
Data integration using machine learning

Automation of data mapping using machine learning techniques

Master of Science Thesis Complex Adaptive Systems

MARCUS BIRGERSSON

GUSTAV HANSSON

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2016

Data integration using machine learning

Automation of data mapping using machine learning techniques

MARCUS BIRGERSSON GUSTAV HANSSON

Department of Computer Science and Engineering
Chalmers University of Technology

Gothenburg, Sweden 2016

Data integration using machine learning
Automation of data mapping using machine learning techniques
MARCUS BIRGERSSON and GUSTAV HANSSON

© MARCUS BIRGERSSON, January 2016.
© GUSTAV HANSSON, January 2016.

Industrial Supervisors: ULRIK FRANKE, OLOF WISTRAND
AND MAGNUS FREDRIKSSON

Academic Supervisor: CHIEN-CHUNG HUANG
Examiner: CHRISTOS DIMITRAKAKIS

Department of Computer Science and Engineering
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: A graphical illustration of a mapping example between two XML files.
Illustrated by Marcus Birgersson

Typeset in LATEX
Gothenburg, Sweden 2016

iv

Data integration using machine learning
Automation of data mapping using machine learning techniques
MARCUS BIRGERSSON and GUSTAV HANSSON
Department of Computer Science and Engineering
Chalmers University of Technology

Abstract
Data integration involves the process of mapping the flow of data between systems.
This is a task usually performed manually and much time can be saved if some parts
of this can be automated.
In this report three models based on statistics from earlier mapped systems is
presented. The purpose of these models is to aid an expert in the mapping process
by supplying a first guess on how to map two systems. The models are limited to
mappings between two XML-formats, where the path to a node carrying data usually
is descriptive of its data content. The developed models are the following:

1. A shortest distance model based on the concept that two nodes that have been
associated with a third node but not each other most likely have something to
do with each other.

2. A network flow model, which connects words with similar semantic meaning to
be able to associate the words in two connected XML paths with each other.

3. A data value model which connects data values to nodes based on similarities
between the value and earlier seen data.

The results of the models agrees with expectations. The shortest distance model
can only make suggestions based on XML-structures that are present in the training
set supplied for the project. The network flow model has the advantage that it
only needs to recognize parts of a path to map two nodes to each other, and even
completely unfamiliar systems can be mapped if there are similarities between the
two systems. Overall, the data value model performs the worst, but can make correct
mappings in some cases when neither of the others can.

Keywords: artificial intelligence, machine learning, system integration, data mapping

v

Acknowledgements
Firstly we would like to thank our supervisor Chien-Chung Huang for listening and
giving feedback to our ideas and our examiner Christos Dimitrakakis for valuable
pointers during the project.
We also want to thank the project group at iCore Solutions: Magnus Fredriksson,
Olof Wistrand, Carl-Adam Wachtmeister, and Ulrik Franke at the Swedish Institute
of Computer Science, for their help which guided us through the project and without
them this project would not have been possible.
Finally we want to give an extra thanks to our friends and families for all the support
during our education, and especially Ann Nylund for helping with the proofreading
of this report. Lastly ... everyone’s cats.

Marcus Birgersson and Gustav Hansson, Gothenburg, January 2016

vii

Contents

List of Figures xi

List of Tables xv

1 Introduction 1
1.1 Background . 1
1.2 Introduction to data integration . 2
1.3 Problem formulation . 3
1.4 Delimitations . 3
1.5 Related work . 4
1.6 Outline . 4

2 Theory 5
2.1 Definitions . 5

2.1.1 XML-files . 5
2.1.2 Raw data . 6
2.1.3 Mappings . 8
2.1.4 Set definitions . 8

2.2 Statistical models . 9
2.2.1 Conditional probability . 9
2.2.2 Information density . 10
2.2.3 Standard error of the mean 10

2.3 Scoring . 11
2.3.1 Fβ-score, precision and recall 11

2.4 Graph theory . 12
2.4.1 Shortest distance . 12
2.4.2 Maximum flow . 13

2.5 n-grams . 13
2.5.1 Kullback–Leibler-divergence 13

3 Methods 15
3.1 Generating training data . 15

3.1.1 Errors in the generated training data 16
3.1.2 Correcting faulty training data 16
3.1.3 Generating validation data . 16
3.1.4 Sampling data files . 16

3.2 Conditional mapping probabilities . 17

ix

Contents

3.3 Shortest distance model . 19
3.3.1 Initialization of model . 21
3.3.2 Computing confidence levels for mappings 21

3.4 Maximum flow model . 22
3.4.1 Initialization of model . 22
3.4.2 Computing mapping probabilities 23

3.5 Data value model . 23
3.5.1 Categorization using regular expressions 24
3.5.2 n-grams . 25
3.5.3 Connections between words and classes 25

3.6 Mapping using the models . 26
3.6.1 Decreasing confidence levels 26
3.6.2 Mapping threshold . 27

3.7 Validation process . 27
3.8 Implementation of the models . 29

4 Experiments 31
4.1 Experiment setup . 31

4.1.1 Experiment data . 32
4.1.2 Mapping process . 32

4.2 Parameter sweeps . 33
4.2.1 Sweeps of parameters θ and η 33
4.2.2 Training and evaluation on isolated datasets 33
4.2.3 Finding negative interference between datasets 40
4.2.4 Training and validating on all datasets 52
4.2.5 Validation on different datasets than used for training 54

4.3 Class distribution . 56

5 Discussion and conclusions 59
5.1 Discussion . 59

5.1.1 Comparison of the models . 60
5.1.2 Scoring of the mapping . 60
5.1.3 Parameter values . 60
5.1.4 Negative interference between the datasets 61

5.2 Conclusion . 61
5.3 Future work . 61

5.3.1 Online training . 61
5.3.2 Inserting new words into the flow model 62
5.3.3 Other initialization process for word mappings 62
5.3.4 Using the structure of the XML-tree 63
5.3.5 Extending the program to cover other formats 63
5.3.6 More advanced mapping algorithm 63
5.3.7 Determine when information should not be mapped 63

x

List of Figures

2.1 Example XML-tree describing an order. Root node in green and
leaf nodes in yellow. The full path to the leftmost leaf node is
”/ORDER/ORDERLINE/LINE/ArticleDescription” 6

3.1 Process of converting a path mapping to several word mappings. Note
that some words do not always get a mapping using this procedure. . 18

3.2 The Figure shows an example of the connections between paths in the
distance graph. If one would compute the confidence level for map-
ping the path /PickingList/WMSPickingRoute/Customer to /Pick-
ingList/WMSPickingRoute/WMSOrderTrans/Customer one would
get [2 + 1]−1 = 3−1 = 1

3 ≈ 0.33. Note that this graph has been made
to illustrate an example, and the connections and edge weights shown
in the graph is not real . 21

3.3 The figure shows an example of a confidence level computation for
mapping the path PickingList/WMSPickingRoute/WMSOrderTran-
s/DlvDate to ORDER/ORDERLINE/LINE/DeliveryDate. One can
see how the paths is set as a source respectively a sink, and the in-
dividual words is connected to the graph system. A maximum flow
will then be computed between the source and the sink, which is
illustrated by the green arrows. Note that the thickness of the arrows
is not scaled depending on the conditional probability. The capacities
between each edge will differ, especially between the source and the
word graph, respectively the sink and the word graph, because of the
difference in information densities for the words. 24

3.4 Overview of the data value model. A data value is entered, assigned to
a format class and distances to classes associated with this format are
calculated using KL-divergence. The numbers are then converted to a
confidence level using the activation function. In this case, the date
2015-12-18 gets a confidence level of 0.47 to map to a DeliveryDate
and 0.12 to map to ContactPhone . 25

4.1 The figure shows how the Fβ-score changes when the parameters θ
and η changes. The simulation is done on data set data1_1 and is
trained on 100 random files and validated on 100 other files. 35

4.2 The figure shows how the Fβ-score changes when the parameters θ
and η changes. The simulation is done on data set data1_2 and is
trained on 100 random files and validated on 100 other files. 36

xi

List of Figures

4.3 The figure shows how the Fβ-score changes when the parameters θ
and η changes. The simulation is done on data set data2_1 and is
trained on 100 random files and validated on 100 other files. 37

4.4 The figure shows how the Fβ-score changes when the parameters θ
and η changes. The simulation is done on dataset data2_2 and is
trained on 100 random files and validated on 100 other files from the
same set. 38

4.5 The figure shows how the Fβ-score changes when the parameters θ
and η changes. The simulation is done on data set data3_2 and is
trained on 100 random files and validated on 100 other files. 39

4.6 The Figure shows how the Fβ-score changes depending on the pa-
rameters θ and η for 4.6(a) Distance model when all datasets is used
for training, 4.6(b) Distance model when only data1_1 is used for
training, 4.6(c) Flow model when all datasets is used for training,
4.6(d) Flow model when only data1_1 is used for training, 4.6(e) data
value model when all datasets is used for training, and 4.6(f) when
only data1_1 is used for training. When training on all datasets, 100
random file pairs was sampled from each set. In the case of training
only on data1_1 one hundred file pairs was randomly sampled. In
both cases 100 file pairs was randomly sampled for validation from
data1_1. The validation was sampled from the remaining file pairs in
the set not used for training. 43

4.7 The Figure shows how the Fβ-score changes depending on the param-
eters θ and η for 4.7(a) Distance model when all datasets is used for
training, 4.7(b) Distance model when only data1_2 is used for train-
ing, 4.7(c) Flow model when all datasets is used for training, 4.7(d)
Flow model when only data1_2 is used for training, and 4.7(e) data
value model when all datasets is used for training, and 4.7(f) when
only data1_2 is used for training. When training on all datasets, 100
random file pairs was sampled from each set. In the case of training
only on data1_2, one hundred file pairs was randomly sampled. In
both cases 100 file pairs was randomly sampled for validation from
data1_2. The validation was sampled from the remaining file pairs in
the set not used for training. 45

4.8 The Figure shows how the Fβ-score changes depending on the param-
eters θ and η for 4.8(a) Distance model when all datasets is used for
training, 4.8(b) Distance model when only data2_1 is used for train-
ing, 4.8(c) Flow model when all datasets is used for training, 4.8(d)
Flow model when only data2_1 is used for training, and , 4.8(e) data
value model when all datasets is used for training, and 4.8(f) when
only data2_1 is used for training. When training on all datasets, 100
random file pairs was sampled from each set. In the case of training
only on data2_1 one hundred file pairs was randomly sampled. In
both cases 100 file pairs was randomly sampled for validation from
data2_1. The validation was sampled from the remaining file pairs in
the set not used for training. 47

xii

List of Figures

4.9 The Figure shows how the Fβ-score changes depending on the param-
eters θ and η for 4.9(a) Distance model when all datasets is used for
training, 4.9(b) Distance model when only data2_2 is used for train-
ing, 4.9(c) Flow model when all datasets is used for training, 4.9(d)
Flow model when only data2_2 is used for training, and 4.9(e) data
value model when all datasets is used for training, and 4.9(f) when
only data2_2 is used for training. When training on all datasets, 100
random file pairs was sampled from each set. In the case of training
only on data2_2 one hundred file pairs was randomly sampled. In
both cases 100 file pairs was randomly sampled for validation from
data2_2. The validation was sampled from the remaining file pairs in
the set not used for training. 49

4.10 The Figure shows how the Fβ-score changes depending on the param-
eters θ and η for 4.10(a) Distance model when all datasets is used for
training, 4.10(b) Distance model when only data3_2 is used for train-
ing, 4.10(c) Flow model when all datasets is used for training, 4.10(d)
Flow model when only data3_2 is used for training, and , 4.10(e) data
value model when all datasets is used for training, and 4.10(f) when
only data3_2 is used for training. When training on all datasets, 100
random file pairs was sampled from each set. In the case of training
only on data3_2 one hundred file pairs was randomly sampled. In
both cases 100 file pairs was randomly sampled for validation from
data3_2. The validation was sampled from the remaining file pairs in
the set not used for training. 51

4.11 The Figure shows how the Fβ-score changes for different values of the
parameters θ and η. For this simulation 100 random file pairs was
chosen from each of all five areas and used for training, and 100 file
pairs from each area was used for validation. 53

4.12 The figure shows how the class distribution for the Distance model
and the Flow model when the Fβ-score achieved is 0.910 respectively
0.780 for the Distance model respectively the Flow model. The result
is achieved when training on 100 randomly sampled files from dataset
data1_1 and validating on 100 randomly sampled files from the same
dataset. 56

4.13 The figure shows how the class distribution for the Distance model
and the Flow model when the Fβ-score achieved is 0.799 respectively
0.629 for the Distance model respectively the Flow model. The result
is achieved when training on 100 randomly sampled files from dataset
data2_2 and validating on 100 randomly sampled files from the same
dataset. 57

4.14 The figure shows how the class distribution for the Distance model and
the Flow model changes as function of θ, together with the Fβ-score.
As we can see in the figure, the best values for the Distance model is
achieved at the very start, while the Flow model need to filter some
faulty mappings using a higher threshold before reaching its optima. . 58

xiii

List of Figures

xiv

List of Tables

2.1 Example of problems that arise when trying to determine previous
mapped paths from training data. Since the only possibility to create
mappings is to identify data in the input file and find the same data
in the output file, this method would generate some errors. First,
it would assume that ORDER/LINE/qty would be connected to
both and List/Body/quantity and List/Body/lineNmr, where the last
mapping obviously is wrong. It would correctly construct the mapping
ORDER/LINE/Id ↔ List/Body/CustomerRef but since the formats
for the date 20160125 changes to 160125, the mapping between
ORDER/LINE/DlvDate and List/Body/DeliveryDate would not be
created, and the same principle would apply to the mapping between
ORDER/LINE/Customer and List/Body/CustomerName. Even if a
filter is used, where one manually removed obviously faulty mappings
from training data and hence removed the mapping ORDER/LINE/qty
↔ List/Body/lineNmr, this would be problematic in the scoring
procedure. In the best case scenario, the algorithm would not suggest
a mapping towards List/Body/lineNmr since that data is from an
external source and should not be collected from the input file, but
when comparing the original data file with the proposed one the
validation script would notice that List/Body/lineNmr should have
a data connected to it and hence give that suggestion an error even
though it’s correct. 7

2.2 A table of different set definitions used to explain what data that is
used in the different steps . 9

2.3 Class 1, 2, 3 and 4 are the main types of classification that the model
can do. Class 2 has been divided into a and b so that one more clearly
can see the types of errors that the algorithm does. 11

2.4 The table shows the first three n-grams in the word “example” for
n = {1, 2, 3}. 13

xv

List of Tables

3.1 The Table shows information regarding the five available datasets used
in the project. The first column states the name that will be used to
reference that set further wise, the second column gives information
regarding if the set consists of mappings from a system to intermediate,
or from intermediate to another system. The third and forth column
presents the number of file pairs in the set, respectively the number of
mappings (not unique) in the set. The last column states how many
mappings that is left when the obviously faulty ones has been filtered
out. In other words, it is not a guaranteed that every mapping in the
set actually is correct. 17

3.2 Format classes for data values, matched by regular expressions 24

3.3 The Table lists the most common errors that can occur when trying
to classify a proposed mapping. 28

3.4 Third-party R libraries used in models. 29

4.1 The Table shows for which values of θ and η the optimal Fβ-score
is received, for β = 0.5. The data is computed using 100 random
sampled files for training and 100 random files for validation. 34

4.2 Highest Fβ-score received during parameter sweep for all datasets.
The presented values comes from two different simulations. In the first
one, the training process was carried out on each available training set,
that is, 100 file pairs was randomly sampled from each dataset and
then 100 random files was sampled from the specified dataset to be
used for validation. In the second simulation, the training was carried
out on 100 randomly sampled file pairs from the specified dataset, and
another 100 file pairs from the same dataset was randomly sampled
to be used for validation. One can see that in some cases, it differs
very little depending on if all datasets was used or only the dataset
used for validation, but in the cases when it differs more, the highest
score has been received when all training data is from the same set
used for validation. The conclusion that can be drawn is that it is a
possibility that negative inference occurs when training on data from
different areas. 41

4.3 The Table shows for which values of θ and η the optimal Fβ-score is
received, for β. The data is computed using 100 random sampled files
from each available dataset for training, and 100 random sampled files
from each available dataset for validation 52

xvi

List of Tables

4.4 Computing the Fβ-score when files from one area is used for validation,
and files from the rest for training. 100 files was sampled randomly
from each area for training, and 100 files was sampled randomly for
validation. The parameter values used was θ = 0.4 for the distance
and flow model, and θ = 0.2 for the data value model. η = 0.9 was
used for all models.
When the Fβ-score is 0 for the distance model, this means that no
paths in the validation set are recognized and hence nothing will be
suggested for mapping. One can see that even though no paths is
recognized, the flow model can still map paths, in some cases pretty
accurate, only based on that the words is recognized in the data. . . . 55

xvii

List of Tables

xviii

1
Introduction

The need for integration of different systems is steadily increasing, much thanks to
digitalization, globalization and the Internet of things. Many companies start off
small with just a few systems which need to be connected to each other, but if peer-
to-peer communication is used the number of connections will grow exponentially
when new systems are included in the business, which will be the case when the
companies grow. If any of these systems are replaced, multiple new connection
specifications need to be created for the new system to be able to communicate
with the others. In cases like these an integration process with Service Oriented
Architecture (SOA) needs to be implemented to prevent the costs of maintaining
the system from rising above the profit received by the system. Even if a company
from the start uses integration tools and SOA, it is common that it in a later stage
will buy other companies that should be used as affiliated companies, rather than
stripped of their assets. In these cases the need for integration will arise since the
systems of the new companies need to be able to communicate with the original
company.
Many systems are starting to use algorithms in artificial intelligence and machine
learning to be able to automate manual tasks and to increase productivity and
effectiveness for different processes. These algorithms are today used in many areas
such as self-driving cars, robotics, search engines, spam filters and so on. Many tasks
that was once thought too hard for a computer to perform are now reality. Since it is
only a question of time until the integration market will be the bottleneck for faster
increase in productivity for various companies, there is an urgent need to implement
these tools in the integration market. The purpose of this project is to find ways to
use tools from artificial intelligence and machine learning to ease the integration of
information systems.

1.1 Background
Data integration is the process of mapping the flow of data between two or more
systems. When companies have many different systems, all in need of communicating
with each other, and at the same time strive to be able to replace any of the systems
for another without needing to create new connection specifications to every other
system, the demand for integration as well as Service Oriented Architecture arises.
Service Oriented Architecture (SOA) is a design pattern used in many larger systems
today. SOA is based on a number of principles, e.g.:

• The systems are considered to be consumers and/or producers of information

1

1. Introduction

• The information is broken down into smaller reusable components
• Low dependencies between the systems simplify maintenance and interchange

of parts of the system
To meet these demands for larger systems, advanced networks of mapping processes
are set up to be able to handle version change of systems, connections between
many to many systems etc. This is can be done by having a more or less static
“intermediate” system, that all other systems is mapped towards, and all systems
receive information from. By doing so, if one system changes, only the connection
between the new system and the intermediate system needs to be updated, and all
other systems will still work.
The process of setting up this system is partly manual, which is a time consuming
process [7]. This process consists of taking the output from one system, identifying
the relevant data for the intermediate system, and creating a mapping specification
to move these data to the correct place in the intermediate system. The second
part is to then do the same thing from the intermediate system toward all other
systems that it needs to be able to communicate with. Since the integration market
is growing, it is necessary to automate this process to prevent the integration process
from being the bottleneck which limits companies to grow as fast as they could. By
using algorithms from artificial intelligence and machine learning this process could
be faster if a first guess of the mapping specification could be made by a computer,
based on information from earlier mapped systems. The work that remains for the
user would then be to validate if the mapping works by testing the connected systems,
and in some cases correct some of the proposed mappings.

1.2 Introduction to data integration
Data integration is the process of moving data from one system to another. Basically
one has some system that should communicate with another system, but they are not
directly compatible with each other. As a simple example, the first system produces
a file containing some data, which should be injected into the other system. It is
known what data the other system needs, but to insert the data in the correct places
the first system needs to know where the data should be placed. This is where data
integration comes in; to create a schema for what data in one system another system
needs, and where this data should be put.
A common format for storing and communicating arbitrary data structures is via the
XML standard, and the data integration process will then be to identify the XML
paths in the input file, and where to put its data in an output file. For example
one system could contain orders put by customers, and another system that handles
the invoices. One would then need to create an output file from the order database,
and the invoice system should then be able to take that information to create an
invoice. In this case, one could have the customer name stored in the output from
the order system as ORDER/ORDERLINE/CustomerRef, but the invoice system
will read this information from the XML path SYSTEM/LINE/Customer. One will
then need to create a schema that maps ORDER/ORDERLINE/CustomerRef to
SYSTEM/LINE/Customer so that the two systems are able to communicate.
For human experts, it is often a question of identifying paths that seem to describe

2

1. Introduction

the same data in the two formats, and then map these paths. The mapping can then
be tested and evaluated, and if information is missing or ends up in the wrong place,
the schema can be modified until everything is correct. In most cases it is about
finding semantic similarities between the paths, trying out a mapping and looking at
the result to evaluate if it seems to be correct or not.

1.3 Problem formulation
Using already mapped data, the task is to develop an algorithm based on machine
learning tools and statistics to make a first step towards automating the mapping
process.
The goal is to have a software that given a new set of inputs and outputs can make
a first guess of how to map the flow of data and report a confidence level of these
mappings. The purpose of this is to reduce the time it takes to manually map the
system.

1.4 Delimitations
Data can be represented in a large number of ways. In this project the main focus
will be on mapping data represented by one XML-file to another.
Generic mappings, where different data values are combined or split in some way,
will not be considered. Focus will instead be on the cases where one data value in
the input format is mapped to none, one, or several places in the output format.
Information contained in the attributes of the XML paths will not be used. The
reason for this is that the given training data in most cases do not have any attributes,
and using them sometimes would probably not contribute that much to the overall
result, and the specific results from this approach would therefore be hard to evaluate.
Finally, external information regarding words will not be used, i.e. words will be
treated as categorical and words that have not been seen before will not be matched
to known words semantically using for example string comparison algorithms or
external databases containing word clusters. The reason why this is not included in
the project is because of time constraints. To be able to find satisfactory comparisons
one would need to implement multiple cases to handle abbreviations, both formal
and non-formal (i.e. nmbr, nbr and qty), as well as camel case written sentences.
Since some words that are similar still could have a different meaning, one would
have to handle even that case.
The reason why the use of external lexicons is not considered to match new words
using semantics, is foremost that the semantics in an XML tree is not necessary of
the same type of semantics that one finds in a natural language. For example, the
root element of an XML tree is describing the tree and the format of that document,
more than the actual data connected to the leaf. This makes the semantic meaning of
one root element more or less equivalent with another root element in the process of
mapping, but the meaning of that root element in the context of a natural language
could be completely different. For example, two root elements could be ORDER and
PickingList, which would be treated the same in the process of mapping two paths,

3

1. Introduction

but few would argue that their meaning would be almost the same in the context of
a natural language.

1.5 Related work
This project is closely related to schema matching, and the basic idea behind some
of our methods are based on discoveries in this field [1]. Machine learning techniques
have been used for the purpose of data mapping, but mainly to provide an integrated
overview of data from disparate sources, and not for mapping pairs of systems [6].

1.6 Outline
In Chapter 2 we will introduce the mathematical and theoretical concepts needed for
this project, including definitions used in the project and our probability models and
some basic graph theory. In Chapter 3 the methods for predicting a mapping will be
introduced, including how given data is used to train and validate the models. In
Chapter 4 we will present the simulations made to evaluate different parts of the
models and draw conclusions regarding the effect of parameters and so on. Finally
in Chapter 5 we will present the results of the model together with a discussion of
the predictive power of the models

4

2
Theory

The theory for this project will include a more specific definition of what will be
considered a mapping and which mappings that are allowed in the scope of the project.
We will present the statistical models used for computing mapping probabilities
between both words and paths, and also what will be denoted as a ”path”.
In addition we will be presenting which scoring methods used in this project to be
able to evaluate the prediction models, and the classification definitions of faulty
and correct mappings. A short introduction to graphs, shortest distances in graphs
and maximum flow in graphs will be presented, as well as the definition of N-grams
and the symmetrized version of the Kullback-Leibler-divergence, used for measure
distance between distributions.

2.1 Definitions

The following section presents a number of mathematical definitions used to explain
the model in further detail. It also presents concepts and computational models used
in this project. Most concepts are standard and is only presented to underline how
it will be used in this context, and in some cases to narrow down the model for the
specific use in this project.

2.1.1 XML-files

XML, or Extensible Markup Language, is a standard used for encoding information
in a way that is both human- and machine readable and is commonly used for
representing arbitrary data structures.
An XML-file stores information in a tree-structure of nodes with possible data values
connected to the leaf nodes. Each node can be identified by its XPath.
XPath is a tool used for querying the file for its information. A path to a node
consists of its name and all of its ancestors names, separated by a slash (/). The
term ”path” will further be used to describe the full XPath to a leaf node.
The data contained by the XML-file is bound to the paths in the file. We say that a
data value is connected to a path, if the path contains a data value. A ”leaf node” is
a node that doesn’t have any child nodes.

5

2. Theory

Figure 2.1: Example XML-tree describing an order. Root node in green and leaf
nodes in yellow. The full path to the leftmost leaf node is
”/ORDER/ORDERLINE/LINE/ArticleDescription”

2.1.2 Raw data
The raw training data consists of a number of previously mapped file pairs, i.e.
two XML files containing the same data encoded in two different ways. Each file
pair can be a mapping from either an input format to an intermediate format or
an intermediate format to an output format. The intermediate format exists for
practical reasons. In general it would be possible to just specify a mapping directly
from one format to another, but these schema specifications would then end up being
specific for these two systems. It is common that some system is supposed to map to
several systems. If one maps A-B, A-C and A-D individually, all three specifications
would need to be updated if the definition of A changes. A system built like this
would be hard to reuse, and in addition direct mappings or hard connections in
general result in cost and inefficient handling of change. If one instead specified
the mappings A-I, I-B, I-C and I-D, one would only need to change one mapping
specification if any of the systems changes, since the intermediate specification don’t
change.
The focus of this project is the mapping process between any two files, independently
of if the file is an input, an output or an intermediate type, therefore each file pair is
said to consist of an input format and an output format, where in some cases, the
input format could be an intermediate format, and in some cases the output format
could be an intermediate format.
Each file pair may originate from a number of different systems, for example, the
formats could be from order systems, customer databases, invoice systems and so
on. Even if two formats are from the same type of system, it could still differ much
regarding how the XML trees are defined, since most systems generates their own
XML files (based on the XML-standard but with their own choice of names for the
tree nodes). These files will not necessarily be similar to one another. These file
pairs will be denoted as files from different areas and it is assumed that a file pair
from one area has little or nothing in common with a file pair from another area.
Since the available data is consisting of previously mapped files, it is important to
notice that the mapping specification for these files are not known. The only available
information is where the data values are located in the input format and where the

6

2. Theory

data values are located in the output format. An example of how a file pair could
look like can be seen in Table 2.1. In the table one can see that the data value ”3”,
connected to ORDER/LINE/qty, is unique in the input file, but not in the output
file. In general, it is not possible to know if this path has been mapped towards
List/Body/quantity, List/Body/lineNmr, both or none. If the integration procedure
is unfamiliar and the natural language the paths are built from is unknown it is hard
to know which paths that have been connected. These are the conditions that apply
to the script parsing the file pairs of previous mapped data and generating mapping
specifications using that information.
In the example from the table one can also see that other problems will arise
when data values changes its format between the files. In this case, the company
name and the date has made small changes which will make the algorithm treat
them as completely different data, and therefore not conclude that they have been
mapped. This problem is not as essential as the previous error, since this error
”hides” information from the models, but the previous error gives the models faulty
information. Both errors will though still be a problem when validating a mapping
suggested by the model.

Input document Output document
Input path Data Output path Data
ORDER/LINE/DocNmr 12345 List/Body/DocHash K23Hij&h
ORDER/LINE/qty 3 List/Body/quantity 3
ORDER/LINE/DlvDate 20160125 List/Body/lineNmr 3
ORDER/LINE/Customer Company LTD List/Body/DeliveryDate 160125
ORDER/LINE/Id 01234 List/Body/CustomerRef 01234
ORDER/LINE/OrderDate List/Body/CustomerName Company Ltd
ORDER/LINE/Adress First Street 1

Table 2.1: Example of problems that arise when trying to determine previous
mapped paths from training data. Since the only possibility to create mappings
is to identify data in the input file and find the same data in the output file, this
method would generate some errors. First, it would assume that ORDER/LINE/qty
would be connected to both and List/Body/quantity and List/Body/lineNmr, where
the last mapping obviously is wrong. It would correctly construct the mapping
ORDER/LINE/Id ↔ List/Body/CustomerRef but since the formats for the date
20160125 changes to 160125, the mapping between ORDER/LINE/DlvDate and
List/Body/DeliveryDate would not be created, and the same principle would apply
to the mapping between ORDER/LINE/Customer and List/Body/CustomerName.
Even if a filter is used, where one manually removed obviously faulty mappings from
training data and hence removed the mapping ORDER/LINE/qty ↔ List/Body/li-
neNmr, this would be problematic in the scoring procedure. In the best case scenario,
the algorithm would not suggest a mapping towards List/Body/lineNmr since that
data is from an external source and should not be collected from the input file, but
when comparing the original data file with the proposed one the validation script
would notice that List/Body/lineNmr should have a data connected to it and hence
give that suggestion an error even though it’s correct.

7

2. Theory

2.1.3 Mappings

A mapping is defined as a specification that a data value is moved from one specific
path in one format, to another specific path in another format. In this project, the
following three types of mappings is allowed:

• 1-0
• 1-n
• 0-1

A 1-0 mapping is when a path in the input format is not mapped to any path in
the output format. A 1-n mapping is when one path in the input format maps to
n different paths in the output format. For practical purposes, a 1-n map will be
modeled as n number of 1-1 maps. The last case, 0-1 mappings, is when a path in
the output format is not mapped and the output path is left empty.
In practice, more types of mapping can arise, for example one can split data from
one path to two paths in the output format, or combine data from two paths in the
input format to one single path in the output format. Data could also be appearing
from other sources and put into the output format, for example a line number or a
hash code. These cases will not be included in the scope of this project. The reasons
for this are manifold, but mainly because it is hard to combine data values from
different paths in a satisfactory way, and it would be a much bigger project if the
algorithm should be able to know how to combine data, for example, an address, in
a way that a human would do. Since this is a rare case it seemed like a reasonable
limitation for the scope of this project. In some cases descriptions of the contents of
a path is available at external sources. This information is not used in this project,
mainly since these sources are not always available, and since this type of information
sometimes requires a deeper understanding of the data integration procedure and
the XML-schema.
The training data are tabulated such that each mapping between two paths is a row
in a table, with the input and output paths and data values as columns.
Unmapped nodes are described by an empty output or input path. This means that
each row could either contain a mapped pair of paths, where none of the paths is
empty, or a row where one of the paths is empty. Since only mappings from a path
with a connected data value is considered, each row with two non-empty paths will
contain one data value (note that it is possible that paths that not maps still could
contains a data value). The term mapping will be used when talking about these
rows generated from a file pair. If nothing else is said, a mapping could be either an
empty mapping, i.e. a mapping where one of the paths is empty, or a non-empty
mapping, i.e. where neither of the paths is empty.

2.1.4 Set definitions

In the training data a set notation will be used to clarify which part of the data
that is relevant in a specific case. The definition of each set can be seen in Table 2.2.
The number of members of a set S is denoted |S|, otherwise standard set notation is
used.

8

2. Theory

Denotation Explanation
χ A set of all XPaths
χi A set of all XPaths in a file i
χi(w) A set of all XPaths in a file i containing the word w
M A set of all mappings
M(pk) A set of all mappings containing the path k
M(wk) A set of all mappings containing a path with the word k
Mi A set of all mappings in a file pair
Mi \ {0} A set of all non-empty mappings in a file pair
F A set of all file pairs
Fi A specific file pair i
f A set of all files
fi A specific file i

Table 2.2: A table of different set definitions used to explain what data that is used
in the different steps

2.2 Statistical models
To decide if one should map two paths to each other or not, one needs to know which
paths that has a connection to one another. The connection is in some sense based
on a semantic connection between the paths, i.e. they describe the same data. It
is not a semantic connection in the same way as one would associate a semantic
connection in a natural language, but rather a semantic connection in the context
of an XML-file. For example, a root node in one document could be completely
different from a root node in another document, but in a way they are describing
the same type of node in the XML-tree, and hence they are connected.
In the same way information regarding the individual words needs to be extracted,
since even if each path has a meaning, each word in each path is important and
can be used to decide if two paths has a similar meaning or not. This is done by
computing the mapping probability between a path or a word, using the training
data.

2.2.1 Conditional probability
To decide if two paths in an XML sheet should be mapped or not, it is necessary to
know if they have been mapped earlier, and if so, how frequently. The interesting
mapping probability in this case is the conditional mapping probability, that is, the
probability that path pn and path pm is mapped to one another under the condition
that both are present in the file pair to be mapped. The symmetric conditional
mapping probability between two paths pn and pm in a file pair i is then defined
according to Equation (2.1), which is the number of times they are mapped in the
file pair, divided by the number of times they are mapped to anything in that file
pair.
This probability is then averaged over all file pairs where the condition is fulfilled
according to Equation (2.2), which is the final mapping probability used in the

9

2. Theory

model.

P (i)(pn ↔ pm|pn, pm) = |Mi(pn) ∩Mi(pm)|
|Mi(pn) \ {0}|+ |Mi(pm) \ {0}| − |Mi(pn) ∩Mi(pm)|

(2.1)

P̄ (pn ↔ pm|pn, pm) = P (pn ↔ pm|pn, pm) = 1
N

N∑
i

P (i)(pn ↔ pm|pn, pm) (2.2)

In the same way, the conditional mapping probability between words are computed,
with the difference that only the number of mappings where the paths is containing
the words are counted, according to Equation (2.3), which are then averaged over all
file pairs in the training set where the condition is fulfilled.

P (i)(wn ↔ wm|wn, wm) = |Mi(wn) ∩Mi(wm)|
|Mi(wn) \ {0}|+ |Mi(wm) \ {0}| − |Mi(wn) ∩Mi(wm)|

(2.3)

2.2.2 Information density
To distinguish between the members in a set of data, some parts of each individual set
member will be more important than others. This is denoted as that the parts have
different information density and should be weighted differently when determining
the probability for mapping. In this case, the set is an output file or an input file,
and the set members consists of the paths in the file. The parts of each member is
the words in the paths.
The model for determining the weight of a certain word in a file is based on the
inverse document frequency (IDF) measurement, commonly used in information
retrieval, for weighing the relevance of a word [11].
The density of a word will be dependent of how often the word is present in the file. A
word that is present in every path will be worthless when distinguish between paths,
and hence get a density score of zero, but a word that only occurs once in a large
file will be weighted much higher. The information density is computed according to
Equation (2.4) and is computed individually for an output file or an input file, and
does so only in the models and is hence not part of the training process or dependent
of the training data.

Si(wj) = log |χi|
|χi(wj)|

(2.4)

2.2.3 Standard error of the mean
The standard error of the mean is denoted SEx̄ and defined according to

SEx̄ = s√
n

10

2. Theory

where n is the sample size and s is the sample standard deviation defined as

s =
√√√√ 1
n− 1

n∑
i=1

(xi − x̄)2

2.3 Scoring
To be able to evaluate the models and draw conclusions about the performance, the
suggested mapping given from the model is compared to the actual mapping. For
each mapping of a file pair, each individual mapping of two paths is divided into
different classes (see Table 2.3), depending on if the map is correct or not. In the
case of the mapping being correct, that scenario is divided into two new classes,
depending on if the map is a True Positive (TP) or a True Negative (TN). In the
case of the mapping being incorrect, that scenario is divided into two other main
classes, depending on if the map is a False Positive (FP) or a False Negative (FN).

Class Map type Explanation
Class 1 True Positive (TP) A mapping a→ b is done correctly
Class 2 False Positive (FP) A mapping a→ b is incorrectly done
Class 3 True Negative (TN) A mapping 0→ b is done correctly
Class 4 False Negative (FN) A mapping 0→ b is incorrectly done

Table 2.3: Class 1, 2, 3 and 4 are the main types of classification that the model
can do. Class 2 has been divided into a and b so that one more clearly can see the
types of errors that the algorithm does.

Note that the classification only concerns the mapping of the output paths, and not
the input paths. The reason for this is that an input path can be mapped several
times, but an output path can only be mapped at most once, and hence the number
of output paths will always be the same in the suggested mapping and the correct
mapping, but the number of input paths will not. Also, if an input path is mapped
incorrectly it will result in an output path being mapped incorrectly, and if one
would compare both input and output one would receive two errors for each faulty
mapping.

2.3.1 Fβ-score, precision and recall
Since it is a multiclass classification, and each classification is not considered equiva-
lently good or bad, the Fβ measure is used to decide how the models performs. The
Fβ measure is a way of weighting the importance of some classifications more than
other. The Fβ measurement is defined according to [8] as:

Fβ = (1 + β2) Precision ∗ Recall
β2 ∗ Precision + Recall (2.5)

where we have

11

2. Theory

Precision = TP

TP + FP
(2.6)

and

Recall = TP

TP + FN
(2.7)

A False Positive is considered worse that a False Negative, for two main reasons:
1. A mapping that is done when it shouldn’t, means that the model gets faulty

data. A mapping that is not done when it should, means that the model
does not get enough data. Since faulty data is considered a worse error in the
model than incomplete data, a False Positive is considered worse than a False
Negative.

2. In reality, the algorithm is supposed to make a guess of the mapping, so that
an expert can save time in the mapping process. It is worse for the expert to
have to validate a lot of mappings that should not have occurred than to be
able to trust the performed mappings, and then add mappings that was not
suggested.

The Fβ-score is commonly used with one of three different values of β; 0.5, 1 or 2
in order to put more emphasis on precision, equal emphasis or more on recall. To
put more emphasis on precision, and thereby weigh an error occurred from a False
Positive higher than an error occurred by a False Negative, a value of β = 0.5 is
used. If nothing else is mentioned, β = 0.5 will be used further wise.

2.4 Graph theory
The graph G(V,E) is defined as a set of positive integer valued node indices V
together with the set of edges E consisting of the connections between the nodes.
The real valued edge between node i ∈ V and j ∈ V is denoted as e(i, j) ∈ R+. If
nothing else is mentioned, a graph G(V,E) will be assumed to be symmetric, i.e.
e(i, j) = e(j, i).

2.4.1 Shortest distance
The shortest distance problem between a node s and a node t in a graph can be
formulated as a discrete linear programing problem as follows

xij ∈ {0, 1} ∀ i, j ∈ V (2.8)

Minimize
∑

(i,j)∈E
xijwij (2.9)

subject to

∑
j

xij −
∑
j

xji =


1, If i = s
−1, If i = t

0, otherwise
∀ i ∈ V (2.10)

12

2. Theory

where wij = e(i, j) is the cost function for the edge between node i and j. In other
words, the shortest distance problem is the task of finding the path between two
nodes in such a way that the cost is as low as possible, were the cost is the sum of
the edge weights on that path.

2.4.2 Maximum flow
The maximum flow problem can be stated according to [10] as follows:
An s− t flow is a function that maps each edge e into a non-negative real number
f : E → R+, where the value f(e) represents the amount of flow carried by edge
e and c(e) is the maximum capacity on edge e. A flow must satisfy the following
conditions:

0 ≤ f(e) ≤ c(e) ∀e ∈ E (2.11)

∑
e into v

f(e) =
∑

e out of v
f(e) ∀v ∈ V \ {s, t} (2.12)

and define f out(v) = ∑
e out of v f(e) and f in(v) = ∑

e into v f(e)
The maximum flow problem is then, given a network graph, to ”arrange the traffic
so as to make as efficient use as possible of the available capacity”.

2.5 n-grams
An n-gram is a contiguous sequence of n items from an ordered set (see Table 2.4).
In our case the items are letters or other symbols in the data values. By collecting
statistics of the occurrences of different n-grams into histograms new items can be
compared to earlier ones by calculating the distance between their histograms.

n-grams of the word “example”
1-grams 2-grams 3-grams
e ex exa
x xa xam
a am amp
..

Table 2.4: The table shows the first three n-grams in the word “example” for
n = {1, 2, 3}.

2.5.1 Kullback–Leibler-divergence
The distance between two histograms can be calculated by the symmetrized version
of the Kullback–Leibler (KL) divergence (2.13), Ds = D(P,Q) +D(Q,P). [2] which
is a measure of the relative information gain when approximating Q with P .

13

2. Theory

D(P,Q) =
∑
i

P (i) log P (i)
Q(i) (2.13)

Where Q and P are the histograms of the n-grams. The order of these does not
matter because of the symmetry Ds(P,Q) = Ds(Q,P).
If some n-gram i is absent in one of the histograms its zero-count is replaced with a
small value ε = 10−6 to make the logarithm well defined.

14

3
Methods

In this chapter the different methods used to create, train and validate the models
that has been developed during this project will be presented.
It will presented how the training data is generated from the available sources, how
errors in this process is handled and how the models are trained. It will also present
the process of validating the models and how to decide the optimal parameters for
the models.
Three independent models for determining the probability to map paths will be
introduced, where the first is based on a minimum distance approach, the second is
based on a maximum flow approach and the third is based on the n-gram distribution
of data values connected to paths. The models has been created for three different
main purposes. The first one is a simple model that can predict the mapping
probability well if the paths has been seen before, but fails as soon as a path is a
little bit different from any known path. The flow model is using the individual
words instead of the complete paths, and can hence predict mappings between paths
even if not all words in the path has been seen before. The third model is based
solely on how the data values is mapped on previous paths, and is trying to map
paths depending on if they previously has been mapped with similar types of data.
This model is not thought of as doing any prediction alone in the mapping process,
but to ensure that data values is not mapped to paths not usually containing that
type of data. For example, an address should not be mapped to a path usually
containing a phone number. The second purpose with this model, is to be able to
insert new unseen paths and words into the other models. Since a word can be quite
alike another word without having the same meaning, one could avoid connecting
faulty words to the system if the data type do not match.

3.1 Generating training data
The raw training data consists of a large number of pairs of XML-files which has
been previously mapped. To make this data usable the files are parsed into a table.
Each path in the input format is identified and is considered mapped to a node in
the output format if they are connected to the same data value. The resulting table
lists the paths of the leaf nodes in the input and output files, their data value and
an ID number describing in which file pair the mapping was found. Nodes that the
process did not find a match for are considered unmapped, and is also listed in the
table, but with one of the paths missing.
Some of the information stored in the XML-structure is lost in this parsing process,

15

3. Methods

such as element attributes, which is rare in the training set and does not provide
that much information, and the tree structure, since occurrences of equally named
nodes are not encoded in the specified data format.

3.1.1 Errors in the generated training data
This method is problematic when data values are not unique. If multiple nodes have
the same value in the two files all of them are considered connected. It is essential
that this can be managed, since if the models are trained with errors in the training
data, chances are that these errors will make the models to do faulty mappings.
To manage these errors, faulty mappings are manually recorded. Since specific errors
may arise multiple times, all these errors can be managed by just identifying one
occurrence of that particular error. To find errors, all unique mappings from one path
to another, ignoring data values, are inspected. Note that this is possible only since
the number of unique path mappings is small. If data sets containing a larger variety
of paths, this approach would not work in practice and another way of creating
mappings for training would be needed.
Another problem with this approach of generating data is if the data value somehow
is altered between the two files. In that case, two nodes that should be connected
will not be so in the training data. This could for example happen if the two formats
use different decimal marks or different date formats. This does not cause as much
of a problem since the data will be missing instead of incorrect, as in the previous
example..

3.1.2 Correcting faulty training data
By identify each unique mapping from the training data, one can manually remove
mappings that is obviously faulty from the set. Doing so, the model will not be
trained on faulty mappings. The validation procedure will not be affected by this
procedure, since the validation data is generated in another way.

3.1.3 Generating validation data
To create validation data that is as close to the input the model would get in
production, the validation data consists of all possible number of paths in the input
format, the data values connected to each input path, and all possible number of
paths in the output format. To be able to validate a mapping done by the model,
this set is also containing all connected data values to the path in the output format.
Note that the data values connected to the paths in the output format is never
used by the model when determining the mapping, but only when validating if the
mapping is correct or not.

3.1.4 Sampling data files
Most data sets contains thousands of previous mapped file pairs, and using them
all in each iterations would not be possible, because of the computational time that
would be needed. Instead random file pairs from the data is sampled for either

16

3. Methods

training or validation. The size of the sample is chosen in such a way that both the
computational time for training and evaluation, and the estimated standard error is
reasonably low. Since the algorithm computes the confidence level from each possible
path in the input file towards each possible path in the output file, the computational
time is approximately scaled as the square of the file sizes (if one approximates that
each input and output file is about the same size, and that the size of a file is defined
of the number of paths in the XML tree). Because of that, large files will take much
longer to evaluate than the rest, which is why we for practical purposes only sample
files smaller than some value N in the simulation processes.
In most cases it is found that a training set containing about 100 file pairs and a
validation set containing 100 file pairs both fulfills these conditions. The maximum
size allowed for files is usually set to 700 paths, and files larger than that is not used.

Data set Type of
mapping File pairs Mappings Correct

mappings1

data1_1 Input to
intermediate 17 121 1 154 666 906 567

data1_2 Intermediate to
output 10 276 194 538 118 380

data2_1 Input to
intermediate 253 6624 4708

data2_2 Intermediate to
output 11 622 375 645 287 141

data3_2 Intermediate to
output 228 3425 2414

Table 3.1: The Table shows information regarding the five available datasets used
in the project. The first column states the name that will be used to reference that
set further wise, the second column gives information regarding if the set consists of
mappings from a system to intermediate, or from intermediate to another system.
The third and forth column presents the number of file pairs in the set, respectively
the number of mappings (not unique) in the set. The last column states how many
mappings that is left when the obviously faulty ones has been filtered out. In other
words, it is not a guaranteed that every mapping in the set actually is correct.

3.2 Conditional mapping probabilities
To make the models learn which paths and words that has a relation to each other,
the pre-mapped data is used to train the system. All unique mappings between paths
in the training data is collected and the symmetric conditional mapping probability
between each path is computed according to equation (2.1).
Since words are not explicitly connected in the same way as paths, one has to decide
how to initialize this connection before it is possible to compute the conditional

1Correct mappings are the mappings that remain when the obviously faulty ones manually has
been filtered out.

17

3. Methods

mapping probability between them. Two approaches for this has been tested with
varying result. The first approach is to use the unique path mappings, and for each
path mapping, each word in one path was connected to each word in the other path,
and then the mapping probability was computed according to equation (2.3). It was
found that this approach generated too many errors, and even though the mapping
probability for the faulty mappings became low, the result was not satisfying. The
final approach used was instead to create mappings of the words depending on their
place in that path, starting from the last words in the path as seen in Figure 3.1.
This still generates some uncertain mappings, but fewer than the previous approach.
The mapping probability was then computed as before using Equation (2.3).
Note that these mappings not necessary is mapped according to semantic meaning
in the classical sense, but rather an XML format semantics, where words used in
the same way in the tree is considered equal. For example, the root element in the
tree is mapped strongly to another root element, even if their semantic meaning in a
natural language could be quite different. Note also that even if the construction
of the word mapping are dependent of the position of the word in the path, the
computed probability is not. All paths that contain a certain word will be included
in the computation of the probability, independent of the position of the word.
A more detailed description of how the conditional probabilities between words and
paths is computed can be seen in Algorithm 1 and Algorithm 2. The resulting
mapping probability between each word is presented in Appendix ??, where it in
many cases is obvious that the words has a semantic connection, but in other cases
it is not.

Figure 3.1: Process of converting a path mapping to several word mappings. Note
that some words do not always get a mapping using this procedure.

18

3. Methods

Algorithm 1: ConditionalPathMapProbability
Data: File pair M such that M [i, inPath] and M [i, outPath] is a correct,

non-empty, mapping.
Data: p1, p2 such that p1 and p2 are paths.
Result: P such that p1 and p2 is mapped with probability P and that P ≥ 0 if

condition is fulfilled and -1 otherwise
begin

nP1←− 0; /* Number of times p1 has been mapped */
nP2←− 0; /* Number of times p2 has been mapped */
nP1P2←− 0; /* Number of times p1 has been mapped with p2 */
foreach row i in M do

if M [i, inPath] = p1 or M [i, outPath] = p1 then
nP1←− nP1 + 1

if M [i, inPath] = p2 or M [i, outPath] = p2 then
nP2←− nP2 + 1

if M [i, inPath] = p1 and M [i, outPath] = p2 then
nP1P2←− nP1P2 + 1

else if M [i, inPath] = p2 and M [i, outPath] = p1 then
nP1P2←− nP1P2 + 1

if nP1=0 or nP2=0 then
P = -1

else
P = nP1P2/(nP1 + nP2− nP1P2)

return P

3.3 Shortest distance model
The shortest distance model is based on the concept that if two objects never has
been used to describe each other, but both object have been used to describe a third
object, one would believe that the two objects have equal meaning and could be used
to describe each other.
In this model, each unique path in the training data is modeled as a node in a graph
with the inverse conditional mapping probabilities between the paths as edges. The
idea is that clusters in the graph will be created in such a way that connected nodes
have similar meaning.
This approach will be able to recognize paths that has been mapped before and map
them again, but also have the possibility to map paths that has not been directly
mapped to each other in the training data, but to some common path. It will not,
however, be able to associate completely new paths with any path in the graph. If a
path has switched the orders of two words, or if one of the words is a new one, even
if that word is not of any importance for how it should be mapped (for example a
root element), the model will not be able to associate that path with anything.
This will result in a model that will confidently map paths that has been seen before,
but not at all when completely new data is entered.

19

3. Methods

Algorithm 2: ConditionalWordMapProbability
Data: File pair M such that M [i, inPath] and M [i, outPath] is a correct,

non-empty, mapping.
Data: w1, w2 such that w1 and w2 are words.
Result: P such that w1 and w2 is mapped with probability P and that P ≥ 0 if

condition is fulfilled and -1 otherwise
begin

nW1←− 0; /* Number of times w1 has been mapped */
nW2←− 0; /* Number of times w2 has been mapped */
nW1W2←− 0;/* Number of times w1 has been mapped with w2 */
foreach row i in M do

path1←−M [i, inPath]
path2←−M [i, outPath]
if w1 ∈ path1 or w1 ∈ path2 then

nW1←− nW1 + 1
if w2 ∈ path1 or w2 ∈ path2 then

nW2←− nW2 + 1
if w1 ∈ path1 and w2 ∈ path2 then

nW1W2←− nW1W2 + 1
else if w1 ∈ path2 and w2 ∈ path1 then

nW1W2←− nW1W2 + 1
if nW1=0 or nW2=0 then

P = -1
else

P = nW1W2/(nW1 + nW2− nW1W2)
return P

20

3. Methods

3.3.1 Initialization of model
The model is created by using the computed mapping probability between known
paths and initialize a graph with the edge weights as the inverse probability according
to Equation (3.1), where e(i, j) is the weight between path i and path j. For practical
purpose, new unseen paths in the data that is to be mapped is inserted into the
graph as unconnected nodes.

e(pi, pj) = [P (pi ↔ pj|pi, pj)]−1 (3.1)

3.3.2 Computing confidence levels for mappings
The confidence level for mapping one path i in the input file to a path j in the
output file, is computed as the inverse shortest distance between the two nodes (see
Equation (3.2)), where d(i, j) is the shortest distance between node i and node j in
the graph, computed by Dijkstra’s algorithm.

C(i, j) = [d(i, j)]−1 (3.2)

In Figure 3.2 one can see an example of how a connected part of the distance graph
can look. The arrows symbolizes that the paths has been mapped at least once
in the training data, and the edge weight is the inverse of the computed mapping
probability between them. For example one can see that the mapping probability
between the path /PickingList/WMSPickingRoute/Customer and /Order/ORDER-
HEAD/CustomerRef is 1

2 .

Figure 3.2: The Figure shows an example of the connections between paths in the
distance graph. If one would compute the confidence level for mapping the path
/PickingList/WMSPickingRoute/Customer to /PickingList/WMSPickingRoute/WM-
SOrderTrans/Customer one would get [2 + 1]−1 = 3−1 = 1

3 ≈ 0.33.
Note that this graph has been made to illustrate an example, and the connections
and edge weights shown in the graph is not real

21

3. Methods

3.4 Maximum flow model
In the shortest distance model, the concept behind the model was that information
behind a mapping was the whole path, and that a path that looked similar, i.e. if
only a few character was changed, it still was interpreted as a completely different
path.
In the flow model, the idea is that information regarding the mapping is in the
individual words, and that the individual words have connections towards other
words with similar meaning. To compare two different paths, one would then look at
how the words in one path has mapped towards words in another path, independently
of the individual order. The idea is that using these mappings, the model would
recognize paths that has the same words as earlier seen paths, even if the order would
differ, or a path consisted of words from different paths, or the paths consisted of
different number of words.

3.4.1 Initialization of model
The word mappings is extracted from the path mappings as seen in Figure 3.1, and
the conditional mapping probability is computed according to Equation (2.3). One
may note that it is somewhat problematic to determine the word mappings, since they
do not exist naturally. The procedure of initialize the word mappings according to
Figure 3.1 will result in connection between words that is not semantically equivalent.
Although, since this will be more likely to happen to words early in the path, such
as the root nodes, this will create a small cluster of words that might not have the
same meaning, but they will neither be as important in the mapping procedure as
the later words, which will have higher probability to be connected correctly. One
should also be aware of that the connections between words that do not belong will
be weaker, since they often also maps towards other words, and hence, they will
not create errors in the model. Other ways of creating the mapping specifications
between words has been to map each word in on path with each word in the other
path. This does unfortunately create too many faulty connections and the final
graph will not consist of clusters containing equivalent words, but rather of one large
connected graph, which affects the results in a negative way.
Using the conditional probability between words as trained data, we create a graph
system where the words act as nodes, and the edges between them is the conditional
mapping probability, which act as a capacity in the graph. The hypothesis is that
one could see the probability of mapping two paths, as a probability flow in the graph,
and words with strong mappings has higher capacity of flow between them, than
words that rarely maps to each other.
The trained graph is also consisting of a source node and a sink node, which is used
as the paths one would compute the flow between. All words in the data set that is to
be mapped, that is not already in the trained graph, will be inserted as unconnected
nodes in the graph. The reasons for this is mainly two. The first is the practical one,
that a word should be in the graph system when the flow is computed, instead of
having to check if each word exists. The second is that if a word is not previously
seen before, it can still contribute to the flow if the same word exists in the output

22

3. Methods

file. For example, if the word ”CUSTOMER” has not been seen in the training data,
and hence do not have any connections in the graph, but in the files to be mapped,
a path ending with ”CUSTOMER” exists in both files, a connection would be made
between those path and hence contribute to a stronger flow.

3.4.2 Computing mapping probabilities
To compute a confidence level for mapping a path pi to a path pj, one starts with
connecting one path as the source, and one path as the sink. The connections for
the source and the sink is dependent on the words contained in the path. For the
input path, the source will be connected to each word in the graph that is included
in the input path, and for the sink, each word in the graph that is in the output
path will get a connection.
Since all words in the path is not equally relevant for the mapping, all words have
different possibilities to contribute to the flow. This is regulated by what capacities
each connection from the source to the trained graph gets, and what capacity
each connection from the trained graph to the sink gets. These capacities is set
proportional to the information density of the individual words, computed according
to Equation (2.4). The sum of the capacities from the source is then normalized
to some factor small enough to not overflow the graph. The normalization is done
since otherwise longer paths would in general get a higher flow than short paths (i.e.
paths with fewer words in them).
The final confidence level is then computed as the maximum flow between the source
and the sink, divided with the sum of the capacities from the source to the trained
graph according to Equation (3.3), where f(i, j) is the computed maximum flow
between node i and j in the graph and c(i, j) is the capacity between node i and
node j.

C(pi, pj) = f(pi = source, pj = sink)∑
k c(pi = source, k) (3.3)

In Figure 3.3 one can see an illustration of how the paths is connected to the word
graph in the flow model, and how the flow can run through the model. Note that in
this example, the paths should probably be mapped, and the resulting confidence
level will be high. In the case when the flow is computed between two paths that
should not be mapped, the words will mostly be connected to different clusters in
the graph, not connected to each other, and hence the maximum flow will be much
lower than for this example.

3.5 Data value model
The data value connected to a node can also be used when determining how the
mapping should be carried out. Different nodes usually have distinguishable types
of data, for example a date, a contact name or some identification number. By
classifying these data values, a mapping can be carried out without any knowledge
of the structure of the input format. This method will not be able to distinguish
for example a delivery date and an order date, or other similar data, but can still

23

3. Methods

Figure 3.3: The figure shows an example of a confidence level computation for
mapping the path PickingList/WMSPickingRoute/WMSOrderTrans/DlvDate to
ORDER/ORDERLINE/LINE/DeliveryDate. One can see how the paths is set as
a source respectively a sink, and the individual words is connected to the graph
system. A maximum flow will then be computed between the source and the sink,
which is illustrated by the green arrows. Note that the thickness of the arrows is not
scaled depending on the conditional probability. The capacities between each edge
will differ, especially between the source and the word graph, respectively the sink
and the word graph, because of the difference in information densities for the words.

provide a guess and can be used in conjunction with the other models to improve
the results.

3.5.1 Categorization using regular expressions
As a first step, data values are assigned to one of several format classes by using
regular expression matching. This is mainly done to reduce computation times, as it
takes some time to calculate the KL-divergences, but also to separate different types
of data connected to the same nodes. These classes are listed in table 3.2

Class Description of string content
Integer Any number of occurrences of the digits 0-9
Decimal Strings consisting of digits separated by one decimal point
Formatted number Any of the digits as well as punctuation characters.
Alpha Any characters. No spaces or other separators.
Alphanumerical Any characters or digits.
Text Characters and space-like separators.
Text-number Characters, space and digits.
Generic Anything not matched above.

Table 3.2: Format classes for data values, matched by regular expressions

24

3. Methods

3.5.2 n-grams
To get a confidence level for each map n-gram distances [4] from the data values to
some predefined classes are calculated. The classes were defined from the unique last
words in the intermediate format, assuming that a node always is connected to the
same type of data. For each of these classes the L most common n-grams of lengths
1 to N where stored. The value of L was set to 1000, the default in the package used
to implement the algorithm and N was set to 3, which proved to give satisfactory
results.
When a new data value is inserted to the model, it is firstly assigned a format
class, and then the distance D (2.13) to all classes that fits this format class are
calculated. This distance is then converted to confidence levels by the activation
function C = e−λD where λ is a scaling factor. Figure 3.4 shows a simplified overview
of this process.
This activation function was chosen because it maps the range of the distance function
[0,∞] to the interval [1, 0] and keeps the internal order of the results, in reversed
order. λ can be arbitrary chosen but was set to 1/10 to keep the results reasonably
large. However, this choice will affect the optimal value of the threshold for the
model.

Figure 3.4: Overview of the data value model. A data value is entered, assigned to
a format class and distances to classes associated with this format are calculated
using KL-divergence. The numbers are then converted to a confidence level using
the activation function. In this case, the date 2015-12-18 gets a confidence level of
0.47 to map to a DeliveryDate and 0.12 to map to ContactPhone

3.5.3 Connections between words and classes
A table of which words that have been mapped to the classes are created from the
training set of mapped data. The classes are named from the last word in the paths
they were created from and are connected to the last words from paths that they
have been mapped to in the training set. A word can therefore have connections
to multiple classes. For example, the word id would be connected to the classes
ContractId and OrderId
The confidence level of mapping a data value from an input file to a given last word
in the output file is taken as the maximum score of the classes the word in the output
path is connected to.

25

3. Methods

3.6 Mapping using the models
The result from the models are the confidence levels for mapping each possible path
from the input file to each possible path in the output file. The final decision of
which paths that should be mapped to which takes this information into account,
but also uses other factors, as decreasing confidence levels for already matched paths
and thresholds to not include mappings with too low confidence level. A detailed
description of the mapping procedure can be seen in Algorithm 3.

Algorithm 3: MapFilepair
Data: Model M containing mapping probability between each inPath and outPath
Data: Two parameters θ and η such that 1 ≥ θ ≥ 0, 1 ≥ η ≥ 0
Result: Matrix M ′ such that each row in M ′ contains the chosen mapping
begin

M ′ ←− ∅
while M /∈ ∅ do

Select mapping m = {inPath = p1, outPath = p2, p} such that mapping
probability p is greater than, or equal to all other mapping probabilities.
if p ≤ θ then

Exit loop
Remove all mappings towards p2 from M .
/* Decrease all probabilities from p1 */
for i = 1 to number of maps in M do

if M [i, inPath] = p1 then
M [i, prob]←−M [i, prob] ∗ η

Add m to M ′

return M ′

3.6.1 Decreasing confidence levels
The model allows at most one map towards each possible output path, but it allows
each possible input path to be mapped to several different output paths. Since it
could be the case of, for example, three identical input paths that should be mapped
to three different output paths, we have to decrease the confidence level for all
mapping that include a specific path each time that path is mapped, otherwise, one
of the three paths could be decided to map to each and one of the three outputs,
which would make multiple instances of data to be faulty mapped, and the remaining
data to not be mapped at all.
To comprehend for this case, we update the confidence level from path i to path j
each time we decide to map i to some path, according to Equation (3.4).

P (i→ j)→ ηP (i→ j) ∀j (3.4)

where 0 ≤ η ≤ 1 is the parameter controlling how fast the confidence level decreases.

26

3. Methods

3.6.2 Mapping threshold

It is not necessary to map each path in the input format that contains data, to
a path in the output format. It is sometimes the case that the data value is not
supposed to be transferred, for different reasons. Because of this we will not allow a
mapping to happen if the confidence level is lower than some threshold θ, 1 ≥ θ ≥ 0.
Since the models works in different ways, the confidence levels are differently scaled
and hence it is not certain that the same value of θ can be used in all models.

3.7 Validation process

The mapping suggestion returned by the algorithm is validated by comparing it to
the original output file. The different possible cases are summarized in Table 2.3.
The F-score (2.5) for each file pair is calculated, and then averaged over all files in
the sampled validation set.
This validation process is problematic mainly because of the same reasons the process
of generating training data is problematic; the correct mappings are not known.
What is known is how the output file is supposed to look, and it is possible to
compare the result to this. The mapping algorithm has made a suggestion of were
the data values from the inputs should end up, and by comparing the suggested
places for the data values from the mapping algorithm with the actual output file,
one can in most cases correctly classify a mapping.
One may note that there are still some problems with this procedure that can make
a faulty classification in some cases. The four most common cases for when this
could happen, together with the potential error classification, is listed in Table 3.3.
Except for the potential errors listen in Table 3.3 it is possible that two identical
paths in the input format can be proposed to be mapped to two identical paths
in the output format. Since there are two different ways to perform this mapping
(since the paths can be connected to different data), if the algorithm has proposed
another mapping order than is in the output file, both mappings will be considered
faulty. One should here note that it is not necessary that they should be considered
faulty, since one could consider a case where the file consists of two groups of data
describing two products that has been ordered, for example. The groups could
contain information regarding the price, the quantity and the item number. Both
these groups of information should be moved to the other format, and the most
important thing is that the data groups ends up together. If one group ends up
above the other, or the other way around is not of importance. As an example, in
an invoice, it does not matter in which order the items are listed, as long as the
correct price is connected to the correct item. The mapping algorithm could therefore
suggest a mapping of another order than what the previous expert did, and therefore
the mapping will be classified as an error even if it not necessary is incorrect. The
complete procedure of determining the classification of a mapping can be seen in
Algorithm 4.

27

3. Methods

Type of mapping Possible outcome Classification

The algorithm proposes
faulty mapping with
data value

If the data value for the
correct mapping happens
to be equal, the mapping
will be faulty classified

Classified as Class 1
instead of Class 2

The algorithm proposes
faulty mapping without
data value

If the data value at the
proposed endpoint has
changed its format, and
is not found in the input
file, this will be faulty
classified

Classified as Class 3
instead of Class 4

The algorithm proposes
correct mapping with
data

If the data value has
changed its format, the
classification will be
faulty

Classified as Class 2
instead of Class 1

The algorithm proposes
correct mapping without
data value

If the endpoint possesses
a data value that origins
from other sources than
the input file, but is
identical to another
value in the input file,
the classification will be
faulty

Classified as Class 4
instead of Class 3

Table 3.3: The Table lists the most common errors that can occur when trying to
classify a proposed mapping.

28

3. Methods

Algorithm 4: ValidateMapping
Data: Table M containing proposed mappings
Data: Table C containing the original outputs
Data: Table I containing original inputs
Result: Table M ′ containing the proposed mappings together with the

classification of each mapping
begin

M ′ ←− ∅
foreach map in M do

if Mapped data value equal to original data & data value non-empty then
add map to M’, set class 1

else
if A mapping is proposed then

if Data value present in I then
add map to M’, set class 2

else
if Data value present in I then

add map to M’, set class 4
else

add map to M’, set class 3

return M ′

3.8 Implementation of the models
All programs are written in the R programming language, which is widely used for
statistics. The language have an active community and there are a lot of third-
party libraries (at the time of writing 7725 packages) available via Comprehensive
R Archive Network (CRAN) which makes it easy to implement and test different
models.
The main libraries used in this project are listed in table 3.4

Library Used for
sna [3] Maximum flow calculations
igraph [5] Shortest distance calculations
textcat [9] n-grams and KL-divergence

Table 3.4: Third-party R libraries used in models.

The basic structure of the test program is divided into five parts:
1. Sample training and validation data
2. Train models with training data
3. Calculating all pairwise confidence levels between all input and output nodes

using the models and validation data
4. Propose a mapping using the confidence levels

29

3. Methods

5. Validate the mapping
When using the program in production only step 3 and 4 needs to be executed.

30

4
Experiments

In this chapter we will present the simulations that have been done to evaluate
the models and determine how well they perform during different conditions. Most
evaluation procedures will be parameter sweeps, since the mapping algorithm are
using two different parameters, which optimal values are unknown. Little focus will
be on the exact parameter values, since these are not going to be important when
an expert is doing the mapping with suggestions from the models instead of the
constructed mapping algorithm. What will be focused on is the highest achieved
Fβ-score, and how the class distribution looks like.
The models will be evaluated mainly in four different training environments. First,
the training will be done on each of the datasets individually, and the validation
data will be sampled from the same set that the training was sampled from. Second,
the training will be performed from all available sets and the validation will be done
on one set at a time. Third, the training will be performed on all datasets and the
validation will be done on all datasets. The last training environment will be on
all datasets but one, where the last dataset will be used for validation. These cases
will together help to show how the models perform during optimal conditions, if
the different sets interfere negatively with each other, and if the models are able to
perform on completely new data.

4.1 Experiment setup
The setup for the experiments has been designed in such a way that the simulation
environment should be as close to the real production environment as possible,
and that information that wouldn’t be available in reality is not available in the
simulation.
All experiments are carried out for one model at a time, and each result is presented
individually for each model. No experiment has been done with a combination
of the models, since it has been assumed that the individual performance is more
interesting, and a meta model, a combination of all models, would in many cases
not make a difference in the current situation since the models have been designed
to work in different situations. For example, a meta model would not just be a
linear combination of the outputs from the various models, but rather use the models
depending on the situation. For example, if the paths in the input file are known,
and the paths in the output file are known, the distance model would be better to
use to give suggestions of the mapping. In the case where new data is present, the
flow model would probably be a better choice, since the path model would not be

31

4. Experiments

able to associate them. In some cases it is possible that some data is known, and
some is not, which gives a harder case, but it would both be possible to use a linear
combination of the outputs, or to give all suggestions to the mapping expert. The
data value model is not thought of to give suggestions on its own, since the error rate
is too high. That model would instead be used if one would insert new words into
the data that has not been seen before. Using a combination of string comparing
algorithms and the data model, would prevent connecting the new word to a word
in the graph that looks a bit alike, but maps completely different types of data. One
example of this case could be if the word qtyUOM would be compared to QTY,
which probably would get a good match in many string comparing algorithms, but
since qtyUOM stands for ”Quantity Unit Of Measure” it would more likely contain
data of the type pcs, while QTY rather would contain integer numbers, and thereby
that connection could be avoided.

4.1.1 Experiment data
The data used in these experiments are divided into three parts, training, mapping
and validation. The training sets are the data generated from identifying unique
data in the file pairs and creating a mapping between each path that shares the same
data value. This set is then filtered through a manually created filter containing all
identified faulty maps. The faulty maps is generated since the assumption that a
data value is unique is a bad assumption, since some values, mostly small integers,
often are contained by multiple paths, not connected to each other.
The training data is sampled from five different available areas (see Table 3.1), which
are assumed to have little in common with each other. Since most sets are too large
to be used as a whole, parts of the set are sampled randomly to be able to receive a
reasonably computational time. The sample size used is set in such a way that both
a short enough computational time is received, and such that the standard error of
the mean score is reasonably low.
The data set used for mapping using the model consists of all available paths in an
input file with connected data values, and each possible path in the corresponding
output file. The mission of the algorithm is then to determine which and how paths
in the input format should be connected to the available paths in the output format.
To validate the mapping, one can then compare where the algorithm put the data
values and where the data values should have been.

4.1.2 Mapping process
The mapping process will be as equivalent to a production environment as possible,
since the input is more or less the same as will be available in a real situation. The
algorithm gets the possible paths in the input format with the connected data values,
together with the possible paths in the output format. The mapping algorithm is
then using the mapping probability computed by the models to determine which
paths that should be mapped, and which paths that should be left unmapped (see
Algorithm 3).

32

4. Experiments

4.2 Parameter sweeps
The focus of this report has been to develop a system that can give an expert a guess
for a mapping, it is not supposed to be able to create a mapping completely on its own.
To be able to evaluate the models, it has been necessary to create a simple mapping
algorithm that creates a complete mapping which can be compared with the correct
mapping, using the Fβ-score (2.5). This algorithm is foremost dependent of two
parameters, a threshold θ to avoid mapping paths with too low confidence levels, and
a parameter η that is used to reduce the probability for mapping the same path twice.
To find the best possible score that can be reached using this algorithm, parameter
sweeps are done. Since these parameter will not be as important in production, the
main focus will be on the score received from the different models, and not as much
on the actual parameter values used to receive that score. The models are trained
using the available data and been ran and evaluated independently from each other.
The training process differs to be able to draw conclusions regarding if the models
benefit from being trained on small parts of data closely connected to the area it
is supposed to work on, and if negative interference reveals when training on more
data. The models are also evaluated on datasets they have never been trained on.

4.2.1 Sweeps of parameters θ and η

Two main parameters are used when deciding how the mapping from the models
should look like, using the confidence levels computed from the different models. The
first introduced parameter is the threshold θ, which decides how small the confidence
level can be before it is decided not to map two paths. The other parameter is η,
which is used to decrease the probability for mapping one particular path twice (see
Equation (3.4)). Since these two parameters are tightly connected, sweeps have been
done on the intervals 1 ≥ θ, η ≥ 0 with a step length of 0.1.
Note that these parameters are only important for the mapping algorithm, and the
sweeps are done to find the optimal Fβ-score, and not to find optimal values for
the parameters, since these are not interesting when the mapping is handled by an
expert.

4.2.2 Training and evaluation on isolated datasets
In Figure 4.1, 4.2, 4.3, 4.4 and 4.5 one can see the Fβ-score for the datasets data1_1,
data1_2, data2_1, data2_2 and data3_2 respectively. 100 random file pairs were
sampled from the particular set and used for training, and equally many were sampled
and used for validation. As one can see, the Fβ-score is higher and more stable for
the distance model than the flow model, and the data value model performs worst,
as expected. One can also see that it is not obvious at a first sight which parameter
values that generates the highest F -score, but η = 1 generates the worst score in
most cases. This is because the models always returns the same confidence level for
identical inputs and outputs. In most cases like this, one would not want to map one
input path to two identical outputs, but rather two identical inputs to two identical
outputs. Without decreasing the probability the mapping algorithm will map the

33

4. Experiments

first input to all identical outputs. One can see that the optimal Fβ-score is received
for quite different parameters for the three models. The distance model gets the
highest score for small values of θ, sometimes more or less independently of η, while
the flow model more often receives highest score for larger values of θ. The main
reason for this is that when the distance model gets any non-zero confidence level
for mapping two paths that means that they have been mapped before, in some
way, and probably should be mapped again. Meanwhile, the flow model can get a
non-zero confidence level between paths that are probably not a match, since it finds
connections at root level, and hence too small confidence levels must be discarded
to receive a high score. The score of the data value model is almost independent
of η. This is because the inputs are often unique makes the model return unique
confidence levels.
In Table 4.1 one can see a summary of what values of θ and η that generates the
highest F -score in these simulations. As one may notice, the optimal values differ
from set to set. The hypothesis why this is that in some datasets the same path
should map more than once with higher frequency than in other datasets. It is
also a possibility that some graph systems for the words in the flow model are less
connected when training on some sets than on others, which could explain why the
θ parameter differs.

Model Dataset θ η Fβ-score

Distance

data1_1 0 0.9 ≥ η ≥ 0.1 0.947
data1_1 0.4 ≥ θ ≥ 0 0.9 0.947
data1_2 0 0.9 ≥ η ≥ 0.1 0.825
data2_1 0.2 ≥ θ ≥ η 0.2 ≥ η ≥ 0 0.885
data2_2 0.4 0.9 0.817
data3_2 0.1 0.3 0.671

Flow

data1_1 0.4 0.9 0.874
data1_2 0.4 0.9 0.805
data2_1 0.6 0.6 ≥ η ≥ 0 0.873
data2_2 0.6 0.9 0.740
data3_2 0.6 0.9 0.626

Data Value

data1_1 0.1 0.8 0.528
data1_2 0.1 0.8 0.580
data2_1 0.1 0.5 0.640
data2_2 0.2 0.6 0.361
data3_2 0.7 0.9 0.551

Table 4.1: The Table shows for which values of θ and η the optimal Fβ-score is
received, for β = 0.5. The data is computed using 100 random sampled files for
training and 100 random files for validation.

34

4. Experiments

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fscore as function of Theta for Distance model

θ

F
β

η = 0 η = 0.1 η = 0.2 η = 0.3 η = 0.4

η = 0.5 η = 0.6 η = 0.7 η = 0.8 η = 0.9 η = 1

(a) Parameter sweep for distance model

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fscore as function of Theta for Flow model

θ

F
β

η = 0 η = 0.1 η = 0.2 η = 0.3 η = 0.4

η = 0.5 η = 0.6 η = 0.7 η = 0.8 η = 0.9 η = 1

(b) Parameter sweep for flow model

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F−score as function of Theta for data value model

θ

F
β

η = 0 η = 0.1 η = 0.2 η = 0.3 η = 0.4

η = 0.5 η = 0.6 η = 0.7 η = 0.8 η = 0.9 η = 1

(c) Parameter sweep for data value model

Figure 4.1: The figure shows how the Fβ-score changes when the parameters θ
and η changes. The simulation is done on data set data1_1 and is trained on 100
random files and validated on 100 other files.

35

4. Experiments

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F−score as function of Theta for Distance model

θ

F
β

η = 0 η = 0.1 η = 0.2 η = 0.3 η = 0.4

η = 0.5 η = 0.6 η = 0.7 η = 0.8 η = 0.9 η = 1

(a) Parameter sweep for distance model

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F−score as function of Theta for Flow model

θ

F
β

η = 0 η = 0.1 η = 0.2 η = 0.3 η = 0.4

η = 0.5 η = 0.6 η = 0.7 η = 0.8 η = 0.9 η = 1

(b) Parameter sweep for flow model

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F−score as function of Theta for data value model

θ

F
β

η = 0 η = 0.1 η = 0.2 η = 0.3 η = 0.4

η = 0.5 η = 0.6 η = 0.7 η = 0.8 η = 0.9 η = 1

(c) Parameter sweep for data value model

Figure 4.2: The figure shows how the Fβ-score changes when the parameters θ
and η changes. The simulation is done on data set data1_2 and is trained on 100
random files and validated on 100 other files.

36

4. Experiments

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F−score as function of Theta for Distance model

θ

F
β

η = 0 η = 0.1 η = 0.2 η = 0.3 η = 0.4

η = 0.5 η = 0.6 η = 0.7 η = 0.8 η = 0.9 η = 1

(a) Parameter sweep for distance model

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F−score as function of Theta for Flow model

θ

F
β

η = 0 η = 0.1 η = 0.2 η = 0.3 η = 0.4

η = 0.5 η = 0.6 η = 0.7 η = 0.8 η = 0.9 η = 1

(b) Parameter sweep for flow model

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F−score as function of Theta for data value model

θ

F
β

η = 0 η = 0.1 η = 0.2 η = 0.3 η = 0.4

η = 0.5 η = 0.6 η = 0.7 η = 0.8 η = 0.9 η = 1

(c) Parameter sweep for data value model

Figure 4.3: The figure shows how the Fβ-score changes when the parameters θ
and η changes. The simulation is done on data set data2_1 and is trained on 100
random files and validated on 100 other files.

37

4. Experiments

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F−score as function of Theta for Distance model

θ

F
β

η = 0 η = 0.1 η = 0.2 η = 0.3 η = 0.4

η = 0.5 η = 0.6 η = 0.7 η = 0.8 η = 0.9 η = 1

(a) Parameter sweep for distance model

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F−score as function of Theta for Flow model

θ

F
β

η = 0 η = 0.1 η = 0.2 η = 0.3 η = 0.4

η = 0.5 η = 0.6 η = 0.7 η = 0.8 η = 0.9 η = 1

(b) Parameter sweep for flow model

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F−score as function of Theta for data value model

θ

F
β

η = 0 η = 0.1 η = 0.2 η = 0.3 η = 0.4

η = 0.5 η = 0.6 η = 0.7 η = 0.8 η = 0.9 η = 1

(c) Parameter sweep for data value model

Figure 4.4: The figure shows how the Fβ-score changes when the parameters θ and
η changes. The simulation is done on dataset data2_2 and is trained on 100 random
files and validated on 100 other files from the same set.

38

4. Experiments

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F−score as function of Theta for Distance model

θ

F
β

η = 0 η = 0.1 η = 0.2 η = 0.3 η = 0.4

η = 0.5 η = 0.6 η = 0.7 η = 0.8 η = 0.9 η = 1

(a) Parameter sweep for distance model

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F−score as function of Theta for Flow model

θ

F
β

η = 0 η = 0.1 η = 0.2 η = 0.3 η = 0.4

η = 0.5 η = 0.6 η = 0.7 η = 0.8 η = 0.9 η = 1

(b) Parameter sweep for flow model

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F−score as function of Theta for data value model

θ

F
β

η = 0 η = 0.1 η = 0.2 η = 0.3 η = 0.4

η = 0.5 η = 0.6 η = 0.7 η = 0.8 η = 0.9 η = 1

(c) Parameter sweep for data value model

Figure 4.5: The figure shows how the Fβ-score changes when the parameters θ
and η changes. The simulation is done on data set data3_2 and is trained on 100
random files and validated on 100 other files.

39

4. Experiments

4.2.3 Finding negative interference between datasets
To examine if the different datasets contribute to mapping probabilities that nega-
tively interfere with each other, the models are trained and validated for two different
cases. The first case is the standard case when 100 random file pairs are sampled
from one dataset and used for training, and 100 file pairs are randomly sampled from
the same dataset and used for validation. The second case is when 100 file pairs are
randomly sampled from each if the available datasets, and 100 file pairs are sampled
from one dataset and used for validation. The resulting sweeps can be seen in Figure
4.6, 4.7, 4.8, 4.9 and 4.10. In Table 4.2 one can see the highest recorded Fβ-score for
the different models, together with the computed standard error of the mean.

40

4. Experiments

Train on all, validate on one Train on one, validate on one

Model Dataset F̄0.5-score s SEF̄ F̄0.5-score s SEF̄

Distance

Data1_1 0.911 0.019 0.002 0.913 0.021 0.002

Data1_2 0.863 0.108 0.011 0.859 0.111 0.011

Data2_1 0.670 0.055 0.006 0.795 0.031 0.003

Data2_2 0.657 0.088 0.009 0.777 0.122 0.012

Data3_2 0.859 0.137 0.014 0.852 0.138 0.014

Flow

Data1_1 0.755 0.036 0.004 0.781 0.030 0.003

Data1_2 0.859 0.118 0.012 0.855 0.118 0.012

Data2_1 0.564 0.034 0.003 0.742 0.030 0.003

Data2_2 0.582 0.107 0.011 0.630 0.112 0.011

Data3_2 0.712 0.109 0.011 0.732 0.124 0.012

Data value

Data1_1 0.355 0.070 0.007 0.565 0.081 0.008

Data1_2 0.580 0.162 0.016 0.557 0.141 0.014

Data2_1 0.456 0.081 0.008 0.643 0.079 0.008

Data2_2 0.229 0.112 0.011 0.341 0.162 0.016

Data3_2 0.487 0.188 0.019 0.585 0.080 0.008

Table 4.2: Highest Fβ-score received during parameter sweep for all datasets. The
presented values comes from two different simulations. In the first one, the training
process was carried out on each available training set, that is, 100 file pairs was
randomly sampled from each dataset and then 100 random files was sampled from
the specified dataset to be used for validation. In the second simulation, the training
was carried out on 100 randomly sampled file pairs from the specified dataset, and
another 100 file pairs from the same dataset was randomly sampled to be used for
validation. One can see that in some cases, it differs very little depending on if all
datasets was used or only the dataset used for validation, but in the cases when
it differs more, the highest score has been received when all training data is from
the same set used for validation. The conclusion that can be drawn is that it is a
possibility that negative inference occurs when training on data from different areas.

41

4. Experiments

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F−score as function of Theta for Distance model

θ

F
β

η = 0 η = 0.1 η = 0.2 η = 0.3 η = 0.4

η = 0.5 η = 0.6 η = 0.7 η = 0.8 η = 0.9 η = 1

(a) Distance model when training on all
datasets and validating on data1_1

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F−score as function of Theta for Distance model

θ

F
β

η = 0 η = 0.1 η = 0.2 η = 0.3 η = 0.4

η = 0.5 η = 0.6 η = 0.7 η = 0.8 η = 0.9 η = 1

(b) Distance model when training on
data1_1 and validating on data1_1

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F−score as function of Theta for Flow model

θ

F
β

η = 0 η = 0.1 η = 0.2 η = 0.3 η = 0.4

η = 0.5 η = 0.6 η = 0.7 η = 0.8 η = 0.9 η = 1

(c) Flow model when training on all
datasets and validating on data1_1

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F−score as function of Theta for Flow model

θ

F
β

η = 0 η = 0.1 η = 0.2 η = 0.3 η = 0.4

η = 0.5 η = 0.6 η = 0.7 η = 0.8 η = 0.9 η = 1

(d) Flow model when training on
data1_1 and validating on data1_1

42

4. Experiments

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F−score as function of Theta for data value model

θ

F
β

η = 0 η = 0.1 η = 0.2 η = 0.3 η = 0.4

η = 0.5 η = 0.6 η = 0.7 η = 0.8 η = 0.9 η = 1

(e) Data value model when training on
all datasets and validating on data1_1

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F−score as function of Theta for data value model

θ

F
β

η = 0 η = 0.1 η = 0.2 η = 0.3 η = 0.4

η = 0.5 η = 0.6 η = 0.7 η = 0.8 η = 0.9 η = 1

(f) Data value model when training on
data1_1 and validating on data1_1

Figure 4.6: The Figure shows how the Fβ-score changes depending on the pa-
rameters θ and η for 4.6(a) Distance model when all datasets is used for training,
4.6(b) Distance model when only data1_1 is used for training, 4.6(c) Flow model
when all datasets is used for training, 4.6(d) Flow model when only data1_1 is
used for training, 4.6(e) data value model when all datasets is used for training,
and 4.6(f) when only data1_1 is used for training. When training on all datasets,
100 random file pairs was sampled from each set. In the case of training only on
data1_1 one hundred file pairs was randomly sampled. In both cases 100 file pairs
was randomly sampled for validation from data1_1. The validation was sampled
from the remaining file pairs in the set not used for training.

43

4. Experiments

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F−score as function of Theta for Distance model

θ

F
β

η = 0 η = 0.1 η = 0.2 η = 0.3 η = 0.4

η = 0.5 η = 0.6 η = 0.7 η = 0.8 η = 0.9 η = 1

(a) Distance model when training on all
datasets and validating on data1_2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F−score as function of Theta for Distance model

θ

F
β

η = 0 η = 0.1 η = 0.2 η = 0.3 η = 0.4

η = 0.5 η = 0.6 η = 0.7 η = 0.8 η = 0.9 η = 1

(b) Distance model when training on
data1_2 and validating on data1_2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F−score as function of Theta for Flow model

θ

F
β

η = 0 η = 0.1 η = 0.2 η = 0.3 η = 0.4

η = 0.5 η = 0.6 η = 0.7 η = 0.8 η = 0.9 η = 1

(c) Flow model when training on all
datasets and validating on data1_2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F−score as function of Theta for Flow model

θ

F
β

η = 0 η = 0.1 η = 0.2 η = 0.3 η = 0.4

η = 0.5 η = 0.6 η = 0.7 η = 0.8 η = 0.9 η = 1

(d) Flow model when training on
data1_2 and validating on data1_2

44

4. Experiments

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F−score as function of Theta for data value model

θ

F
β

η = 0 η = 0.1 η = 0.2 η = 0.3 η = 0.4

η = 0.5 η = 0.6 η = 0.7 η = 0.8 η = 0.9 η = 1

(e) Data value model when training on
all datasets and validating on data1_2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F−score as function of Theta for data value model

θ

F
β

η = 0 η = 0.1 η = 0.2 η = 0.3 η = 0.4

η = 0.5 η = 0.6 η = 0.7 η = 0.8 η = 0.9 η = 1

(f) Data value model when training on
data1_1 and validating on data1_2

Figure 4.7: The Figure shows how the Fβ-score changes depending on the pa-
rameters θ and η for 4.7(a) Distance model when all datasets is used for training,
4.7(b) Distance model when only data1_2 is used for training, 4.7(c) Flow model
when all datasets is used for training, 4.7(d) Flow model when only data1_2 is
used for training, and 4.7(e) data value model when all datasets is used for training,
and 4.7(f) when only data1_2 is used for training. When training on all datasets,
100 random file pairs was sampled from each set. In the case of training only on
data1_2, one hundred file pairs was randomly sampled. In both cases 100 file pairs
was randomly sampled for validation from data1_2. The validation was sampled
from the remaining file pairs in the set not used for training.

45

4. Experiments

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F−score as function of Theta for Distance model

θ

F
β

η = 0 η = 0.1 η = 0.2 η = 0.3 η = 0.4

η = 0.5 η = 0.6 η = 0.7 η = 0.8 η = 0.9 η = 1

(a) Distance model when training on all
datasets and validating on data2_1

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F−score as function of Theta for Distance model

θ

F
β

η = 0 η = 0.1 η = 0.2 η = 0.3 η = 0.4

η = 0.5 η = 0.6 η = 0.7 η = 0.8 η = 0.9 η = 1

(b) Distance model when training on
data2_1 and validating on data2_1

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F−score as function of Theta for Flow model

θ

F
β

η = 0 η = 0.1 η = 0.2 η = 0.3 η = 0.4

η = 0.5 η = 0.6 η = 0.7 η = 0.8 η = 0.9 η = 1

(c) Flow model when training on all
datasets and validating on data2_1

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F−score as function of Theta for Flow model

θ

F
β

η = 0 η = 0.1 η = 0.2 η = 0.3 η = 0.4

η = 0.5 η = 0.6 η = 0.7 η = 0.8 η = 0.9 η = 1

(d) Flow model when training on
data2_1 and validating on data2_1

46

4. Experiments

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F−score as function of Theta for data value model

θ

F
β

η = 0 η = 0.1 η = 0.2 η = 0.3 η = 0.4

η = 0.5 η = 0.6 η = 0.7 η = 0.8 η = 0.9 η = 1

(e) Data value model when training on
all datasets and validating on data2_1

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F−score as function of Theta for data value model

θ

F
β

η = 0 η = 0.1 η = 0.2 η = 0.3 η = 0.4

η = 0.5 η = 0.6 η = 0.7 η = 0.8 η = 0.9 η = 1

(f) Data value model when training on
data2_1 and validating on data2_1

Figure 4.8: The Figure shows how the Fβ-score changes depending on the pa-
rameters θ and η for 4.8(a) Distance model when all datasets is used for training,
4.8(b) Distance model when only data2_1 is used for training, 4.8(c) Flow model
when all datasets is used for training, 4.8(d) Flow model when only data2_1 is used
for training, and , 4.8(e) data value model when all datasets is used for training,
and 4.8(f) when only data2_1 is used for training. When training on all datasets,
100 random file pairs was sampled from each set. In the case of training only on
data2_1 one hundred file pairs was randomly sampled. In both cases 100 file pairs
was randomly sampled for validation from data2_1. The validation was sampled
from the remaining file pairs in the set not used for training.

47

4. Experiments

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F−score as function of Theta for Distance model

θ

F
β

η = 0 η = 0.1 η = 0.2 η = 0.3 η = 0.4

η = 0.5 η = 0.6 η = 0.7 η = 0.8 η = 0.9 η = 1

(a) Distance model when training on all
datasets and validating on data2_2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F−score as function of Theta for Distance model

θ

F
β

η = 0 η = 0.1 η = 0.2 η = 0.3 η = 0.4

η = 0.5 η = 0.6 η = 0.7 η = 0.8 η = 0.9 η = 1

(b) Distance model when training on
data2_2 and validating on data2_2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F−score as function of Theta for Flow model

θ

F
β

η = 0 η = 0.1 η = 0.2 η = 0.3 η = 0.4

η = 0.5 η = 0.6 η = 0.7 η = 0.8 η = 0.9 η = 1

(c) Flow model when training on all
datasets and validating on data2_2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F−score as function of Theta for Flow model

θ

F
β

η = 0 η = 0.1 η = 0.2 η = 0.3 η = 0.4

η = 0.5 η = 0.6 η = 0.7 η = 0.8 η = 0.9 η = 1

(d) Flow model when training on
data2_2 and validating on data2_2

48

4. Experiments

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F−score as function of Theta for data value model

θ

F
β

η = 0 η = 0.1 η = 0.2 η = 0.3 η = 0.4

η = 0.5 η = 0.6 η = 0.7 η = 0.8 η = 0.9 η = 1

(e) Data value model when training on
all datasets and validating on data2_2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F−score as function of Theta for data value model

θ

F
β

η = 0 η = 0.1 η = 0.2 η = 0.3 η = 0.4

η = 0.5 η = 0.6 η = 0.7 η = 0.8 η = 0.9 η = 1

(f) Data value model when training on
data2_2 and validating on data2_2

Figure 4.9: The Figure shows how the Fβ-score changes depending on the pa-
rameters θ and η for 4.9(a) Distance model when all datasets is used for training,
4.9(b) Distance model when only data2_2 is used for training, 4.9(c) Flow model
when all datasets is used for training, 4.9(d) Flow model when only data2_2 is
used for training, and 4.9(e) data value model when all datasets is used for training,
and 4.9(f) when only data2_2 is used for training. When training on all datasets,
100 random file pairs was sampled from each set. In the case of training only on
data2_2 one hundred file pairs was randomly sampled. In both cases 100 file pairs
was randomly sampled for validation from data2_2. The validation was sampled
from the remaining file pairs in the set not used for training.

49

4. Experiments

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F−score as function of Theta for Distance model

θ

F
β

η = 0 η = 0.1 η = 0.2 η = 0.3 η = 0.4

η = 0.5 η = 0.6 η = 0.7 η = 0.8 η = 0.9 η = 1

(a) Distance model when training on all
datasets and validating on data3_2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F−score as function of Theta for Distance model

θ

F
β

η = 0 η = 0.1 η = 0.2 η = 0.3 η = 0.4

η = 0.5 η = 0.6 η = 0.7 η = 0.8 η = 0.9 η = 1

(b) Distance model when training on
data3_2 and validating on data3_2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F−score as function of Theta for Flow model

θ

F
β

η = 0 η = 0.1 η = 0.2 η = 0.3 η = 0.4

η = 0.5 η = 0.6 η = 0.7 η = 0.8 η = 0.9 η = 1

(c) Flow model when training on all
datasets and validating on data3_2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F−score as function of Theta for Flow model

θ

F
β

η = 0 η = 0.1 η = 0.2 η = 0.3 η = 0.4

η = 0.5 η = 0.6 η = 0.7 η = 0.8 η = 0.9 η = 1

(d) Flow model when training on
data3_2 and validating on data3_2

50

4. Experiments

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F−score as function of Theta for data value model

θ

F
β

η = 0 η = 0.1 η = 0.2 η = 0.3 η = 0.4

η = 0.5 η = 0.6 η = 0.7 η = 0.8 η = 0.9 η = 1

(e) Data value model when training on
all datasets and validating on data3_2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F−score as function of Theta for data value model

θ

F
β

η = 0 η = 0.1 η = 0.2 η = 0.3 η = 0.4

η = 0.5 η = 0.6 η = 0.7 η = 0.8 η = 0.9 η = 1

(f) Data value model when training on
data3_1 and validating on data3_2

Figure 4.10: The Figure shows how the Fβ-score changes depending on the pa-
rameters θ and η for 4.10(a) Distance model when all datasets is used for training,
4.10(b) Distance model when only data3_2 is used for training, 4.10(c) Flow model
when all datasets is used for training, 4.10(d) Flow model when only data3_2 is used
for training, and , 4.10(e) data value model when all datasets is used for training,
and 4.10(f) when only data3_2 is used for training. When training on all datasets,
100 random file pairs was sampled from each set. In the case of training only on
data3_2 one hundred file pairs was randomly sampled. In both cases 100 file pairs
was randomly sampled for validation from data3_2. The validation was sampled
from the remaining file pairs in the set not used for training.

51

4. Experiments

4.2.4 Training and validating on all datasets
To examine how the models perform when all available datasets are used for training
and all validation sets are used for validation, parameter sweeps are performed for
this case. The resulting sweeps can be seen in Figure 4.11, and in Table 4.3 the
highest achieved Fβ-score is presented for the different models. The mean value of
the achieved Fβ-score over all datasets from Table 4.2 is computed to be 0.792 and
0.839 for the distance model when training on all datasets and validating on one,
respectively training on one dataset and validating on the same one, 0.694 and 0.748
for the flow model when training on all datasets and validating on one, respectively
training on one dataset and validating on the same one, and 0.407 and 0.532 or the
data value model when training on all datasets and validating on one, respectively
training on one dataset and validating on the same one. Comparing these values one
can see that the achieved Fβ-score when training on all data and validating on all
data is lower than the mean achieved over all data sets when training on all datasets
and validating on one at a time, and it is lower than all achieved Fβ-scores when
the models only are trained on the same set that it is validated on. This result is
expected since the values of the parameters θ and η differs from set to set when the
highest Fβ-score is reached, which means that it is not possible to find values on the
parameters θ and η in such a way that the optimal value is reached for all datasets
simultaneously.

Model θ η Fβ-score

Distance 0.2 ≥ θ ≥ 0.1 θ ≥ η ≥ 0 0.719

Flow 0.6 0.6 ≥ η ≥ 0 0.636

Data Value 0.2 0.5 0.424

Table 4.3: The Table shows for which values of θ and η the optimal Fβ-score is
received, for β. The data is computed using 100 random sampled files from each
available dataset for training, and 100 random sampled files from each available
dataset for validation

52

4. Experiments

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F−score as function of Theta for Distance model

θ

F
β

η = 0 η = 0.1 η = 0.2 η = 0.3 η = 0.4

η = 0.5 η = 0.6 η = 0.7 η = 0.8 η = 0.9 η = 1

(a) Parameter sweep for distance model

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F−score as function of Theta for Flow model

θ

F
β

η = 0 η = 0.1 η = 0.2 η = 0.3 η = 0.4

η = 0.5 η = 0.6 η = 0.7 η = 0.8 η = 0.9 η = 1

(b) Parameter sweep for flow model

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F−score as function of Theta for data value model

θ

F
β

η = 0 η = 0.1 η = 0.2 η = 0.3 η = 0.4

η = 0.5 η = 0.6 η = 0.7 η = 0.8 η = 0.9 η = 1

(c) Parameter sweep for data value model

Figure 4.11: The Figure shows how the Fβ-score changes for different values of the
parameters θ and η. For this simulation 100 random file pairs was chosen from each
of all five areas and used for training, and 100 file pairs from each area was used for
validation.

53

4. Experiments

4.2.5 Validation on different datasets than used for training
So far, the distance model has been better in all cases compared to the flow model,
and the flow model is always better than the data value model. This is expected
since the distance model achieves mapping probabilities only between whole paths
that have been mapped before, and can in that way directly say if a path should be
mapped or not, and gets it correct in most cases. The flow model is only looking at
the words in the paths and can therefore get probabilities to map paths that have
not been mapped earlier, if they contain words that have been mapped. The purpose
of the flow model, was to be able to connect paths with each other even if they have
not been seen before as long as the words contained by the path have been seen. To
evaluate this function, the models are trained on all available datasets but one, and
then evaluated on the dataset not included in the training part. This is done for
each of the datasets, and the achieved result can be seen in Table 4.4. By looking at
the resulting score for the different models and the different datasets, one can see
that some of the datasets are not as different from each other as assumed. For the
sets data2_1 and data2_2, the distance model do find a lot of paths in the other
sets during training that is identical to some paths in the validation set. In the other
cases, one can see that for the dataset data1_1, no paths have been found in the
training data that also exists in the validation set, but the flow model still succeeds
to map a lot of paths correctly. When the set data1_2 is used for validation, none
of the models achieves a suitable score, but when data3_2 or data2_1 is used for
validation, the flow model and the data value model achieves a similar score, which
is interesting since this has not been seen in any other experiment. Even though the
achieved score for the flow model is low in most cases in this simulation, it do show
that the model can be of use when completely new data is to be mapped.

54

4. Experiments

Fβ-score Fβ-score Fβ-score

Validation set: distance model flow model Data value model

data1_1 0 0.702 0.342

data1_2 0 0.005 0.008

data2_1 0.494 0.437 0.435

data2_2 0.545 0.376 0.134

data3_2 0 0.245 0.261

Table 4.4: Computing the Fβ-score when files from one area is used for validation,
and files from the rest for training. 100 files was sampled randomly from each area
for training, and 100 files was sampled randomly for validation. The parameter
values used was θ = 0.4 for the distance and flow model, and θ = 0.2 for the data
value model. η = 0.9 was used for all models.
When the Fβ-score is 0 for the distance model, this means that no paths in the
validation set are recognized and hence nothing will be suggested for mapping. One
can see that even though no paths is recognized, the flow model can still map paths,
in some cases pretty accurate, only based on that the words is recognized in the data.

55

4. Experiments

4.3 Class distribution
The different possible classifications of a particular mapping is defined in Table 2.3,
were class 1 and class 3 are correct mappings, and class 2 and class 4 is incorrect
mappings. As mentioned earlier, the Fβ-score is used since all classes are not
considered equal, but a class 2 error is considered worse than a class 4 error (see
Section 2.3.1). In Figure 4.12 the class distribution is shown for the highest achieved
Fβ-score for dataset data1_1. As one can see, the largest classes are the correct ones,
and for the distance model the class distribution is closer to the optimal distribution
than the flow model, which is expected since the Fβ-score is higher for that model.
One can also see that using accuracy as score, the number of correct mappings
divided by the total number of mappings, would give a result much higher than
would be representative for the models. As one can see in Figure 4.12, about 60% of
the paths should not be mapped. Knowing this, we could construct an algorithm that
always decide not to map any path, and still receives an accuracy of 0.6 despite that
algorithm being completely worthless in reality. For some datasets, the proportion
of paths that should not be mapped can be even higher and that algorithm would
in some cases receive an accuracy closer to 0.8, which definitely would not be a
representative score of the models.
In Figure 4.13 the class distribution for the highest achieved Fβ-score for dataset
data2_2 is presented. In this case, the achieved Fβ-score is lower than for data1_1,
and one can see in the figure how the classes have a different distribution. Class 1
is much farther away from the optimal value, and Class 4 is much larger than for
data1_1.

(a) Class distribution for distance model (b) Class distribution for flow model

Figure 4.12: The figure shows how the class distribution for the Distance model
and the Flow model when the Fβ-score achieved is 0.910 respectively 0.780 for the
Distance model respectively the Flow model. The result is achieved when training on
100 randomly sampled files from dataset data1_1 and validating on 100 randomly
sampled files from the same dataset.

56

4. Experiments

(a) Class distribution for distance model (b) Class distribution for flow model

Figure 4.13: The figure shows how the class distribution for the Distance model
and the Flow model when the Fβ-score achieved is 0.799 respectively 0.629 for the
Distance model respectively the Flow model. The result is achieved when training on
100 randomly sampled files from dataset data2_2 and validating on 100 randomly
sampled files from the same dataset.

In Figure 4.14 one can see how the class distribution changes when θ changes, together
with the computed Fβ-score. In Figure 4.14(a) one can see that the highest Fβ-score
is reached directly, and is decreasing when θ increases. One can see that Class 2
and Class 3 are almost constant for this model. Since Class 2 is consisting of faulty
mappings, which in this case also receives a high enough Fβ-score to avoid being
filtered by θ, the hypothesis is that the specifications of what paths that should be
mapped has changed. Since it is a possibility that two files map in some way at the
start of a cooperation, but changes over time. One could for example decide that
some of the data is not necessary to move, or it could be that the data did not have
to be moved in the first place, but it did anyway. In these cases, possible matches
for paths could still be included in that data format, but no data will be available in
the validation files and hence generate an error, even though the semantic meaning
of the actual mapped paths could be equivalent. Class 3 consists of paths that have
not been mapped correctly, which indicates that the paths that is not mapping
is paths that is either not recognized, or in different clusters and thereby gets a
confidence level of exactly zero. The other two classes behave as one would think,
when increasing the threshold some of the correct mapped paths will suddenly have
a lower confidence level and be filtered away, and these mappings will instead be
classified as Class 4, which is consisting of paths that has faulty been left unmapped.
In Figure 4.14(b) the changes in the class distribution for the Flow model is presented,
and one can see that they do change more than for the Distance model. First of all,
it is clear that almost every path gets a non-zero confidence level to map towards at
least one other path, since both Class 3 and Class 4 is zeros when θ = 0. When θ
increases, both the correct mappings and the faulty mappings (Class 1 and Class
2) decreases, but since Class 2 decreases faster that Class 1, the Fβ-score increases.

57

4. Experiments

For higher values of θ, Class 3 and Class 4 starts to behave like in the Distance
model, and Class 2 is slowly decreasing until it reaches about the same level as in
the optimal part of the Distance model.

(a) Class distribution for distance model as
function of θ

(b) Class distribution for flow model as func-
tion of θ

Figure 4.14: The figure shows how the class distribution for the Distance model
and the Flow model changes as function of θ, together with the Fβ-score. As we can
see in the figure, the best values for the Distance model is achieved at the very start,
while the Flow model need to filter some faulty mappings using a higher threshold
before reaching its optima.

58

5
Discussion and conclusions

In this chapter the results are discussed in a more general manner in order to
put emphasis on the generic trends and predictive power of the models. We will
draw conclusions regarding the quality of the model based on the earlier presented
simulations, and conclude when and how they should be used to optimize their
combined strength.
Lastly, ideas that were outside the scope of this project that could improve or extend
the models are presented.

5.1 Discussion

Many aspects of this project made it hard to evaluate the actual quality of the
models, and in many ways it was hard to create realistic environments using the
data. The reasons for this are many, but mainly it falls back on a few key concepts.
First of all, it has been problematic that the actual mapping specification has not
been available, but only how the data has been organized in the file pairs. This
has made it hard to both create the initial mapping specifications for training, but
also to validate the suggested mapping from the models. It is known that faulty
classifications of the suggested mappings have been made because of this, but in as
many cases as possible the ambition has been to develop the scripts in such a way
that the scoring of the models should be worse than they actually are, instead of the
other way around. Second, since our knowledge regarding the files in the different
sets of data has been limited, it has not been possible to divide file pairs in sets that
in one way made sense, but have had to be satisfied by how they was divided in
the first place. If more time had been available, it would have been interesting to
create an unsupervised algorithm that looked for similarities in the file pairs and
created clusters based on that concept. An approach like that would have given
homogeneous sets that would differ from one another in a completely different way
that they do now. And last, it would have been interesting to test the models on
more data. The datasets that has been available have in many cases proven to be
very much alike, and even though the number of file pairs has been large, the models
can without any problem be trained on a small fraction and still perform very well.
This may show some bias regarding the models, since if the validation set is almost
identical to the training set, it’s hard to draw conclusions of how the model would
perform in reality.

59

5. Discussion and conclusions

5.1.1 Comparison of the models
The three models all have different strengths and weaknesses, The distance model
performs best on earlier seen data formats as can be seen in Table 4.1, but is unable
to recognize new formats. Table 4.4 shows the scores of the models when different
sets are used for training and validation, and in the cases where the distance model
gets a score greater than zero the formats are present in some of the other sets.
In most cases the flow model performs best on unseen data, and gets scores close
to the distance model on earlier seen data. It gets the lowest score when validating
on set data1_2, and this is because almost none of the words in the output files are
present in the other sets.
Overall, the data value model gets lower score than the other models. This is mainly
because it is unable to distinguish between similar data values when words in the
paths are needed to find the correct map, a frequent error of the model is to mistake
order dates for delivery dates and so on. It has the advantage over the other models
that it only needs to recognize words in the output format and not the input format.
This is especially useful when mapping new formats to the intermediate format,
which is always the same in the available datasets. The results from the data value
model can also be used in conjunction with the other models to determine if an
output is compatible with the data connected to the output, and otherwise discard
the mapping.

5.1.2 Scoring of the mapping
To be able to score the models an actual mapping has to be generated between the
files. To do this a mapping algorithm has been developed, which always chooses the
proposed mapping with the highest confidence level. In multiple situations several
inputs can have high matching scores to the same output, but the correct one does
not necessarily have the highest. The purpose of the project has not been to fully
automate the process but to suggest a mapping, and can therefore list several matches
for each output, and the expert can choose between these. As long as the correct
mapping gets a high score, the models can be used in this way, but the procedure of
mapping in the absence of an expert will affect the scoring in a negative way.

5.1.3 Parameter values
The optimal parameter values differ between the datasets (see Figures 4.1 through
4.5) but this is nothing critical since in reality the user can adjust these values
for a given mapping until the initial suggestions are satisfactory. In general the
distance model performs well with low thresholds θ which is due to the fact that
earlier mapped paths probably should be mapped again, regardless of how often
this was done in the training data. The thresholds for the data value model are
strongly related to how the scaling factor λ was set. The parameter for lowering the
confidence level of a path that has been suggested once before, η, does not affect
the results much as long as it is smaller than one, which reflects the fact that each
unique path should in most cases just be mapped once to make it possible for other
nodes with the same path to be mapped.

60

5. Discussion and conclusions

5.1.4 Negative interference between the datasets
As can be seen in Table 4.2, the models usually perform worse when trained on
all datasets and validated on one. This is because the data in the sets are quite
homogeneous and gets over fitted to each specific set. This effect is larger on some
of the sets, and negligible in some cases.

5.2 Conclusion
The models discussed in this report all reach the set goal, as they can suggest
mappings and report a confidence level of these, but the accuracy of these mappings
depends strongly on what model and what training set was used.
The models have different strengths, and if used beside each other a more sophisticated
decision can be made by an expert. Given more training data from other systems
the models can increase their score on unseen systems even more.
It is clear that statistics computed on different training data is needed for the models
to perform well during mappings on different sorts of systems. This could be done in
different ways, but in general many sets of mapping probabilities should be computed
and when suggesting a mapping between two files, the set with the most common
paths and words should be used.
It is also clear that a meta model that combines the three models should not just
be some linear combination of them, but rather a combination of that and a state
machine, were one can take into account that the distance model suggests mappings
that probably are correct, and the flow model should be included when the paths
are not known earlier. The data value model could both be used to check that the
suggested mapping is trying to map data of the correct format to some path (most
valuable for the flow model) and to help inserting new words into the model by using
string comparison algorithms.

5.3 Future work
During the project we have had to delimit ourselves in order to meet the time
constraint of the thesis work. Below some of the ideas that we considered outside
the scope of this project are discussed.

5.3.1 Online training
All statistics used in the models are stored in such a way that they can be updated
online. There are different ways to do this updating. The counts can simply be
updated, but this would make the model inert to updates from small data sets. We
believe that there still are some errors in the training data, and would therefore trust
the feedback given by an expert more than the already existing training data. To
avoid the inertia when updating the mapping probability one would instead want a
process more like gradient descent, where the step length could be chosen in such a
way that both inertia and unnecessary large overshoots is avoided.

61

5. Discussion and conclusions

5.3.2 Inserting new words into the flow model

New unseen words can be very similar to existing words. If words can be compared
by similarity new words can be inserted into the word graph with edges connected
to the similar words.
Words can also be split into several words if they are written in camel case or with
some separator. These sub words could be used separately in the flow model.

5.3.3 Other initialization process for word mappings

In this project two different approaches for creating word mappings from path map-
pings have been tested, with different results. The first approach simply mapped
each word in one path to each word in the other, which created a highly connected
graph, instead of different clusters containing words with semantic equivalency, as
wanted. The other approach made at most one connection between each word, and
did so depending on where the words were in the path. The other approach worked
better, mainly for the reason that the connected parts were now only between words
that did not matter much for the mapping process. The most important words in
the process are the last ones, since these words in more detail describe the data value
connected to then, and are therefore more important to decide which other paths
describe the same data. Other words then make the algorithm choose between equal
paths. For example would a word like ORDERHEAD push the algorithm towards
an equivalent group in the other format if it would be the case that a data existed in
both the body and the head of the document.
When looking at the actual graph created in the initialization one can see that most
of the words that frequently appear early in the paths belongs to the same cluster,
even if they do not have any semantic connection, or even a functional connection.
For example, if ORDER is the root element, it would be connected to other root
elements, but because of the procedure of initializing word mappings, it would also
be connected to later elements like ORDERHEAD, ORDERLINE and ORDER-
FOOT. To avoid this, another proposal for initializing the word mappings would be
interesting to test. For example, instead of going from right to left when mapping
words, one could go from outside in instead. For example, if the paths would be
ORDER/ORDERHEAD/Item/Qty and PIckingList/PickingHead/System/Produc-
t/Quantity, the present mapping process would create the mappings “Quantity-Qty”,
“Product-Item”, “System-ORDERHEAD”, “PickingHead-ORDER” and leave “OR-
DER” unmapped (for now). Since it is likely that in another case, the two root
elements “PickingList” and “ORDER” will be mapped, Order will suddenly be con-
nected to System, “PickingList” and “ORDERHEAD”, which is word that probably
is not associated with the root element. If one instead went from outside and in, the
created mappings would be “Quantity-Qty”, “PickingList-ORDER”, “Product-Item”,
“PickingHead-ORDERHEAD” and leave “System” unmapped, which seems like a
more reasonably mapping.

62

5. Discussion and conclusions

5.3.4 Using the structure of the XML-tree
If two leaf nodes have the same parent node in the input format, they should in
most cases have the same parent in the output format. This can be crucial in some
mappings to for example map the price and article number of the same article in
an input format describing an order to the same group in the output format. This
information has been discarded during this project as the main focus has been on
associating paths with each other depending on the information collected from the
semantic meaning of the paths itself, combined with the meanings of the words and
the data formats connected to the path.

5.3.5 Extending the program to cover other formats
In this project we have worked exclusively with mappings between two XML-formats.
There are many other standards used for data exchange and as long as one can extract
descriptive words of the data types from the formats from some source the same
principles can be used for mapping these formats. Interesting formats to investigate
are, among others, XML-schemas, the EDIFACT-format and the JSON-format.

5.3.6 More advanced mapping algorithm
The scope of this project has mainly been focused on how one can associate paths in
XML sheets with one another, and we have created three different models that does
so. Little focus has been on the actual mapping process, even if some of the work
has been done on that area. The main contributions on the actual mapping part has
been to initiate a threshold to stop mapping when the confidence level is too low,
and a parameter that reduces the confidence level for mapping a path twice. This
has resulted in higher accuracy but more is to be done. For example, it is in the
nature of integration to find relevant information in one format and transport that
information to the correct place in another format. These formats are more or less
place holders for the information, in such a way that another system can access the
correct information and do the actual work. Because of this, it is unusual to have
the same data in more than one place, although this happens, for some reasons. It
could be that the data is not actually the same, in that sense that it just happens
to have the same value, it could be that equal information is written in different
ways, like an address where the city comes before the street at one place, and after
in another. Using this information one could remove the possibility to map the same
information twice and in that way decrease the number of incorrect mappings.

5.3.7 Determine when information should not be mapped
In this project, a threshold has been used to determine when one should not map two
paths. This parameter has helped for two main reasons. In the distance model, it is
unlikely that a path that gets a probability to be mapped, should not be so, unless
there are errors in the training data, which there are. It has also helped regarding
the parameter that decreasing the probability for mapping any path twice, even
though the simulations concluded that it was best to never do so. Second it helped

63

5. Discussion and conclusions

in the flow model. Since the flow model gives a probability as long as some words in
the flow have been mapped before, multiple paths that should not be associated with
one another will get a flow between them since some of the less significant words still
are associated with one another. Without the threshold, all paths containing data
would be matched, where most matches would have a low confidence level (� 1) and
hence probably be a faulty map.
Regardless of this, there are still multiple paths that the algorithm tries to map that
should not be mapped, for a couple of reasons. The first is that in practice, data
could have been mapped between two formats once, for some reason one decides that
some data should not be transferred any more, but the data remain in the input
format, and a possible match remains in the output format. If this case, and similar
cases could be handled, the algorithm would be able to perform much better. When
and why a paths should not be mapped in any given moment is not entirely clear,
and more research need to be done regarding the specific cases, but it would still be
interesting if a probability distribution for when one should not map any given path
could be constructed.

64

Bibliography

[1] Philip A Bernstein, Jayant Madhavan, and Erhard Rahm. Generic schema
matching, ten years later. Proceedings of the VLDB Endowment, 4(11):695–701,
2011.

[2] Brigitte Bigi. Using Kullback-Leibler distance for text categorization. Springer,
2003.

[3] Carter T. Butts. sna: Tools for Social Network Analysis, 2014. R package
version 2.3-2.

[4] William B Cavnar, John M Trenkle, et al. N-gram-based text categorization.
Ann Arbor MI, 48113(2):161–175, 1994.

[5] Gabor Csardi and Tamas Nepusz. The igraph software package for complex
network research. InterJournal, Complex Systems:1695, 2006.

[6] AnHai Doan, Pedro Domingos, and Alon Y Halevy. Reconciling schemas of
disparate data sources: A machine-learning approach. In ACM Sigmod Record,
volume 30, pages 509–520. ACM, 2001.

[7] Ariyan Fazlollahi, Ulrik Franke, and Johan Ullberg. Benefits of enterprise
integration: Review, classification, and suggestions for future research. In
Enterprise Interoperability, pages 34–45. Springer, 2012.

[8] Cyril Goutte and Eric Gaussier. A probabilistic interpretation of precision,
recall and f-score, with implication for evaluation. In Advances in information
retrieval, pages 345–359. Springer, 2005.

[9] Kurt Hornik, Patrick Mair, Johannes Rauch, Wilhelm Geiger, Christian Buchta,
and Ingo Feinerer. The textcat package for n-gram based text categorization in
R. Journal of Statistical Software, 52(6):1–17, 2013.

[10] Jon Kleinberg and Eva Tardos. Algorithm Design. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2005.

[11] Stephen Robertson. Understanding inverse document frequency: on theoretical
arguments for idf. Journal of documentation, 60(5):503–520, 2004.

65

	List of Figures
	List of Tables
	Introduction
	Background
	Introduction to data integration
	Problem formulation
	Delimitations
	Related work
	Outline

	Theory
	Definitions
	XML-files
	Raw data
	Mappings
	Set definitions

	Statistical models
	Conditional probability
	Information density
	Standard error of the mean

	Scoring
	F-score, precision and recall

	Graph theory
	Shortest distance
	Maximum flow

	n-grams
	Kullback–Leibler-divergence

	Methods
	Generating training data
	Errors in the generated training data
	Correcting faulty training data
	Generating validation data
	Sampling data files

	Conditional mapping probabilities
	Shortest distance model
	Initialization of model
	Computing confidence levels for mappings

	Maximum flow model
	Initialization of model
	Computing mapping probabilities

	Data value model
	Categorization using regular expressions
	n-grams
	Connections between words and classes

	Mapping using the models
	Decreasing confidence levels
	Mapping threshold

	Validation process
	Implementation of the models

	Experiments
	Experiment setup
	Experiment data
	Mapping process

	Parameter sweeps
	Sweeps of parameters and
	Training and evaluation on isolated datasets
	Finding negative interference between datasets
	Training and validating on all datasets
	Validation on different datasets than used for training

	Class distribution

	Discussion and conclusions
	Discussion
	Comparison of the models
	Scoring of the mapping
	Parameter values
	Negative interference between the datasets

	Conclusion
	Future work
	Online training
	Inserting new words into the flow model
	Other initialization process for word mappings
	Using the structure of the XML-tree
	Extending the program to cover other formats
	More advanced mapping algorithm
	Determine when information should not be mapped

