

Testing Strategies to Support Continu-
ous Integration for Complex Systems
Master’s thesis in Software Engineering

HARITHA GANGINENI

SARAH JAMIL

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2016

Master’s thesis 2016:NN

Testing Strategies to Support Continuous
Integration for Complex Systems

HARITHA GANGINENI
SARAH JAMIL

Department of Computer Science and Engineering
Division of Software Engineering

Chalmers University of Technology
University of Gothenburg

Gothenburg, Sweden 2016

Testing Strategies to Support Continuous
Integration for Complex Systems

HARITHA GANGINENI
SARAH JAMIL

© HARITHA GANGINENI, 2016.
© SARAH JAMIL, 2016.

Supervisor: ERIC KNAUSS, Department of Computer Science and Engineering
Examiner: REGINA HEBIG, Department of Computer Science and Engineering

Master’s Thesis 2016:NN
Department of Computer Science and Engineering
Chalmers University of Technology
University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000
Gothenburg, Sweden, June 2016

iv

Testing Strategies to Support Continuous
Integration for Complex Systems
Haritha Gangineni
Sarah Jamil
Department of Computer Science and Engineering
Division of Software Engineering
Chalmers University of Technology
University of Gothenburg

Abstract
Software development companies strive to implement and embrace continuous in-
tegration, which aims to integrate different parts of software in a continuous way
in order to increase the frequency and productivity of development process and to
improve the communication to customer and market. The testing strategy is con-
sidered as one of the most important aspects for successful continuous integration.
Yet, today many companies face challenges regarding testing activities. The testing
of complex software that are hardware dependent, creates a long feedback loop be-
cause the software needs to run on different hardware. This in turn causes a delay
in delivery of the product.

When integrating the parts of the software into one system may lead to errors and
breaking down the system. Furthermore, causing a problem to the developer to
figure out where the problem lies. These problems lead to increased work effort
and unpredictable release times, which prevent the achievement of continuous in-
tegration. The aim of this study is to identify and design a useful test strategy
for continuous integration that helps address the complexities and get immediate
feedback from the test results. This study was conducted in collaboration with a
company that is looking to improve their existing test strategy to achieve continuous
integration.

The results of this study are: an investigation of current test activities is conducted,
automated tests are developed and implemented in order to reduce the feedback loop
and further the requirement traceability is improved through mapping the require-
ments with the developed tests. Furthermore, a suitable test strategy for continuous
integration should allow to visualise the test activities, have automated tests at sys-
tem level and provide a clear traceability of the requirements.

The methodology followed for this study is design science research (DSR) with 5
phases in each regulative cycle. The data collected is based on related literature
as well as a survey and interviews with key employees. The outcome was gathered
based on the progress with the methodology (the test strategy). The results of this
study was successfully achieved and the feedback loop was reduced.
Keywords: Software Testing, Testing strategies, Continuous Integration.

v

Acknowledgements
We would like to thank the case company for giving us the opportunity to pursue our
thesis at their office. We would specially like to thank Eric Knauss, our supervisor
at Chalmers university of Technology for his guidance and valuable advice that he
provided to us throughout the thesis.

Haritha Gangineni and Sarah Jamil, Gothenburg, June 2016

vii

Contents

1 Introduction 1
1.1 Purpose of Study . 1
1.2 Statement of Problem . 2
1.3 Research Questions . 2
1.4 Scope and Limitations . 3
1.5 Structure and Contributions . 3

2 Background 5
2.1 Case Company . 5
2.2 AUTOSAR . 5

2.2.1 Software Architecture . 6
2.2.2 Basic Software Layer . 6

2.2.2.1 Services layer . 7
2.2.2.2 The ECU Abstraction Layer (ECUAL) 7
2.2.2.3 Microcontroller Abstraction Layer (MCAL) 7

2.3 CIViT-Continuous Integration Visualization Technique 7
2.4 Testing Strategies . 8
2.5 Software Testing . 9

2.5.1 Unit Testing . 9
2.5.2 Integration Testing . 9
2.5.3 System Testing . 10

2.6 Automated Testing . 10
2.7 Continuous Integration . 10

3 Research Methodology 13
3.1 Design Science Research . 13

3.1.1 Investigation of the Problem 14
3.1.2 Suggestion of a Design Solution 15
3.1.3 Validation of the Design . 15
3.1.4 Implementation . 15
3.1.5 Evaluation . 16

3.2 Interviews and Surveys . 16

4 Iterations 19
4.1 Iteration 1: Implementing CIViT . 19

4.1.1 Investigation of Problem . 19

ix

Contents

4.1.2 Suggesting a Design Solution 19
4.1.3 Validation of the Design . 20
4.1.4 Implementation . 20
4.1.5 Evaluation of Iteration 1 . 21

4.2 Iteration 2 . 23
4.2.1 Investigation of Problem . 23
4.2.2 Suggesting a Design Solution 24
4.2.3 Validation of the Design . 24
4.2.4 Implementation . 24
4.2.5 Evaluation of Iteration 2 . 25

4.3 Iteration 3 . 28
4.3.1 Investigation of Problem . 28
4.3.2 Suggesting a Design Solution 28
4.3.3 Validation of the Design . 28
4.3.4 Implementation . 29
4.3.5 Evaluation of Iteration 3 . 29

5 Results 31
5.1 Research Questions . 31

5.1.1 Research Question 1 . 31
5.1.2 Research Question 2 . 32
5.1.3 Research Question 3 . 34

6 Discussion 37
6.1 Threats to Validity . 39

7 Conclusion 41

Bibliography I

A Appendix I
A.1 Workshop questionnaire . I
A.2 Survey questionnaire . I

x

1
Introduction

Software development companies strive to implement high quality software and to
deliver final products to the market quicker. Among the best practices to do so,

many embrace continuous integration as one of the agile practices [1, 2] which aims
to integrate the different parts of the software in a continuous way on a daily basis.
This in turn increases the frequency and productivity of the development process

as well as to improve communication with customer and market. Furthermore,
testing strategy is considered as one of the most important aspects for successful

continuous integration. Yet, today not many companies have invested in setting up
a testing strategy and consequently face challenges regarding testing activities [3].

For example, one of the problems of continuous integration is that, testing of
complex software creates a long feedback loop; and lack of sequence feed-backs if
some new development is breaking something in the system. These problems may
lead to increased work efforts to fix the broken system and unpredictable release

times because of late feed-back. Since, testing has a high impact on achieving
continuous integration in the development process, having a continuous test

strategy is useful to address this complexity and get immediate feedback.
Furthermore, the test strategy can be used to check the accomplishment of system

requirements. These strategies can be used within embedded systems and to
identify which requirements are tested by which test cases, and to check the

success of all code line executing during the test.

1.1 Purpose of Study

The purpose of this study is to address the obstacles that prevent the achievement
of continuous integration in complex systems. Furthermore, through dealing with
the issues regarding the testing and implementing a suitable test strategy which

helps them to achieve faster delivery to the customer, reduce the number of defects
and to improve the quality of the software development process. The aim of this

study, is to evaluate the current testing activities and to propose suitable test
strategies and improvements needed in order to reach the continuous integration.
For this, we chose to pursue this research at a company in order to have a clear

understanding of the software industry.

1

1. Introduction

1.2 Statement of Problem

The case company where the study took place, deals with providing AUTomotive
Open System ARchitecture (AUTOSAR) products to the automotive market.

Currently, the company has two main components in the platform software: the
Basic Software (BSW) platform and the Microcontroller Abstraction Layer
(MCAL). The BSW contains about 40 modules and all these are hardware

independent. The major challenge is that each module is configurable and there
are endless ways of combining these modules into one specific platform.

In contrast, the MCAL consists of about 10 modules that are all hardware
dependent. The challenge here lies that the company supports about 20 different
Micro Controller Units (MCUs) and only limited automation is implemented at

this point. This means that they do not have any continuous integration for
quicker releases and the testing of the MCUs is carried out semi automatic before
each release. Hence, leading to identify the defects late while the release testing is

a very intense period.
The company follows a V-model in their development process and currently they
follow three testing scopes: Unit testing, Integration testing and System Software
testing. The Unit testing covers the majority effort i.e. 80 percent of the time is
allocated and is continually integrated. The base of these tests depends on the
requirements base as well as code complexity and code coverage. Whereas, 15
percent of the time is allocated for the integration tests. This is tested semi

automatic and it lacks inputs. In contrast, the system software testing is very little
automated and is based on the Software requirement specification(SRS) by

AUTOSAR; and is required to check the complete system.
As the customer demands are increasing and the need for delivering to the market
as fast as possible without fault is much a requirement from them. Though, there

are tests available today, the requirements are being mapped with the test cases i.e.
checking which requirements are tested by that particular test case. Further, the

code coverage is being used to make sure that all the code lines are executed during
the unit tests i.e. branch and state coverage. All these processes are in fact taking
time which in turn are showing impact on the product delivery. The company is
looking for being able to deliver fully verified software on all MCUs every night,
through improving their hardware testing which is considered as a main blocker.

1.3 Research Questions

The research questions, according to the thesis objective, are the following:
RQ 1: What are the current test strategies?

RQ 2: With respect to test strategies what are the challenges that prevent the
success of Continuous integration?

RQ 3: What is a/how is a suitable test strategy for Continuous Integration(CI)
characterized?

2

1. Introduction

1.4 Scope and Limitations
As mentioned in Section 1.2, that the case company currently follows three types

of testing strategies and it is known that the testing at the unit level is satisfactory
and needs no further improvement for now. In contrast, since some parts of the

system needs a support of the hardware while testing, there exists some problems
in those parts of the system.

The scope of this study is to asses the current test activities in order to identify
the problems and challenges being faced by the developers/testers. Also, to find

out a suitable test strategy for the development process to help for quicker delivery
to the customer.

1.5 Structure and Contributions
Chapter 2 gives a rundown of the basic knowledge about the AUTOSAR and its

architecture, short description about the CIViT and the different test strategies. It
further gives an insight about the software testing and continuous integration.

Chapter 3 explains the research methodology followed in this thesis i.e. the design
science research and a description of the iteration process that it follows.

In Chapter 4, each iteration followed during the study is described. It also focuses
on the unique test strategy that is implemented and evaluated during each

iteration. Chapter 5 provides the results attained after end of each iteration and
further the findings from each iteration are also presented. The chapter also

consists of the result of the survey conducted to evaluate the confidence level of
the developers/testers. Each research question is discussed in Chapter 6. The

contribution to the research community and the threats to validity are also
discussed. Finally, Chapter 7 concludes the study and provides a short summary of

the thesis work carried out and also about the future work.

3

1. Introduction

4

2
Background

In this chapter, the theory and the background information related to this thesis
project is presented. Section 2.1 consists of the general context of the thesis

project. Whereas in Section 2.2, a short description of AUTOSAR and its software
architecture are presented and in Section 2.3, an introduction to CIViT has been

presented. Furthermore, in Section 2.4, various testing strategies are explained. In
Section 2.5, automated testing is described and in Section 2.6, a brief explanation

about continuous integration is described.

2.1 Case Company

The study is conducted in collaboration with a company located at Gothenburg,
Sweden. The company mainly works with developing AUTOSAR (Automotive

Open Source Architecture) products. AUTOSAR is a worldwide automotive
industry standard for automotive suppliers, manufacturers as well as other
companies who are involved in software development for the vehicles [4].

Furthermore, the company has their own product which is an Eclipse based
configuration environment tool for automotive software. The specific challenge is
that their AUTOSAR basic software needs to run on a large number of different

hardware which makes continuous integration particularly difficult.

2.2 AUTOSAR

AUTOSAR refers to “AUTomotive Open System ARchitecture” which is an
embedded platform reference architecture for the Electronic Control Unit (ECU)

software; founded in the year 2003. The software for the ECU can be developed as
completely hardware independent for the AUTOSAR layered architecture. The

idea behind AUTOSAR is to standardise the functionality of basic software, make
it easy to transfer the software, support different functional domains and to

develop highly dependable systems [4].
The introduction of AUTOSAR helps to handle the complexity of the architecture
and thus reducing the time and cost of production [5]. Furthermore, by adapting
AUTOSAR as a standard, the suppliers, manufacturers and the tool developers

benefit with regards to re-usability of the software, providing more opportunity to
design flexibility and gives clear rules for integration [4].

5

2. Background

2.2.1 Software Architecture

The AUTOSAR software is divided into three layers.

Figure 2.1: Layered Software Architecture [6]

As shown in the Figure 2.1, the top layer is the Application layer, which is
considered as the external or out of scope for the AUTOSAR standard.

Furthermore, the actual applications are contained in this layer which are used to
run on the ECU. Whereas, Run time Environment (RTE) is the second layer

which is responsible for providing the communication services to the above layer
which is the application layer. The communication between software components

at each ECU and between other ECUs occur via runtime environment [7].
The third layer is the Basic Software Layer (BSW) which is responsible for

providing an abstraction that is hardware independent to other layers.
Furthermore, the BSW interacts with the microcontroller to make it hardware

dependent and thus implementing this layer depends on the type of hardware used.

2.2.2 Basic Software Layer

The Basic Software Layer is further divided into three more layers. The Figure 2.2
shows the clear division of the layers. The layers are: Services layer, ECU

Abstraction Layer and MCAL.

6

2. Background

Figure 2.2: Basic Software Layers [6]

2.2.2.1 Services layer

It is the top most layer of the Basic Software that consists of the modules for
Memory services, ECU state management, Communication services and the
Operating systems. Its major responsibility is to deliver primary services for

applications, RTE and basic software modules [6].

2.2.2.2 The ECU Abstraction Layer (ECUAL)

This layer acts as an interface between the drivers in the Microcontroller
Abstraction Layer (MCAL) and to that of the layers present above the ECU

Abstraction Layer. Furthermore, the ECU Abstraction Layer serves the purpose of
making the upper software layers free of the ECU hardware design [6]

2.2.2.3 Microcontroller Abstraction Layer (MCAL)

The MCAL is situated at the bottom of the BSW layer which contains the internal
drivers and the modules present in this layer communicate with the MCU.

Furthermore, this layer makes the other higher software layers independent of the
hardware [6]

2.3 CIViT-Continuous Integration Visualization
Technique

The CIViT model is exclusively used to visualize the testing activities that are
taking place inside the company while developing the product and further makes it

easy to identify the present condition of the product in terms of quality.

7

2. Background

Furthermore, it provides a stage for discussion on where to improve the testing
strategy and to speedup the production process [8].

The CIViT model is concentrated on four types of testing: functionality, legacy
functionality, quality attributes, and edge cases. The figure below shows how these

elements are arranged in a CIViT model.

Figure 2.3: Arrangement of the types of testing activities
in CIViT model

The functionality testing is referred to testing of the functionality of the system
which is currently under development. Whereas, Legacy functionality testing is

concerned about the functions that already exists and checks if they still work as
per the requirements even after adding new functionality. Furthermore, quality
attributes testing like the performance, safety, reliability and security aspects

ensures that the system under test is in line with the specified quality
specifications. Finally, the edge case testing ensures if there are any unusual

circumstances that have come up from defects that were not detected in the early
stage and have been noticed only after some time [8]. The green color inside the
box depicts that the requirements are fully covered, whereas the red shows that

there is no coverage of the requirements. Orange color represents that the
requirements are partially covered. Furthermore, the border line of the box

explains about the level of automation at each stage. Green color shows that the
level is fully automated, whereas red illustrates that the level is manually tested.

Orange portraits that the level is partially automated. For the complete picture of
the CIViT and understandability, check Figure 4.1.

2.4 Testing Strategies
A test strategy is a process of drawing the software testing approach. In this paper
we use the following definition of test strategy based on [9, 10, 11] This approach
helps the developers and the testers to achieve the desired goal of testing. Mainly

the test strategy is based on the requirements specification of the development
process [9]. Having a test strategy means having a clear path for the testing levels,

as well as explicate the individual roles and responsibilities during test planning
[9, 11]. Furthermore, a good test strategy explains the risks involved in the

product being developed in a documented way and describes how these risks can
be reduced through detecting the errors at earlier stage. A test strategy is used as

8

2. Background

a technique to test the specification with user requirements. These techniques can
be either automated or manual or a mix of both [11]. Furthermore, for big

systems, executing huge number of test cases at one time might be difficult, and so
the test strategy is used to schedule the systems tests in a planned way [10]. This
means that there exists only one test strategy to follow for large systems and this

strategy shall have more than one test plan [9]. These plans are implemented
based on the goals to achieve.

Furthermore, a test strategy should be capable to support different levels of testing
i.e. acceptance tests, module testing, unit testing, integration testing and system

testing [11]
Having these levels within one test strategy will help to:

• make sure that the developed system is fully tested.
• describe the level of the tests to be conducted.
• have a clear path for validating the system.
• have a clear connection between the specification and customer requirements,

also the specification and the developed product.
• take care of prioritizing and scheduling the tests and allows for further updat-

ing in the system testing.
• increase the system maturity.
• allow to automate the tests in writing and executing them.

2.5 Software Testing
Software testing is an important phase in any software development process.

Testing of software is important because in this phase the main focus is to asses
the software for success, failing or any risk in the product at any step of the

development process [12]. Furthermore, such kind of testing helps to check if the
final product meets the customer requirements. The main outcome of testing the

software is to attain the required quality in the product being developed and
discover any potential threat or defects in the software. There are different kinds

of testing which can be implemented at different stages of the development
process. The selection of the type of test is based on the purpose of testing and at

each level of development.

2.5.1 Unit Testing
Testing the individual software components or a group of components is defined as

unit testing [13]. It is a method used to increase the accuracy and quality of
software [14]. This is the primary level of testing and the testing takes place by

performing unit tests remotely [15].

2.5.2 Integration Testing
Whittaker defines integration testing as: "Integration testing tests multiple

components that have each received prior and separate unit testing. In general,
the focus is on the subset of the domain that represents communication between

9

2. Background

the components" [13] . Integration testing is performed to test the integrated parts
of the software that are submitted by developers during the development process.

The implementation of integration testing is important in order to detect the
errors at an early stage until all the single components collaborate to form an
executable program. Such kind of testing is important in companies where the
development process is based on continuous integration. Here the testing takes
place at the module level and gives importance to the communication between

modules and their interfaces [16].

2.5.3 System Testing
System testing is also a kind of testing which is implemented at the end of

development process. The testing of the system is based on hardware and software
components or only software. It is mainly performed to check if the

system/product is developed as specified to the requirements. This is usually
considered as the final stage of testing, since the entire product is being tested and

verified whether it fulfills the purpose or not. Usually, the complete domain is
considered here [13].

2.6 Automated Testing
Another type of testing is “Automated Testing” which is considered as a key to

continuous integration. The Automated testing helps to test the running code [17].
Furthermore, it helps to shorten the system build so that the testing can be run

frequently. The automated testing allows the frequent testing which in turn allows
to early checking for the quality of the product and allows frequent deliveries.

Other benefits of having automated testing is to have reduced time for testing, and
make the tests much easier and funnier to work with. Furthermore, it improves the

visibility of the development process and communication.

2.7 Continuous Integration
Continuous Integration is an agile software engineering practice that most software
companies are working towards. The idea behind the continuous integration is to
allow the developers to integrate their code several times in a day. The frequent

integrating allows frequent builds and tests of the code. Martin Fowler in his
words defined continuous integration as -

“Continuous Integration is a software development practice where members of a
team integrate their work frequently, usually each person integrates at least daily -

leading to multiple integrations per day. Each integration is verified by an
automated build (including test) to detect integration errors as quickly as possible.”

[2]
The frequent integration of the code will allow to speed up the development

process, increase the value of testing by executing the tests from earlier stage. It

10

2. Background

also becomes easy to locate and fix the errors as soon as possible [2]. Implementing
such practices in the organization heps to deliver faster to the market.

11

2. Background

12

3
Research Methodology

In this chapter, a detailed description of the research methodology followed during
the thesis has been presented. The methodology used is the design science research

(DSR).

3.1 Design Science Research

The research methodology followed in this study is the design science research
(DSR) which is performed as an iterative process and each iteration consists of

four to five phases [18, 19, 20, 21]. The different phases in the design science
research are shown in Figure 3.1.

1. Investigation of Problem

2. Suggesting a Design
Solution

3. Validation of the Design4. Implementation

5. Evaluation

Figure 3.1: Different phases in design science research

For each regulative cycle, we implement the five phases: Investigation of the
Problem, Suggesting a design solution, Validation of the design, Implementation,

and last phase is Evaluation. Each iteration shall have a different focus on the
research. The output of each regulative cycle is considered as an input for the next

regulative cycle.

13

3. Research Methodology

The primary aim of this study is to understand how to build a suitable test
strategy for complex systems to adopt complete continuous integration. The main

element that differentiates the methodology used in this study from that of the
other methodologies is that, it has a unique way to deal with problems in order to
solve them. The method was found to be more suitable for this study because of
its design to find appropriate approaches to the study of learning phenomenon
which serves the human objectives [21]. The design research method helps to

analyse carefully the current status of testing processes in the study and how the
different elements of automated architecture are working out. Through this

research methodology, the study to identify the weakness in development process
and the areas that need further improvement in the software industry could be

found explicitly. Furthermore, the “Regulative Cycle” is a framework of the
research method that solves the problem in logical structure [19]. All this together

makes this method much suitable for this research. The different phases are
explained in detailed in the following subsections.

3.1.1 Investigation of the Problem

The main focus of this phase is to understand the problem statement and its
impact on the software development process, while asking all the questions that
helps to understand the current problem in more deeper sense. The reason for

investigating the problem is that, the company has a goal to improve continuous
integration process through improving their testing activities. Furthermore, the

focus is to diagnose the company’s goals. So, this shows that the investigation of
the problem is “goal driven” [19]. With respect to our study, during the problem of

investigation we started by searching related literature regarding continuous
integration and different test strategies. The results of this phase during all the

iterations were to have an understanding regarding the above mentioned domains
and further to investigate the kind of obstacles and challenges that prevent the

success of continuous integration. Furthermore, at this phase we gained a picture
about different test strategies and its benefits and drawbacks. During all the

iterations that took place while performing the study, the investigation phases
helped us to find and analyse the problem in a much deeper way.

In the Iteration 1, we analysed the current status of testing activities at the
company to find the challenges that prevent to achieve continuous integration.

Furthermore, the literature has provided extensive understanding regarding test
strategies within continuous integration. Whereas in the Iteration 2, we

investigated to find the possible solution for the problems that are related to
testing, through assessing the impact of these problems. In the Iteration 3, we

investigated more on how to improve the requirement traceability and its impact
on the tests. The outcome of this phase is the key for the next phase which is the

“Suggestion of a Design Solution”.

14

3. Research Methodology

3.1.2 Suggestion of a Design Solution
The focus of this phase is to come up with a set of solutions to the problem. These

solutions are identified based on the gathered information from the employees at
the case company and also from the literature review. The solution design is the
problem solver responsibility to come up with possible solutions to the company.

During this research the solution design is identified based on the outcome of
previous phase “Investigation of the problem”. The suggested solutions design
varies at each iteration based on the results of problem investigation at each

regulative cycle. An important thing that should be taken into consideration at
this phase is that, there are key employees to discuss and prioritise the suggested
solutions, also not all of these suggestions are able to be implementable [19]. It

depends on the discussions with employees in the industry who decides the most
appropriate or suitable solution. The outcome of this phase is an outline of a plan

which will be evaluated in the next phase.
The solution design of the Iteration 1 is to implement the CIViT workshop at the
case company with key employees involved. Details about the CIViT workshop can
be found in Section 4.1.4. While in the Iteration 2, the suggested design becomes
much clearer for all the parties to develop automated tests for the system level.

During the Iteration 3, requirement traceability for the tests developed was
suggested.

3.1.3 Validation of the Design
In this stage, the suggested solution design will be evaluated by related people to
decide whether the proposed solution helps the company to reach its goals [19].

During the research, in order to be able to determine the validity of the suggested
solution, we focused on having answers on how and would such suggestions satisfy
the criteria which were identified in the investigation of the problem phase. For the
first iteration, the design is validated with the industry and the academic people,

and they agreed upon the idea of implementing the CIViT model as a starting
point to visualize the current status of the testing activities at the company and to
come up with all problems in the specific areas the employees were engaged with.

The validation of the second iteration is that, the company agreed upon the
modification of long feedback loop found at system and release level and further,
the importance of creating the automated tests in these levels instead of manual
tests which prevent the continuous integration. In the Iteration 3, the suggestion
to trace the requirements with the developed tests was validated and accepted by

all the parties involved and carried out to the next phase.

3.1.4 Implementation
The suggested and evaluated design solution will be implemented in this phase.
The complexity of the implementation phase depends on the complexity of the

identified problem and design solution for that problem. In all iterations, usually
the implementation phase is represented in different forms such as, developing a
prototype, developing a software or developing a model. The implementation of

15

3. Research Methodology

Iteration 1, is conducting a CIViT workshop at the case company with key
employees. More details about the workshop are found in Section (4.1.4). While in

the Iteration 2, the implementation is to develop automated tests. More details
about this can be found in Section (4.2.4). The automated tests will be run on

daily basis instead of waiting until the release time. This in turn will reduce the
feedback loop and reduce the challenges that prevent the success of continuous
integration at the company. The implementation of Iteration 3, is to map the

requirements to the tests and report the results in HTML format. The detailed
results of this can be found in Section 4.3.4. The outcome of this phase is to

validate whether the implemented design solution addresses the desired goals.

3.1.5 Evaluation
This is the last phase of the regulative cycle. The outcome of the previous phase

i.e. Implementation phase, will be evaluated in order to analyse if the implemented
design solves the problem addressed. During all the iterations, this phase was

carefully performed in order to be sure about the design that is implemented met
the desired goal. The study that is performed in all the iterations gives us a clear

result that is attained during each phase of the iteration. This in turn helped us to
gain a comprehensible picture of what can be done for the following iterations.
Thus, the outcome of this phase is considered as an input for the next iterative

cycle.

3.2 Interviews and Surveys
In this study, both interviews and surveys are used to collect the qualitative data.
The surveys are used in research in order to give a strong evidence for the research

done [22].
Interviews are popular ways to collect qualitative data. There exists two types of

interviews that can be conducted to elicit data. The individual interviews are
conducted where an interviewer interviews a single person with a common agenda.

Whereas, focus group interviews commonly known as group interviews are
conducted by gathering people from similar background and discussing on a topic

which is set by the researcher. These interviews are conducted by either one or two
interviewers [23, 24].

Interviews can be structured in different ways. They can be semi-structured,
fully-structured or unstructured [25]. In fully structured interviews the questions

are determined and ordered. Whereas in semi-structured interviews, the
interviewer tries to elicit information as much as possible through conversations
though he or she has to prepare some predetermined questions [25, 24]. While in
an unstructured interview, the questions are neither determined nor ordered. The

questions would be mostly conventional for such kind of interviews [25].
During the study, a focus group interview was conducted as part of iteration one in
order to bring up the CIViT model for the company. The interview is in the form
of a workshop which lasted for an hour. It requires active involvement of researcher
during the group interview which is considered as a main ingredient for good data

16

3. Research Methodology

collection [26]. Furthermore, the focused group interview is semi-structured which
are almost identical in the way that they are quite casual in nature. This involves
participants to respond in their own views and bring up long conversations [24].
The focus group interview conducted at the company involved 5 key employees

who have more than four years of experience. Some semi-structured questions are
prepared and asked during the interview to elicit the information needed. While as
part of iteration 2, a survey was carried out to measure the confidence level of the
employee with respect to the company’s product and fixing the broken builds. The

questionnaire used for the survey can be found in Appendix A.2.

17

3. Research Methodology

18

4
Iterations

In this chapter, the work done during each regulative cycle is presented.
Furthermore, the results attained for each cycle have also been discussed.

4.1 Iteration 1: Implementing CIViT

The main purpose of this regulative cycle is to assess the current test activities and
be able to identify the key problems which needs improvement.

4.1.1 Investigation of Problem
In order to understand the current testing activities at the case company, we firstly

had a meeting with the industry related people and further participated in the
introduction week organised by the company to get familiar with their tools and to

have a better understanding of AUTOSAR. Furthermore, by using their tool,
which is an Eclipse based configuration environment for automotive software has
provided us experience to start up the research to understand the problems that
prevent continuous integration from the perspective of testing. Furthermore, to
envision the obstacles in testing. From the literature [17], mentioned the major

factors that effect the adoption of continuous integration as related to the mindset
of the developers, the tools for testing and the capability of the infrastructure. The

slow feedback loops of test results, testing the quality attributes lately and
misunderstanding of the end-to-end testing process are identified as challenges for

achieving successful testing [8].

4.1.2 Suggesting a Design Solution
In this phase, we aimed at further understanding the testing activities through
reading more related work. During the research, we found that the purpose of

CIViT model is to visualise the end-to-end activities of testing and further to focus
on the best ways to support the transformation towards continuous integration [8].
As a result, we concluded that the model can be used as a good starting point as a
test strategy that can guide us into knowing the company’s testing activities and

to have a visualised picture of their testing activities at different levels of
development processes and also build a stage for all the developers to bring up

discussions about the processes they follow.

19

4. Iterations

4.1.3 Validation of the Design
The idea was then discussed with supervisors at the case company as well as at

Chalmers university about the CIViT workshop and how the results of the model
would be providing us a full understanding about the processes that need further
improvement and identifying the problems involved. Apart from this, we attended

a workshop conducted by one of the authors of CIViT model and we got an
opportunity to validate our design against the original model. During the

discussions, it was found that the suggested design is appropriate and all parties
agreed upon the design.

4.1.4 Implementation
In this phase, the implementation of the design solution, i.e. the CIViT workshop
took place. The key employees at the company were involved in the discussion and

it lasted for an hour. The testing activities were discussed at each level of
development process. Through several discussions and debates, the CIViT model
was developed and by the end of the workshop, the model is validated again. The

outcome was discussed with the employees present during the workshop and
turned out satisfactory. The developed CIViT model at the CIViT workshop is

shown in Figure 4.1.

Figure 4.1: CIViT model from the case company

On the y-axis, the different types of testing activities (component level to
customer) are present and on the x-axis, the time taken (Once per release to
immediate/minutes) to perform the tests is present. The result is depicted as
follows: At the component level, the time taken for the tests is immediate and

some tests are fully automated whereas some of the tests involve the hardware, so

20

4. Iterations

making it partially automated. At the subsystem level, the feedback for the tests
is at an immediate level and here the tests are fully automated. Furthermore, at
the testing of the partial product is carried out on a daily basis and the tests are

fully automated. The testing at the full product and the release level is carried out
once per release and is carried out manually. At the component and the subsystem
level, the functional and the legacy requirements (Except for the subsystem level it
is partially covered) are covered completely. Whereas, for partial, full product and

the release levels, functional and legacy requirements are covered partially.
Furthermore, the quality and the edge cases are not covered at all.

4.1.5 Evaluation of Iteration 1

The goal of this iteration is to identify and assess the current test activities and
challenges involved. According to the developed CIViT model during the

workshop, it provided a rich and clear picture about different testing activities at
the company and the way they are arranged in the organization. The CIViT

workshop was used as a part of the test strategy in the study which has helped the
developers to gain an understanding regarding their tests and to find the missing
parts which needs more focus in future. The CIViT model specifically allowed to

assess and visualise about the improvements needed in testing activities in order to
address it and attain better support for continuous integration. Furthermore, from
the Figure 4.1, it is evident that the case company has partial testing activities on
“Edge Cases” and “Quality” which were only realised after the CIViT workshop.

This in fact has provided a clear information to the company on the areas to focus
in the future. Furthermore, the testing at the Full Product and Release level are
carried out at the same time with no enough time for improvement if any defects

are found at Full Product level testing. This is explicitly visible in the CIViT
model and found to be a need for improvement on the first hand. During the

workshop, it was also found that the developers have no explicit view of the testing
activities i.e. the visibility of the end-to-end testing activities is missing.

The model also enabled the company to check if any duplication of the testing is
taking place. The developers found that the CIViT workshop has given them an

opportunity to be able to discuss about the testing activities at different stages of
development processes and share the difficulties and solutions they found to

resolve some common problems. It was clear that there exists no duplicates in
testing activities and is a good sign for the company. Whereas, the feedback loops
at product level which is tested once in three months seems to take long time and
needed immediate action. Furthermore, testing done at this level is manual and
the need to automate the tests was recognised which also helps to move the Full
Product level testing to daily. It was further found from the results that on the
sub system level, building the tests takes long time which is not desirable by all

developers.
The major findings from the implementation of CIViT workshop in the Iteration 1

are summarised as shown in Table 4.1.

21

4. Iterations

Index Findings
1.1 Provided better understanding of the testing activities
1.2 The CIViT workshop can be used to assess and visualise test

strategy
1.3 Partial testing activities on ”Edge Cases” and ”Quality”
1.4 Tagging of the requirements is difficult when having several unit

tests for each module
1.5 Full Product and Release level testing is carried out at the same time
1.6 No explicit view of the end-to-end testing activities
1.7 No duplication of the testing exists

Table 4.1: Summary of the findings from Iteration 1.

The CIViT workshop further allowed us to discuss the challenges involved in the
development stages and we found one of the challenges is to map the requirements

specification with the test cases. We found that the software testing is an
important aspect of software development process which improves the correctness

of software and evaluates whether the software meets its requirement specifications
[27]. Thus, mapping the requirements with respect to the tests executed, is also

considered important in order to be able to trace the requirements easily and
lessen the time and effort to trace them later. The identified problem is addressed

in Iteration 3. We further found that there is a need for improving the testing
effort for better software development process to take place.

Later, after careful evaluation of the developed CIViT model, we concluded that
there are a set of challenges that are needed to be addressed. So we prioritised the

challenges based on the discussions with employees at the company.
Firstly, it is found that there is a need for automating the Full product level.

Currently, it is manually tested and through automating the tests, it is much likely
that the feedback loop time is reduced and an improvement in continuous

integration can be seen. Since, a right test strategy with good level of automation
helps to ensure the efficiency of test strategy which is considered to be very
important [28]. Secondly, another challenge that was found is to map the

requirement specifications with the test framework in order to be able to trace the
requirements with respect to the tests. Considering the level of severity and the

need, we prioritised to work on automating the tests in second iteration and
further with mapping of the requirements with the tests in the third iteration.
Furthermore, in order to execute the third iteration plan, it is needed to have

automated tests.
A questionnaire is also sent to the employees that participated in the CIViT

workshop to elicit their thoughts about testing and also to know if they face any
more challenges regarding feedback loops and tests that they did not want to

discuss in an open group discussion in workshop. The questionnaire can be found
in Appendix A.1. Considering all these issues, we prioritised the tasks that needed
improvement and we decided to go further with automating the tests as our first

priority.
According to the CIViT literature, the authors have successfully implemented the

22

4. Iterations

CIViT workshop to visualize the end-to-end test strategies at six companies [3]. In
our study, we implemented a similar workshop to visualize the test activities at the

company. Furthermore, we used the CIViT as a test strategy that helps to
visualize the activities as well as to find the challenges included in development

process. These challenges were later prioritised and implemented in the later
iterations. The suggested changes for making the full product to automated and

moving the testing activities to monthly or weekly is shown in the Figure 4.2.

Figure 4.2: CIViT model with suggested changes to the
company

Apart from this, the results obtained by implementing the CIViT workshop were
satisfactory for the company, since they were able to visualise their current status

in the testing activities and have a clear overview of the work processes. They
would like to implement such workshop on an yearly basis.

4.2 Iteration 2
The aim of this iteration is to reduce the testing efforts by making parts of system

level testing to automated from being manually tested.

4.2.1 Investigation of Problem
In this phase, the result from the first iteration is taken as a starting point for

refining the problem investigation in the second iteration. As mentioned in Section
5.1, it is found that there is a need for more focus on full product and release

levels. Since the testing at these two levels is carried out manually and have the

23

4. Iterations

longest feedback loop. So, the problem of investigation is to find an appropriate
way to solve the problem.

4.2.2 Suggesting a Design Solution
The suggestion in this iteration is to automate the tests at the full product and
release levels to reduce the effort needed to test in the last moment i.e. once in

three months. Furthermore, the plan to automate the tests is considered as a part
of the test plan that need to accomplish an effective test strategy. For the

suggestion to be implemented, there is a need to identify which tests should be
automated in the AUTOSAR Basic Software. After discussions with the employees

at the company, we found that the Abstraction Layer can be the first step to be
automated and tested. So, a suggestion was made to reduce the feedback time and

a plan is suggested to test the specifications on a daily or a weekly basis.

4.2.3 Validation of the Design
After suggesting the design, it is again validated by correlating it to the results

and discussions from the employees during the CIViT workshop. The reasons for
focusing on these two levels (Full Product and the Release) is that, the hardware is

included during the testing of the software and the lack of automated tests is in
fact taking lot of time to give feedback. Furthermore, making it difficult to fix the

errors that are found at these levels, due to the tests taking place in the last
moment before the release. Furthermore, we found from the discussion from the
employees during the CIViT workshop, the testing at the release level requires

extra effort from the employees to set up the test environment. All these indicate
to validate our suggested design.

4.2.4 Implementation
In this phase, the task to develop automated tests for the system level is

implemented. The initial plan was to develop and run them on a daily basis and
check the performance of the tests. As a first step in implementation, we

automated tests of Can Communication Stack along with the Memory Stack and
the Watchdog. Furthermore, as a later part of the implementation we automated
the tests for Ethernet. These tests are developed based on the test specification

that are followed for manually testing them at the case company. Furthermore, a
python test framework was taken as a base for automating the tests and to reduce
the effort for automation. During this phase, the software is run and tested on the

hardware i.e. the Electronic Control Unit (ECU). Finally, the test cases are
developed and the intended plan to automate the test specifications was

implemented.
In contrast, during this phase we also conducted a survey to measure the

confidence level of the employees in order to assess the impact of confidence level
of employees on fixing the broken builds. Details about the results of the survey

are found in Section 4.2.5.

24

4. Iterations

4.2.5 Evaluation of Iteration 2
The goal of this Iteration was to do automation at system level and with an

objective to getting to weekly or to a daily scope. Furthermore, we evaluated if
this is possible and whether tests could be run on a daily basis. The outcome is
successful and we developed automated tests using python framework, that are

used for testing the software at system level. The system included two parts: the
hardware and the software.

The tests were developed on top of the python test framework, based on a set of
test specification followed at the case company. Since, the automation on the
system level was missing; during this study we drew the path for the testing
infrastructure. This makes it easier to add the automated tests in future. As

discussed during the CIViT workshop in iteration one, the system level testing is
carried out just before the release, which possesses a major risk during the release
time. Errors could be found in the last moment and the delivery to the customer
can be delayed. In order to reduce this risk and further to improve the feedback
loop time, we automated the test specifications. Figure 4.3, shows the difference
between before and after test automation. The figure in the left panel shows the

result of the CIViT model after the workshop in Iteration 1. Whereas the figure in
the right panel, presents the changed CIViT model after implementing the

automated tests. In this, the testing at the full product level has been moved to a
daily basis. The tests on the system level are successfully automated. According to

the outcome suggested in Section 4.1.5, that the tests will be run on a weekly or
monthly basis; the suggested plan was modified and the tests are run on a daily
basis. The reason behind to shift the decision is to speed up the process of fixing

the errors as the information is fresh on the developers mind. This servers the
main core of achieving continuous integration.

Figure 4.3: Left panel: CIViT model from the case
company before test automation. Right panel: CiViT model

after after test automation.

Furthermore, before the tests were automated, it took almost an hour to perform
them manually. The time taken also differs from developer to developer to perform
these tests manually. If the system is set and everything required for the tests is in

place, it would take half an hour to an hour. In this case, if done by an
experienced developer. Whereas, if the developer is new to the system and

everything has to be set up from the scratch; it would take nearly half a day to

25

4. Iterations

perform these tests. This shows that the experience and time taken are directly
related in performing the tests. After we developed the automated tests, the time
taken to run these tests is less than a minute and this indeed satisfied the need of

the developers as well as reduced the effort needed in testing the system.

Furthermore, as a part of the results that we obtained in this iteration: there are
many hardware modules that are hard to implement and test. There is a need to

have the test automation on the system level for supporting these difficulties.
Otherwise, it is hard to perform the testing. Implementing the test for the system
level at an early stage allows to test the software gradually during the development
process and including the hardware. Also detecting errors as early as possible helps
to mitigate the faults faster when everything is still fresh on the developer’s mind.
As a part of our conclusion, it is possible to automate all the tests and it took four

weeks of our effort to develop these automated tests and run them successfully.

As discussed in Section 4.2.4, we focused on conducting a survey to assess the
confidence level of the developers within embedded systems (Appendix A.2). The

purpose of the survey is to analyse the behaviour of the developers and their
interest to fix a broken builds which can have an affect on the development

process. Also, if there is a lack of confidence level of employees then it would be
hard for them to follow the test strategy and understand its value in correct way.
This in turn can have an effect on the achievement of continuous integration. The

survey was conducted among 20 employees at the case company located at
Gothenburg and the experience level of the developers ranges between few months
to ten years of experience. This variation in the experience level, can also show an

effect on the results attained.

The confidence level may vary from one developer to another based on their
experience, work environment, backgrounds and many other reasons. The Figure
5.4, below shows the results of the survey and by carefully analysing it, we found

that a majority of the employees think that it is their responsibility to fix the build.

When asked about if they would really take responsibility to fix the build,
majority of them neither agreed nor disagreed. This shows that they were

interested in fixing the build but the confidence in fixing the build is actually
affecting it directly. Furthermore, forcing only few employees to take responsibility.

This in fact has provided a strong base for us to argue that testing of system
software is much more important to do in the early stages of the development, in

order to avoid the last minute rush to fix the errors.

26

4. Iterations

Figure 4.4: Evaluation of the survey for measuring
confidence level of the employees

In order to analyse the above founded results from the survey, we conducted
semi-structured interviews with three employees at the company. These interviews

helped us to investigate the reasons behind the lack of confidence level in the
employees. The major findings were that the complexity of the system and the

lack of overview of documented system architecture makes it hard for the
developers to understand the complete system. As well as, lack of expertise in

other parts of the system also leads to failure in fixing the builds as fast as
expected. For example, each employee feels that they are responsible for the part
of the project they take up and it is hard to find someone who is well versed with

the complete system knowledge. Apart from this we also found that the mindset of
the employees has an impact on the confidence level as well as taking the

responsibility in fixing the builds. For example, one interviewee said
"I mean some people that have that mindset, I am not the cleaning guy
and someone else has to do the cleaning, I only do a new development.
If you have that mindset, it will have to cost lots of cleaning work for
others."

This shows that, the mindset is directly effecting the success of continuous
integration. Furthermore, having the time to fix the builds is also found as a crucial
factor for all the above said aspects. Since, the developers find that the work they

are allotted to complete is their first preference and do not have time to fix the
broken builds. An other crucial finding is that, there is a lack of testing. According

to one of the interviewees, the code is developed and unit tested by the same
person. Making it difficult to cover all the test cases. This effects the confidence
level because they are missing different perspectives in testing which in turn the
developers are unable to assure that they cover every part of the specifications.

Thus, from the results of iteration two and the result of assessment of confidence
level of the employees, it is evident that the confidence level of employees and their

performance during the development process have an impact on achieving
continuous integration. The major findings from the Iteration 2 are summarised as

shown in the Table 4.2.

27

4. Iterations

Index Findings
2.1 Developing the automated test for the system level helped to

reduce the time and effort taken for testing.
2.2 Low confidence level of developers in fixing the build is directly affecting the

development process
2.3 Full Product and Release level are carried out at the same time.
2.4 Complexity in the systems prevent from fixing the problems quicker.

Table 4.2: Summary of the findings from Iteration 2.

The outcome of the Iteration 3 helped the developers to reduce the time taken for
testing as well as it meets their need for gaining quick feedback.

4.3 Iteration 3

The aim of this regulative cycle is to further improve the tests that are developed
during the Iteration two, through mapping the specified requirements in the

database to the corresponding test framework.

4.3.1 Investigation of Problem

In this phase, part of the outcome of the second iteration was considered as an
input for investigation for the current iteration. As mentioned from the Iteration
1, the challenge of requirement traceability is taken as a problem to investigate

and solve. Furthermore, during the Iteration 2, we faced some problems in tracing
the corresponding requirements to the tests that failed. Thus, a need for mapping

of the requirement specification to the tests developed was identified.

4.3.2 Suggesting a Design Solution

During this phase, the suggestion was to map the requirements and create a
connection between the requirement specification in the database and the test

framework. Furthermore, the result of the tests and the corresponding
requirements to these tests was planned to be visualised as a HTML report.

4.3.3 Validation of the Design

After suggesting the design, it was then discussed with the supervisors to validate
the value the design and assess its impact on solving the problem. Furthermore,
this problem has also been identified as one of the challenges faced during the

CIViT workshop and the plan has been approved as a value for improving
continuous integration.

28

4. Iterations

4.3.4 Implementation
During this phase, the suggested design to map and visualise the results of the

requirements covered was implemented. Due to the time constraint, the
implementation of this iteration has been divided into two parts. The first part is

to extract the requirements from the database and further run the tests framework.
The result of the tests have been combined with the related requirements and

visualized in the HTML report. The second part is to take the results of the tests
and re-sending them to the database. Thus, for this phase, we mainly focused on to
visualise the results in HTML report. The first part was successfully accomplished.

The Figure 5.5 below shows the final outcome of the implementation.

Figure 4.5: Result in HTML

As you can see from the Figure 4.5, the first column ’Requirement ID’ represents
the requirements from the database and the second column provides the ’Test Case

Status’ which is ’OK’ or ’FAIL’. Whereas, the third column represents the ’Test
Case Name’ from the executed test framework.

4.3.5 Evaluation of Iteration 3
The outcome of the third iteration was satisfactory. The results of the test

framework, from the Iteration 2 were taken as a base and further these results have
been merged with the related requirements in the database. Furthermore, all these

results have been developed into HTML table.
The solution now helps to visualise the requirements that are covered by the test

cases and in turn become much easier for developer/testers to check which
requirements have been covered corresponding to the test cases. The test cases

that have been passes or failed are also visible. This solution increase the
traceability of requirements during the development process. The ability of being
able to trace the requirements is considered as one of the important aspects of the
automated test and for attaining continuous integration. This is the last iteration

of this study and all the identified challenges (Figures 4.1 and 4.2) have been
addressed by the end of the iteration.

Apart from this, we also took feedback from the employees about the outcome of
the work carried out during the Iteration 3. The employees were happy and

satisfied with the outcome, since the implementation has added a value to connect
the requirements specifications to the tests. This further makes it easier for them
to locate the tests that failed and having a clear summary of the tests outcome.

29

4. Iterations

30

5
Results

5.1 Research Questions
In this section, the results of the thesis with regards to the research questions are
discussed. In the following subsections each research question has been discussed.

5.1.1 Research Question 1
What is the current test strategy?

This question answers about the current test strategy that are used during the
development processes at the organizations. The literature highlights the

importance of the test strategy to detect the errors and fix bugs in order to deliver
a product faster according to the customer requirements. Throughout our study,

we found an implicit test strategy in order to attain the goal of continuous
integration.

Firstly, in the Iteration 1 by conducting a CIViT workshop, we visualised the test
activities that take place within the entire development process and according to

the literature, the CIViT workshop was implemented among six companies and the
workshop successfully helped to visualize the test activities [8]. From this, we

concluded that the CIViT workshop can be applied as a visualising tool for testing
which can be implemented as a part of test strategy. The reason behind this is, the
CIViT provides a bird’s eye view of the current test activities and further provides
a clear picture of the backlogs and challenges being faced during the development
process. The CIViT model further is considered as a light way of documentation
for the test strategy in this study. Furthermore, helping us to prioritise the work

to be carried out in the future iterations. Conducting such kind of CIViT
workshop within a test strategy, shall definitely help any software developing

organization to have a visual path for their testing levels and allows to
continuously improve the test processes.

Secondly, as discussed under the Section 4.2 in Iteration 2, the plan to automate
the system tests for the software modules was chosen. Test automation and

execution is considered as one of the important aspects to achieve the goal of
testing and to reduce the time and effort taken to test the software by the

developers/testers. This will also help to fix the errors as early as possible. From
the literature, we found that there are many benefits from automating the tests
such as saving the time, improvements in the system implementation and also
reduces the effort needed for the developers to execute the tests [10, 29, 30].
Furthermore, for attaining a successful test strategy, having a good level of

31

5. Results

automation is very critical, especially in automotive testing [10]. This enhances the
importance of the automated testing as a strategy for complex systems.

Lastly, for the Iteration three, we mapped the requirements corresponding to the
tests executed and be able to visualise the results in HTML report. In order to

address the issues of requirement traceability and to make sure that the key
requirements are not ignored, the plan to map the tests and the requirements has

helped to solve those issues.
From all the three iterations that took place during the study, a good test strategy
for continuous integration should be able to visualize the different test activities of

the testing at various levels of development process. This helps to support the
cross functional teams and further helps the developers/testers to identify the
weaknesses and show a path for further improvement. Furthermore, the test
strategy should allow to automate the tests on the system level in order to

facilitate quick feedback and remove delays from manual testing. Having such an
automation shall help to reduce the effort needed in testing and to speed up the
development process. In turn, allowing to deliver the product to the customer on
time with minimal errors. Apart from this, a test strategy should be able to map

the requirements specification with the related tests in a proper way. Additionally,
such strategy shall ensure to have a good level of test coverage of requirements and
improves the system correctness in order to achieve the customer satisfaction [31].
Furthermore, executing the tests and making sure that the requirements are met,

is a key to have a successful product. This in turn shall help to attain high level of
quality [32]. This in fact helps the developers to navigate easily and act quickly to
fix the errors where necessary. All these above mentioned points are considered as
vital ingredients for all the software companies that strive to obtain suitable test

strategy for continuous integration.

5.1.2 Research Question 2
With respect to test strategies what are the challenges that prevent the success of

Continuous integration?
The answer for this question relies on the gathered data from two parts in the
study conducted. Firstly, from the literature review and secondly, from the the

findings at the case company. From the literature, we found that there are many
challenges that exists during the development process that prevent the success of
achieving continuous integration. One of the challenges identified is handling of
dependencies between the components of the system during different stages of

development process. Furthermore, lack of test framework is considered as one of
the most important challenges that affect the success of achieving continuous

integration [17]. Furthermore, the challenge also lies in the tools used for reviewing
the integrated code and its infrastructure. Having too many tools for the tests will

also effects the desired goal of testing. These are also considered as equally
important for attaining the continuous integration [33]. Furthermore, similar

results were identified that the lack of the testing tools and also lack of availability
of the test equipments may lead to affect the ability of automated tests. Also, the
lack of clarity in the requirements during the development process makes it hard to

32

5. Results

be traceable. The testing of the software at the later stage of software development
shall also cost lot of time and effort to fix the errors [31]. These challenges in turn
affect the probability of efficiency of test strategy that can be followed during the
software development process. Furthermore, preventing the success of continuous

integration.

Secondly from the study that took place during the thesis, it was also found that
the clarity of the requirements is an other challenge as well. The automated tests

emphasises on checking and testing the code on a daily basis. Especially with
companies in embedded software design, it is very important that the software is

tested on the hardware before the release and automating these tests from manual,
is considered as a qualification to attain continuous integration. This in turn can

enhance the quality and maintainability of software product during the
development. There were several other challenges that we found. The CIViT

workshop that was conducted during the first iteration has indeed helped us to
interact with the employees and trigger discussions on difficulties they have during

development process. Firstly, there was a lack of end to end testing. Not every
developer has a detailed insight of the testing activities. Secondly, the lack of
availability of automated test suites especially in the full product and release

levels. These levels are dependent on the hardware for the tests to take place and
the tests are carried out semi automatic which leads to consume a lot of time and

effort in testing the product.

Furthermore, from the survey conducted to measure the confidence level of the
employees at the case company has given a base to us to understand the challenges
that are being faced by them. We found that, due to the complexity of the system;

the employees find it difficult to fix the problems quicker in-spite of having a
genuine interest in fixing it. This also reflects on the confidence level of the

employees in fixing the errors. Lastly, we found that not everyone commit their
work every day which hinders the goal to attain the continuous integration. From
the literature and case company there are several challenges that were identified in

the Figure 5.1 below and also from where we gain these results.

33

5. Results

Index Challenges found Literature/Case Company

1 Dependencies between the components Literature & Case Company

2 Lack of test framework Literature

3 Test automation with hardware involved Literature & Case Company

4 The tools and the equipments used Literature

5 Lack of clarity in the requirements Literature & Case Company

6 Testing the software at the later stage Case Company

7 Lack of end-to-end testing Literature & Case Company

8 Complexity in the system Case Company

9 Confidence of the employees in fixing the errors Company

Figure 5.1: Summary of the challenges found from
Literature and Study from Case Company

5.1.3 Research Question 3
What is a/how is a suitable test strategy for Continuous Integration(CI)

characterised?
The answer for this question has been gathered from the three iterations

conducted during the study as well as from the literature review.
Based on the literature, the test strategy is all about illustrating the path of the

tests and defining the steps for the developers/testers [11, 12, 10]. It follows some
unique characteristics that make it suitable for supporting continuous integration.

Otherwise, it will be hard for the developers and testers to have an appropriate
testing that guarantee achieving a successful continuous integration.

A good test strategy for continuous integration should explicitly define the roles of
the developers/testers and further possess a clear description about what is to be

performed during the testing. The test environment is also equally important for a
good test strategy. Furthermore, to execute the tests there exists certain tools such

as manual, automated or mix of both [11]. The test strategy for continuous
integration is important to be automated to support its principles of getting a

continuous feedback on the tests. Having a clear description of the test level is one
of the important characteristics of test strategy for continuous integration.

Furthermore, a test strategy must have a clear implementation plan that helps to
specify the required time for testing and estimates the time taken for testing. The
test strategy should have a reasonable number of test cases to be run with a high

level of prioritization [30]. This helps the testers/developers to understand the
most important tests that need focus on to achieve a good quality of the code when
continuously integrating it. The clarity in requirements and clear definition of the
relation between the requirements and test activities is important. For example,

requirements that are not described properly and testing that takes place without

34

5. Results

traceability of requirements is considered as a challenge, that makes it hard for
developers to detect the location of errors and fixing them on time. [31]. From the
case company, the environment is also found to be an important characteristic for

a successful test strategy. For example, in order to perform the implementation
phase in the Iteration 2, we needed Windows x86 MSI installer and Python 2.7.11
to run the automated tests successfully. Finally, we also found that, a test strategy
must possess a clear synopsis of the tests results on daily basis. These reports can
be either presented in a PDF or HTML form for the convenience of the reader and

further these results shall include the related information of the tests that are
executed as well as describe the purpose of the tests and the outcome of it.

35

5. Results

36

6
Discussion

Through this study we can summarize the test strategy as a process of drawing the
software testing approach. Having a properly defined test strategy is consider as
an important part of testing process. Generally, a test strategy for any software

development process follows standard characteristics. When it comes to continuous
integration, not all these characteristics are equally important to support the test

process. The test strategy for continuous integration should allow testing
frequently the software and be able to visualize all the test activities to make it

clear for the developers/testers to understand the plan of testing. Furthermore, it
should also provide a clear traceability between the requirements specification of

the development process and the tests.
The test strategy should describe clearly all the test levels and the purpose of

these levels. Furthermore, it should also define the individual responsibilities for
the people involved. A clear plan for scheduling the time for executing the tests

and the testers should be able to prioritise the tests while following the test
strategy. From the Iteration 1, it is evident that the implementation of the CIViT
workshop helped to achieve the above mentioned points. Thus, the CIViT model

that is developed during the study can be considered as a part of the test strategy
that provides a simple way of documentation. It visualises various tests types at
different levels of development process, its periodicity, coverage level of tests and
the level of automation of the tests. Apart from this, we also found that a test
strategy for complex systems should allow the automation of tests and further

provide a clear report on the test results that are executed. Having a clear
traceability for the requirements is also equally important for the test strategy.
Which means, it should have a clear mapping between the running tests and its
related requirements. From the Iteration 2, the automation tests on the system

level meet these characteristics that are defined above. The implementation of the
second iteration, helped to have fully automated tests on the system level of the

software which reduced the time for testing and to improve the quality of the test
framework. Furthermore, the evaluation of Iteration 3, helped to address the issue
of requirement traceability. In this iteration, we provided a visibility between the

requirements and the related test cases. Furthermore, the results are reported in a
HTML form. This kind of reporting provides a clear information about the

requirements that are covered with regards to the executed test cases. It further
provides the status, if the tests have been passed or failed.

The figure below summarises various aspects of testing strategy that were found
during our study [9, 11, 10]. These aspects are important to follow for a test

strategy that supports continuous integration and how these aspects have been

37

6. Discussion

addressed during the study and the importance level of these aspects during the
study are indicted in the Figure 6.1. The filled circle is for high importance(i.e.

has been covered during the study), half filled circle means partially covered, while
the empty circle indicates that it is covered implicitly by CI test strategy.

Aspects of testing
strategy

Description How are they addressed? Importance
level

Test level
Test schedule

Test cases, Unit tests,
Integration Tests and
system tests

The CIViT model does align tests on
different level and give an overview of the
testing process.

Roles and Responsibilities For the test leads
(Developer/Tester)

Implicitly defined during the tests process.

Environmental
requirements

The Hardware and the
Operating system

Implicitly defined during the tests process.

Testing Tools Manual testing, Automated
testing or a combination of
both.

CIViT model gives an overview. It shows
that automation on system level is crucial
for continuous integration.

Test Priorities For the test cases CIViT model gives an overview and the
automated tests.

Requirements traceability Software requirements
specification

The automated tests and mapping the
requirements with the tests..

Test Summary Outcome of the tests in
documented form.

The result of the automated tests as well as
the HTML report.

Figure 6.1: The summary of test strategy characteristics
for continuous integration

The study shows an explicit way to have a test strategy that helps to support
continuous integration. The implication of implementing the CIViT workshop on
continuous integration is to have more emphasise on different testing levels. For
example, integration tests and system tests. Furthermore, it helps to empower
cross functional teams by clearly communicating test strategy. The automated
tests are equally important to meet the core of continuous integration, which is
frequent testing and short feedback loops. Apart from this, mapping of the test

cases to the requirements gives a clear layout to locate the errors directly and this
further makes it easier to fix the problems in a shorter time. Furthermore, shall
help to quickly meet the requirements specification and identify the one which

missed to be testes during the development process. In contrast, this improves the
quality of test strategy to support continuous integration through integrating

frequently and providing error free parts of the system and that will increase the
maintainability of the product.

Thus, from this study we conclude that having an explicitly defined test strategy
and well documented shall help to improve the testing strategy in any software

organization to support continuous integration.

38

6. Discussion

6.1 Threats to Validity
This section defines the validity threats based on the explanation by Runeson and

Höst [25].
Construct Validity: The evaluation of each iteration during our study took
place in the form of discussions among the academic supervisor as well as the
supervisor at the case company. The discussions also involved one of the key

employees to validate the work carried out during each iteration. These discussions
in fact have helped us to make sure that we have good study. Furthermore, a
questionnaire was sent to the participants of the CIViT workshop during the

iteration one, to evaluate the work carried out. Since, the workshop was in the
form of group interview, there is a risk here that the employees to be cautious in
what their talks. There is a high chance of not able to elicit proper opinion from

them. For this reason, a questionnaire was sent to validate their thoughts and this
in fact mitigated the risk of losing valuable information from them. Furthermore,

the survey questionnaire that was conducted to measure the confidence of the
employees with regards to fixing the errors; is filled by those who have less than a

year experience and more than four years of experience. The difference in the
experience, could have been shown an effect on the results attained.

Internal Validity: The tools used (such as the drivers) during for the testing
activity in the study, are new to us and took time to learn about them.

Furthermore, there are limited number of drivers that are available at the company
and it was shared between the employees and us. This has in fact showed a little

delay in our work, waiting for our turn to test.
External Validity: The study has been carried out at only one company and

thus the results obtained during the CIViT workshop, as well as the survey results
would be biased and seen in the context of the employees working in that

particular company. Thus, the findings of this thesis are largely based on the
information gathered from the case company and comparing the literature from

the academics. We have further tested our work at the case company and by
running our tests on two different environments(using different drivers). Due to

the time constraint and the availability of the concerned engineers, we limited the
testing of the automated tests on only one engineers system.

Reliability: The study was carried out by hugely relying on the feedback and the
suggestions from one engineer at the case company, since he is the only one who is
currently working on developing the tests. We have conducted the survey among
the developers present at the Gothenburg office of the case company; although it

has offices located in three other cities globally. The results obtained for the
survey are hugely relying on the developers opinion at Gothenburg office only.
Since, the majority of the developers are present in Gothenburg office and it

possesses a low threat to our study in terms of validation.

39

6. Discussion

40

7
Conclusion

This study focused on assessing the best test strategies for complex system, that
strives to accomplish continuous integration. There exists many test strategies
that could help to attain the goal. During this study, we identified that a test
strategy should be able to visualise a clear path of the testing activities for the
developer/tester, have a good level of automation with the ability to trace the

requirements. The CIViT, automation of tests and mapping the requirements with
the tests are considered as an important part of test strategy that supports to
attain continuous integration. Furthermore, during our study we found some
challenges that prevent the success of continuous integration from the side of

testing perspective. These challenges can be summaries as follows: Dependencies
between the components, lack of test framework, test automation with hardware
involved, the tools and the equipments used, lack of clarity in the requirement,

testing the software at the later stage, lack of end-to-end testing, complexity in the
system and confidence of the employees in fixing the errors.

Furthermore, we found that a good test strategy must have certain characteristics.
Using these characteristics as part of the test strategy shall improve the

productivity of this test strategy and makes it more attractive to use. These
characteristics can be summarized as follows: the need for clear documentation

and high traceability of the requirements, high flexibility in implementing an fixing
the errors, explicitly define the roles and responsibilities of the testers as well as

the project managers and choosing the correct tools for testing.
If all the above mentioned factors have been achieved, this will lead to have a

useful test strategy that guarantee achieving of a successful test environment which
is considered as a challenge that prevents the success on continuous integration.

41

7. Conclusion

42

A
Appendix

In this Chapter, the questionnaires that were sent out to the employees at the case
company during the study are presented.

A.1 Workshop questionnaire
The questionnaire was sent to the employees that participated during the CIViT

workshop to elicit their thoughts.
1. What is your position at the company?

� Developer
� Tester
� Combination of both
� Other

2. What are you responsible for? Please provide a short description of your day to
day activities at the company.

3. Does the long feedback loops at any point of development cycle disrupt your
workflow?

� Yes
� NO

4. If Yes. Please explain and give your thoughts. 5. If No. How do you avoid
disruption? 6. Was the CIViT workshop productive for you?

� Yes
� NO

7. If No, what was missing?

A.2 Survey questionnaire
The survey was conducted by giving out the questionnaire to the employees to fill

during the breakfast meeting at the case company.
Q1. Usually, I am strongly confident about the quality of product including my

latest change.
� Strongly Agree
� Agree
� Neither Agree Nor Disagree
� Disagree
� Strongly Disagree

I

A. Appendix

Q2. I always fear that the change introduce new problems.
� Strongly Agree
� Agree
� Neither Agree Nor Disagree
� Disagree
� Strongly Disagree

Q3. I think it is my responsibility to fix the build when failed after tests.
� Strongly Agree
� Agree
� Neither Agree Nor Disagree
� Disagree
� Strongly Disagree

Q4. I am confident enough to fix a build after the feedback from tests.
� Strongly Agree
� Agree
� Neither Agree Nor Disagree
� Disagree
� Strongly Disagree

Q5. I should take responsibility to fix the large build.
� Strongly Agree
� Agree
� Neither Agree Nor Disagree
� Disagree
� Strongly Disagree

II

Bibliography

[1] K. Beck, M. Beedle, A. Van Bennekum, A. Cockburn, W. Cunningham,
M. Fowler, J. Grenning, J. Highsmith, A. Hunt, R. Jeffries et al., “The ag-
ile manifesto,” 2001.

[2] M. Fowler, “Continuous integration [ONLINE],” "http://www.martinfowler.
com/articles/originalContinuousIntegration.html", (Date last accessed: 2016-
03-23).

[3] A. Nilsson, J. Bosch, and C. Berger, “Visualizing testing activities to support
continuous integration: A multiple case study,” in Agile Processes in Software
Engineering and Extreme Programming. Springer, 2014, pp. 171–186.

[4] AUTOSAR, “Autosar home [ONLINE],” http://www.autosar.org/, (Date last
accessed: 2016-03-24).

[5] D. Kum, G.-M. Park, S. Lee, and W. Jung, “Autosar migration from existing
automotive software,” in Control, Automation and Systems, (ICCAS 2008). in
Proc. International Conference on. IEEE, 2008, pp. 558–562.

[6] AUTOSAR, “Autosar home [ONLINE],” http://www.autosar.org/fileadmin/
files/releases/4-0/software-architecture/general/auxiliary/AUTOSAR_EXP_
LayeredSoftwareArchitecture.pdf, (Date last accessed: 2016-05-12).

[7] S. Bunzel, “Autosar – the standardized software architecture,” Informatik-
Spektrum, vol. 34, no. 1, pp. 79–83, 2011.

[8] A. Nilsson, The CIViT Model in a Nutshell: Visualizing Testing Activities to
Support Continuous Integration. Springer International Publishing, 2014, ch. 8.

[9] T. Excellence, “Testing excellence [ONLINE],” http://www.testingexcellence.
com/test-strategy-and-test-plan/, (Date last accessed: 2016-05-24).

[10] S. S. Barhate, “Effective test strategy for testing automotive software,” in In-
dustrial Instrumentation and Control (ICIC), 2015 International Conference
on. IEEE, 2015, pp. 645–649.

[11] P. Ammann and J. Offutt, Introduction to software testing. Cambridge Uni-
versity Press, 2008.

[12] A. Mathrani and S. Mathrani, “Test strategies in distributed software develop-
ment environments,” Computers in Industry, vol. 64, no. 1, pp. 1–9, 2013.

[13] J. A. Whittaker, “What is software testing? and why is it so hard?” IEEE
Software, vol. 17, no. 1, pp. 70–79, 2000.

[14] Y. Cheon and G. T. Leavens, “A simple and practical approach to unit test-
ing: The jml and junit way,” in ECOOP 2002—Object-Oriented Programming.
Springer, 2002, pp. 231–255.

[15] K. Naik and P. Tripathy, Software testing and quality assurance: theory and
practice. John Wiley & Sons, 2011.

III

"http://www.martinfowler.com/articles/originalContinuousIntegration.html"
"http://www.martinfowler.com/articles/originalContinuousIntegration.html"
http://www.autosar.org/
http://www.autosar.org/fileadmin/files/releases/4-0/software-architecture/general/auxiliary/AUTOSAR_EXP_LayeredSoftwareArchitecture.pdf
http://www.autosar.org/fileadmin/files/releases/4-0/software-architecture/general/auxiliary/AUTOSAR_EXP_LayeredSoftwareArchitecture.pdf
http://www.autosar.org/fileadmin/files/releases/4-0/software-architecture/general/auxiliary/AUTOSAR_EXP_LayeredSoftwareArchitecture.pdf
http://www.testingexcellence.com/test-strategy-and-test-plan/
http://www.testingexcellence.com/test-strategy-and-test-plan/

Bibliography

[16] H. K. Leung and L. White, “A study of integration testing and software re-
gression at the integration level,” in Software Maintenance, 1990, Proceedings.,
Conference on. IEEE, 1990, pp. 290–301.

[17] A. Debbiche, M. Dienér, and R. B. Svensson, “Challenges when adopting con-
tinuous integration: A case study,” in Product-Focused Software Process Im-
provement. Springer, 2014, pp. 17–32.

[18] R. H. von Alan, S. T. March, J. Park, and S. Ram, “Design science in informa-
tion systems research,” MIS quarterly, vol. 28, no. 1, pp. 75–105, 2004.

[19] R. Wieringa, “Design science as nested problem solving,” in Proceedings of the
4th international conference on design science research in information systems
and technology. ACM, 2009, p. 8.

[20] V. K. Vaishnavi and W. Kuechler, Design science research methods and pat-
terns: innovating information and communication technology. Crc Press, 2015.

[21] A. Collins, D. Joseph, and K. Bielaczyc, “Design research: Theoretical and
methodological issues,” The Journal of the learning sciences, vol. 13, no. 1, pp.
15–42, 2004.

[22] K. Kelley, B. Clark, V. Brown, and J. Sitzia, “Good practice in the conduct
and reporting of survey research,” International Journal for Quality in Health
Care, vol. 15, no. 3, pp. 261–266, 2003.

[23] S. E. Hove and B. Anda, “Experiences from conducting semi-structured inter-
views in empirical software engineering research,” in Software metrics, 2005.
11th ieee international symposium. IEEE, 2005, pp. 10–pp.

[24] R. Longhurst, “Semi-structured interviews and focus groups,” Key methods in
geography, pp. 117–132, 2003.

[25] P. Runeson and M. Höst, “Guidelines for conducting and reporting case study
research in software engineering,” Empirical software engineering, vol. 14, no. 2,
pp. 131–164, 2009.

[26] I. McLafferty, “Focus group interviews as a data collecting strategy,” Journal
of advanced nursing, vol. 48, no. 2, pp. 187–194, 2004.

[27] B. Zachariah, “Analysis of software testing strategies through attained failure
size,” Reliability, IEEE Transactions on, vol. 61, no. 2, pp. 569–579, 2012.

[28] M. E. Khan, “Different forms of software testing techniques for finding errors,”
International Journal of Computer Science Issues, vol. 7, no. 3, pp. 11–16, 2010.

[29] E. H. Kim, J. C. Na, and S. M. Ryoo, “Test automation framework for imple-
menting continuous integration,” in Information Technology: New Generations,
2009. ITNG’09. Sixth International Conference on. IEEE, 2009, pp. 784–789.

[30] A. A. Sawant, P. H. Bari, and P. Chawan, “Software testing techniques and
strategies,” International Journal of Engineering Research and Applications
(IJERA), vol. 2, no. 3, pp. 980–986, 2012.

[31] A. Kasoju, K. Petersen, and M. V. Mäntylä, “Analyzing an automotive testing
process with evidence-based software engineering,” Information and Software
Technology, vol. 55, no. 7, pp. 1237–1259, 2013.

[32] Z. A. Barmi, A. H. Ebrahimi, and R. Feldt, “Alignment of requirements speci-
fication and testing: A systematic mapping study,” in Software Testing, Veri-
fication and Validation Workshops (ICSTW), 2011 IEEE Fourth International
Conference on. IEEE, 2011, pp. 476–485.

IV

Bibliography

[33] H. H. Olsson, H. Alahyari, and J. Bosch, “Climbing the" stairway to heaven"–a
mulitiple-case study exploring barriers in the transition from agile development
towards continuous deployment of software,” in Software Engineering and Ad-
vanced Applications (SEAA), 2012 38th EUROMICRO Conference on. IEEE,
2012, pp. 392–399.

V

	Introduction
	Purpose of Study
	Statement of Problem
	Research Questions
	Scope and Limitations
	Structure and Contributions

	Background
	Case Company
	AUTOSAR
	Software Architecture
	Basic Software Layer
	Services layer
	The ECU Abstraction Layer (ECUAL)
	Microcontroller Abstraction Layer (MCAL)

	CIViT-Continuous Integration Visualization Technique
	Testing Strategies
	Software Testing
	Unit Testing
	Integration Testing
	System Testing

	Automated Testing
	Continuous Integration

	Research Methodology
	Design Science Research
	Investigation of the Problem
	Suggestion of a Design Solution
	Validation of the Design
	Implementation
	Evaluation

	Interviews and Surveys

	Iterations
	Iteration 1: Implementing CIViT
	Investigation of Problem
	Suggesting a Design Solution
	Validation of the Design
	Implementation
	Evaluation of Iteration 1

	Iteration 2
	Investigation of Problem
	Suggesting a Design Solution
	Validation of the Design
	Implementation
	Evaluation of Iteration 2

	Iteration 3
	Investigation of Problem
	Suggesting a Design Solution
	Validation of the Design
	Implementation
	Evaluation of Iteration 3

	Results
	Research Questions
	Research Question 1
	Research Question 2
	Research Question 3

	Discussion
	Threats to Validity

	Conclusion
	Bibliography
	Appendix
	Workshop questionnaire
	Survey questionnaire

