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Anyon Colliders
A time-dependent quantum Hall particle collider to reveal
fractional statistics in the Laughlin sequence
SUSHANTH VARADA
Department of Microtechnology and Nanoscience - MC2
Applied Quantum Physics Laboratory
Chalmers University of Technology

Abstract
Elementary particles in nature (3+1 dimensions) are classified into bosons and fermions
based on their exchange statistics. However, more general statistics, intermediate be-
tween fermionic and bosonic, are possible in 2+1 dimensions. Quasiparticles obeying this
intermediary statistics are called anyons. A particularly relevant phase of matter hosting
anyons is the fractional quantum Hall effect, where anyonic statistics has recently been
demonstrated. Generally, exchange statistics is expected to be accessible in interference
experiments, such as in the Hong-Ou-Mandel effect. In this setup, fermions show van-
ishing current correlations due to anti-bunching caused by the Pauli exclusion principle.
Bosons, instead, bunch together due to Bose-Einstein statistics causing a surge in the
current correlations. Can Hong-Ou-Mandel interferometry be extended to probe the frac-
tional statistics of anyons?
In this thesis, we investigate this question in a fractional quantum Hall setup in the
Laughlin sequence (filling factor ν = 1/(2n + 1), n ∈ Z+), where two anyons collide at
a quantum point contact with a tunable time delay. Previous studies investigating sim-
ilar systems relate current correlations of quasiparticle collisions with braiding between
injected anyons and quasi-particle-hole excitations at the tunneling quantum point con-
tact, which emerge due to thermal or quantum fluctuations. However, it remains unclear
whether the presently studied Hong-Ou-Mandel effect probes the universal exchange phase
(ϑ) picked up by the quasiparticles or other parameters, such as the non-universal scaling
dimension (δ). We show that ϑ accumulated by the incoming anyons due to interaction
with quasi-particle-hole pairs at the quantum point contact cancel out in time-sensitive
two-particle interferometry. Instead, the key quantity measured through current correla-
tions is the non-universal δ of the quasi-particle-hole excitations.

Keywords: Anyons, Edge states, Fractional quantum Hall effect, Topological quantum
matter, Quantum interference effects.
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List of Acronyms

Below is the list of acronyms that have been used throughout this thesis listed in alpha-
betical order:

2DEG Two-Dimensional Electron Gas
AC Alternating Current
DC Direct Current
DOS Density of States
FQH Fractional Quantum Hall
HBT Hanbury Brown-Twiss
HOM Hong-Ou-Mandel
IQH Integer Quantum Hall
LL Landau Levels
QPC Quantum Point Contact
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Nomenclature

Below is the nomenclature of parameters and variables that have been used throughout
this thesis.

Parameters

h Planck’s constant
kB Boltzmann constant
q Charge of particle
ν Filling factor
v Velocity of the edge mode
ϑ Statistical exchange phase (or) Braiding angle
δ Scaling dimension of tunneling quasiparticles excited at the QPC
θ Temperature
Λ Tunneling amplitude
α UV or short distance cut-off
ωc Energy cut-off
Ω Frequency of applied voltage pulse
T Time period of applied voltage pulse
τd Delay between injection/arrival of two input signals or particles

Variables

GR,L Equilibrium bosonic Green’s function
G+,− Green’s function
pl,m Photoassisted coefficient
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1
Introduction

Quantum Mechanics is a very successful theoretical framework, tested by numerous ex-
periments, that describes the fundamental constituents of matter and their interactions.
Its conceptions were formulated by Schrödinger, Heisenberg, and Born in 1926-1927 [1]
and further developed as elaborated in Ref. [2]. Quantum mechanics classifies indis-
tinguishable particles in 3+1 dimensional (D) nature (3 spatial + 1 time dimension)
into bosons and fermions. This limitation to only two possible types of particles in
(3+1)D can be understood by examining their exchange statistics. Imagine interchang-
ing two identical particles twice. This scenario is equivalent to encircling one particle
around the other by forming a loop that changes the wavefunction by an arbitrary phase1

[Ψ(x1, x2) → eiΦΨ(x2, x1) → e2iΦΨ(x1, x2)]. Permitting only local deformations2, this
loop can be shrunk to a point in three space dimensions, as illustrated in Fig. 1.1a.

(a) Topological deformation
of winding loop in (3+1)D.

(b) Well-defined braiding of
particles in (2+1)D.

Figure 1.1: Pictorial representation of particle exchange statistics in three and two
dimensions. (a) The winding loop (red trajectory) formed by moving one particle around
the other is shrunk to a point through continuous deformations in the third dimension,
as depicted by the orange arrows. (b) In two dimensions, the winding loop cannot be
topologically deformed to a point because one particle intersects the path of the other
particle. This constraint, exclusive to (2+1)D, leads to fractional exchange statistics.

1This representation is Abelian, meaning that the wavefunction is a scalar quantity that only acquires
a phase after a braiding operation (exchange of two particles). There are more complicated types of
anyons, where a non-abelian representation applies: in that case, the wavefunction is a multi-component
object that transforms according to a unitary matrix [3–5]. In this case, the order in which consecutive
braiding operations are performed is important [6].

2Continuous deformations of a geometry or structure that only include stretching, bending, and shrink-
ing. These transformations do not involve operations like tearing and cutting.
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1. Introduction

Therefore, winding one particle around the other in (3+1)D is topologically equivalent to
not moving the particles. Thus, the wavefunction of the particles remains unaltered under
two such exchanges. Consequently, the particle wavefunction can only change by a phase
factor eiΦ of either +1 or −1 under a single exchange [Ψ(x1, x2) → eiΦΨ(x2, x1)]. Bosons,
defined by a many-body wavefunction that is symmetric when exchanging two particles,
can be described by an accumulated exchange phase of Φ = 0. In contrast, fermions
with an anti-symmetric wave function pick up an exchange phase of Φ = π, such that
eiπ = −1 and e2iπ = 1. Two-dimensional systems lack the extra dimension to topologically
deform this winding loop to a point, as depicted in Fig. 1.1b. Therefore, encircling one
particle around the other is non-trivial in (2+1)D systems and the wavefunction can
acquire any phase Φ = ϑ. Particles described by these wavefunctions are termed any-ons
and were predicted in the late 1970s [7–9]. Anyons are neither bosons nor fermions and
are governed by fractional exchange statistics that is possible for point particles only in 2
spatial + 1 time dimensions [10, 11]. The renewed interest in exploring the properties of
anyons stems from the experimental observation of their fractional statistics with potential
applications in topological quantum computing [6, 12]. Generally, the exchange statistics
of indistinguishable particles is expected to be accessible through interference experiments.
The fractional statistics of Abelian anyons were detected in two seminal experiments [13,
14], each utilizing a different type of interferometer. These experiments attracted much
attention and instigated several theoretical studies. Moreover, the anyon collider (anyon
interferometry) experiment was reproduced independently by three different experimental
groups [15–17]. In this chapter, we begin by describing two-particle interferometry for
particles in (3+1)D and discuss the prospects of extending the idea to anyons in (2+1)D.
The remainder of the chapter introduces key concepts required throughout the thesis.

1.1 Partition Noise and Two-particle Interferometry
Consider a source emitting a stream of N particles impinging onto a potential barrier.
The particles are either transmitted or reflected independently, with a probability of T
and 1 − T , respectively, as depicted in Fig. 1.2. The detector on the right-hand side
clicks only when a particle successfully tunnels through the barrier. The average number
of particles the detector measures is then represented by ⟨N1⟩ = NT . The deviations
from this average manifest as fluctuations, described by ∆N1 = N1 − ⟨N1⟩. The variance
is obtained by auto-correlating ∆N1 as

⟨∆N1∆N1⟩ = ⟨∆N2
1 ⟩ = ⟨(N1 − ⟨N1⟩)2⟩ = ⟨N1⟩(1 − T ). (1.1)

Equation (1.1) represents the partition noise that occurs due to the random partitioning

Barrier

Detector

Particle

Figure 1.2: Particle scattered by a potential barrier into a transmitted or reflected signal
with probabilities T and 1 − T , respectively.
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1. Introduction

Fermions Bosons

Beam Splitter

S1

S2

D2

D1

Beam Splitter

S1

S2

D2

D1

Figure 1.3: Illustration of the fermionic anti-bunching and bosonic bunching in the
Hong-Ou-Mandel interference. The beam splitter is symmetric with a transmission (and
reflection) probability of 1/2. A different behavior in fluctuations emerges when two
bosons or fermions arrive simultaneously (τd = 0) at the beam splitter. Fluctuations are
suppressed for fermions because they avoid each other due to the Pauli exclusion principle.
Conversely, fluctuations surge for bosons as they tend to occupy the same state because
of their underlying Bose-Einstein statistics.

of the stream of particles into transmitted and reflected signals. Likewise, the fluctuations
in the occupation number of the reflected beam are given by ∆N2 = N2 −⟨N2⟩. The cross-
correlation ⟨N1N2⟩ between the number of particles tunneling through the barrier (T ) and
those being deflected (1−T ) is always zero because each particle can be either transmitted
(N1 = 1, N2 = 0) or reflected (N1 = 0, N2 = 1). Using this, we can extrapolate the
following relation:

⟨∆N1∆N2⟩ = −⟨∆N2
1 ⟩ = −⟨∆N2

2 ⟩. (1.2)

Thus, both auto- and cross-correlations contain identical information about the partition
noise that describes the statistical fluctuations in the detected number of particles. This
relation remains valid regardless of whether the particle (as shown in Fig. 1.2) is a fermion
or boson. However, to reveal the quantum statistics of indistinguishable particles, we need
to consider two-particle interferometry [18, 19].
Figure 1.3 represents a Hong-Ou-Mandel (HOM) interferometer [20] with two sources
and detectors separated by a beam splitter. A non-zero time delay (τd ̸= 0) between
particles arriving at the beam splitter from Source 1 (S1) and Source 2 (S2) results in a
50% cross-correlation of fluctuations at the two detectors (averaged over a long time).
⟨∆N1∆N2⟩ = 0.5, holds true if the transmission of the beam splitter is 1/2, irrespec-

3



1. Introduction

tive of the particles being either fermions or bosons. However, a very different behavior
arises for a vanishing time delay τd = 0. If two identical fermions arrive at the beam
splitter simultaneously, they will avoid each other because they cannot occupy the same
quantum state due to the Pauli exclusion principle [21–24]. Therefore, each detector
will always measure a particle definitively without fluctuations: ∆N1 = ∆N2 = 0. The
cross-correlation ⟨∆N1∆N2⟩ = 0 indicates uncorrelated fluctuations that do not vary in
time. This phenomenon observed in HOM interferometry is called fermion antibunching.
It is characterized by the Pauli dip, which is the suppression of partition noise3 as a
function of τd, shown in Fig. 1.3. Bose-Einstein statistics show that multiple bosons can
occupy the same quantum state. Consequently, two indistinguishable bosons at τd = 0
always leave the beam splitter together towards either of the detectors. Hence, the prob-
ability of finding two bosons at Detector 1 (D1) and zero bosons at Detector 2 (D2) or
vice versa is equal. This phenomenon of boson bunching surges the fluctuations in one
detector ∆N1/2 = 1 − 0 = 1, while concurrently reducing the fluctuations in the other
∆N2/1 = 1 − 2 = −1. Therefore, the fluctuations at the two detectors are perfectly anti-
correlated with ⟨∆N1∆N2⟩ = −1. As illustrated in Fig. 1.3, this correlation |⟨∆N1∆N2⟩|
is characterized by a peak in the partition noise as a function of τd. Hence, the underlying
exchange statistics of particles is made manifest in noise measurements. Can this concept
be extended to probe the fractional statistics of anyons?
To answer this, we require (i) sources that emit anyons, (ii) channels to guide them towards
a (iii) beam splitter for quasiparticles. Fractional Quantum Hall systems are a promising
testbed that hosts anyons [25]. Furthermore, the components required to assemble a HOM
setup can be implemented in (2+1)D quantum Hall systems [23, 24, 26–28]. Hence, in
the following sections, we briefly introduce the integer quantum Hall effect and extend
the concept to the fractional Hall regime before discussing anyon interferometry.

1.2 Integer Quantum Hall Effect
When a current-carrying conductor is placed in a perpendicular magnetic field (B⊥), the
electrons deflect from their trajectory due to the Lorentz force. This mechanism gives rise
to the classical Hall effect in which the transverse resistivity ρxy is directly proportional to
the strength of the applied magnetic field B⃗. In contrast, the longitudinal resistivity ρxx

is independent of the B⃗-field and assumes a constant value depending on the scattering
time τ (as τ → ∞ ρxx → 0) [29]. Increasing the strength of the B⃗-field at low temperature
causes a phase transition in the 2D classical Hall system. It results in the quantization
of the relationship between the magnetic field (B⃗) and the Hall resistivity ρxy as plotted
in Fig. 1.4a. It is the integer quantum Hall (IQH) effect discovered by von Klitzing in
1980, using samples prepared by Dorda and Pepper [30] for which he was awarded the
1985 Nobel Prize. The experimental data shows that the longitudinal resistivity ρxx = 0,
as long as ρxy lies on a plateau with the value

ρxy = h

e2
1
ν

, ν ∈ Z+, (1.3)

3For electrons, ⟨N1⟩ is given by ⟨I1⟩(t/e) where ⟨I1⟩ is the average current measured over the time
interval t, and so ⟨∆N1∆N1⟩ is related to the current fluctuations, or shot noise ⟨S11⟩.

4



1. Introduction

(a) Image adapted from Ref. [31]. (b) 2DEG with Lx, Ly sample dimensions in the IQH.

Figure 1.4: (a) A plot of the longitudinal resistivity ρxx and transverse resistivity ρxy as
a function of the magnetic field (B⃗) in the IQH effect. ρxx is independent of the B⃗-field
and spikes to a finite value only when ρxy transits onto the next plateau as a function of
the B⃗-field. (b) Vxx and Vy are the measured voltages in the longitudinal and transverse
directions of the sample in the IQH regime. The sample’s bulk exhibits insulating behavior
because the electrons are trapped in closed circular orbits. Concurrently, electricity is
conducted at the edges without any dissipation due to the formation of skipping orbits.

where h is Planck’s constant and e is the charge of an electron, ν is measured to be an
integer with remarkable accuracy. Moreover, ρxx spikes to a finite value only during the
transition of ρxy to the next plateau as a function of the B⃗-field. The vanishing ρxx for
ρxy ̸= 0 indicates the presence of a perfect dissipationless conductor that does not oppose
the flow of electrons. However, examining the conductivity tensor σ reveals the existence
of an insulator with a vanishing longitudinal conductivity

σxx = ρxx

ρ2
xx + ρ2

xy

= 0, for ρxx = 0, ρxy ̸= 0. (1.4)

Therefore, in the IQH regime, the system is an insulator and conductor concurrently.
Classically, the strong perpendicular magnetic field causes the electrons in the sample
bulk to move in circular orbits with an angular frequency ωB (cyclotron frequency4),
as depicted in Fig. 1.4b. As the electrons are trapped in these closed orbits, they do
not conduct electricity transforming the bulk into an insulator. However, at the edge
of the sample, the closed orbits form connected skipping orbitals that facilitate electron
transport in only one direction. Therefore, the 1D boundary of the sample acts as a
chiral conductor. Quantum mechanics shows that the strong magnetic field discretizes
the energy spectrum into energy levels equally spaced by the cyclotron energy5 ℏωB.
These levels that encompass a macroscopic number of degenerate energy states are called
Landau levels (LL). A confining potential Vconfine(y) arises due to the finite boundary
of the sample. This potential is zero within the bulk and increases towards the edge of

4The cyclotron frequency is given by ωB = eB/m, where m is the mass of an electron.
5Energy associated with the cyclotron motion of charged particles in a magnetic field.
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1. Introduction

Figure 1.5: Bending of LLs at the edges (0, Ly) of the 2DEG sample due to the confining
potential Vconfine(y). n edge modes emerge when the Fermi level EF intersects the LLs at
2n points that result in n filled LLs corresponding to the filling factor ν = n in the IQH
regime. The cases for ν = 1, 2 are depicted to the left and right, respectively.

the sample to restrict the electrons. Consequently, the energy states close to the edge
are raised by Vconfine(y) that bend the associated LL at the sample boundary. The band
situated in the bulk of the sample has filled states, making it an insulator. Whereas the
bent LL having empty states available above the Fermi energy give rise to 1D conductors
at the edge of the sample. The two Fermi points (intersection of EF with the bent energy
spectrum) shown in Fig. 1.5 lead to two chiral edge states with opposite group velocities
(v): right moving state at y = Ly, with positive v, and left moving state at y = 0 with
negative v. The spatial separation of the chiral modes suppresses the backscattering of
electrons from right-moving to left-moving or vice versa, forming perfect chiral conductors.
Therefore, the edge states are immune to scattering caused by impurities that “smoothly
deform” LL [31]. Furthermore, EF lying between the gap of nth and n+ 1th LL intersects
them at 2n points, spawning ν = n [where n ∈ Z+] chiral modes at each edge. Notably,
the filling factor ν corresponds to the number of filled LL and IQH effect manifests at
integer-number values of ν. Hence, the chiral edge modes in the quantum Hall systems
facilitate robust one-way channels to guide particles for interferometry experiments.

1.3 Fractional Quantum Hall Effect
In a realistic sample with disorder due to underlying lattice impurities, the density of states
(DOS) n(E) and the corresponding LL do not assume a perfect train of Dirac δ functions.
They instead have a Gaussian or Lorentzian profile, as illustrated in Fig. 1.6a. If the
strength of the random potential introduced by the disorder is smaller than the splitting
of LL: ℏωB > Vdisorder, it helps stabilize the edge modes and makes the plateaus better
discernable in the IQH effect [31]. If the B⃗-field is further increased (ℏωB increases) in
very pristine samples, other plateaus emerge at fractional values ν ∈ Q, as plotted in Fig.
1.6b. The most prominent and simple states lie on plateaus with odd denominators ν =
1/(2n+1), n ∈ Z+. These states are explained by the emergence of a single-edge mode and
are termed the Laughlin sequence [32]. The edge states for other filling factors are more
complicated [33, 34] and fall outside the scope of this study. The fractional quantum Hall
effect [35] can be understood by considering the Coulomb interaction between electrons.
These interactions lift the degeneracy of the macroscopic states embedded in a LL, leading
to a spectrum of states of width proportional to Ecoulomb. The DOS corresponding to
different energy scales do not overlap as long as ℏωB > Ecoulomb > Vdisorder. This spectrum
consists of partially filled LL that exhibit small excitation gaps at fractional filling factors

6



1. Introduction

(a) DOS and occupation of LL in a B⃗-field ignoring the particle spin.

(b) Image taken from Ref. [36].

Figure 1.6: (a) Transition of DOS from IQH to FQH regime. ℏωB is the cyclotron
energy, and Vdisorder represents the strength of the random potential introduced by the
disorder. The width of the integer filled LLs (ν = n, where n ∈ Z+) are proportional
to Vdisorder. These levels spread out as the magnetic field increases, making the plateaus
more discernable in the limit ℏωB > Vdisorder in the IQH regime. The Coulomb interaction
Ecoulomb between the electrons becomes prominent as we transition to the FQH regime.
These interactions lift the degeneracy of the macroscopic states resulting in a spectrum
of states whose width is proportional to Ecoulomb. This spectrum has gaps at fractional
values, and the filled states are discernable when ℏωB > Ecoulomb > Vdisorder. The case for
ν = 1/3 is shown here. (b) A plot depicting the Hall resistance RH as a function of the
magnetic field B⃗ in the context of the FQH effect.

where the Hall states are observed. Figure 1.6a depicts a Laughlin state with a single gap
at ν = 1

3 . Fractionally charged quasiparticle excitations with q∗ = qν above such collective
ground state of correlated electrons have been predicted [25, 32, 37] and recently confirmed
[13, 14] to be emergent Abelian anyons. These fractional charges can be detected by
implementing a Quantum Point Contact (QPC) [38, 39] in the FQH system, as initially
suggested by Kane and Fisher in Ref. [40]. The QPC is a narrow constriction that
partially distorts the trajectory of chiral edge modes by imposing a negative voltage

7



1. Introduction

polarization that depletes the underlying 2DEG. Tuning the voltage polarization varies
the transmission of the QPC by closing or opening the edge modes. Therefore, a QPC is
analogous to a beam splitter that transmits or reflects impinging particles with specific
probabilities. Tunneling of quasiparticles through the quantum Hall liquid between the
edge modes corresponds to a backscattering event. The transmission probability through
the QPC in the weak-backscattering limit is T ≈ 1. Therefore, the tunneling events
corresponding to the reflection probability 1 − T ≪ 1 are so rare that the quasiparticles
backscatter without any correlation between them. This stochastic tunneling generates
zero-temperature shot noise

S = 2q∗⟨IT ⟩, in the limit eV ≫ kBθ, (1.5)

where IT is the tunneling current through the QPC, q∗ is the effective charge, kB is the
Boltzmann constant, and θ is the temperature. The shot noise measurements proved the
existence of fractionally charged quasiparticles in FQH systems at filling factors ν = 1/3
and ν = 2/3 [41, 42]. The FQH system with a QPC in the weak backscattering limit can
generate a dilute beam of quasiparticles. Therefore, it acts as a stochastic anyon source
[40] to implement the HOM interferometer to collide anyons.

1.4 Experimental Realization of Anyon Colliders
The direct observation of fractional statistics is much more subtle than detecting the
fractional charge of anyons. Combining the elements discussed in Sections 1.2 and 1.3, a
two-particle anyon collider at filling factor ν = 1/3 was proposed in Ref. [43] and realized
in Ref. [14]. QPC1 and QPC2 of the setup shown in Fig. 1.7 are DC biased into a
weak backscattering regime with transmission probabilities Ts = T1 = T2 by VDC1 and
VDC2, respectively. Due to the tunneling of q∗ = q/3 quasiparticles at random, these
QPCs serve as sources that emit anyons following a Poisson distribution. This random
emission implies that the source QPCs are not time-resolved and do not permit control
over the emission times of the quasiparticles. The tunneling currents I1 and I2 carrying
the quasiparticles interfere at the collider cQPC with a transmission probability T . The
shot noise accompanied by I3 and I4 embeds the information about the exchange statistics
of anyons. The cross-correlation between the output currents describes the shot noise as

SI3I4(classical) = −2qν(1 − p)TsT (1 − T )(I1 + I2) , (1.6)

where p is the exclusion (quasi)probability. Equation 1.6 originates from an intuitive
classical model, which suggests an interpretation of the exchange statistics in terms of
the exclusion probability. A fermionic behavior with p = 1 results in vanishing shot
noise, as discussed in Sec. 1.1. At ν = 1/3, the fractional exchange phase Φ = π/3
is closer to bosons (Φ = 0) than fermions (Φ = π). Therefore, p is predicted to be
negative (p < 0), ensuing a negative cross-correlation SI3I4 < 0. Thus, the classical model
generalizes the Pauli dip and associates the negative value of the exclusion probability p
with the fractional statistics of anyons in a non-rigorous manner. A quantum mechanical
treatment of the current cross-correlations for abelian anyons with an exchange phase
Φ = π/m (for m ≥ 3) leads to the following result for the shot noise:

SI3I4(quantum) = 2qν −2
m− 2T (I1 + I2) =⇒ P = SI3I4

2qνT (I1 + I2)
= −2
m− 2 . (1.7)
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1. Introduction

Figure 1.7: False color scanning micrograph of the mesoscopic anyon collider setup
with the measurement circuitry (image taken from Ref. [14]). The quasiparticle tunneling
currents I1 and I2 originating from the DC biased QPC 1 and 2 interfere at the collider
cQPC with a transmission probability T . Contacts 3 and 4 collect the output signals I3
and I4 to compute the current cross-correlations.

Equation (1.7) describes a generalized Fano factor P that is only dependent on the ex-
change phase of anyons. The experimental demonstration measured P = −2 ± 0.1, which
agrees with the prediction of the theoretical model that P = −2 at ν = 1/m = 1/3
[43]. Later theoretical investigations [44, 45] have re-interpreted the Fano factor P to be
directly associated with braiding between anyons interfering at the cQPC of the setup
depicted in Fig. 1.7. This implies that the experiment in Ref. [14] is the first evidence of
Abelian anyon fractional statistics through shot noise measurements at ν = 1/3.

1.5 Goal of the thesis
Probing the fractional statistics of anyons through Hong-Ou-Mandel interferometry is
the primary focus of this thesis. We expect that the HOM interference will reveal the
underlying quantum statistics of anyons through current correlations that depend on the
tunable time delay (τd) between particles arriving at the beam splitter. This expectation
aligns with the HOM effect obtained for fermions and bosons, as explained in Sec. 1.1.
Earlier descriptions of anyon colliders [43] employed DC biased Poissonian sources of
anyons that generate a random stream of quasiparticles without any control over their
emission times. However, we require a time-resolved emission of anyons that enables
us to modulate the time delay (τd) between the arrival of quasiparticles at the collider

9



1. Introduction

Figure 1.8: Visual representation of a naive expectation regarding the fluctuations in
HOM interferometry of anyons in the Laughlin sequence at ν = 1/3. This depiction
showcases an accumulated exchange phase of ϑ = π/3 as described by Eq. (1.8).

QPC to perform the HOM interferometry. The correlations describing the HOM curves
of fermions and bosons represented in Fig. 1.3 are defined by [18]

|⟨∆N1∆N2⟩| = 1
2
[
1 + |J |2 cos (ϑ)

]
, (1.8)

where |J | represents the spatial overlap between two incident wavefunctions at the beam
splitter, and ϑ denotes the acquired exchange phase. Taking |J | = 1 at null delay τd = 0,
the fluctuations described in Eq. (1.8) entirely depend on the accumulated statistical
exchange phase ϑ. Building upon the success of the HOM interference in uncovering the
exchange statistics of fermions and bosons, we investigate:

• How would the fluctuations in the HOM interferometry manifest due to the frac-
tional statistics of anyons?

• How would the HOM noise curves presented in Fig. 1.3 be influenced by the acquired
exchange phase of the colliding anyons?

• Would anyons generate intermediate noise fluctuations, corresponding to ϑ = π/(2n+
1), where n ∈ Z+ in the Laughlin sequence? (as portrayed in Fig. 1.8 for n = 1).

• What distinguishes the interference between colliding anyons in the HOM interfer-
ometry from those in fermions and bosons?

Providing insights into these questions is the main motivation for this work.
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2
Theory

This chapter briefly overviews the theoretical tools necessary to describe edge transport of
anyons in the Laughlin fractional quantum Hall states. Initially, we digress to discuss the
concept of quantum time evolution pictures, which is a foundational framework utilized
throughout this thesis. We then discuss the formulation of Landau levels and chiral edge
modes in the IQH regime before generalizing it to Laughlin FQH edges. Subsequently, we
describe the technique of bosonization of 1D systems and demonstrate the utility of the
introduced theory toolbox in describing an out-of-equilibrium Laughlin FQH edges.

2.1 Time Evolution Pictures in Quantum Mechanics
There are three different equivalent approaches to treating time dependence in quantum
mechanics [46, 47], and they find utility in distinct contexts. It is also possible to transform
between these time evolution pictures.

Schrödinger picture: The quantum states |φ(t)⟩S evolve with time, while the operators
are fixed at an initial time t0, OS(t) = O(t0). One can introduce a time evolution operator
acting on the quantum states |φ(t)⟩S = U(t, t0) |φ(t0)⟩ and evolve them according to the
Schrödinger equation, iℏ∂t |φ(t)⟩S = H |φ(t)⟩S, from which we obtain

iℏ∂tU(t, t0) |φ(t0)⟩ = HU(t, t0) |φ(t0)⟩ . (2.1)

For a time-dependent Hamiltonian H, Eq. (2.1) gives us U(t, t0) = T
[
e

− i
ℏ

∫ t

t0
dt′H(t′)

]
,

where T is the time ordering operator that orders a product of time-dependent operators
in descending sequence of time. When the Hamiltonian is independent of time, Eq. (2.1)
simplifies to U(t, t0) = e− i

ℏ (t−t0)H.

Heisenberg picture: The quantum states are stationary in time |φ(t)⟩H = |φ(t0)⟩, while
the operators procure a time dependence through the time evolution operator OH(t) =
U †(t, t0)O(t0)U(t, t0). The equation of motion for an observable in the Heisenberg picture
is given by

iℏ∂tO(t) = [O(t), H(t)] + (∂tO)(t). (2.2)

Suppose the operator does not explicitly depend on time; its time evolution boils down
to iℏ∂tO(t) = [O(t), H(t)], where the expression [O(t), H(t)] represents the commutator
between the operators O(t) and H(t) defined as [O(t), H(t)] = O(t)H(t) −H(t)O(t).
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2. Theory

Interaction picture: It is also termed1 the mixed picture because both the quantum
states and operators carry part of the time dependence. This picture is beneficial for
constructing perturbative expansions and dealing with the time evolution of observables
caused by interactions. Consider the Hamiltonian of the form H = H + V(t), where H
is a known time-independent operator and V(t) is a non-diagonalizable complex operator
carrying the time dependence. In the interaction picture, the operator O(t0) evolves with
the trivial H like in the Heisenberg picture: OI(t) = e

i
ℏ (t−t0)HO(t0)e− i

ℏ (t−t0)H = O
(0)
H (t)2.

Whereas UI(t, t0) = e
i
ℏ (t−t0)HU(t, t0), acting on the quantum states evolve according to

the Schrodinger equation only with respect to the non-trivial interaction term VI(t) =
e

i
ℏ (t−t0)HV(t)e− i

ℏ (t−t0)H as follows:

∂t |φ(t)⟩I = ∂tUI(t, t0) |φ(t0)⟩ = − i

h
VI(t)UI(t, t0) |φ(t0)⟩ . (2.3)

Equation (2.3) is analogous to Eq. (2.1) with which we can express UI(t, t0) as a function
of the interaction part VI(t) as: UI(t, t0) = T

[
e

− i
ℏ

∫ t

t0
dt′ VI(t′)

]
. This expression is useful

to establish a bridge between operators in the Heisenberg and interaction pictures to
construct perturbative expansions

OI(t) = e
i
ℏ (t−t0)HO(t0)e− i

ℏ (t−t0)H = UI(t, t0)OH(t)U †
I (t, t0). (2.4)

Equation (2.4) spawns a perturbative expansion for OH(t):

OH(t) = T̃
[
e

i
ℏ

∫ t

t0
dt′ VI(t′)

]
OI(t)T

[
e

− i
ℏ

∫ t

t0
dt′ VI(t′)

]
,

OH(t) = T̃
[
1 + i

ℏ

∫ t

t0
dt′ VI(t′) + 1

2

(
i

ℏ

)2 ∫ t

t0
dt′ VI(t′)

∫ t

t0
dt′′ VI(t′′) + . . .

]
×O

(0)
H (t),

× T
[
1 − i

ℏ

∫ t

t0
dt′ VI(t′) + 1

2

(
− i

ℏ

)2 ∫ t

t0
dt′ VI(t′)

∫ t

t0
dt′′ VI(t′′) + . . .

]
,

OH(t) = O
(0)
H (t) − i

ℏ

∫ t

t0
dt′
[
O

(0)
H (t),VI(t′)

]
+
(

− i

ℏ

)2 ∫ t

t0
dt′
∫ t

t0
dt′′

[[
O

(0)
H (t),VI(t′)

]
,VI(t′′)

]
+ . . . . (2.5)

Taking the expectation value of Eq. (2.5) over an equilibrium state characterized by the
equilibrium density matrix ρ0(t) retrieves the Kubo formula as the first-order perturbation
term in the following series [48].

⟨OH(t)⟩0 =
〈
O

(0)
H (t)

〉
0

− i

ℏ

∫ t

t0
dt′
〈[
O

(0)
H (t),VI(t′)

]〉
0

− 1
ℏ2

∫ t

t0
dt′
∫ t

t0
dt′′

〈[[
O

(0)
H (t),VI(t′)

]
,VI(t′′)

]〉
0

+ . . . . (2.6)

1The interaction picture is alternatively referred to as the Dirac picture.
2O

(0)
H (t) is the time evolution of O(t0) with a time-independent Hamiltonian in the Heisenberg picture.
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2.2 Landau Levels and Linear Dispersion Model
We mathematically model the LL restricted by a confining potential Vconfine(y) [31, 49],
as discussed in Sec. 1.2. We fix a Landau gauge with vector potential A = yBx⃗, such that
∇ × A = −Bz⃗, describes a magnetic field acting perpendicular to the x-y plane. With
momentum pµ = −iℏ∂µ, the Hamiltonian is given by

H = 1
2m

(
px + e

c
By
)2

+ 1
2mp2

y + Vconfine(y). (2.7)

Because the system exhibits translational invariance in the y-direction, the energy eigen-
states of py can be expressed as plane waves, and the composite eigenstate of the system
can be written using separation of variables as φ(x, y) = eikxΦ(y). Considering the slow
spatial variation of the confining potential ∂yVconfine(y) ≪ ℏωc/lB, where lB is the mag-
netic length3 defined as

√
ℏ/eB, we can approximate Vconfine(y) by a constant potential.

It transforms the Hamiltonian into

− ℏ2

2m∂2
y + 1

2mω
2
c (y − kl2B)2 + Vconfine(y0). (2.8)

Equation (2.8) resembles the Hamiltonian for a harmonic oscillator in the y-direction with
a center displaced from the origin by y0. The wavefunctions satisfying the time-dependent
Schrödinger equation are given by

φ(x, y) = eikx−ωktΦ(y − kl2B), (2.9)

with corresponding eigenenergies

ℏωk =
(
n+ 1

2

)
ℏωc + Vconfine(kl2B). (2.10)

The above equations imply that the wavefunctions are localized at y0 = kl2B, and the
spatial localization of LLs depend on k (y ∝ k). As described in Sec. 1.2, the low energy
excitations of the LL lie on the chiral edges with ℏωk ≈ EF . We only consider these low
energy excitations close to the two Fermi points at k = ±kF , where EF intersects the LLs,
and ignore the rest of the energy spectrum to model the chiral edge states. Hence, it is
acceptable to linearize the spectrum around the Fermi points, as shown in Fig. 2.1. This
process is analogous to the standard linearization procedure of non-interacting 1D electron
systems with two Fermi points, as detailed in Ref. [50]. We then establish the linear
dispersion relations with the right/left moving branches as ϵR/L(k) = ±ℏv(k ∓ kF ), with
v = ∂ωk/∂k

∣∣∣
k=kF

. To formulate the Hamiltonian in the framework of second quantization,
consider a right-moving chiral edge mode corresponding to a LL with zero momentum at
the Fermi point kF = 0. By setting ℏ = 1, we obtain ϵR(k) = vk, such that

Hedge,R = v
∑

k

k c†
k,R ck,R , (2.11)

where ck,R annihilates an electron with momentum k on the right-moving edge mode.
However, an infinite number of fermions in the Dirac sea occupy the states k ∈ (−∞, 0],

3lB the is characteristic length scale that determines the spatial extent of the Landau levels in B⊥
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Figure 2.1: The Hamiltonian in Eq. (2.8) implies that the spatial localization of the
LLs depend on k, as y ∝ k. To model the physics of the edge modes, we only consider
the low energy states close to the Fermi points where the Fermi level EF intersects the
LLs. Following the standard linearization procedure of a non-interacting 1D electron gas
model [50], we linearize the low energy spectrum of the LLs into the linear dispersion
model near the Fermi points at k = ±kF .

making the expectation value of the number operator ∑k c
†
k,Rck,R divergent. Since this is

an artifact of the linearization procedure, the physically relevant quantity is the excess
number operator with respect to the ground state |0⟩0. It is obtained by introducing the
normal ordering as : c†

k,Rck,R :≡ c†
k,Rck,R − ⟨c†

k,Rck,R⟩0. Therefore, we only examine the
finite excess number of fermions with respect to the ground state |0⟩0. Now, we introduce
the fermionic field operators in real space that satisfy the usual anti-commutation relation:{
ψR(x), ψ†

R(y)
}

= δ(x− y), and are defined as

ψR(x) = 1√
L

+∞∑
k=−∞

eikxck,R ψ†
R(x) = 1√

L

+∞∑
k=−∞

e−ikxc†
k,R , (2.12)

where L is the size of the 1D system. Applying the above identities in Eq. (2.11) leads
to the following Hamiltonian in the thermodynamic limit of L → ∞:

Hedge,R =
∫ ∞

−∞
dx : ψ†

R(x)(−iv∂x)ψR(x) : . (2.13)

Repeating the same contruction for the left-moving edge, one obtains

Hedge,L =
∫ ∞

−∞
dx : ψ†

L(x)(iv∂x)ψL(x) : (2.14)

and the total edge hamiltonian is therefore Hedge = Hedge,R + Hedge,L

2.3 1D Chiral Fermions and Bosonization
The chirality of the 1D edge modes can be demonstrated by evolving the fermionic field
operators in time with Hedge,R in the Heisenberg picture to obtain their equation of motion.
Considering the fermionic creation operator ψ†

R on the right-moving edge in equilibrium

∂tψ
†
R(x, t) = i

[
Hedge,R(y), ψ†

R(x, t)
]

= v
∫ ∞

−∞
dy

[
ψ†

R(y)∂yψR(y), ψ†
R(x, t)

]
. (2.15)

14
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Using the identity [A,BC] = {A,B}C−B {A,C} [51], withA = ψ†
R(x, t), B = ψ†

R(y), C =
∂yψR(y), and applying the anti-commutation relation

{
ψ†

R(x), ψ†
R(y)

}
= 0, we obtain

∂tψ
†
R(x, t) = v

∫ ∞

−∞
dy ψ†

R(y)
{
ψ†

R(x, t), ∂yψR(y)
}
. (2.16)

Changing the order of operations
{
ψ†(x, t), ∂yψ(y)

}
= ∂y

{
ψ†(x, t), ψ(y)

}
, and using the

commutation relation
{
ψ†(x), ψ(y)

}
= δ(x− y)

∂tψ
†
R(x, t) = v

∫ ∞

−∞
dy ψ†

R(y) ∂yδ(x− y) = −v∂xψ
†
R(x). (2.17)

To obtain the above expression we used the identity:
∫
dz f(z) ∂zδ(z) = −∂zf(z)

∣∣∣
z=0

.
Performing similar calculations for ψR, the equation of motions are:

∂tψ
†
R(x, t) + v∂xψ

†
R(x) = 0 ∂tψR(x, t) + v∂xψR(x) = 0. (2.18)

The above expressions represent right-moving chiral waves propagating at speed v. In the
absence of boundary conditions, their solutions take the form ψ†(x − vt) and ψ(x − vt),
respectively. Performing the above calculations for the left-moving edge will produce the
following equations of motion:

∂tψ
†
L(x, t) − v∂xψ

†
L(x) = 0 ∂tψL(x, t) − v∂xψL(x) = 0 , (2.19)

with solutions of the form ψ†
L(x+vt) and ψL(x+vt), propagating in the opposite direction.

The linear 1D fermionic system allows an exact description in terms of bosonic density
fluctuations that are unique to the one-dimensional setting. To develop this description,
we introduce the density fluctuation operator [50] that creates particle-hole excitations in
the infinite Dirac sea. We concentrate on the right-moving particles and drop the subscript
R in the subsequent calculations for brevity. A similar approach can be followed to develop
an equivalent description for left-movers.

ρ(p)(l) =
∑

k

: c†
k+lck : (for l ̸= 0 only). (2.20)

Note that ρ(p) does not alter the particle count of the system (i.e., |N⟩0 to |N + n⟩0, where
n ∈ Z)4 and ∂tρR/L have corresponding right and left chiral evolutions in time. Using the
identities in Eq. (2.12), ρ(p)(x) =: ψ†(x)ψ(x) : can be re-written as

ρ(p)(x) = 1
L

∑
k

: c†
kck : + 1

L

∑
l ̸=0

e−ilx
∑

k

: c†
k+lck : ,

= N

L
+ 1
L

∑
l>0

(
e−ilxρ(p)(l) + eilxρ(p)(−l)

)
, (2.21)

where N is the number operator defined as N = ∑
k : c†

kck : = ∑
k

(
c†

kck − ⟨c†
kck⟩0

)
. Using

the identities from the derivation of Eq. (2.16) and by omitting the superscript (p) for
brevity, the commutation relations of the particle density operators are expressed as

[ρ(m), ρ(l)] =
∑
kk′

[
c†

k+mck, c
†
k′+lck′

]
=
∑

k

(
c†

k+m+lck − c†
k+lck−m

)
. (2.22)

4Connecting Hilbert spaces with different particle numbers is taken care by the Klein factors that
alter |N⟩0 by one as F † |N⟩0 = |N + 1⟩0 and F |N⟩0 = |N − 1⟩0.
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It generates the following two cases:

[ρ(m), ρ(l)] = 0 for m ̸= −l,

=
∑

k

(
⟨c†

kck⟩0 − ⟨c†
k−mck−m⟩0

)
= −Lm

2π for m = −l,

that can be formulated in a compact way as

[ρ(m), ρ(l)] = −Lm

2π δ(m+ l). (2.23)

Equation (2.23) is analogous to a bosonic commutation relation that allows us to define
bona fide bosonic creation and annihilation operators for l > 0

bl =
√

2π
Ll
ρ(−l) =

√
2π
Ll

∑
k

: c†
k−lck : b†

l =
√

2π
Ll
ρ(l) =

√
2π
Ll

∑
k

: c†
k+lck : . (2.24)

Akin to fermions, we define bosonic field operators in real space

φ(x) = i√
L

∑
l>0

eilx

√
l
bl e

−αl/2 φ†(x) = − i√
L

∑
l>0

e−ilx

√
l
b†

l e
−αl/2, (2.25)

where the factor e−αl/2, in which α is a UV or short distance cut-off, is introduced by
hand to regulate divergences. It is convenient to define a new field ϕ, also called a
compact boson. This bosonic field is constrained within a spatial dimension, with its
values wrapping around periodically as they traverse through this dimension

ϕ(x) = φ(x) + φ†(x) = i√
L

∑
l>0

1√
l
e−αl/2

(
ble

ilx − b†
l e

−ilx
)
. (2.26)

Combining the results from Eqs. (2.21), (2.24), and (2.26), we can express the density
fluctuation operator (particle density) as

ρ(p)(x) =: ψ†(x)ψ(x) := N

L
− 1√

2π
∂xϕ(x). (2.27)

In the thermodynamic limit L → ∞, we omit the first term in the above equation. We
can further define the total charge density by introducing the charge q in Eq. (2.27) as

ρ(x) = −q 1√
2π
∂xϕ(x). (2.28)

From the commutation of ψ(x) with bl, it can be shown that ψ(x) |N⟩0 is an eigenstate
of the bona fide bosonic annihilation operator with an eigenvalue αl(x), l > 0. We
can describe ψ(x) ∝ e

∑
l>0 αl(x)b†

l |N − 1⟩0, because coherent states are known to be the
eigenstates of the bosonic annihilation operator [52]. Generalizing it to any state |N⟩, we
obtain the Mattis-Mandelstam formula [53, 54]

ψ(x) |N⟩ = F√
L
ei 2πNx

L e
∑

l>0 αl(x)b†
l e−

∑
l>0 α∗l(x)bl |N⟩ . (2.29)
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Finally, using the identity eAeB = eA+BeC/2, if C = [A,B] and [A,C] = [B,C] = 0 [51],
and Eqs. (2.26), (2.29) we can write

ψ(x) = F√
L
ei 2πNx

L e−i
√

2πφ†(x)e−i
√

2πφ(x), ψ†(x) = F †
√
L
e−i 2πNx

L ei
√

2πφ†(x)ei
√

2πφ(x), (2.30)

ψ(x) = F√
2πα

ei 2πNx
L e−i

√
2πϕ(x), ψ†(x) = F †

√
2πα

e−i 2πNx
L ei

√
2πϕ(x), (2.31)

where the operators in Eq. (2.30) are normal ordered (cf. Sec. 2.2), while the operators
in Eq. (2.31) are not.

2.4 Bosonic Hamiltonian and Quasiparticle Operator
The operators presented in Eq. (2.31), which are exponentiated bosons, are known as
vertex operators [55]. They describe electrons propagating in a chiral edge mode and are
instrumental in rewriting the Hamiltonian defined in Eq. (2.13) in terms of bosonic fields.

Hedge,R = vπ

L
NR(NR + 1) + v

2

∫ L
2

− L
2

dx : [∂xϕR(x)]2 : . (2.32)

The zero-mode contribution (first term in the above Hamiltonian) will be dropped in
the thermodynamic limit of L → ∞. This bosonic Hamiltonian is complemented by the
Kac-Moody commutation relation [50] that governs the bosonic fields as

[ϕR(x, t), ϕR(y, t)] = i

2sgn(x− y), (2.33)

where sgn(x−y) is the signum function. Equations (2.31), (2.32), and (2.33) are useful to
develop a description for a wide range of interacting 1D systems, including the FQH edge
modes [56]. The pre-factor operators (Klein factors and exponentiated number operators)
in Eq. (2.31) can be ignored because they are not important for the calculations in this
thesis. To determine the charge associated with the fermionic operators, we compute its
commutation with ρ(x) using the identity [eA, B] = [A,B]eA and Eq. (2.33) [57, 58].[

ρR(x), ψ†
R(y)

]
= q

2π
√
α
∂x

[
ei

√
2πϕR(y), ϕR(x)

]
= iq∂x [ϕR(y), ϕR(x)]ψ†

R(y),

= q

2∂xsgn(x− y)ψ†
R(y) = qδ(x− y)ψ†

R(y). (2.34)

Equation (2.34) implies that ψ†
R(x) and ψR(x) describe the creation and annihilation of

fermions with a charge q. The statistical exchange phase accumulated by these fermionic
excitations is determined by exchanging the vertex operators defined in Eq. (2.31) at dif-
ferent spatial coordinates x, y. To proceed, we use the Baker-Campbell-Hausdorff identity
eAeB = eBeAe[A,B] and Eq. (2.33).

ψR(x)ψR(y) = ψR(y)ψR(x)e−2π[ϕR(x),ϕR(y)] =⇒ ψR(x)ψR(y) = ψR(y)ψR(x)e−iπsgn(x−y).

(2.35)
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2. Theory

Here, the acquired phase is given by Φ = −π for x > y and Φ = π for x < y. Hence, the
fermionic excitations described by the vertex operators accumulate a statistical exchange
phase of |Φ| = π, effectively retrieving the fermionic anticommutation relation. We now
introduce the filling factor ν into the charge density operator defined in Eq. (2.28) and
the vertex operators from Eq. (2.31), in the following manner

ρR(x) = −q 1√
2π

√
ν∂xϕR(x), (2.36)

ψqp(R)(x) = 1√
2πα

e−i
√

2π
√

νϕR(x) ψ†
qp(R)(x) = 1√

2πα
ei

√
2π

√
νϕR(x). (2.37)

By following a similar approach as we used to examine the charge and statistical phase
associated with fermionic vertex operators, we deduce[
ρR(x), ψ†

qp(R)(y)
]

= q
√
ν

2π
√
α
∂x

[
ei

√
2π

√
νϕR(y), ϕR(x)

]
= qνδ(x− y)ψ†

qp(R)(y), (2.38)

ψqp(R)(x)ψqp(R)(y) = ψqp(R)(y)ψqp(R)(x)e−2π[ϕR(x),ϕR(y)] = ψqp(R)(y)ψqp(R)(x)e−iπνsgn(x−y).
(2.39)

Hence, the operators presented in Eq. (2.37) create and annihilate a fractional charge of
qν and acquire a statistical exchange phase of |Φ| = πν. Therefore, these quasiparticle
creation and annihilation operators describe the anyonic excitations in the FQH edge
modes. To simplify the derived results, we rescale the bosonic field

√
2πνϕR(x) → ϕR(x)

to obtain (presented equations are extended to encompass both left and right edges)

Hedge(L/R) = v

4πν

∫ ∞

−∞
dx

[
(∂xϕL/R)2

]
, (2.40)

ψqp(L/R)(x) = 1√
2πα

e−iϕL/R(x), (2.41)
[
ϕL/R(x, t), ϕL/R(y, t)

]
= ∓ iπνsgn(x− y), (2.42)

ρL/R(x) = ± q
∂xϕL/R(x)

2π . (2.43)

Until now, we utilized a single boson field description of an FQH edge state hosting one
kind of quasiparticle. However, a broader description of the edge states exists, employing
multiple boson fields and offering a precise definition of the statistical exchange phase
or braiding angle ϑ. Following the Haldane-Halperin hierarchal description of quantum
Hall states [34], Wen derived an effective theory for generic Abelian FQH edge modes
hosting distinct kinds of quasiparticles [59]. The theory describes the edge states with
n-boson fields ϕ(x, t) = (ϕ1, ϕ2, . . . , ϕn)T and a charge vector q = (q1, q2, . . . , qn)T that
determines the units of charge carried by quasiparticles of each kind l = (l1, l2, . . . , ln)T .
The K-matrix consisting of integer elements is given by

K =


p1 0 0 . . .
0 p2 0 . . .

0 0 . . . . . .
... ... ... pn

 , (2.44)
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2. Theory

where pj, j = 1, . . . , n are odd integers. It defines each edge mode’s filling factor νj = 1/pj

and governs the commutation relation between the bosonic fields.

ν = qTK−1q , (2.45)

e∗
l = qTK−1l , (2.46)[

ϕi(L/R)(x, t), ∂yϕj(L/R)(y, t)
]

= ∓ 2iπ(K−1)ij δ(x− y). (2.47)

This is the so-called symmetric basis in which all charge vector elements qj = 1. The
commutation relation in Eq. (2.47) together with the Hamiltonian

Hedge(L/R) = 1
4π

n∑
i,j=1

∫ ∞

−∞
dx ∂xϕi(L/R)vij∂xϕj(L/R) , (2.48)

where vij are elements of a positive definite matrix V , generalizes the single bosonic edge
mode Hamiltonian in Eq. (2.40) to multiple edge modes. The diagonal elements vij|i=j

of the matrix V assign a velocity to each edge mode, whereas the off-diagonal elements
vij|i ̸=j describe the short-range interactions between these edge modes. The statistical
exchange phase accumulated by the interaction of such quasiparticles is given by

ϑ = πlTK−1l . (2.49)

We adopt the above conventions for all the subsequent calculations in the thesis.

2.5 Temporal Voltage Drive

We now analyze the influence of a generic time-dependent voltage pulse V (t) on the time
evolution of the edge modes. Our methodology closely follows the approach presented
in Ref. [60]. Here, we consider that a voltage pulse is applied to the right-moving chiral
edge mode at x = xR. The voltage source is described by the function UR(x, t) = Θ(−x+
xR)V (t). The Heaviside function ensures that the voltage source is only defined within
the contact, i.e., the region x ∈ (−∞, xR). The voltage pulse couples to the edge mode
via the Hamiltonian

Hg =
∫
dx UR(x, t)ρR(x). (2.50)

At t = −∞, the system is in equilibrium, and the edge modes’ time evolution is only
attributed to the Hamiltonian Hedge,R. When the applied voltage drive couples to the
system at t = −∞ + ϵ, the system is driven out of equilibrium, and the time evolution
is also carried by Hg. We use the Heisenberg picture introduced in Sec. 2.1 to derive
the equation of motion of the bosonic field operator with respect to the non-equilibrium
Hamiltonian H = Hedge,R + Hg.

∂tϕR(x, t) = i [Hedge,R(y), ϕR(x, t)] + i [Hg(y), ϕR(x, t)] ,

= i
v

4πν

∫ ∞

−∞
dy

[
(∂yϕR(y))2, ϕR(x, t)

]
− i

q

2π

∫ ∞

−∞
dy UR(y, t) [∂yϕR(y), ϕR(x, t)] . (2.51)

19



2. Theory

By using the identity [AB,C] = A [B,C] + [A,C]B [51], Kac Moody commutation rela-
tions, and following a similar procedure as outlined in Sec. 2.3, we simplify the integrals
in Eq. (2.51) to obtain

∂tϕR(x, t) = −v
∫ ∞

−∞
dy ∂yϕR(y)δ(x− y) + qν

∫ ∞

−∞
dy UR(y, t)δ(x− y) ,

∂tϕR(x, t) = −v∂xϕR(x) + qνUR(x, t). (2.52)

The above equation can be solved with Green’s function approach. To this end, we
define a differential operator L = (∂t + v∂x), and define a general solution of the form
ϕ(x, t) = ϕ0(x − vt, 0) + A(x, t), where ϕ0(x − vt, 0) is the solution of Eq. (2.52) when
UR(x, t) = 0. This substitution gives us an equation relating the ansatz function A(x, t)
with the voltage drive as

(∂t + v∂x)A(x, t) = qνUR(x, t) =⇒ LA(x, t) = qνUR(x, t). (2.53)

We now introduce Green’s function, which is the impulse response of the differential
operator L

LG(x, x′; t, t′) = δ(x− x′)δ(t− t′). (2.54)

By its definition [61], G(x, x′; t, t′) encodes all the output responses of a linear time-
invariant system for all input frequencies. Therefore, convoluting our generic input
UR(x, t) with G(x, x′; t, t′) will fetch us the output response A(x, t)

A(x, t) = qν
∫ ∫

dx′dt′ G(x, x′; t, t′)UR(x′, t′). (2.55)

Equation (2.53) can be recovered by applying the differential operator L on Eq. (2.55),
and using the property (2.54). We now substitute the Green’s function of the operator L
in Eq. (2.55) to obtain

G(x, x′; t, t′) = Θ(t− t′)δ (v(t− t′) − (x− x′)) , (2.56)

A(x, t) = qν
∫ t

−∞
dt′ UR(x− v(t− t′), t′) , (2.57)

ϕR(x, t) = ϕR0(x− vt, 0) + qν
∫ t

−∞
dt′ UR(x− v(t− t′), t′) . (2.58)

Using the bosonization identity from Eq. (2.41), the time evolution of the quasiparticle
field operator can be derived by a simple substitution

ψqp(R)(x) = 1√
2πα

e−iϕR0(x−vt,0)e
−iqν

∫ t

−∞ dt′ UR(x−v(t−t′),t′)
. (2.59)

Notably, the field operators evolve chirally despite an arbitrary voltage pulse driving the
system out of equilibrium. The chiral evolution of the applied time-dependent voltage
drive is a direct consequence of the chirality of the edge modes. It is an intrinsic property
of quantum Hall edge states and can be validated in both the fermionic and bosonic
descriptions.
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3
Particle collider in the FQH regime

In the previous chapters, we introduced the essential ingredients required to describe time-
resolved two-particle interferometry for anyons. To reiterate, the Hamiltonian Hedge(L/R)
described in Eq. (2.40) models the quantum Hall edge modes that act as transmission
lines for the left or right-moving quasiparticles. Equation (2.50) describes the Hamilto-
nian that couples time-dependent input voltage sources to these edge modes propagating
in either direction. In this chapter, we model the effects of a QPC (taking the role of
a beam splitter) introduced in an FQH setup in the Laughlin sequence, i.e., states with
filling factors ν = 1/(2n + 1), where n ∈ Z+. In the weak backscattering regime1, the
QPC topologically deforms the edge modes without entirely depleting the quantum Hall
fluid and forms a narrow constriction, as shown in Fig. 3.1. The QPC allows tunnel-
ing between the counter-propagating edge modes at the position x = xQP C . Here, the
quasiparticles stochastically tunnel between the opposite edge modes with a small, and
for simplicity assumed energy independent, amplitude |Λ| ≪ 1. A tunneling Hamiltonian
that effectively describes the most relevant tunneling process in this configuration reads

HΛ = Λψ†
qp(L)(xQP C , t)ψqp(R)(xQP C , t) + h.c., (3.1)

where h.c. is the hermitian conjugate [Λ∗ψ†
qp(R)(xQP C)ψqp(L)(xQP C)] and ψqp(x, t), ψ†

qp(x, t)
are the quasiparticle creation and annihilation operators introduced in Sec. 2.4. As fol-
lows, we will drop the subscript notation of qp from the operators for all the subsequent
calculations for brevity. The space-time coordinate (x, t) denotes arbitrary points in the
setup at the space coordinate x and time coordinate t. Note that the chiral evolution of
the edge modes induces the following relation between these coordinates:

ψR(x, t) → ψR(x− vt, 0) ψL(x, t) → ψL(x+ vt, 0). (3.2)

We now analyze the collider setup in the FQH regime operated in different configurations
by computing the tunneling current and backscattered noise. A similar analysis was
performed in the Refs. [62, 63] applying Schwinger-Keldysh contour formalism.

3.1 Tunneling current in a weak backscattering QPC
A time-dependent voltage source VR(t) is coupled to the right-moving edge mode via
Source 2 terminal at the spatial coordinate x = xR, in the setup shown in Fig. 3.1. The
voltage source VL(t) connected to the left-moving edge mode at x = xL is switched off,
and its terminal Source 1 is grounded. The considered setup is geometrically symmetric

1In the strong backscattering regime, the QPC fully depletes the underlying quantum Hall fluid,
permitting only stochastic electron tunneling through the depleted region.
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3. Particle collider in the FQH regime

I2

S11

xQPC

xQPC

xR

xL

Figure 3.1: The four terminal setup driven by a single input source is dubbed to be oper-
ating in the Hanbury Brown-Twiss (HBT) configuration [64, 65]. The voltage source VR(t)
is defined in the region x < xR, coupled to the right-moving edge via the Source 2 termi-
nal. The QPC is at the position xQP C , and the Source 1 terminal at xL is grounded. The
Drain 2 terminal collects the unperturbed current IR (depicted by I2 in the schematic),
and the Drain 1 terminal collects the tunneling current. All the terminals are equidistant
from the QPC by a distance d.

such that the Source and Drain terminals are equidistant from the position of QPC. We
assign the parameter d to measure the distance between the components of the setup as
follows: xL − xR = 2d; xL − xQP C = d; xQP C − xR = d. The terminal Drain 2 is used to
collect the transmitted (or unperturbed) current I(0) driven by VR(t) in the right-moving
lower edge mode of the setup. The tunneling current at the QPC, which is also utilized
to compute the backscattered noise (refer to Sec. 3.2 for more details), is measured by
the Drain 1 terminal coupled to the left-moving upper edge mode. As our first step, we
compute the current operator I from the continuity equation relating the charge density
ρ to the current density J . Due to the inherent one-dimensionality of the current carrying
edge modes, we have

∂xJ(x, t) + ∂tρ(x, t) = 0, and I(x, t) = J(x, t). (3.3)

For a right-moving chiral edge mode ∂tρR(x, t) = −v∂xρR(x, t), cf. Sec. 2.3. Therefore,

∂xIR(x, t) = v∂xρR(x, t) → IR(x, t) = vρR(x, t) = −qv∂xϕR(x, t)
2π . (3.4)

The QPC is tuned to operate in the weak backscattering regime with a weak tunneling
amplitude (|Λ| ≪ 1). This diminutive amplitude allows us to treat the tunneling at
x = xQP C as a perturbation to the system being driven out of equilibrium by VR(t).
Therefore, we can utilize the perturbative expansion introduced in Sec. 2.1 [cf. Eq. (2.5)]
to compute the tunneling current IT (t). While the time-dependent current operator is
constructed as a power series in perturbation theory [48], components of the expansion
consisting of powers of Λ greater than three can be neglected because of the small tunneling
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3. Particle collider in the FQH regime

amplitude |Λ| ≪ 1. As mentioned earlier, the Hamiltonian Hedge(L/R) defined in Eq. (2.40)
(cf. Sec. 2.5) models the FQH edge modes propagating in either direction. Therefore,
we use two copies of Eq. (2.40) defined in both the left-moving (L) and right-moving (R)
subspaces (cf. Sec. 2.2) to model the transport phenomenon in the Laughlin FQH setup
depicted in Fig. 3.1. We now consider the Hamiltonian of the form H = H + V(t), where
H is the initial unperturbed non-equilibrium Hamiltonian described as

H = Hedge + Hg = v

4πν

∫ ∞

−∞
dx

[
(∂xϕL)2 + (∂xϕR)2

]
+
∫ ∞

−∞
dx UR(x, t)ρR(x) . (3.5)

The time dependence is now carried by the tunneling Hamiltonian introduced in Eq. (3.1),
which gives us V(t) = HΛ(t). Using Eq. (2.5), the time evolution of the current operator
in a single QPC setup for a second-order perturbation at the space-time coordinates (y, t),
given that y > xQP C can be written as

IR(y, t) = I(0)(y, t) + i
∫ t

−∞
dt′

[
H

(0)
Λ (xQP C , t

′), I(0)
R (y, t)

]
+ i2

∫ t

−∞
dt′

∫ t′

−∞
dt′′

[
H

(0)
Λ (xQP C , t

′′),
[
H

(0)
Λ (xQP C , t

′), I(0)
R (y, t)

]]
+ O(Λ3) . (3.6)

We proceed with a piece-wise calculation of IR(y, t) = I(0)(y, t) + I(1)(y, t) + I(2)(y, t).
Zeroth order : It is the time evolution of the right-moving current operator IR(y, t) with
the initial unperturbed non-equilibrium Hamiltonian (H) which is already given by Eq.
(3.4). We use the general formula of the right-moving chiral boson from Eq. (2.58)

ϕR(y, t) = ϕR0(y − vt, 0) + qν
∫ t

−∞
dt′ UR(y − v(t− t′), t′) .

The voltage source is coupled to the system at xR, such that UR(y, t) = Θ(−y + xR)VR(t).

I(0)(y, t) = −qv∂yϕR0(y, t)
2π − q2ν

∫ t

−∞
dt′ ∂yΘ(−y + xR + (t− t′)v)VR(t′) ,

= −qv∂yϕR0(y, t)
2π + q2ν

∫ t

−∞
dt′ δ

(
t− t′ + −y + xR

v

)
VR(t′) ,

= −qv∂yϕR0(y, t)
2π + q2νVR

(
t+ −y + xR

v

)
. (3.7)

First order : As HΛ(xQP C , t
′) = H†

Λ(xQP C , t
′), we apply the identity [A + A†, B] =

[A,B] − ([A,B])†, if B = B† [51] and bosonize the tunneling Hamiltonian using the
identities in Eq. (2.41) to simplify the calculations. We then have

I(1)(y, t) = i
∫ t

−∞
dt′

[
Λψ†

L(xQP C , t
′)ψR(xQP C , t

′) + h.c.,

− qv
∂yϕR0(y, t)

2π + q2νVR

(
t+ −y + xR

v

) ]

= i
∫ t

−∞
dt′

[
Λψ†

L(xQP C , t
′)ψR(xQP C , t

′),−qv∂yϕR0(y, t)
2π

]
− h.c.,

= − iqvΛ
(2π)2α

∫ t

−∞
dt′ e

−iqν
∫ t′+(xR−xQP C )/v

−∞ dτ VR(τ) [
eiϕL0(xQP C ,t′)e−iϕR0(xQP C ,t′), ∂yϕR0(y, t)

]
− h.c. .
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3. Particle collider in the FQH regime

Taking into account that the operators in the left-moving and right-moving edge modes
commute, we apply the identities [eA, B] = [A,B]eA and [AB,C] = A[B,C] + [A,C]B
and the Kac-Moody commutation relation [cf. Eq. (2.50)] to obtain

=⇒
[
eiϕL0(xQP C ,t′)e−iϕR0(xQP C ,t′), ∂yϕR0(y, t)

]
= eiϕL0(xQP C ,t′)

[
e−iϕR0(xQP C ,t′), ∂yϕR0(y, t)

]
,

= eiϕL0(xQP C ,t′) [−iϕR0(xQP C , t
′), ∂yϕR0(y, t)] e−iϕR0(xQP C ,t′),

= −ieiϕL0(xQP C ,t′) [−2iπνδ (xQP C − y + v(t− t′))] e−iϕR0(xQP C ,t′),

= −2πνδ (xQP C − y + v(t− t′)) eiϕL0(xQP C ,t′)e−iϕR0(xQP C ,t′).

Using the above result and by reabsorbing the pre-factors, I(1)(y, t) can be rewritten in
terms of quasiparticle annihilation and creation operators as

I(1)(y, t) = iqν
∫ t

−∞
dt′ δ

(
t− t′ + xQP C − y

v

) (
Λψ†

L(xQP C , t
′)ψR(xQP C , t

′) − h.c.
)
. (3.8)

The region of interest is after the pulse injection point, i.e., at y > xQP C > xR. It
implies xQP C − y < 0, ensuring t′ = t + (xQP C − y)/v falls within the time interval
(−∞, t). We enforce this condition using a Heaviside function and apply the identity∫
dt f(t)δ(t− t0) = f(t0) to obtain

I(1)(y, t) = iqνΘ(y − xQP C)
(
Λψ†

L(2xQP C − y + vt, 0)ψR(y − vt, 0) − h.c.
)
. (3.9)

Second order : To compute the contribution of the second-order perturbation term, we
utilize the previously derived expression of the commutator

[
H

(0)
Λ (xQP C , t

′), I(0)
R (y, t)

]
in

the calculation of I(1)(y, t) as follows

I(2)(y, t) = i2
∫ t

−∞
dt′
∫ t′

−∞
dt′′
[
H

(0)
Λ (xQP C , t

′′),

qνδ
(
t− t′ + xQP C − y

v

) (
Λψ†

L(xQP C , t
′)ψR(xQP C , t

′) − h.c.
) ]
. (3.10)

To reduce the number of operators appearing during the expansion of Eq. (3.10), we ne-
glect the terms that zero out when we evaluate the expectation value of I(2)(y, t). Upon
careful analysis, it is clear that components containing an equal number of quasiparticle
creation and annihilation operators in the left-moving and right-moving subspaces will
contribute to ⟨I(2)(y, t)⟩. We only retain non-vanishing contributions and drop the nota-
tion of denoting xQP C from the space-time coordinate (xQP C , t) in subsequent calculations.

I(2)(y, t) = i2qν
∫ t

−∞
dt′
∫ t′

−∞
dt′′ δ

(
t− t′ + xQP C − y

v

) [
H

(0)
Λ (t′′),Λψ†

L(t′)ψR(t′) − h.c.
]
,

= qν|Λ|2Θ(y − xQP C)
∫ t̃

−∞
dt′′

[
ψ†

L(t′′)ψR(t′′), ψ†
R(t̃)ψL(t̃)

]
− h.c., (3.11)

where t̃ = t + (xQP C − y)/v and ψL/R(t′′) = ψL/R(xQP C ± vt′′, 0). We next compute
the expectation value of the time-evolved current operator with respect to the density
matrix ρ0(t0) over the ground state of the system (by omitting the subscript notation ⟨.⟩0
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3. Particle collider in the FQH regime

for brevity). Consider the ground state in equilibrium at t0 = −∞, and that the input
voltage source, tunneling at the QPC (treated as perturbation), transpired at later times.

⟨IR(y, t)⟩ = ⟨I(0)(y, t)⟩ + ⟨I(1)(y, t)⟩ + ⟨I(2)(y, t)⟩ [cf. Eq. (2.6)] , (3.12)

⟨I(0)(y, t)⟩ = −qv
〈
∂yϕR0(y, t)

2π

〉
+ q2ν

〈
VR

(
t+ −y + xR

v

)〉
,

⟨I(0)(y, t)⟩ = q2νVR

(
t+ xR − y

v

)
. (3.13)

By definition, the compact boson field ϕ ∝ bq − b†
q [cf. Eq. (2.26)] creates and destroys

particle-hole pairs. Therefore, the expectation value of the first term in the above equa-
tion reduces to zero without any counter-balancing operators acting on the equilibrium
state. Furthermore, the vanishing expectation value of the quasiparticle creation and
annihilation operators ⟨ψqp⟩ = 0, result in a zero contribution from I(1)(y, t)

⟨I(1)(y, t)⟩ = iqνΛ
〈
ψ†

L(2xQP C − y + vt, 0)ψR(y − vt, 0) − h.c.
〉

= 0. (3.14)

To calculate the expectation value of the second order contribution, we expand the com-
mutator in Eq. (3.11) and split the current as I(2)(y, t) =

∫
dt′′ (a − b) − h.c., where

a = ψ†
L(t′′)ψR(t′′)ψ†

R(t̃)ψL(t̃) and b = ψ†
R(t̃)ψL(t̃)ψ†

L(t′′)ψR(t′′). We compute each term
separately by bosonizing the quasiparticle operators. The evaluation of ⟨a⟩ is detailed in
the subsequent calculations

⟨I(2)(y, t)⟩ = qν|Λ|2Θ(y − x)
∫ t̃

−∞
dt′′

〈
ψ†

L(t′′)ψR(t′′)ψ†
R(t̃)ψL(t̃)

〉
− ⟨b⟩ − h.c.,

⟨a⟩ =
〈
eiϕL0(t′′)e−iϕL0(t̃)

〉 〈
e−iϕR0(t′′)eiϕR0(t̃)

〉
e

iqν
∫ ť

−∞ dτ VR(τ)−iqν
∫ t̄

−∞ dτ VR(τ)
,

where ť = t + (xR − y)/v and t̄ = t′′ + (xR − xQP C)/v. Applying the property of time
translational invariance and the exponentiated bosonic correlation formula [55]〈

n∏
k=1

eOk

〉
= e

∑n

j<k
⟨OjOk⟩e

1
2
∑n

k=1⟨O2
k(0)⟩, (3.15)

⟨a⟩ = e⟨ϕL0(t′′−t̃)ϕL0(0)⟩−⟨ϕ2
L0(0)⟩e⟨ϕR0(t′′−t̃)ϕR0(0)⟩−⟨ϕ2

R0(0)⟩eiqν
∫ ť

t̄
dτ VR(τ).

Proceeding further, we utilize the expression of the equilibrium bosonic Green’s function
[31, 66, 67] evaluated in Appendix A. It is a mathematical construct used to describe
the correlation between bosonic excitations at different space-time points in a quantum
system at thermal equilibrium. We now rewrite the expectation value ⟨a⟩ as

⟨a⟩ = eGL(t′′−t̃)eGR(t′′−t̃)eiqν
∫ ť

t̄
dτ VR(τ) = G2

−(xQP C , y, t, t
′′)
(
eiqν

∫ ť

t̄
dτ VR(τ)

)
, (3.16)

G2
−(xQP C , y, t, t

′′) =
 α

α− i(xQP C − y + v(t− t′′))
πkBθ

(
xQP C−y

v
+ t− t′′

)
sinh

(
πkBθ

(
xQP C−y

v
+ t− t′′

))
2ν

,

where kB is the Boltzmann constant and θ is the temperature. We drop the arguments of
Green’s function in the subsequent calculations for brevity. Following a similar procedure
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3. Particle collider in the FQH regime

to compute ⟨b⟩ and h.c., we write down the final expression of ⟨I(2)(y, t)⟩, neglecting the
intermediate calculation steps:

⟨I(2)(y, t)⟩ = qν|Λ|2Θ(y − x)
∫ t̃

−∞
dt′′

(
G2

− −G2
+

) [
eiqν

∫ ť

t̄
dτ VR(τ) − e−iqν

∫ ť

t̄
dτ VR(τ)

]
,

= 2iqν|Λ|2Θ(y − x)
∫ t̃

−∞
dt′′

(
G2

− −G2
+

)
sin

(
qν
∫ ť

t̄
dτ VR(τ)

)
; G2

+ = (G2
−)†. (3.17)

Combining the results, the final time evolved current after turning on the perturbation is

⟨IR(y, t)⟩ = q2νVR

(
t+ xR − y

v

)
+

2iqν|Λ|2Θ(y − x)
∫ t̃

−∞
dt′′

(
G2

− −G2
+

)
sin

(
qν
∫ ť

t̄
dτ VR(τ)

)
. (3.18)

The first term (⟨I(0)(y, t)⟩) in Eq. (3.18) is a direct portrayal of Ohm’s law (V ∝ I) obeyed
by the edge mode in the absence of any perturbation. The second-order average term
(⟨I(2)(y, t)⟩) depicts the expectation value of the tunneling current (⟨IT (t)⟩) expanded to
the leading order in Λ. Whereas I(1)(y, t) is the tunneling current operator IT (t), denoting
the backscattered current from the lower edge to the upper edge measured in Drain 1.
By proper choice of spatial coordinates, we generalize the computed results as

IT (t) = iqν
(
Λψ†

L(t)ψR(t) − Λ†ψ†
R(t)ψL(t)

)
, (3.19)

⟨IT (t)⟩ = qν|Λ|2
∫ t

−∞
dt′
〈[
ψ†

L(t)ψR(t), ψ†
R(t′)ψL(t′)

]
+
[
ψ†

L(t′)ψR(t′), ψ†
R(t)ψL(t)

]〉
.

(3.20)

3.2 Zero-frequency backscattered noise
The zero-frequency shot noise [19] can be computed by cross-correlating the time-evolved
current fluctuations ∆I(t) measured in the Drain terminals (cf. Sec. 1.1). The unsym-
metrical form of the noise is defined as

S(ij)(ω = 0) = lim
T →∞

2
T

∫ T/2

−T/2
dt

∫ ∞

−∞
ds

〈
∆I(i)(t+ s)∆I(j)(t)

〉
, (3.21)

where s is a time variable denoting the delay between the fluctuations. The fluctuation
in the time evolution of the generic current operator is given by ∆I(t) = I(t) − ⟨I(t)⟩.
Similar to the formulation of the tunneling current operator (cf. Sec. 3.1), we expand
Eq. (3.21) to the leading order in the tunneling amplitude. In other words, we restrict
the perturbative expansion of the time-dependent current operator to include terms with
pre-factors Λn for n < 2 due to the diminutive tunneling amplitude |Λ| ≪ 1 in the weak
backscattering regime.〈

∆I(i)
R (t+ s)∆I(j)

R (t)
〉

= ⟨(IR(t+ s) − ⟨IR(t+ s)⟩) (IR(t) − ⟨IR(t)⟩)⟩ . (3.22)

Discarding the vanishing components and retaining only non-zero contributions, we obtain〈
∆I(i)

R (t+ s)∆I(j)
R (t)

〉
=
〈
I(0)(t+ s)I(0)(t)

〉
+
〈
I(1)(t+ s)I(1)(t)

〉
+
〈
I(0)(t+ s)I(2)(t)

〉
+
〈
I(2)(t+ s)I(0)(t)

〉
= S(00) + S(11) + S(02) + S(20). (3.23)
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3. Particle collider in the FQH regime

We only focus on the backscattered noise S(11) that arises due to the quasiparticle tun-
neling at the QPC. The residual noise components scale proportionally with temperature
(θ) and become insignificant at very low temperatures. Our calculations are constricted
to low temperatures with an upper bound VR/L > kBθ.

S(11) = (qνΘ(y − x)|Λ|)2 lim
T →∞

2
T

∫ T/2

−T/2
dt
∫ ∞

−∞
ds

〈
ψ†

L(t+ s)ψR(t)ψ†
R(t+ s)ψL(t)

〉
+ h.c. .

The backscattered noise has a similar mathematical form as that of ⟨I(2)(y, t)⟩, entailing
a similar calculation method (cf. Sec. 3.1). Therefore, we state the final generalized noise
expressions ignoring the intermediate computation steps:

S(11) = (qν|Λ|)2 lim
T →∞

2
T

∫ T/2

−T/2
dt
∫ ∞

−∞
ds ⟨IT (t+ s)IT (t)⟩ , (3.24)

S(11) = (qν|Λ|)2 lim
T →∞

4
T

∫ T/2

−T/2
dt
∫ ∞

−∞
ds G2

+(0, 0, s, 0) cos
(
qν
∫ t+s

t
dτ VR(τ)

)
. (3.25)

3.3 Two input sources and photoassisted coefficients
So far, we have derived results for a single source setup. However, we must now extend
our analysis to a two-source case because we aim to model the HOM interferometry. In
addition to the previously defined input source UR(y, t) in the region x < xR, we introduce
another voltage source UL(y, t) = Θ(y−xL)VL(t) in the region x > xL that couples to the
left-moving chiral edge mode modifying the quasiparticle and bosonic field operators as

ϕL(y, t) = ϕL0 (y + vt, 0) + qν
∫ t

−∞
dt′ UL(y + v(t− t′), t′) , (3.26)

ψL(t) = 1√
2πα

e−iϕL0(y+vt,0)e
−iqν

∫ t+y/v−xL/v

−∞ dt′ VL(t′)
. (3.27)

It is apparent that the additional source term augments a phase factor corresponding
to the applied voltage VL(t) altering the previously computed observables as (results
stated after enforcing the symmetric conditions of the setup in Fig. 3.1 and by writing
G±(xQP C , y, t, t

′′) as G± and G+(0, 0, s, 0) as G+(0, s) for brevity):

⟨IT (t)⟩ = 2iqν|Λ|2
∫ t

−∞
dt′′

(
G2

− −G2
+

)
sin

(
qν
∫ t−d/v

t′′
dτ [VR(τ) − VL(τ)]

)
, (3.28)

S(11) = (qν|Λ|)2 lim
T →∞

4
T

∫ T/2

−T/2
dt
∫ ∞

−∞
ds G2

+(0, s) cos
(
qν
∫ t+s

t
dτ [VR(τ) − VL(τ)]

)
(3.29)

By coupling two voltage sources to both the chiral edge modes, we can now operate the
Laughlin FQH setup in both the HOM (collider regime) [20] and HBT configurations (by
setting either of the inputs to 0) [64, 65]. To extend our examination with relevance to
experiments, we assume that the voltage source drives the system periodically with a
time-period T (angular frequency Ω). This approach stems from the practical challenges
associated with achieving single-pulse detection, leading to the frequent use of periodic
sources in experimental setups. Consequently, the tunneling current satisfies: ⟨IT (t)⟩ =
⟨IT (t + T )⟩, because the sinusoidal function in Eq. (3.28) is periodic in time. Therefore,
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3. Particle collider in the FQH regime

averaging the tunneling current over one cycle of T would suffice to further our analysis.
We split the applied effective voltage bias into AC [VAC(τ) = V AC

R (τ) − V AC
L (τ)] and DC

[VDC(τ) = V DC
R (τ) − V DC

L (τ)] components [68] to rearrange the sine term as follows:

⟨IT (t)⟩ = 2iqν|Λ|2 1
T

∫ T

0
dt
∫ t

−∞
dt′′

(
G2

− −G2
+

)
sin

(
qν
∫ t−d/v

t′′
dτ [VAC(τ) + VDC ]

)
,

= qν|Λ|2 1
T

∫ T

0
dt
∫ t

−∞
dt′′

(
G2

− −G2
+

)
eiqν

∫ t−d/v

t′′ dτVAC(τ)eiqνVDC(t−t′′−d/v) − h.c. .

Due to the periodicity of VAC(τ), the exponential can be expressed as a Fourier series by
introducing the photoassisted coefficients [69, 70] elaborated in Appendix C.

⟨IT (t)⟩ = qν|Λ|2

T

∫ T

0
dt
∫ t

−∞
dt′
(
G2

− −G2
+

) ∞∑
l=−∞

∞∑
m=−∞

p∗
l pme

ilΩte−imΩt′′
eiQΩ(t−t′′) − h.c.,

where QΩ = qνVDC , G2
± = G2

±(xQP C , y, t, t
′′), and pl/m is the photoassisted coefficient.

Performing a change of variables t− t′′ = −t′ by subtracting t′′ from the time arguments
transforms the observable into2

⟨IT (t)⟩ = qν|Λ|2

T

∫ T

0
dt
∫ 0

−∞
dt′
(
G2

− −G2
+

) ∞∑
l=−∞

∞∑
m=−∞

p∗
l pme

iΩt(l−m)e−iΩt′(l+Q) − h.c.,

where G2
± = G2

±(xQP C , y,−t′, 0). We drop the space coordinates from Green’s function
and change the order of operations to obtain (1/T )

∫ T
0 dte−iΩt(l−m) = 1, which yields l = m

within a single period T of the applied periodic voltage pulses.

⟨IT (t)⟩ = qν|Λ|2
∫ 0

−∞
dt′
(
G2

+(−t′, 0) −G2
−(−t′, 0)

) ∞∑
l=−∞

|pl|2
[
eiΩ(t′)(l+Q) − e−iΩ(t′)(l+Q)

]
,

⟨IT (t)⟩ = 2iqν|Λ|2
∞∑

l=−∞
|pl|2

∫ 0

−∞
dt′
(
G2

+(−t′, 0) −G2
−(−t′, 0)

)
sin (Ωt′ (l +Q)). (3.30)

As G2
−(−t′, 0) = G2

+(t′, 0), we can simplify Eq. (3.30) by treating the integral as follows:

⟨IT (t)⟩ = 2iqν|Λ|2
∞∑

l=−∞
|pl|2

[ ∫ 0

−∞
dt′ G2

+(−t′, 0) sin (Ωt′ (l +Q))

−
∫ 0

−∞
dt′ G2

+(t′, 0) sin (Ωt′ (l +Q))
]
.

Applying the substitution t′ = −t′, to the first integral in the above equation, we obtain

⟨IT (t)⟩ = −2iqν|Λ|2
∞∑

l=−∞
|pl|2

∫ ∞

−∞
dt′ G2

+(t′, 0) sin (Ωt′ (l +Q)). (3.31)

Expressing the sinusoidal in exponents leads to the Fourier transform of Green’s function
calculated in Appendix B. It reformulates ⟨IT (t)⟩ into summation of pl

⟨IT (t)⟩ = qν|Λ|2
∞∑

l=−∞
|pl|2

[∫ 0

−∞
dt′ G2

+(t′)e−iΩt′(l+Q) −
∫ 0

∞
dt′ G2

+(t′)e−iΩt′(l+Q)
]
,

= qν|Λ|2
∞∑

l=−∞
|pl|2 [P2ν (Ω (l +Q)) − P2ν (−Ω (l +Q))] . (3.32)

2The constant global phase factor e−iΩ(l+Q)d/v appearing in ⟨IT (t)⟩ can be ignored in our calculation.
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3. Particle collider in the FQH regime

Following a similar procedure, we connect with the photoassisted coefficients to compute
the photoassisted shot noise [71, 72]. We expand the cosine term in Eq. (3.29) to obtain

S(11) = lim
T →∞

2 (qν|Λ|)2

T

∫ T/2

−T/2
dt
∫ ∞

−∞
ds G2

+(s)e−iQΩs
∞∑

l=−∞

∞∑
m=−∞

p∗
l pme

iΩt(l−m)e−i(l+m)Ωs/2 + h.c. .

Considering the periodic nature of the voltage pulses, the above equation boils down to
the Fourier transform of G2

+(s) (cf. Appendix B).

S(11) = 2 (qν|Λ|)2
∞∑

l=−∞
|pl|2

∫ ∞

−∞
ds G2

+(s)
[
e−i(l+Q)Ωs + ei(l+Q)Ωs

]
,

= 2 (qν|Λ|)2
∞∑

l=−∞
|pl|2 [P2ν (Ω (l +Q)) + P2ν (−Ω (l +Q))] . (3.33)

3.4 Analysis in the DC regime
Driving the Laughlin FQH setup with a pure DC bias Q ̸= 0, where Q = qνVDC/Ω by ze-
roing out the AC component W = 0, where W = qνVAC/Ω, transforms the photoassisted
coefficient to pl(W = 0) = −Jl(0) = δl,0 = δ(l) (cf. Appendix C). The noise and current
expressions in the DC regime read as

⟨IT (t)⟩ = ⟨IT (t)⟩ = qν|Λ|2
∞∑

l=−∞
|δ(l)|2 [P2ν (Ω (l +Q)) − P2ν (−Ω (l +Q))] ,

= 2qν|Λ|2

Γ(2ν)ωc

(
2πkBθ

ωc

)2ν−1 ∣∣∣∣Γ(ν + iqνVDC

2πkBθ

)∣∣∣∣2 sinh
(
qνVDC

2kBθ

)
. (3.34)

S(11) = 2 (qν|Λ|)2
∞∑

l=−∞
|δ(l)|2 [P2ν (Ω (l +Q)) + P2ν (−Ω (l +Q))] ,

= (2qν|Λ|)2

Γ(2ν)ωc

(
2πkBθ

ωc

)2ν−1 ∣∣∣∣Γ(ν + iqνVDC

2πkBθ

)∣∣∣∣2 cosh
(
qνVDC

2kBθ

)
. (3.35)

The temperature-dependent behavior of the system at ν = 1/3 for a sweep of the dimen-
sionless DC parameter (qνVDCω

−1
c , where ωc is the energy cut-off, cf. Appendix A) from

-0.5 to 0.5 are plotted in Fig. 3.2. As discussed in Sec. 3.2, our computations pertain to
low temperatures bounded by the limit Vapplied > kBθ. The perfectly overlapping curves
Fig. 3.2 indicate the negligible impact of finite temperature effects within this regime.
However, this limit is no longer valid for a diminishing applied voltage VDC → 0 where the
relatively significant temperature diverges the current and noise responses of the system.
Notably, this divergent behavior is persistent in a multiple QPC setup as both Vapplied

and θ tend towards zero [73]. The DC analysis reveals another aspect of the nature of the
tunneling particles at the QPC. In the temperature independent regime (cf. Appendix
B.2), we can derive ⟨IT (t)⟩ ∝ V 2ν−1

applied from Eq. (B.16) which suggests the power law gov-
erning the relation between tunneling current and the applied input voltage. ν = 1 refers
to the tunneling current caused by electrons that dwindle to zero as Vapplied → 0. In con-
trast, the Laughlin sequence with ν = 1/(2n+ 1), where n ∈ Z+, exhibits an asymptotic
current due to the tunneling of quasiparticles at the QPC. It illustrates the dominance of
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3. Particle collider in the FQH regime

(a) ⟨IT (t)⟩ at ν = 1/3 in the DC regime (b) S(11) at ν = 1/3 in the DC regime

Figure 3.2: Plots of backscattered current and zero-frequency noise as a function of
the dimensionless parameter qνVDCω

−1
c at zero (kBθ = 0, in red) and finite temperature

(kBθ = 0.01ωc, in blue). The curves overlap perfectly within the limit VDC > kBθ. This
limit is no longer valid in the region where the temperature-independent curves diverge.

quasiparticle tunneling over electron tunneling as a low-energy perturbation to the FQH
system [74]. Furthermore, we can establish a relationship between the photoassisted shot
noise and tunneling current as the following:

S(11) = 2qν⟨IT (t)⟩ coth
(
qνVDC

2kBθ

)
. (3.36)

Sending θ to the infinitesimal limit (θ → 0) at VDC > 0 retrieves S = 2qν⟨IT (t)⟩. As
discussed in Sec. 1.3, this theoretical argument was instrumental in discovering fractional
charges through current-noise measurements.

3.5 AC Analysis: Hong-Ou-Mandel Effect
We aim to realize the HOM effect by colliding two identical excitations at the QPC in
the Laughlin FQH setup. The Source 1 and Source 2 terminals in Fig. 3.3 are driven
by two periodic voltage pulses identical in amplitude but separated in time by a tunable
delay τd. When we drive the system with two voltage pulses of equal amplitudes, it
zeroes out the contribution from the DC components due to the effective voltage seen by
the system ∆V = VR(t) − VL(t + τd) = VAC(t) + ���VDC − VAC(t + τd) − ���VDC , leading to
Q = qνVDC/Ω = 0. Furthermore, the tunable time delay alters the general form of the
photoassisted coefficient presented in Eq. (C.4) in Appendix C as follows:

pl(HOM) =
∫ T/2

−T/2
dt

1
T
eilΩte−iqν

∫ t

0 dτVAC(τ)eiqν
∫ t

0 dτVAC(τ+τd). (3.37)

30



3. Particle collider in the FQH regime

I2

S11

xQPC

xQPC

xR

xL

Figure 3.3: The four terminal Laughlin FQH setup in the HOM configuration. The
voltage sources VR(t) and VL(t) are defined in the regions x < xR and x > xL at the Source
terminals 2 and 1, respectively. Identical periodic voltage pulses are applied at these
Source terminals in the HOM configuration that drive the FQH setup out-of-equilibrium.
The Drain terminals measure the backscattered current and zero-frequency noise.

By changing the order of operations and considering the periodic nature of input voltage,

pl(HOM) = e−iqν
∫ td

0 dτVAC(τ)
∫ T/2

−T/2
dt

1
T
eilΩt

∞∑
m=−∞

∞∑
n=−∞

pme
−imΩtp∗

ne
inΩ(t+τd),

= e−iqν
∫ td

0 dτVAC(τ)
∞∑

n=−∞
pn+l p

∗
ne

inΩτd =
∞∑

n=−∞
pn+l p

∗
ne

inΩτd . (3.38)

Hence, the photoassisted coefficient for HOM pl(HOM)
3 is a function of the generic pho-

toassisted coefficient pn and time delay τd. Although a broader class of HOM collisions
exist that involve input voltages with distinct amplitudes and temporal shapes [62, 66], we
only consider sinusoidal input for our analysis. Detailed calculations of pn for a sinusoidal
input are presented in Appendix C. A substantial time delay between the input signals in
the HOM experiment is equivalent to driving the system independently through Sources
1 and 2 in the HBT configuration. Therefore, it is a standard practice to normalize the
HOM noise with the HBT noise by defining a ratio R that is only a function of the time
delay τd. Typically, the noise caused by particles tunneling at the QPC is overshadowed
by the equilibrium fluctuation S(0) that is independent of Vapplied. For this reason, we
focus on the excess noise ∆S = S(11) − S(0) by subtracting the background fluctuations
to define the standard HOM noise ratio as

R(τd) = S
(11)
HOM − S(0)

S
(11)
HBT/R + S

(11)
HBT/L − 2S(0)

. (3.39)

3As Eqs. (3.31) and (3.33) involve the square modulus of pn, we can safely ignore the constant global
phase factor e

−iqν
∫ td

0
dτVAC (τ) appearing in pl(HOM)
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in

Figure 3.4: A plot of the standard HOM noise ratio R as a function of the dimensionless
delay parameter τd/T . Identical sinusoidal input pulses with frequency Ω (in GHz range)
are considered at temperature kBθ = 0.01Ω for filling factors ν = 1 and ν = 1/3.

Note that we observe a vanishing HOM noise ratio even at a fractional filling factor of
ν = 1/3 in Fig. 3.4. This behavior can be justified by examining the nature of excitations
induced by the voltage sources in the FQH regime. As discussed in Sec. 1.1, a control-
lable source of quasiparticles is a primary ingredient required to perform anyonic HOM.
However, the conventional voltage sources (marked by orange boxes in Fig. 3.3) cannot
excite a single fractionally charged quasiparticle using any of the Lorentzian, sinusoidal,
or square voltage drives [66]. Moreover, even the minimal excitation4 in the FQH regime
corresponds to an integer number of electrons instead of a fractional charge [62]. Thus,
the HOM dip observed at fractional filling factors in Fig. 3.4 should not be interpreted
as stemming from the fractional statistics of quasiparticle excitations. Therefore, the
feasibility of employing controllable sources emitting single quasiparticles restricts the
possibility of performing HOM for anyons to probe their fractional statistics. In the next
Chapter, we explore this possibility by formally considering a prepared auxiliary state
descibing the time-controlled injection of a single quasiparticle excitation.

4Minimal excitations in a non-interacting system are typically characterized by a single particle exci-
tation above the Fermi level, free from any additional particle-hole pair excitations that generate noise
[75]. This notion can be extended to the context of strongly correlated FQH states by imposing that
these minimal excitations do not generate any excess noise apart from thermal noise. Interestingly, the
required voltage drive remains a Lorentzian pulse carrying an integer charge [62].
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4
Exchange phase erasure in anyon

time domain interferometry

As outlined in previous chapters, we require time-resolved sources capable of injecting
fractional excitations into the Laughlin FQH setup to explore anyon correlations in HOM
interferometry. In the following, we theoretically model such ideal quasiparticle sources
to describe the interference between anyon collisions at the QPC to probe their fractional
statistics. Our theoretical description relies on an auxiliary state, as detailed in Sec. 4.1.
Despite the experimental impracticability of such ideal quasiparticle sources, a mapping
has been derived in Ref. [63], showing that an infinitely narrow, δ-like voltage pulse
V (t) = 2πδ(t)/e (where e is the charge of an electron) is formally equivalent to the
description of an ideal quasiparticle source, as described in Sec. 4.1. As a result, from an
experimental point of view, the features we describe in this chapter can be approximately
mimicked by driving the FQH collider with extremely narrow voltage pulses carrying an
average fractional charge.

4.1 Auxiliary state and Tunneling operator
In the absence of excitations, we denote the ground state of the Laughlin FQH system
in Fig. 4.1 with |0⟩. To model an ideal time-resolved generic source of anyons capable of
exciting any kind l = (l1, l2, . . . , ln)T of quasiparticle, we adopt the K-matrix formalism
introduced in Sec. 2.4. A single quasiparticle injection is then denoted by an auxiliary
state |φ⟩, which is just the system’s ground state dressed by a single quasiparticle exci-
tation [43, 76]. It is defined as |φ⟩ = ψ†

l1
(x, t) |0⟩, where ψ†

l1
is the quasiparticle creation

operator (cf. Sec. 2.4) that adds a single quasiparticle of kind l1
1 to the system at position

x and time t. As our system hosts a single type of quasiparticles, we omit the subscript
l1 from the operators and switch to the following edge modes description:
left-moving edge (L) → upper edge (u) right-moving edge (R) → lower edge (d).
This notation facilitates a succinct description of various subprocesses arising at the QPC,
which will be elucidated later in the chapter. We next introduce an operator A(t) describ-
ing tunneling quasiparticles at the QPC to distinguish various quantities in the theory
clearly. Considering the weak tunneling amplitude to be real, i.e., Λ ∈ R, we compactly
express the tunneling Hamiltonian as

HΛ = Λ
[
A(t) + A†(t)

]
, (4.1)

1A non-interacting FQH system with a single edge mode hosts identical quasiparticles of a single kind.
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SHOM

xQPC

xQPC

xu

xd

Figure 4.1: The four terminal Laughlin FQH setup in HOM configuration with ideal
time-resolved anyon sources. Temporal Anyon Source is modeled by an auxiliary state
|φ⟩ = ψ†

u(xu, tu)ψ†
d(xd, td) |0⟩ that injects anyons in the upper (u) and lower (d) edges at

positions xu, xd and times tu, td, respectively. The resulting HOM noise due to anyon
collisions at the QPC (x = xQP C) is measured by the Drain terminals.

where A(t) = ψ†
u(xQP C , t)ψd(xQP C , t). From the bosonization formalism introduced in

Sec. 2.3, it is apparent that the chiral edge modes host quasiparticles of the form ψ ∝ e−ilϕ.
The tunneling operator can thus be written as A(t) = eil1ϕu(xQP C ,t)e−il1ϕd(xQP C ,t), which
describes the creation of a quasi-particle-hole pair at the QPC. These tunneling quasi-
particle-hole pairs can be attributed to either thermal excitations or quantum fluctuations
occurring at different times, and their correlations are determined by the scaling dimension
δ. The scaling dimension appears as a power-law exponent that governs the decay of the
equilibrium Green’s function of the tunneling quasiparticles (quasiholes) taken as

⟨A(t)A†(t′)⟩0 = ⟨A†(t)A(t′)⟩0 =
[

πkBθα

sinh(πkBθ|t− t′|)

]4δ

e−i2πδsgn(t−t′). (4.2)

Note that Eq. (4.2) is analogous to G2
± quantity from Eq. (3.16) derived (cf. Appendix A)

in Sec. 3.1. The term consisting of the UV cut-off parameter can be conformally mapped
to the exponential with sgn function by selecting a suitable contour in the complex plane
[77]. By comparing Eqs. (3.16) and Eq. (4.2) we arrive at the relation ν = 2δ which fur-
ther implies that ϑ = 2πδ for the Laughlin edge states. Here, ϑ is the braiding phase given
by πν. This equivalence holds for non-interacting edges hosting Abelian anyons. However,
in general, the scaling dimension δ is a non-universal parameter affected by neutral modes
or 1/f noise [74, 78–82]. In contrast, the filling factor ν and the statistical exchange phase
ϑ are universal parameters that are intrinsic characteristics of the FQH system insensitive
to such external influences. Additionally, distinguishing between ϑ from the non-universal
effects of 2πδ is of high experimental relevance. If left unaccounted for, this coincidence
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between δ and ν, dictated by the theory of non-interacting Abelian edges, could lead to
misinterpretations about detecting fractional statistics through standard HOM noise ratio
measurements. To compute observable quantities such as average backscattered current
and noise, we replace the system’s ground state |0⟩ with the prepared auxiliary state |φ⟩.
As shown in Fig. 4.1, the Temporal Anyon Sources operating in HOM configuration drive
the Laughlin FQH setup out-of-equilibrium by injecting two time-resolved quasiparticles
into the system. It is modeled by dressing the ground state of the system with a quasi-
particle excitation on both the upper and lower edges as |φ⟩ = ψ†

u(xu, tu)ψ†
d(xd, td) |0⟩.

4.2 Tunneling current in HOM configuration
The tunneling current operator from Eq. (3.19) derived in Sec. 3.1 using Heisenberg’s
equation of motion can be written in the framework of tunneling operators as IT (t) =
iqνΛ

[
A(t) − A†(t)

]
. Using Eq. (3.20) expressed in terms of the tunneling operators, we

calculate the expectation value of the tunneling current with respect to the auxiliary state
⟨φ| . |φ⟩ = ⟨.⟩qp as follows:

⟨IT (t)⟩ = qνΛ2
∫ t

−∞
dt′

〈[
ψ†

u(t)ψd(t), ψ†
d(t′)ψu(t′)

]
+
[
ψ†

u(t′)ψd(t′), ψ†
d(t)ψu(t)

]〉
qp
,

= qνΛ2
∫ t

−∞
dt′
[
⟨A(t)A†(t′)⟩qp + ⟨A(t′)A†(t)⟩qp − ⟨A†(t)A(t′)⟩qp − ⟨A†(t′)A(t)⟩qp

]
. (4.3)

We are interested in injecting a quasiparticle into the upper and lower edges at the lo-
cations xu > xQP C and xd < xQP C at times tu and td in the non-equilibrium driving
of the Laughlin FQH setup in HOM configuration. The quasiparticle creation opera-
tor eil1ϕu/d(xu/d,tu/d) acting on the edges creates a stable localized disturbance (soliton) in
each bosonic field. Consequently, the bosonic fields evolving chirally with a velocity v
accumulate a phase due to the Kac Moody commutation relations (cf. Sec. 2.4)[83]

ϕu(x, tu) → ϕu(x, tu) + 2πK−1l1Θ(−(x+ v(t− tu)) + xu) , (4.4)
ϕd(x, td) → ϕd(x, td) + 2πK−1l1Θ(x− v(t− td) − xd) . (4.5)

The injected quasiparticles interfere at the position x = xQP C when there is zero time
delay τd = 0. Enforcing the symmetric conditions of the setup in Fig. 4.1 generates
constant offset components (d/v) that correspond to the relative position of the QPC
with respect to the anyon sources in the setup. By absorbing the offset terms into the
injection times, the accumulated phase can be simplified to a function of time arguments.
However, tu and td will now represent the arrival times of the injected anyons at the QPC
that is inherently controlled by the injection times (tu, td). Hence, we continue with the
same notation without loss of generality

ϕu/d(tu/d) → ϕu/d(tu/d) + 2πK−1l1Θ(tu/d − t) . (4.6)

Therefore, from the bosonic description of the tunneling operator, it is clear that the
exponentiated phase factors out of the non-equilibrium correlation function leading to
the relation [holds for all combinations of observables appearing in Eq. (4.3)]

⟨A†(t)A(t′)⟩qp = ⟨A†(t)A(t′)⟩0e
−i2πl1K−1l1[−Θ(td−t)+Θ(tu−t)+Θ(td−t′)−Θ(tu−t′)]. (4.7)
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The obtained phase component ϑ = πl1K
−1l1, is the standard definition of the statistical

braiding angle between two quasiparticles of the same kind introduced in Sec. 2.4. Equa-
tion (4.7) demonstrates that the injected quasiparticles acquire a non-trivial exchange
phase by interacting (braiding) with the quasi-particle-hole pairs created at the QPC due
to thermal or quantum fluctuation. In the HOM configuration, the product accumulates
a braiding phase ϑ only when both the arrival times of the quasiparticles td and tu fall
within the range of the QPC quasi-particle-hole pair creation times t and t′. Introducing
Φ = 2ϑ [−Θ(td − t) + Θ(tu − t) + Θ(td − t′) − Θ(tu − t′)] for brevity.

⟨IT (t)⟩ = qνΛ2
∫ t

−∞
dt′
(
⟨A(t)A†(t′)⟩0 − ⟨A†(t′)A(t)⟩0

)
eiΦ +

(
⟨A(t′)A†(t)⟩0 − ⟨A†(t)A(t′)⟩0

)
e−iΦ,

= qνΛ2
∫ t

−∞
dt′

[
πkBθα

sinh(πkBθ|t− t′|)

]4δ (
e−i2πδsgn(t−t′) − e−i2πδsgn(t′−t)

) (
eiΦ − e−iΦ

)
,

= −4qνΛ2
∫ t

−∞
dt′

[
πkBθα

sinh(πkBθ|t− t′|)

]4δ

sin (Φ) sin (2πδ)sgn(t− t′) . (4.8)

The integral over dt′ in Eq. (4.8) ranges from −∞ to t, implying that t′ is limited to
values less than t (t′ < t). This condition simplifies the integral to

⟨IT (t)⟩ = −4qνΛ2 sin (2πδ)
∫ t

−∞
dt′

[
πkBθα

sinh(πkBθ(t− t′))

]4δ

sin (Φ) . (4.9)

We attempt to simplify the integral in Eq. (4.9), focusing on the sinusoidal function and
by assuming td > tu. However, we will accommodate the converse case in subsequent cal-
culations. The controllable injection (arrival) times tu and td impose different conditions
on the temporal parameter t, modifying the integration bounds where the sinusoidal func-
tion is nonvanishing. We proceed with a piece-wise calculation of the conditions depicted
pictorially in Fig. 4.2. and denote the equilibrium Green’s function with J (t− t′).
t > td > tu: By definition, the Heaviside functions Θ(td − t) and Θ(tu − t) in Φ vanish
due to the imposed condition. The leftover terms generate a finite tunneling current only
when the argument t′ is between the arrival times such that td > t′ > tu.∫ t

−∞
dt′ sin (2ϑ [−Θ(td − t) + Θ(tu − t) + Θ(td − t′) − Θ(tu − t′)]) =

∫ td

tu

dt′ sin (2ϑ) .

td > t > tu: The function Θ(tu − t) zeroes out while −Θ(td − t) + Θ(td − t′) cancel out
each other. The residual argument ensures a non-trivial tunneling current for t′ < tu.∫ t

−∞
dt′ sin (2ϑ [−Θ(td − t) + Θ(tu − t) + Θ(td − t′) − Θ(tu − t′)]) = −

∫ tu

−∞
dt′ sin (2ϑ) .

td > tu > t: It results in a null tunneling current because the quasiparticles never arrive
at the QPC. All the Heaviside functions in Φ cancel out each other, giving ⟨IT (t)⟩ = 0.
Considering the three discussed scenarios, it is clear that the tunneling current is finite
only when t > tu. Modeling alternative cases based on conditions imposed by td.

⟨IT (t)⟩ = sin (2ϑ)Θ(t− tu)
[
Θ(t− td)

∫ td

tu

dt′J (t− t′) − Θ(td − t)
∫ tu

−∞
dt′J (t− t′)

]
,

= sin (2ϑ)Θ(t− tu)
[
Θ(t− td)

∫ td

−∞
dt′J (t− t′) −

∫ tu

−∞
dt′J (t− t′)

]
. (4.10)
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Figure 4.2: Pictorial representation of different cases arising in the calculation of ⟨IT (t)⟩.
The figure portrays a sliding window of controllable quasiparticle injection times that vary
in the integration region over dt′ ranging from −∞ to t. The shaded area represents the
region outside the integration limits.

Entailing similar computations, the arrival times in Eq. (4.10) would swap for tu > td

⟨IT (t)⟩ = sin (2ϑ)Θ(t− td)
[
Θ(t− tu)

∫ tu

−∞
dt′J (t− t′) −

∫ td

−∞
dt′J (t− t′)

]
. (4.11)

We introduce a tunable time delay τd = td − tu corresponding to the difference between
injection (arrival) times of quasiparticles into the lower and upper edges. We focus on the
integrals and perform a change of variables t → t+ tu, t′ → t′ + tu resulting in

Θ(t)
[
Θ(t− τd)

∫ τd

−∞
dt′J (t− t′) −

∫ 0

−∞
dt′J (t− t′)

]
for td > tu =⇒ τd > 0,

Θ(t)
[
Θ(t+ τd)

∫ −τd

−∞
dt′J (t− t′) −

∫ 0

−∞
dt′J (t− t′)

]
for tu > td =⇒ τd < 0.

(4.12)

Combining both cases, we obtain the following expression for tunneling current.

⟨IT (t)⟩ = 4qνΛ2 sin (2ϑ) sin (2πδ)Θ(t)
[∫ 0

−∞
dt′J (t− t′) − Θ (t− |τd|)

∫ |τd|

−∞
dt′J (t− t′)

]
.

The integral of the equilibrium Green’s function in its general form has been evaluated
in Appendix D. Building upon these results, we derive a closed-form expression for the
tunneling current expressed in terms of the incomplete Beta function

⟨IT (t)⟩ = 4qνΛ2(2πkBθ)4δ−1α4δ sin (2ϑ) sin (2πδ)Θ(t)
[
B
(
e−2πkBθt; 2δ, 1 − 4δ

)
− Θ (t− |τd|) B

(
e−2πkBθ(t−|τd|); 2δ, 1 − 4δ

) ]
, (4.13)

where B(x; a, b) =
∫ x

0 t
a−1(1 − t)b−1. It is apparent from the above equation that simulta-

neous injection of quasiparticles with zero delay τd = 0 results in a vanishing tunneling
current. The HOM configuration in the null delay is equivalent to maintaining the sys-
tem in equilibrium ⟨A†(t)A(t′)⟩qp = ⟨A†(t)A(t′)⟩0, that leads to ⟨IT (t)⟩ = 0. This outcome
agrees with the results obtained in Sec. 3.3 [cf. Eq. (3.28)] where we drive the system
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with identical voltage pulses that leads to a zero effective bias ∆V = VR(t) − VL(t + τd)
at τd = 0. The vanishing current, which also leads to a vanishing noise despite the ideal
injection of time-resolved quasiparticles, can be attributed to the single-QPC geometry
of the Laughlin FQH setup. The suppression of observables in the HOM configuration
for quasiparticles does not render the conclusion that anyons obey Fermi-Dirac statistics.
In contrast, it suggests a more intricate interaction of quasiparticles at the QPC than
the straightforward interpretation of two injected anyons colliding/interfering with each
other. By extending the present approach of auxiliary state, it is possible to explore such
interplay between quasiparticles through further investigation of the HOM noise ratio,
which will be the focus of subsequent sections.

4.3 Exchange phase erasure in HOM noise ratio

As our next step, we compute here the symmetrized noise power S(11)(t, t′) = {IT (t), IT (t′)},
where {.} is the anti- commutation of operators defined as IT (t)IT (t′) + IT (t′)IT (t), mea-
sured in the Drain terminals of the Laughlin FQH setup depicted in Fig. 4.1. The
zero-frequency noise in the HOM configuration is calculated by taking the expectation of
S(11)(t, t′) with respect to the auxiliary state |φ⟩ defining two time-resolved quasiparticle
excitations. Using the tunneling operator for backscattered current, we derive

S
(11)
HOM =

∫ ∞

−∞

dt

T

∫ ∞

−∞
dt′ ⟨S(11)(t, t′)⟩qp =

∫ ∞

−∞

dt

T

∫ ∞

−∞
dt′ ⟨{IT (t), IT (t′)}⟩qp , (4.14)

= (qνΛ)2
∫ ∞

−∞

dt

T

∫ ∞

−∞
dt′
[
⟨A(t)A†(t′)⟩qp + ⟨A(t′)A†(t)⟩qp + ⟨A†(t)A(t′)⟩qp + ⟨A†(t′)A(t)⟩qp

]
.

Following a similar approach as in the calculation of the tunneling current, we use the iden-
tity in Eq. (4.7) and substitute Φ = 2ϑ [−Θ(td − t) + Θ(tu − t) + Θ(td − t′) − Θ(tu − t′)]

S
(11)
HOM = (qνΛ)2

∫ ∞

−∞

dt

T

∫ ∞

−∞
dt′ J (|t− t′|)

(
e−i2πδsgn(t−t′) + e−i2πδsgn(t′−t)

) (
eiΦ + e−iΦ

)
,

= (2qνΛ)2
∫ ∞

−∞

dt

T

∫ ∞

−∞
dt′

[
πkBθα

sinh(πkBθ|t− t′|)

]4δ

cos (Φ) cos (2πδ) . (4.15)

Our primary objective is to calculate excess noise, which is of experimental relevance
as detailed in Sec. 3.5. Thus, we subtract the background fluctuations independent of
quasiparticle injection from Eq. (4.15) to obtain excess HOM noise

∆S(11)
HOM = (2qνΛ)2 cos (2πδ)

∫ ∞

−∞

dt

T

∫ ∞

−∞
dt′

[
πkBθα

sinh(πkBθ|t− t′|)

]4δ

(cos (Φ) − 1) ,

= (2qνΛ)2 cos (2πδ)
[ ∫ ∞

−∞

dt

T

∫ ∞

t
dt′

[
πkBθα

sinh(πkBθ(t′ − t))

]4δ

(cos (Φ) − 1)

+
∫ ∞

−∞

dt

T

∫ t

−∞
dt′

[
πkBθα

sinh(πkBθ(t− t′))

]4δ

(cos (Φ) − 1)
]
. (4.16)

We simplify the integrals in Eq. (4.16) into regions generating non-trivial finite HOM
noise by concentrating on (cos (Φ) − 1) term, assuming initially that td > tu. We now
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calculate the contribution of J (t′ − t) with the integral over dt′ ranging from t to ∞.
t > td > tu: The Heaviside functions in Φ cancel because the arrival times of the injected
anyons at the QPC are out of the integral bounds. It generates a vanishing Φ leading to
a trivial noise contribution ∫ ∞

t
dt′ J (t′ − t)(cos (0) − 1) = 0 .

td > t > tu: The functions with the time argument tu nullify as t′ > t > tu. If we have
−Θ(td − t) = −1 combined with Θ(td − t′), it would result in a phase of zero when t′ < t.
Hence, we only have a finite noise contribution when t′ > td.∫ ∞

t
dt′ J (t′ − t)(cos (2ϑ[−1 + Θ(td − t′)]) − 1) =

∫ ∞

td

dt′ J (t′ − t)(cos (2ϑ) − 1) .

td > tu > t: The Heaviside functions dependent on t cancel out each other. The leftover
functions contribute to the noise only when td > t′ > tu.∫ ∞

t
dt′ J (t′ − t)(cos (2ϑ[Θ(td − t′) − Θ(tu − t′)]) − 1) =

∫ td

tu

dt′ J (t′ − t)(cos (2ϑ) − 1) .

Combining all the cases, we obtain the final contribution∫ ∞

t
dt′ =⇒ Θ(td − t)

[
Θ(t− tu)

∫ ∞

td

dt′ J (t′ − t) + Θ(tu − t)
∫ td

tu

dt′ J (t′ − t)
]
,

∫ ∞

−∞

dt

T

∫ ∞

t
dt′ =⇒

∫ td

tu

dt

T

∫ ∞

td

dt′J (t′ − t) +
∫ tu

−∞

dt

T

∫ td

tu

dt′J (t′ − t) . (4.17)

Likewise, the contribution from the second term J (t− t′) in Eq. (4.16) with the integral
over dt′ ranging from −∞ to t is calculated to be∫ ∞

−∞

dt

T

∫ t

−∞
dt′ =⇒

∫ ∞

td

dt

T

∫ td

tu

dt′J (t− t′) +
∫ td

tu

dt

T

∫ tu

−∞
dt′J (t− t′) . (4.18)

Taking both Eqs. (4.17) and (4.18) into account, we find excess HOM noise for td > tu

∆S(11)
HOM = 2(2qνΛ)2 cos (2πδ)(cos (2ϑ) − 1)

∫ td

tu

dt

T

[∫ ∞

td

dt′J (t′ − t) +
∫ tu

−∞
dt′J (t− t′)

]
.

Considering the case when tu > td will switch the arrival times in the above equation.
Analogous to the tunneling current computations, introducing the tunable delay τd =
td − tu and accounting for both cases gives the final HOM noise

∆S(11)
HOM = 2(2qνΛ)2 cos (2πδ)(cos (2ϑ) − 1)

∫ |τd|

0

dt

T

[∫ ∞

|τd|
dt′J (t′ − t) +

∫ 0

−∞
dt′J (t− t′)

]
.

(4.19)

As explained in Sec. 3.5, the HOM noise ratio R(τd) is calculated by normalizing the excess
HOM noise with twice the value of excess noise in the HBT configuration. The auxiliary
state defined by |φ⟩ = ψ†

u/d(xu/d, tu/d) |0⟩ corresponds to a single quasiparticle injection in
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either of the upper or lower edges. Starting from Eq. (4.14), repeating the previous calcu-
lations using the HBT auxiliary state generates a phase ΦHBT = 2ϑ [Θ(tu − t) − Θ(tu − t′)]
within the cosine function, leading to the following HBT noise:

∆S(11)
HBT = (2qνΛ)2 cos(2πδ)(cos(2ϑ) − 1)

[∫ tu

−∞

dt

T

∫ ∞

tu

dt′J (t′ − t) +
∫ ∞

tu

dt

T

∫ tu

−∞
dt′J (t− t′)

]
,

= 2(2qνΛ)2 cos(2πδ)(cos(2ϑ) − 1)
[∫ 0

−∞

dt

T

∫ ∞

0
dt′J (t′ − t)

]
. (4.20)

Dividing Eq. (4.19) with Eq. (4.20) yields the standard HOM noise ratio as

R(τd) = ∆S(11)
HOM

2∆S(11)
HBT

= 1
2
(((((((((cos (2ϑ) − 1)

∫ |τd|
0 dt

[∫∞
|τd| dt

′J (t′ − t) +
∫ 0

−∞ dt′J (t− t′)
]

((((((((cos(2ϑ) − 1)
∫ 0

−∞ dt
∫∞

0 dt′J (t′ − t)
.

(4.21)

It is clear from Eq. (4.21) that the information about the braiding phase is erased from
the standard HOM noise ratio. This observation is a key result in this thesis. Using the
relations derived in Appendix D, we can express R(τd) in terms of the incomplete Beta
functions and rewrite the noise ratio as

R(τd) = 1
2

∫ |τd|
0 dt

[
B
(
e−2πkBθt; 2δ, 1 − 4δ

)
+ B

(
e2πkBθ(t−|τd|); 2δ, 1 − 4δ

)]
∫∞

0 dt B (e−2πkBθt; 2δ, 1 − 4δ) ,

= 1
2

1 +
∫ |τd|

0 dt B
(
e2πkBθ(t−|τd|); 2δ, 1 − 4δ

)
−
∫ 0

−∞ dt B
(
e2πkBθ(t−|τd|); 2δ, 1 − 4δ

)
∫ 0

−∞ dt B (e2πkBθt; 2δ, 1 − 4δ)

 ,
= 1

2 [1 + F(τd, δ, θ)] , (4.22)

where

F(τd, δ, θ) ≡
∫ |τd|

0 dt B
(
e2πkBθ(t−|τd|); 2δ, 1 − 4δ

)
−
∫ 0

−∞ dt B
(
e2πkBθ(t−|τd|); 2δ, 1 − 4δ

)
∫ 0

−∞ dt B (e2πkBθt; 2δ, 1 − 4δ)
.

(4.23)

The HOM noise ratio is thus solely dependent on the tunable delay (τd), scaling dimension
of the tunneling QPC quasi-particle-hole pairs (δ), and temperature (θ). The presence of
the exchange phase ϑ in the excess noise expressions validate braiding between the quasi-
particle-hole pairs excitations and the incoming injected anyons at the QPC. However, its
erasure from R(τd) illustrates the cancellation of the acquired universal braiding phase
through subprocesses (previously unaccounted for) occurring at the collider QPC. The
relegation of the acquired ϑ to a trivial phase is responsible for the HOM noise dip at zero
time delay τd = 0 in a fractional filling factor ν = 1/3, as depicted in Fig. 4.3. Interestingly,
the width of the anyonic HOM dip is governed by the temperature θ. The noise dip width
demonstrates a progressive growth with decreasing temperatures, exhibiting an inverse
relationship. It starkly contrasts the temperature-independent noise suppression observed
in the HOM for electrons. Instead, the width of the Pauli dip for electrons is directly
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in

Figure 4.3: A plot of the HOM noise ratio R as a function of the dimensionless delay
parameter τd/T at ν = 1/3 for varying temperatures θ ranging from 25 mK − 200 mK.
The parameter kB is set to 1. Ideal time-resolved anyon injections at tu and td into the
upper and lower edges were modeled by the auxiliary state |φ⟩ = ψ†

u(xu, tu)ψ†
d(xd, td) |0⟩.

proportional to the temporal extension of the incoming electronic excitations that interfere
at the QPC [23, 66, 84]. Equation (4.22) represents the time-sensitive interference between
injected point-like anyons and the QPC quasi-particle-hole excitations as a function of
temperature, scaling dimension, and delay. The temperature-dependent variation of the
anyonic HOM noise ratio thus characterizes the modulation of the non-universal scaling
dimension delta of the tunneling quasi-particle-hole pairs created at timescales t and
t′. Despite the unique characteristics of the HOM ratio for anyons, it fails to capture
information about the universal braiding phase ϑ to probe fractional statistics. The
erasure of the exchange phase from R(τd) might appear as a consequence of the standard
normalization of HOM noise with the noise from the HBT configuration. Selecting a
different normalization (of experimental relevance) for the HOM noise retains the braiding
phase in R(0)(τd) as illustrated in Eq. (4.24). However, in this case, the braiding phase
cannot be disentangled from the other factors containing the scaling dimension δ.

R(0)(τd) = ∆S(11)
HOM

S(0) = (cos (2ϑ) − 1)
∫ |τd|

0 dt
[∫∞

|τd| dt
′J (t′ − t) +

∫ 0
−∞ dt′J (t− t′)

]
∫∞

−∞ dt
∫∞

−∞ dt′J (|t′ − t|) .

(4.24)

Hence, we conclude that, contrary to fermions and bosons, the standard HOM ratio in
a two-particle FQH interferometer for anyons does not allow direct observation of their
exchange statistics, in contrast to the naive expectation illustrated in Fig. 1.8. Instead,
the HOM ratio [Eq. (4.21)] probes the non-universal scaling dimension δ of the quasi-
particle-hole pairs created at the QPC.
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4. Exchange phase erasure in anyon time domain interferometry

4.4 Interpreting the braiding phase erasure
In this section, we provide a physical interpretation for the exchange phase erasure
observed in the HOM interferometry for anyons based on the methods introduced in
Refs. [44, 45]. Fractional statistics is rendered invisible for a time-resolved injection of
anyons in the single-QPC Laughlin FQH setup depicted in Fig. 4.1. However, as discussed
in the previous sections, the presence of the statistical exchange phase ϑ in the current and
noise expressions indicates braiding between injected anyons and the quasi-particle-hole
excitations at the QPC. Because point-like tunneling prohibits spatial closed-loop tra-
jectories of one quasiparticle around another, we may argue that the braiding processes
occur in the time domain. To develop this point of view, we rearrange the expression for
the noise in Eq. (4.14) into an interference pattern between different quantum states.

S
(11)
HOM ∝

∫ ∞

−∞

dt

T

∫ ∞

−∞
dt′

[
+⟨t, τd |t′, τd⟩+ + +⟨t′, τd |t, τd⟩+

+ −⟨t, τd |t′, τd⟩− + −⟨t′, τd |t, τd⟩−

]
, (4.25)

where τd = td−tu corresponds to the tunable time delay between the arrival of the injected
anyons at the QPC. The quantum states in Eq. (4.25) are defined with respect to the
HOM auxiliary state |φ⟩ as the following:

|t, τd⟩− = A(t) |φ⟩ |t, τd⟩+ = A†(t) |φ⟩ , (4.26)

−⟨t, τd| = ⟨φ|A†(t) +⟨t, τd| = ⟨φ|A(t) , (4.27)

The auxiliary state in the above equations is solely dependent on τd and is defined as
|φ⟩ = ψ†

u(0)ψ†
d(τd) |0⟩. This auxiliary state, which varies based on the delay τd, is obtained

through a straightforward change of variables using τd = td−tu. By definition, the operator
A(t) creates a quasiparticle in the upper edge (u) and a quasihole in the lower edge (d) with
a charge qν at time t. Correspondingly its Hermitian conjugate A†(t) creates a quasihole
and a quasiparticle in the upper (u) and lower edge (d), respectively. As elaborated in
Sec. 4.2, products of the form ⟨A†(t)A(t′)⟩qp acquires the braiding phase ϑ only when the
arrival times coincide with the quasi-particle-hole pair creation times t and t′ at the QPC.
To proceed with our interpretation, we assume t′ > tu, td > t without loss of generality.
From a more physical point of view, this implies:
|t, τd⟩±: Tunneling quasi-particle-hole pairs are excited before the arrival of the injected
anyons at the QPC (the state |t, τd⟩− is depicted in Fig. 4.4a).
|t′, τd⟩±: Tunneling quasi-particle-hole pairs are excited after the arrival of the injected
anyons at the QPC (the state |t′, τd⟩− is depicted in Fig. 4.4b).
To understand the braiding mechanisms occurring at the QPC within the time window
(t′, t), we examine the inner product of the quantum states with the index k = − in
Eq. (4.25). These components represent interference between the creation of quasiparticles
in the upper edge and quasiholes in the lower edge [corresponding to the tunneling operator
A(t)] at the QPC at times t, t′. The complex conjugate of a quantum state in the inner
product terms of Eq. (4.25) creates interference loops by reversing the paths traced by
the injected and excited quasiparticles in the time domain.

42



4. Exchange phase erasure in anyon time domain interferometry

(a) Subprocess at the collider QPC at
time t portrayed by the state |t, τd⟩−.

(b) Subprocess at the collider QPC at
time t′ portrayed by the state |t′, τd⟩−.

Figure 4.4: Pictorial representation of the subprocesses occurring at the tunneling QPC
of the setup in the Laughlin sequence with ν = 1/(2n + 1) depicted in Fig. 4.1. The
subprocesses at times t and t′ share the same spatial location of the injected anyons
(brown spheres with solid purple trajectories). τd is the tunable delay governing the
arrival times of the upper (u) and lower edge (d) anyons at the QPC. Tunneling quasi-
particle-hole pairs (green peaks with a dotted red trajectory for quasiparticle and white
peaks with a dotted violet trajectory for its hole) are excited at the QPC at t and t′ due
to thermal or quantum (vacuum) fluctuations. Based on the assumption t′ > tu, td > t,
the quasi-particle-hole pair creation at time t happens before the arrival of the injected
anyons as depicted in (a). In comparison, the excitation at t′ occurs after the injected
anyons have passed the collider QPC as shown in (b).

These time domain braiding processes are illustrated in Fig. 4.5. Particle trajectories at a
later time interval overlap with the paths traced by particles preceding in time, as shown in
Figs. 4.5a and 4.5b. The closed-loop interference trajectories (l−), generated by rewinding
the time axis, braid the quasiparticle excitations (portrayed by dotted red trajectories)
with the injected anyons in an anti-clockwise direction. Likewise, the interference compo-
nents with the index k = + from Eq. (4.25) correspond to braiding processes between the
injected anyons and the tunneling quasiparticles in a clockwise direction (l+). Superpos-
ing the counteracting interference loops cancels any effects of the acquired braiding phase
ϑ from the backscattered noise2, as shown in Fig. 4.5c. Moreover, as demonstrated in

2The interpretation holds for unsymmetrized noise discussed in Chapter 3. In such a scenario,
the HOM noise is given only by two interference terms S

(11)
HOM ∝

∫∞
−∞ dt

∫∞
−∞ dt′

+⟨t, τd |t′, τd⟩+ +
−⟨t, τd |t′, τd⟩−. It results in a single braiding process (depicted by the blue loop in Fig. 4.5c) between the
injected anyon and the tunneling quasiparticle excited at the QPC, occurring in both the upper and lower
edges (i.e., the loops l± would only consist of two blue loops instead of four). Likewise, the interference
loops compensate each other, eliminating the braiding angle effects in the HOM noise. Notably, both
forms of backscattered noise are equivalent and lead to the same physical interpretation.
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4. Exchange phase erasure in anyon time domain interferometry

(a) Interference |t, τd⟩†
− |t′, τd⟩− in which

the QPC subprocesses occurring at t
rewind in the time domain.

(b) Interference |t′, τd⟩†
− |t, τd⟩− in which

the QPC subprocesses occurring at t′

rewind in the time domain.

braiding in upper edge (u)

braiding in lower edge (d)

path traced by 
injected anyon

trajectory of the 
quasiparticle excited
at the QPC

Nullifies effects of the 
acquired universal

statistical exchange
phase in the

backscattered noise  

l- l+

  l±→
braiding loop of 
interference terms
with index k = ±

(c) Pictograph depicting the different interference loops arising at the collider QPC that
negate the braiding angle effects in the HOM noise.

Figure 4.5: Time domain braiding between the injected anyons and the quasi-particle-
hole excitations at the QPC at times t and t′. The blue trajectories depicted in (a)
and (b) denote the rewound path in the time axis corresponding to the interference
between the quantum states with the index k = −. The trajectories occurring at later
time intervals cut through (overlap) and superimpose on the traced paths preceding in
time. In the subprocess (a), the quasi-particle-hole pairs excited at time t rewind to
form the interference loop that braids the injected anyons. Considering the path traced
only by the excited quasiparticle (in red trajectories), the braiding happens in an anti-
clockwise direction. Likewise, in the subprocess (b), the excitations at t′ are reversed in
time to braid the injected anyons also in a counterclockwise direction (with respect to
quasiparticle). On the contrary, in the interference subprocesses with an index k = +
from Eq. (4.25), the tunneling quasiparticles braid the injected anyons in a clockwise
direction. Coalescing these two counterbalancing interference loops [as portrayed in (c)]
demonstrates the erasure of the effects of the acquired braiding phase in the HOM noise.
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Sec. 4.3, simultaneous arrival of injected anyons at the QPC with zero time delay τd = 0
assigns a trivial phase to the products of the form ⟨A†(t)A(t′)⟩qp = +⟨t, 0 |t′, 0⟩+ leading
to a vanishing HOM noise as depicted in Fig. 4.3. The interference pattern in Eq. (4.25)
can be reformulated into a summation of the squared magnitude of the superposition of
two quantum states as follows:

S
(11)
HOM ∝

∫ ∞

−∞

dt

T

∫ ∞

−∞
dt′| |t, t0⟩± + |t′, t0⟩± |2 − | |t, t0⟩∓ − |t′, t0⟩∓ |2 . (4.28)

The superposition of the states with index k = − corresponding to the tunneling operator
A(t) gives us the interference between the creation of a quasiparticle in the upper edge (u)
and quasihole in the lower edge (d). Whereas the components with index k = + linked
to A†(t) entail the reverse scenario of quasihole in (u) and quasiparticle in (d).
The outlined time domain interference processes are possible only when the injected anyon
passes through the collider QPC without tunneling to the counter-propagating edge mode.
This scenario of braiding with the QPC quasiparticle excitations dominates the conven-
tional collision of two injected anyons in the low-temperature regime Vapplied > kbθ. In the
latter case, injected anyons collide with each other after direct tunneling at the QPC. The
suppression of the conventional anyon collisions can be attributed to the slow decay of
the quasiparticle correlations (as described by the Green’s function) due to their Laughlin
fractional filling factor ν = 1/(2n + 1) < 1. The slow decay of the correlation function
permits a larger time window (t′, t) of interaction between the quasiparticles that promote
braiding processes at the QPC within the span t′ > tu, td > t or t′ < tu, td < t.
This signatory behavior of anyons is also reflected in our analysis of the quasiparticle
tunneling current with voltage drives in Chapter 3. It is implied by the slowly decreasing
tunneling current in the DC regime by ⟨IT (t)⟩ ∝ V 2ν−1

applied and by an exponential decay in
the AC regime ⟨IT (t)⟩ ∝ e±iqν

∫ t

0 dτ VAC(τ) for ν < 1 (from the photoassisted coefficients
pl, cf. Appendix C). This behavior is in sharp contrast to the case of electrons with
ν = 1, where the current is non-zero only when the injected electronic pulse arrives at
the QPC. This feature suggests that the contribution to the tunneling current and noise
is mainly due to the direct fermionic collisions (interference between injected electrons)
occurring at the QPC within the short time span t ≃ 0, suppressing any non-trivial
interference effects transpiring before or after the arrival times at the QPC [45, 63].
Moreover, braiding of electrons lacks conventional meaning, as the acquired phase becomes
trivial e2iϑ = 1, where ϑ = νπ. Notably, it also implies that the soliton excitation of the
compact bosons developed in Sec. 4.2 [cf. Eqs. (4.4) and (4.5)] would be incompatible
with electrons. One cannot extend it directly to fermions by taking ν = 1 (compared
to our approach in Chapter 3) [83]. To summarize, the conventional interference of the
injected electronic pulses is promoted by the short-time interactions (t ≃ 0) for electrons
with ν = 1. It enables the investigation of their inherent Fermi-Dirac statistics through
HOM interferometry. However, the long-time correlations (t′ > tu, td > t or t′ < tu, td < t)
of anyons with ν < 1, allow non-trivial counterbalancing braiding processes that cancel
the effects of the acquired statistical exchange phase in the HOM noise.
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5
Conclusion

In this thesis, we explored the idea of Hong-Ou-Mandel interferometry to anyons in the
Laughlin sequence with filling factor ν = 1/(2n+1), n ∈ Z+, to investigate their fractional
statistics. As detailed in Chapter 1, the fluctuations observed in the HOM experiment are
known to provide insights into the quantum statistics of indistinguishable particles when
they are fermions or bosons. Our theoretical model of anyonic HOM was developed for
the fractional quantum Hall effect, which offers a reliable and well-established platform
for hosting anyons. Moreover, the feasibility of implementing interferometry components
(anyon sources, waveguides, and quasiparticle beam splitter) in quantum Hall systems
was instrumental in the recent experimental demonstration of anyon statistics.
Chapter 2 introduced theoretical tools for understanding anyon collisions in a Laughlin
FQH setup. These included time evolution pictures, Landau levels in the FQH regime,
one-dimensional chiral edge modes, bosonization, and quasiparticle creation operators.
The subsequent chapters focused on deriving and interpreting the backscattered cur-
rent and noise resulting from quasiparticle interactions at the collider QPC in the limit
Vapplied > kBθ. A summary of the main results and conclusions are:

• A single-QPC FQH collider in the Laughlin sequence, driven by conventional voltage
sources, exhibits a vanishing HOM noise ratio for synchronized collisions (τd = 0)
at fractional filling factors. This behavior of the noise ratio arises from the inability
of conventional voltage sources to emit a single time-resolved fractionally charged
quasiparticle through any of the Lorentzian, sinusoidal, or square voltage drives.
Therefore, the Pauli dip observed at fractional filling factors exposes the inherent
fermionic nature of the excitations induced by the voltage sources into the Laughlin
FQH setup [Chapter 3].

• By modeling an ideal time-resolved anyon source with an auxiliary state, we ob-
tained a vanishing tunneling current at zero time delay that also leads to a dis-
appearing HOM noise. This behavior arises due to the single-QPC geometry of
the Laughlin FQH setup, which results in the HOM configuration at null delay be-
ing equivalent to maintaining the system at equilibrium (zero net bias ∆V = 0),
leading to vanishing observables. Furthermore, the suppression of HOM noise ratio
for anyons does not indicate Fermi-Dirac statistics; instead, it points to a complex
interaction of quasiparticles at the collider QPC [Chapter 4].

• Extending the auxiliary state approach to compute the HOM noise ratio R(τd)
reveals the inverse relationship between the width of the anyonic HOM dip and
temperature θ. It contrasts with the case of electrons, where the width of the Pauli
dip remains temperature-independent and only exhibits a linear relationship with
the temporal extension of the interfering electronic wavepackets. Despite this sig-
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natory feature, the anyonic HOM ratio fails to capture information about fractional
statistics. Instead, it probes the non-universal scaling dimension of the tunneling
quasi-particle-hole pairs excited at the collider QPC due to thermal or quantum
(vacuum) fluctuations [Chapter 4].

• The point-like tunneling prohibits spatial closed-loop trajectories of one quasipar-
ticle around another; however, reformulating the backscattered noise into an inter-
ference pattern reveals time domain braiding between the injected anyons and the
quasi-particle-hole excitations at the QPC. The slow decay of the quasiparticle cor-
relations (Green’s function) with ν < 1 facilitates a long-time interaction window
(t′, t) between the injected anyons and QPC tunneling quasiparticles that dominates
the direct collision of two injected anyons at the QPC. It promotes temporal braid-
ing subprocesses between the injected anyons and the QPC quasiparticles within
t′ > tu, td > t or t′ < tu, td < t. However, the counterbalancing time-dependent
interference loops negate the effects of the acquired statistical exchange phase in
the HOM noise. It is strikingly different for electrons with ν = 1, where the main
contribution to the tunneling current and noise is from direct collisions occurring at
the QPC within the short period t ≃ 0 [Chapter 4].

In a nutshell, fractional statistics is rendered invisible in the standard Hong-Ou-Mandel
interference of anyons. The noise ratio does not display any explicit trace of anyon statis-
tics because the universal braiding phase cancels out in the zero-frequency backscattered
noise. Instead, the HOM ratio gives access to the anyon scaling dimension δ, which is
another important property of the FQH edge. In particular, the scaling dimension can
be used to infer the influence of interactions [58, 85], edge reconstruction effects [86], or
even to distinguish between various proposed edge theories in exotic FQH states [87].
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Possible extensions of this work addressing the questions that were not tackled in this
thesis project are outlined below:

• We only focused on computing the zero-frequency noise in HBT and HOM config-
urations to probe the statistical exchange phase of anyons. Investigating the finite
frequency noise in the collider setup offers a potential avenue to access information
about the universal braiding phase.

• We modeled ideal time-resolved anyon sources with the auxiliary state composed
of quasiparticle creation operators. Although there are proposals of voltage sources
capable of exciting single quasiparticles with fractional charge qν, they cannot be
realized experimentally [63]. It would be interesting to explore practical setups that
could serve as optimal time-resolved sources of single anyons.

• This work was devoted to studying Abelian anyons in the Laughlin sequence. Nev-
ertheless, there is scope for generalization to non-Abelian anyons and more intricate
FQH setups consisting of multiple counter and copropagating edge modes with intra-
and inter-channel interactions [82, 88].

Several research paradigms are currently underway to investigate anyons and probe their
fractional statistics. Below, we present a selection of a few alternative methodologies:

• Our study concentrated on utilizing the Hong-Ou-Mandel interferometry to probe
the quantum statistics of anyons. However, there are other interference techniques
capable of revealing fractional statistics. Direct observation of anyonic braiding
statistics was reported utilizing a multipath Fabry–Pérot interferometer at fractional
filling factor ν = 1/3 [13]. Braiding of anyons was also demonstrated in a two-path
Mach-Zehnder interferometer with bulk filling tuned to ν = 2/5 comprising edge
modes at ν = 1/3 [89].

• Our study centers around the exotic physics of the fractional quantum Hall effect to
understand the properties of anyons. Researchers are also exploring complementary
testbeds, such as ultracold atoms in an optical lattice, to realize and investigate
anyons [90].
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A
Bosonic Green’s Function

In this Appendix we evaluate the equilibrium bosonic Green’s function [66, 67]

G(x, t) = ⟨ϕ(x, t)ϕ(0, 0)⟩ −
〈
ϕ2(0, 0)

〉
. (A.1)

The calculations are presented for the right moving chiral bosonic field evolving as ϕR(x, t) =
ϕ(x− vt, 0), where v is the velocity of the edge mode, according to the Hamiltonian

H0 = v

4πν

∫
dx (∂xϕR)2 = v

ν

∑
k>0

kb†
kbk , (A.2)

The bosonic field operators can be expressed in terms of the bona fide bosonic creation
and annhilations operators as

ϕ(x− vt, 0) = i

√
2πν
L

∑
k>0

e−αk/2
√
k

[
bke

ik(x−vt) − b†
ke

−ik(x−vt)
]
. (A.3)

Thermal excitations exist at finite temperature θ, and the bona fide bosonic operators
satisfy the following Bose-Einstein distribution equilibrium averages

〈
b†

kbk′

〉
= δkk′

1
e

vk
kBθ − 1

〈
bkb

†
k′

〉
= δkk′

e
vk

kBθ

e
vk

kBθ − 1
. (A.4)

Inserting (A.3) in (A.1) and using the relations in (A.4) gives

ϕ(x− vt, 0) = 2πν
L

∑
kk′>0

e−α(k+k′)/2
√
kk′

δkk′

 e
vk

kBθ

e
vk

kBθ − 1
eik(x−vt) + 1

e
vk

kBθ − 1
e−ik(x−vt) − e

vk
kBθ + 1
e

vk
kBθ − 1

 ,
= 2πν

L

∑
k>0

e−αk

k

cos (k(x− vt))e
vk

kBθ + 1
e

vk
kBθ − 1

+ i sin (k(x− vt))e
vk

kBθ − 1
e

vk
kBθ − 1

− e
vk

kBθ + 1
e

vk
kBθ − 1

 ,
= 2πν

L

∑
k>0

e−αk

k

[
cos (k(x− vt)) coth

(
vk

2kBθ

)
+ i sin (k(x− vt)) − coth

(
vk

2kBθ

)]
,

= 2πν
L

∑
k>0

e−αk

k

[
coth

(
vk

2kBθ

)
(cos (k(x− vt)) − 1) + i sin (k(x− vt))

]
. (A.5)

Applying the continuum limit
∑
k>0

→ L

2π

∫ ∞

0
dk ,

I



A. Bosonic Green’s Function

results in

G(x, t) = ν
∫ ∞

0
dk

e−αk

k

[
coth

(
vk

2kBθ

)
(cos (k(x− vt)) − 1) + i sin (k(x− vt))

]
. (A.6)

We split Eq. (A.6) into zero-temperature and finite temperature contributions as
G(x, t) = G(0)(x, t) + G(θ)(x, t), where

G(0)(x, t) = ν
∫ ∞

0
dk

e−αk

k

[
eik(x−vt) − 1

]
, (A.7)

G(θ)(x, t) = ν
∫ ∞

0
dk

e−αk

k

[(
coth

(
vk

2kBθ

)
− 1

)
(cos (k(x− vt)) − 1)

]
. (A.8)

Note that Eq. (A.8) vanishes in the limit of θ → 0. We now evaluate the tempera-
ture independent Green’s function. Introducing the variable y = αk and expanding the
exponential in Eq. (A.7) as a power series

ν
∫ ∞

0
dy

( ∞∑
n=0

1
n!

(
iy(x− vt)

α

)n

− 1
)
e−yy−1 = ν

∞∑
n=1

1
n!

(
i(x− vt)

α

)n ∫ ∞

0
dy e−yyn−1.

(A.9)
The integral in (A.9) is equal to the Euler’s Gamma function Γ(n− 1) = (n− 1)!

G(0)(x, t) = ν
∞∑

n=1

1
n

(
i(x− vt)

α

)n

= ν ln
(

α

α− i(x− vt)

)
. (A.10)

For the temperature dependent Green’s function, we introduce the variables y = αk,
energy cut-off ωc = v

α
, and expand the trigonometric functions using Euler’s formula.

G(θ)(x, t) = ν
∫ ∞

0
dy e−yy−1 1

e
ωcy
kBθ − 1

(
ei y

α
(x−vt) + e−i y

α
(x−vt) − 2

)
,

= ν
∫ ∞

0
dy

 e−y(1+i 1
α

(x−vt))

ye
ωcy
kBθ

(
1 − e

− ωcy
kBθ

) + e−y(1−i 1
α

(x−vt))

ye
ωcy
kBθ

(
1 − e

− ωcy
kBθ

) − 2e−y

ye
ωcy
kBθ

(
1 − e

− ωcy
kBθ

)
 . (A.11)

To rearrange (A.11) in the form of Hurwitz Zeta function [91]

ζ(γ, z) = 1
Γ(γ)

∫ ∞

0
dt

e−zt

t1−γ(1 − e−t) , (A.12)

setting y → y kBθ
ωc

and rewriting (A.11)

G(θ)(x, t) = ν
∫ ∞

0
dy

e
−y

(
1+ kBθ

ωc
+i

kBθ

ωcα
(x−vt)

)
y1−0 (1 − e−y) + e

−y

(
1+ kBθ

ωc
−i

kBθ

ωcα
(x−vt)

)
y1−0 (1 − e−y) − 2e−y

(
1+ kBθ

ωc

)
y1−0 (1 − e−y)

 ,
(A.13)
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G(θ)(x, t) = lim
γ→0

Γ(γ)ζ
(
γ,

(
1 + kBθ

ωc

+ i
kBθ

ωcα
(x− vt)

))
+

Γ(γ)ζ
(
γ,

(
1 + kBθ

ωc

− i
kBθ

ωcα
(x− vt)

))
− 2Γ(γ)ζ

(
γ,

(
1 + kBθ

ωc

))
.

(A.14)

By using the expansions that are valid for γ → 0 [91]

Γ(γ) = 1
γ

+ O
(

1
γ2

)
,

ζ(γ, z) = 1
2 − z + γ

(
ln Γ(z) + 1

2 ln 2π
)

+ O(γ2) ,
(A.15)

and property of the Euler Gamma function Γ(x)Γ(x∗) = Γ(x)Γ∗(x) = |Γ(x)|2

G(θ)(x, t) = ν ln


∣∣∣Γ (1 + kBθ

ωc
− ikBθ

v
(x− vt)

)∣∣∣2
Γ
(
1 + kBθ

ωc

)2

. (A.16)

Now, we combine Eq. (A.10) and Eq. (A.16) to obtain

G(x, t) = ν ln

 α

α− i(x− vt)

∣∣∣Γ (1 + kBθ
ωc

− ikBθ
v

(x− vt)
)∣∣∣2

Γ
(
1 + kBθ

ωc

)2

. (A.17)

Since the energy cut-off ωc is the largest scale in the calculations, Eq. (A.17) can be
simplified in the regime ωc ≫ kBθ, using the identity

|Γ(1 + iy)|2 = πy

sinh (πy) , (A.18)

G(x, t) = ν ln
 α

α− i(x− vt)
πkBθ

(
x
v

− t
)

sinh
(
πkBθ

(
x
v

− t
))
. (A.19)

Equations (A.17) and (A.19) are the Green’s functions calculated for a right moving
chiral bosonic field. Repeating the above calculations for a left moving chiral bosonic
field evolving as ϕL(x, t) = ϕ(x + vt, 0), will result in similar equations with change in
signs. The composite expression of the Green’s function for both the right and left moving
chiral bososnic fields is given as

GL/R(x, t) = ν ln

 α

α± i(x± vt)

∣∣∣Γ (1 + kBθ
ωc

− ikBθ
v

(x± vt)
)∣∣∣2

Γ
(
1 + kBθ

ωc

)2

, (A.20)

GL/R(x, t) = ν ln
 α

α± i(x± vt)
πkBθ

(
x
v

± t
)

sinh
(
πkBθ

(
x
v

± t
))
. (A.21)
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B
Fourier Transform of the Green’s

Function

B.1 Finite temperature Green’s function
In this Appendix we calculate the Fourier Transform P2ν(E) of the Green’s function G2(t)
[66], where G(t) = eG(0,t). The Fourier Transform is defined as

P2ν(E) =
∫ ∞

−∞
dt e−iEt

 α

α± i(±vt)

∣∣∣Γ (1 + kBθ
ωc

− ikBθ (±t)
)∣∣∣2

Γ
(
1 + kBθ

ωc

)2


2ν

. (B.1)

The calculations can be simplified by rewriting the Green’s function in B.1 and using the
recurrence relation Γ(1 + γ) = γΓ(γ).

G(t) = 1
1 + i(ωct)

Γ
(
1 + kBθ

ωc
+ ikBθt

)
Γ
(
1 + kBθ

ωc
− ikBθt

)
Γ
(
1 + kBθ

ωc

)2 ,

= 1
1 + i(ωct)

kBθ

ωc

(1 + i(ωct))Γ
(

kBθ
ωc

+ ikBθt
)

Γ
(
1 + kBθ

ωc
− ikBθt

)
Γ
(
1 + kBθ

ωc

)2 ,

=
kBθ Γ

(
kBθ
ωc

+ ikBθt
)

Γ
(
1 + kBθ

ωc
− ikBθt

)
ωcΓ

(
1 + kBθ

ωc

)2 . (B.2)

To rearrange B.2 in the form of Gamma function identity [91]

Γ
(1

2 + iy
)

Γ
(1

2 − iy
)

= π

cosh (πy) , (B.3)

we make a change of variable t = t− i(2kBθ)−1 in B.2 and select a suitable contour in the
complex plane [77] to keep the limits of the integral in B.1 unaltered along the real axis.
In the regime ωc ≫ kBθ, we obtain

P2ν(E) =
∫ ∞

−∞
dt e

−E
2kBθ e−iEt

kBθ Γ
(

1
2 + ikBθt

)
Γ
(

1
2 − ikBθt

)
ωcΓ (1)2

2ν

,

= e
−E

2kBθ

∫ ∞

−∞
dt (cos (Et) − i sin (Et))

(
πkBθ

ωc cosh (πkBθt)

)2ν

. (B.4)
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The sin(Et) function within the integral vanishes because its an odd function of the
variable t. Therefore, we obtain

P2ν(E) = 2e
−E

2kBθ

∫ ∞

0
dt cos (Et)

(
πkBθ

ωc cosh (πkBθt)

)2ν

. (B.5)

Now we expand the trigonometric functions using Euler’s identities

P2ν(E) = 2e
−E

2kBθ

∫ ∞

0
dt

eiEt + e−iEt

2

(
2πkBθe

−πkBθt

ωc(1 + e−2πkBθt)

)2ν

. (B.6)

Introducing the variable z = e−πkBθt such that dz → (−πkBθz)dt

P2ν(E) = 2e
−E

2kBθ
(2πkBθ)2ν−1

(ωc)2ν

∫ 1

0
dz z2ν−1(z

iE
πkBθ + z

− iE
πkBθ )

( 1
1 + z2

)2ν

. (B.7)

To rearrange (B.7) in the form of Euler Beta function [91]

B(γ, w) =
∫ 1

0
dt tγ−1(1 − t)w−1, (B.8)

we introduce the variable y = z2

z2+1 such that 1 − y = 1
z2+1 and dy → 2z

(z2+1)2dz

P2ν(E) = e
−E

2kBθ
(2πkBθ)2ν−1

(ωc)2ν

∫ 1/2

0
dy

(
z2

1 + z2

)ν−1 ( 1
1 + z2

)ν−1
((z2)

iE
2πkBθ + (z2)− iE

πkBθ ) ,

We treat the integral separately and simplify it as follows:

=
∫ 1/2

0
dy

(
z2

1 + z2

)ν−1 ( 1
1 + z2

)ν−1
(z2)

iE
2πkBθ

(z2 + 1)
iE

2πkBθ

(z2 + 1)
iE

2πkBθ

+ (z2)− iE
2πkBθ

(z2 + 1)− iE
2πkBθ

(z2 + 1)− iE
2πkBθ

 ,
=
∫ 1/2

0
dy (y)ν−1+ iE

2πkBθ (1 − y)ν−1− iE
2πkBθ +

∫ 1/2

0
dy (y)ν−1− iE

2πkBθ (1 − y)ν−1+ iE
2πkBθ .

Making a change of variable of y = 1 − y in the second integral will result in

P2ν(E) = e
−E

2kBθ
(2πkBθ)2ν−1

(ωc)2ν

∫ 1

0
dy (y)ν+ iE

2πkBθ
−1(1 − y)ν− iE

2πkBθ
−1
, (B.9)

P2ν(E) = e
−E

2kBθ
(2πkBθ)2ν−1

(ωc)2ν
B
(
ν + iE

2πkBθ
, ν − iE

2πkBθ

)
. (B.10)

Using the representation of B(γ, w) in terms of Gamma functions

B(γ, w) = Γ(γ)Γ(w)
Γ(γ + w) , (B.11)

P2ν(E) can be written in simpler form as

P2ν(E) = e
−E

2kBθ

Γ(2ν)ωc

(
2πkBθ

ωc

)2ν−1 ∣∣∣∣Γ(ν + iE

2πkBθ

)∣∣∣∣2 . (B.12)
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B.2 Temperature independent Green’s function
The Fourier transform of the temperature independent Green’s function can be calculated
by taking the zero temperature limit of Eq. (B.12). However, this section presents a simple
alternative method of its derivation using Eq. (A.10)

G(t) = eG(0)(0,t) = exp
{
ν ln

(
α

α± i(±vt)

)}
=
( 1

1 + iωct

)ν

. (B.13)

The Fourier Transform is defined as

P2ν(E) =
∫ ∞

−∞
dt e−iEtG2(t) =

∫ ∞

−∞
dt e−iEt

( 1
1 + iωct

)2ν

. (B.14)

Equation (B.14) is in the form of the following integrals [91] (3.382 - Eqs. 6 and 7)∫ ∞

−∞
dx (β + ix)−νe−ipx = 0 for p > 0 ,

= 2πeβp(−p)ν−1

Γ(ν) for p < 0 ,
∫ ∞

−∞
dx (β − ix)−νe−ipx = 2πe−βp(p)ν−1

Γ(ν) for p > 0 ,

= 0 for p < 0 ,
valid for Re{ν} > 0 and Re{β} > 0 .

(B.15)

Using B.15, the temperature independent P2ν(E) can be expressed as

P2ν(E) = 2π e
E
ωc (−E)2ν−1

Γ(2ν) ω2ν
c

Θ(−E) . (B.16)
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C
Photoassisted Coefficients

In this Appendix we detail the calculation of the photoassisted coefficients pl [66] for a
sinusoidal time-dependent voltage pulse Vsin(τ) driving the anyon collider setup out of
equilibrium. As seen in the current and noise calculations presented in the main text,
V (τ) appears as a phase factor with the form

exp
{

±iqν
∫ t

−∞
dτ V (τ)

}
. (C.1)

The time-dependent voltage pulse can be interpreted as a periodic AC signal riding over a
DC bias, thus decomposing the signal into V (τ) = VDC + VAC(τ). Considering a periodic
signal with period T and frequency Ω,

qν
∫ T

0
dτ [VDC + VAC(τ)] = qνTVDC + qν

∫ T

0
dτ VAC(τ). (C.2)

Setting QΩ = qνVDC , Eq. (C.1) can be written as

exp
{

±iqν
∫ t

0
dτ V (τ)

}
= e±iQΩte±iqν

∫ t

0 dτ VAC(τ). (C.3)

The second phase factor on the right hand side of Eq. (C.3) can be written as a complex
exponential Fourier series

e±iqν
∫ t

0 dτ VAC(τ) =
∞∑

l=−∞
ple

±ilΩt . (C.4)

The complex exponential Fourier series coefficients are given by

pl =
∫ T

2

− T
2

dt
1
T
e∓ilΩte±iqν

∫ t

0 dτ VAC(τ) . (C.5)

We now detail the evaluation of pl for VAC(τ) = VAC sin (Ωτ)

pl =
∫ T

2

−T
2

dt
1
T
e∓ilΩte±iqνVAC

∫ t

0 dτ sin (Ωτ) =
∫ T

2

− T
2

dt
1
T
e∓ilΩte∓iqνVACΩ−1 cos (Ωτ)e±iqνVACΩ−1

.

Setting WΩ = qνVAC . As seen in the main text the photoassisted coefficients appear as
|pl|2 in the calculations. Therefore, we can ignore the global phase factor e±iW Ω.

pl =
∫ T

2

− T
2

dt
1
T
eilΩteiW cos (Ωτ) = 1

2π

∫ π
Ω

− π
Ω

dt Ω eilΩteiW cos (Ωτ) .
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Introducing the variable z = Ωt, we obtain

1
2π

∫ π

−π
dz ei(lz+W cos (z)) = 1

2π

∫ π

−π
dz[cos (lz +W cos (z)) + i sin (lz +W cos (z))] . (C.6)

The cos function in the above integral is odd over the period [−π, π] (it can be verified
by plotting the function). Therefore, the integral of the cos function evaluates to 0.

pl = i

π

∫ π

0
dz sin (lz +W cos (z)) (C.7)

Using the identity sin (A+B) = sin (A) cos (B) + sin (B) cos (A), we obtain

i

π

∫ π

0
dz sin (lz) cos (W cos (z)) + i

π

∫ π

0
dz cos (lz) sin (W cos (z)) . (C.8)

By Cauchy integral theorem [77], we can verify that∫ π

0
dx cos(cos(x))eix = 0 , (C.9)

∫ π

0
dx cos(cos(x)) cos(x) = −i

∫ π

0
dx cos(cos(x)) sin(x) . (C.10)

Using Eq. (C.10), we can rewrite Eq. (C.8) as

− 1
π

∫ π

0
dz cos (W cos (z)) cos (lz) + i

π

∫ π

0
dz cos (lz) sin (W cos (z)) . (C.11)

Equation (C.11) is in the form of the following integrals [91] (3.715 - Eqs. 13 and 18)∫ π

0
dz sin (z cos (x)) cos (nx) = π sin

(
nπ

2

)
Jn(z) ,

∫ π

0
dz cos (z cos (x)) cos (nx) = π cos

(
nπ

2

)
Jn(z) .

(C.12)

Using C.12, the photoassisted coefficient can be pl can be expressed as

pl = − cos
(
lπ

2

)
Jl(W ) + i sin

(
lπ

2

)
Jl(W ) = −e−i lπ

2 Jl(W ) . (C.13)

Ignoring the global phase factor we have

pl = −Jl(W ) , (C.14)

where Jl(W ) is the Bessel function of the first kind.
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D
Integral of the Equilibrium Green’s

Function

In this Appendix, we evaluate the integral of the equilibrium Green’s function. As outlined
in the main text, we encounter two analogous forms of definite integrals in current and
noise calculations that need to be evaluated in two distinct regions. The general form of
the first integral is

∫ m

−∞
dt′ J (t− t′) =

∫ m

−∞
dt′
[

πkBθα

sinh(πkBθ(t− t′))

]4δ

. (D.1)

We express the hyperbolic sinusoidal function in exponential form

(2πkBθα)4δ
∫ m

−∞
dt′

[ 1
eπkBθ(t−t′) − e−πkBθ(t−t′)

]4δ

. (D.2)

Setting z = e−2πkBθ(t−t′) leads to dt′ = (2πkBθ)−1z−1dz, altering the upper and lower
integral limits as m → e−2πkBθ(t−m) and −∞ → e−∞ = 0 .

(2πkBθ)4δ−1α4δ
∫ e−2πkBθ(t−m)

0
dz (1 − z)(1−4δ)−1z2δ−1 (D.3)

The integral in Eq. (D.3) is in the form of the incomplete Beta function [91]

B(x; a, b) =
∫ x

0
ta−1(1 − t)b−1 , (D.4)

yielding the subsequent result∫ m

−∞
dt′ J (t− t′) = (2πkBθ)4δ−1α4δ B(e−2πkBθ(t−m), 2δ, 1 − 4δ) . (D.5)

The general form of the second integral we encounter in the main text is

∫ ∞

m
dt′ J (t′ − t) =

∫ ∞

m
dt′
[

πkBθα

sinh(πkBθ(t′ − t))

]4δ

. (D.6)

Setting z = e2πkBθ(t−t′) yields dt′ = −(2πkBθ)−1z−1dz, m → e2πkBθ(t−m), ∞ → 0, and∫ ∞

m
dt′ J (t′ − t) = (2πkBθ)4δ−1α4δ B(e2πkBθ(t−m), 2δ, 1 − 4δ) . (D.7)
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