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Abstract

In this thesis, signals from a new prototype of Ultra Wide Band (UWB) radar transceiver
system based on CMOS technology has been introduced and analyzed. The received
signal is modeled as three additive parts: the clutters, the reflections from the targets,
and the noise. The goal of the signal processing algorithm development is to retrieve
the signal of interest by eliminating the unwanted signal components and implement
functionality of this radar system. The main functions which have been proposed in
this thesis work are system calibration, clutter map estimation, adaptive thresholding,
ranging and tracking. Both theoretical derivations and practical implementations are
presented. The results have been evaluated in different scenarios and a demonstration
of the Graphic User Interface (GUI) control is given in the end of the thesis.
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1. Introduction

The objective of this thesis project is to develop signal processing algorithms for a new
Ultra-wide band radar system with the Novelda Ultra-wide band radar chip R2A. De-
tails about the radar system can be found in reference [1], and only the general idea will
be introduced in this section.

1.1. R2A Ultra Wide Band radar chip

Basically, the R2A system is a pulse radar system shown in Figure 1.1 - it is sending
out pulses using one antenna and receiving by the other. The received signal is the
transmitted signal bouncing back from objects viewed by the transceiver; it could be
considered as a filtered version of the transmitted signal. This echo contains the reflec-
tions from near field environment along with the target. A target is usually considered
to be a moving object within the radar field.
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Figure 1.1.: The figure shows how the R2A radar system works. As a traditional radar
system, the energy is sent out by one antenna and the reflection is received
by the receiver.
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For memory efficiency, each measurement is taken within a window set up by a pre-
defined time delay. The time delay is called Frame Offset (FO). One window is called
one frame and within each frame there are 128 samples. The time delay between every
consecutive two samples is approximately 27.8 ps. Converted to spatial domain, this
27.8 ps delay represents approximately 4.5 mm. Therefore in each frame, the duration
of the signal is 127 × 27.8 ps = 3.53 ns in time and approximately 550 mm in spatial
domain.

The important parameters are introduced in Section 1.1.1.
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1.1.1. System parameters

The most important parameters and their properties are presented in Table 1.1.

According to the parameter settings explained in Table 1.1, before the transmitter
sending out a pulse, 1000 (AF) pulses are averaged internally to obtain a less noisy out-
put. The Pulse Repetition Frequency (PRF) of the output signal is 48 MHz, which means
the time interval between two consecutive transmissions is 1

48MHz sec. After the signal
is transmitted, the receiver will wait for roughly 400× 27.8 ≈ 11092 ps before it starts
to sample the reflected signal. This waiting time is determined by the parameter Frame
Offset (FO) which is set to be 400 samples. In space, it is a distance of approximately
3.3 m away from the radar chip (regardless of the cable connecting the antenna and the
radar chip). Therefore, in spatial domain, one received signal is taken within a window
spans the range 3.3 m to 3.3 + 0.55 m, since the window size of the measurement is
roughly 0.55 m.

1.2. System issue and task description

For this UWB radar system shown in Figure 1.2, we face specific challenges introduced
as below:

Figure 1.2.: The UWB radar system. The red box indicates the radar chip. The black
lines denote the cables connecting the chip and the antennas. The signal
from the transmitter (Tx) to the receiver (Rx) is the direct coupling between
the two antennas.

• Near field issue:
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Table 1.1.: Introduction of the important parameters for the UWB radar system.
Parameter Description Default Value

Chip Number (CN) The identification of 3000109
different radar chip.
Each radar chip has a
different pulse template
(see Chapter 4).

Port Name (PN) The port that connects ’COM6’
the radar chip and the
computer. It needs to be
set up correctly.

Averaging Factor (AF) How many internal signals
are taken before output,
which effects
the processing speed and the 1000
noise level.

Frame Offset (FO) Internal time delay: decides 400
the range of the view for
the radar

Pulse Repetition By which frequency 48 MHz
Frequency (PRF) the pulses are sent out

Gain The gain of the transmitted 1
signal.

Zoommin/Zoommax The zoom value of the 0/100
received signal.
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Since we are working in the near field, the received pulse duration is not negligi-
ble compared to the range to the target, and therefore, the variation of the pulse
shape is relatively significant, which raises problems for the pulse locating pro-
cedure. Instead of traditional spatial matched filter [4], we need to deal with a
distorted template matching problem.

• Direct coupling and disturbance:
The direct coupling between the two antennas should not be ignored. This might
introduce a disturbance to our signal analysis. After carefully examining the
properties of this unwanted signal, we need to get rid of its contribution. As will
be illustrated in Chapter 4, the direct coupling can be used for system calibration.

• Temperature dependence:
The ranging measurement of this system is based on the samples unit. The sam-
ple interval ∆s together with the number of samples Ns describe the time delay
between the transmitted pulse and the received pulse. The sample interval ∆s

is the distance between each two consecutive samples it represents in spatial do-
main. As has been discussed above, there are 128 samples in one measurement,
and the time interval between two consecutive samples is roughly 27.8 ps.

Therefore the range d could be written as:

d =
∆s1 j1 + ∆s2 j2

2
(1.1)

where ∆s1 is the sample interval when the pulse travels in the air and ∆s2 rep-
resents the sample interval in the cables shown in Figure 1.2, and thus Ns1 and
Ns2 are the corresponding sample indeces at which the target locates respectively.
From experiments we know that the speed ∆s2 is relatively constant. So we have:

∆s2 j2 ≈ c (1.2)

where c is a constant value indicates the length of the two cables.

However, since the system is temperature dependent, the ∆s1 is not a fixed pa-
rameter. To obtain the accurate distance, we need to calibrate the system for each
new measurement.

• Clutter:
The clutter is defined as the reflection from the environment, instead of the real
target. Normally in a radar application, the desired signal is the echo from the
moving target, so that we need to suppress the unwanted part in the received
signal, in order to retrieve the ’real’ signal for either ranging or further analysis.

CHALMERS, Master’s Thesis 2011:EX008 6



• Noise:
Noise and disturbance are interpreted as the random part of the received signal,
which needs to be estimated and suppressed as much as possible.

• Jamming:
Jamming is the signal generated from other sources, mixed in the receiver. How-
ever, it is not within the scope of this thesis.

Therefore, the work is divided into three parts:

• System and signal analysis:

– With limited prior knowledge, try to understand the behavior of the system;

– Measure and analyze both the generated and the received signal;

– Identify the different parts of the received signal.

• Solution to system issue:
Including clutter map generation, noise reduction, calibration, near-field compen-
sation. In this case, clutter and noise are both defined as ’unwanted direction’ in
the vector space, which are suppressed accordingly.

• Algorithm design: Theoretical and practical algorithms development for possi-
ble applications, not only to obtain working functionalities, but also to achieve a
promising theoretical result.
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1.3. Accomplishment

The main achievement is briefly listed as below.

• Adaptive clutter map and thresholding (Chapter:3):
An SVD-based clutter rejection and thresholding technique has been applied, and
an optimal clutter map estimation has been achieved.

• Calibration (Chapter:4):
Since the system is temperature dependent, an adaptive calibrating method is ap-
plied, which is based on the direct coupling measurement. The prior knowledge
of the radar system is updated for each new measurement according to this cali-
bration result.

• Ranging (Chapter:4):
Five different pulse locating techniques have been applied to this ’distorted tem-
plate matching’ problem. Sample-based pulse locating and subsample resolution
for differential ranging are achieved accordingly.

• Tracking (Chapter:5):
Measurement for tracking requires a fast and reliable algorithm and a Kalman fil-
ter is employed to correct the result in real time according to least square criterion.
One dimensional and two dimensional tracking has been achieved.

The functions have been developed and implemented in this thesis work are summed
up in Figure 1.3.
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Figure 1.3.: A demonstration of the working functions implemented in this thesis
project.
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2. System modeling

In this chapter, the modeling of the system is described in detail.

One example of received signal r is shown in Figure 2.1. And as shown in Figure
2.2, this signal r consists of the clutters re, the signal reflected from the target ro and the
noise e. Here we assume that there is no jamming, namely no other source that pro-
duces microwave signals.

The signals r, re, ro and e are represented as 128 dimensional column vectors, since
there are 128 samples in each received signal.

The clutter re is considered as a summation of the received reflections, namely the
superposition of the reflected pulses with different amplitudes and phases. Among all
the objects in the radar field, one or one type of objects with some properties in com-
mon are defined as the target of interest. The reflections from these targets ro are the
signals we are concerned about.

In Figure 2.1, ro is considered as the reflection from a moving plate with 500× 250
mm2 area. The plate is made of metal which causes a strong reflection. The noise re is
estimated in Chapter 3.

11



Figure 2.1.: One example of the received signal r. The target of interest is a metal plate
with 500× 250 mm2 area which provides the strongest echo compare to all
the other echoes bouncing back from the environment. This reflection is
called ro and is shown as the outstanding signal labeled in the figure. There
are 128 samples in this signal. The signal level shown in this figure is a
number which is proportional to the voltage of signal at each sample and
represents the superposition of the reflected energy from all the objects.
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So one measurement is structured as:

r = re + ro + e, (2.1)

Figure 2.2.: The radar system and the components of the received signal. The purple
box indicates the radar system shown in Figure 1.2 and additive noise is
added. The reflection consists of re the clutter, ro the reflection from the
target, and e the noise.
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If the vectors r1, r2, ...rn denote the consecutively received signals at time i, a mea-
surement matrix X could be formed as:

X = [r1, r2, r3, ..., rn] (2.2)

Now we re-write our measurement matrix X as below, and the upper index i also
denotes the time index in each each matrix:

X = Xe + Xo + E

= [r1
e , r2

e , ..., rn
e ] + [r1

o , r2
o , ..., rn

o ] + [e1, e2, ..., en]
(2.3)

It shows that the measurement matrix is written as a summation of clutter measure-
ment matrix Xe, object matrix Xo and noise matrix E.

For each matrix defined above, individual analysis is presented in the following sec-
tions.

2.1. Clutter Matrix

Clutter, for indoor applications, can be defined differently according to different objec-
tives. Without loss of generality, we define clutter as the relative static indoor environ-
ment for applications of detecting moving objects.

According to further analysis, each clutter measurement ri
e could be written as a lin-

ear model:

ri
e = αirc + ci (2.4)

which is a re-scaled version of the vector which represents the ’clutter direction’ with
a bias ci.

Therefore, the clutter matrix Xe = [r1
e , r2

e , ..., rn
e ] could be further expressed as:

Xe = [ α1rc + c1, α2rc + c2, α3rc + c3 , ..., αnrc + cn ] = Rc + C (2.5)

where αi is the scalar, rc is the clutter direction in the vector space, and ci is a vector
of ones scaled by a scalar for each measurement i.

Moreover, we can see from this model that the clutter matrix is a rank two matrix
shown as in Figure 2.3 since the columns of the matrices Rc and C are linearly depen-
dent.

CHALMERS, Master’s Thesis 2011:EX008 14



Figure 2.3.: The clutter matrix Xe could be written as a summation of two rank one
matrices.
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2.2. Object Matrix

The reflection from the target is the signal to be obtained and analyzed. One example
is shown in Figure 2.4, which is obtained in an anechoic chamber.

Figure 2.4.: The measurement taken in the anechoic chamber. The blue pulse is taken by
face to face antenna measurement with a 140 millimeter distance. The red
curve indicates the reflected signal from a metal ball with 100 mm diameter
placed in front of the antennas with 70 millimeter range.

2.3. Noise Matrix

Noise is assumed to be additive and defined to be the completely random part which
is represented by the vectors with random directions and relatively low power.
Note that in later chapters when we talk about the ’direction’, it means the direction of
a signal in the vector space.

CHALMERS, Master’s Thesis 2011:EX008 16



3. Adaptive clutter map and thresholding

Before we start this chapter we have to establish the definition of what clutter is in one
specific radar application. For example, clutter can be defined as the reflections from
the environment other than the moving target. Of course, ’unwanted reflection’ is a
relative concept; it very much depends on what the application is. In this project,

for indoor tracking application, clutter is the reflections from the constant environ-
ment, such as furniture or walls. One the other hand, if the aim is to monitor the heart
beat from a patient, clutter is defined as everything but the heart beat patterns.

Therefore, the clutter could be either constant (fixed radar with moving object), or
varying with time (heart beat monitor with moving carrier); could be strong (in a com-
plex environment) or weak (in an anechoic chamber).

It is very important to suppress the clutter in order to have a functional radar system
with high performance under dynamic signal level.

3.1. Theory

3.1.1. Clutter map generation

Direct Mean Method

In the signal model introduced in equation 2.1, the reflection from the target ro could
be considered as a zero-mean random variable if the object is assumed to be moving in
a random manner and thus a simple estimation of the environment could be obtained
by:

r̂e =
n

∑
i=1

ri (3.1)

The signal could then be retrieved by:

r̂o = r− r̂e + e (3.2)

which gives the simplest, although not the most efficient clutter rejection result, since
the assumption that the reflection of the moving object is a zero-mean random variable
does not hold precisely. Therefore, normally when we estimate the clutter by Direct
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Mean Method, we also rule in the reflection from the target by averaging the entire
signal.

Singular Value Decomposition

Derived from the definition and properties of clutter, a clutter removal method based
on Singular Value Decomposition would be a suitable technique for this particular task.

Singular Value Decomposition (SVD) is one of the most powerful matrix factoriza-
tion methods. It applies to any rectangular matrix and is widely used in engineering
problems.

The definition and some essential properties of SVD are briefly introduced in this
thesis and more details could be found in reference [3].

Definition of SVD:

Suppose matrix X is full rank with size m × n (m > n) we could factorize X as fol-
lows:

X = UΣVH = U



σ1 · · · 0
...

. . .
...

0 · · · σr

0 · · · 0
...

. . .
...

0 · · · 0


VH (3.3)

where U is an m×m unitary matrix, Σ is an m× n matrix with nonnegative real num-
bers as entries, and V is a n× n unitary matrix. The non-zero entries σi of Σ are sorted
in a descending order, which are defined as the singular value of matrix X.

As introduced in Chapter 2, the system model defined in equation 2.3 shows how the
measurement matrix X is structured: the clutter matrix is approximately a summation
of two rank one matrices, which are assumed to be the two stronger rank one matrices
in the measurement matrix X. Therefore, one property of SVD, the ’Low Rank Approx-
imation’, could be adopted to estimate the clutter map.

The ’Low Rank Approximation’ uses the fact that SVD of a rank r matrix could be
written as a summation of r rank one matrices:

CHALMERS, Master’s Thesis 2011:EX008 18



X =
r

∑
i=1

uiσivH
i (3.4)

• ui is the ith left eigenvector of X;

• vH
i is the ith right eigenvector of X;

• σi is the ith singular value of X.

’Low Rank Approximation’ proves that to find an approximation of rank k matrix Xk

(k < r), which is obtained by minimizing the Frobenius norm of the difference between
Xr and Xk, subject to rank(Xk) = k, we simply take the SVD of Xr, and the solution is
given by the summation of first k components. Namely:

Xk =
k

∑
i=1

uiσivH
i (3.5)

In this case, the rank k matrix to be estimated is the clutter matrix and k = 2. Since
the singular values are sorted in a descending order, Xk is therefore corresponding to
the summation of the two strongest vector directions.

A general view of the clutter can be examined in Figure 3.1, the columns of a 128× 100
measurement matrix have been plotted. The overlapping part in the figure represents
the rank 2 clutter matrix.
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Figure 3.1.: 100 consecutive measurements of moving metal object (225 millimeter by
500 millimeter square) in the presence of clutter.
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The number of columns N is the total number of measurements to be put into the
measurement matrix X. When N is large, the estimation is more sensitive in the sense
that it takes into account a large time interval during which anything that does not
move is considered clutter. This is good for the application which requires more sensi-
tive motion detection. In such cases, when any movement occurs from any object, this
object should be classified as a target of interest. On the other hand, if N is small, a
shorter time interval is measured. In this case, any object that appears to be static for a
short time will be considered a part of the clutter map. Therefore, the clutter is defined
according to specific applications where we should choose a proper value of N to fulfill
our requirements.

The evaluation will be shown in Section 3.2.

3.1.2. Noise estimation and thresholding

Decision for the Frame Offset

The Frame Offset (see Chapter 1) is one parameter to be chosen before starting the sys-
tem. To choose the value, we have to decide the most probable range which the target
is within.

The received signal within the dynamic range (≈ 15 meters) is a vector r which is seg-
mented into approximately 30 frames. The most efficient way is to first determine the
most probable location of the target with respect to the frame number and then process
the corresponding signal within that frame. To determine this, the energy contained in
each frame is compared with the two neighbors as follows:

r = [rT
1 , rT

2 , ..., rT
30]

T (3.6)

The energy Egyri for frame i is defined as:

Egyri =
128

∑
k=1

r2
ik (3.7)

The criteria is:

î=arg max
i

2Egyri

Egyri−1 + Egyri+1
(3.8)

Then we consider the ith frame contains the target with a higher likelihood and the
Frame Offset will be chosen as:
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ˆFO = 128(î− 1) (3.9)

Thresholding within one frame

One frame indicates approximately 550mm with 128 samples, which is defined with
respect to the memory efficiency for the computer to process with. The thresholding
within one frame determines the presence of any moving targets within the field of the
radar system. The threshold is decided by comparison of the received echo within one
frame determined by the pre-defined Frame Offset and the estimated noise level. If the
signal level is larger than the noise, the presence of the target is considered as positive
and vise versa.

The noise is defined as the vectors with completely random directions in the signal
space with low power. The direction of the Noise Vector could be also estimated by the
SVD of X and therefore be used to reduce the effect of noise. Since the small singular
values and corresponding singular vectors indicate signals with relatively low power
and random vector directions, in the case that without any target, the noise level could
be estimated by taking the first 2 rank 1 matrices as the clutter map and the rest of the
measurement could be considered as random noise.

According to the model introduced in Chapter 2,

X = Re + N (3.10)

where Re indicates the Clutter Matrix and N is the Noise Matrix.
Therefore, the noise level could be estimated as:

N̂ = X− Re (3.11)

The estimated noise and its distribution are shown in 3.2 and 3.3 respectively.
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Figure 3.2.: Estimated noise level from the model N̂ = X − Re. This is under the pa-
rameter setting as Frame Offset = 400, Gain = 1, Averaging Factor = 1000.
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Figure 3.3.: Noise distribution estimated by SVD. It appears to be a zero-mean Gaussian
distribution with standard deviation 0.0186.
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From the estimation, we can characterize the noise as a zero-mean Gaussian distribu-
tion with the standard deviation of 0.0186. Note that this estimation is in the scenario
where Frame Offset (FO) = 400, Gain = 1, Averaging Factor (AF) = 1000. When the pa-
rameters vary, the noise level will be different. For example, if AF decreases, the noise
level will increase accordingly.

From a practical point of view, by this noise level estimation during the clutter map
generation, we can estimated the presence of the target by compare the noise level and
the signal level of the received echoes.

3.2. Measurement result and evaluation

3.2.1. Clutter estimation

In Section 3.1.1, the Direct Mean Method and SVD based clutter estimation have been
introduced and discussed. In this section, we will evaluate and compare the two tech-
niques.
The evaluation on real measurement data could be classified as:

• Clutter estimation without a moving target

• Clutter estimation with a moving target

Without moving objects, the measurement could be considered as a combination of
clutter and noise: X = Xe + E, which makes the evaluation easier. The estimation re-
sult in terms of RMSE of both Direct Mean method and SVD based method are shown
in Figure 3.4 which also shows the results obtained by the Direct Mean Method. We can
see from the comparison that SVD clutter rejection gives a more promising result.
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Figure 3.4.: Evaluation comparison between SVD clutter map and averaging clutter
map without moving object.The blue and the red dots indicate the RMSE
of the SVD estimation and the Direct Mean Method respectively.
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In the presence of a moving target, the evaluation becomes more complicated since
the measurement is no longer repeatable. Therefore we simulate the signal by adding
together a known clutter matrix and a known movement as shown in Figure 3.5. There
are 100 columns in each measurement matrix and the result now could be evaluated
by simply computing the RMSE between the known clutter measurements and the es-
timation. The result is shown in Figure 3.6.

Figure 3.5.: Simulated Measurement Matrix with known clutter map for evaluation.
The Clutter Matrix is a Measurement Matrix without moving target.
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Figure 3.6.: Root Mean Square Error between the known Clutter Map and the
estimation.
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3.2.2. Thresholding

To evaluate the decision for FO, we change the SNR of the received signal by increasing
the noise level. The SNR is defined as:

SNR =
A
σ

(3.12)

where A is the maximum amplitude of the signal and σ is the standard deviation of
the noise.

The evaluation is by the false alarm defined as follows:

FLM =
n f

n
(3.13)

Where n f is the number of the FO estimations which are wrong and n is the total
number of estimations.

This result is shown in Figure 3.7. Each evaluation at the corresponding SNR is based
on n = 40 independent measurements.

Figure 3.7.: The false alarm for the estimation of the Frame Offset (FO).
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The evaluation result for thresholding within one frame is also given by the false
alarm defined in Equation 3.13. A Gaussian noise with increasing standard deviation
is added onto the received signal to test the robustness of the thresholding algorithm.
The results are shown in Figure 3.8.

Figure 3.8.: The false alarm for the thresholding within one frame.
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3.3. Conclusion

In this chapter, SVD based clutter map estimation and thresholding techniques are in-
troduced and evaluated for simulated signal and real measurement. For clutter estima-
tion, another technique called Direct Mean Method is also implemented and compared
with SVD based method. It turns out that the later technique provides a more promis-
ing result. A noise Matrix is estimated as the summation of the matrices corresponding
to the small singular values. The noise appears to follow a zero-mean Gaussian distri-
bution. Based on these properties, the thresholding methods are developed and shown
with efficient results for a reasonable SNR value.
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4. Ranging

Ranging, one of the main tasks for traditional radar applications, is discussed in this
chapter. Ranging means distance estimation as for radar techniques. The difficulty
with respect to the system properties we have talked about in Chapter 1 will be further
analyzed and resolved. The structure of this chapter is as follows: in the theory section,
five different pulse locating techniques will be theoretically illustrated and compared;
then sub-sample resolution is achieved for differential ranging; finally, a robust calibra-
tion procedure will be presented to convert the measurement from number of samples
to distance, and to get rid of unwanted effects (e.g. temperature dependence). Evalua-
tion and discussion sections are given in the end of this chapter.

4.1. Notation

First, the notations used in this chapter are defined as follows:

Matrices:

• X: the measurement matrix;

• Xc: the clutter matrix;

• Xo: the object matrix, which contains the echoes from the targets;

• E: the noise matrix;

Vectors:

• r: received sequence, with length 128;

• rc: the vector represents the clutter;

• ro: the vector represents the reflection from the target;

• e: the noise vector;

• rm: the ’pulse template’, or the pulse signature with length nw;

• R: received signal in frequency domain;
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• Rm: pulse signature in frequency domain, with length 128;

Indices:

• n: number of measurements contained in the measurement matrix;

• i: index of the signal, i = 1, 2, ..., n;

• k: sample number of the received signal, in time domain or frequency domain; in
case of ambiguity, the sample index in frequency domain will be K;

• nw: length of rm, also the window length;

• j: the index of the sample at which the target is located.

4.2. Theory

4.2.1. Pulse locating

To locate the object in one dimension, i.e. ranging, we have to determine the time delay
between the transmitted pulse and the received pulse. As introduced in Chapter 1,
the system is sample based, and the time delay between two consecutive samples is
27.8 ps. Therefore, the ranging is equivalent to locating the pulse in the received signal
with respect to the number of samples, namely, the span of the pulse samples. In this
thesis work, five different techniques have been presented and evaluated, which will
be discussed in detail as the following order.

• Spatial Domain Signature Matching approach (Matched Filter: MF)

• Short Time Fourier Transform based Signature Matching approach (STFT)

• ’Position Matrix’ and Least Square approach (PMLS)

• Weighted Least Square based approach (WLS)

• L1-norm based approach (L1)

Spatial Domain Signature Matching approach

In a radar application, ranging is conventionally done via a spatial domain matched fil-
ter, which turns out to be an ’optimal’ solution for signal detection within white noise
[4] in far field applications, since it maximizes the signal to noise ratio(SNR) in such
cases. For our UWB radar system, this approach is also applicable to some extent.
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The key concept of spatial matched filter is simply the cross-correlation between the
received sequence and a pre-defined template, and therefore matched filter could be
also interpreted as a ’template matching’ method in the spatial domain. The peak of
the correlation coefficients will obviously appear at the point where the pulse is lo-
cated. There are some requirements though, for example high similarity between the
pulse received and the template we have been using. If we are working in far field,
the distance between the transceiver and the object is much longer than the pulse du-
ration such that the changes of the pulse signature over transmitting time could be
ignored, and therefore the received signal and the template could be considered as ap-
proximately identical. Otherwise, the reflection from the target could be considered as
having a filtered pulse shape compared to the generated pulse. In this project, since we
are working in near field and the object is unknown, to maintain the generalization, the
template we use is an averaged version of several reflected pulse signatures from 20
different targets in the anechoic chamber. Of course, there are other ways to modify the
template in order to obtain a better result from different viewpoint, whereas signature
analysis is another topic which is not within the scope of this thesis work.

To formulate this procedure, the main concept is given as follows:
Suppose we have the signal ro as the reflection after clutter removal, which could be
written as:

ro = rmd(j) (4.1)

where d(j) is a delay factor, indicating the position of the pulse in the whole received
sequence in terms of the number of samples. The signature template is called ’pulse
model’ and denoted as rm and rm is shown in 4.1 and has properties as follows:

• rm is formed by 20 reflected pulse signatures in order to maintain generality. The
targets are all different in terms of size, material and shape.

• rm is a part of the pulse, which is chosen in such a way that mainly the main lobe
of the pulse is included, because the pulse locating is mainly defined by the main
lobe of the pulse. The length of rm is expressed as n.

• rm varies for different radar chips. Individual measurement should be done to
every chip. However, for simplicity, when we discuss the ’pulse model’, we drop
the index for different radar chips.

• rm is normalized to [-1 1] for convenience.

The cross-correlation between ro and rm is computed as:

Xcorr[k] =
∞

∑
m=−∞

r∗o [m]rm[k + m] (4.2)
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Figure 4.1.: The ’Pulse Model’, namely the template of a received pulse signature aver-
aged by 20 measurements from face to face measurements.

where r∗o is the conjugate of the signal ro.
Therefore, the position j is found by:

ĵ=arg max
k

Xcorr(k) (4.3)

where k is the number of the sampling bin and ĵ is the estimated index of the window
containing the received pulse with maximum likelihood.
The concept of Spatial Domain Signature Matching is quite straight forward. More for
the method can be found in [4].
This method has its advantage of simplicity, however not the most efficient and robust
way for near field radar application. A method based on Time-Frequency analysis will
be introduced to obtain a more robust algorithm.

Short Time Fourier Transform based Signature Matching approach

To match the pulse and the template, consistent information should be provided suf-
ficiently. In other words, certain numbers of coefficients are needed to determine the
similarity between the transmitted and received pulse signatures. For an Ultra-wide
band signal, it is easier to extract coefficients in frequency domain due to the large
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bandwidth. For the same reason, the template of the signature in frequency domain
should be also generated from a pulse signature which is generalized enough, namely
whose coefficients therefore could represent most cases. A joint time and frequency
analysis called ’Short Time Fourier Transform’ is applied to characterize the received
signal as follows:

X(m, ω) =
∞

∑
n=−∞

x(n)w(n−m)e−jωn (4.4)

where x is the received sequence in time domain, w is a window function, whose
shape is to be selected. This basically could be interpreted as a localized Fourier Trans-
form within a sliding window, which slides one by one sample through the whole se-
quence x. The window size here is chosen to have the same length as the pulse template
signature as introduced in previous section. By this approach, both time resolution and
frequency resolution could be obtained, not only for pulse locating but also for signa-
ture analysis. Wider window size leads to higher frequency resolution, while smaller
window size provides higher time resolution. From the uncertainty principle, the best
resolution for both couldn’t be achieved at the same time. From this point of view,
different window shapes will give different results and the optimal choice could be ob-
tained by a Gaussian Window [5].

Note that from an practical point of view, the Fourier transform could be expressed
as a multiplication of the signal and an N-point Discrete Fourier Transform (DFT) ma-
trix W.

An N-point DFT is expressed as a matrix multiplication X = Wx, where X is the sig-
nal after DFT, x is the original input signal in time domain and W is the transformation
matrix with size N × N, defined as:

W = 1/
√

N



1 1 1 1 · · · 1

1 e−j 2π
N e−j 4π

N e−j 6π
N · · · e−j 2(N−1)π

N

1 e−j 4π
N e−j 8π

N e−j 12π
N · · · e−j 4(N−1)π

N

1 e−j 6π
N e−j 12π

N e−j 18π
N · · · e−j 6(N−1)π

N

...
...

...
...

...

1 e−j 2(N−1)π
N e−j 4(N−1)π

N e−j 6(N−1)π
N · · · e−j 2(N−1)(N−1)π

N


(4.5)

Thus, without modification, a template matching for Time-frequency analysis will be
presented as:
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X f corr(k) = Wro(k + 1 : k + N1)
∗H(Wrm) (4.6)

where K, X f corr, Ro and Rm are the sample index, the cross correlation, the received
signal and the pulse template respectively, in frequency domain and nw is the window
size.

Here, the sample index with maximum likelihood is defined as following the same
rule as in Equation 4.3:

ĵ=arg max
K

X f corr(K) (4.7)

Therefore, STFT provides the coefficients in frequency domain within the sliding
window. However, from a robustness viewpoint, not all the coefficients are supposed
to be used for this matching algorithm, since in such cases, this algorithm will give an
identical result as spatial domain matched filter technique. As stated in Chapter 3, the
low frequency component indicates clutters; the signal received over the wireless chan-
nel spans a large bandwidth, from 1.5 to 5 GHz in this case, and the coefficients higher
than this frequency band could be safely considered as noise. This fact could be seen in
Figure 4.2 and Figure 4.3, the spectrum of the pulse template and the spectrum of the
received signal within the matched window has a clearly linear relationship. Therefore,
a pre-filtering procedure should be carried out before the cross-correlation is computed.
The pre-filtering is considered as a coefficient selection problem, which is implemented
either by applying a band-pass filter to each STFT sequence, or equivalently a simple
modification of the DFT matrix since we only consider filter with rectangular shape:

W ′ = diag(β)W (4.8)

where β is a coefficient vector whose entry gives weight to each frequency component
and diag(β) is a diagonal matrix with the coefficients from β as the diagonal entries.

In order to achieve a more stable and robust result, Spatial matched filter and Time-
frequency analysis are combined as shown in Figure 4.4. There are several ways to
combine the results, and one way is to take the linear combination as follows:

α(k) = (aXcorr(k) + bX f corr(k)) (4.9)

where, k = 1, 2, ..., n− nw.

ĵ=arg max
k

α(k) (4.10)
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Figure 4.2.: Clutter map evaluation by the value of constant frequency component

where, a and b are chosen in order to get the minimum validation error. After nor-
malization of the cross-correlation result, linear combination is the most stable way to
get a robust estimation.
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Figure 4.3.: Clutter map evaluation by the value of constant frequency component
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Figure 4.4.: A linear combination result of Spatial Signature Matching and STFT based
approach.
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Another additional operation is to smooth the combination result before taking the
maximum value. This is done by a moving average filter, in order to get rid of the effect
from outliers.

’Position Matrix’ and Least Square approach

As discussed before, in Spatial Domain Signature Matching section, the estimation of j
could be obtained by computing the maximum value in cross-correlation in ( 4.3 ). This
can be expressed identically as:

ĵ=arg max
k

(rT
o M(:, k)) (4.11)

where, ro is a signal vector with length 128, M is a matrix with size 128 + nw × 128,
which is defined as:

M =


rm 0 0 0 · · · 0
0 rm 0 0 · · · 0
· · ·
0 0 0 0 · · · rm

 (4.12)

where rm is a column vector with length nw and M is called ’Position Matrix’, since it
spans all the possible positions in signal vector ro.

Now we consider a least square based approach, which is represented as follows:

α̂=arg min
α

(‖Mα− ro‖2
2) (4.13)

where α is a column vector with length 128; each entry of α is a scalar indicating the
likelihood of the corresponding pulse position, from 1 to 128; then j is determined by:

ĵ=arg max
k

(|α̂(k)|). (4.14)

The idea here is that after re-scaling each column of position matrix M by the corre-
sponding element in α, the difference between the received signal and the summation
of all the possible positions in this re-scaled position matrix is minimized. By com-
paring this similarity between the received signal and all the possible positions, the
’non-similar’ positions are suppressed that only the ’true position’ will stand out.
However, in practice, a L-2 norm minimization gives a dense result in α, which in-
creases false alarm rate.
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To remove this effect, instead of taking the maximum value of α, we integrate α over
a sliding window with size 2nk, where nk is estimated practically.
Therefore, the pulse indication is defined as:

ĵ=arg max
k

(Sα(k)) (4.15)

where,

Sα(k) =


∑k

l=1
α(l)

k when k ≤ nk

∑k+nk
l=k−nk

α(l)
2nk

when k > nk

(4.16)

is the ’averaged’ integration of α.

The advantage of this approach is that it is more robust and with low complexity.
Since the Position Matrix M is a full rank and sparse matrix, the estimation for α can be
computed directly by the matrix operation:

α̂ = (XTX)−1XTro (4.17)

Weighted Least Square based approach

In Time-Frequency analysis, as we emphasized previously, features from the spectrum
are easy to extract due to the large bandwidth. Moreover, to either locate or analyze the
pulse signature, we have to select the most characteristic frequency coefficients with
respect to some certain objectives. Obviously, the coefficients within the bandwidth
draws more attention, since the high frequency components indicate noise, and the
low frequency component represent the clutters. Thus this problem could be somehow
presented as a weighted problem, since our attention is not uniformly distributed over
the whole spectrum.

The main idea of this matching approach along with a brief proof is shown below.

First, a window of size nw slides over all the samples in r, and at each sample, the
window is called ’window k’ which starts from the kth sample of r. So we have:

α̂(k)=arg min
α

(‖rm − α(k)r(k : k + nw)‖2
2) (4.18)

where k = 1, 2, ..., 128− nw and α is a vector with length 128− n.
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Then the best match is found by:

ĵ=arg min
k

(‖rm − α̂(k)r(k : k + nw)‖2
2) (4.19)

which could also be described as the size of the vector obtained by projecting the mea-
sured signal onto the space spanned by the orthogonal complement to the rm signal,
where the projection matrix is defined as:

P(k) = I − r(k : k + nw)r(k : k + nw)T

r(k : k + nw)Tr(k : k + nw)
(4.20)

and therefore,
ĵ=arg min

k
(‖P(k)rm‖2

2) (4.21)

In either way, transformed to frequency domain, the expression of the criteria has not
been changed. A brief proof is as follows:

• In least-squares form:
In frequency domain, it could be written as:

ĵ=arg min
k

(‖Rm − α̂(k)R(k : k + nw)‖2
2) (4.22)

since we have:
128−nw

∑
k=1

ek =
nw

∑
K=1

EK (4.23)

where e is the squared error vector we have computed as above, and E is the cor-
responding frequency expression (as we said before, DFT matrix W is an unitary
matrix and thus preserves L2 norm). Here, k and K are the indexes of the samples
in the time domain and frequency domain respectively. To simplify, we only use
k to indicate the sample numbers in later formulation.
This means ĵ indicates the best match for the pulse location in the received se-
quence both in time and frequency domain.

• In projection matrix form:
Since Discrete Fourier Transform (DFT) is an unitary transformation, the projec-
tion matrix in frequency domain is:

Pf (k) = I − Wr(k : k + nw)(Wr(k : k + nw))H

(Wr(k : k + nw))HWr(k : k + nw)
(4.24)
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Thus,

Pf (k) = I − Wr(k : k + nw)(Wr(k : k + nw))H

r(k : k + nw)Hr(k : k + nw)
(4.25)

since unitary transformation does not change inner product. It could be further
re-written as:

Pf (k) = I − Wr(k : k + nw)r(k : k + nw)TWH

r(k : k + nw)Tr(k : k + nw)

= WWH − Wr(k : k + nw)r(k : k + nw)TWH

r(k : k + nw)Tr(k : k + nw)

= WP(k)WH

(4.26)

and
(WP(k)WH)(Wr) = W(P(k)r) (4.27)

So that ĵ could be estimated as:

ĵ=arg min
k

|W(P(k)r(k : k + nw))| (4.28)

will give the same result as in time domain.

Now let’s come back to frequency domain least square interpretation. If we give
weights to the errors, we have:

Eweighted =
nw

∑
k

wkkEk (4.29)

where the weights are chosen to minimize the errors within the passband of the signal
in both time domain and the frequency domain.

Weight selection: First, the relationship between the pulse template Rm and the re-
ceived signal R(k : k + nw) (in the frequency domain) is analyzed. If we plot the sam-
ples of Rm and R(k : k + nw) as y and x axis respectively in Figure 4.5, we will get a
cloud around the α̂(k)R(k : k + nw) + b which is shown as the red straight line, and b is
the constant bias. To minimize the overall error, the samples need to be weighted. The
reason is that some of the samples in R(k : k + nw) do not play equally important roles
as the others in this matching problem.
There are several ways to achieve this goal; the technique employed here is to use a
Neural Network [6] for this weight optimization problem. In this case, as we can see
in figure 4.6, a network structure with one layer (no hidden layer), nw + 1-dimensional
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input and 1 dimension output has been used. The input vector contains the squared
errors EK obtained from the previous section; the output is one single neuron whose
value is either one (match!) or zero (not match!). The optimal weight vector is obtained
by back propagation.

Figure 4.5.: Relation between the spectrum of the Signature Template and the measured
signal spectrum.

ANN model:

• Objective: classify the part of the received signal within a sliding window as ei-
ther containing or not containing a reflected pulse from the target of interest;

• Input ξ: nw + 1 dimensional squared error vector;

• Output O: one dimension with value 1(containing the pulse) or 0(not containing
the pulse);
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Figure 4.6.: Basic structure of the Neural Network

• Training set: a set of training data with known input and known output ζ;

• Optimization procedure:

– Normalize the input vectors to [-1 1].

– Initialize the weights randomly between [-1 1].

– Iteration:

* for i = 1 : size of the training set

· Compute error ζ −O

· Compute δo for all weights from input layer to output layer

· Update the weights

* end
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Advantages: The advantage for a neural network in this case is as follows.

– It is natural for weights optimization;

– The training data is easy to obtain;

– It is a visualized model whose structure could be easily changed;

A one layer feed forward architecture has been used for now since we need a ro-
bust result in order to cover all the cases. The structure could be further optimized
by other techniques whereas we will not go into details. Therefore, in principle,
the meaning of the result here is that if the input ξ(k1) does not have significant
effects on the output O, the weight for that particular input w(i) will be small; on
the other hand if the input ξ(k2) plays a crucial role for the classification result,
the weight will be relatively large.

Convexity and neural network:
The entries of this N dimensional weight vector are corresponding to the essen-
tiality of the nw frequency coefficients. From our prior knowledge of the system,
this significance is according to the signal spectrum, which is shown in Figure
4.7. As we can see, in the frequency domain, the 3 dB Bandwidth is roughly from
1.8GHz to 3.9GHz. Regarding the passband, there are also some patterns between
3.9GHz to 10GHz with some variation, the local maximum at frequency 7.8GHz,
for instance.

These patterns might be different for each particular system, but is identical to
some extent for all measurements from the same system. Loosely speaking, the
more ’important’ coefficients in frequency domain will be the ones within the
system bandwidth. However, even within the bandwidth, at some frequencies,
the radiation power has been split due to the nature of the antenna. Therefore,
the significant coefficients will be considered roughly as 1.5Hz - 4Hz, 6.5Hz - 9Hz,
which are supposed to be strongly correlated with the training result of the neural
network.

The result analysis can be found in following sections.

L1 norm minimization

As stated before, L-2 norm minimization will result in a dense α whereas what we
need is a sparse result. Thus instead of L2-norm minimization, we use L1 mini-
mization which gives the sparsest result [8].

First, we can model the matching problem as a L0-norm optimization:
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Figure 4.7.: This figure shows the patterns in the spectrum of the reflected signal.

min
α

‖α‖0

subject to Mα = r
(4.30)

where M is the position matrix; and ‖α‖0 is the L0-norm of the vector α, namely
the number of its non-zero coefficients. In this case, ‖α‖0 indicates the number of
the objects.

This optimization problem is proved to be equivalent as a L1-norm optimization:

min
α

‖α‖1

subject to Mα = r
(4.31)

which can be solved in different ways. The solution in this project is obtained by
recasting the problem as a linear programming problem.

Multiple-object locating and tracking will be discussed in later sections.
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4.2.2. Sub-sample resolution and differential ranging

Since all above discussed pulse locating approaches are sample based, the best
achievable locating resolution is the sample resolution which in this case is 4.5
mm. In order to have better locating resolution than the sampling resolution, the
fractional sample shift has to be determined. One straightforward way is to do
interpolation between two measured samples. But this method has its own draw-
backs: firstly, more samples will cause longer processing time; secondly, limited
resolution results from finite interpolation; thirdly, inaccurate estimation for in-
terpolation leads to less accurate results. Here, we use a Fourier transform based
technique to obtain a sub-sample resolution. The theory is given here and the
measurement result will be shown in later sections.

Suppose we have two signals. They are identical but with a slight time delay. The
time delay can be determined by the division of the Fourier transform.

Fourier Transform based differential phase

We have two signals s1(t) and s2(t):

s2(t) = s1(t− τ) (4.32)

The Fourier transform of the signals is as follows:

S1(ω) = S2(ω)e−jωτ (4.33)

If s1 and s2 are identical signals with a phase shift, they will have the following
relation in the frequency domain:

S2(ω)

S1(ω)
= e−jωτ (4.34)

Therefore, the angel will be a linear relation:

∠
S2(ω)

S1(ω)
= −ωτ (4.35)

The time shift τ can then be determined.

In practice, after obtaining the sample based pulse location ĵ, we form a reference
signal by placing the signal model on sample ĵ and apply this Fourier transform
based approach in order to get a subsample resolution.
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4.2.3. Multi-target Locating

In the previous sections, we have discussed about ranging for only one target
within the view of the radar. This is very useful since in most cases we only con-
sider the closest target; or we process the targets separately with an antenna array,
where each radar chip is only responsible for the processing of one target. Nev-
ertheless, we also developed multi-object detection algorithm to handle the case
that multiple targets are observed in the view of one radar. The same technique
for one target ranging can also be applied in multi-object scenario. The only extra
processing is to identify multi-maxima in α which is computed by any method
introduced in the Section 4.2.1. The number of maxima indicates the number of
observed objects.

First, we smooth the coefficients in α by 5-points moving average as follows:

α(k) =
i=k+2

∑
i=k−2

α(i)
5

(4.36)

Then we estimate the maximum points by a simple and fast algorithm which
simultaneously identifies the maxima by the tendency (intends to increase or de-
crease) of the curve around each point. If the curve first goes up and then de-
creases, we assume that there is steady point and thus a maximum occurs corre-
spondingly.

Another way to locate multiple targets is to use L1-norm minimization introduced
previously, and the peaks in the sparse result give the possible locations of the
targets.

4.2.4. Calibration

The estimation of the pulse location is in the unit of samples. In applications,
ranging requires a distance based result. Here we need a calibration procedure to
obtain the conversion between number of samples and actual range. The equation
is as follows:

d =
∆s1 j1 + ∆s2 j2

2
(4.37)

where d is the range of the target; ∆s1 is the sample interval when the pulse trav-
els in the air and ∆s2 represents the sample interval in the cables; j1 and j2 are the
corresponding sample number at which the target locates.
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As analyzed in Chapter 1, ∆s2 j2 has a approximately fixed value c and j1 is a
variable as a function of temperature and humidity.

We can re-write the equation as:

d =
∆s1 j1 + c

2
(4.38)

where ∆s1 represents the spatial distance between two consecutive samples; j1 is
the corresponding numbers of samples the pulse is located; and c is the constant
value of the cable length which could be written as ∆s2 j2 in this context.

Therefore, to obtain the range d, we shall determine the value of ∆s1 j1 and ∆s2 j2
in the following way:

A known object is placed at two known ranges d1
1 and d2

1 away from the radar
system. For each measurement, we have:

ĵ1 = j11 + j2 (4.39a)

ĵ2 = j21 + j2 (4.39b)

where di is the range of the object plus the length of the cable; ĵi is the estimated
pulse location in sample unit, and j2 is the constant.

Also, at the same temperature, we have:

d1 =
∆s1 j11 + c1

2
(4.40a)

d2 =
∆s1 j21 + c2

2
(4.40b)

Therefore,

∆̂s1 =
2d1 − 2d2

ĵ1 − ĵ2
(4.41)

and so ji
1 can be computed as:

ĵi
1 =

2di − ci

∆̂s1
(4.42)

So we have:
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ĵ2 = ĵi − ĵi
1 (4.43)

Therefore, for each new measurement, we have:

ĵ1 = ĵ− ĵ2 (4.44)

and

d̂i
1 =

∆s1( ĵi − ĵi
2)

2
(4.45)

where only ∆s1 remains unknown for a different environment condition. There-
fore, we need at least one instant training measurement under the same condition
to determine the uncertainty.

Furthermore, the CMOS UWB chip is not temperature stable, which means the
transmitted pulse signature varies with temperature [2]. Therefore, the calibra-
tion is very crucial for each measurement in a temperature changing environment.
In order to develop a simple, efficient and accurate calibration method, we have
investigated the following.

Direct Coupling Calibration

The way here is to utilize the direct coupling between the two antennas.

As we have introduced in the Chapter 1, direct coupling might be a disturbing
part for ranging. However, since the distance between the two antennas is fixed,
and the direct coupling is the first part to be received (assume that the antennas
are close enough), instead of gating it out, we could use it to calibrate the system.
Before any new measurement, the system will automatically measure the location
of the direct coupling, with respect of number of samples, which is assumed to be
within the sample range 50 to 150. According to the radar equation, the propaga-
tion time is half of the reflection time.

For a new measurement, from the derivation above, we have the distance between
the two antennas written as:

dant = ∆s1( ĵ− ĵ2) (4.46)
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Since the dant is a known parameter, we can compute the variable ∆s1 instantly
under the certain environment condition as:

∆̂s1 =
dant

ĵ− ĵ2
(4.47)

Note that by using this calibration method, the condition is that the target should
be at least placed at twice of the range between the parallel antennas. Namely:

dmin = 2dant (4.48)

Where dant is the distance between the two antennas, dmin is the minimum range
from the antenna to the target and the dmax is defined by the dynamic range of the
radar system.

4.3. Method and Evaluation

4.3.1. Evaluation of the pulse locating approaches

System calibration

First, the system calibration is carried out and evaluated by the accuracy of rang-
ing result. To have a fair comparison, ranging with and without calibration are
both based on manual observation. The sample at which the object is located de-
pends on the first peak of the received pulse. Without calibration, we assume that
∆s1 = 0.45mm. So we have the estimation:

d̂ = 0.45( ĵ− ĵ2) (4.49)

The results are shown in Figure 4.8. As we can see, without calibration, the system
has a larger deviation.

Ranging

We have tested the 5 different pulse locating techniques for a set of 40 measure-
ments. The object we use is a metal ball with a 200 millimeter diameter. The mea-
surement is carried out in an anechoic chamber. The true position of the object is
measured by a measuring tape with 3 meters length in total with 1 millimeter res-
olution. The distance between the two antennas is 250 mm. All the 5 approaches
are applied after clutter removal as discussed in Chapter 3.
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Figure 4.8.: The evaluation of the system calibration. As shown in this figure, the esti-
mation without the calibration of the system gives a larger deviation from
the true positions.

The comparison result is shown in Figure 4.9 and the RMSE for each result is
presented in Table 4.1.

The advantage of STFT based approach is that it is a fast method since it only
involves some linear transformation (STFT) and computation for cross correla-
tion. Also, it works even in the presence of clutter because of the pre-filtering
procedure that allows it to get rid of the relatively constant reflection which is
considered as the clutter. The same result is observed for WLS based approach
since the weight selection helps the algorithm to ignore the low frequency com-
ponent in the received signal. This could be seen in Figure 4.10. The PMLS based
technique is also with low complexity as discussed in Section 4.1.1.

For WLS based approach, we compared the results for different weight selection
methods which includes ANN-based weight optimization and manual weight
selection. It turns out that weight selection plays an important role for ranging.
As we can see in Figure 4.11, the ANN-based weight optimization gives a better
result.
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Table 4.1.: Comparison of the target locatingtechniques in terms of RMSE.
Algorithm RMSE
Spatial matched filter 9.2187
STFT based matched filter 2.6659
PMLS 2.2216
Weighted least square 1.8476
L1-norm minimization 1.9085
Phase-correlation 2.7986
Phase-correlation + STFT technique 1.1037

When the parameter Averaging Factor decreases, the processing will be faster
but the noise level is higher. To test the robustness of the algorithms, we add a
Gaussian White Noise to the received signal. The standard deviation increases
from 0.2 to 1. The SNR is defined as:

SNR =
A
σ

(4.50)

where A = 0.6125 is the mean of the received raw signal and σ is the standard
deviation of the artificial noise.
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Figure 4.9.: Comparison of the 5 different pulse locating approaches in terms of the Root
Mean Square Error (RMSE). The RMSE are shown in Table 4.1. The pulse
locating techniques are carried out after clutter removal. As we can see, ex-
cept the Spatial Domain Signature Matching technique, the other methods
obtain similar results.

First we estimate and remove the clutter, and then apply the pulse locating algo-
rithms. We compare the STFT and PMLS based approaches in Figure 4.13 and the
result shows that the later gives a good accuracy even with extremely low SNR as
shown in Figure 4.12.
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Figure 4.10.: Pulse locating results in the presence of clutter. The STFT and WLS based
approaches both give good results where the result of WLS is slightly bet-
ter than the other.
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Figure 4.11.: Different weight selection methods effect the result of ranging to some ex-
tent. The ANN-based approach gives a better precision.
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Figure 4.12.: Pulse locating by PMLS based approach with extremely low SNR.
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Figure 4.13.: Results comparison between STFT and PMLS based approaches. With low
SNR, PMLS gives a much better precision than STFT.
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Results for sub-sample resolution is shown in Figure 4.16. A 1 mm resolution is
obtained by this approach. An example of phase correlation is shown in Figure
4.14 and 4.15, where 4.14 shows the relative positions of the pulse shape and the
pulse template and 4.15 shows the phase correlation function of the two signals.

Figure 4.14.: The received signal and the signal template which is placed manually at
the first sample.
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Figure 4.15.: Phase correlation function between the two signals.
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Figure 4.16.: Ranging with sub-sample resolution determined by phase correlation.
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4.4. Conclusion

In this chapter, we discussed about ranging by different techniques. The tech-
niques are evaluated in different scenarios and compared both theoretically and
practically. It turns out that the STFT based method provides the best trade-off
between complexity and estimation accuracy. Sub-sample resolution is achieved
by phase correlation function and can be used in differential ranging applications.
The calibration procedure updates the pulse model rm and the conversion equa-
tion between number of samples and distance in millimeter unit.
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5. Tracking

In this Chapter, with pulse locating techniques stated previously, Kalman filter [9]
based tracking algorithm is presented. First, we will discuss Kalman filter in this
particular application; then, the algorithm will be extended to two dimensional
case; finally, a multiple object tracking is implemented.

5.1. Theory

Tracking requires fast and reliable measurements in real time. Based on the con-
clusion from Chapter 4 that the STFT based pulse locating technique is a good
trade-off between the complexity and accuracy, it has been applied in this case for
the tracking algorithm.

5.1.1. Kalman filter for one dimensional tracking

For one dimensional tracking, only the range to the antenna is measured in real
time. A Kalman filter is applied in this case to estimate the position and velocity
of the object. After pulse locating, the measurement z is known and adaptively
corrected in real time by Kalman filter update.

Initialization

– State x is formed by position and velocity:

xk = [ p, ṗ]T (5.1)

where p indicates the target position.

– Observation is given by measured position: zk.

– Initial state covariance matrix:

P0|0 =

[
A 0
0 B

]
(5.2)

where A and B are chosen practically as 3 and 1 respectively.
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– Observation noise vk:
vk is assumed to be zero mean Gaussian white noise with covariance Rk.

vk ∼ N(0, Rk) (5.3)

– Process noise wk:
wk is assumed to be zero mean Gaussian white noise with covariance Qk.

wk ∼ N(0, Qk) (5.4)

– Step size and transfer matrix:
Transfer function F with step size T is given by:

F =

[
1 T
0 1

]
(5.5)

T is selected to be unit time.

– Observation matrix C:
C represents the relation between the true state xk and measurement zk. Here
since the transform is just a matter of noise, C is initialized as:

C =
[
1 0

]
(5.6)

Kalman equation

Kalman update for this application is summarized as follows:

– Prediction of error covariance:

Pk|k−1 = FPk−1|k−1FT + Qk (5.7)

– Compute innovation covariance:

Sk = CPk|k−1CT + Rk (5.8)

– Kalman’s gain:
Kk = Pk|k−1CTS−1

k (5.9)

– Prediction of state estimation:

xk|k = Fxk|k−1 (5.10)
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– Prediction of observation:

zk|k−1 = Cxk|k−1 (5.11)

– State estimation update:

x̂k|k = x̂k|k−1 + Kk(zk − zk|k−1) (5.12)

– Error covariance update:

Pk|k = (I −KkC)Pk|k−1 (5.13)

The result is evaluated in later sections.

5.1.2. Two dimensional tracking

When the tracking is extended to two dimensional, there are several issues to be
taken into account.

Radar scope

Radar scope, or the scope of two dimensional measurement, is decided by system
property; namely, the dynamic range of the system and the radiation pattern of
the antenna.

Setup

To locate an object in two dimensions, there are two ways to set up the antennas:
orthogonal and parallel.

– Orthogonal setup:
In this case, we have two pairs of antennas orthogonal to each other as
printed in Figure 5.1. The coordinates are computed as follows:

d2 = d2
1 + d2

2 (5.14a)

α1 = arc cos(
d2 + r2

1 − r2
2

2dr1
) (5.14b)

β1 = arc cos(
d1

d
) (5.14c)

γ1 = α1 + β1 (5.14d)
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α2 = arc cos(
d2 + r2

2 − r2
1

2dr2
) (5.14e)

β2 = arc cos(
d2

d
) (5.14f)

γ2 = α2 + β2 (5.14g)

y = d1 − r1cos(γ) (5.14h)

x = d2 − r2cos(γ) (5.14i)

where, the notations are labeled in Figure 5.1. The x and y are the position of
the target on x- and y- axis respectively.

Figure 5.1.: The orthogonal setup of the two radar system for the 2 dimensional track-
ing. The circle is the radius of the measurement. The center of the circle is
the position of the antenna.
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– Parallel setup:
As we can see, there will be always ambiguity in orthogonal setup, because
of the multipal intersection between the 2 measurements. Also, the dynamic
range is limited according to the position of the antennas. Therefore, a paral-
lel setup is presented to compensate for the drawbacks of orthogonal setup,
and is more suitable for some applications that orthogonal antennas are not
applicable.
As we can see in Figure 5.2, the two pairs of antennas, or antenna array, are
positioned in a parallel manner (shown as the center of the circle, which is
the radius of the measurement). Therefore, the two dimensional coordinates
are computed as follows:

d = d2 − d1 (5.15a)

β = arc cos(
d2 + r2

1 − r2
2

2dr1
) (5.15b)

y = r2sin(β) (5.15c)

α = arc sin(
y
r1
) (5.15d)

x = d1 + r1cos(α) (5.15e)

Figure 5.2.: The parallel setup of the two radar system for the 2 dimensional tracking.
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Kalman filter for 2D tracking

To extend the Kalman filter to two dimensional case, the observation and state
vector are defined as:

xk = [px, ṗx, py, ṗy]
T (5.16a)

zk = [zxk, zyk]
T (5.16b)

where zx and zy are the measurement for x and y respectively, which is computed
as above. More detail about Kalman filter equation and update could be found in
appendix.

5.2. Evaluation and results

The 1-Dimensional tracking result is shown in Figure 5.3 (a) and (b) for position
estimation and velocity estimation respectively. Some inaccurate measurement
results are observed in Figure Figure 5.3 (a). One of the main functions of the
Kalman filter is to smooth out these outliers to improve the precision. The object
is placed in different positions by hand. These true positions are determined by a
millimeter resolution scale. The corresponding measured signals are saved for off
line evaluation. The algorithms are evaluated in this way: the measured signals
are fed into the functions as input; then the estimated positions are as output of
the function to compare with the true position. Furthermore, we can estimate the
velocity of the moving target by a two-state Kalman Filter which is shown as the
blue line in Figure 5.3 (b). The red curve indicates the differential position which
is to compare with the estimation result.
Similar results can be observed for two dimensional tracking in Figure 5.4 and
5.5.
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(a) Position Estimation

(b) Velocity Estimation

Figure 5.3.: Position (a) and velocity (b) estimation for 1-Dimensional tracking. To com-
pare with, the red curve is shown as the measurement by STFT based Sig-
nature Matching. Outliers are observed in the result. The two-state Kalman
Filter smoothed out the outliers and estimated the velocity accordingly.
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(a) Position Estimation for X-aixs

(b) Position Estimation for Y-aixs

Figure 5.4.: Position estimation for 2-Dimensional tracking. The red curve in (a) and (b)
indicates the measurement by STFT based Signature Matching for X and Y
axis respectively.
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(a) Velocity Estimation for X-aixs

(b) Velocity Estimation for Y-aixs

Figure 5.5.: Velocity estimation for 2-Dimensional tracking. The red lines whose data
are computed from the differential positions of X and Y directions respec-
tively represent the measurement of the velocity; while the blue curves
present the estimation from Kalman Filter.
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Figure 5.6.: The coordinates for X- and Y-axis as a function of time are plotted in this
figure.

CHALMERS, Master’s Thesis 2011:EX008 76



5.3. Conclusion

In this chapter, tracking algorithms have been implemented and evaluated. For
two dimensional ranging, there are two different setups according to different
application requirements. The STFT based approach discussed in Chapter 4 is
applied as the real time pulse locating technique in this chapter. Kalman filter is
used in both one and two dimensional cases and good results have been achieved.
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6. Examples and Demonstration

The user interface is implemented by MATLAB. The interface windows for differ-
ent functions are shown separately in the following sections.

6.1. Set parameter

Before any operation, the parameters should be set up. The important parameters
in this demonstration are shown in Figure 6.2 and the explanations and default
values are also listed in 1.1 in Chapter 1.

Among these parameters, the most important ones are ’Frame Offset’, ’Averaging
Factor’ and ’Gain’. Frame Offset (FO) indicates the internal time delay which
decides the range of the measurement. For example, FO = 300 means the internal
time delay is 299 × 27.8 = 8.312 ns, which is approximately 1345.5 mm. That
means in one measurement, the system will measure the signal reflected between
the range of 1345.5 mm and 1895.5 mm. The Averaging Factor (AF) is the number
of measurements the system takes and pre-processes internally before the output.
AF effects the noise level and the processing speed. When AF is large, the noise
level is lower and the processing is slower. The Gain of the transmitted signal
determines the transmitted signal level.
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Figure 6.1.: User interface: the main menu

CHALMERS, Master’s Thesis 2011:EX008 80



Figure 6.2.: User interface: parameter set up, including the Chip number, the Name of
port, the Averaging Factor, the Frame Offset, the signal Gain and the signal
Zoommin/Zoommax. The default values are shown in the interface.

6.2. Tests

After setting up the parameters, the ’test’ is ready to start. The interface is shown
in Figure 6.3.

6.2.1. Raw data

Raw data shows the received signal without any processing in real time. Accord-
ing to the signal model from Chapter 2, this signal is a summation of the clutters,
the noise and the reflection from the target. An example is shown in Figure 6.4.
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Figure 6.3.: User interface: tests

Figure 6.4.: User interface: an example of raw data
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6.2.2. Differential ranging

According to the interest of a regular differential movement like heart beat, this
demonstration shows the ability of differential ranging with 1 mm resolution.
The key here is the phase correlation function as discussed in Chapter 4. The time
delay between the two measurements is 0.5 sec in this case. It is shown in Figure
6.5 that the signal after clutter rejection is plotted in real time and the differential
range is displayed on the title of the figure accordingly.

Figure 6.5.: User interface: an example of differential ranging. The blue and red curves
indicate identical signals with a slight time shift.
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6.3. Functions

The interface of the ’Functions’ is shown in Figure 6.6.

6.3.1. Calibration

Before starting any demonstration in the function menu, we need to calibrate the
system by clicking on the ’Calibration’ button. The formula for ranging and the
pulse template will then be updated. The calibration is done by the direct cou-
pling between the two antennas.

6.3.2. Clutter estimation

After calibration, another important procedure is clutter map estimation. The
theory and the results are discussed in Chapter 3. This clutter map generation
is a necessary procedure for ranging, but not for tracking since it is an adaptive
clutter removal technique.

6.3.3. Ranging

Ranging with one target

As discussed in Chapter 4, there are five alternative approaches to choose, and
each of them has its own advantages and drawbacks. After choosing one pre-
ferred method, the range will be displayed on the user interface in a millimeter
unit.

CHALMERS, Master’s Thesis 2011:EX008 84



Figure 6.6.: User interface: the funcitons
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Figure 6.7.: User interface: ranging
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Multiple target ranging

The interface for multiple target ranging is the same as for one target, while the
best choice for multi-target ranging method is PMLS or L1-norm.

The result is shown in Figure 6.8. In this case, there are two target in the view
of the radar. The green windows indicate the locations of the pules in terms of
number of samples. The conversion between ’number of samples’ and ’distance
in millimeters’ has been introduced in Chapter 4, Calibration section. The range
is determined by the starting edge of the window. The technique used here was
PMLS. The result in millimeter unit is displayed in the GUI window.

Figure 6.8.: Multiple target ranging
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6.3.4. Tracking

Tracking

In Figure 6.9 and 6.9, the interface of one and two dimensional tracking are shown
respectively. Figure 6.10 is the window that shows up during the tracking process.
The green window indicates the position of the target in real time. The final result
of position and velocity estimation can be also displayed by clicking the button
’Show Kalman Result’.

Figure 6.9.: The user interface for one dimensional tracking. Figure 6.10 pops up by
clicking ’Start Tracking’ which shows the tracking result in real time. The
front edge of the green box indicates the pulse location. The ’Show Kalman
Filter Result’ gives the results of estimation of position and velocity as in
Figure fig:1dkf.
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Figure 6.10.: The signals shown for one dimensional tracking in real time. The upper
window shows the raw data without any processing, while the lower fig-
ure plots the signal after clutter removal and real time pulse locating. The
starting edge of the green window indicates the location of the target in
terms of number of samples.
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(a) Position Estimation

(b) Velocity Estimation

Figure 6.11.: The position and velocity estimation from Kalman Filter.
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Figure 6.12.: The user interface for two dimensional tracking. The results from Kalman
Filter estimation for both x and y axis are shown in Figure 6.13 and 6.14.
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(a) Position Estimation

(b) Velocity Estimation

Figure 6.13.: The position and velocity estimation along x-axis by Kalman Filter.
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(a) Position Estimation

(b) Velocity Estimation

Figure 6.14.: The position and velocity estimation along y-axis by Kalman Filter.
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7. Conclusion and future work

In this thesis, we have mainly developed and implemented the classic radar func-
tionalities, namely ranging and tracking according to the signal model we have
established. One important pre-processing is the clutter map estimation which
gives an optimal solution from a Frobenius norm point of view. The STFT based
ranging method gives the best trade-off between complexity and estimation pre-
cision and is therefore used as real time pulse locating technique in tracking appli-
cations. A user interface has been implemented for the purpose of demonstration.
This is the first step of algorithm design and functionality development for this
prototype and the future work can focus on two directions: first, antenna array
signal processing algorithm design; second, pulse signature analysis. The an-
tenna array provides more features to the received signals from the targets. One
applicable technique is Independent Component Analysis for signal separation
in such cases. The signature analysis is potentially useful for target identification
because the sensitivity of the signal and the large bandwidth result in signature
variation according different targets. Since the developed algorithms are practi-
cally evaluated and ready to be implemented as a real product, the commercial
potential is also under consideration.
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A. Kalman filter for 2D tracking

A.1. Initialization

– State x is formed by position and velocity:

xk = [px, py, ṗx, ṗy]
T (A.1)

px and py indicates the pulse location of x and y coordinate respectively.

– Observation is given by measured position:

zk = [zxk, zyk] (A.2)

– Error covariance matrix:

P0|0 =


A 0 0 0
0 B 0 0
0 0 C 0
0 0 0 D

 (A.3)

where the entries are chosen practically as:

[ A B C D ] = [ 3 3 1 1 ]. (A.4)

– Observation noise vk:
vk is estimated from the measurements and assumed to be zero mean Gaus-
sian white noise with covariance Rk.

vk ∼ N(0, Rk) (A.5)

– Process noise wk:
wk is assumed to be zero mean Gaussian white noise with covariance Qk.

wk ∼ N(0, Qk) (A.6)

99



– Step size and transfer matrix:
Transfer function F with step size T is given by:

F =


1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1

 (A.7)

– Observation matrix C:
C represents the relation between the true state xk and measurement zk. Here
since the transform is just a matter of noise, C is initialized as:

C =

[
1 0 0 0
0 1 0 0

]
(A.8)

A.2. Kalman equation

Kalman update for this application is summarized as follows:

– Prediction of error covariance:

Pk|k−1 = FPk−1|k−1FT + Qk (A.9)

– Compute innovation covariance:

Sk = CPk|k−1CT + Rk (A.10)

– Kalman’s gain:
Kk = Pk|k−1CTS−1

k (A.11)

– Prediction of state estimation:

xk|k−1 = Fxk|k−1 (A.12)

– Prediction of observation:

zk|k−1 = Cxk|k−1 (A.13)

– State estimation update:

x̂k|k = x̂k|k−1 + Kk(zk − zk|k−1) (A.14)

– Error covariance update:

Pk|k = (I −KkC)Pk|k−1 (A.15)
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