

Department of Computer Science and Engineering

CHALMERS UNIVERSITY OF TECHNOLOGY

UNIVERSITY OF GOTHENBURG

Göteborg, Sweden, June 2009

A Performance Profiler for Aiding in Threading

Legacy C/C++ Code

Master of Science Thesis

CHRISTIAN KINDAHL

The Author grants to Chalmers University of Technology and University of Gothenburg

the non-exclusive right to publish the Work electronically and in a non-commercial

purpose make it accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the Work

does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a

publisher or a company), acknowledge the third party about this agreement. If the Author

has signed a copyright agreement with a third party regarding the Work, the Author

warrants hereby that he/she has obtained any necessary permission from this third party to

let Chalmers University of Technology and University of Gothenburg store the Work

electronically and make it accessible on the Internet.

A Performance Profiler for Aiding in Threading Legacy C/C++ Code

Christian Kindahl

© Christian Kindahl, June 2009.

Examiner: Sven-Arne Andréason

Department of Computer Science and Engineering

Chalmers University of Technology

SE-412 96 Göteborg

Sweden

Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering

Göteborg, Sweden, June 2009

Abstract

There are software tools for aiding and automating the process multi-threading
sequential programs that rely on complex static analysis. On large programs the
analysis can be too heavy to be practically performed on the entire program. As a
result a method is needed for effectively selecting which parts of a program to focus
the analysis on. A suitable tool for this purpose is a performance profiler.

This thesis aims at describing the design and implementation of a low-overhead
performance profiler for aiding the analysis. It addresses the task with a require-
ment on operating system and processor architecture portability. The profiler uses
a sample based strategy in combination with call stack analysis for collecting infor-
mation on hot spots and hot paths. It allows profiling based on execution time as
well as other metrics such as cache misses, specific arithmetic operations and more.

Benchmarking the profiler with programs from the SPEC CPU2000 suite shows an
overhead between 1% and 4% while still retaining a high degree of accuracy.

Sammanfattning

Det finns mjukvaruverktyg för att underlätta och automatisera parallellisering av
sekventiella program som använder sig av komplex statisk analys. P̊a stora program
kan analysen bli för tung för att vara praktiskt genomförbar p̊a hela programmet.
P̊a grund av detta behövs en metod för att välja ut vilka delar av programmet att
fokusera analysen p̊a. Ett lämpligt verktyg för detta är en prestandaprofilerare.

Den här rapporten syftar till att beskriva designen och implementationen av en pre-
standaprofilerare vars syfte är att underlätta analysprocessen. Uppgiften attack-
eras med kravet att profileraren skall vara portabel över s̊aväl operativsystem som
processorarkitekturer. Profileraren använder sig av en samplingsbaserad strategi i
kombination med analys av anropsstacken för att samla information om program-
mets beteende under körning. Profileraren till̊ater profilering med avseende p̊a ex-
ekveringstid och andra enheter som till exempel cache-missar, specifika aritmetiska
operationer med mera.

Prestandaevaluering av profileraren p̊a program fr̊an SPEC CPU2000-sviten visar
en overhead mellan 1% och 4% samtidigt som hög precision erh̊alls.

3

Contents

1 Introduction 6

1.1 Background . 6

1.2 Problem Definition . 6

1.3 Purpose . 7

1.4 Scope . 7

1.5 Assumptions . 7

1.6 Nema Labs . 8

2 Method 9

2.1 Analysis . 9

2.2 Design . 9

2.3 Implementation . 9

2.4 Evaluation . 10

3 Theory 11

3.1 Profile Summaries . 11

3.2 Data Gathering . 12

4 Analysis 15

4.1 Data Gathering . 15

4.2 Data Management . 22

4.3 Data Analysis . 30

5 Results 33

5.1 Profiler Implementation . 33

5.2 Profiler Correctness . 36

5.3 Profiler Performance . 41

6 Discussion 45

6.1 Summary . 45

6.2 Conclusions . 46

6.3 Future Work . 47

4

References 49

Glossary 52

A User Documentation 53

A.1 Introduction . 53

A.2 Tutorial . 53

A.3 User Guide . 54

A.4 Reference Manual . 55

A.5 Installation Guide . 55

B System Documentation 57

B.1 System Specification . 57

B.2 Detailed System Specification . 60

B.3 Testing Guide . 63

B.4 Testing Protocol . 63

B.5 Remaining Work . 63

C Profiler Comparison Matrix 64

5

1 Introduction

1.1 Background

The current trend in computer architecture is to add more computing cores to one chip
instead of the previous trend to increase the clock frequency of a single core. The number
of cores per chip will soon increase rapidly and in order to take advantage of the extra
computing power software needs to be rewritten. Rewriting software designed for single
core systems to utilize multiple cores is a difficult task; it’s desirable to automate this
process using software.

Software development tools have had a difficult time adapting to this trend. One reason
is the high complexity of software. While there are theoretical algorithms capable of ana-
lyzing entire software systems in order to make them parallel, none of them are practical.
The analysis is a very time consuming process.

One approach to this problem is to selectively choose which parts of the program to
analyze. A good tool for that is a performance profiler. A performance profiler (from
here on referred to as profiler) is software capable of analyzing another program, creating
a profile of its runtime characteristics. A profiler can for example obtain information
about procedure execution times, call frequencies and advanced processor details such as
the number of cache misses, memory accesses and more. This information can be very
valuable when selecting which parts of a program to analyze for making it multi-threaded.

1.2 Problem Definition

Performance profiling is not a new concept; it has been around for centuries [2]. Different
profiling techniques with varying accuracy have been suggested in both scientific papers
and practice, but most of these techniques have not been developed with operating system
and processor architecture portability in mind.

This thesis aims at finding a solution for and implementing a platform portable perfor-
mance profiler that is capable of generating profiles with the information and accuracy
that is needed when multi-threading originally sequential C and C++ applications. From
within that context this thesis tries to address the following problems:

• Data Gathering - Run-time information must be collected from the profiled pro-
gram. What kind of data can be collected and how can it be obtained?

• Data Management - The run-time data must be managed in a space and perfor-
mance efficient manner in order to minimize the profiler overhead. What strategies
and algorithms are suitable for this purpose?

• Data Analysis - The last step is to analyze and post process the data, presenting
it in a way that makes it useful.

6

1.3 Purpose

This thesis project aims at designing and implementing an operating system and processor
architecture independent performance profiler for aiding the process of multi-threading
sequential software. This report serves the purpose of documenting the entire process
from analysis to evaluation.

1.4 Scope

For UNIX flavored operating systems there are free open source profilers that not sur-
prisingly claim a certain degree of architecture independence. These profilers are tightly
bound to UNIX flavored operating systems, excluding support for Microsoft Windows
and other closed source operating systems [9][10][16]. There are also other proprietary
profilers that claim support for Microsoft Windows and GNU/Linux specifically but these
can only be used on the Intel x86 architecture [8][15]. There is a gap for profilers satisfying
both operating system and processor architecture portability.

Even though this project aims at developing a platform independent performance profiler,
special sub components will have to be specifically developed for each operating system
and processor architecture. Because of limited time it’s not possible to include support
for all platforms in one step. Instead focus will be put towards a portable design and
architecture that relatively easily can be extended with support for additional operating
systems and processor architectures. The primary target of this profiler is the GNU/Linux
operating system and the x86 and x86-64 architecture.

1.5 Assumptions

Apart from being portable across platforms the purpose of the profiler is to aid the
analysis of multi-threading originally sequential C and C++ programs. This implies a
few requirements that need to be known from the beginning:

• The profiler does not necessarily have to support profiling parallel programs al-
though it can be desirable to evaluate the performance improvements once a se-
quential program has been parallelized.

• The applications to be profiled are written in either C or C++ which means that
they will be compiled to machine code and not any intermediate byte code.

• Although not required, the parallelization analysis algorithm appreciates perfor-
mance statistics on source line level.

• Program procedures can be executed in different contexts, it’s useful to know the
context during the analysis process. The profiler must be able to distinguish be-
tween different execution paths leading up to an individual statement or procedure.

7

1.6 Nema Labs

The profiler developed in this thesis is intended for integration in a software product
called FASThread developed by Nema Labs. Nema Labs is a privately held company
specialized in providing software development tools for taking advantage of the extra
computing power in multi-core and multi-processor systems.

Nema Labs currently employs a team of software engineers and other key individuals,
all lead by Professor Per Stenström who is a key scientific contributor in the field of
multi-core processors. Nema Labs was founded in 2006 and continues to grow strong. At
the time of writing the Nema Labs staff includes about ten employees.

FASThread is a product aimed at introducing parallelism in existing C and C++ software
systems. The key idea is to make this process as easy and automated as possible for the
software developers using FASThread. FASThread addresses the key challenges of this
task and introduces a workflow for solving this problem. In this process performance
profiling is a key component.

8

2 Method

The thesis work was divided into four steps. These steps overlap as new information was
discovered along the way.

2.1 Analysis

The first step was to explore different profiling techniques and profilers. A literature
study on runtime performance analysis was performed and existing profilers was studied.
Most scientific articles were found in the ACM and IEEE Xplore databases, all other
articles were found in local university databases.

When enough knowledge had been gathered the software requirements were redefined
and a profiling technique was selected.

2.2 Design

The second step was to create a software design. In order to do this, features were
grouped into different building blocks in order to categorize them as operating system or
processor architecture specific. The goal was to find the largest common divisor among
all platforms. Finding the blocks required in-depth studies of different architectures and
operating systems. These studies involved reading manuals, low level Application Pro-
gramming Interfaces (APIs) and reverse engineering. Small proof of concept applications
was developed on both GNU/Linux and Microsoft Windows in order to establish the
availability of certain features.

When all blocks had been discovered a software architecture was developed. Lastly a
class level design was created.

2.3 Implementation

The implementation was carried out in a test-driven fashion. Unit tests were used when
possible. Unfortunately, the complex nature of the project prevented some parts of the
kernel code from being unit tested. These parts were tested at a higher level using
automated shell scripts.

The implementation was regularly compiled and tested on different computer systems
including 32- and 64-bit AMD and Intel x86 systems. Small test programs were profiled
in order to validate the correctness of the profiler implementation.

9

2.4 Evaluation

When evaluating the profiler it was compared to existing profilers. Programs from the
SPEC CPU2000 benchmark was profiled and timed in order to compare both correctness
and performance.

10

3 Theory

This section provides background theory on software profiling, starting with different
types of profile summaries followed by key topics in profiler implementation.

3.1 Profile Summaries

There exist different types of profiles that summarize the data collected by a profiler.
The most common are “flat”, “call graph” or “call tree” profiles [1], these are briefly
presented in this section.

3.1.1 Flat Profiles

Flat profiles explain how much time that is spent in individual procedures. Depending
on the type of profiler this information is sometimes complemented with procedure call
frequencies. Flat profiles are helpful in determining in which routines a program spend
most of its execution time. They do not provide any contextual information on the
program flow leading to a procedure call. Figure 1 shows what a flat profile can look like.

main0 10.1

function_320 12.0

function_225 22.4

3 function_15.355

function namecallstime (s)%

Figure 1: Example of a flat profile.

3.1.2 Call Graph Profiles

Call graph profiles break down flat profiles by separating between procedure callers and
callees. In the call graph, nodes represent the procedures and the arcs the procedure calls.
The arcs are often noted with call frequencies and the nodes with procedure execution
times [2]. Call graph profiles help answering why a certain procedure is executed. Figure
2 shows an example of a simplified call graph profile.

3.1.3 Call Tree Profiles

In a call tree each node represents a procedure call. A child node represents a call to
that procedure from the procedure that the parent node represents. Call trees contain
more information than call graphs because they use separate nodes for calls that occur
in different contexts [11]. Call graphs on the other hand use the same node for all calls
to that procedure. Figure 3 shows an example of a simplified call tree profile.

11

function_1 function_2

function_3main 1

113

Figure 2: Example of a call graph profile.

function_1 function_2 function_3

main

function_2

function_1 function_1

Figure 3: Example of a call tree profile.

A well known variation of the call tree is the call context tree which sometimes is better
suited for implementation since it is more compact and requires less memory [14]. Call
context trees reuses the same nodes for identical contexts. In the example showed in
Figure 3 it would mean that all calls from main to function 1 would be represented as a
single node with the arch from main to function 3 attributed with the value three.

3.2 Data Gathering

The first step of software profiling is to collect data during execution of the profiled
program. Most software profilers collect information about execution time and call fre-
quencies of procedures and/or statements [13]. Profiling literature is dominated by two
strategies for collecting this type of data, sampling and instrumentation [1]. Both have
very different characteristics and trade-offs. Because of this they are sometimes used in
combination with each other, for example in the most widely used call graph profiler
gprof [2][6]. While gprof primarily is instrumentation based it uses sampling to count the
time spent in individual procedures.

A third profiling strategy to be mentioned just briefly is simulation. Using this tech-
nique the profiler simulates every instruction in the profiled program, without letting
any instruction execute directly on the host system. This technique is not an option for
the profiler in this thesis, simulating an entire processor instruction set is a huge step
backwards in terms of processor architecture portability.

12

3.2.1 Instrumentation

Instrumentation is the process of extending a program with additional instructions that
will collect data that is required for performing a program analysis. In the context of
this report instrumentation is used to generate a performance profile, other uses are
memory debugging and memory leak detection [27]. Instrumentation is applied on either
program source code or directly on a program binary. Source code instrumentation can
be done manually by a software developer [3] or automatically by for example a compiler.
The GNU Compiler Collection (GCC) is an example of a compiler system that supports
automatic source code instrumentation [4].

Compared to source code instrumentation, binary instrumentation is more complex to
implement but it has the advantage that the source code is not needed for the programs
to profile. This allows a profile to expand over system libraries where the source code may
not be available. Inserting additional instructions into a binary executable is not trivial.
The address of all instructions following the inserted instructions will be shifted, causing
jump and branch addresses to be invalid unless corrected [5]. This can be circumvented by
replacing the instructions where the instrumentation should be done with jumps to new
routines where the replaced instructions and instrumentation is executed. This avoids
the address shifting problem but unfortunately introduces extra overhead because of the
extra jumps and possibly also cache misses.

Because of the nature of instrumentation it’s important to keep the number of instru-
mentations to a minimum. The inserted instructions run within the profiled program’s
process, if not efficiently implemented or inserted at bad places the instrumentations
themselves may affect the programs performance yielding inaccurate profile results. This
is especially apparent in programs using many small procedures in which the instrumen-
tation account for a larger share of the procedure’s total execution time [6]. If small
instrumented procedures have high execution frequency the resulting profile may be se-
riously misleading.

In order to minimize the impact of the above problem, a majority of the existing in-
strumenting profilers allows only procedure blocks to be instrumented, not individual
statements [1]. Analyzing what is causing a certain behavior inside a procedure must be
done manually by a software developer.

3.2.2 Sampling

Sampling is the process of taking samples from the context of the program being pro-
filed. A sample contains the value of the instruction pointer register and usually also
additional information necessary for tracing which procedure calls that lead up to the
sampled instruction. On many processor architectures this information can be obtained
by analyzing the profiled program’s call stack.

An attractive property of sampling is that it can be used in an unobtrusive process. It
allows the profiler to operate completely independently from the process being profiled.
One advantage with this property is that unlike instrumentation it does not introduce

13

biased performance slowdowns in the profiled process. It has also been shown that the
overhead of profilers using sampling can be as low as 2%-7% which is an order of mag-
nitude lower than instrumenting profilers [6]. Sampling is considered to be a modern
approach to profiling, thus being used by many modern profilers [8][9][10][12].

The low overhead of sampling comes at the cost of accuracy. Sampling is a statistical
method yielding approximate results. Instructions executed between samples will pass
unnoticed, but on the other hand they are likely to be noticed in other samples if having a
significant impact on the performance. Even though the accuracy increases with a smaller
sampling period, smaller sampling periods increase the profiler’s performance overhead.
For finding hot spots or hot paths perfect accuracy is not critical [1].

In the context of profiling, approximation is not only a bad thing. A common profiling
problem is how to store all collected data while profiling. The data collected by a profiler
can grow very rapidly; especially if the profiled program contains many small procedures
(which are common in object oriented software [11]). Approximation by sampling reduces
the memory space requirements because not every procedure call will be registered [11].

Another interesting advantage of sampling is the possibility of calculating instruction
level cost. This is possible because each sample contains the exact instruction in execu-
tion. Pinpointing exactly where most resources are being consumed inside a procedure
is advantageous; [1] greatly empathizes the importance of this aspect and argues that it
can be very difficult to locate a bottleneck by just knowing what procedure it’s located
in.

It is often desirable for a profiler to generate either a call graph or call context tree
profile in order to present the context of procedure calls. This is very straight forward
when using instrumentation, but difficult when using sampling. The problem is that it’s
difficult to know what have happened between samples. Two samples may evaluate to the
same execution path, but there is no easy way of telling which procedures in the second
path that has been revisited since the first sample. Knowing this is essential in order to
build a call graph or call context tree. To solve this problem each procedure invocation
needs to be flagged upon visitation in order to know which procedure calls that has been
visited and which have not. [11] suggest an efficient way of doing this, without inserting
additional instrumentations. Their solution involves using the least significant bit of the
procedure’s return addresses. This bit is ignored on some processor architectures.

14

4 Analysis

This section discusses the topics of data gathering, data management and data analysis
with respect to the requirements on the profiler in this thesis. This section assumes
familiarity with the performance profiling concepts described in section 3.

4.1 Data Gathering

While in the context of multi-threading sequential software perfect call frequencies can
be useful (to calculate the time spent in each procedure invocation), instruction level
profiling is a much more attractive property because it can identify loops and other
heavy operations within a procedure. This information is highly valued because it allows
the multi-threading analysis to be directed at more specific targets.

A major drawback with sampling is that compared to source code instrumentation, sam-
pling requires a larger portion platform specific source code. Binary instrumentation
is even worse than sampling in this aspect since it involves manipulating machine code
directly. The advantages of sampling: low overhead, unobtrusive, system-wide and the
possibility to obtain other characteristics such as cache misses makes it the choice for the
profiler in this thesis.

This section explains how to collect data using sampling and which data that is needed
in order to generate a useful profile.

4.1.1 Sampling Method

As in any other context using statistical sampling a sampling method must be established.
Two different methods were considered for the profiler in this thesis, simple random
sampling and systematic sampling.

Using simple random sampling the profiled application would be sampled at random in-
tervals. While running multiple profiling sessions on the same application would yield
very accurate results on average, a single profile would likely be biased due to the ran-
domness of selecting each sample. This sampling error makes simple random sampling an
unsuitable method unless profiling is performed multiple times on the same application
to create an average profile. An advantage with this method is that it’s relatively easy
to implement compared to systematic sampling.

Systematic sampling involves sampling the profiled application at regular intervals. These
intervals must be measured in units relative to the profiled application. For example if
systematic sampling is carried out with respect to execution time, the intervals must be
measured in local execution time of the profiled program, not in real time. The reason
for this is that many programs may be running, sharing execution time on the system.
This gives raise to some technical implementation problems that will be discussed later.

A major advantage with systematic sampling is that the accuracy can be changed by
changing the sampling period. By using an adequately small sampling period it is possible

15

to obtain a representative performance profile by profiling only once. A drawback is that
systematic sampling is vulnerable to periodicities. If the profiled program performs some
activity only between samples the activity will pass unnoticed.

The advantage of only having to profile once makes systematic sampling better suited for
profiling. It’s likely that some programs that will be profiled will have very long execution
time thus making simple random sampling impractical. Systematic sampling is therefore
the choice for this profiler.

4.1.2 Sampling Mechanism

Up to this point systematic sampling has been selected as the sampling method to use,
but some mechanism is required in order to determine the sample intervals. The first
most obvious that comes to mind is to use time, but modern processors also includes
Hardware Performance Counters (HPCs) enabling sampling based on other metrics. Both
mechanisms are of interest for the profiler in this thesis.

Time-based Sampling

There are a few different ways of implementing systematic time-based sampling. Three
different strategies have been found and explored for use in this profiler.

The first strategy is to have a timer that decrements only when the profiled application
runs or when a system library runs on behalf of the profiled program (note the difference
to standard real-time timers). Sampling would then be triggered when the timer expires.
This method is somewhat problematic because it requires special support from the un-
derlying operating system. Operating systems compatible with the Portable Operating
System Interface (POSIX) do provide such a timer, however it’s only accessible from the
application itself. It’s in other words not possible for an external process (the profiler)
to use such a timer on another process. One could make use of these timers by instru-
menting the profiled application, but since other operating systems including Microsoft
Windows does not provide this type of timer it’s not a good solution.

Another strategy would be to sample in real-time (using a standard software timer),
independently from the profiled application. In order to do this some method is required
in order to relate real-time to local execution time of the profiled application. This can be
done by weighing each sample according to how much time the profiled application spent
executing since the previous sample. It may be the case that the profiled application
did not execute at all between two samples. For example, it may have stopped waiting
for user input. If the profiler does not weigh the samples it will put as much value to
instructions not it execution as those in execution.

In order to calculate the weight of a sample the process must be timed. Timing a process;
that is obtaining the exact accumulated execution time at any given time can be exploited
to break cryptographic systems [17]. In a timing attack the attacker tries to break a
cryptographic system by measuring the execution time of various parts of a cryptographic
algorithm. Because of this obtaining a process’s accumulated execution time is prohibited

16

on many operating systems (Microsoft Windows is an exception). This restriction makes
it difficult to attribute weights to the samples making this sampling strategy unsuitable.

A third strategy is to use system-wide sampling. System-wide sampling is a technique
often used by kernel profilers [8][28]. It involves using real-time sampling, but instead
of sampling a single process every process is sampled. This makes it possible to detect
if a process of interest is not executing since the profiler in that case would hit another
process when sampling. This solves the timing problem of the previous strategy.

While system-wide profiling does not require the same type of operating system timing
facilities as the previous strategies it’s more dependent on the hardware. The reason is
that standard software timers usually cannot be used for this type of profiling. When
a software timer interrupt occurs there is no way of telling which process that was in-
terrupted. Software timers are synchronous, the process executing before the software
interrupt will be the operating system kernel. The solution is to use hardware interrupts.
When a hardware interrupt occur the hardware context of the interrupted process will
be saved to the stack before executing the interrupt handler. In the interrupt handler
the context can then be examined to see which process that was interrupted and which
instruction that the processor was executing.

Hardware interrupts can be generated by for example the Real-Time Clock (RTC) circuit.
A RTC circuit is present in almost every computer system that needs to keep time. The
Microsoft Windows NT kernel has an API for accessing a somewhat limited profiling
timer based on the RTC. This API is not available to the public and no official API
documentation exists. The API only allows the instruction pointer to be sampled so it’s
only usable for generating flat profiles. Because of this the RTC will have to be accessed
without using the mentioned API. Unfortunately the RTC is reserved for internal use
through the API making RTC support more difficult to implement on Microsoft Windows
than for example on GNU/Linux.

Due to the requirement on platform portability the only applicable strategy for the profiler
in this thesis is system-wide sampling. There is no need to profile all processes, only one
so the sampling can be optimized by ignoring all samples that are not in the process of
interest.

HPC-based Sampling

For at least ten years processors have included built in hardware performance counters
that can be used for measuring more advanced properties of software being executed
on it [13]. In computer hardware HPCs are implemented as set of specialized registers
that can be configured to increment on certain events. For example the registers can
be incremented on cache-misses, bus accesses, execution of specific arithmetic operations
and much more [19].

One thing that makes them very suitable for sample-based performance profiling is that
they can be configured to raise interrupts on overflows. For example, if the profiler pre-
sets a HPC register to -1000 the processor core would raise an interrupt when 1000 events
have occurred. When an interrupt occurs the profiler attributes one unit to the process

17

that was interrupted. The HPCs could of course still be useful without using interrupts
but in that case they would have to be used in combination with time-based sampling.
Reading and storing away the value of the HPC registers when each time-based sample
is taken. This would not be efficient, not from a space nor performance perspective.

It should be noted that because of out-of-order execution the values produced by the
counters should be considered approximate. A counter increment cannot be 100% tied
to one specific instruction [18]. However in a new technique called Instruction Based
Sampling (IBS) individual instructions are tagged and monitored throughout the proces-
sor pipeline in order to attribute exact statistics to each individual instruction. IBS is
currently only supported in the recent generations of AMD’s processors [18].

Despite not being entirely accurate HPCs are still very useful, being used in modern
performance profilers [8][9]. A problem with HPCs is that they’re difficult to use. The
implementation of the HPC registers varies greatly between processor architectures and
models. They are also typically not accessible from userland.

4.1.3 Sample Data

This section tries to establish what information a sample should contain in order to fulfill
the requirements of analysis and also how to obtain it.

Sample Contents

In its most basic form sampling involves reading the value of the instruction pointer
register. This register contains the memory address of the instruction that was executed
in the program of which the sample was taken. In addition to this it’s also of interest
to know in which context the instruction was executed. Only knowing the instruction
is rarely satisfactory since there is no way of telling why that instruction was executed.
One instruction may have high execution frequency in one context, but not in another.

For example, assume that the profiler has found an instruction with a very high execution
frequency. Then the high execution count is the result of either repeated calls from within
the procedure hosting the instruction or by any parent procedure making repeated calls
to its children. To better understand which, the profiler needs to analyze the chain of
procedure calls leading up to the sampled instruction.

To conclude, each sample should in addition to the instruction pointer be complemented
with information describing the call chain leading up to the sampled instruction. The
call chain can be described through a list of memory addresses that can be tied to specific
procedures. The memory addresses do not have to point to the beginning of a procedure
but can point to any instruction inside them as that is sufficient in order to locate the
procedure later on.

18

Tracing the Procedure Call Chain

For instrumenting profilers tracing procedure calls is easy due to the nature of their design.
By instrumenting each procedure entry and exit the profiler can obtain all information
that is necessary to keep track of procedure calls. Sampling profilers have on the other
hand no natural way of tracking procedure calls; partially due to the fact that certain
procedure calls will pass completely unnoticed causing gaps if tracking the call chain.

In order to determine the call chain leading up to a specific instruction it’s necessary to
walk the program’s call stack. The call stack stores all active stack frames. Each stack
frame contains information about a procedure call. When a new procedure is called a
new stack frame is added, when a procedure returns the stack frame is removed. By
traversing the stack frames on the call stack when an instruction is sampled it’s possible
to retrieve the call chain. The stack frames must be located immediately, before the
profiled program continues its execution since the execution may alter the call stack.

Unfortunately stack frame layouts are both processor architecture and compiler calling
convention dependent. There is no universal way of traversing the call stack in order to
find stack frames. In some cases it’s not possible to locate stack frames without using
additional compiler generated or operating system specific information [25]. As a result
of this the stack walking cannot be made generic but needs a unique implementation
depending on both processor architecture and operating system. Because x86 is a very
common processor architecture and also the primary development platform of this profiler.
The technique for locating stack frames on this architecture will be described in detail.

The content on the call stack depends on the calling convention used by the compiler.
Different calling conventions exists for x86 but CDECL (C declaration) or small vari-
ations of it is the most common because it supports the semantics required by the C
programming language (for example variable argument lists) [20]. Since this profiler tar-
gets C and C++ applications, CDECL is assumed to be the calling convention used in
all x86 programs to be profiled. CDECL is the default calling convention used by both
GCC and Microsoft Visual C++ [23].

It’s important to note that although CDECL is default a different calling convention
can manually be selected, either by using compiler optimization flags [22] or by using a
compiler specific intrinsic [21]. If CDECL is not used the profiler may fail to traverse the
call stack. The profiler only depends on a very few features of the CDECL standard so
it’s possible that other calling conventions will work, as long as they do not violate the
stack frame relationship as discussed later.

A typical (small variations are allowed with CDECL) x86 stack frame contains the func-
tion parameters; local function variables and also the value of the stack base pointer
register (EBP). The value of the EBP register refers to the stack base address in the
active procedure. When a new procedure is called, its prologue will update the EBP
register to contain the address to use in the new procedure.

Before updating the EBP register the current value must be pushed to the stack so that
it can be restored later when the procedure returns. This is done by the procedure’s
prologue as well. Interestingly the EBP value is always the first value pushed to the

19

stack. Since the EBP value points to the beginning of a local stack it means that it
points to the very location of the previous EBP value. This forms a chain of EBP values
on the program call stack.

0x72 ...

Previous EBP

Return address

...

0x76

0x7A

0x90

...0x3E

Previous EBP

Return address

...

0x42

0x46

0x5C

F
ra
m
e
 1

F
ra
m
e
 2

...0x0A

Previous EBP

Return address

...

0x0E

0x12

0x28

F
ra
m
e
 3

Figure 4: Stack frame organization on call stack.

Figure 4 shows how the call stack frames are organized. The precise contents and process
of adding and removing stack frames is omitted from this report (see [20] for details).
It’s only essential to notice the relationship between the frames. As hinted by figure 4,
the chain of stack frames can be traversed like a linked list using the EBP values. For
example the following C structure can be used:

typedef struct s t a ck f r ame
{

struct s t a ck f r ame ∗next ;
void ∗ r e turn addr ;

} t s tack f rame ;

As shown in the above structure, the return address is located right after (or before
depending on how you see it) the EBP value and can thus easily be accessed. The return
address provides crucial information. The EBP values themselves are only usable for
traversing the call stack; they do not tell anything about which program procedure that
the stack frames instantiates. To associate a stack frame with a procedure an address
inside an executable binary image is needed. The return address provides this very
essential information. It is not an address to the call stack but to an instruction in a
binary image (like the value in the instruction pointer register).

Figure 5 shows in a simplified way how program memory may be organized [24]. The
program and library binary images are the executable files loaded into memory. One
can think of these as EXE and DLL files on Microsoft Windows. Notice the difference
between the EBP value and the return address as shown in figure 5.

A difficulty with walking the call stack is to know when to stop. A certain frame structure
is assumed but it’s not possible to tell when it ends. In order to avoid problems and collect

20

Stack...Heap
Library
Binary
Image

Library
Binary
Image

Program Binary
Image

EBPReturn address

Figure 5: Simplified illustration of program memory organization.

as little garbage data as possible the following checks are proposed for testing the validity
of a stack frame:

• Check that the frame points to a higher address than the address of the previous
frame. This assumes that the stack grows towards lower addresses. If not, the
opposite check should be performed. If the next frame is located backwards in the
traversal order the chain is broken.

• Check that the frame address is word aligned, that is 4-byte alignment on 32-bit x86
processors. For example if the address of the next frame points to an odd address
it can be discarded as being outside the call stack since the stack frames are word
aligned.

• Use any means provided by the operating system kernel in order to validate the
memory region that the frame address points to. For example this may include a
check to see that the memory region is within user space range.

• Use a fixed limit to the maximum number of stack frames to traverse. This is
needed since invalid stack traces may be inconveniently long if some invalid new
stack frames satisfy the above conditions.

The above checks will not eliminate the problem of including invalid addresses in the list
of trace addresses but it will at least make them fewer. Invalid addresses will likely not
translate into a procedure symbol thus being ignored when analyzing the sample data.
Nevertheless, it’s still desirable to keep the number down in order to reduce the data
throughput.

By walking the call stack the profiler can obtain a list of return addresses; addresses that
are associated with exactly one procedure in the profiled program or any of the libraries
that it use. How the return addresses are translated into procedure names is explained
later in this report.

A procedure call trace provides valuable information on why a certain procedure is exe-
cuted, but it does not alone provide enough information in order to produce a call graph
or call context tree. When producing call graph or call context tree profiles it’s neces-
sary to know which nodes that has been visited between samples. Consider the following
scenario: The profiler have found two samples with identical procedure traces as shown
in figure 6.

21

function_1 function_2 function_3 function_4

function_1 function_2 function_3 function_4

Sample 1:

Sample 2:

Figure 6: Two identical call traces.

Given only the two samples it’s impossible to know what have happened between them.
For example, have function 3 called function 4 again or have function 2 perhaps called
function 3 again? Maybe the control flow never left function 4 because of some heavy
operation inside it. Knowing what have happened between samples is essential for con-
structing a call graph or call context tree profile because their arcs must be individually
weighted.

To solve this problem each procedure invocation needs to be flagged upon visitation in
order to know which procedure calls that has been visited and which have not. [11]
suggests an efficient way of doing this, without inserting additional instrumentations.
Their solution involves using the least significant bit of the procedure’s return addresses;
a bit that is ignored on some processor architectures.

For the profiler in this thesis, given its intended usage it has been decided that simply
knowing the traces is enough, building a correct call graph or call context tree is not
necessary.

4.2 Data Management

When a sample has been taken it needs to be processed and stored away in an efficient
manner. This section discusses how to manage the collected sample data.

4.2.1 Data Flow

There are certain restrictions, preventing sample data from being processed and analyzed
at the time and place of collection. Virtual memory presents a barrier that will enforce
a certain data flow through the profiler.

Many modern operating systems separate virtual memory into kernel space and user
space. The kernel space is strictly reserved for use within the operating system kernel
and its extensions whereas the user space is reserved for all user mode applications [32].

The profiler in this thesis will perform sampling in kernel mode in order to access the
interrupt system, but at some point the sampled data will need to be transferred from
kernel space into user space. As a result of this the profiler can be seen as two separate
components: a kernel mode driver and a user mode client. The client will interact with
the driver, processing sample data collected by the driver in order to produce a profile.
This is illustrated in figure 7.

22

Profiler

Kernel Mode

Driver

User Mode

Client

Figure 7: Core profiler components.

There are two possible options for transferring data from kernel space into user space.
The first is to make the driver write directly to the user space memory of the client. The
second is to make the client read kernel space memory. While it’s not possible for a user
mode application to read kernel space memory directly, one can create mechanisms (such
as virtual file system nodes on Linux) for copying data from kernel space to user space.

The advantage with the first approach is better performance. The sample data only
needs to be written to memory once. With the second approach data needs to be written
twice. The driver first writes to kernel memory and then the client copies it to user space
memory. The advantage with the second approach is a weaker dependency between the
driver and client. With the second approach the client is dependent on the driver, but
the driver is not dependent on the client. With the first approach both the driver and
client are dependent on each other.

The second approach is favored as the choice for this profiler for several reasons. First
of all, weaker dependency means that the driver will be easier to use and implement.
Furthermore, making a kernel mode driver dependent on a user mode program is bad
from a security perspective. The driver would need to include protection mechanisms to
ensure that it will not write to places in memory where it is not supposed to. Since the
writing operation is asynchronous from the client perspective one can think of several
dangerous scenarios, for example if the client program suddenly crashes or if a malicious
program tries to trick the driver into writing to another process in order to change its
behavior.

4.2.2 Data Storage

This section discusses the issues and proposes a solution for storing sample data during
the profiling operation.

Overview

Both performance and memory usage must be taken into account when deciding on how
to store away sample data. The performance requirement comes from the fact that sample
data is processed in an interrupt routine. The interrupt routine may block other code
from executing, including other interrupts. Because of this the code executed in the
interrupt routine must be kept to a minimum, otherwise the original system behavior
might not be preserved.

23

The size requirement is implied by the performance requirement. If there wasn’t a per-
formance requirement all sample data could be written to a hard drive, but since there is
a high performance requirement the sample data must be kept in the computer memory
(at least initially as we will see later). Today’s hard disks are too slow and also dependent
on interrupts [33] which makes them unusable in interrupt routines.

To get an idea of the amount of data that can be collected, consider the following bad
but still reasonable scenario. Assume the profiler is running on a 2 GHz 64-bit processor
where the profiled program utilizes nearly all processor capacity for one minute before it
terminates. If the profiler takes one sample every 50 000th clock cycle the profiler will
accumulate 40 000 samples every second. Given an average stack trace of ten addresses
for each sample, the size of one sample will be (10 + 1) · 8 = 88 bytes large. This will
result in 3.35 MiB (3.35 · 10242 bytes) of sample data every second.

For a program that’s being profiled for minutes or possibly hours the data will quickly
reach very high levels. Storing the sample data in memory using a dynamic structure (for
example array, call graph or context call tree) that grows when needed is a bad idea since
the profiler shares memory with the profiled program. The dynamic aspect is especially
bad since it will cause the profiler to acquire more memory (that could potentially be
used by the program being profiled) the longer the profiling session runs. In other words,
the accuracy of the produced profile will decrease with the length of the profiling session.

A better approach is to use some sort of fixed size buffer. The obvious problem with fixed
size buffers is that they will likely not be able to store all sample data. Two different
approaches have been explored in order to solve this problem.

The first approach is to use granularity buffers. A granularity buffer can be seen as a
fixed size hash map where keys producing the same hash value are assumed to be equal.
In this context the keys would be memory addresses and the value the number of hits
paired with the procedure trace for that address. The key property of a granularity buffer
is how the keys are hashed. They are hashed in such a way that keys close to each other
will be hashed to the same value, hence the name granularity. This is accomplished by
shifting all keys to a lower value according to a preconfigured shift factor.

For example, consider a shift factor of two on the memory addresses: 0x04, 0x06 and 0x10.
Shifting the addresses two steps towards a lower value would produce the values: 0x01,
0x01 and 0x04. As the example shows the first two addresses will be seen as the same
address (getting two hits). In fact, all values within 2shift factor addresses will be grouped
together. The hashed (shifted) addresses will correspond to a slot in the granularity
buffer. Restoring the address from a slot number is simply a matter of shifting the slot
value in the opposite direction. The advantage of the granularity buffer is its size which
can be expressed through the following equation:

buffer size =
image size

2shift factor
· (trace depth + 1)

Notice the use of image size in the above equation. The image size represents the size of
a binary image for example an executable program or a system library. The reason for
using the image size instead of the total address space is obvious. Mapping the entire

24

address space into a granularity buffer would require a huge buffer unless a very large
shift factor is used, and in that case the precision would be very low. Instead multiple
buffers could be used, one for each binary image. The result is better precision and lower
memory footprint.

The multiplication with trace depth plus one comes from the size of the buffer values.
Each address is associated with trace depth number of addresses plus one element for
storing the address hit count. The trace depth will not necessarily be for any of the
addresses that are mapped into the buffer but for the address corresponding to that
specific slot. At first glance it might seem wasteful to allocate space for 16 trace addresses
for every slot. One could argue for storing the traces in a separate compact structure
instead; for example in a hash map. Unfortunately this type of data structure relies on
dynamic memory allocation which is unsuitable. This will be discussed further in the
buffer implementation section.

To better understand how much memory granularity buffers require in practice consider
the following example: A fairly small application have mapped about 10 MiB of memory
(including libraries). If using a zero shift factor and a trace depth of 16 addresses about
160 MiB of memory is needed. If increasing the shift factor to two only 40 MiB is needed.
This is all good, but what if the application has a larger memory foot print, for example
100 MiB. In that case a shift factor of five or six may be needed to keep the buffers
small enough. A shift factor of six corresponds to 64 addresses. This level of precision is
too low, multiple loops or procedures may be grouped together. Granularity buffers are
better suited for flat profiling, reducing the buffer size by a factor of 16 in this case.

A completely different approach is to use a standard fixed size buffer that can overflow.
Because it’s not reasonable to assume that all data will fit in buffer there are two options:
either to discard data when the buffer is full or to move the data to the hard drive.
As mentioned earlier data cannot be written to the hard drive directly, but one can let
another separate process continuously move data from the memory buffer to the hard
drive. Since this process is independent from the sampling process it does not have the
same performance requirements. This approach fits perfectly with the driver – client
model suggested in section 4.2.1. The driver will temporarily store sample data in a
fixed size intermediate memory buffer while the client pulls data from the driver’s buffer
and stores it on the hard drive. The sample data will not be further analyzed until the
profiled application is done executing.

Comparing the two buffering techniques it can be concluded that the first approach
provides better performance while the second approach provides lower memory usage
and better precision. The second approach is favored for its advantages and will be used
in this profiler.

Intermediate Buffers

A suitable fixed size buffer data structure is the ring buffer (also known as circular buffer
or FIFO queue). A ring buffer can be implemented using a static memory footprint and
provides a fast way to both insert and remove data (constant asymptotic time). Another

25

essential property is the fact that ring buffers can be implemented to support a concurrent
environment without using locks. Standard locking mechanisms cannot be used in this
case because of the interrupts.

Modern processors along with supporting operating systems use an interrupt priority
system [32]. This system allows higher priority interrupts to interrupt lower priority
interrupts that are currently being processed. If an interrupt occurs that is of a lower
or equal level than the one currently being served it will be queued or ignored. Both
interrupt producers suggested in this thesis will raise high priority interrupts. The RTC
circuit will generate interrupts on the same level as the clock mechanism controlling the
operating system kernel and the HPC registers will generate interrupts of the highest
possible level.

To understand the complication of standard locking mechanisms, consider the following
scenario: The client process wants to read data from the shared buffer, and in order to
do so it acquires a lock on the buffer. If an interrupt occurs before the client releases the
lock, the driver will wait for the lock to be released when trying to write to the buffer.
The lock can never be released since nothing is able to execute on the processor until
the interrupt routine finishes, which it never will do. As a result the system can become
completely unusable.

The problem is that conventional locking mechanisms assume that there is a scheduling
operation running in the background that is switching between tasks. If for example one
thread is sleeping, waiting for a lock to be released, the scheduler will schedule another
thread for execution. Eventually the thread holding the lock will be scheduled and the
lock will be released. When dealing with high priority interrupts (as in the profiler in this
thesis) there will be no scheduling operation in the background. There is no possibility
for other tasks to execute and release any locks if the interrupt routine is waiting.

Ring buffers can fairly easily be implemented to be lock-free assuming there will be only
one producer (pushing data) and one consumer (pulling data) [29]. There are also more
complex lock-free implementations for use in other situations when there are multiple
consumers and/or producers [30].

When using time-based sampling, there will be only one producer and one consumer.
However, if using HPC-based sampling there can be multiple producers because in a
multi-core system each core has its own HPCs configured to raise interrupts. It’s not
possible to only enable HPC-based sampling on one core and expect the profiled program
to execute on it. A process may spawn on any processor core and the operating system
kernel may choose to move the execution of a process from one core to another. The
producer – ring buffer relationship is illustrated in figure 8. Having multiple producers
requires a different solution than just the simple lock-free ring buffer.

One solution is to use a ring buffer implementation that is both lock-free and supports
multiple producers, but these tend to be difficult to implement and have noticeably
slower performance than ordinary ring buffer implementations. Another solution is to
have individual ring buffers for each core, connecting them to a common ring buffer
through a synchronization mechanism. This ensures a single producer and consumer for
each buffer. The buffer synchronizer will act as the consumer of all core/processor buffers

26

Driver

Client

Hard Drive Buffer

CPU 0 CPU 1 CPU N...

Ring Buffer

Timer

Producers when using HPC-based sampling.

Producers when using time-based sampling.

Figure 8: Organization using multiple producers.

and the only producer of the common primary ring buffer. The latter solution is favored
in this case due to easier implementation and better performance. Figure 9 illustrates
the proposed solution using multiple ring buffers.

Producers when using HPC-based sampling.

Producers when using time-based sampling.

Driver

Client

Hard Drive Buffer

CPU 0 CPU 1 CPU N... Timer

Buffer Synchronizer

RB 0 RB 1 RB N...

Primary Ring Buffer

Figure 9: Organization using single producers and consumers.

It should be noted that although the individual performance of the simple lock-free ring
buffer may be better than that of the complex one, the total performance including
the synchronization mechanism may actually be slower in total compared to using a
complex lock-free ring buffer. However, the simple lock-free ring buffer will yield better
performance when synchronization is not necessary for example when using time-based
sampling.

27

Buffer Implementation

To this point ring buffers has been suggested as the data structures to use for storing
sample data. The next step is to define how samples should be stored inside the buffers.
What makes this tricky is the fact that samples can vary in size. For example, all
procedure traces will likely not be of equal length.

A common way of implementing ring buffers is to use linked lists. If using a linked
list each node in the list can be of different size since separate memory is allocated for
each node. This would seem fitting in the context of this profiler, but there are some
drawbacks. Linked lists do not have a suitable memory representation, primarily due to
the fact that the nodes will not necessarily be stored in sequence in memory. Storing all
nodes in sequence is desirable because the data will be moved between the driver and
client on a byte for byte basis.

For example, the client will request a certain number of bytes to read from the drivers
primary ring buffer. Since the client does not know the size of the next sample beforehand
it will likely request too little or too much data. Having the nodes spread in memory
forces the driver to map them into sequence during the read operation. Furthermore
repeated heap memory allocation and deallocation that is implied by linked lists is both
expensive (compared to static allocation) and may lead to memory allocation failure due
to heap fragmentation [26].

A better approach is to implement the ring buffers using arrays. The problem with this
approach is that all nodes need to be of the same size. If using one node for each sample
all nodes would have to be large enough to hold the largest possible sample. This would
waste memory on samples that are small, not utilizing all the reserved space. Instead
of using one node for each sample the nodes can represent smaller building blocks, for
example memory addresses. In order to apply this solution there needs to be a protocol
specifying the contents of the nodes so that multiple nodes can be related as one sample
(a sample can contain multiple addresses). If the protocol is carefully designed it can be
expected that that solution will utilize available memory more efficiently than the one
node per sample solution.

The protocol used in the profiler system in this thesis is explained in the next section.

Buffer Protocol

There are two purposes of the protocol used within the sample buffers. The first is
to group address together in samples. One node holds one memory address, multiple
addresses form one sample. The second purpose is to transport additional information
from the driver to the client; information that cannot be obtained by the client itself.
For example the driver may monitor the profiled application to see when it loads/unloads
a dynamic library or when it terminates. On some operating systems this information
cannot be accessed from userland where the client lives.

Two methods have been explored in order to solve the first purpose of grouping addresses
together. The first is to let the first node of each sample contain the number of addresses

28

in the sample. That way the client knows exactly how large each sample is. This is
illustrated in figure 10. The second way is to reserve two addresses for use as special
sample start and stop blocks. All addresses between a pair of these blocks would group
a single sample. Samples with only one address can be represented without any start or
stop blocks. This is illustrated in figure 11.

Addr. 01Addr. 01Addr. 6...Addr. 1Addr. 07

Figure 10: Buffer protocol strategy 1.

Addr. 0Addr. 0Addr. 0StopAddr. 6...Addr. 1Addr. 0Start

Figure 11: Buffer protocol strategy 2.

The first method will have less memory space overhead for samples larger than one
address while the second method will have less overhead for samples consisting of exactly
one address. The fact that when generating flat profiles all samples will be exactly one
address large favors the second method. For flat profiles the first method would have a
constant 100% memory space overhead compared to 0% overhead of the second method.

One could argue for using two different protocols for generating flat and trace-based
profiles but that would increase the coupling between the client and the driver. The
client must (at the time of reading data) know if the driver performs tracing or not.
Furthermore it makes it difficult to mix flat and trace-based samples in the same buffer.
This may happen if tracing is only enabled in certain parts when profiling a program.
Finally, single address samples may occur even when tracing is performed.

Using the second method requires two addresses to be reserved for indicating sample start
and stop. The reserved addresses should be picked in such a way that it’s very unlikely
that those addresses will occur in a sample naturally. While it’s possible to analyze
the virtual memory space in order to find unused addresses it’s probably not worth the
effort. Since the virtual memory space may change the reserved addresses would have to
be dynamically updated over time.

Instead it’s suggested in this thesis to reserve either the lowest possible or highest possible
addresses for this purpose. By investigating the virtual memory region maps on different
GNU/Linux systems, no process has been found that maps any of these extreme address
regions. On GNU/Linux systems the top address space is reserved for kernel data and
the lower for the user process [31]. Since the kernel’s behavior is harder to predict than
that of a user process the lower memory addresses has been selected for the profiler in
this thesis.

In addition to the reserved addresses for indicating the beginning or end of a sample more
addresses will be reserved for transferring other notifications as described earlier in this
section.

29

4.3 Data Analysis

In order to generate a meaningful profile the sample data must be analyzed. This section
deals with important key steps in the context of post processing the sample data.

4.3.1 Memory Address Translation

Memory addresses are seldom useful as they are but needs to be translated into something
meaningful like procedure names or source code files with line numbers. This translation
can be described through a series of different steps that will be covered in this section.

Binary Image Lookup

Before a memory address can be tied to a specific symbol, the binary image that the
address belongs to must be located. Figure 12 illustrates how sampled addresses may be
distributed across the memory space.

Stack...Heap
Library
Binary
Image

Library
Binary
Image

Program Binary
Image

sampled addresses

Figure 12: Program sample distribution.

In order to translate an address into a binary image the profiler must maintain a map of all
relevant binary images, at which address they are located and how large they are. It’s also
important to note that new images can be mapped and unmapped to/from the programs
memory space during its execution. The profiler must be alert of such changes or it will
map an address to the wrong binary image. Luckily it’s not necessary to validate the
memory mapping every time when taking a sample because the most common operating
systems provides means of receiving notifications when an application maps or unmaps
a binary image to/from its memory space.

Symbol Lookup

Debug symbol names are names that describe a certain construct in a compiled program.
For example procedures and global variables.

Given a binary image and a memory address the profiler must be able to locate the debug
symbol name associated with it. In order to do this, symbol information must be included
in the binary image itself. On operating systems using the Executable and Linkable
Format (ELF) symbol information is often available in binary images by default. In
situations where no such information is available it can usually be included by specifying
a compiler option.

30

In ELF and similar formats, procedure symbol names can be accessed as a list of memory
address – symbol name pairs. Where the memory addresses refer to the beginning of a
symbol. Having this information it’s fairly easy to find to which procedure a memory
address belong. The address belongs to the last symbol occurring before the memory
address.

Unfortunately ELF is not the only format for storing symbol information. While ELF
is dominant on UNIX flavored operating systems other operating systems including Mi-
crosoft Windows have their own formats. The profiler in this thesis will require unique
symbol lookup implementations for each operating system that is to be supported.

For programs written in C the symbol names will match the procedure names exactly.
However, in C++ programs the symbol names have been encoded using a technique called
name mangling. The reason for this is that in C++ there can be multiple procedures using
the same name. To be able to distinguish between the different procedures additional
information such as argument types and class names are encoded into the symbol name.
As a result the profiler must be able to demangle symbol names before presenting them
to the user. As with the formats for storing symbol information the name encoding also
differs across operating systems.

Debug Information Lookup

In some cases symbol information is not satisfactory. In order to translate memory
addresses into something better than procedure level accuracy (for example source code
files with line numbers) special debug information must be present in the binary image.
This information is rarely included by default because it adds a significant amount of
data to binary images, causing them to sometimes grow by multiple factors in size.

As with symbol information, debug information is also available in different formats.
On GNU/Linux the Debug With Attributed Record Format (DWARF) is very common,
while Microsoft uses its own format on the Windows platform. When debug information
is present finding what source file and line number that corresponds to a memory address
is very similar to finding symbol names.

4.3.2 Profile Generation

The final step is to produce a profile and presenting the information for the user. Two
different types of profiles have been considered for the profiler in this thesis.

Flat Profiles

Generating a flat profile is very straightforward given a list of symbol names or more
detailed information. It’s simply a matter of grouping the samples together and summa-
rizing on the occurrence of different symbols and/or other information. Addresses that
cannot be translated into symbol names or other debug information is ignored.

31

Path Profiles

The term path profile is not an established concept but a name given to a small variation
of call trees in this report. Path profiles are essentially call tree profiles but instead of
organizing the call traces as a tree they’re organized as a list of paths. The paths are
attributed an execution count and the leaves are attributed detailed information about
call frequencies of individual statements inside the leaf procedure.

Constructing path profiles is a heavier operation than constructing flat profiles. First the
paths must be constructed. These are constructed as a list of symbol pointers paired with
a leaf node. Invalid addresses that don’t map to a symbol name are ignored. The paths
are then grouped together, merging the leaf nodes of identical paths. The leaf contains a
hash map of memory addresses (accessed in the last procedure in the path) mapped to
hit counts.

When presenting the profile the symbol pointers are evaluated into procedure symbol
names and the memory addresses in the leaves are translated into source file with line
number information.

32

5 Results

This section presents the results from implementing and evaluating the performance pro-
filer developed in this thesis. In the charts displayed in this section the profiler in this
thesis goes by the name nprofile.

5.1 Profiler Implementation

This section explains the profiler implementation results, starting with a general architec-
ture overview followed by detailed information about data gathering, management and
processing.

5.1.1 Architecture Overview

The profiler system uses the driver – client model as described in section 4.2.1. The
client (from here on referred to as the profiling application) is a standalone application
written in C++. The driver is implemented in C because C++ is unsuitable for kernel
level development due to lack of run-time support.

The profiling application is developed to be completely portable, using a limited set
of the C++ language. It connects to the kernel driver through an operating system
dependent interface. The interface acts like a bridge, connecting the profiling application
and the driver. This interface is needed because different operating systems provide
different means of communication between drivers and userland processes. The interface
is developed as a separate library that is linked in with the profiling application at compile
or run-time.

The profiling driver is to a large extent platform dependent, but certain parts are shared
between drivers on different operating systems. For example sample processing and buffer
management.

When compiling the driver the build system will select a processor architecture imple-
mentation that matches the system that compiles the driver. The processor architecture
specific implementations are not dependent on the operating system so the same imple-
mentation can be selected on for example both the GNU/Linux and Microsoft Windows.
The processor architecture specific implementations include HPC, RTC and tracing sup-
port.

Figure 13 shows how the profiler software packages are organized assuming both GNU/Linux
and Microsoft Windows support. Of course either a GNU/Linux or Microsoft Windows
implementation is used, they’re never used together. It should be mentioned that the
interface library also contains all other operating system dependent functionality that is
needed by the profiling application. For example process, symbol and debug information
management.

33

Application Package

Interface Library Package

Driver Package

Profiling
Application

GNU/Linux
Interface

Windows
Interface

GNU/Linux
Driver

Windows
Driver

X86
Backend

SPARC
Backend

Shared
Components

ARM
Backend

Architecture dependent features.

Platform dependent features.

Platform and architecture independent features.

Figure 13: High level architectural overview.

34

5.1.2 Data Gathering

The data gathering mechanism is defined as a class interface (or rather the C-language
counterpart), allowing multiple implementations to be used seamlessly. The GNU/Linux
implementation implements two sampling mechanisms. Namely HPC-based sampling and
time-based sampling (Linux kernel 2.6 and newer implements a low resolution profiling
timer). An RTC-based implementation was omitted partly because the RTC cannot be
accessed without recompiling kernel 2.6 and because HPC works well as a RTC replace-
ment.

As each sample is taken, processor architecture specific code will perform the necessary
tracing on the call stack (if the profiler is configured to perform tracing). The tracing
mechanism is configured to perform maximum 16 trace steps by default. Once done
tracing the sample will be written to the appropriate buffer.

The profiler supports configuring different sampling intervals, sampling mechanisms and
profile types at run-time before starting the profiling session.

5.1.3 Data Management

As explained in section 4.2.2 the HPC sampling mechanism requires unique processor
specific buffers because interrupts prevent standard locking mechanisms from being used.
These buffers are implemented as lock-free ring buffers capable of storing 131 072 ad-
dresses each. This size includes trace data. Given that all traces will be of maximum
depth the buffer will be able to store roughly 8 000 samples. The primary ring buffer is
twice the size and thus capable of holding about 16 000 samples.

Depending on the sampling interval, these buffers will be able to hold data from tens
of a second to multiple seconds. The size of the buffers have been selected not only
for throughput but to be large enough to hold all data from the time that the driver
has started the sampling process to the time that the profiling application starts moving
samples from the driver to the hard drive. There will be a small delay between these
events. If any of the driver’s ring buffers overflow, samples will be lost. By selecting large
enough buffers this can be avoided.

Once the profiling application has begun moving data from the driver the chance of
overflows are less likely. Inside the driver the buffer synchronization mechanism works
by moving data from the processing unit buffers to the primary ring buffer in intervals.
The lengths of these intervals vary because a fixed interval will not satisfy all cases. For
example, the synchronization interval must be shorter when a smaller sampling period is
used than when a larger sampling period is used.

It would be possible to use a small synchronization interval in order to cover all sampling
intervals, but that is not optimal because a small synchronization interval will prove less
efficient for larger sampling periods. If for example using a very large sampling period it
may be that each synchronization transfer zero to one sample. In this case the overhead
of the synchronization mechanism becomes more apparent.

35

Instead of using a fixed size interval, the lengths between the synchronization iterations
are calculated dynamically. The lengths are calculated in each synchronization iteration
so that the next iteration is expected to transfer half of the buffers contents from the
processing buffer to the primary ring buffer. If the amount of data suddenly increases or
decreases the synchronization mechanism will adapt. Transferring half the contents gives
some marginal if the amount of data suddenly increases. It’s important to note that even
if the sampling periods are constant the amount of data is not because procedure trace
depths will vary.

Even though the synchronization intervals are dynamic there are still limitations. The
driver’s synchronization mechanism works within the limitations of the operating system
kernel. On Linux version 2.6 the kernel is configured to run in 250 Hz by default. This
means that the buffer synchronization mechanism inside the kernel driver may run at most
250 times per second. It may not be desirable to synchronize each time the kernel runs
for the sake of overhead so the synchronization mechanism has been configured to run
at most 50 times per second. This yields a maximum throughput of 400 000 (8000 · 50)
samples per second. This should be enough for the nearest future. Sampling 400 000
samples per second on a 2.7 GHz processor would result in a sampling interval of 6 750
cycles. As the performance evaluation shows in section 5.3 the profiling overhead at this
magnitude of sampling intervals is significant.

The lower synchronization limit has been set to five times per second. This cannot be set
infinitely low because the synchronization mechanism must be able to quickly respond if
the amount of data increases.

The same synchronization algorithm as described above is used when transferring data
from the driver’s primary ring buffer to the hard drive. There are in other words at two
different synchronization mechanisms in use.

5.1.4 Data Analysis

The sample data files stored on the hard drive by the profiling application is stored in a
generic format. This means that if an application is profiled in order to produce a path
profile, the same sample data file can be used to generate a flat profile.

When the profiled program has finished executing or if a user has signaled the profiler
to stop sampling it will produce a readable profile from the sample data. The profiler
always tries to locate debug information within an executable but if not present it will
fall back on standard symbol information and in worst case memory addresses.

The entire data analysis step is performed by the platform independent profiling appli-
cation with some aid from the operating system dependent interface.

5.2 Profiler Correctness

This section evaluates the correctness of the profiler, both from a theoretical sampling
and implementation perspective.

36

5.2.1 Sampling Theory

Since sampling is a statistical process, statistical methods can be applied in order to
evaluate the correctness of the results. There are two types of errors to expect from
the sampling process: Periodic errors due to systematic sampling and random sampling
errors. The former type of errors will occur if the profiled program performs some activity
in periodic intervals between samples are taken, thus avoiding detection. The only way
to counter this type of errors is to increase the sampling frequency and/or performing
multiple profiling sessions. This type of error is highly dependent on the population being
sampled and is therefore difficult to assess.

Random sampling errors are easier to predict using statistical tools. A good method for
establishing confidence in statistical results is to calculate the margin of error. Given a
performance profile that specifies in percentages how much execution time that was spent
in each individual procedure, the margin of error explains the amount of error that can
be expected at one specific procedure estimation. The maximum margin of error defines
the biggest error that can be expected for any procedure. This is strongly related to the
number of samples taken and can be calculated from the following formula:

maximum margin of error =
0.5zα/2√

n

n is the number of samples taken and zα/2 express the confidence that can be put into the
margin of error. The background theory on how zα/2 is calculated is outside the scope of
this report. For example, a confidence level of 95% yields zα/2 = 1.96 and a confidence
level of 99% yields zα/2 = 2.58. The confidence level express how reliable the maximum
margin of error is, if using a 99% confidence level we can be 99% sure that the maximum
margin of error is correct. It’s easy to see from the formula that a higher confidence level
will yield a larger error margin. In academia a 95% confidence level is generally accepted
as a good for most applications and will consequently be used in this evaluation.

maximum margin of error (95%) =
0.5 · 1.96√

n
=

0.98√
n

For example, if the profiler collects 100 samples the error margin would be 9.8% with 95%
certainty. This means that if the profiler has found a routine to be responsible for 30%
of the total execution time it can be expected (with 95% certainty) that in reality the
profiled program spend between 20.2% and 39.8% of its total execution in that routine.

Increasing the number of samples from 100 to 1000 would give a maximum error margin
of approximately 3.1%. Further increasing the number of samples to 10 000 will lower
the maximum error margin to slightly below 1%. In the previous example where 30% of
the total execution time was found to occur in one specific routine, a 1% maximum error
margin would expect 29% to 31% of the total execution time to be spend in that function
with 95% certainty.

100 or 1000 samples are very few in the context of pure sample-based performance pro-
filing. For a program running for one second (which can be considered short) this would

37

result in only collecting 100 or 1000 samples per second. In the evaluation that follows
later the sample-based profilers was configured to sample every 100 000th clock cycle.
The tests was performed on a 2.7 GHz processor system resulting in the profilers col-
lecting about 27 000 samples every second. The smallest of the test programs executed
for approximately 30 seconds resulting in about 810 000 samples in total. This yields a
maximum margin of error slightly above 0.1%.

5.2.2 Profiler Implementation

While the sampling method can be evaluated in theory, the profiler implementation must
also be evaluated. Evaluating the correctness of the implementation is difficult when
there is no fully known reference case to compare to. In order to precisely assess the
profiler’s correctness it’s necessary to manually analyze a program in order to calculate
its precise performance given a known set of input data. This is impractical so instead two
different programs have been profiled using different performance profilers. The results
have then been compared to each other with the intention of finding that all sampling-
based profilers produce similar output. If that is the case a certain confidence can be
established in the sampling implementation.

Two programs from the SPEC CPU2000 benchmark suite have been selected for evalu-
ating the profiler implementation. The first program is 256.bzip2 (using input.graphic)
and the second is 197.parser (using input.ref), both from the CINT2000 set of programs.
The programs have not been selected for their individual characteristics but only because
they can be expected to stress the system (as any other SPEC CPU2000 program) which
is useful when analyzing the profiler overhead later on. The bzip2 program performs
repeated data compression and decompression. The parser program performs syntactical
parsing of English texts into an internal memory structure.

All profilers except gprof are configured to sample every 100 000th clock cycle and to
generate flat profiles. gprof uses a special software profiling timer that has a limited
resolution (same as the kernel). gprof samples at 100 Hz by default, changing this value
requires modifying the kernel. Because of this the gprof sampling interval has been left
to the default. All profilers performed five profiling sessions on each program in order to
establish a mean profile. All evaluations have been performed on a GNU/Linux system
running the 2.6 kernel. The top ten procedures where the profiled programs spent most
of their time have been specifically evaluated.

Figure 14 show the flat profile evaluation of bzip2. Please note that the profiler in this
thesis goes by the name nprofile in all diagrams in this report. All profilers show a
trend of producing very similar results. The ordering of the top the procedures is almost
identical among the profilers with the exception from gprof that ranks spec getc above
qsort3. This can be explained by the lower sampling frequency used by gprof, and the
fact that both functions account for only a small part of bzip2’s total execution time.

Figure 15 shows the flat profile evaluation of the parser program. In this case there is
also a small difference in the procedure ordering. gprof ranks the execution time of match
higher than that of xalloc. This can be dismissed with the same arguments as for bzip2.

38

0%

5%

10%

15%

20%

25%

Ti
m

e
 s

p
e

n
t

in
 f

u
n

ct
io

n

Funcion

Flat Profile - bzip2

Intel VTune 9.1

oprofile 0.9.3

nprofile

gprof 2.18.0

Figure 14: Flat profile of the bzip2 program.

0%
5%

10%
15%
20%
25%
30%

Ti
m

e
 s

p
e

n
t

in
 f

u
n

ct
io

n

Function

Flat Profile - parser

Intel VTune 9.1

oprofile 0.9.3

nprofile

gprof 2.18.0

Figure 15: Flat profile of the parser program.

39

Since each profiler performed five profiling sessions on both bzip2 and parser it’s of interest
to analyze how much difference there was between each set of results. The standard
deviation is a good tool for this. Standard deviation is a measure on how much variation
that occurs within the different results.

0,00%
0,20%
0,40%
0,60%
0,80%
1,00%
1,20%
1,40%

St
an

d
ar

d
 d

e
vi

at
io

n

Function

Standard Deviation - bzip2

Intel VTune 9.1

oprofile 0.9.3

nprofile

gprof 2.18.0

Figure 16: Standard deviation of the bzip2 flat profile.

Figure 16 shows the standard deviation of the top ten procedures in bzip2. Given that
approximately 810 000 samples were taken by oprofile, nprofile and Intel VTune, the
maximum error of margin is expected to be 0.11%. It’s hardly readable from figure 16
but nprofile and Intel VTune keeps well below the margin and oprofile in all cases but for
the 1st procedure where it reaches 0.16%. gprof collected about 3000 samples which yields
a maximum margin of error of approximately 1.8%. This explains the higher standard
deviation of gprof shown in figure 16.

0,00%
0,10%
0,20%
0,30%
0,40%
0,50%
0,60%

St
an

d
ar

d
 d

e
vi

at
io

n

Function

Standard Deviation - parser

Intel VTune 9.1

oprofile 0.9.3

nprofile

gprof 2.18.0

Figure 17: Standard deviation of the parser flat profile.

Figure 17 show the standard deviation for the parser program. The expected maximum
margin of error, given approximately 3 672 000 samples is 0.05% (with 95% certainty).

40

Intel VTune and nprofile slightly crosses this limit for the hash procedure. Except for
that Intel VTune, nprofile and oprofile keeps below the margin. As previously stated
gprof collects fewer samples which explain its higher standard deviation.

5.3 Profiler Performance

In context of performance profilers, the term performance refers to the execution speed
overhead. Another performance aspect could be memory usage but execution speed
overhead is what is what is evaluated in this report. Overhead means how much execution
time the profiling process adds to the original execution time of the profiled program.
The performance evaluation in this thesis uses the same bzip2 and parser programs as in
the profiler correctness evaluation.

5.3.1 Measuring Execution Time

Measuring execution time of a program can be difficult, especially if a program competes
with other programs on the same system. The programs used for evaluation in this thesis
are expected to drain most of the computer resources. Other programs running on the
system was kept to a minimum and the test system was not used for other tasks while
running the test programs.

The execution time was calculated in real-time in order to account for the profiler’s
execution time. To measure time, both test programs were extended to include a call
to a a function called init exec time in the beginning of their main routine and a call to
a function called print exec time in the end of their main routine. These functions are
defined as follows:

#include <s t d i o . h>
#include <sys / time . h>
#include <time . h>

stat ic unsigned long s t a r t t i c k s = 0 ;

stat ic unsigned long t i c k s (void)
{

struct t imeva l t t ;
gett imeofday(&tt , (struct t imezone ∗) 0) ;

return t t . t v s e c ∗ 1000 + t t . t v u s e c / 1000 ;
}

void i n i t e x e c t i m e (void)
{

s t a r t t i c k s = t i c k s () ;
}

41

void p r i n t e x e c t i m e (void)
{

p r i n t f (”Executed in : %.3 f seconds .\n” ,
(f loat) (t i c k s () − s t a r t t i c k s) /1000) ;

}

The function prints the time used since the program was started.

5.3.2 Results

To establish a reference execution time both test programs have been executed five times
each in order to calculate a mean execution time without any profiler interference. All
other tests using performance profilers have been carried out in the same fashion by
performing five tests and calculating a mean. In order to evaluate scalability different
sampling intervals have been used. Please recall that the profiler in this thesis goes by
the name nprofile in all diagrams in this report.

0%
5%

10%
15%
20%
25%
30%
35%
40%

0

1
0

0
0

0
0

2
0

0
0

0
0

3
0

0
0

0
0

4
0

0
0

0
0

5
0

0
0

0
0

6
0

0
0

0
0

7
0

0
0

0
0

8
0

0
0

0
0

9
0

0
0

0
0

1
0

0
0

0
0

0

P
e

rf
o

rm
an

ce
 o

ve
rh

e
ad

Sampling interval (cycles)

Performance Overhead - bzip2

Intel VTune 9.1

oprofile 0.9.3 (tracing)

nprofile (tracing)

gprof 2.18.0

Figure 18: Performance overhead in bzip2.

Figure 18 show the performance overhead when profiling the bzip2 application. A trend
can clearly be seen among the sampling-based profilers, having a significantly lower over-
head than gprof. An interesting note is that both oprofile and nprofile performs better
than Intel VTune although VTune does not perform any tracing.

Figure 19 shows the performance overhead when profiling the parser application. A simi-
lar trend can be seen in this graph. The sampling-based profilers perform similarly. As in
the bzip2 case, nprofile performs slightly better than oprofile. Apart from architectural
and implementation differences a small part of the performance difference to oprofile can
probably be explained by oprofile performing system wide sampling, monitoring all pro-
cesses while nprofile focuses on one application. Intel VTune also performs system wide
sampling.

42

0%

10%

20%

30%

40%

50%
P

e
rf

o
rm

an
ce

 o
ve

rh
e

ad

Sampling interval (cycles)

Performance Overhead - parser

Intel VTune 9.1

oprofile 0.9.3 (tracing)

nprofile (tracing)

gprof 2.18.0

Figure 19: Performance overhead in parser.

It can also be of interest to analyze the impact of tracing the procedure call chain for each
sample. In order to do this both nprofile and oprofile have been evaluated with tracing
enabled and disabled. Intel VTune and gprof has been omitted from this part since VTune
does not support tracing at all (in sampling mode) and gprof always performs tracing
but using instrumentation. Figure 20 shows the performance overhead of using tracing.

0,00%

5,00%

10,00%

15,00%

20,00%

25,00%

30,00%

10000 50000 100000 200000 1000000

P
e

rf
o

rm
an

ce
 o

ve
rh

e
ad

Sampling interval (cycles)

Tracing Overhead - bzip2

oprofile 0.9.3

oprofile 0.9.3 (tracing)

nprofile

nprofile (tracing)

Figure 20: Tracing overhead in bzip2.

As figure 20 shows the profiler overhead increases more dramatically when the sampling
period decreases. When using a smaller sampling period the tracing overhead becomes
more apparent. Compared to oprofile, nprofile seems to have a higher overhead when
tracing is not enabled or when a large sampling period is used. This and the lower
overhead when tracing suggests that nprofile’s tracing mechanism is more efficient than
that of oprofile.

As figure 21 shows the tracing overhead is not as apparent in the parser application and

43

0,0%

5,0%

10,0%

15,0%

20,0%

25,0%

10000 50000 100000 200000 1000000

P
e

rf
o

rm
an

ce
 o

ve
rh

e
ad

Sampling interval (cycles)

Tracing Overhead - parser

oprofile 0.9.3

oprofile 0.9.3 (tracing)

nprofile

nprofile (tracing)

Figure 21: Tracing overhead in parser.

that is likely because the parser application does not produce as long traces as the bzip2
application. Compared to the trace overhead in bzip2, nprofile performs noticeably better
than oprofile in all configurations. This is surprising given that nprofile performed worse
than oprofile in some situations in the bzip2 case. One possible explanation for this is
that the parser program has a different memory profile than bzip2, colliding with that of
oprofile, introducing system stalls through cache misses for example. Another possible
explanation is that oprofile does not scale as well as nprofile. The parser program has
about four and a half times longer execution time than bzip2, thus producing significantly
more sample data.

44

6 Discussion

6.1 Summary

One of the biggest challenges of developing this profiler was not the fact that it should
profile sequential C and C++ programs but the fact that it should be portable across
operating systems and processor architectures. Of course, a profiler targeted towards
Java or .NET programs would be much less sophisticated and require less effort (from
my part) since these programs run in a very controlled environment. Both the official
Java and .NET virtual machines provide well defined interfaces for profiling [34][35].

The difficulty of developing a portable C and C++ software profiler greatly depends on
the method for data gathering. Source code instrumenting profilers can be implemented
as completely processor architecture independent. In contrast, the other techniques such
as binary instrumentation, sampling and simulation in varying degrees depend on the
underlying processor architecture.

The simulation strategy was ruled out almost immediately when evaluating the different
methods. Simulating an entire processor instruction set will introduce too much work
when extending such a profiler with support for new processor architectures. Instrumen-
tation was also ruled out, primarily due to its problem with biased overhead on small
procedures compared to larger ones. Source code instrumentation was briefly considered
due to its attractive property of being processor architecture independent.

Compared to sampling, instrumenting profilers are expected to introduce a different mag-
nitude of overhead in the profiled application. This is very much supported by the perfor-
mance comparison in this report. One should also keep in mind that the instrumenting
profiler gprof that was compared is not purely instrumentation based but actually uses
sampling to measure execution time. A purely instrumentation based profiler can be
expected to introduce even more overhead than gprof.

Despite being an approximate process the theoretical evaluation shows that sampling is
very accurate as long as a significant number of samples are taken. Only 10 000 samples
are required to achieve a maximum margin of error slightly below 1%. In this context
10 000 samples are a few. The performance evaluation shows that a sampling rate of over
20 000 samples per second (100 000 sample interval on 2 GHz processor) is no match for
current systems. This means that under normal conditions the profiled program can be
so short that it finishes in half a second and the resulting profile is still very accurate.
Considering that the programs that this profiler targets (sequential, heavy on computing)
will have an execution time of at least multiple seconds, a very high confidence can be
put into the resulting profiles.

A major drawback with sampling is that introduces a strong dependency on the under-
lying operating system, probably a stronger dependency than most of the other profiling
techniques. On open source operating systems such as GNU/Linux this is generally not
a problem, but on closed operating systems such as Microsoft Windows it can be. The
hardest part with the project analysis was to understand how sampling could be imple-
mented in Microsoft Windows. At times it was even a question on if it could be (with

45

reasonable effort).

On Microsoft Windows the hardware resources that are required for sampling seems to be
allocated and reserved for internal use. This is however not 100% confirmed since prac-
tically no documentation exists on the subject. There are a few serious sampling based
profilers available for Windows and it’s possible that their developers (major companies)
have signed agreements with Microsoft in order to access some hidden API.

For the profiler in this thesis a somewhat obtrusive method was developed for Windows in
order to setup an interrupt handler. A small proof of concept application was developed
in order to validate the technique. It may or may not be the best solution but it is good
enough to establish confidence that a sampling based profiler can be implemented using
this method.

The sampling mechanism aside there are still many dependencies such as operating system
dependencies for process, symbol, debug information management as well as processor
architecture and compiler dependencies for procedure call tracing. From a portability
standpoint this is unfortunate but they presented no major issue in terms of implementa-
tion. As a result of these dependencies the profiler was constructed in a modular fashion
in order to be extendible with support for new platforms. Adding support for a new
operating system or processor architecture is not easy per se, but it doesn’t require in
depth knowledge of all the profiler’s internals.

Extending the profiler is a matter of implementing and connecting the different interfaces
defined in the profiler architecture. To aid the development the profiler system also
provides a set of unit tests that can be used to validate the correctness of certain parts
of the implementation. Despite the profiler’s helpful architecture it can still be a difficult
task extending the profiler. For example, knowledge of driver development and interrupt
handling is necessary when adding support for a new operating system.

6.2 Conclusions

There is no silver bullet for designing and implementing a portable performance profiler
of the kind in this thesis. The only way to write a purely portable profiler would be to
limit the profiler to use only standard C or C++ library functions (assuming the profiler
is written in C or C++). Neither of these libraries provides enough utility to perform any
kind of profiling. Of all profiling techniques, source code instrumentation comes closest of
achieving this. Nevertheless, not even source code instrumentation can be implemented
using standard C or C++ functions.

There are only two viable methods for accurate profiling for hot spots or hot paths and
that is simulation and sampling. Instrumentation has one advantage over sampling and
that is calculating exact call frequencies. The profiler in this thesis focus is on finding hot
spots and hot paths hence instrumentation is not a good option. If exact call frequencies
is the most important result instrumentation is a good alternative. If both call frequencies
and hot spots/paths are of interest it may be a better idea to look into simulation or
developing two separate profilers, one for sampling and another for instrumentation. The
latter approach is actually used in Intel’s VTune profiler suite.

46

Implementing a portable sampling based profiler is far from straight forward. It carries
more platform dependencies than desirable. It’s tempting to compromise the accuracy
and go with source code instrumentation just for the ease of it. This thesis suggests a
sampled based profiler design that tries to minimize the amount of platform specific code
under a modular extensible architecture. It shows that it is possible to build a profiler
system that supports portability across platforms while retaining high accuracy.

Performance evaluation of the profiler implementation demonstrates that not only does
it provide high accuracy, but it does that at a very low cost. Depending on the length
of the sampling period, the overhead can be as low as 1% to 4%. This while retaining a
maximum margin of error of under 1% (with 95% certainty).

6.3 Future Work

There are several areas in which the profiler can be improved, both in terms of design
and implementation.

One thing is to further improve the buffer synchronization mechanism. The perfor-
mance evaluation shows that the performance overhead increases with the amount of
data processed by the profiler. The current buffer synchronization implementation fo-
cuses towards avoiding buffer overflows, but it may not be the most efficient one in terms
of performance. For example, the size of the data chunks that are copied between the
buffers is not optimized with respect to the processor and hard disk caches.

Furthermore, the buffer synchronization mechanism in the driver could potentially be
replaced by a single lock free ring buffer supporting multiple producers and consumers.
Even though the individual performance of such a ring buffer implementation can be
expected to be slower than the current ring buffer implementation, it would be interesting
to evaluate the performance difference compared to the entire buffer synchronization
system. That is to replace the buffer hierarchy and synchronization mechanism inside
the kernel driver with a single lock free ring buffer.

Another potential issue is that the profiler only performs sampling on one process. In
some situations it might be of interest to profile child processes spawned by the profiled
application. The profiled program may for example spawn a new process that will account
for a large part of the processing time. In its current state the profiler will not detect
this activity.

Even if not essential for the profiler’s intended usage it could be of interest to extend the
profiler to support generation of call graph or call context tree profiles. This could be
done using the method suggested by [11] but a study would have to be done in order to
establish which processor architectures that support this method.

Another interesting feature that has not been mentioned in this report is the ability of
being able to profile thread stalls; where a program spend most of its time waiting. The
profiler in this thesis focuses towards profiling applications that has not yet been paral-
lelized, but one could imagine using it for the purpose of evaluating the parallelization
itself. In this case profiling thread stalls could be very useful.

47

The current profiler implementation only supports profiling using one HPC register at a
time. Most modern processors have at least two registers available per processor core.
A nice feature could be to enable profiling using multiple registers at once, for profiling
different aspects of the program. This would increase the profiler overhead but one would
not have to profile a program multiple times as when using only one HPC register.

Finally, when using the profiler in HPC mode the sample intervals are specified as a
number of events. For example 1000 cache misses or 100 000 clock cycles. Specifying
sampling intervals in this way makes assumptions on the processor configuration of the
current system. For example 100 000 clock cycles will take longer time to execute on
a 1 GHz processor than a 3 GHz processor. It would be desirable to make the profiler
at least calculate a default interval depending on the current processor configuration,
perhaps based on the processor’s clock frequency.

48

References

[1] M. Dunlavey, Performance Tuning with Instruction-Level Cost Derived from Call-
Stack Sampling , ACM SIGPLAN Notices, Vol. 42, 8, 4–8, 2007

[2] S. Graham, P. Kessler, M. McKusick, gprof: a Call Graph Execution Profiler , ACM
SIGPLAN Notice, Vol. 17, 6, 120–126, 1982

[3] S. Ghemawat, Google CPU Profiler , http://google-perftools.googlecode.com/
svn/trunk/doc/cpuprofile.html, January 12 2009

[4] Free Software Foundation, Inc., Debugging Options - Using the GNU
Compiler Collection (GCC), http://gcc.gnu.org/onlinedocs/gcc-4.3.2/gcc/

Debugging-Options.html#Debugging-Options, January 12 2009

[5] M. Dagenais, K. Yaghmour, C. Levert, M. Pourzandi, Software Performance Anal-
ysis , Cornell University Library, arXiv:cs/0507073v1, 2005

[6] N. Froyd, J. Mellor-Crummey, R. Fowler, Low-Overhead Call Path Profiling of Un-
modified, Optimized Code, International Conference on Supercomputing, Session 3,
81–90, 2005

[7] M. Zagha, B. Larson, S. Turner, M. Itzkowitz, Performance Analysis Using the MIPS
R10000 Performance Counters , Supercomputing, 1996, Vol. 2005-05-02, 16–16, 1996

[8] Intel Corporation, Intel VTune, http://www.intel.com/cd/software/products/
asmo-na/eng/239144.htm, January 15 2009

[9] J. Levon, About OProfile, http://oprofile.sourceforge.net/about/, January 15
2009

[10] Hewlett-Packard, Prospect: Easy-to-use, non-intrusive profiling for Linux , http:

//prospect.sourceforge.net/, January 15 2009

[11] M. Arnold, P. Sweeney, Approximating the Calling Context Tree via Sampling , IBM
Research Report, 2000

[12] Sun Microsystems, Inc., Sun Studio 12: Performance Analyzer , 819-5264, 2007

[13] G. Ammons, T. Ball, J. Larus, Exploiting Hardware Performance Counters with Flow
and Context Sensitive Profiling , Conference on Programming Language Design and
Implementation, 85–96, 1997

[14] X. Zhuang, M. Serrano, H. Cain, JD. Choi, Accurate, Efficient, and Adaptive Calling
Context Profiling , Conference on Programming Language Design and Implementa-
tion, Session: Runtime optimization and profiling, 263–271, 2006

[15] Advanced Micro Devices, Inc., AMD Developer Central - AMD CodeAnalyst , http:
//developer.amd.com/CPU/CODEANALYST/Pages/default.aspx, February 2 2009

[16] Valgrind Developers, Valgrind Home, http://valgrind.org/, February 2 2009

49

http://google-perftools.googlecode.com/svn/trunk/doc/cpuprofile.html
http://google-perftools.googlecode.com/svn/trunk/doc/cpuprofile.html
http://gcc.gnu.org/onlinedocs/gcc-4.3.2/gcc/Debugging-Options.html#Debugging-Options
http://gcc.gnu.org/onlinedocs/gcc-4.3.2/gcc/Debugging-Options.html#Debugging-Options
http://www.intel.com/cd/software/products/asmo-na/eng/239144.htm
http://www.intel.com/cd/software/products/asmo-na/eng/239144.htm
http://oprofile.sourceforge.net/about/
http://prospect.sourceforge.net/
http://prospect.sourceforge.net/
http://developer.amd.com/CPU/CODEANALYST/Pages/default.aspx
http://developer.amd.com/CPU/CODEANALYST/Pages/default.aspx
http://valgrind.org/

[17] P. Kocher, Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and
Other Systems , Lecture Notes In Computer Science, Vol. 1109, 104–113, 1996

[18] P. Drongowski, Instruction-Based Sampling: A New Performance Analysis Tech-
nique for AMD Family 10h Processors , Advanced Micro Devices, Inc., 2007

[19] Intel Corporation, Intel 64 and IA-32 Architectures Software Developer’s Manual ,
Vol. 3A, 2008

[20] S. Friedl, Intel x86 Function-call Conventions - Assembly View , http://www.

unixwiz.net/techtips/win32-callconv-asm.html, February 16 2009

[21] Microsoft Corporation, cdecl (C++), http://msdn.microsoft.com/en-us/

library/zkwh89ks(VS.71).aspx, February 16 2009

[22] K. Johnson, Frame pointer omission (FPO) optimization and consequences when
debugging, part 1 , http://www.nynaeve.net/?p=91, February 16 2009

[23] A. Jönsson, Calling conventions on the x86 platform, http://www.angelcode.com/
dev/callconv/callconv.html, February 16 2009

[24] University of Alberta, Understanding Memory , http://www.ualberta.ca/CNS/

RESEARCH/LinuxClusters/mem.html, February 17 2009

[25] K. Frei, X86 Unwind Information, http://blogs.msdn.com/freik/archive/2006/
01/04/509372.aspx, February 17 2009

[26] Microsoft Corporation, Low-fragmentation Heap (Windows), http://msdn.

microsoft.com/en-us/library/aa366750(VS.85).aspx, February 24 2009

[27] N. Nethercote, J. Fitzhardinge, Bounds-Checking Entire Programs Without Recom-
piling , Informal Proceedings of the Second Workshop on Semantics, Program Anal-
ysis, and Computing Environments for Memory Management (SPACE 2004), 2004

[28] K. Johnson, An introduction to kernrate (the Windows kernel profiler), http://www.
nynaeve.net/?p=45, February 16 2009

[29] J. Corbet, G. Kroah-Hartman, A. Rubini, Linux Device Drivers, 3rd Edition,
O’Reilly, 2005

[30] E. Ladan-Mozes, N. Shavit, An Optimistic Approach to Lock-Free FIFO Queues , In
proceedings of the 18th International Conference on Distributed Computing (DISC),
117–131, 2004

[31] M. Gorman, Understanding the Linux Virtual Memory Manager , Prentice Hall, 2004

[32] U. Vahalia, UNIX Internals: The New Frontiers , Prentice Hall, 1996

[33] R. Hyde, The Art of Assembly Language Programming , http://www.arl.wustl.

edu/~lockwood/class/cs306/books/artofasm/toc.html, 1996

50

http://www.unixwiz.net/techtips/win32-callconv-asm.html
http://www.unixwiz.net/techtips/win32-callconv-asm.html
http://msdn.microsoft.com/en-us/library/zkwh89ks(VS.71).aspx
http://msdn.microsoft.com/en-us/library/zkwh89ks(VS.71).aspx
http://www.nynaeve.net/?p=91
http://www.angelcode.com/dev/callconv/callconv.html
http://www.angelcode.com/dev/callconv/callconv.html
http://www.ualberta.ca/CNS/RESEARCH/LinuxClusters/mem.html
http://www.ualberta.ca/CNS/RESEARCH/LinuxClusters/mem.html
http://blogs.msdn.com/freik/archive/2006/01/04/509372.aspx
http://blogs.msdn.com/freik/archive/2006/01/04/509372.aspx
http://msdn.microsoft.com/en-us/library/aa366750(VS.85).aspx
http://msdn.microsoft.com/en-us/library/aa366750(VS.85).aspx
http://www.nynaeve.net/?p=45
http://www.nynaeve.net/?p=45
http://www.arl.wustl.edu/~lockwood/class/cs306/books/artofasm/toc.html
http://www.arl.wustl.edu/~lockwood/class/cs306/books/artofasm/toc.html

[34] B. Long, .NET Internals: The Profiling API , http://www.blong.com/

Conferences/DCon2003/Internals/Profiling.htm, 2009

[35] C. Austin, J2SE 5.0 in a Nutshell , http://java.sun.com/developer/

technicalArticles/releases/j2se15/, 2004

51

http://www.blong.com/Conferences/DCon2003/Internals/Profiling.htm
http://www.blong.com/Conferences/DCon2003/Internals/Profiling.htm
http://java.sun.com/developer/technicalArticles/releases/j2se15/
http://java.sun.com/developer/technicalArticles/releases/j2se15/

Glossary

Application Programming Interface (API) Programmers interface to a piece of soft-
ware. 9, 17, 46

Call stack Dynamic stack structure for storing information about subroutine calls in a
program. 3, 13, 19–21, 35, 54, 59

Debug symbol The name of a construct in an already compiled executable binary, for
example a procedure. 30

GNU Compiler Collection (GCC) A compiler system for various programming lan-
guages. 13

Hardware Performance Counter (HPC) Special purpose hardware registers for mon-
itoring. 16–18, 26, 33, 35, 48

Hot path An execution path of a program that is consuming a significant amount of
resources. 3, 14, 46

Hot spot A small section of a program that is consuming a significant amount of re-
sources. 3, 14, 46

Instruction Based Sampling (IBS) Precise sampling method developed by AMD. 18

Portable Operating System Interface (POSIX) IEEE standard defining an API
for operating system libraries. 16

Procedure prologue Piece of code appearing in the beginning of a function that ini-
tializes the stack and registers for later use. 19

Real-Time Clock (RTC) Computer clock circuit, keeping track of the current time.
17, 26, 33, 35

Stack frame Sometimes called activation record, it contains state information about a
subroutine call. 19–21

Userland Application space separated from the kernel with restrictive permissions. 18,
28, 33

52

A User Documentation

A.1 Introduction

This appendix regards the profiler usage. It begins with a small tutorial, followed by a
more detailed user guide and user referenced. Finally there is a section on how to compile
and install the profiler system.

For someone who should install the profile the installation guide is a good start. For
someone who wants to start using the profiler immediately the tutorial is a good start.

A.2 Tutorial

First, make sure that the nprofile module is loaded into the kernel:

lsmod | grep n p r o f i l e

If not, load it:

insmod <path>/ n p r o f i l e . ko

List the available events and select one that you want to profile on:

n p r o f i l e − l

For this tutorial the event: nprof.clk unhalted is recommended and assumed to be used.
This is a wrapper event incrementing on unhalted clock cycles. The original events doing
this are named differently on different processor models, hence the need for a wrapper.

Now it’s time to start profiling, for example you can use the following command:

n p r o f i l e −−event=nprof . c l k unha l t ed :100000 −k −−p r o f i l e=path <program>

This will launch and start profiling the specified program, taking samples every 100 000th
unhalted clock cycle. When the program is done executing the profile summary will be
printed to the screen.

Since the -k option was used the raw sample data file is kept on the hard drive. It’s
named <PID>.nprof. The very same data file can now be used to re-generate a profile,
for example of a different kind.

n p r o f i l e −r −−p r o f i l e=f l a t <PID>

The above command line will generate a flat profile instead of a path profile from the
data collected by the last profiling session.

53

A.3 User Guide

Starting and Stopping a Profiling Session

Profiling can be stated by either lunching a new program through the profiler, or by
attaching to a running process. The only difference in usage is whether a program (with
optional arguments) or a process identifier is specified as the last argument to the profile.
The profiler will know if it should launch a new program or attach to an existing one.

By default, the profiler will continue to profile until the profiled program exits, but it’s
possible to stop profiling at any time while letting the previously profiled program con-
tinue its execution. An ongoing profiling session can be aborted by sending an interrupt
signal (Ctrl + C) to the profiling application. The profiler will stop sampling and produce
a profile of the data gathered up to the point of abortion.

Selecting a Profile Type

A profile type is selected using the --profile option. Currently two types are supported,
flat and path. Path profiling involves analyzing the call stack in order to determine the
procedure call trace leading up to the sampled instruction. Generating this type of profile
introduces a higher execution time overhead.

It should be noted that on large programs running for a long time it may happen that
there will be lots of addresses getting very few hits. This can clutter the generated
profile with unimportant results. In these cases it may be a good idea to use the --limit
option that will strip all addresses that receives a hit count lower or equal to the specified
limit. These addresses will never be ignored during the sampling process but only when
generating the final profile. It can thus be a good idea to use the option -k to keep the
raw sample data file on the hard drive and then tweak the output profile any number of
times using the --limit option until the desired output profile has been generated.

Specifying a Profiling Event

Different processor models (yes, not architectures) provides very different profiling events.
For this reason a wrapper event have been created to work across models and processor
architectures. This event is called nprof.clk unhalted and triggers on unhalted clock
cycles.

A certain degree of carefulness should be put into selecting the sampling interval. If
making a mistake using 1000 instead of for example 10 000 the computer may freeze
entirely since all computing power is spent in the interrupt routine. This is a limitation
of the profiler implementation. This of course depends on the profiling event. If using
unhalted clock cycles 1000 is way too small, but not necessarily when using cache misses.

54

Regenerating a Profile

If sampling has been performed with the -k option the raw sample data file will be kept
on the hard drive after the profiling session is completed. This can be useful for sampling
in path profile mode and then generating a flat profile if the same data.

The raw sample data files will be stored using the name <PID>.nprof in the current
directory. To generate a new profile of the same data use:

n p r o f i l e −r <OPTIONS> <PID>

Please note that the extension .nprof should not be appended after the process identifier.

A.4 Reference Manual

Usage: nprofile [OPTIONS] [PID or FILE. . .]

Options Description
-k If specified the raw sample data file will not be removed

after the profiling session is complete. It will be stored
under the file name: <PID>.nprof in the current direc-
tory.

-r Indicates report only mode. This option is used in order
to generate a report from an existing raw sample data
file. This flag should be used in combination with a PID
number. For example, if there is a file named 42.nprof
nprofile should be called like: nprofile -r 42

-l Lists all available profiling events.
-h Prints a help message.
--event=<NAME>:<INTERVAL> Specifies the profiling event and interval to use. The

name should be the name reported when listing events.
The interval should be selected with care, only a few
sanity checks are performed on the interval value.

--limit=<LIMIT> Specifies a sample hit limit. For example a limit of 1000
will ignore all entries (source lines, procedures, memory
addresses) with 1000 and fewer hits.

--profile=<TYPE> Specifies the profile type. If not in report generation
mode the will affect how the sampling is performed.
Supported profile types are: [flat|path].

A.5 Installation Guide

This installation guide is currently only for GNU/Linux systems and assumes a source
code distribution model.

55

Compiling and Installing the Kernel Module

The first step towards installing the profiler system is to compile and then install the
kernel module. In order to compile the module the system must have the Linux kernel
headers installed. To check the availability you can do the following:

l s / l i b /modules / ‘uname −r ‘ / bu i ld /

An error will be printed if the path doesn’t exist. In that case the Linux kernel headers
must be installed.

When the kernel headers are installed navigate to the nprofile/driver/linux directory and
type make. This will build the kernel module and link it into a file named nprofile.ko.
To load the driver type:

insmod n p r o f i l e . ko

The driver can also be installed system-wide being superuser and typing:

make i n s t a l l

Compiling and Installing the libnprofile Library

This library is the interface between the profiling application and the kernel module.
To compile libnprofile the following libraries are required: libelf, libdward, libiberty. In
order to recompile the build scripts GNU autotools is needed. To recompile libnprofile,
navigate to the nprofile/libnprofile directory and do the following:

. / r e c o n f i g u r e

Then run the configure script with your preferred options and finally call make and make
install as usual.

Compiling and Installing the Utility Library libnutil

This library lacks non-standard dependencies exept for GNU autotools. Simply navigate
to nprofile/libnutil and do the following:

. / r e c o n f i g u r e

Then run the configure script with your preferred options and finally call make and make
install as usual.

Compiling and Installing the nprofile Application

This is the main application that will be called directly when profiling. nprofile depends
on libnprofile and libnutil. If not installed system-wide they must be specified to the
configuration script using the following argument:

56

. / c o n f i g u r e −−with−n l i b s=<path>

This application builds the same way as the libraries.

B System Documentation

B.1 System Specification

Overview

A general architectural overview is shown in figure 22. The dashed objects are not fully
implemented in reality but shown in order to demonstrate the organization. The colors
show to which source code package the functionality belongs.

The profiler application links directly to the interface so there is no message driver com-
munication at that layer. The driver’s communication with the interface towards the
profiling application is specific for all operating systems. There is no standard protocol
for this as each operating system provides very different means of communication with
drivers. Please recall that the interface runs in a user mode process while the driver
obviously doesn’t.

GNU/Linux Driver Communication

The GNU/Linux driver creates virtual file system nodes in order to establish communi-
cation between the interface and the driver. The driver creates the following nodes by
default:

• /proc/nprofile-buffer (read only)

• /proc/nprofile-control (read and write)

• /proc/nprofile-events (read only)

The names of these nodes can be configured in the nprofile/driver/linux/const.h file which
also contains other easy configurable options.

The nprofile-buffer node is used for reading the contents of the drivers primary ring buffer.
Data should be read in multiples of the pointer size. For example on a 32-bit system data
should be read in multiples of four.

The nprofile-control device is used for controlling the operation of the driver. By reading
from the device, information about its current status is obtained. The output data is
defined as a list of entries where each entry has the following format:

<name>: <value>

57

x86

Utility

Profiler Application

Sample
Collector

Profiler

Windows Kernel Driver

Sample
Buffer Control

Windows Interface

Sample
Stream Control

Process
Manager

Symbol
Lookup

GNU/Linux Kernel Driver

Sample
Buffer Control

GNU/Linux Interface

Sample
Stream Control

Process
Manager

Symbol
Lookup

x86-64

Utility

ARM

Utility

Archtecture specific
Architecture independent

Platform specific
Platform independent

Flat Profile
Generator

Trace Profile
Generator

Report
Generator

driver package

libnprofile

nprofile

Figure 22: Architectural overview.

58

All entries are separated by a single new-line character. By default the following entries
are defined:

• ”sampling: ”[0|1]

• ”tracing: ”[0|1]

• ”num pointers: ”[0-9]+

• ”pointer size: ”[0-9]+

• ”profiler hits: ”[0-9]+

The sampling option tells if the driver is currently performing sampling or not. The
tracing option is similar, telling if the driver performs call stack tracing. The num pointers
option tells how many memory addresses that are currently stored in the driver’s primary
ring buffer. The pointer size tells the size of a single memory address in bytes. The
profiler hits option is only present in debug mode and tells the number of samples that
hit the profiling application. This may be useful when analyzing the overhead of the
profiling application alone.

To print the current status to standard output, execute the following command in a shell:

cat / proc / nprof−c o n t r o l

By writing to the nprofile-control device instead it’s possible to control the backend. This
is done by writing a command to the node. The default commands are defined as follows.

• ”sampling: ”((”start ”[ˆ:]+:[0-9]+,[0-9]+)|(”stop”))

• ”tracing: ”[”enable”|”disable”]

• ”reset”

The sampling command starts a new or stops an ongoing sampling process. In order
to better understand the above regular expressions consider the following example for
starting a sampling process from a shell:

echo ” sampling : s t a r t nprof . c l k unha l t ed :100000 ,0 ” > / proc / nprof−c o n t r o l

The above command will start profiling the init process with process identifier zero using
the nprof.clk unhalted event in intervals of 100 000 events. Stopping the sampling process
is simply a matter of writing the following from a shell:

echo ” sampling : stop ” > / proc / nprof−c o n t r o l

The tracing command works in a similar manner, simply enabling and disabling tracing
within the driver.

It should be noted that issuing the start sampling command will purge all buffers within
the driver. The tracing command will not alter the buffer contents but can be switched
on and off freely during the profiling operation.

59

Buffer Protocol

The contents of the primary ring buffer that is filled by the driver and eventually read
by the profiling application uses a custom protocol. The protocol operates under the
following assumptions:

• The buffer is organized into blocks. These blocks are always of the size of a pointer
on the current system. That is 4 bytes on a 32-bit system.

• There are special reserved block values that are used for special purposes.

• The value in all blocks that are not reserved contains a memory address.

The special reserved blocks are defined below:

Block Value Description
0 Start of a trace. All addresses following these blocks

belong to the same sample. The first address is the
actual sampled address. All subsequent addresses are
the procedure trace from callee to caller.

1 End of a trace. All addresses preceding these blocks
belong to the same sample.

2 Process exit. The profiled process has exited.

B.2 Detailed System Specification

GNU/Linux Back-End Class Diagram

Figure 23 shows the class diagram for the profiler back-end. The class diagram looks
somewhat unconventional with many singleton classes. This is due to the fact that the
back-end is actually implemented in the language C. Grey boxes indicate operating system
specific code, in this case for GNU/Linux. Dark grey boxes indicate operating system and
processor architecture specific code. The light grey indicate architecture specific code.
There is only one light grey box and that is the Tracer class.

GNU/Linux Front-End Class Diagram

Figure 24 shows the class diagram for the profiler front-end. This includes the nprofile
application and the libnprofile library. Grey boxes are classes within the driver interface
(libnprofile).

60

+create(size_t size): int
+destroy(): int
+write(const uintptr_t *buffer,int count): int
+read(uintptr_t *buffer,int count): int
+test(size_t count): int
+clear(): int
+num_elements(): int
+free(): int
+push(uintptr_t addr): void

-buffer_: uintptr_t *
-size_: size_t
-start_: size_t
-end_: size_t
-count_: NATOMIC

RingBuffer
<<singleton>>

+push(pid_t pid,tcontext *context): int

-pid: pid_t
-prof_pid: pid_t
-trace: int
-prof_hits: int

Sampler
<<singleton>>

+init(): void
+deinit(): void
+start(const char *event,unsigned long interval,
 pid_t pid,pid_t prof_pid): int
+stop(): int
+sampling(): int

-lock_: NLOCK
-cur_event_generator: EventGenerator *

Controller
<<singleton>>

+init(): int
+deinit(): int
+start(const char *event,unsigned long interval): int
+stop(): int
+event_table(): event_table *

+name: const char *

EventGenerator
<<interface>>

+events: Event *
+count: size_t

EventTable

+name: const char *
+event: unsigned short
+umask: unsigned short
+desc: const char *

Event

-flush(): void
+push(pid_t pid,tcontext *context): int

-buffer_: uintptr_t *
-size_: size_t
-start_: size_t
-end_: size_t
-count_: NATOMIC
-sync_work_: struct delayed_work
-sync_delay_: unsigned long
-overflows_: unsigned long

CpuBuffer

-sync_event(struct work_struct *work): void
+alloc(size_t size): int
+free(): int
+sync_start(): void
+sync_stop(): void
+flush(): void

-cpu_buffers_: CpuBuffer *
-sync_mutex_: MUTEX
-sync_enable: int

CpuBuffers
<<singleton>>

-proc_file_buf_read(struct file *file, char *buffer,
 size_t count,
 loff_t offset): ssize_t
-proc_file_buf_open(struct inode *inode,
 struct file *file): int
-proc_file_ctl_read(char *page,char **start,off_t off,
 int count,int *eof,void *data): int
-proc_file_ctl_write(struct file *file,
 const char *buffer,
 unsigned long count,
 void *data): int
-proc_file_evt_read(char *page,char **start,
 off_t off,int count,int *eof,
 void *data): int
+init(): int
+deinit(): int
-cmd_sampling_start(const char *arg,
 size_t arg_size): void
-cmd_sampling_stop(const char *arg,
 size_t arg_size): void
-cmd_tracing_enable(const char *arg,
 size_t arg_size): void
-cmd_tracing_disable(const char *arg,
 size_t arg_size): void
-cmd_reset(const char *arg,size_t arg_size): void

-proc_file_buf_: struct proc_dir_entry
-proc_file_ctl_: struct proc_dir_entry
-proc_file_evt_: struct proc_dir_entry
-proc_ctl_buf_: char [128]
-proc_ctl_buf_len: size_t
-proc_evt_buf_: char [128]
-proc_file_ctl_cmds: *ProcFileCtlCmd
-proc_file_ctl_cmd_count

DeviceManager
<<singleton>>

+action(const char *arg,size_t arg_size): void

+cmd_str: const char *
+cmd_str_len: size_t

ProcFileCtlCmd
<<interface>>

+count(): size_t
+name(size_t index): const char *
+desc(size_t index): const char *

+event_generators_: EventGenerator *
+event_generator_count_: size_t

Events
<<singleton>>

-interrupt_notify(struct notifier_block *self,
 unsigned long val,void *data): int
-hpc_backup_msrs(void *info): void
-hpc_restore_msrs(void *info): void
-hpc_free(): int
-hpc_alloc(int num_counters): int
+hpc_init(): int
+hpc_deinit(): int
-hpc_cpu_start(void *info): void
-hpc_cpu_stop(void *info): void
+hpc_start(const char *event,
 unsigned long interval): int
+hpc_stop(): int
+event_table(): event_table *

+hpc_impl_: *HpcImpl
+hpc_msrs_: HpcMsrs
+hpc_event_table_: *EventTable

Hpc
<<singleton>>

-task_exit_notify(struct notifier_block *self,
 unsigned long val, void *data): int
+init_module(): int
+cleanup_module(): int

Main
<<singleton>>

-timer_callback(struct pt_regs *regs): int
+start(const char *event,unsigned long interval): int
+stop(): int
+event_table(): event_table *

-timer_events_gen_: Event *
-timer_event_table_gen_: EventTable *

Timer

-apic_cpu_setup(void *info): void
-apic_cpu_restore(void *info): void
+apic_init(): int
+apic_deinit(): int

-orig_lvpc_: unsigned long

Apic
<<singleton>>

+cpu_model(): int

Cpu
<<singleton>>

+trace(const tcontext *context): int
+trace_buffer_: uintptr_t *

Tracer
<<singleton>>

+init(): int
+deinit(): int
+start(const HpcMsrs *msrs,const Event *event,
 unsigned long interval): int
+stop(const HpcMsrs *msrs): int
+notify(const HpcMsrs *msrs,
 struct pt_regs *regs): int

+num_counters_: int
+counter_width_: int
+base_addr_ctl_: int
+base_addr_cnt_: int
+event_table_: EventTable
Attribute

HpcImpl
<<interface>>

+low: unsigned int
+high: unsigned int

MsrValue

+count: u64
+addr: unsigned int
+orig_val: MsrValue

Msr

+controls: Msr
+counters: Msr

HpcMsrs

+init(): int
+deinit(): int
+start(const HpcMsrs *msrs,const Event
*event,
 unsigned long interval): int
+stop(const HpcMsrs *msrs): int
+notify(const HpcMsrs *msrs,
 struct pt_regs *regs): int

HpcA
<<singleton>>

+init(): int
+deinit(): int
+start(const HpcMsrs *msrs,const Event
*event,
 unsigned long interval): int
+stop(const HpcMsrs *msrs): int
+notify(const HpcMsrs *msrs,
 struct pt_regs *regs): int

HpcI6
<<singleton>>

+hpc_sel_impl(): HpcImpl *

Hpc
<<singleton>>

+hpc_events_i6_core: Event *
+hpc_events_i6_core_2: Event *
+hpc_events_i6_arch: Event *
+hpc_events_af: Event *
+hpc_events_a10: Event *
+hpc_events_a11: Event *

HpcEvents
<<singleton>>

Figure 23: Class diagram of profiler back-end.

61

-load_symbols(): bool
-load_debug(): bool
+<<constructor>> BinFile(const char *path)
+open(): bool
+close(): bool
+debug(): bool
+path(): string
+find_symbol(uintptr_t addr): const BinFile::Symbol *
+find_symbol(const char *name): const BinFile::Symbol *
+find_context(uintptr_t addr): const BinFile::Context *

-file_path_: string
-symbols_: vector<BinFile::Symbol *>
-contexts_: vector<BinFile::Context *>
-src_files_: set<String *>

BinFile

+<<constructor>> Symbol(uinptr_t addr,uintptr_t size,
 const char *name)

+addr_: uintptr_t
+size_: uintptr_t
+name_: string

BinFile::Symbol

+<<constructor>> Context(uintptr_t addr,uintptr_t line_no,
 uintptr_t line_off,const char *src_file)

+addr_: uintptr_t
+line_no_: uintptr_t
+line_off_: uintptr_t
+src_file_: const char *

BinFile::Context

+<<constructor>> String(const char *str)
+c_str(): const char *

+value_: char *
String

+open(): bool
+close(): bool
+read(uinptr_t *buffer,
 size_t count): ssize_t

Buffer

+start(const char *event,unsigned long interval,
 pid_t pid): bool
+stop(): bool
+trace(bool enable): bool
+running(): bool
+sampling(): bool
+tracing(): bool

Controlller

+demangle(const string &): string
Demangler

+launch(const char *argv[]): bool
+attach(pid_t pid): bool
+running(): bool
+wait(): bool
+update_images(): bool
+find_image(uintptr_t addr): const Process::Image *
+identifier(): pid_t

-pid_: pid_t
-images_: vector<Process::Image *>

Process

+<<constructor>> Image(uintptr_t addr_start,
 uintptr_t addr_end,
 uintptr_t addr_offset,
 const char *path)

-addr_start_: uintptr_t
-addr_end_: uintptr_t
-path_: string

Process::Image

-<<constructor>> Collector()
-<<constructor>> Collector(const Collector &rhs)
-<<destructor>> Collector()
-operator=(const Collector &rhs): Collector &
+instance(): Collector &
+collect(FileWriter &writer,Process &proc)
+stop() bool

collecting_: bool

Collector
<<singleton>>

+open(const char *path): bool
+close(): bool
+operator<<(uintptr_t addr): FileWriter &
+operator<<(Delimiter delim): FileWriter &
+operator<<(Process &proc): FileWriter &

-in_trace_: bool
-file_: ofstream

FileWriter

-clear();
+parse(const char *path,
 FileReader::Callback &callback): bool
+find_image(uintptr_t addr): const FileReader::Image *

images_: vector<FileReader::Image *>
FileReader

+<<constructor>> Image(uintptr_t addr_start,
 uintptr_t addr_end,
 const char *path)

-addr_start_: uintptr_t
-addr_end_: uintptr_t
file_: BinFile

FileReader::Image

+tr_start
+tr_end

FileWriter::Delimiter
<<enum>>

-parse_flag(char flag): bool
-parse_opt(const char *opt): bool
-parse_opt_event(const char *arg,Options &opt);
-parse_opt_profile(const char *arg,Options &opt);
+parse(int argc,const char *argv[],int &file_start):bool
+keep_data(): bool
+report_only(): bool
+sample_event(): string &
+sample_interval(): unsigned long
+profile_type(): Profile::Type

-keep_data_: bool
-report_only_: bool
-sample_event_: string
-sample_interval_: unsigned long
-profile_type_: Profile::Type
-flags_: vector<Options::Flag>
-opts_: vector<Options::Option>

Options

+PROFILE_FLAT
+PROFILE_PATH

Profile::Type
<<enum>>

+generate(const char *path): bool

Profile
<<interface>>

+push_address(uintptr_t addr): void
+push_trace(uintptr_t addr): void

FileReader::Callback
<<interface>>

-push_addr(uintptr_t addr): void
-print_std(vector<taddr_cmd_img> &addr_cnts,
 unsigned long tot_count): void
-print_dbg(vector<taddr_cmd_img> &addr_cnts,
 unsigned long tot_count): void
+generate(const char *path): bool

-addr_count_map_: map<uintptr_t,unsigned long>
FlatProfile

-print_detail(const FileReader &reader,
 const PathCntMapTripple &pcm,
 size_t sample_col_width): void
-print(const FileReader &reader): void
-push_address(uintptr_t addr): void
-push_trace(uintptr_t addr): void
+generate(const char *path): bool

-cur_path_: tpath
-path_map_: map<tpath,unsigned long>
-fake_sym_map_: map<FileReader::Image *,
 BinFile::Symbol *>

PathProfile

+profile(pid_t pid,const Options &opt): bool
+profile(const char *argv,
 const Options &opt): bool
+report(pid_t pid,const Options &opt): bool

Profiler

+create(Profile::Type type): Profile
ProfileFactory

+<<constructor>> Flag(char name,const char *desc,
 bool *val_ptr)

+name_: char
+desc_: const char *
+val_ptr_: bool *

Options::Flag

+<<constructor>> Option(const char *name,size_t name_len,
 const char *desc,const char *use,
 const char *err,
 bool (*parse_func)(const char *arg,
 Options &opt))

+name_: const char *
+name_len_: size_t
+desc_: const char *
+use_: const char*
+err_: const char *
+parse_func_: boll (*)(const char *arg,Options &opt)

Options::Option

+load(): bool
+print(pair<string,string> &event): void
+begin(): Events::Iterator
+end(): Events::Iterator

-events: vector<pair<string,string>>
-max_name_len: size_t

Events

+<<constructor>> Iterator()
+<<constructor>> Iterator(vector<pair<string,
 string>>::iterator it)
+operator*(): pair<string,string>
+operator++(): Iterator &
+operator++(int): Iterator &
+operator==(const Iterator &it): bool
+operator==(const Iterator &it): bool

-it_: vector<pair<string,string>>::iterator
Events::Iterator

Figure 24: Class diagram of profiler front-end.

62

B.3 Testing Guide

The unit tests are located in the nprofile/tests directory. The test system shares depen-
dencies with the profiling system and adds one further dependency, namely the Boost
Unit Testing Framework. To compile the test suite on GNU/Linux systems, type make
to use the included Makefile-based build system. To run the tests, execute the runtests.sh
script:

. / r u n t e s t s . sh

B.4 Testing Protocol

The following functionality is tested using the unit test system:

• Driver control interface: Unit tests check that the driver responds to correctly
commands and that it maintains a correct state.

• Driver buffer interface: Unit tests check that reading data from the driver through
the driver interface in libnprofile works properly.

• Process management: Unit tests check that processes can be launched and that
memory maps can be retrieved from them.

• Symbol lookup: Unit tests check that symbol information can be obtained from
binary executables.

• Procedure call tracing: Unit tests check that procedure tracing works on the testing
platform.

• Driver’s primary ring buffer: All available operations on the primary ring buffer
implementation are carefully tested.

B.5 Remaining Work

This is a list of what remains to be implemented:

• The Windows implementation.

• Monitoring of dynamic library loading and unloading in the driver. The current
profiler implementation is not aware if the profiled application loads or unloads a
dynamic library. This must be implemented if profiling programs that perform these
actions. This applied to libraries loaded with the dlopen command, not dynamic
libraries that are automatically loaded at startup.

63

C Profiler Comparison Matrix

Below is a profiler feature comparison matrix as asked for by Nema Labs.

Profiler Method Output OS Compiler Architecture
nprofile (current) Ss,Sh F,C L x86,amd64
gprof Ic F,C L GCC
oprofile Ss†,Sh F,C L x86,amd64,

alpha,arm
valgrind Ir F,C L x86,amd64,

ppc32,ppc64,
arm,mips

prospect Ss,Sh F,C L x86,amd64,
alpha,arm

Google PerfTools Ic F,C L
Luke Stackwalker Ss F,C W MSVC x86,amd64
Sleepy Ss F W MSVC x86,amd64
Intel VTune (S) Ss,Sh‡ F L,W x86,amd64
Intel VTune (I) Ir C L,W x86,amd64
AMD CodeAnalyst Ss,Sh∗ F,C∗ L,W x86,amd64

Profiler Accessible Parallel Notes
API/Back-end Profiling

nprofile (current) Yes Yes
gprof Yes No
oprofile Yes Yes Needs superuser access.
valgrind Yes Yes
prospect Yes Yes Uses oprofile kernel module.
Google PerfTools Yes Yes
Luke Stackwalker No Yes Poor sampling mechanism

implementation
Sleepy No No Poor sampling mechanism

implementation
Intel VTune (S) Yes Yes
Intel VTune (I) Yes Yes
AMD CodeAnalyst Noq Yes Uses oprofile kernel module

on GNU/Linux.

Method: Ic = Instrumentation (compile-time), Ir = Instrumentation (run-time),
Ss = Sampling (software based), Sh = Sampling (hardware based)

Output: F = Flat, C = Contextual (call graph or call tree)
OS: L = GNU/Linux, W = Microsoft Windows

†=Not encouraged, tricky to use.
‡=Works on Intel processors only.

64

∗=Works on AMD processors only.
q=Different APIs exist for different operating systems.

65

	Introduction
	Background
	Problem Definition
	Purpose
	Scope
	Assumptions
	Nema Labs

	Method
	Analysis
	Design
	Implementation
	Evaluation

	Theory
	Profile Summaries
	Data Gathering

	Analysis
	Data Gathering
	Data Management
	Data Analysis

	Results
	Profiler Implementation
	Profiler Correctness
	Profiler Performance

	Discussion
	Summary
	Conclusions
	Future Work

	References
	Glossary
	User Documentation
	Introduction
	Tutorial
	User Guide
	Reference Manual
	Installation Guide

	System Documentation
	System Specification
	Detailed System Specification
	Testing Guide
	Testing Protocol
	Remaining Work

	Profiler Comparison Matrix

