickly train deep learning
models on small data sets and achieve good results.

2.3.2 Feature Pyramid Networks (FPN)

Feature Pyramid Networks [2] are a type of fully convolutional network. They ex-
tend pre-trained CNNs (referred to as encoder) and combine high resolution features
with low resolution features using top-down and skip connections as seen in figure
2.7. Rather than creating a single, high resolution feature map to make predictions,
predictions are made on each feature level separately and aggregated.

We use an FPN model implemented using the PyTorch framework (see appendix
A), with a ResNet-18 encoder pre-trained on the ImageNet dataset [27].

The neural network used in this work is thus a function:

o RIS — [0, 1)V (2.9)
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Figure 2.7: Top-down and skip connections between feature layers [2]. Blue borders
indicate feature strength, thicker borders indicate stronger features.

The output of the final layer with a sigmoidal activation function and the conversion
to a boolean mask using a threshold value of 0.5 is illustrated in figure 2.8.
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Figure 2.8: Left: output of final, sigmoidal layer, bounding values for each pixel
between 0 and 1. Right: output converted to a boolean mask using a threshold of
0.5.

2.3.3 Loss function

In order to quantify how well a neural network produces the desired output given an
input we use a loss function. The loss function used during training in this project
leverages Binary Cross Entropy (BCE), according to equation 2.10.
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Losspor = Y; xlog Vi + (1 = Y;) x log (1 — ) (2.10)

Y; is the true label and Y; is the predicted value. Since we have a single output class,
we can calculate the BCE loss at each pixel and take the average across the whole
image as the loss for an image. We then utilize the average across all images in a
batch in our backpropagation algorithm.

2.3.4 DMetrics

In object detection and image segmentation, a commonly used metric is Intersection
over Union (IoU), also known as the Jaccard index. If we consider sets A and B as
the sets of pixels classified as true in the ground truth annotation and the model’s
output respectively, the IoU metric can be calculated as follows:

_|[AnB| TP
~ |AuUB| TP+ FP+FN

The IoU metric is bound between 0 and 1 by design. The calculation of the metric
is further illustrated in figure 2.9.

J(A, B)

(2.11)

Area of Overlap
loU =

Area of Union

Figure 2.9: Illustration of the Intersection over Union (IoU) metric [3]. The boxes
represent portions of the image classified as positive.

2.3.5 Image label quality

The performance of a model can be bottlenecked by two types of label quality issues,
inaccuracy and inconsistency. If all training data points are labeled inaccurately,
those inaccuracies are likely to manifest in the predictions of the trained model. The
second issue is inconsistent labels, which introduces ambiguity. If different humans
annotate the dataset such that label standards deviate to some percentage, then
these deviations will likely be present in model predictions as well [28].

Label accuracy and consistency can be quantified by comparing the labels to a given

labeling standard manually by eye and documenting deviations. Alternatively, one
can make new annotations for data points with existing annotations and compare
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these two to quantify quality numerically using IoU. One can either measure how
inconsistent each single labeler is when repeatedly annotating some image or how
much annotations from different labelers conflict on some image.

2.4 Weakly supervised learning

Weakly supervised learning, also known as data programming, is an alternative to
manually labelling all data that can be used to quickly create large training datasets
[29].

Weak supervision has been used in computer vision for image classification, using
image-level annotations as input to the models. In image classification, an image-
level annotation declares the class of object that is present in the input image.
Weak supervision is especially popular for semantic segmentation, where labelling
data is time consuming, expensive, and prone to errors due to ambiguous labelling
instructions [30]. One study crowd sourced the annotation of images, utilizing "block
annotations", where only a portion of the image is annotated. The study found that
annotations could be crowd sourced at half the cost and with a lower error rate,
achieving equivalent performance as in the fully supervised case [31].

2.4.1 Annotations

There are several categories of annotations for image segmentation [32]. A full anno-
tation contains information about segment location, shape, and class. In contrast,
weak annotations only contain parts of this information: image-level tags provide
class information; point supervision provides class and approximate location, bound-
ing boxes and scribbles provide class, approximate location and extent.

Weak annotations are more versatile and easier to collect, and thus better for increas-
ing the size of the training set. Since weak annotations do not provide exhaustive
information, weak supervision requires specific training strategies.

2.5 Semi-supervised learning

Another approach for image classification is semi-supervised learning, where one has
a labeled and an unlabeled dataset. The approach involves a teacher model that is
trained on the labeled dataset, and a student model that is trained on the top data
points of the teacher model’s predictions on the unlabeled dataset, for each class
in the labeled dataset [33]. When it comes to image segmentation, semi-supervised
learning implies that the model is trained using either a combination of labeled and
unlabeled data [34], or a combination of strong (pixel-level) and weak (image-level)
labels [35].
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It is important to distinguish between weak and semi-supervised learning for the
task of image segmentation, and for the task of image classification. In [33], the
backbone (ResNet) performance in image classification is improved even further by
using a semi-supervised approach while training on an additional unlabeled dataset.
While using such a backbone as part of a model such as DeepLab has been shown
to increase performance in image segmentation [30], the problem of semi-supervised
or weakly supervised learning for image segmentation is a separate problem.

2.6 Active learning

Traditionally in machine learning, data points to be labeled are chosen randomly
and exhaustively. Training a model on randomly selected data points could lead to
a model with low predictive accuracy since data points that do not help the model
improve could be selected for labeling. Instead, one can use active learning, where
data points to be labeled are selected based on their informativeness, i.e. how much
useful information a data point is expected to provide the model during training in
order to improve performance.

Active learning consists of two entities, a human user called the "teacher" who labels
data points and the "learner" which is an algorithm that trains a model and selects
data points that are queried to the teacher for labeling. The different methods used
to select data points for querying are known as query strategies. Once a data point
has been queried and labeled, it is added to the training set, and the machine learn-
ing model is trained and evaluated. If the learner is not satisfied with the results,
more data points will be queried and the model will be retrained and evaluated on
the new training set. This iterative procedure continues until the learner decides to
stop.

With the right query strategy, active learning can outperform passive learning, where
data points to be labeled are chosen randomly. Most importantly, active learning is
an efficient way to make sure that time is not wasted on labeling non-informative
instances thus saving both time and money. This aspect is particularly important in
semantic segmentation, since labeling pixels in images accurately is especially time
consuming.

Whether a given query strategy selects for informative data points has been esti-
mated using loU as a heuristic in previous work [36]. The idea behind this heuristic
may be that tough data points with low IoU contain information or concepts the
model has not learned yet. Therefore, a good active learning approach should pri-
oritize data points with low IoU. But since we cannot know what the IoU is for a
data point before we have labeled it, we need to employ query strategies that can
rank unlabeled data points with a metric that correlates with IoU.
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2.6.1 Query strategies

Common query strategies include uncertainty querying, error/variance reduction,
model change maximization and query by committee/disagreement (QBC/QBD).

Querying can be done based on expected model change, meaning how much a labeled
data point would update the model weights in back propagation. The expected
model change for a data point can be calculated as the expected length of the
model parameter gradient given every possible labeling of the data point according
to equation 2.12 [37]. L is the set of all possible labels [, p(l) is the probability
the model assigns to label [ and V,F(W) is the gradient given that the label [ is
assigned to the data point in question.

Eapected gradient length =" p(1)||V,E(W)| (2.12)

leL

Computing every possible gradient length can be feasible for tasks like classification
where only a few labels are possible. But for our segmentation task, expected model
change estimation is not feasible without major simplification since the number of
possible labels for a single data point is 2" where N is the number of pixels in
the data point. The number of possible labels can be reduced arbitrarily to 2™ by
dividing each data point into M patches that are assigned one label each, instead
of one label per pixel. The complexity of the problem can be reduced further by
employing graph-cut algorithms, but the use of patches remains [38]. Using patches
means the outputs from the model are very rough for small M, meaning it is not
feasible for our safety-critical task.

Similarly, querying based on error reduction or variance reduction builds on the
premise of estimating expected change for every possible labeling for each data
point [39][40]. Once again, iterating over many possible annotations is infeasible for
us.

Query by committee (QBC) is a query strategy wherein multiple models trained in
parallel are used to predict the label of a data point [41]. The data point with the
highest disagreement among the models is chosen for labeling, the same way as for
uncertainty querying.

Uncertainty querying means choosing to label data points for which the model pro-
duces uncertain predictions. Uncertainty can either be estimated from a single
prediction or as the disagreement between multiple predictions. Uncertainty query-
ing can be combined with representation querying in which data points that are
similar to many other data points are ranked higher [36]. We do not use represen-
tation querying since our available training data pool has already been constructed
such that data points are dissimilar to each other. However, we do use uncertainty

querying.
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2.6.2 Model uncertainty

In active learning, we seek to label the most informative data points, and we can
make use of model uncertainty about the unlabeled data points in order to deter-
mine informativeness. Thus, we require a model that produces model uncertainties.

Model uncertainty is highly useful, but most deep learning models do not offer this
information. We can however get model confidence. In classification problems,
models output a vector where each element represents the confidence in the cor-
responding label. These confidence scores are simply the outputs from the final
softmax/sigmoidal layers, but are often misinterpreted as model certainty [42]. In
fact, a model can be uncertain despite a high output confidence. Even so, two
querying methods are based on output confidence vectors, least confidence query-
ing (LC) and smallest margin querying. In least confidence querying the data point
with the smallest confidence in the predicted label is chosen, meaning the data point
with the smallest softmax/sigmoidal output for the predicted label. Smallest margin
querying is identical to least confidence querying in binary classification where data
points are queried based on the margin between the labels with the most confidence
and second most confidence.

A different way to capture model uncertainty is using a family of neural networks
studied extensively during the 1990s, Bayesian neural networks. These models have
not caught on (likely due to their limited practicality) and are not commonly used
in state-of-the-art deep learning in computer vision [43].

A third way to estimate model uncertainty is using stochastic regularization tech-
niques like dropout and batch normalization [44]. These scale well with large
amounts of data and can be applied to complex, state-of-the-art models such as
CNNs and RNNs. The idea behind querying strategies based on these techniques is
to introduce randomness in a model and predict the label for a data point multiple
times and then quantify the uncertainty as the disagreement between the predic-
tions. For Monte Carlo dropout (MCDO), randomness is introduced by randomly
dropping different nodes for each prediction. For Monte Carlo batch normalization
(MCBN) we introduce randomness by randomly normalizing the data point with a
new batch for each prediction.

We implement Monte Carlo dropout by applying dropout to ResNet residual blocks
2, 3, 4, and before every upsampling layer in the feature pyramid. In existing CNN
literature dropout layers are primarily implemented after inner-product layers at
the end of the model. In our model, using multiple dropout layers, we approximate
Bayesian inference over the full model.

The technique is then to perform T forward passes through the network, yielding
varying predictions due to the dropout applied independently for each forward pass,
from which we obtain pixelwise means and variances. We refer to this method as
Monte Carlo (MC) dropout. Although the training time is unchanged compared to
the model without dropout, the test time is scaled by a factor T'.
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Monte Carlo dropout works on the principle of variational inference. The goal is to
obtain a posterior distribution p(W | X,Y) over the weights W of the neural net-
work, given the training data points X and the corresponding labels Y. However, the
posterior is intractable and hence an approximation to the posterior ¢(W), known
as the variational distribution, is defined. We aim to minimize the Kullback-Leibler
(KL) divergence (equation 2.13) between the true posterior and the variational dis-
tribution.

KL(g(W) || (W | X, Y)) (2.13)

The authors of [45] showed that training a neural network with dropout and standard
cross-entropy loss minimizes the Kullback-Leiber (KL) divergence where ¢(W) is
chosen to be a Bernoulli distribution, which is the effect of the dropout layers.

2.6.3 Uncertainty metrics

Epistemic uncertainty, also known as model uncertainty, represents what the model
does not know due to insufficient training data. This kind of uncertainty can be
decreased by adding data to the training set. Aleatoric uncertainty is caused by
noise in the data and can be decreased by increasing the sensor precision. Together,
the two uncertainties combined compose the predictive uncertainty of the network

[43].

The predictive entropy, H, is the average amount of information contained in the
predictive distribution, and captures predictive uncertainty which combines both
epistemic and aleatoric uncertainties. It can be defined as follows:

Hy|X, Dirain) = — Y _ p(y = c[x, @) log p(y = ¢|x, i) (2.14)

and approximated by averaging the probabilities of the class over T forward passes
as follows:

]I:]I[y\x, Dirain) = — Y (% > ply = ¢lx, u?,)) log (% > ply = ¢lx, ﬁ),)) (2.15)

c t t

where p(y = c|x, ;) is the softmax probability of input x being in class ¢, and @
are the network weights on forward pass t.

The predictive entropy attains its maximum value when all classes are predicted to
have equal uniform probability, and its minimum value of zero when one class has

probability 1 and all others probability 0 (i.e. the prediction is certain).

The mutual information, I, between the prediction, y, and the posterior over the
model parameters, w, captures epistemic or model uncertainty and is defined as

[y, w[x, Dirain] = HyIX, Dirain] = Ep(ufpyyann) [HlyI%, w]] (2.16)
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and approximated as

1

ﬁ[ya U}|X7 Dtrain] = H[ylxv Dtrain] + T

> ply = cfx, ) logp(y = c|x, @) (2.17)

c,t

where we are taking the expectation of the predictive entropy by averaging over
the T forward passes. Note that in equation 2.15 we substitute class probabilities,
p(y = c|x, @), with the average over T forward passes, whereas in equation 2.17 we
average the predictive entropy itself over T forward passes.

Data points x that maximize the mutual information are points on which the model
is uncertain on average, yet there exist model parameters that erroneously produce
predictions with high confidence.

It is our view that mutual information is the most applicable metric for uncertainty
sampling, since it captures the epistemic uncertainty. Our intuition is that it makes
sense to label data points where the epistemic uncertainty is high, since this means
that the model is uncertain due to a lack of knowledge and not due to e.g. poor
image quality.
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Methods

This chapter presents the methods used in order to generate results.

We detail preparation methods related to data collection and processing, as well
as general experiment configurations related to model training. Lastly we explain
how active learning benchmarks are conducted in order to evaluate this data-centric
approach.

3.1 Data collection

The data used in this project is a collection of proprietary datasets collected by
Volvo Cars for research purposes. Images were taken using a Intel RealSense Depth
Camera D415, although the depth information is not used in this project.

The dataset was gathered by putting test subjects in the passenger seat and going
for a 1 hour drive around Volvo Cars HQ) in Torslanda, Sweden. Each dataset, col-
lected in summers of 2020 and 2021 respectively, contains thousands of images of
11 test subjects who went for a ride. For each test subject, a subset of frames were
selected for annotation, explained further in the next section.

Each test subject has signed a waiver allowing Volvo Cars to process their personal
data (images) for research purposes. One challenge to expand the data set is then
data privacy, since each new test subject involves actions to be taken with regards
to data privacy.

3.2 Data splitting

The data used was split prior to our contribution. The labeled data is split into
three sets, training, validation and test with 259, 66 and 217 images respectively.
The data contains images of 11 subjects that are included in each of the three sub-
sets. The distribution of the subjects in each subset is illustrated in figure 3.1.

The images used for the training and validation sets have been selected using PCA
and k-means clustering. First PCA was performed for each subject with every frame
in greyscale format. The number of components used were the amount of compo-
nents needed to explain 75% of the variance in each subject’s images. Then k-means
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Figure 3.1: Initial number of images of each person in the training, validation and
test sets.

clustering was performed on the data which showed that around 30 clusters was op-
timal for grouping the images. Hence, one image was picked randomly from each
cluster, in an attempt to represent the entire dataset with high diversity. These 30
images were divided between training and validation set with a 80:20 split.

The images for the test set were chosen as every 500th frame of the recorded footage
of each person. This test set was used in order to evaluate if the model can segment
the seat belt for a person throughout an entire driving session.

3.3 Data processing

Images were labeled using COCO annotations as JSON files [46]. Sce appendix B.
These annotations are used to create a ground truth mask of the seat belt for each
annotated image. These are used as labels in order to train the model and calculate
ToU scores.

Images are resized from 480 x 848 to 224 x 224 to speed up the training process and
standardized to N(0,1) as is required for inputs to ResNet.

In this project, typical augmentations for image data are used; resizing, rotation,
cutout of random image patches, spatial distortion and adjustment of brightness,
contrast, hue and saturation. Augmentations were implemented using the library
Albumentations [47].

3.4 Model training

For each experiment we train models using a mostly fixed set of hyperparameters,
as seen in table 3.1.
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Hyperparameter Value
Batch size 4

Learning rate 0.0025

Encoder learning rate | 0.0020
Number of epochs 80
Encoder depth 5

Table 3.1: Hyperparameters used during training.

The encoder, ResNet-18, is pre-trained and the learning rate is set slightly lower
than that of the decoder, which is trained from scratch.

The models are trained and tested on fixed datasets in order to get a fair compari-
son, except for data-centric approaches where only the test set is fixed.

For model-centric approaches different encoders as well as different model architec-
tures, i.e. encoder-decoder networks, are compared. To compare architectures we
train the models for 50 epochs to see which has better IoU score and is faster to
train. The architectures benchmarked include ResNet and DeepLabv3 of different
sizes, as shown in section 4.1.

3.5 Data-centric approaches

Data-centric approaches keep the model fixed and alter the data used to train the
model.

3.5.1 Cross-validation

We aim to obtain an estimate of the model’s performance in a general setting, i.e.
the model’s performance on images captured with the same camera and setup on
unseen test subjects. If we validate the model’s performance against a dataset con-
taining test subjects that were also in the training set, the estimate of the model’s
performance will be biased. In order to obtain an unbiased estimate, we utilize
Leave-One-Out Cross Validation (LOOCYV) by validating on one held-out test sub-
ject and training on the remaining test subjects in each split.

The procedure used is illustrated in figure 3.2.
For each split, a new model is trained on the training set of the split, and evaluated
on the validation set of the split. Thus, the IoU on the validation set is an indicator

of the model’s performance on unseen test subjects. The results are shown in section
4.1.1.
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Figure 3.2: Visualization of the cross validation procedure. Each cell represents
the set of all images of a test subject.

3.5.2 Active learning

To evaluate active learning as a data-centric approach, we compare the test set ToU
of a model trained on a data set queried with active learning to a model trained on
a randomly queried data set (referred to as the baseline). Both querying methods
sample images from the original training set which means we use existing labels in-
stead of making new annotations. Each time images are queried, we pick the same
number of images of each test person in order to keep the training set balanced.

In order to evaluate the uncertainty metrics presented in section 2.6.3, we visualize
the uncertainty and performance of the model on each image in the training set
in the form of scatter plots. We expect to see some negative correlation between
model uncertainty and model performance, i.e. the model should perform poorly on
images with high uncertainty.

We will benchmark ten different active learning query strategies. We will implement
least confidence querying and every combination of mutual information, predictive
entropy and variance in conjunction with Monte Carlo batch normalization, Monte
Carlo dropout and query by committee. Each experiment will be repeated ten times
to get a robust result, except for query by committee experiments which will be re-
peated five times.

We use a dropout backbone for all out active learning benchmarks since it is required
for Monte Carlo dropout query methods. The dropout backbone also constitutes a
regularization that could increase performance by itself. Thus we must investigate
the performance impact of the dropout backbone and active learning separately in
order to tell if active learning is actually useful. We first investigate the performance
impact of dropout by comparing two baselines with and without dropout without
using active learning. After the performance impact of dropout is established we
compare active learning performance to the baseline (with or without dropout) that
performs the best. The dropout benchmark is shown in section 4.1 and the active
learning benchmarks are shown in section 4.2.2.
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3.5.2.1 Uncertainty metrics

We use dropout rates of p = 0.5 in both the encoder and decoder dropout layers and
for Monte Carlo methods we perform T = 25 forward passes of each image in order
to sample the posterior distribution of network weights. For query by committee, we
train five models in parallel. For each pixel in each input image, we then calculate
the uncertainty metrics presented in section 2.6.3 and the variance of the sampled
predictions. Using these uncertainty maps, we draw heatmaps in order to visualize
the location of uncertainties in each image, and aggregate pixelwise uncertainties by
means of averaging in order to obtain overall uncertainty of each image. The results
are shown in section 4.2.1.

3.5.3 Stratified sampling and data balancing

We balance and stratify our data to see if this cheap approach can improve perfor-
mance. We perform two experiments, one where we only stratify the data and one
where we stratify and balance the data. We repeat each experiment ten times to
get a robust result showing the IoU score for each dataset.

We stratify the data by matching the distribution of the data in each set. We match
the distributions by altering the training and validation set such that the relative
number of images of each person is the same as for the test set. We alter the number
of images without losing any data using duplicate upsampling, meaning we dupli-
cate images of some people in the training and validation set until they have enough
images.

We balance data in the training set using duplicate upsampling as well. We upsample
by first finding the highest number of images of any person in the training set, and
upsample for the other people to match this maximum. The results are shown in
section 4.2.3.

3.5.4 Removing data points with bad annotations

We perform one experiment where images with bad annotations are removed from
the training set. To produce a robust benchmark indicating whether this cheap
data-centric approach can improve performance we measure the IoU ten times and
compare it to a baseline with the original training set. The images we remove are
chosen by manually inspecting each data point and discarding those that deviate
from the intended labeling. The results are shown in section 4.2.4.
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Results

In this chapter, results of the proposed approaches, model-centric and data-centric,
are presented. For each approach we present the results of several experiments,
comparing results to a baseline.

4.1 Model-centric approaches

Performance of different models and network architectures are illustrated in figure
4.1 and figure 4.2.
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Figure 4.1: IoU scores on validation set during training for FPN models.

The FPN model architecture with ResNet-18 as the encoder performs best and con-
verges the fastest on the training set, and also performs best on the test set, as seen
in table 4.1. The model is also trained significantly faster, training at a rate of 23
iterations/second, whereas the same architecture with ResNet-101 as the encoder
trains at a rate of 6 iterations/second. The training rate is inversely proportional
to the number of parameters in the encoder network.

Although the models using an encoder with more parameters perform slightly worse
on the test set, more work is necessary to evaluate performance. However, moving
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Figure 4.2: IoU scores on validation set during training for DeepLab models.

Model architecture Encoder No. of parameters | Test set IoU
FPN ResNet-18 11M 80.67%
FPN ResNet-50 23M 80.37%
FPN ResNet-50-swsl 23M 79.86%
FPN ResNet-101 42M 80.07%
DeepLabv3+ ResNet-18 11M 80.65%
DeepLabv3+ ResNet-50 23M 80.28%
DeepLabv3+ ResNet-50-swsl 23M 80.08%
DeepLabv3+ ResNet-101 42M 79.85%

Table 4.1: IoU scores on the test set for different models.

forward, ResNet-18 is used as encoder to allow faster training.

To see if dropout affects model performance we compare IoU score for a ResNet-18
model trained with dropout in both the encoder and decoder to a ResNet-18 model
without dropout. The results are shown in figure 4.3. Both models were trained
ten times to account for variance in model performance and to get a robust result.
The ToU was calculated with between 5% and 100% of the training data. For each
training subset we show the mean IoU across the ten repetitions as well as the five
to 95 percentile range of the ten IoUs.
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Figure 4.3: Test set [oU for two models using ResNet-18 with and without dropout
layers in both encoder and decoder. The model with dropout reached 95% and 99%
of the best IoU achieved without dropout using less data.

Introducing dropout layers in the model slightly increased performance. The per-
formance of the models can be quantified by comparing how much data each model
needed to achieve 95% and 99% of the highest IoU achieved by the model without
dropout. The dropout model required 2.9% less data to reach the 95% IoU threshold
and 4.9% less data to reach the 99% IoU threshold. We picked the most competitive
baseline, the one with dropout, for the following active learning benchmarks.

4.1.1 Cross-validation

Results of the LOOCV procedure are illustrated in figure 4.4.

The results in figure 4.4 indicate that the model performs adequately on most unseen
test subjects, with an average IoU of 0.67 across the 11 folds. However, test subjects
8 and 18 with ToU of 0.47 and 0.18 respectively significantly decrease the mean
performance. Thus, the results indicate that a model trained on the existing dataset
may perform well on some unseen test subjects, but suddenly fail when presented
with a new test subject. It should be noted that the intention of this model is not
to perform well on unseen test persons in an Occupant Monitoring System. Rather
the purpose of this data set is to to be able to auto-annotate the remaining frames
in each of the videos. So that the identified postures can be used in safety studies
and simulations at Volvo Cars Safety Centre.

4.2 Data-centric approaches
Results of the methods presented in section 3.5.
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Figure 4.4: Results of Leave-One-Out Cross Validation.

4.2.1 Uncertainty metrics

Two uncertainty metrics are visualized in figures 4.5 and 4.6.

Monte Carlo dropout with mutual information
Pearon's correlation: -0.6933
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Mutual information
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Figure 4.5: Model confidence using Monte Carlo dropout and mutual information
with the corresponding IoU for each data point in the training set. A regression line
is fitted by ordinary least squares.
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Monte Carlo dropout with predictive entropy
Pearon's correlation: -0.4582

0.045

0.040

o
o
@
i

0.030

Predictive entropy
e
w

0.020

0.015

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
loU

Figure 4.6: Model confidence using Monte Carlo dropout and predictive entropy
with the corresponding IoU for cach data point in the training set. A regression line
is fitted by ordinary least squares.

Both uncertainty metrics are clearly negatively correlated with model accuracy, with
Pearson correlation coefficients of -0.429 and -0.681 for predictive entropy and mu-
tual information respectively. Thus, both predictive entropy and mutual information
metrics are strong indicators of weak model performance.

The uncertainty values are rather low due to the sparsity of the model’s predictions
(most pixels are classified as not seatbelt), and for each image, we calculate the
uncertainty as the mean uncertainty of all pixels.

Scatter plots of the other uncertainty metrics and model performance are presented
in appendix C.

Two examples of uncertainty maps are visualized in figures 4.7 and 4.8. Figure 4.7
shows predictions and uncertainty maps of an image with relatively low uncertainty.
In contrast, figure 4.8 shows predictions and uncertainty maps of an image with
high uncertainty. The image was held out during training of the model and used for
validation, according to the method detailed in section 3.5.1.
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Figure 4.7: Average prediction of T" = 25 forward passes of tp_19_1041_22.png
with corresponding uncertainty metrics.
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Mean prediction Variance of prediction
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Figure 4.8: Average prediction of T' = 25 forward passes of tp_8 1590 _7.png
with corresponding uncertainty metrics.

Note the sparsity in the uncertainty maps, as the vast majority of pixels have low
uncertainty.

4.2.2 Active learning

The IoU scores for each querying method are shown in figure 4.9, 4.10, 4.11, 4.12,
4.13,4.14,4.15, 4.16, 4.17 and 4.18. Fach querying method is using a model identical
to the baseline, a ResNet-18 with dropout in both the encoder and decoder. Compar-
ing to this baseline let us see whether active learning provides performance benefits
on top of the small performance increase attributed to the dropout model. Query
by committee benchmarks are compiled over five repetitions since they took much
longer than other benchmarks (16.5 hours compared to 3.5 hours). The baseline
and non-query by committee benchmarks are compiled over ten repetitions. Each
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plot shows the mean test IoU as well as the measured IoU in a five to 95 percentile
range over all repetitions. The performance of each querying method, specifically
the proportion of the dataset required to reach 95% and 99% performance of a model
trained on the full dataset, is collected in table 4.2.
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Figure 4.9: Plot of IoU score for active learning using Monte Carlo dropout with
mutual information as querying method and the baseline using random querying.
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Figure 4.10: Plot of IoU score for active learning using Monte Carlo dropout with
predictive entropy as querying method and the baseline using random querying.
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Figure 4.11: Plot of IoU score for active learning using Monte Carlo dropout and

variance as querying method and the baseline using random querying.
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Figure 4.12: IoU score for active learning using Monte Carlo batch normalization
with mutual information as querying method and the baseline using random query-

ing.
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Test loU for Monte Carlo batch normalization with predictive entropy
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Figure 4.13: IoU score for active learning using Monte Carlo batch normalization
with predictive entropy as querying method and the baseline using random querying.
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Figure 4.14: Plot of IoU score for active learning using Monte Carlo batch normal-
ization and variance as querying method and the baseline using random querying.
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Test loU for Query by committee with mutual information

0.80
........................ xx
0.75 ’5

- 0.70 Vi
°
+—
O 0.65
(9]
-
(%]
@ 0.60
0.55 . .
] —== Baseline: random training subset
0.50 === Query by committee with mutual information
' —— 99.0% of best baseline loU
------ 95.0% of best baseline loU
0.45

20 40 60 80 100
Training data used (%)

Figure 4.15: Plot of IoU score for active learning using Query by committee with
mutual information as querying method and the baseline using random querying.
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Figure 4.16: Plot of IoU score for active learning using Query by committee with
predictive entropy as querying method and the baseline using random querying.
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Test loU for Query by committee with variance
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Figure 4.17: Plot of IoU score for active learning using Query by committee with
variance as querying method and the baseline using random querying.
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Figure 4.18: Plot of IoU score for active learning using least confidence querying
and the baseline using random querying.
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Query Uncertainty metric Data required to reach Data required to reach
method 95% of best baseline IoU | 99% of best baseline IoU
Random - 28.45% 57.40%

Mutual information 25.54% 50.61%

MCDO | Predictive entropy 23.17% 44.37%

Variance 24.29% 47.70%
Mutual information 24.69% 48.27%
MCBN | Predictive entropy 24.15% 46.10%
Variance 23.32% 50.24%
Mutual information 25.16% 52.09%
QBC Predictive entropy 23.33% 45.79%
Variance 24.71% 48.05%
LC - 24.49% 45.48

Table 4.2: Actual performance of active learning querying methods compared to a
baseline using randomly selected training sets. Actual performance is quantified as
the amount of training data needed for achieving 95% and 99% of the best baseline
IoU. We highlight the most data efficient querying methods for each IoU threshold,
for each type of querying method.

In each active learning approach, as 100% training set size was reached, the IoU
converged with the ToU of the baseline. Convergence is expected since the training
set was identical for the active learning approach and the baseline when the entire
set was used. However, in the earlier stages of the benchmarks, each active learning
approach had higher ToU than the baseline.

Every querying method reached 95% and 99% of the best baseline IoU using less
training data than the basecline. Monte Carlo dropout with predictive entropy re-
quired the least data for matching 95% and 99% of the best baseline loU, 19% and
23% less data respectively.

While all active learning querying methods had better performance than the base-
line, negative correlation between uncertainty and model performance did not in-
dicate better results in active learning. For instance, Monte Carlo dropout with
mutual information uncertainty had a larger negative correlation with model per-
formance than Monte Carlo dropout with predictive entropy, but did not showcase
better performance in terms of training data needed to reach the IoU thresholds.
Hence, ranking querying methods for active learning based on negative correlation
with model performance is not reliable. Furthermore, to estimate expected perfor-
mance using Pearson’s correlation values you need to have at least some labeled
data points for measuring loU.
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Figure 4.19: Number of images of each person after stratifying the training and
validation set to match the distribution of the test set.
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Figure 4.20: Number of images of each person after balancing the training set and
stratifying the validation set.

4.2.3 Performance impact of stratified sampling and data
balancing

Models were trained with two training and validation set configurations. In one
benchmark the training and validation data was stratified according to the distri-
bution of the test set, as shown in figure 4.19. In another benchmark the training
set was balanced while keeping the validation set stratified, as shown in figure 4.20.

We present test IoU scores from 40 training repetitions for each dataset configuration
in figure 4.21. The median and mean test loU scores were slightly better with the
modified datasets compared to the baseline. However, the measured ranges of test
ToU scores were large and overlapped with the baseline to a great degree.
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Figure 4.21: Test loU score for a model trained with datasets modified with

balancing and stratified sampling compared to a baseline model trained with an
unmodified dataset.

4.2.4 Performance impact of removing poorly labeled data
points

The training set was inspected manually in order to find poorly annotated data
points. 20 images were identified that either had annotations deviating from the
intended annotation to a great degree or that were duplicates of other images. An
image with poor annotation is shown in figure 4.22 and all removed images are
shown in Appendix D.

The test set IoU scores for models trained with the original dataset and the modified
dataset in 40 repetitions are shown in figure 4.23. The mean and median test ToU
scores were slightly better than for the baseline. However, the measured ranges of
test IoU scores were large and overlapped with the baseline to a great degree.

45



4. Results

Figure 4.22: A data point with poor annotation that was removed from the training
set. The lower part of the belt is not annotated.
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Figure 4.23: Test IoU score for a model trained on a dataset with poorly labeled
data points removed and a baseline model trained with an unmodified dataset.
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Discussion

5.1 Model-centric approaches

The simpler ResNet-18 network performed the best and was also trained fastest,
with four times less trainable parameters than e.g. ResNet-101. It is unclear why
larger networks with more trainable parameters fail to perform better. One reason
could be that ResNet networks were originally designed for image classification with
hundreds of different output classes, whereas we adapt the network for binary clas-
sification of each input pixel.

More model architectures should be benchmarked in future work to see if any sig-
nificant performance gains can be seen. Altering network architecture is relatively
easy compared to conducting data-centric approaches, hence further investigation is
needed. More thorough hyperparameter tuning and optimizer selection should be
done as well.

5.2 Data-centric approaches

All our benchmarks for data-centric approaches can both be improved and expanded
upon.

5.2.1 Leave-one-out cross-validation

The results of the leave-one-out cross-validation procedure showed that the model
performs well on unseen images of test subjects that are present in the training
set, but the model does not always perform well on the held-out test subject in the
validation set.

Thus, in order to increase model generalization, it would be wiser to increase dataset
diversity by collecting images of a larger number of test subjects, rather than col-
lecting more images of each individual test subject.

5.2.2 Active learning improvements

All querying methods and uncertainty metrics were shown to be negatively corre-
lated with the model’s accuracy, but the sample size is small and the dataset is not
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particularly diverse, with only 11 distinct test subjects.

The results establish the uncertainty metrics presented in 2.6.3 as suitable proxies
for model performance in the unsupervised setting. Given a set of unlabeled images,
the uncertainty metrics can be used to determine the images on which the model
performs badly, thus indicating that these images should be prioritized for labeling.

It remains to be seen whether data points where the model is uncertain are infor-
mative, that is whether adding these data points to the training set provides the
model with valuable information. The active learning results show that providing
the model with the most uncertain examples first increases performance. However,
the improvement is fairly small considering the effort required to conduct active
learning, likely due to the limited size of the dataset.

The insufficient dataset size is troublesome when evaluating the approach used for
active learning, as the search space for the query strategy is rather small. We hy-
pothesize that given a larger dataset, the proposed query strategy would significantly
outperform random sampling. Therefore, we suggest that a larger and more dataset
be used in further work, in order to evaluate the active learning query strategy. An
interesting investigation for future work is to compare performance improvements
that follow from collecting more high quality data compared to cheaper data. Data
can be collected at a low cost using scribble annotations, which could then be used
to train a weakly supervised model.

To be able to make a more conclusive comparison between the different querying
methods we should also perform more repetitions of each active learning benchmark.
If we were to repeat each benchmark more than ten times we could increase confi-
dence in the mean IoU scores for each benchmark, and thus more confidently rank
each querying method. However, each benchmark took between three and sixteen
hours, entailing high costs for computational power.

Another possible shortcoming of our comparisons between active learning and the
baseline is that selecting data points randomly for the baseline is arguably not re-
alistic and could potentially entail lower IoU score than a more realistic selection
method. In reality the entire training set was chosen using PCA and k-means clus-
tering, so rather than randomly selecting data points from this original data when
constructing our smaller training sets for our benchmarks we should redo the PCA
and k-means clustering to create each of the smaller training sets. To mimic the
realistic selection for smaller datasets we would repeat the PCA identically, but
reduce the number of centroids for the k-means clustering to equal the number of
images desired of each test person in order to add up to the intended training set
size. This approach could improve the baseline loU score, because the motivation to
use PCA and k-means was to be able to select one image from each k-means cluster,
since that would increase the diversity in the dataset. With our random selection
from a larger number of centroids we do not maximize this diversity.
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Despite the method used to randomly construct the training set for our baseline,
we believe that our benchmarks are valid for two reasons. Firstly, it is possible that
the diversity achieved with random sampling would not greatly differ from that of
k-means clustering selection. With random sampling it is always possible to select
the most diverse data or close to the most diverse data. Furthermore, for the k-
means clustering selection used originally, the diversity was not maximized. One
data point was simply selected randomly for each centroid, which is not generally
optimal if we assume the diversity is measured as the sum of distances between the
data points selected. The second reason why we believe our benchmarks are valid is
that our baseline could actually be considered realistic in two scenarios. The more
conservative scenario is a hypothetical project in which PCA and k-means clustering
is still used to collect training data the same way as discussed before. Even if this
is the case, one might not be able to determine beforehand exactly how much data
is needed throughout said project, meaning that a very large training set might be
chosen initially. This entire dataset might be selected using k-means but through-
out the project there might be a need to randomly select a subset of the data to
annotate, if there are not enough resources to annotate all the data at once. This
scenario reflects our baseline. The second less conservative scenario is one in which
all the data is selected randomly. If we consider a baseline reflecting this construc-
tion one can expect it to perform even worse than our baseline which at least used
PCA and k-means to select a few relatively diverse candidates to query from.

Another issue with our active learning implementation was that in the first few it-
erations the model was likely not trained well enough to query the most informative
data points since it was only given 5% of the training data for the first iteration. To
ensure the model can query informative data points in the early iterations we could
pre-train the model with cheaply obtainable unlabeled images from our domain.
However, to make a fair evaluation of active learning leveraging pre-training in our
domain we should compare it to a baseline leveraging the same type of pre-training.
Pre-training should not only help predict which informative data points should be
queried but should also improve the model’s IoU score.

Another future investigation on active learning could focus more on execution time
as primary evaluation between querying methods. While Monte Carlo dropout with
predictive entropy performed the best in terms of data efficiency out of the bench-
marked active learning approaches, it might not always be the fastest. The execution
time consists of two parts, model training and uncertainty estimation. Training is
five times slower for QBC compared to the other methods, since five models are
trained in parallel. For Monte Carlo methods, the uncertainty estimation is five
times slower than for QBC, since 25 forward passes through the network were cho-
sen for each image, compared to five for QBC. For least confidence querying we only
perform one forward pass with a single model. This means that if a much larger
unlabeled data pool is used in practice, increasing the time needed for prediction, it
might be faster to use QBC over Monte Carlo methods, and least confidence querying
will always be the fastest. To get a better understanding of which query method is
more beneficial in different scenarios we propose two types of benchmarks for future
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work. The first type of benchmark to investigate is how the number of predictions
done in each query method affects performance. One could benchmark active learn-
ing performance for e.g. 5, 10, 25 and 50 predictions. A lot of time can be saved
if we can reduce the number of predictions used as a result of knowing how many
predictions result in diminishing returns in terms of IoU during active learning. A
second investigation could compare query methods for a time constrained scenario.
Monte Carlo methods and QBC could be configured with a number of predictions
resulting in each method requiring the same execution time. These benchmarks
could be repeated for multiple data pool sizes to see which method is the most effi-
cient for a given time constraint and data pool size.

There are more advanced querying methods from previous work we could investigate
for our domain, including representation querying and pixel weighing. Representa-
tion querying could be factored into any of our current querying methods to not
only select based on which data point is informative, but also if that data point is
representative for many other data points and hence expected to improve overall
model ToU score significantly. Pixel weighing could also be combined with any of
our current approaches. The uncertainty of each pixel could be weighed based on
how far it is from the contour of the seat belt. Each pixel could also be weighed
more based on how certain the pixel is expected to be. The expected certainty can
be predicted using a CNN that is trained with the same input as our main network
but with the labeling of the data being the certainty provided by our main network.

Active learning can be a valuable asset for seat belt segmentation since it allows
domain experts to spend less time annotating. However, a convenient annotation
pipeline is needed to save time in practice. With a naive annotation pipeline there
may be overhead in terms of operation time since users can only annotate a few data
points at once before having to wait for the model to re-train and query data points
for labeling in the next iteration. We suggest two ways to avoid this overhead.
The first suggestion is to implement an annotation pipeline that allows users to
easily exit the annotation process while the model is re-training and then resume
the annotation task in the next iteration when training is done. This would allow
users to work on other tasks while the model is training. However, if training is fast,
this pipeline will result in users switching tasks often and may inhibit their ability
to focus. A different approach is to let users label data points while the model is
re-training in each iteration. To implement this pipeline we need to query the user
a sct of data points that is split into two subsets. The first subset is annotated by
the user and given to the model for re-training like normally. The second subset
is annotated by the user during the training process, preemptively expanding the
training data set for the next iteration. A downside with this approach is that the
data points that are queried preemptively might not be useful once the next iteration
is reached. To avoid annotating many data points in vain, this pipeline should not
be used for models that train slowly, since this would mean there would be a lot of
time to label many data points preemptively.
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5.2.3 Improving dataset balance and quality

Modifying our dataset using stratified sampling, balancing and by removing poorly
labeled data points did not improve performance significantly. Furthermore, since
the variances in test IoU were so high, we can not confidently say that our ap-
proaches will reliably outperform the baseline. The reason could be due to the way
oversampling was used. When we oversampled, we used the same augmentations as
for the original dataset, which did not alter each image by a lot. This could mean
that the images that were duplicated contributed a lot to how the model parameters
converged, meaning we skewed the model to make predictions specialized on the du-
plicated data points. This would mean that oversampling had the opposite effect
to what we were trying to achieve with balancing and stratified sampling, where we
tried to prevent the model from skewing towards certain test subjects in the training
data.

The initial data imbalance and label quality issues were not severe, which might
have been a reason why we did not see a significant impact on performance after
stratifying, balancing and reducing label errors. To get a better indication of the
importance of these modifications one might need to compare to a baseline with
more severe data balance and quality issues. This could be done artificially by ran-
domly introducing label errors and skewing the data.

Our dataset quality improvements might not have been good enough to increase
model performance significantly. Firstly, rather than simply duplicating images to
balance data, we should use augmentations that are strong enough to differentiate
the copies from the originals, but also not strong enough to produce images that
are unrealistic for our domain. Secondly, rather than removing poorly labeled data
points, one could fix the labels.
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Conclusion

We did not improve model performance using model-centric approaches, but training
time was reduced by four times without impacting performance. Simple data-centric
approaches, i.e. modifying the training set and validation set using stratified sam-
pling and balancing, as well as error reduction through deletion of poorly labeled
data points, did not improve performance significantly. These approaches are how-
ever cheap, so more thorough investigations are needed to show their value. Active
learning did however show improvements over the baseline.

Active learning was evaluated by querying data points from the previously labeled
training set and comparing to a baseline using random subsets of the training set in
order to see how much data would be needed to reach equivalent performance. The
investigated active learning querying methods include least confidence querying and
every combination of the prediction methods Monte Carlo dropout, Monte Carlo
batch normalization and query by committee paired with the uncertainty metrics
mutual information, predictive entropy and variance. Monte Carlo dropout with
predictive entropy was shown to reach baseline equivalent performance with the
least data. With Monte Carlo dropout and predictive entropy we achieved 95% and
99% of the best baseline IoU using 19% and 23% less data respectively.

Future improvements to our active learning approach include repeating benchmarks
more times to improve our confidence and comparing active learning performance to
a baseline using a more realistic but cheap training set construction method. Future
expansions to our active learning include more advanced active learning querying
methods that weigh data points based on if they are representative for many other
data points. Weighing can also be done pixel-wise for disagreement estimation of
data based on if specific regions in the data are expected to have high disagreement.
Models can also be pre-trained without labeled data to improve the initial phase of
active learning algorithms. Another way to leverage data cheaply is using weakly
supervised models utilizing point or scribble annotations. This could allow more
test persons in the dataset and increase diversity and model generalization.
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Listing A.1: PyTorch image segmentation model.

Appendix

Layer (type:depth—idx) Output Shape Param #
FPN 4, 1, 224, 224] —
+—ResNetEncoder: 1—1 4, 3, 224, 224] —

4+ Conv2d: 2-1 4, 64, 112, 112] 9,408

+—BatchNorm2d: 2-—2 4, 64, 112, 112] 128

+ReLU: 2—3 4, 64, 112, 112] —

4+ MaxPool2d: 2—4 4, 64, 56, 56] -

+—Sequential: 2—5 4, 64, 56, 56] —

| +—BasicBlock: 3—1 4, 64, 56, 56] 73,984

| +—BasicBlock: 3—2 4, 64, 56, 56] 73,984

+—Dropout2d: 2—6 4, 64, 56, 56] —

+—Sequential : 2—7 4, 128, 28, 28] —

| +—BasicBlock: 3-3 4, 128, 28, 28] 230,144

\ 4 _BasicBlock: 3—4 4, 128, 28, 28] 295,424

4 Dropout2d: 2—8 4, 128, 28, 28] —

+—Sequential: 2—9 4, 256, 14, 14] —_

\ 4_BasicBlock: 3—5 4, 256, 14, 14] 919,040

\ 4 BasicBlock: 3—6 4, 256, 14, 14] 1,180,672

+—Dropout2d: 2—10 4, 256, 14, 14] —_—

+—Sequential : 2—11 4, 512, 7, 7] —

\ 4 BasicBlock: 3—7 4, 512, 7, 7] 3,673,088

| +—BasicBlock: 3—8 4, 512, 7, 7] 4,720,640
+—FPNDecoder: 1—2 4, 128, 56, 56] —_—

+—ModuleList: 2—12 —_— 1,623,808

4 Conv2d: 2-13 4, 256, 7, 7] 131,328

4+—FPNBlock: 2—14 4, 256, 14, 14 —

| +—Conv2d: 3-9 4, 256, 14, 14 65,792

| +—Dropout2d: 3—10 4, 256, 14, 14

4+ FPNBlock: 2—15 4, 256, 28, 28 —

| +—Conv2d: 3—-11 4, 256, 28, 28 33,024

\ 4 Dropout2d: 3—12 4, 256, 28, 28 —

+—FPNBIlock: 2—-16 4, 256, 56, 56 —

\ 4+ Conv2d: 3-—13 4, 256, 56, 56 16,640

\ 1+ Dropout2d: 3—14 4, 256, 56, 56 —

4 ModuleList: 2-12 — 1,623,808

| +—SegmentationBlock: 3—15 4, 128, 56, 56 590,592

| +—SegmentationBlock: 3—16 4, 128, 56, 56 442,880

| +—SegmentationBlock: 3—17 4, 128, 56, 56 295,168

| +—SegmentationBlock: 3—18 4, 128, 56, 56 295,168

+—MergeBlock: 2—17 4, 128, 56, 56 —_—
+—SegmentationHead: 1—3 4, 1, 224, 224 —

4 Conv2d: 2—18 4, 1, 56, 56] 129

+—UpsamplingBilinear2d: 2-19 4, 1, 224, 224 —_—

+—Activation: 2—20 4, 1, 224, 224 —_—

\ +—Identity: 3—19 4, 1, 224, 224 —

Total params: 13,047,233
Trainable params: 13,047,233
Non—trainable params: 0
Total mult—adds (G): 13.60

Input size (MB): 2.41

Forward/backward pass size (MB): 241.75

Params size (MB): 52.19

Estimated Total Size (MB): 296.35
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2
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10
11
12
13
14
15
16
17
18
19
20
21
22
23
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31
32
33
34

Listing B.1: Example COCO annotation file for semantic segmentation.
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{"images": [

{

}
1,
"categories":
{

"id": 1148,
"dataset _id": 16,
"category_ids": [
1,
2
1
"path": "/datasets/sapa-training/tp_16_3437_3
437 .png",
"width": 480,
"height": 848,
"file_name": "tp_16_3437_3437.png",
"annotated": true,
"annotating": [],
"num_annotations": 2,
"metadata": {7},
"milliseconds": 19812,
"events": [
{
" cls": "SessionEvent",
"user": "redacted",
"milliseconds": 19812,
"tools used": []
}
1,
"regenerate_thumbnail": false,
"is modified": false
[
"id": 2,
"name": "seat_belt",

"supercategory":

b

III



35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

55

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
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"annotations

v

1,

{

"color":

"metadata": {}

"creator":
"keypoint_colors":

"keypoints": [
"shoulder belt",
"mid_belt",
"lower belt"

1,

"skeleton": [

Il: [

l|idl|:

"image_id":

1247,

"category_id":
"dataset id":
"segmentation": [

[

80.2,
170.5,
87.3,
161.9,
119.5,
213.7,
142.2,
240.4,
176.8,
276.5,
208.9,
318.8,
236.4,
351,
256.8,
383.2,
316.4,

"#70£404",

s

1148,

2,
16,

"system",

1,



81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126

B. Appendix B

469.5,
339.2,
519.7,
413,
695.5,
405.1,
692.4,
399.5,
684.5),
407.5,
696.3,
388.6,
683,
343.9,
668.9,
317.2,
658.7,
297.6,
657.1,
172,
675.1,
87.3,
690.8,
90.4,
677.5,
132.8,
664.9,
150.1,
656.3,
169.7,
650,
250.5,
633.5,
289.8,
632,
320.4,
634.3,
338.4,
642.2,
379.2,
654.7,
384.8,
663,
357.2,
610,
330.6,
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127 563.7,

128 298.4,

129 Bild B,

130 267,

131 460.1,

132 185.4,

133 336.9,

134 136.7,

135 252.9,

136 121.8,

137 222.3,

138 78.7,

139 170.5

140 ]

141 1,

142 "area": 21995,

143 "bbox": [

144 80,

145 162,

146 338

147 534

148 1,

149 "iscrowd": false,
150 "isbbox": false,
151 "creator": "system",
152 "width": 480,

153 "height": 848,

154 "color": "#cd35f0",
155 "keypoints": [
156 159,

157 273,

158 2,

159 276,

160 451 ,

161 2,

162 402,

163 680,

164 2

165 1,

166 "metadata": {1},
167 "milliseconds": O,
168 "events": [],

169 "num_keypoints": 3
170 +

171 ]

172
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Monte Carlo dropout with variance
Pearon's correlation: -0.6708
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Figure C.1: Model confidence using Monte Carlo dropout and variance with the
corresponding IoU for each data point. A regression line is fitted by ordinary least
squares.
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Monte Carlo batch normalization with mutual information
Pearon's correlation: -0.6908
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Figure C.2: Model confidence using Monte Carlo batch normalization and mutual
information with the corresponding IoU for cach data point. A regression line is
fitted by ordinary least squares.

Monte Carlo batch normalization with predictive entropy

Pearon's correlation: -0.4813
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Figure C.3: Model confidence using Monte Carlo batch normalization and predic-
tive entropy with the corresponding IoU for each data point. A regression line is
fitted by ordinary least squares.
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Monte Carlo batch normalization with variance
Pearon's correlation: -0.6714
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Figure C.4: Model confidence using Monte Carlo batch normalization and variance
with the corresponding IoU for each data point. A regression line is fitted by ordinary
least squares.

Query by committee with mutual information
Pearson's correlation: -0.6675
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Figure C.5: Model confidence using query by committee and mutual information
with the corresponding IoU for each data point. A regression line is fitted by ordinary
least squares.
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Query by committee with predictive entropy
Pearson's correlation: -0.4995
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Figure C.6: Model confidence using query by committee and predictive entropy
with the corresponding IoU for each data point. A regression line is fitted by ordinary
least squares.

Query by committee with variance
Pearson's correlation: -0.6481
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Figure C.7: Model confidence using query by committee and variance with the
corresponding IoU for each data point. A regression line is fitted by ordinary least
squares.
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Least confidence querying
Pearon's correlation: -0.4718
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Figure C.8: Model confidence based on final layer activation and corresponding
IoU for each data point. A regression line is fitted by ordinary least squares.
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Appendix D

The figures in this appendix show images with bad annotations that were removed
in one benchmark in order to investigate the importance of label quality on model
performance. Some images were removed due to being a duplicate of a certain frame,
rather due to the quality of the label.

Figure D.1: An image where the lower part of the belt is annotated too high up.
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Figure D.2: An image where the lower part of the annotation is missing.

Figure D.3: An image where the annotation is on top of an arm.
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Figure D.4: An image where the annotation on the chest is too wide.

Figure D.5: An image where the lower part of the annotation is missing.
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Figure D.6: An image where the annotation on the chest is too wide.

Figure D.7: An image where the lower part of the annotation is missing.
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Figure D.8: An image where the lower part of the annotation stretches too far to
the right.

Figure D.9: An image where the upper segment of the annotation abruptly cuts
off, as well as being too wide at the top.
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Figure D.10: A duplicate image.

Figure D.11: An image where the annotation is too wide at the top.
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Figure D.12: A duplicate image.

Figure D.13: A duplicate image.
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Figure D.14: An image where the lower part of the annotation is missing.

Figure D.15: An image where the left part of the lower annotation is too thin.
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Figure D.16: An image where the lower part of the annotation is missing below
the hand on the left.

Figure D.17: An image where the annotation is missing between the hands.
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Figure D.18: An image where the left part of the lower annotation is missing.

Figure D.19: An image where the lower part of the annotation is missing.
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Figure D.20: An image where the lower part of the annotation is missing.
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