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Learning Abstractions via Reinforcement Learning
ERIK JERGÉUS & LEO KARLSSON OINONEN
Department of Computer Science and Engineering
Chalmers University of Technology

Abstract
In this paper we take the first steps in studying a new approach to synthesis of
efficient communication schemes in multi-agent systems, trained via reinforcement
learning. We combine symbolic methods with machine learning, in what is referred
to as a neuro-symbolic system. The agents are not restricted to only use initial
primitives: reinforcement learning is interleaved with steps to extend the current
language with novel higher-level concepts, allowing generalisation and more infor-
mative communication via shorter messages. We demonstrate that this approach
allow agents to converge more quickly on a small collaborative construction task.

Keywords: RL, MARL, multi-agent, DreamCoder, neuro-symbolic, abstraction,
communication, AI.
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1
Introduction

Communication and language are arguably two defining features of human civili-
sation. By sharing a communication medium, humans are able to both cooperate
and transfer information within and across generations, leading to a steady growth
and refinement of information. Despite it being so vital to humans, it has proven
difficult for artificial intelligence (AI) to communicate in similar fashions.
Learning to communicate and coordinate efficiently via interactions, rather than
relying on solely supervised learning, is often viewed as a prerequisite for develop-
ing artificial agents able to do complex machine-to-machine and machine-to-human
communication [2]. This approach to language learning and emergent communica-
tion is now a vibrant field of research in the deep learning community [3, 4, 5, 6].
Recent work has focused on developing agents with single message communication
[7, 8, 9], variable length communication [10] and compositional language [11, 12],
via interactions and reinforcement learning. However, a striking characteristic of
human communication that has been overlooked in the literature is the ability to
derive novel concepts and abstractions from primitives, via interaction.
In this thesis, we study machine-to-machine communication in the context of Multi-
Agent Reinforcement Learning (MARL) [13], where agents cooperate towards solv-
ing some goal in a shared environment. Agent-to-agent communication is also used in
competitive settings [14], or team-based environments [15], but our focus is in direct
agent-to-agent communication. The issue is to develop communication protocols
that fit the environment in such a way that they both convey enough information,
and do not require sending too much information. This can be tackled in a few
different ways:

• The designer creates a Domain Specific Language (DSL) for the AI. This is
fixed and assumed to be sufficient for the task. However, this injects the
designer’s bias and also keeps the protocol static.

• The designer creates a minimal DSL. Since the AI learns from as basic origins
as possible it avoids designer-bias, but it can result in inefficient learning and
require frequent communication.

• The agents communicate all their observations. This removes the need for a
pre-made DSL, and the issues which it presents. However, it doesn’t scale well
with more agents nor can it be said to be a good representation of multiple
agents, as every agent knows everything.

In this paper, we investigate how artificial agents can develop linguistic abstractions
via interaction and reinforcement learning, starting from a small set of primitive
concepts and gradually increasing the size and efficiency of their language over time.

1



1. Introduction

…vertical in 
position 2… Hmm…?

= L-shape

Figure 1.1: Agents should periodically reflect on their experience and consider
introducing abstractions, allowing shorter utterances for constructing commonly
occurring shapes.

We believe this has the benefit of being able to avoid supervising bias, while stay-
ing dynamic and allowing for an efficient language. Concretely, we investigate the
impact of abstracting a series of primitive actions into higher-order actions in a
reinforcement learning system. In this context, we pose our hypotheses as:

a) Having a language with messages also corresponding to common sequences of
actions will facilitate the reinforcement learning construction task.

b) Our neuro-symbolic agent can discover and learn to use such concepts.

Our motivation is the architect-builder experiment by McCarthy et al. [16], inves-
tigating how humans develop communicative abstractions. Here, the architect is
given a drawing of a shape, and has to instruct the builder how to construct it from
small blocks. As the experiment progressed, participants developed more concise
instructions after repeated attempts. Instead of talking about the positions of in-
dividual blocks, they started using abstractions describing commonly seen shapes,
such as L-shape or upside-down U, see Figure 1.1.
Our contribution here is a study of a neuro-symbolic multi-agent reinforcement
learning framework for this task. Inspired by neuro-symbolic program synthesis
[17], the agent interleave reinforcement learning to train their neural network, with
symbolic reflection to introduce new concepts for common action sequences. We
show that agents learn to reconstruct the given shapes faster when allowed the
capability to introduce abstractions.

1.1 Limitations
We limit the scope to only this specific cooperative environment. While testing
the method on other environments would certainly be interesting, this is merely an
initial study to test the viability of the system. Specifically, this environment was
chosen due to the previous research in how humans acted in it.
Furthermore, we do not aim to find the perfect neural-representation of the agents,
and instead we aim to see if a feasible representation can be improved. An imper-
fect neural-representation might even be beneficial to investigate the performance

2



1. Introduction

difference of the agents’, as opposed to agents that are close to perfect.
Lastly, our scope of research does not include agent-to-human communication.
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2
Theory

The project touches upon multiple fields of research. Most prominently the reinforce-
ment learning field, with a focus on multi-agent and neuro-symbolic programming.
This chapter describes those fields and mention how they relate to the research we
conduct.

2.1 Architect-builder Environment
The architect-builder environment was developed to investigate how humans develop
cooperative communication strategies in collaborative construction tasks [1]. One
subject is assigned the role of architect and gets a picture of a target scene to
construct. The other subject, the builder, aims to reconstruct the shape, that is
only shown to the architect, by placing vertical (2 x 1) and horizontal (1 x 2)
blocks. In order to be successful, the architect needs to communicate information
about the target shape to the builder.
Each scene was composed of two towers, consisting of 4 blocks each. As the ex-
periment aimed to capture changes in behaviour, they repeated the towers multiple
times. The three unique towers were paired together into a total of twelve trials.
The architect and builder were allowed any number of turns to reconstruct a scene,
but they were limited by the architect not being allowed to send more than 100
characters before the builder placed one or more blocks. The builder could place
blocks anywhere, if they had support from beneath. Blocks could not be moved once
placed. After all eight blocks were placed, the participants got feedback related to
the mismatch between the target scene.
While the humans were accurate on their initial tries, missing on average the loca-
tion of one block, they still showed improvement across repetitions. McCarthy et al.
hypothesized that the regularities in the shapes would result in more concise instruc-
tions over time. While they proved that the number of uttered words decreased,
they also saw a specific shift in referential words, from words such as ”horizontal”
and ”block” to ”shape” and ”C”.

2.2 DreamCoder
Program synthesis involves automatically generating programs. The field has al-
ways had a significant issue, that the valid programs are long, which results in a
prohibitively large search space. Moreover, for each DSL, there is also a specific
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2. Theory

hand-designed search algorithm required to efficiently utilize the given DSL, which
leads to weaker generality.
A recent development in the field is to solve this by creating abstractions, which can
drastically decrease the search space if suited to the problems at hand. DreamCoder[17]
created a framework that utilizes the wake-sleep-dream algorithm, in order to solve
problems by writing programs. The algorithm has three phases:

1. The Wake phase, where the model searches for solutions to the problems in
the environment, using the current DSL.

2. The Sleep phase, where the model attempts to learn new abstraction prim-
itives, by finding common fragments in programs gathered from the waking
phase. If abstractions are found, they are added as an auxiliary function to
the DSL dynamically.

3. TheDream phase, that improves the model by trying to apply the new library,
learnt during the sleeping phase, on previous examples and self-generated ”fan-
tasies” gathered from a generative model.

Combining the generative model of the dream phase with the program synthesis
of waking makes the entire architecture similar to a Helmholtz machine [18]. The
Helmholtz machine is a type of artificial neural net that can account to the hidden
data by being trained to create a generative model for the original set of data. This
is done by the dual-network architecture [18]; where one of the networks takes the
data as input and produces a distribution of the hidden variables, and the second,
generative network, which generates values for the hidden variables.

2.3 Markov Decision process
A Markov Decision Process (MDP) is a commonly used framework for modelling
decision-making, by a 4-tuple with the parameters (S,A, Pa, Ra) [19]. These param-
eters contain the following:

• S, the set of states that the model can reach, called state space.
• A, the set of actions that can be done, called action space.
• Pa(s, s′), the probability that an action a in the state s at the time t will lead

to state s′ in the time t+ 1.
• Ra(s, s′), the expected immediate reward from action a by transitioning from

state s to s′

The decisions agents make in the framework are described by a policy function π,
that maps states to action (potentially probabilistically).

2.4 Reinforcement Learning (RL)
Reinforcement Learning (RL) is the process of, through trial and error, finding a
policy for solving a problem. The policy is evaluated and subsequently updated
through acting in the environment, either based on already gathered experiences,
termed exploitation, or by new, randomized choices, termed exploration. Depending

6



2. Theory

on how good the environment deem action is, it supplies a corresponding reward,
which is what the agent seeks to maximize over time [20].
All common methods, to maximize the reward, can be categorized into either off-
policy or on-policy. The on-policy methods rely on the current policy to update it,
as opposed to off-policy methods that only rely on the action. We have used a pure
off-policy solution, but the understanding of on-policy is relevant for the field.

2.4.1 Policy Gradient (On-policy)
Policy gradient is an RL technique that optimizes parametrized policies with respect
to the expected return, by using gradient descent. The advantages of policy gradients
are numerous, but among the most important is the fact that policy representations
can be chosen specifically for the task. However, they need to quickly forget data,
as to not bias the gradient estimator. This also means that long term memory is
impossible to retain, necessitating other solutions for concept retention.

J(θ) = E{
H∑

k=0
ai, τk} (2.1)

The goal is to change the policy’s parameters, θ ∈ RK , such that the expected return
of Equation 2.1 is maximized. τ denotes the trajectory formed by the sequence of
states and actions τ = [x0:H , u0:H ], where H is the horizon. ai is the time-dependent
weight factor [21].
In practice, there may exist many local maxima for any given task, which can result
in the algorithm mistaking the local maxima as the global maximum. Therefore,
policy gradient is suitable for improving an existing solution, but less proficient at
discovering new ones.

2.4.2 Q-learning (Off-policy)
The Q-learning method is an off-policy method that defines its policy by mapping
each state-action pair (s, a) to the expected reward from taking action a in state s,
Q(st, at). After taking an action in a state, the environment returns a reward rt,
which correspond to how good action a was in state s, which is then used to update
the expected reward Q(s, a).

Qnew(st, at)← Q(st, at) + α ·
(
rt + γ ·max

a
Q(st+1, a)−Q(st, at)

)
(2.2)

Equation 2.2 is used to update the expected value for an action at in state st.
Q(st, at) is the previously expected reward for action at in state st, which is in-
creased by the temporal difference, multiplied by the learning rate α. The temporal
difference is calculated by adding the received reward rt with the expected future
reward, max

a
Q(st+1, a), discounted by a factor γ, corresponding to how focused the

algorithm should be on receiving immediate reward. Finally, the temporal differ-
ence is subtracted with the potential reward of taking an action in the current state,
Q(st, at) [22].

7



2. Theory

Since some environments have too big of a state space, it is unfeasible to connect
every possible state to an action (for example, the architect-builder environment
would require a Q matrix of size 2width·height·|A|). In such a case, neural networks
[23, 24] can be used to extract features from the state in order to reduce the effective
space requirement for the Q-matrix, often referred to as deep reinforcement learning.

An influential work in the deep reinforcement learning field is DeepMind’s paper
[25], where they played Atari games using Deep Reinforcement Learning. They
introduced the idea of training a variant of Q-learning exploiting experience-replay,
called DQN. This approach achieved extremely impressive results and has paved
the way for much of the deep reinforcement learning field. The performance was
superhuman in multiple cases and fell short primarily on games that require long-
term planning and/or had sparse rewards.

DQN’s experience replay lets the agents store the outcome of everything the agent
does, interleaving acting with actually updating the policy. A unique benefit of an
off-policy method is that the policy does not need to be updated after each time
step, as it does not depend on the policy used to take an action. Furthermore, the
agent does not discard the data after using it to learn once, but instead keeps on
learning on old data, which is useful since the Q-learning updates are incremental
and do not converge quickly. This results in less volatile agents and a more efficient
use of data. [25]

2.4.3 Neural Networks

A Feed-Forward Neural Network (FFNN) is a neural network without cyclical con-
nections, as opposed to a recurrent neural network. In a FFNN, information only
moves forward, from input, through hidden layers and into the output nodes[26].
For multi-layer networks, the most common learning technique is back-propagation,
where the output is compared to the correct answer, adjusting the weights based
on the error value. By repeating this process, the error is reduced, as the network
converges to some state.

Between each hidden layer, an activation function tends to be applied which formats
the output to the format desired. For example, a linear function can be used for
linear regression, a sigmoidal function can be used to give a yes/no answer or a
non-linear function, such as ReLU (Rectified Linear Unit), function can be used to
find non-linear relations [27].

2.4.4 RMSProp (Root Mean Squared Propagation)

RMSprop is an optimization algorithm for neural networks, in the category of adap-
tive learning rate methods [28]. The main purpose is for mini-batch learning, while
keeping the similarities of Adagrad [29]. However, it also deals with diminishing
learning rates. Even with large initial gradients, RMSProp is highly efficient, while
momentum-based methods overshoot towards the solution.

8



2. Theory

2.4.5 Catastrophic forgetting
Catastrophic forgetting is a common issue when training neural networks and per-
tains to when a neural network forgets old concepts when introduced to new once
[30]. The neural networks mistakenly deem remembering old concepts as unim-
portant. This is a well known problem, often prevented by working with transfer
learning or major changes to the way the neural network updates its weights [31].
A drastically different way of overcoming the issues is Parameter Generation and
Model Adaptation, which splits the model into two neural networks [32]. The first
network keeps the same parameters for all problems, while the second one’s param-
eters are generated to adapt the solver to suit each test example. This method has
resulted in high retention of task comprehension over several datasets.

2.4.6 Multi-Agent Reinforcement Learning (MARL)
In multiplayer games such as chess, it is common to view the opponent (the other
agent) as part of the environment. That does not always work well and can lead
to subpar performance. For example, in cooperative tasks the reward signals tend
to correlate between the agents and thus require the agents to reach a consensus
to get a good reward. Since the agents are incentivized to reach a consensus they
will be less likely to explore new, potentially better, solutions once a consensus
has been reached, leading to overfitting of policies [33]. However, by introducing a
level of direct communication, such as message propagation between agents this can
be mitigated, and possibly even overcome. This hints at an underlying benefit in
communication in environments that are not purely competitive.

2.4.6.1 Practical Problems

The simplest approach to multi agent learning is using a standard reinforcement
learning technique, such as Q-learning, with independent agents, but that does not
work well in practice. This is caused by the agents’ policies changing during training,
coupled with them depending on each other. This makes the expected outcome of an
action, in a state, dependent on non-stationary variables. Therefore, every time the
policies of one agent updates, the experience of all other agents no longer reflects the
new environment and thus regular experience replay does not suffice. This makes
Q-learning no longer guaranteed to converge to an optimal policy [34]

The common on-policy method, policy gradient, is not viable either, as it de-
mands observations and policies of all other agents to get useful results [35].
This is theorized to be caused by a lack of a consistent gradient signal over
several time-steps [36]. If all other agents’ are stationary or if the environment
is fixed, it is possible to use policy gradient. However, if both of these aspects
are dynamic, more advanced methods to analyse the environment are needed.

The Multi-Agent Deep Deterministic Policy Gradient (MADDPG) agent
architecture attempt to alleviate these issues by using a centralized gradient
for the agents [13]. This results in a cooperative environment where the recipi-
ent does not have a one to one match of the policy of the observer, and instead

9



2. Theory

an approximation that is sufficient for the same results as the true policy. This
does not demand the same exhaustive search for policy convergence. However,
this also assumes heterogeneity between the agents, and an applicable global
gradient, which is impossible if the cooperative agents have different tasks and
intermediate goals.

Experience Replay is a high-quality method in single-agent environments. De-
spite this, it has been shown that disabling experience replay can be beneficial
in multi-agent environments. However, it is possible to use synchronized sam-
pling between agents (ψ1, a1, ψ2, a2), such that correlated actions corresponds
in the buffer [37]. This means that a reward for the action of one agent is
correlated to the action of the other agent, and not a completely independent
reward function for each of the agents. This is relevant since the cooperative
aspect is important for the learning process, and ensures the understanding
that a good action for agent ψ1 might be mediocre for the full environment, if
the action of agent ψ2 is incompatible.

2.4.7 Transfer Learning
Transfer Learning (TL) is a problem found in all branches of Machine Learning
(ML), relating to reusing knowledge, gained from solving one problem, to different
but related problems. Specifically within RL, it can significantly improve the sample
efficiency [38]. TL therefore has the potential to remedy the relatively computation-
ally expensive part of generating samples.
In the context of deep learning, both TL and cooperative MARL aim to prop-
agate network alignments (knowledge) for different agents, but their methodolo-
gies are vastly different. TL assumes sequential transferral of knowledge. On the
contrary, MARL relies upon continuous exchanges and non-stationary experiences,
which makes them incompatible in practice [37].
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3
Methods

We model the architect-builder environment in a multi-agent reinforcement learning
setting, interleaved with symbolic reasoning to introduce new concepts. One agent
takes the role of architect and the other is the builder. Both of these agents start with
no pre-conceived notion about the environment. After some successful interactions,
the architect will symbolically reflect on its interactions with the builder, and identify
commonly occurring repeated sequences of instructions. It will then introduce a
novel concept to be used in subsequent interactions with the builder, in the main
reinforcement learning loop (see Figure 3.1). If the agents manage to construct a
shape with fewer instructions, a higher reward is given.

…vertical in 
position 2… Hmm…?

= L-shape

Figure 3.1: A collaborative assembly task. The Architect was shown a target
scene and provided assembly instructions to the Builder, who aimed to reconstruct
it without seeing the target. [1]

3.1 Environment
Our setup mimics the one from McCarty et al. [16] where two agents, the architect
and the builder, communicate about a set of geometric shapes. The environment is
modelled in the MDP framework (see Section 2.3). S is the target scene and current
scene, A is the blocks that exist and where they can be placed, Pa(s, s′) is simply
1 when action a leads to s′ in state s. Finally, the reward function is modelled
to reflect a higher reward when the current scene becomes and/or approaches the
target scene. The agents’ objective is then to figure out an optimal policy π∗ that
results in a minimal set of actions to reach the goal state for any S.
The architect’s input is a picture of the goal state alongside the current state, each
of which is represented by binary W x H matrices (W = 6 and H = 6 for our
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Goal State

Figure 3.2: The architect sees both the goal and the current state and decides to
instruct the builder to place a vertical block in position 4.

experiments), see Figure 3.2. Locations where there are blocks are represented as
1’s and empty locations by 0. This implementation does not separate between
horizontal and vertical blocks, in contrast to the experiments by McCarthy et al.
This makes the goal harder to interpret for the architect, but it makes for a simpler
model and results in a more ambiguous environment. Furthermore, in our model,
there exists a primitive version of gravity, much like the gravity in the game of Tetris.
This means that a sequence of actions are not reflexive.
This is passed through a FFNN, which outputs a message with instructions to the
builder. The message is a one-hot array of size depending on the current amount
of available actions, the size of the action space. That varies in size depending on
the current amount of learned abstractions and which form of action space is used.
The builder then interprets this through a FFNN, that takes the message and tries
to output the corresponding action.

3.1.1 Action Space
As inspired by an RL approach to Tetris [39], the action space is implemented in
one of two ways. Grouped actions used the form ”place a block on a location”, as
described in Figure 3.2. With the other action space, non-grouped, the builder had
a current location, which they could ”place a block” on. The builder could alter its
location with the actions ”move one step left/right”. Location need to be encoded
in this case, which was done in one of two ways. Either by appending a row at the
top of the state as a one-hot array encoding the location. Or by rotating the goal
and current state in the opposite direction of where the builder moves, basically
resulting in the agent always placing blocks on the initial location.
In both settings, blocks are always placed from the top of the current location,
dropping until the ground or a block is met. If a block or movement goes past the
width requirements, it is wrapped around to the other side. If the block is placed
such that it is above the top location, the action will be skipped.
When abstractions were made for the non-grouped action space, the abstractions
were simply a sequence of the primitive actions. The grouped action space’s ab-
stractions instead corresponded to adding another type of block into the available
action space. Therefore, the action space’s increase differ between the two. The
non-grouped action space only adds 1 per abstraction, while the grouped adds W
new actions per abstraction, which could affect their scaleability.
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Table 3.1: The hyperparameters for both agents.

Parameter Value
ε, εdecay, εmin 0.99, 0.9995, 0.03

τ 200
γ 0.95
α 0.0001

Optimizer RMSProp

3.1.2 Reward Function
The architect receives a reward R at each time step t when performing an action a.
It either receives a large reward if the new state s matches the goal g exactly, or a
smaller reward if the most recently placed block partially matches the goal. This
reward function is given in Equation 3.1, where partial_match denote the number
of new grid squares, covered by the most recently placed block, matching the goal.
The reward function was written in such a way as to heavily encourage perfect
completion, but not discourage incomplete solutions either. Without reward for
partial construction, the architect had problems converging on difficult problems,
where it is unlikely to randomly find the solution.

Rt(s, g, a) = (0.1 · partial_match+ (s == g)) · 0.9t (3.1)

The builder is rewarded simply depending on if the performed action is what the
architect intended. The reward for a correct action was 1 and wrong actions resulted
in -2. The penalty needs to be strictly more negative than the reward for being
correct. If it was not, the builder did not get sufficiently penalised from intentionally
stalling by moving back and forth (in the non-grouped case) or placing blocks above
the grid.

3.2 Deep Reinforcement Learning
The agents are constructed as DQN agents [25] with experience replay, using RM-
SProp for optimisation. The replay buffer is simply a queue of size 1e + 6. The
network architecture varies between the architect and the builder. For more hyper-
parameters, see Table 3.1.
The builder’s network, see Figure 3.3, is a rather small FFNN of 3 linear layers
interspersed with ReLU activation functions. Larger networks resulted in slower
learning, and the builder’s optimal policy is so simple that there is no need to use a
complex network to describe it.
The architect’s network, see Figure 3.4, went through a lot of iterations. The initial
thought was to use convolutional neural networks, as there is a spatial relation in
the states. When using those, the learning speed (and thus cumulative reward)
was significantly better than simple FFNN for the non-grouped action space, but
significantly worse for the grouped action space. As the grouped action space still
performed better in all our final tests, the final architecture settled upon was a
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Figure 3.3: Each of the neurons in the picture correspond toW ·H actual neurons.
Furthermore, there is a final layer of size |A|, which is not shown as it varies.

Figure 3.4: Each of the neurons in the picture correspond toW ·H actual neurons.
Furthermore, there is a final layer of size |A|, which is not shown, as it varies.

FFNN network of 6 layers, similarly interspersed with ReLU activation functions.
Additionally, the network has a dynamically variable size dependent on the number
of possible abstractions the network is initialized with. However, as the input values
for the basic actions exist from the beginning, the input values will have low meaning
until abstractions have been created.

3.3 Wake-Sleep-Dream cycle
In order to vary abstraction and acting, a version of the cycle described by Dream-
Coder [17] interleaves creating abstractions with solving the problem and reflecting
upon the abstractions.
This section describes the flow of the program in detail, with some high level reason-
ing behind important decisions. The pseudocode in this section clarifies the details
of the wake-sleep-dream loop described above in broader strokes. For the exact
hyperparameters and implementation, see GitHub 1.
The main loop alternates between the three phases. Furthermore, it checks if the
architect and builder has constructed a viable, combined policy. That combined
policy is then evaluated, without exploration rate, by attempting to solve all the

1https://github.com/jerge/MARL/tree/Communicative-Abstractions
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currently allowed goals of the environment. When the policies correspond to a
decision-making that solves the current possible goals, the environment adds a new
goal to the pool of target goals it chooses from when resetting. The environment
is initiated with 1 allowed goal and is always skewed towards selecting the latest
added goal.
Repeat:

sleep_history <- Wake(Architect, Builder, Environment)
abstraction <- Sleep(sleep_history)
Architect.AddAbstraction(abstraction)
Builder.AddAbstraction(abstraction)
Dream(Architect, Builder, sleep_history, abstraction)
if Architect.policy and Builder.policy reaches the goal

for all states in Environment:
Environment.AddNewState

endif

3.3.1 Wake
The wake phase aims to train the agents by acting in the environment. It starts
by resetting the environment in order to generate a state and a random goal. This
state and goal is then sent to the architect in order to generate a message for the
builder, which in turn generates an action to be taken in the environment. This
repeats until the environment deems the agents’ done. They are considered done
when the current state contains the same number of blocks (or more) as the goal.
While the builder and architect act upon the environment, they interleave who is
exploring and who is staying stationary. This is necessary as regular experience re-
play does not account for non-stationary environments. For example, if the architect
tells the builder a message m1, which correspond to an action a1, the builder might
take a random action, a2, to explore what the message means. If this interaction is
trained upon by the architect, it will find that there is a chance that m1 results in
the state and reward that a2 does. The algorithm will still converge towards finding
the optimal policies as the exploration rate decreases, but it takes a lot more time
than the downside of interleaving the trainee.
The history of the latest 500 successful epochs is saved for use in the other phases.
Finally, the wake phase repeats until there has been a total of at least 1000 steps in
the wake phase.
Wake(Architect, Builder, Environment) -> sleep_history:

state, goal <- Environment.Reset
while not done:

message <- Architect(state, goal)
action <- Builder(mesage)
new_state, reward, done <- Environment(action)
history += (state, message, action, reward, done, new_state)
state = new_state

Architect.AppendReplayBuffer(history)
Builder.AppendReplayBuffer(history)
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Architect.Train
Builder.Train

success <- Environment.goal_is_state()
if success:

sleep_history += history
endif
repeat until 1000 steps has been taken
Architect.SwitchTrainingMode()
Builder.SwitchTrainingMode()
return sleep_history

3.3.2 Sleep
The sleep phase aims to find the best abstraction available in the current situation,
through analysing the recent history.
The sleep phase starts by using the Cartesian Product (CP) to get all combinations of
successful sequences. Between each pair, the Longest Common Subsequence (LCS) is
computed to get the most useful abstraction for that pair. Alternatively, all subse-
quences of a sequence could be deemed a candidate, instead of the longest common
sequences in a pair. It would be more computationally expensive, but would not
skew the program towards as large sequences. By picking the longest common
subsequence, the candidates are instead more likely to encompass structures corre-
sponding to entire towers, as McCarthy et al. showed that humans did. However,
by giving further weight to occurrences as compared to length, one can adjust the
propensity of generation of the length of abstractions.
Each of those candidate abstractions’ utility are then rated to find the best one.
We value the potential improvement as the number of actions that can be avoided
by picking the abstraction. Furthermore, it is valued based on how common the
sequence occurs.
This is the best utility function that was found, but multiple other factors could
play a part. For example, it would be possible to account for how good the agents
are at picking the sequence currently, in order to help the agents with sequences
that are hard for it. While that approach might help the agents at this point, it
does not account for the agents’ policies being dynamic.
The phase finishes with a check to see if the top-rated abstraction contains at least
2 blocks and does not correspond to a previously made abstraction. That clause
was added to avoid the addition of abstractions that have no practical meaning.
Sleep(sleep_history) -> abstraction:

candidates = empty_map
for i,j in CP(sleep_history, sleep_history)

candidates[LCS(i,j)] += 1
evaluation = [Length(sequence) * value for sequence, value in candidates]
return candidates[Argmax(evaluation)] if Length > 1
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3.3.3 Dream

The dream phase aims to evaluate the agents’ abstractions. It chooses to either
evaluate a newly acquired abstraction to train the networks to use it immediately,
or it evaluates if any of the previous abstractions are not being used.

New samples containing the new abstraction are made by searching through the his-
tory used for the sleep phase, replacing every instance of the abstraction’s sequence
with the abstraction. Then, these edited epochs are inserted into the agent’s replay
buffer and included in a training iteration. By adding them to the replay buffer,
the agents are able to continue training on them during the wake phase. Otherwise,
there is a high chance that the agents would immediately forget the implications of
the new abstraction, as newly acquired samples would substantiate a small part of
the replay buffer.

The old abstractions are only evaluated based on their recent frequency in the suc-
cessful epochs. If they are used as seldom as if it were picked solely based on the
current exploration rate, they are deemed to be useless enough to be removed from
the action space. While the parameters are not explicitly changed afterwards, the
network quickly forgets them, as they were hardly used in the first place. In prac-
tice, it is uncommon to remove abstractions. The abstractions picked in the sleep
phase are generally useful enough to be used and recognized. Otherwise, the sleep
phase would not have rated them highly enough to create the abstraction in the first
place.

Dream(Architect, Builder, sleep_history, abstraction) -> {}:
if abstraction is not none:

for sequence in sleep_history:
if sequence contains abstraction:

new_sequence = InsertAbstraction(sequence, abstraction)
Architect.AppendReplayBuffer(new_sequence)
Builder.AppendReplayBuffer(new_sequence)

endif
Architect.TrainOnRecent
Builder.TrainOnRecent

else:
# Note that iterations != epochs
Iterations <- sum([|epoch| for epoch in sleep_history])
MinAllowedUses = Iterations * Epsilon * (1 / |Architect.ActionSpace|)
for abstraction in Architect.ActionSpace:

if Iterations.count(abstration) <= MinAllowedUses:
Architect.RemoveAbstraction(abstraction)
Builder.RemoveAbstraction(abstraction)

endif
endif
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3.4 Set generation

To evaluate our system, three separate sets of data were constructed, Srandom, Sstructured

and Smixed. Srandom is an unbiased set which is used as a baseline. The other sets
have inherent bias and are used to test hypotheses. All of these sets contain a num-
ber of constructs. These constructs have a difficulty value, D which is the number
of primitive blocks contained within the construct. Furthermore, the environment’s
width W and height H are both 6 for all sets.

3.4.1 Random set

The random set of data, Srandom is important to measure when abstractions are
meaningful. We do not expect abstractions to be useful, or even generated on
random data, as they are based on recurrent observation of regular structures. The
expectation here is that a neural network would not attempt to fill the data with
abstractions where none can be found - unlike a human being that often create
abstractions out of noise.

Srandom was created by randomly sampling actions from the non-grouped action
space on a blank environment. As half of the actions were block placements, it was
common for all blocks to be densely packed at the initial location. Therefore, the
actions that move were twice as likely as the ones that place blocks. It does this
until D blocks has been placed and then saves the current state as a potential goal
for Srandom. This set was generated by doing that 20 times for D ∈ [1, 2, 3] and then
removing duplicates.

3.4.2 Structured set

The set Sstructured is a hand-crafted set of data, where each possible goal consists of ei-
ther the shapes ”C”, ”L” or ”upside-down U” (∩), see Figure 3.5. These shapes were
chosen based on the work in McCarty et al. [16], as simple, human-understandable
abstractions. Due to basing the shapes on their experiment, it is easier to make a
more direct comparison between how our system, as opposed to humans, utilizes
abstractions. The difficulty, for all of these sets is D = 4, and is the shapes and
their placements.

McCarthy et al. used two shapes for each example, but we opted to only do one shape
per example. There were three issues with having multiple shapes per example.
Foremost, it would have been difficulty for the agents to reliably be able to solve
a D = 8 problem as it has not been a focus to create an optimal neural structure
for them. Furthermore, the rewards would become more sparse, which makes the
agents have an even harder time to converge. Lastly, the size of the environment
would have to increase, which both make the neural architecture different from the
other sets and more importantly increases the neurons, which could have adverse
effects on training time.
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Figure 3.5: Sstructured contains 3 upside-down U, 5 C and 3 L constructs in a 6 by
6 grid. This is all possible locations that do not result in a wrap around the sides.

Figure 3.6: Smixed contains multiple small ”c” shapes, both combined and on their
own. This is an example of a small ”c” placed on location 2 and a vertical block on
position 4.

3.4.3 Mixed sets
The mixed set, Smixed is a partially randomized set, but with a handcrafted ”c”
shape, see Figure 3.6, inserted into the samples. This was done upon a baseline
Srandom, set, and then changed. The set was initialized in the same manner as the
purely randomized test set (except that we created 10 instead of 20 examples per
value of D), but then altered by randomly replacing one of the blocks, for some
randomly determined cases, with the small ”c”. This set has a difficulty equal to
DSrandom

+ 2.
The purpose of this set is to see if the agents are able to pick out and use the
abstraction ”c”, despite there being multiple random shapes obfuscating it.
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4
Results

The paper’s goal has been stated to be:
Investigate how artificial agents can develop linguistic abstractions via interaction
and reinforcement learning, starting from a small set of primitive concepts and grad-
ually increasing the size and efficiency of their language over time
The most important part to evaluate in the goal is if the artificial agents develop
linguistic abstractions, which leads to a more efficient language, from primitive con-
cepts. This could be measured by comparing the number of interactions needed for
agents that are allowed to make abstractions with the agents which are not. That
metric is a self-fulfilling prophecy, as it is impossible for agents without abstractions
to perform better than those with it. The agents will always make D actions for
an example with difficulty D if they are optimal. Except the agents that utilize
abstractions, that has the possibility to use fewer abstractions. Therefore, we find
it more fair to compare the number of epochs required to find a policy which solves
each example in a set.
With this reasoning, our hypotheses are:

a) Having a language with messages also corresponding to common sequences of
actions will facilitate the reinforcement learning construction task.

b) Our neuro-symbolic agent can discover and learn to use such concepts.

We have conducted 3 experiments to test these hypotheses. They all used the
grouped action space, as it performed better for all scenarios. The results were
gathered by running all types of systems in the experiments thrice (independently)
and taking the median results. The order in which the sets were sorted was random,
except that they were in an ascending difficulty level and kept stationary within
each experiment. While some detail changes between the iterations, it is uncommon
and mentioned when applicable.

4.1 Experiment 1 (Random)
The initial experiment tests our hypotheses against a set which is randomly gener-
ated, as described in Section 3.4.1. As seen in Figure 4.1, without any abstractions,
it takes 140 000 epochs to solve all 49 shapes. Conversely, agents that can make
abstraction require 175 000 epochs, as seen in 4.2. Naturally, it was not possible
to include a trial with pre-given abstractions, as we as humans do not deem any
abstractions useful for this task.
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Figure 4.1: Without the capability to create abstractions, using only initial prim-
itives, learning to build all 49 shapes in Srandom requires over 140 000 epochs.
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Figure 4.2: With the capability to create abstractions, but choosing to never create
any, learning to build all 49 shapes in Srandom requires over 175 000 epochs.
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Most notably however is the fact that at no point in these 175 000 did the agents
create an abstraction. After every sleep phase, the agents did not find any abstrac-
tion that were useful. This is partly due to the agents often being quick enough at
finding a good policy that the system did not enter the sleep phase (all examples
with 1 or 2 blocks, except #19). The major reason as to why it did not happen
however is that in 2 out of the three runs the sleep phases determined that the initial
primitives were more useful than any candidate abstraction. In the one case that
an abstraction was found, it was deemed useless 3 epochs later by the dream phase
and therefore did not have any noticeable impact on the results.
We consider that these are reasonable results, since the data in our samples have no
consistency or recurrent shapes, and thus should not be helped from our abstractions,
which is also consistent with the expectation. The added time for the agents that can
create abstractions is also reasonable, as the complexity of the network increases,
which necessitates higher training times. The created ”useless” abstractions that
have little long-term value can be inserted into the model at worst, but if they have
no actual value, the pruning mechanism will remove them.

4.2 Experiment 2 (Structured)
The second experiment is most notable as it provides results supporting our hy-
potheses and is tightly connected to the human experiment done by McCarthy et
al. [16]. The structured set, described in Section 3.4.2, was ordered such that all
versions of the same shape were next to each other, but otherwise shuffled. The set
is more complex than the other sets and is therefore almost impossible for the agents
to solve from scratch. Therefore, all agents in this experiment were pre-trained on
the 49 examples in Experiment 1 (4.1), in order to have preconceptions of the prim-
itive action mappings. Moreover, the agents without abstractions were not able to
complete all eleven examples of the set in a reasonable time. Therefore, the builder
was assumed to understand the architect perfectly for this experiment, as that does
not necessarily impact the value of abstractions.
The experiment uses three different versions of the system. The first version was
not capable of creating abstractions and required 350 000 epochs to complete all
examples 4.3. Due to the high complexity of the sets, this version had serious issues
converging to a sufficient policy. The specific problems varied across iterations,
but one commonality is that compared to when abstractions were allowed, it was
uncommon to be fast in completing the second construct of a shape fast. We believe
that is due to the networks being relatively bad at generalising.
The next version was allowed to generate 3 abstractions and learnt the entire set in
160 000 epochs, see Figure 4.4. In the graph, it is marked when the agents developed
abstractions, but notably only 2 abstractions were generated in this iteration. The
first abstraction, the ”upside-down U” (∩) arose from exploring the correct solution
once and then immediately deciding that it was a good abstraction. The generation
of the second abstraction generally required more epochs, often due to the sleep
phase re-generating the first abstraction, but ordering the actions in a different
sequence. The agents did not decide on an abstraction that corresponded to the last
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Figure 4.3: Without the capability to create abstractions, learning to build all
shapes require 350 000 epochs.

shape in two out of three iterations. In those cases, it was due to the agent solving
the problems efficiently, as no abstraction step was taken between the addition of
new examples into from the training data.
A sidenote is that in no case did the algorithm decide that an abstraction that
helped for multiple types of shapes (or any that was not a complete construct) was
better than either of the more obvious abstractions. Due to the specific shapes in
this test case and how we generate abstractions, this is expected. No abstraction has
more than 1 primitive in common across all three examples. Between the ”C” and
”L” a 3 block abstraction could help, but as the algorithm already did not create
an abstraction for the ”L” and the ”C” already had an abstraction, it was unlikely
to be found. However, larger environments would give precedence to the possibility
of such an abstraction (discussed in Section 5.1).
Finally the best-case was tested, when the abstractions corresponding to each con-
struct were given in advance. For this case, the agents were able to complete the
examples in almost the fastest possible time with only 17 500 epochs required.

4.3 Experiment 3 (Mixed)
For completeness, the impact of the abstractions is also evaluated upon a set that
mixes random, unbiased, constructs with once that have reoccurring shapes, Smixed.
The agents completed the 16 examples in 80 000 epochs without creating abstrac-
tions, see Figure 4.6. In Figure 4.7 it is shown that the agents that were allowed to
create one abstraction were almost twice as fast at solving the examples, with less
than 50 000 epochs. This clearly indicates that the abstractions have a strong posi-
tive impact on the proficiency of the agents in test samples with a mix of structured
and random structures. This indicates towards the capability of efficient utilization
of abstraction, even in irregular environments.
Notably, the main difference in time is the 8th example (see Figure 3.6), which is
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Figure 4.4: With abstraction-discovery, the agents need 160 000 epochs to learn
to build all shapes. The horizontal lines mark when the abstraction upside-down U
and C -shape were introduced.
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Figure 4.5: If agents are given the relevant abstractions upfront (”C”, ”L” and
”upside-down U”), the task can be learned in 17 500 epochs, which is a magnitude
faster than if no abstractions are allowed.
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Figure 4.6: If agents are not able to create abstractions, they learn to build all
shapes in Smixed in 80 000 epochs.
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Figure 4.7: If agents are able to discover abstractions, they require significantly
fewer than 50 000 epochs to learn to build the shapes.
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also the last example with a c. The agents that discovered an abstraction were able
to solve that example a lot faster, which was the main contribution towards being
faster. Furthermore, if there were c’s later on in the process, the differences would
presumably have been even larger, in favour of the agents with an abstraction.
These experiments all point towards abstractions being useful to facilitate learning
for scenarios where the shapes contain some inherent structure. Regarding how much
information needs to be sent in a previously encountered problem, abstractions (with
our size limitations) can only be positive. Therefore, we only need to show that they
are used. As is apparent from experiment 2 and 3 being positively impacted from
the presence of abstractions, the agents choose to use abstractions.
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5
Conclusion

The results clearly show that abstractions are useful for the architect-builder en-
vironment in the context of improving the efficiency of a reinforcement learning
system. It minimizes how often the agents need to communicate and increases the
speed at which the agents find a solution. The method we proposed is sufficient to
generate abstractions and the agents utilize such abstractions.
Moreover, the way we introduce abstractions dynamically allows us to inject new
concepts without excessive re-training. This is a necessity as the abstractions are
dependent on the current solution, and complete re-training may therefore result in
different abstractions. Notably, we also show that the abstractions can be manually
supervised and the re-training should therefore also work for such abstractions, even
if they are made ad hoc.
In conclusion: Having a language with messages also corresponding to common se-
quences of actions facilitates the reinforcement learning construction task, in bi-
ased environments. Our neuro-symbolic agent discovers and learns to use
such concepts.

5.1 Future Work
We have only scratched the surface in generating higher order actions in a reinforce-
ment learning setting, and there are many avenues left to explore. In this section,
we will mention how we think it could be possible to build on our work.

5.1.1 Larger Scopes
One worry we have is that in environments where the agents are more proficient in
completing the task, the abstractions might not be useful for making the learning
process faster. Instead, they might only be useful for lowering the number of inter-
actions needed for agents that are already trained. This is based on the conception
that neural-networks are generally proficient at generalization and thus might not
require the increased complexity of the action space. Thus, allowing higher-order
actions may inadvertently increase the total learning times.

5.1.1.1 Environment scopes

To further solidify our results, one improvement is to increase the size of the en-
vironment to allow a more complex interaction between possible abstractions. We
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briefly tested if the agents that had made the ”C” abstraction could place it twice, to
possible results, but we did not have time to investigate this in detail. This is partly
due to the limitations of our environment, as we only trained and generated sets for
six by six grids, in our experiments. Most other combinations of abstractions would
thus be larger than the grid itself. A larger environment would allow the interaction
of abstractions as proper ”blocks” for construction, such as placing an ”L” upon
an ”upside-down U”. It would also let us more directly compare and investigate the
results in McCarthy et al.’s research [16], where they always used pairs of the three
shapes in Sstructured. That could lead to potentially interesting behaviour, such as
abstractions created by the combination of other abstractions.

5.1.2 Builder Improvement
A core initial thought in the project was to investigate this in a multi-agent setting,
but we have not managed to find any interesting representation of the builder that
is not a simple classification network. On that note, it would be interesting to
try introducing higher-order communication in the more traditional multi-agent RL
setting, where every agent has the same goal.

5.1.3 Improvements to the Wake-Sleep-Dream cycle
Furthermore, an effective way to prune or replace abstractions as they are deemed
unnecessary could help improve the network, but this poses several issues in the
general learning process of a neural network in itself.
To improve the pre-training of new abstractions introduced in the dreaming phase,
it would be reasonable to also re-train the neural connections on the cases where
the abstractions are not used. As no negative reinforcement is used in the current
solution, a newly introduced abstraction is proportionally overrepresented as to their
use cases. However, as a neural system is self-regulating, it will result in the over-
representation being proportionally adjusted towards a realistic level.
A deeper or more complex model for evaluating abstractions could benefit the agents,
as the generative function and its evaluation are simple and based on naïve assump-
tions. This could lead to more valuable abstractions, or the capability to keep
intermediate, less specialised, abstractions.
In our current version, we are unsure if we have a proper evaluation of the actual
utility of abstractions. It might even be the case that it varies wildly based on
the problem. Therefore, some more dynamic version of evaluation such as a neural
network may yield better results.

5.1.3.1 Re-construction of Existing Abstractions

One issue with the current version of the sleeping method is the construction of
abstractions that already exists. As the model does not benefit from more than
one representation of an abstraction, we would like to avoid duplicating them. One
example of this, which we encountered, is the ∩ shape. It can be constructed by first
placing a vertical block, with a horizontal on top, and then doing it again to the side.
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Alternatively, one can build both vertical blocks first, then both horizontal blocks.
Therefore, the order can be irrelevant. However, as we know that our problem is
not symmetrical, as (Ah1, Av1) 6= (Av1, Ah1). The combination of order sometimes
being irrelevant with it sometimes being relevant creates issues. This problem is not
easy to solve, as we do not know if two abstractions are equal before testing [40].
For a small environment as ours, this is not a big issue, as it is simple to test
candidate abstractions to see if they are the same as an already existing abstraction.
However, as the environment scales up, this problem becomes more pronounced. We
have incidentally remedied one of the problems, which is that the same abstraction
would get suggested as a candidate over and over. As one abstraction is created, it
will reduce the number of actions used to solve the cases when that abstraction is
relevant. Therefore, the estimated utility of such abstractions decreases, since the
abstraction counts as one action.
However, when the environment scales up, more of the abstractions should have
several ways of construction. Since we cannot determine if two abstractions are
equal without testing, we do not know in the sleep phase if two or more suggestions
for an abstraction are equal. Thus, the number of times such abstractions occurs
can get split between multiple options and thus be disproportionally valued.

5.1.4 Other Possible Environments
In general, we believe that many cooperative tasks could benefit from the concepts
laid out in this paper. This is due to communication being particularly useful if
the environment is, at least partly, cooperative. In particular, communication is to
great benefits if the agents observe different parts of the environment. Where the
environment is not a zero-sum game, communication can often be used to improve
cooperation between agents.
Another possible environment to research this type of question would be a cooper-
ative invisible grid world [41]. Two agents, A and B, would exist in two separate
grid worlds, Wa and Wb, but A can only ”see” Wb and B can only see Wa. In such a
case, both of the agents would need to communicate aspects of the other’s environ-
ment to be able to complete their task. Furthermore, the amount of data allowed
to be communicated could be limited, by a cost or hard cap, in order to deter the
agents from sending all their observations. Then would have an incentive to send as
short messages as possible, while still being descriptive enough for the other agent
to complete their task. This environment has the benefit that both agents are of
the same type, which some architectures prefer.

5.1.5 Different network architecture
The neural networks we used were simple and perhaps not the best suited to the
issue. We tried briefly to incorporate convolutional layers, which had minor im-
provements in results for the non-grouped action space. It also created many issues
in network structure and flexibility. However, the prospect of including recurrent
neural networks or transformers seems to have potential. They have both seen to
be powerful in general settings such as in GPT-3 and particularly useful for envi-
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ronments where order matters, much like the environment which we have used in
our work.

5.1.5.1 Multiagent bidirectionally coordinated nets

By using a bi-directional recurrent neural network, it is possible to model the de-
pendency between agents over hidden layers, instead of a Q-learning model. The
benefit over a simple greedy solution is that the communication can happen in latent
space, allowing higher order information to be transmitted between the agents, and
propagate gradient updates for all agents [42].
The model was shown to work by a simple metric, where multiple sequential agents
should guess the cumulative sum of a randomly assigned value for each agent. The
agents knew both their own value and were allowed to send a message to the next
agent. In their experiments, the message converged to the cumulative sum so far.
The answer got more accurate for each agent in the queue. This method has been
proved to work for both hetero and homogeneous agents, and different, distinct
strategies depending on the environment. Implementing such a network structure
could result in another methodology and area to work with in the context of gener-
ating linguistic abstractions, while possibly reducing the epochs required compared
to the requirements in a Deep Q-network
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