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Abstract

Error recovery in manufacturing systems, which can be divided into error detection, fault diagnosis,
error correction and restart, is a time-consuming and complicated procedure. This work focuses on
the restart phase and aims to test a new restart method to answer whether this theoretical method
can help operators and speed up the error recovery procedure. The method restarts the system
from an operator desired restart state and re-synchronizes the manufacturing system with the
control system, whereby the nominal production can be continued. Moreover, during the recovery
procedure, an added HMI interface supported the operator actions. Additionally, implementation
of this method does not impose any additional hardware on the manufacturing system.

These finding shows that the method is applicable in practice. Using this method, there is no
need to start the corrupted manufacturing procedure from the beginning, thus, restart using this
method saves time and money. Moreover, this method can restart the system from unforeseen
errors and it is easy to perform. Having a complete knowledge of a manufacturing system, this
method with small modifications in the corresponding control system, can be implemented for the
manufacturing system.
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1
Introduction

I
magine you started your washing machine one hour ago, and the laundry is now 80% done.
Suddenly, the electricity goes out, and the machine stops. When the electricity comes back,
the machine starts the whole procedure from the beginning. This means that the machine
must repeat 80% of the whole job. Consequently, 80% of the whole electricity and the whole

time used in a normal laundry on the first try is wasted.
The electricity interrupt in the washing machine is an example of an error occurrence which is

defined as a difference between what was expected (e.g. normal laundry) and what really happened
(e.g. electricity interrupt). This interrupt is an example of errors that occur in factories, where
an error occurrence may force operators to unload the whole manufacturing system. In addition,
a manufacturing system, which is composed of a variety of different machines with different manu-
facturing tasks that are run by different operators, is more complicated and difficult to handle than
a laundry machine. Consequently, error occurrence in such a system for lack of operator support
makes manufacturing even more complicated and time consuming.

Some system designers provide manufacturing systems with mechanisms which can detect and
correct special errors. For those manufacturing systems, if some unforeseen errors happen during
manufacturing, there is no other way than to start from the beginning. Moreover, even if an
operator does not have to start manufacturing from the beginning, there is typically no systematic
aid to help him/her to resume the manufacturing procedure.

Most error related stoppages in a manufacturing system are due to hardware [1], such as tool
breakage. Replacement of broken tools or defective products unloading from a manufacturing
system may require operator interference. This interference may lead an operator to change the
physical positions of machines in order to get access to the broken tool and perform repair. In fact,
after these manual changes, it is very unlikely that the actual machine position becomes equal to
the expected position [2]. Thus, even if the operator repairs the error, normal production cannot
be immediately resumed.

Error recovery as defined in [3] is the process by which the system is recovered from an abnormal
condition so that manufacturing can continue. Similar to [4], this process can be divided into four
major activities: detection of any difference between what is expected and what actually happened;
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CHAPTER 1. INTRODUCTION

diagnosis of the original problem; correction of the original problem and removing its effects; and
restart of the manufacturing, which is a process to start the normal production [1]. In this work, it is
assumed that the relevant mechanisms for error detection and diagnosis exist and are implemented
in the controller part of the manufacturing system which controls resources of the manufacturing
system. Also, the operator is supposed to be responsible for performing the error correction phase.
Thus, the focus of this work is on the restart phase.

In [5] and [1], error recovery methods are partitioned into two major categories: off-line and
on-line methods. Off-line methods use some mechanisms (hardware or software) embedded in the
manufacturing system before starting manufacturing. And then during manufacturing, when an
error occurs, without operator interference, these mechanisms repair the system. The term off-
line comes from the fact that these mechanisms are designed and implemented off-line. These
mechanisms may provide the manufacturing system with redundant tools or redundant programs,
such that if an error occurs during application of a program or a tool, the redundant program/tool
will replace the defective program/tool [6]. Obviously, these methods need full information about
the system. On-line methods are methods that decide how to correct the error after error detection
[7]. Since the on-line methods analyse error during manufacturing and then produce a sequence of
actions to correct the error, these methods require more powerful controller.

Another classification is presented in [4] and [5]. According to this classification, error recovery
techniques are divided into three methods:

1. Programming language construct

2. Knowledge based

3. Graph based

Programming language constructs mostly deal with exception handling methods, which are
augmented programs to transfer the control of the program to the proper exception handler after
error occurrence [4]. In [8], an investigation of exception handling in several programming languages
and their application in robot programming is presented. This type of error handling mostly leads
to huge software overhead to detect and correct a limited set of expected errors.

Knowledge based methods are typically on-line, or a mix of off-line and on-line approaches.
In [7] a knowledge based method is presented in which all of the calculations are implemented in
on-line mode. When an error occurs, several tests are run to investigate the original reason of
error occurrence. These tests result in a rule table including faulty manufacturing system behavior;
the error’s original reason, the fault; and how to recover the manufacturing system from them.
Initially, there is no look-up table and the set of rules are gradually created during deployment and
maintenance.

In [9] and [10], knowledge based mixed methods are presented in which a table of possible
error causes and effects is prepared off-line and then after an error occurrence in on-line mode, the
control system looks up in the table to find the reason and the most reasonable way to recover the
manufacturing system from the error. Thus, this is an off-line planning and an on-line investigation.
Since, these error recovery methods are defined depending on the error type, if there is dependency
between errors (e.g. error A and B are cause and effect of each other), diagnosis of the original
error would be difficult. Also, knowledge based methods need large amounts of memory capacity of
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CHAPTER 1. INTRODUCTION

memory to store the information, something that prohibits their inclusion in the typical shop-floor
control system.

Another knowledge based mixed method is illustrated in [11] to recover a dancer robot from
an error that occurs during ballroom dance in which a human male dancer leads a female robot
dancer. Based on interactive force/movement applied by the human and the pre-defined rules of
dancer movement, the robot estimates her partner’s next movement. If the robot makes a mistake,
it detects the error while her partner is doing the next movement. Consequently, the robot can
according to the human leg’s motion correct its estimation and then continue dancing correctly.

Graph based methods are mostly off-line methods that provide the manufacturing system with
some alternative production paths [12] to produce the same product, and then when an error has
occurred in one production path, the graph based method recovers the manufacturing system by
switching the production path to the alternative path. Examples of these methods are backward
error recovery [8], which restarts the manufacturing system from earlier activities and then repeats
activities where the error happened (if possible); or rescheduling [13], which provides (with on-line
or off-line planning) a sequence of operations to return the manufacturing system to the nominal
production [10], [5]. The inclusion of the necessary information typically leads to a huge system.
Table 1.1 summarizes the methods.

Table 1.1: Different restart methods and their drawbacks.

Method Tools Drawbacks

Programming language Exception handler Extra code

construct

Knowledge based system Rule Assume foreseen errors

Reasoning Needs large resources

Separated from the program Needs full information about

the application

Graph based approaches Petri net Needs full information about

Automata faulty and non-faulty behavior

The method implemented in this work [14] is a graph based method that combines off-line and
on-line methods to reach a better performance. This method was presented in [1] and was then
extended with implementation details in [15]. This work aims to verify that the theoretical idea
presented in [14] can help operators and speed up recovery process.

After error correction, [14] restarts the system from a desired operation, a restart state. This
method guarantees that it synchronizes the manufacturing system with the control system. Com-
pared to the presented methods in the literature, to use the method [14] very few changes are
required to a manufacturing system. Moreover, there is no redundancy or restart path added to
the manufacturing system, and consequently, complexity is reduced in relation to previous works.
Also, the method is not designed based on the error type, but rather on the selected restart state,
so the control system can be recovered from unforeseen errors by means of this method.

The idea presented in [14] is more flexible than the idea of [15], and can be applied to almost
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CHAPTER 1. INTRODUCTION

every industrial manufacturing system. Moreover, [14] limits the restart procedure to the defected
machines, so the operator cannot decide about the other machines state during restart procedure.

The rest of this report is organized as follows: In Chapter 2 a review of preliminaries and the
main idea of [14] are presented. A theoretical implementation of the idea using block diagram
language is described in Chapter 3. Finally, in Appendix A, the real implementation of the work
is discussed in detail.

4



2
Background

A
manufacturing system is composed of a control system and a physical system. The physical
system is the set of all machines, tools and products controlled and supervised by the
control system [16]. Process planning is an important activity to develop a new factory,
during which tasks that should be executed to produce the intended product by the

manufacturing system are planned. These tasks are modelled by operations [16].
Each operation of the control system is modelled by an automaton [16] with three states. The

three operation states respectively denote that the operation is either initial (not started), executing,

or finished. Figure 2.1 shows the state concept for a single operation, in which O↑
K is an event to

trigger execution and O↓
K is the completion event.

i e f

↑
KO ↓

KO

Figure 2.1: The state concept for a single operation

A set of conditions which must be true just prior to operation execution is called a pre-condition.
Thus, a pre-condition is a set of conditions that must be satisfied to change the operation state
from i to e (O↑

K in Figure 2.1). Tools limitation, conditions on operation execution order, and
sensor values are examples of pre-conditions.

Every operation execution changes some parameters in the physical system. Parameters in the
manufacturing system that are changed by an operation execution form the post-condition of the
operation. In other words, a post-condition is a set of conditions that must be satisfied before
changing the operation state from executing to finished (the completion event, O↓

K , in Figure
2.1). Signals sent by the manufacturing system to announce that the operation execution in the
physical system has finished are integral parts of the post-condition.

Pre-condition satisfaction assures the control system that the physical system is ready to start
the execution of the specific operation whose pre-condition is satisfied. The control system can then
send a command to the manufacturing system to start the execution. A set of actions executed in

5



CHAPTER 2. BACKGROUND

the physical system, as a result of sending a command, is called a pre-action. Running an executing
code in the physical system, sending and receiving data are pre-action examples.

A production plan can be viewed as a trajectory between a start point (qi in Figure 2.2) where
none of the operations have been started to execute, to a final point (qc in Figure 2.2) where a sub-set
of the operations have been executed. Sometimes this is called a Sequence of OPeration or an SOP.
Operations are sorted by an SOP according to the physical system facilities. For example, if two
operations A and B can be executed at the same time, the SOP includes this possibility. But the
control system typically starts one operation each time. Thus, what we plan is that the operation
A is started first and then the operation B. A nominal production is a production according to
how we plan to produce the product.

The control system is also modelled by an automaton composed of states, which are called control
system states. Each control system state expresses that some operations have not been started yet
(they are in their initial state), some operations are executing (they are in their executing state),
and the rest of the operations have been finished (they are in their finished state) [16]. For example,
in the control system trajectory, the start point (qi in Figure 2.2) is a state where no operations
have started yet and the final point is a state where a sub-set of the operations have finished (qc in
Figure 2.2) and no operations are executing.

Figure 2.2: The control system states against the physical system states

Also, every factory machine is in a specific state in every moment; the combination of all
machines’ current state make up the manufacturing system state. In nominal production, the
physical system state always matches the control system state. The control system states and the
physical system states are shown by solid line and hatched line in Figure 2.2. In this way, an error
during the nominal production is a state of the physical system that is unexpected from the control
system point of view at that moment. This incorrect physical system state is called an error state.
Such a state represents that the physical system did not continue according to its control system
state trajectory but deviated from the nominal production trajectory. In Figure 2.3, the error state
is depicted by pe.

When the monitoring system (the operator and/or some sort of sensors installed in the factory)
detects the error, the manufacturing system must be recovered to resume the nominal production.
Error recovery which aims to return the physical system to the nominal production is composed of
four steps [3]:

1. Error detection
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Figure 2.3: An error pe is a state of the physical system that is unexpected from the control system
point of view at that moment

2. Error diagnosis

3. Error correction

4. Restart

This project supposes that there are modules embedded in the control system which detect,
and diagnose the error, and that the operator corrects the error before starting the restart phase.
Thus, the main emphasis in this work is on the restart module. In the following section, the SOP
and the restart state calculation are reviewed.

2.1 A sequence of operation

Each product design addresses its application. For example, a tire is round to speed up a car.
This means that, it is unlikely to reach the intended speed with square tires. Thus, the product
application introduces several design constraints. From the manufacturing point of view, there are
also several constraints to be satisfied [17]. Tools or resources are crucial elements for determining
these manufacturing constraints. As an example, a lack of tools to weld connection points limits
the number of concurrent welding operations.

Manufacturing constraints and design constraints, collectively called nominal requirements,
specify how to execute the operations defined during process planning. For instance, if placing
part A hides connection point B, firstly a robot must weld the connection point B and then place
part A. An SOP is a sequence of operations that are sorted in a special order to satisfy these con-
straints. Figure 2.4 gives an SOP of 4 operations, O1, O2, O3, and O4. The black solid circle, inside
each operation block, is the post-condition symbol. O2 and O3 are executed in parallel. This means
that they are executed independently, e.g because they are executed by two different machines.
Parallel sequences are illustrated by double bars in SOP. Also, these two operations are in straight
sequence of execution with O1 and O4 which specifies that O1 must be started at first, then O2 and
O3 are executed in parallel, finally O4 is executed.

As mentioned earlier, every operation, from start until completion, passes three states: initial,
executing, and finished. Figure 2.5, which describes the behaviour of an operation, is the state
diagram of the operation. Ok is an operation and i, e, and c are the state suffix for an initial,
an executing, and a finished state, respectively. Also, Pre and Post are abbreviations of pre-
condition and post-condition respectively.
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Figure 2.4: An SOP example consists of four operations

iOK . eOK. cOK.

Pre / Post /

Figure 2.5: An operation state diagram. Pre-condition and post-condition are abbreviated as Pre and
Post. i, e, and c are the state suffixes for an initial, an executing, and a finished state, respectively.

The state diagram of the control system is obtained from synchronization of the operation state
diagrams. Therefore, the state diagram of SOP presented in Figure 2.4 can be given by Figure 2.6.

2.2 Restart framework

When the monitoring system (operators and/or some sort of sensors installed in the factory) detects
a difference between the current manufacturing system state and the expected control system state,
an alarm will warn of an abnormal situation.

Roughly 60% of all stoppages in factories result from human errors, and about 15% of all
stoppages are consequences of tool breakage [18]. Also, most errors are related to the physical
system [1]. These sort of errors need an operator to perform repair, which may lead to corrupting
the physical system state. The operator changes the physical system state but the control system
remains in the same state as when the error occurred. Then the control system has a misconception
about the physical system state. To remove the difference, it may be necessary to change both the
control system state and the physical system state.

This problem may be solved by definition of a reference table so that the control and the physical
system states are changed to a restart state [14] selected from a reference list. A restart state is a
control system state from which the stopped production can continue. In Figure 2.7, this restart
state is shown by qrs. It is important to mention that it is not necessary to select restart state from
the nominal production states. The only condition is that the last state that we want to reach in
the nominal production (the marked state) must be reachable from the restart state. In Figure 2.7
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Pre1 /

Post1 /

Pre3 /

Post3 /Post2 /

Pre2 /

Post4 /

Pre2 /Pre3 /

Pre3 /

Pre2 /

eiii

iiii

fiii

feii fiei

ffii feei fifi

fefiffei

fffifffi

Post3 /Post2 /

Post3 / Post2 /

fffe

ffff

Pre4 /

Figure 2.6: The control system state diagram of SOP presented in Figure 2.4
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Figure 2.7: The bottom plane represents the nominal production before the restart, while the upper
plane represents the execution after restart. qrs is the restart state, qi is the initial state, qc is the final
state where the nominal production is done, and qe and pe are the error states of the control system
and the physical system, respectively.

qc which is the marked state in this SOP, is reachable from qrs.
The restart states set, according to the nominal requirements and re-execution requirements is

calculated off-line. Re-execution requirements specify under what circumstances the operation can
be restarted. As an example, a gluing or a welding operation typically cannot be re-executed. In
this way, the restart states set can vary depending on the corrupted operation, not on the particular
error.

2.2.1 Restart state calculation

This section describes how to calculate the proper restart state list for each operation. The restart
states list is calculated based on nominal and re-execution requirements. We illustrate this method
by a simple example. Also, it is necessary to point out that, in this work we assume that the
restart state list is already calculated to implement in the control system. Thus, we do not need to
implement any mechanism to calculate these states.

Let A and B be the only operations of the control system. We assume that they are independent,
so they are executed in parallel (Figure 2.8). Considering that each operation must pass three states
before completion (initial, executing and finished), the corresponding control system has nine
(3 × 3) states.

Errors only occur during the operation execution period, because an error is an incorrect change
and the system state only changes during execution. For this reason, executing states are said
to be potential error states, which means that there is a possibility of deviation from the nominal
production only in these states. These states are shaded in gray in Figure 2.8. Generally each
control system state including at least one operation in executing state is a potential error stare.
Then, the restart states are only calculated for the potential error states.

The error recovery procedure can change the system control state to either its earlier states
(backward error recovery) or later states (forward error recovery). An event by which a potential
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Figure 2.8: All possible placement events assuming there is no placement constraints

error state is transferred to a restart state is called a placement event and is represented by σplaceα, β

in the state diagram. Here, α is an operation corrupted by an error and β is a set of operations
that may be restarted along with α. Figure 2.8 gives all possible placement events assuming there
is no placement constraint.

Table 2.1: Possible restart states for different potential error states

Corrupted operation Potential error operation Restart state

A

AeBi AiBi

AeBe AiBi, AiBe

AeBf AiBf , AiBi

B

AiBe AiBi

AeBe AiBi, AeBi

AfBe AfBi, AiBi

A and B AeBe AiBi

The main criteria for selection of an appropriate restart state are nominal and re-execution
requirements. If there is a constraint on restarting B in Figure 2.8, this limits the number of
possible restart states. Table 2.1 shows possible restart states (when there are no constraints) for
different potential error states. As an example, if there is a requirement that B can only be restarted
when A is restarted before, B is conditionally restart-able, because it is possible to have no restart
state. Figure 2.9 illustrates a specification automaton when A and B can be executed and restarted
in any order.

Figure 2.10 shows the specification automaton when B is conditionally restartable. This means
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Figure 2.9: The specification automation when the operations A and B can be executed and restarted
in any order.

that, they can be executed in any order but restarted in a special order, first A and then B. As an
example, the restart state AiBi for the potential error state AiBe is forbidden, because A has not
been restarted or even executed yet. There are two possible restart scenario depending on which
operation is started first.

Figure 2.10: The specification automation when the operation B is conditionally restartable.

If the operation A is executed first, the control system state is changed from AiBi to AeBi in
which A can be restarted because there is no constraint on A’s restart. When B is executed and
the control system state is changed from AcBi to AcBe in which if A was restarted before, B can
be restarted.

There is another scenario in which B is started first and can never be restarted. Executing B
changes the control system state from AiBi to AiBe in which there is no possibility of restarting
B, because A has not been executed yet. Also, when the operation A is executed and the system
control state is changed from AiBc to AeBc, the operation A can be restarted but there is no way
to restart B.
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3
Implementation

T
here are different ways of implementing a unique idea. This variety is due to variation in
programming tools and programmers writing style. Generally, depending on programmer
preferences, programming can be performed in different ways which all lead to the same
result. The way suggested here to theoretically implement the idea presented in [14] is a

general way and easy to follow.
The implementation is represented by block diagram to prepare the reader for the actual im-

plementation, which is based on P.L.C. (Programmable Logic Controller) programming and is
presented in Appendix A. Thus, in this chapter, regardless of the implementation details, we dis-
cuss the suggested way from the general point of view and implementation details are presented in
Appendix A.

The implementation theory is presented in two steps, first implementation of the whole work
regardless of the restart framework, and then the restart framework which is added to the first
part. For ease of explanation, in this chapter, the implementation is presented for an simple control
system.

3.1 General implementation

Implementation of a general control system as a platform to implement the restart framework in
Section 3.2 is presented in this section. The selected control system is a simple system composed
of a start command, a stop command, an Alarm, and a simple SOP, which are shown in Figure
3.1. The start and stop key starts and stops, respectively, the procedure defined by the SOP, and
the Alarm light is considered to be a warning of an abnormal situation. The SOP is composed of
4 operations, O1, O2, O3, and O4. Operations O2 and O3 are executed in parallel and they are in
straight sequence of execution with O1 and O4, as shown in Figure 3.1.

The state diagram of this SOP has already been presented in Figure 2.6. Figure 3.2 gives part
of this state diagram which shows the state transition from the initial state of the operation O1

to its finished state. Once an operation pre-condition is satisfied, the operation state changes
from initial to executing. At the beginning of execution, the control system sends a command

13
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Figure 3.1: A simple platform for theoretical implementation

to start the corresponding pre-action in the manufacturing system. Post-condition satisfaction
terminates the operation execution that precedes changing the state from executing to finished.
This procedure is shown in Figure 3.2.

iO .1 eO .1
iO

fO

.

.

2

1

Pre1 / O1.State := execution Post1 / O1.State := finish

eO .2

Pre2 / O2.State := execution

eO .1

/ CommandO1.State = = execution

Figure 3.2: The state transition diagram of O1

The main part of this section is dedicated to implementation of this state diagram, which is
performed in two steps: first a sample operation is implemented and then, operations, which are
all implemented in the same way, are conditioned to execute according to the SOP presented in
Figure 3.1.

3.1.1 A single operation implementation

Each operation in the control system has some specifications that vary from operation to operation.
The operation specifications are its pre-condition, post-condition, state, command, and pre-action.
If an operation is implemented by a block diagram, an operation block, the block should handle
all these specifications. As mentioned earlier, an operation state is affected by its pre- and post-
condition satisfaction, so their satisfaction is defined as inputs to the operation block (Figure 3.3).
The control system changes the operation state based on these two conditions.

Since we are going to implement a single operation in this section, Figure 3.4 emphasizes O1’s
state diagram compared with Figure 3.2. Obviously, implementation of a state machine is the
first requirement to implement this state diagram. The state machine is a part of the control system
that is responsible for the calculation of the operation state. As the nominal production starts,
this system sets all the operation states to the initial state. Once the manufacturing system meets
an operation pre-condition, the state machine changes the operation state from the initial state
to the executing state. In the executing state, as the post-condition is satisfied, the operation
state changes to the finished state.

Thus, the next state is a function of the current state, the pre-condition, and the post-condition.
Figure 3.5 shows the block diagram for the state machine. The pre-condition and the post-condition
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Pre

Post

Command

Operation Block

Figure 3.3: The operation block inputs are pre- and post- conditions and its output is a command.
This command triggers pre-action in the physical system.

Figure 3.4: An operation state diagram

are inputs to the state machine and state value is input/output for this block.

State machine

Pre

Post

State

Figure 3.5: An operation state is a function of pre-condition, post-condition and its previous state

Whenever the operation state equals executing, the control system should send a command
to trigger the corresponding pre-action in the physical system area. Figure 3.6 shows a command
box that is a block to energize a pre-action depending on the operation state.

Command box OutState Pre-action

Figure 3.6: If an operation is in executing state, its pre-action is triggered by sending a command.

The last step of the operation implementation includes pre-condition and post-condition cal-
culation such that all the constraints imposed by the design and the manufacture are covered.
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Pre-condition is composed of conditions which must be satisfied prior to operation execution. As
an example, sensor values, tool limitations and the other prerequisites that are necessary to start
an operation constitute pre-conditions.

Also, an operation execution results in some changes in the manufacturing system, such as
sensor outputs, handshaking signals, etc. Post-conditions are applied to these changes. Figure
3.7 shows the operation block while pre-condition and post-condition are also fed. Finally, the
operation block is given in Figure 3.8.

Pre

Post

Tools 

limitation

Sensors 

value

Sensors 

value

Handshaking

Command

Operation block

AND

AND

State

Figure 3.7: A single operation block while pre-condition and post-condition are also derived.

Pre

Post

Command

Operation Block

State machine

Command handling box

Pre

Post

State

Out

State

Tools limitationSensors value

Sensors valueHandshaking

State

Figure 3.8: A complete operation block diagram.
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3.2 Adding restart facilities

When something triggers the alarm, the nominal production is stopped and the recovery procedure,
to resume the nominal production, will come to the manufacturing system’s aid. Considering that
the error state is the current control system state, an HMI panel containing all possible restart
states appears (Figure 3.9). This panel includes restart states reachable from the error state, and
these states have been calculated off-line. Then, the operator should select a restart state (qrs,
Figure 2.7) from the list and then, to show that his/her selection is finalized, click on the OK icon.

Figure 3.9: Designed HMI screen with opened Restart panel

Figure 3.10: Instruction menu helps the operator to satisfy the nominal and the re-execution require-
ments.

Next, another HMI panel containing instructions to help the operator opens. Instructions to
move the physical system from pe to the selected restart state, qrs (Figure 2.7), appears (Figure
3.10). This instruction list have also been calculated off-line and is prepared to satisfy the nominal
and the re-execution requirements. By means of these instructions, the operator moves the physical
system. This move reresents the dashed line from pe to qrs (Figure 2.7). When all the instructions
have been executed, the physical system is correctly placed in the restart state, otherwise, the
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operator is not permitted to restart the manufacturing system. In other words, execution of these
instructions are considered to be a requirement of the restart phase. Since all of these instructions
are either sensor, handshaking, or check-box related, their states are measurable and used as re-
execution requirements.

Finally, if all requirements are satisfied, the nominal production can be resumed. When the
operator clicks on the Restart icon, the selected restart state is loaded into the control system
state. This is the last step in the error recovery procedure and the physical system and the control
system are now in corresponding states. Once this change is performed, the nominal production is
resumed.
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4
Conclusion

In this work, implementation of restart idea discussed in ?? was presented. In this implementation,
every operation of the nominal production is dedicated a state, a pre-condition, a postcondition,
and a command to start the pre-action. An operation is initialized in its initial state, and its
pre-condition satisfaction changes the operation state from initial to executing. Being in the
executing state without error occurrence, the operation block sends a command to start the pre-
action in the physical system. Finally, post-condition satisfaction in the executing state changes
the operation state to the finish state.

This project planned to help the operator such that defined states, and menus popping up in
each step of the restart procedure finally lead the operator to move the system from the error state
to the restart state. The operator selects an intended restart state and then the control system
provides him/her with an instruction list which includes instructions to move the physical system
to the appropriate safe position for restarting in the intended restart state. After this step, the
operator can be assured that the manufacturing system continues with the nominal production by
pressing the Restart key.
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5
Future developments

In this work, it was assumed that the relevant mechanisms for error detection and diagnosis existed
and were implemented in the control system. Also, the operator was supposed to be responsible for
performing the error correction phase. The focus of this work was just on the remaining part, the
restart phase. Even the described restart procedure in this work is a time consuming procedure.
The operator stops the whole nominal production and selects a restart state from the restart list.
Then, he/she must move the physical system to satisfy conditions mentioned in the instruction list
and finally the nominal production is restarted. What if the operator only interferes the defective
part of the nominal procedure and correct the error without stopping the whole procedure. In fact,
the operator becomes a part of the physical system who can manually correct the error. Thus,
the operator can interfere the defective part of the nominal production while the other parts are
running. This is a combination of automated and manual nominal productions. In this way, there
is no need to stop the whole procedure and there is a collaboration between human and machines.
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A
Case study

In this section, the manufacturing system where this project was implemented is introduced. Also,
the nominal production in this manufacturing system will be explained and finally, the restart
mechanism implementation is discussed. This paper’s case study is a manufacturing system to as-
semble toy cars implemented in the Production System Laboratory (PSL) at Chalmers University of
Technology. The corresponding control system is a SIEMENS programmable logic controller, PLC,
SIMATIC S7-300. The physical system includes 4 robots and the corresponding robot controllers;
a fixture; a wagon; and 4 small toy cars.

A.1 Experimental example description

The example presented here, i.e. this work’s case study, is a part of the laboratory car factory
implemented in the PSL lab. This selected manufacturing system consists of two robots R1 and
R2; a wagon, which carries different car parts; a roof plate and a base plate; a fixture; two sensors
for the base plate (Fixture bak botten and Fixture fram botten); and two sensors for the
roof plate (Fixture bak tak and Fixture fram tak) (Figures A.1 and A.2). Also, it must be
mentioned that the final product is just made of the base and the roof plates (Figure A.3).

Due to safety, two automatic clamp locks are installed on the fixture. Once robot R1 places
the bottom plate on the fixture, the control system locks the clamp locks. When the clamp
locks are open, Fixtur cylinder bak uppe and Fixtur cylinder fram uppe, which are vari-
ables connected to the open status of these clamps, are True. Otherwise, if these clamps are
locked, Fixtur cylinder bak nere and Fixtur cylinder fram nere are True and the others
(Fixtur cylinder bak uppe and Fixtur cylinder fram uppe) are False. There is no state in-
between for these sensors, because clamps are either opened or closed, thus, there is no case that
all four are false.

In order to validate a new mechanism, we must use it. Thus, some events that lead to restarting
the nominal production are considered in this implementation. There are two main events that
lead to stop and consequently restart of the nominal production: an operator request or an error
occurrence.
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R2

R1
Wagon

Fixture

Figure A.1: The manufacturing system installed in the PSL lab at Chalmers University of Technology

Three of the operations are equipped with stop possibility due to operator request. This means
that the operator can deliberately stop the procedure during execution of these operations. Also
one of these three operations is provided with a simple error detection mechanism. Using this
detection mechanism, the control system can stop the corrupted procedure. Thus, there are only
two operations equipped with the stop possibility and there is one operation equipped with both
the stop possibility and the error detection mechanism. Two errors are considered that corrupt the
nominal production:

1. picking no base plate from the wagon (LiftError)
The robot R1 fails in lifting the base plate up from the AGV.

2. dropping the base plate (DropError)
The robot R1 drops the base plate on its way from the wagon to the fixture.

these both lead to the same failure in the manufacturing system, i.e. there is no base plate on the
fixture. Thus, the embedded error detection mechanism, which is designed to detect these errors,
checks the availability of the base plate on the fixture.

Since, the nominal production stops due to either operator request or error detection, all of
the operations equipped with theses are considered as potential error states and there is an allo-

24



A.2. CASE STUDY SOP APPENDIX A. CASE STUDY

Fixture_fram_bottenFixture_fram_tak

Fixture_bak_botten Fixture_bak_tak

Clamp locks

Figure A.2: The fixture, where model car is assembled

cated restart list for each of the three operations equipped with stop possibility or error detection
mechanism. As mentioned earlier, a restart list is a collection of restart states from which the
manufacturing system has to be restarted after an error occurrence. These restart lists (one list
per each of three operations) are calculated off-line.

A.2 Case study SOP

The nominal production is that: First, R1 picks up the base plate from the wagon. Next, R2 picks
up the roof plate from the wagon and R1 puts the base plate on the fixture at the same time.
Finally, R2 puts the roof plate on the fixture. A sequence of operations (SOP) that leads to this
nominal production is shown in Figure A.4. This SOP is designed such that nominal production
requirements and physical system limitations are satisfied. These operations are explained in detail
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Figure A.3: The final product is just made of the base and the roof plates.

in Table A.1. Solid black circles in Figure A.4 represent the post-conditions which are replaced by
yellow lights on the HMI screen.

The first operation in the SOP of Figure A.4 is R1 HomeToWag. This is an operation to
move R1 from R1Hemmalage to R1Wag (Figure A.5). R1Hemmalage and R1Wag are called safe
positions. A safe position is a physical position/location where a robot finishes an operation, and
waits for a new command. These positions are safe, because there is no collision risk. These
positions should be determined before manufacturing is started.

Since every operation is started and finished at a safe position, Figure A.5 shows that each robot
is assigned 4 safe positions. Safe positions for R1 are located at its home position, R1Hemmalage;
top of the wagon position, R1Wag; between the wagon position and the fixture position, R1Inbetween;
and the fixture position, R1Fixture. The safe positions of R2 are located at its home position,
R2Hemmalage; top of the fixture position, R2Wag1; between the wagon position and the fixture
position, R2Wag2; and the fixture position, R2Fixture. Figure A.5 approximately shows where
these safe positions are located. In this figure, R1’s safe positions are shown by solid red cir-
cles, and the safe positions for R2 are shown by solid black circles. Also, the operations to move
robots between every two safe positions are mentioned. The double-circled positions show the robot
positions when the nominal production starts.

As mentioned, a handshaking signal is a signal raised by the physical system to show that
an operation execution has been completed in the physical system area. Every operation has its
handshaking signal and these signals are shown by solid black circles in Figure A.4. In this report,
operations, handshaking signals, and safe positions have similar names. Then, to avoid confusion,
operations, handshaking signals, and safe positions are denoted by Bold, Italic, and Normal
letters, respectively.

Table A.2 lists handshaking signals and their corresponding operations. The physical system
and the control system communicate by handshaking signals. These signals are outputs from the
physical system and inputs to the control system. So, in this work, IN is selected as the middle
name of handshaking signals in the control system and OUT is selected as their middle name in
the physical system. For example, the handshaking signal to show R1 HomeToWag completion
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R1_HomeToWag

R1_Safe

R2_HomeToWag

R2_WagToFixture

R 1 _ I n b e t w e e n T o F i x t u r e

R2_PlaceRoof

R 2 _ F i x t u r e T o H o m e

R1_PlaceBottom

R 1 _ F i x t u r e T o H o m e

R2_LiftUpRoof

S t a r t  ^  R 1 I N _ H e m m a l a g e

R1_LiftUpBottom

R 1 _ W a g T o I n b e t w e e n

B a c k 1  ^        ^  F r o n t 1

R 2 I N _ H e m m a l a g e

B a c k 2  ^        ^  F r o n t 2

Figure A.4: SOP of the case study
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Table A.1: List of operations executed during the nominal production of the case study

Operation Description

R1 HomeToWag An operation to move R1 from R1Hemmalage to R1Wag

R1 LiftUpBottom An operation to lift up the base plate from the wagon or do nothing
when LiftError happens

R1 WagToInbetween An operation to move R1 from R1Wag to R1Inbetween

R1 Safe An operation to do nothing or drop the base plate when Drop-
Error happens

R1 InbetweenToFixture An operation to move R1 from R1Inbetween to R1Fixture

R1 PlaceBottom An operation to place the base plate on the fixture

R1 FixtureToHome An operation to move R1 from R1Fixture to R1Hemmalage

R2 HomeToWag An operation to move R2 from R2Hemmalage to R2Wag1

R2 LiftUpRoof An operation to move R2 from R2Wag1, lift up the roof plate from
the wagon and then move R2 to R2Wag2

R2 WagToFixture An operation to move R2 from R2Wag2 to R2Fixture

R2 PlaceRoof An operation to place the roof plate on the fixture

R2 FixtureToHome An operation to move R2 from R2Fixture to R2Hemmalage
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Fixture

Wagon

R1Hemmalage

R1Wag

R1_HomeToWag

R1_LiftUpBottom

R1InbetweenR1_InbetweenToFixture

R1Fixture

R1_PlaceBottom

R1_FixtureToHome
R1_WagToInbetween

R2_PlaceRoof

R2Fixture

R2Hemmalage

R2Wag1

R2Wag2

R2_HomeToWag

R2_LiftUpRoofR2_WagToFixture

R2_FixtureToHome

Figure A.5: R1’s safe positions are shown by solid red circles, and R2’s safe positions are shown by
solid black circles.

is called:

1. In the physical system: R1OUT HomeToWag

2. In the control system: R1IN HomeToWag

It is important to note that, since operations are finished at safe positions, the manufacturing
system raises handshaking signals at safe positions. In the next section, laboratory results from the
implementation of the operation R1 PlaceBottom are given.

A.3 Implementation of an operation

R1 PlaceBottom is an operation to place the bottom plate on the fixture. This is executed by R1.
R1 starts from the safe position R1Fixture, places the bottom plate on the fixture, and moves then
back to R1Fixture. Figure A.6 shows this operation which is implemented in the Function Block
Diagram (FBD) language. This is an operation block of the control system to run R1 PlaceBottom
in the physical system. This block is supposed to send a command towards the robot controller in
the physical system to start the operation and receive the sensor values from the physical system
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Table A.2: Handshaking and safe position

Handshaking signal Operation

R1IN Hemmalage R1 FixtureToHome

R1IN HomeToWag R1 HomeToWag

R1IN LiftUpBottom R1 LiftUpBottom

R1IN WagToInbetweenPos R1 WagToInbetween

R1IN Safe R1 Safe

R1IN InbetweenPosToFixture R1 InbetweenToFixture

R1IN PlaceBottom R1 PlaceBottom

R2IN Hemmalage R2 FixtureToHome

R2IN HomeToWag R2 HomeToWag

R2IN LiftUpRoof R2 LiftUpRoof

R2IN WagToFixture R2 WagToFixture

R2IN PlaceRoof R2 PlaceRoof

to analyze the operation state accordingly. When the pre-condition was satisfied, a number called
the program number was sent to the robot controller. The robot controller includes several robot
programs that are numbered the same as the programs. The robot program, to respond the control
system, calls the robot program whose number was received. After terminating the robot program,
the physical system raises the handshaking signal and then the control system monitors the post-
condition value and determines whether the corresponding operation execution was finished or not
(Figure A.7). The following sections explain implementation of the described procedure. First, the
robot controller and its communication with the physical and the control systems are discussed.

A.3.1 Robot program

When a robot leaves a safe position, the manufacturing system resets the corresponding handshaking
signal. Therefore handshaking signals are continuously updated according to the robot position.

Figure A.8 shows how the control system and the manufacturing system communicate with each
other. In addition to the control system that is the central controller, there is a local controller
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Figure A.6: The operation R1 PlaceBottem implementation in FBD language

for every robot in the manufacturing system. This controller is called a robot controller. When an
operation is implemented in the control system, its equivalent robot program (or programs) should
be implemented in the robot controller to communicate with the corresponding operation. The
robot executes the robot program as a result of operation execution in the control system.

In this work, a number is assigned to each operation which is called a program number (shown
by the variable PrgNr). Each operation is identified by its program number, the robot controller
also knows these numbers. To execute an operation in the manufacturing system, the control
system should send the operation program number to the robot controller. Robot controller always
monitors PrgNr.

Figure A.7 and Table A.3 explain how PrgNr is exchanged during operation execution. When
an operation is in its executing state (the state B of the left diagram in Figure A.7), the operation
block sends the program number (OUT PrgNr) to the robot controller. Since no operation maps
to program number 0, sending a program number means that OUT PrgNr is not zero. The
parameter OUT PrgNr of the operation block is connected to the parameter IN PrgNr of the
robot controller. To make sure that the robot received the same number as the program number,
time the robot sends back the same program number. If these two numbers are equal, the control
system sets the parameter CykelStart to True, which permits the robot to move and execute the
corresponding robot program.

During execution of a robot program, the robot is busy (RobotBusy == True) and the robot
controller cannot accept a new IN PrgNr. When the robot arrives at a safe position, the robot
status is changed to ready and if its post-condition is satisfied, the operation state is changed to
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WHILE DInput(R2IN_CykelStart)=0 DO
      ! Läser in och speglar tillbaka programnummer PLC
      Order:=R2GIN_PrgNr;
      SetGO R2GUT_PrgNr,Order
ENDWHILE

Robot Program associated to the running operation
Begin
SafePosition1 := false;
.
.
.
.
SafePosition2 := true;
End

The robot program 

The control system

Figure A.7: The control and physical systems connection during operation execution

Figure A.8: The manufacturing system consists of the control system and the physical system
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finished.

Table A.3: Parameters changes during operation execution

State State Robot Cykel Robot OUT IN

name value Position Start State PrgNr PrgNr

A OP1.init SafePosition1 False Ready 0 0

B OP1.exe SafePosition1 False Ready 0 0

C OP1.exe SafePosition1 False Ready 110 0

D OP1.exe SafePosition1 False Ready 110 110

E OP1.exe SafePosition1 True Ready 110 110

F OP1.exe ? True Ready 110 110

G OP1.exe ? True Busy 110 110

H OP1.exe ? False Busy 0 110

I OP1.exe SafePosition2 False Busy 0 110

J OP1.exe SafePosition2 False Ready 0 110

K OP1.fin SafePosition2 False Ready 0 110

L OP1.fin SafePosition2 False Ready 0 0

MainModule in Figure A.9 is the main program of the robot controller. Besides the Init
module that resets variables to run a new procedure, there is a while loop monitoring the PrgNr
continuously. As a result of receiving a new PrgNr, the robot controller runs the GorUppdrag
module (Figure A.10), which is only a switch case of PrgNr. According to this selection in the
GorUppdrag module, the relevant robot program start to run. Figure A.11 shows a robot program
to move R2 from the wagon position to the fixture position, R2WagToFixture.

As mentioned before, handshaking signals are switches to show the operation termination and
consequently the robot position. If a robot has finished an operation and consequently has moved
to a safe position, the relevant handshaking signal is true. When a robot leaves a safe position, the
manufacturing system resets the corresponding handshaking signal. Therefore handshaking signals
are continuously updated according to the robot position.

The robot program R2WagToFixture is a robot program that to move R2 from the safe
position R2Wag2 to the safe position R2Fixture. In Figure A.11, this robot program resets the
handshaking signal R2UT LiftUpRoof, as soon as the robot leaves the safe position R2Wag2 (Figure
A.5). Also, this robot program raises R2UT WagToFixture when the operation finishes and the
robot is located at the safe position R2Fixture. In the next section, to continue the implementation
of the operation R1 PlaceBottom, we discuss the state machine implementation.

A.3.2 State machine

A basic state machine to calculate the operation state has been implemented in Section 3.1.1 (Figure
3.5), the same block is used in the PSL lab (Figure A.12).
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Figure A.9: The main module of the robot program

Figure A.10: GOR UPPDRAG Shilan which is only a switch case of PrgNr

Figure A.11: R2WagToFixture is a robot program to move R2 from the safe position R2Wag2 to
the safe position R2Fixture. First, the robot leaves the safe position R2Wag2, then the handshaking
signal R2Ut LiftUpRoof is reset.
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Figure A.12: The state machine block diagram in FBD language

Since, the operation state is a function of the previous state, the pre-condition, and the post-
condition, the state value is an In/Out variable for the state machine block (Figure A.13). It
must be mentioned that this is a general state machine for every operation. Since operations state
has three possible values, the state is not a boolean variable. This variable is evaluated based on
comparison and for convenience of comparing, it is saved as character (State) as well as integer
value (State N). Table A.4 lists the valid state values based on operation states.

Table A.4: State values and the numbers allocated to them.

Operation state State State N

initial i 0

executing e 1

finished f 2

A.3.3 Conditions and action

When R1 starts to execute R1 PlaceBottom, there is no plate on the fixture and clamp locks are
open. Thus, output values of 4 plate sensors (Fixture fram tak, Fixture fram botten, Fix-
ture bak tak and Fixture bak botten) are False, and output values of Fixture cylinder bak
uppe and Fixture cylinder fram uppe are True. The control and the physical systems status
before R1 PlaceBottom execution is shown in Figure A.14. This figure shows that the operation
R1 InbetweenTo Fixture must be finished before R1 PlaceBottom is started. Summarizing
these conditions, R1 Place Bottom’s pre-condition is given in Figure A.15.
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Figure A.13: Inside view of the state machine. The state is updated according to the last state value,
pre- and post-conditions.

As soon as fixture’s sensors, Fixture fram botten and Fixture bak botten, sense the bot-
tom plate, clamp locks will be closed. Moreover, when R1 comes back to R1Fixture, the physical
system raises the handshaking signal (Figure A.14). These conditions constitute the post-condition
of R1 PlaceBottom which is given in Figure A.16.

To start the corresponding pre-action in the physical system, the control system sends a rele-
vant command during operation execution (Figure A.17). A command is a non-zero integer that
the physical and the control systems use to differentiate operations, and consequently, their corre-
sponding robot programs. When the physical system takes action, the command will be set to zero
(section A.3.1).

A.3.4 Busy

No robot in the physical system can execute two different tasks at the same time. Thus, while a
pre-action is running in the physical system, the control system stops sending the operating robot
a new command. While the robot state under this circumstance is Busy, raising the handshaking
signal shows the termination of this running operation, and changes this state to Ready.

Each robot in the manufacturing system has its own Busy signal. When Busy is True, the
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R1_PlaceBottom

R1_FixtureToHome

R1_InbetweenToFixture

FixtureR1 FixtureR1R1_PlaceBottom

The physical system The control system

1. Bottom plate is on the Fixture

2. Fixture’s locks are closed 
3. The handshaking signal R1IN_PlaceBottom 
     is raised

1. No plate on the Fixture
2. Fixture’s locks are opened

Figure A.14: The status of the control and the physical system before and after executing the
R1 PlaceBottom operation

Figure A.15: The operation R1 PlaceBottom’s pre-condition

Figure A.16: The operation R1 PlaceBottom’s post-condition

Figure A.17: The control system sends a relevant command during operation execution
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robot is executing a pre-action. In other words, when a handshaking signal is True (Figure A.18),
i.e. the robot is ready, the control system sends a new command to be executed.

Figure A.18: The Robot busy status

Figure A.19 depicts that if any system error happens (”DB Mode Stn3”.CykelStp is True),
Alarm is triggered, or in automatic mode the robot is busy, the control system stops sending
commands.

A.3.5 Enable

To ensure that only one operation command is connected to the command input port of the robot at
any time, only one function block must be enabled every time. Otherwise, this leads to confusion and
the robot cannot identify which command must be run now. Considering the operations sequence
in the SOP, we decided that enabling operations according to SOP is the best way. Consequently,
the operation block is allowed to communicate with the physical system, if and only if its earlier
operation was finished and its later operation is still in its initial state. In other words, this function
block is only enabled during this period of time.

Every function block is either enabled or disabled at any time. If EN is True, the operation
block’s inputs/outputs are connected and can receive/send value, otherwise, the block is discon-
nected from external variables. Figure A.20 shows the operation R1 PlaceBottom’s function
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Figure A.19: The control system stops sending command if either an error occurs or the robot is busy.

block enabled by EN.

Figure A.20: The operation R1 PlaceBottom implemented using the port EN

Usually, two separate systems control each machine in a manufacturing system: a local controller
and a central controller. The local controller is located beside the machine in the physical system.
This controller is only used for the particular machine. On the other hand, there is a central
controller used to control all machines in the manufacturing system. Consequently, there are two
different control modes: the manual and the automatic mode; either the operator locally controls
the machine by local controller in manual mode, or the central controller (the control system)
controls the whole manufacturing system in the automatic mode. In this work, RobAuto is a
variable showing the robot control mode. When RobAuto is true, the robot is in the automatic
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mode. Running a procedure, machines must be in the automatic control mode. Then, running an
operation block in the control system, RobAuto is required to be True.

A.4 Restart from an operation

In this section, to verify the restart facility, we make an assumption that an error has occurred and
the robot has not lifted up the bottom plate. Since the detection mechanism is only implemented
in the operation R1 PlaceBottom, this is the first and the only operation of SOP to detect the
error. This mechanism is discussed below.

As mentioned earlier, there are two sensors installed on the fixture (Fixture bak botten and
Fixture fram botten) to sense the bottom plate. These sensors output values affect R1 Place
Bottom’s post-condition. Sensing the bottom plate, the control system locks the clamp locks.
Then, see Figure A.20, R1 PlaceBottom’s post condition includes these clamp locks status.

Assuming that R1 PlaceBottom is in its executing state, this state should change to fin-
ished within six seconds of raising the handshaking R1IN PlaceBottom by the physical system,
otherwise, an error called a TimeErr is triggered by the control system (Figure A.21). This is the
implemented error detection mechanism in this project. When Alarm is triggered, the restart menu
pops up on the HMI screen.

Figure A.21: Error detection mechanism

Figure A.22 shows that Alarm is triggered either when TimeErr occurs, or when the operator
clicks on the Stop button. The Stop button is only enabled during execution of operations O2, O4

and O6, since it was determined that only these were relevant for the simulated error case.

Figure A.22: Alarm is triggered either when the operator clicks on the stop icon, or when TimeErr
occurs.
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Figure A.23 shows the restart block whose variables are changed in the HMI screen. This block
just assigns the right value to the state value according to the selected restart state. Selecting the
LiftUpBottom as the restart state from the restart list (Figure A.24) triggers RestartSel2, and
clicking on the OK button (to finalize the selection) triggers OperatorOK. This is shown by the
green line in Figure A.23, which represents that the value is now true.

Figure A.23: The restart block assigns the operation state according to the selected restart state.

Figure A.24: LiftUpBottom is selected as the restart state.

On the other hand, once the operator finalizes his/her selection, the instruction menu pops up
(Figure A.25). As shown in Figure A.5, to execute the operation R1 LiftUpBottom, the physical
system must be in the safe position R1Wag. Then to re-execute this operation, the operator must
place the physical system in this position.

The instruction list is divided into two menus: the dynamic menu and the static menu. The
dynamic menu depends on which restart state has been selected, while the static menu is always
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Figure A.25: The dynamic menu and the static menu when LiftUpBottom was selected as a restart
state.

the same for all selected restart states. Therefore, the static menu includes general requirements
like putting machines in Auto mode (the items 7 and 8 in Figure A.25). Since, the robot R2 is
always reset from the beginning by the recovery procedure, initialization of R2 is also included in
the static menu (item 6 in Figure A.25, R2 is called by the same name as its vendor).

Resuming the nominal production from R1 LiftUpBottom, execution requires the operator to
move R1 to R1Wag and R2 to R2Hemmalage, then the handshaking signals R1IN Hemmalage and
R2IN Hemmalage should after these movements be False and True, respectively (the items 1 and
5 in Figure A.25). Shilan r1hometoagv is a robot program which is run by the R1 controller to
move this robot from R1Hemmalage to R1Wag. Whenever the handshaking signals R1Hemmalage
and R2Hemmalage have the intended values, these two messages disappear from the dynamic menu.

Additionally, as mentioned in Chapter A.3.1, once a robot starts a new operation, the robot
controller clears the handshaking signal of the previously executed operation. Then, at any time,
at most one handshaking signal has the value True. Since, R1 is going to continue from the second
operation of the SOP, the handshaking signal of the first operation must be set to True. In this case,
only R1 INHomeToWag has the value True, otherwise, message 4 appears. The instruction number
4, in the instruction list, asks to turn off all of the handshaking signals except R1 INHomeToWag.

Since in this physical state, plates are supposed to be in the wagon, there is no plate on the
fixture. Then, installed sensors on the fixture sense nothing and their output value must be False,
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otherwise, messages number 2 and 3 in Figure A.25 appears. Finally, there are two safety related
check boxes. Since there is no sensor installed on the wagon to check the availability of the plates,
we rely on the operator to check plate availability and to confirm by clicking those check boxes.

To restart the system, execution of these instructions are required. Also, since all instructions
are connected to measurable values (sensors, handshaking signals, or check boxes), their completion
is also measurable. Corr Pos is calculated by means of these values (Figure A.26).

Figure A.26: Assesment of the correct position for restart.

Whenever all instructions are executed and their connected conditions are satisfied, Corr Pos
will be turn on and then the Restart button will appear. If the operator clicks on the Restart
button, the current control state will be changed to the restart state by the restart block and the
manufacturing will continue.
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