
M

SM SM2 SMn

W W W W W W W W

Group 1 Group 2 Group n

W

1

Coding for Distributed Computing
Reed-Solomon Codes for Private, Distributed Computing

Master’s Thesis in Communication Engineering

REENT SCHLEGEL

Department of Electrical Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2018

Master's thesis EX061/2018

Coding for Distributed Computing

Reed-Solomon Codes for Private, Distributed Computing

REENT SCHLEGEL

Department of Electrical Engineering
Division of Communication Systems

Chalmers University of Technology

Gothenburg, Sweden 2018

Coding for Distributed Computing
Reed-Solomon Codes for Private, Distributed Computing
REENT SCHLEGEL

© REENT SCHLEGEL, 2018.

Supervisor and examiner:
Alexandre Graell i Amat, Department of Electrical Engineering

Co-supervisor:
Eirik Rosnes, Simula@UiB, Bergen, Norway

Master's Thesis EX061/2018
Department of Electrical Engineering
Division of Communication Systems
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: Illustration of the considered distributed computing system model.

Typeset in LATEX
Gothenburg, Sweden 2018

iv

Coding for Distributed Computing
Reed-Solomon Codes for Private, Distributed Computing
REENT SCHLEGEL
Department of Electrical Engineering
Chalmers University of Technology

Abstract

Distributed cluster systems have emerged as a useful way to perform large scale
computations. These clusters can be rented at service providers, which imposes
constraints regarding the privacy of the data the computations are done on. Fur-
thermore, straggling servers that take an excessive amount of time to �nish their
computation slow down the overall process gravely. In this thesis, a coding scheme
that mitigates the e�ect of straggling servers and assures privacy is introduced. This
is made possible by a concatenation of two Reed-Solomon codes, one for straggler
mitigation directly at the service providers and one in combination with random
data to assure privacy which is used on the data itself, before it is distributed to
multiple service providers. The impact of di�erent network structures on the overall
runtime as well as the impact of privacy on the optimal code rate for minimizing
the overall runtime is investigated and set in relation with existing theory, such as
studies from Lee et al. on the optimal code rate of maximum distance separable
codes for distributed computing.

Keywords: Coding Theory, Distributed Computing, Information-Theoretic Privacy,
Maximum Distance Separable Codes, Private Computing, Reed-Solomon Codes

v

Acknowledgements

First of all, I would like to thank my supervisors Alexandre Graell i Amat and Eirik
Rosnes for the opportunity to work with you. It was an inspiring year and I learned
a great deal from both of you. Furthermore, Albin Severinson was always willing to
help me with my thesis work. The discussions with you have been very helpful for
the deeper understanding of the topic. Thank you!
But I could not have �nished this thesis nor my studies in general without the sup-
port of my family. Your encouragement to study abroad have de�nitely in�uenced
my professional education as well as my personal life in a positive way.

Reent Schlegel, Gothenburg, October 2018

vii

Contents

List of Figures xi

List of Acronyms xii

List of Symbols xiv

1 Introduction 1

2 Preliminaries 3

2.1 Information Theory . 3
2.2 Coding Theory . 3

2.2.1 Reed-Solomon Codes . 4
2.3 Straggler Problem in Distributed Computing 4

3 System Model 7

3.1 Computational Task . 7
3.2 Architecture . 8
3.3 Impact of Adversaries . 8

4 Private Scheme 11

4.1 Block Matrix Form . 11
4.2 Encoding . 12
4.3 Computational Tasks . 12
4.4 Decoding . 13

5 Proof of Privacy 15

6 Code Optimization 17

6.1 Objective Function . 17
6.1.1 Computational Delay . 17
6.1.2 Decoding Time . 18

6.2 Constraints . 19
6.3 Solution . 19
6.4 Impact of the Grouping on the Runtime 21

7 In�uence of Privacy on the Optimal Code Rate 23

8 Conclusion and Future Work 27

ix

Contents

Bibliography 29

x

List of Figures

2.1 PDF of the computational delay . 5

3.1 Architecture of the network of rented servers 8

6.1 Screen shot of the graphical user interface for solving (6.6) 20
6.2 Impact on the runtime of grouping 250 servers 21
6.3 Impact on the runtime of grouping for di�erent numbers of servers . . 22

7.1 Parameters that minimize Lee's objective function for di�erent levels
of privacy . 24

7.2 Parameters that minimize the overall runtime for di�erent sizes of A 25
7.3 Optimal parameters with adjusted straggling parameters. The tallest

matrix acts as reference. 26

xi

List of Acronyms

CDF cumulative distribution function

MDS maximum distance separable

PDF probability density function

SM sub-master

SP service provider

xii

xiii

List of Figures

List of Symbols

A matrix with sensitive data

Ã data matrix

Â data matrix with randomness
C encoded matrix
Ci code symbol stored at service provider i
C(k) vector of k coded symbols (of fastest k groups)
d delay of the computational time distribution
d′ scaled delay, d′ = d

(k−u)·q
f(t;µ, d) probability density function of computational time
F (t;µ, d) cumulative distribution function of computational time
E eavesdropped matrix (vector of eavesdropped symbols)
F �nite �eld the elements of A, x, R, and G are from
G generator matrix of Reed-Solomon code
G(k) k × k dimensional sub matrix of G
k number of groups to wait for, dimension of inner code
K number of servers per group, length of outer code
n number of groups/service providers, length of inner code
N total number of workers
µ straggling parameter of the computational time distribution
µ′ scaled straggling parameter, µ′ = µ · (k − u) · q
p power of the cardinality of F (2p is the �eld size)
q number of servers to wait for per group, dimension of outer code
r number of rows in A

r̃ number of rows in Ã, divisible by (k-u)
s number of columns/rows in A/x
Sq qth order statistic of the computational time of the workers
fSq(t) probability density function of Sq
FSq(t) cumulative distribution function of Sq
T computational time
T comp expected value of computational time
T dec,inner expected value of decoding time of inner code
T dec,outer expected value of decoding time of outer code
Tk kth order statistic of the computational time of the groups
fTk(t) probability density function of Tk
FTk(t) cumulative distribution function of Tk
u number of groups the adversary has access to
x vector for multiplication

xiv

1

Introduction

Large scale computations require clusters of servers to run because the burden would
be too high for a single machine [1]. There are many service providers (SPs) where
such clusters can be rented, such as Google [2], Microsoft [3], and Amazon [4].
This distributed approach entails new challenges. So called stragglers, servers that
take an excessive amount of time to �nish their computation, delay or even put
a stop to the whole computation [5]. One way to avoid stragglers is to invest in
expensive hardware which guarantees to fail seldom [1]. Another approach is to
design algorithms such that they are resilient against stragglers. Thereby, cheaper
hardware, which tends to fail more often, can be used in the computing cluster.
Coding theory has been proven to mitigate the e�ect of straggling servers [6�12]. By
adding redundancy to the computations, the system can cope with information losses
caused by stragglers. While the opportunities coding theory yields for distributed
computing have already been studied for some time and maximum distance separable
(MDS) codes have emerged as an e�cient way to tackle the straggling problem,
another issue remains. When renting servers at a SP, it can not be known if this
SP can be trusted.

When performing computations on sensitive data (data that should be kept
private) it can happen that the data gets exposed to untrusted parties. As soon
as the SP is not honest, all the data is revealed. This leads to the conclusion that
private clusters have to be set up when large scale computations on sensitive data
are performed. This is very expensive, inconvenient, and often not worth the e�ort.
Instead, it is desired to have a way to perform private computations on rented
clusters without the SP gaining any knowledge about the data.

In this thesis, one such scheme is introduced. Coded symbols of a Reed-Solomon
code based on data and random source symbols are distributed among multiple SPs.
It is shown that the mutual information between the data and the coded symbols
stored at a given number of SPs is zero. Thereby, it is guaranteed that a given
number of collaborating SPs can not gain any information about the data at all.

The thesis is organized as follows: In Chapter 2, information theory, coding the-
ory, with focus on Reed-Solomon codes and their MDS property, and the straggler
problem in distributed computing are introduced. Chapter 3 deals with the system
model. Here, the computational task, the architecture of the network of rented
servers, and the impact of adversaries are explained. The scheme that assures pri-
vacy against the adversaries in the given network is shown in Chapter 4. In Chapter
5, the information-theoretic privacy is proved. In Chapter 6, the various code rates
are optimized. The overall expected runtime is minimized for a given computational
task, the computational delay distribution of the single servers, and a given number

1

1. Introduction

of collaborating SPs. The impact of privacy and decoding complexity on the optimal
code rate is investigated in Chapter 7. Last but not least, the thesis is concluded in
Chapter 8.

2

2

Preliminaries

2.1 Information Theory

Information theory was established by Claude E. Shannon in 1948 in his paper A
Mathematical Theory of Communication [13]. Here, an information source is seen
as a random variable X. In this work, only discrete sources are treated. A message
i from X is a symbol of a given alphabet I that occurs with a given probability
pi. Then the information in bits of the message is de�ned as log2(1/pi). Thereby,
information can be seen as a measure of uncertainty. The more likely a message is,
the less information does it possess and vice versa. The average information of the
source is called entropy and is given by

H(X) =
∑
i∈I

−pi log2(pi).

For a source where every message is equally probable, the entropy corresponds to
the logarithm of the number of possible outcomes of this source. Again, the more
possible outcomes there are, the higher the uncertainty and with it the entropy.

The conditional entropy H(X|Y) is the average information of a source X, know-
ing already the message of another source Y . This depends on the statistical depen-
dence of X and Y . For example, if they are independent, H(X|Y) = H(X) holds.
The uncertainty about X remains unchanged, because no knowledge about X can
be gained by knowledge about Y . On the other hand, when they are fully depen-
dent on each other, for example when they are coupled by a deterministic function,
H(X|Y) = 0. Knowledge about Y yields total certainty about the outcome of X.
Thus, there is no uncertainty about X left.

Last but not least, an important quantity is the mutual information between two
random variables, denoted by I(X;Y). It is a measure for the information X and
Y yield about each other. It holds that I(X;Y) = I(Y ;X) and

I(X;Y) = H(X)−H(X|Y).

2.2 Coding Theory

Coding theory aims to secure information against errors and erasures; however, in
this work only erasures are considered. In a traditional communication system,
information shall be transmitted over a noisy or erroneous channel. This is often
done in a discrete fashion. The source sequentially produces independent symbols

3

2. Preliminaries

which form a message. The message is sent over the channel where some of the
symbols are altered. In this work, an erasure channel is assumed, where some of the
information symbols are lost, but those that are received are not altered in any way.

To avoid information loss, redundancy in the message is introduced. An (n, k)
linear code produces n linear combinations of k information symbols. The obtained
n symbols are called coded symbols. Naturally, n > k because otherwise no redun-
dancy is introduced. There is a special class of codes, called maximum distance
separable (MDS) codes, that have the property that the initial k information sym-
bols can be reconstructed by receiving any k out of the n code symbols. One instance
of this class are Reed-Solomon codes.

2.2.1 Reed-Solomon Codes

Reed-Solomon codes were introduced in 1960 [14]. They are a well studied example
of the MDS codes. They are based on the property of polynomials that every degree
k − 1 polynomial is de�ned by k evaluation points. A message consisting of k sym-
bols de�nes coe�cients for a degree k − 1 polynomial. The resulting polynomial is
evaluated at n points. By receiving any k out of these n evaluation points, the poly-
nomial, and hence the message can be reconstructed. Letm =

[
m0,m1, ...,mk−1

]
be

the message and g =
[
g0, g1, ..., gn−1

]
the evaluation points. The �rst coded symbol

is obtained as c0 = m0+m1g0+ ...+mk−1g
k−1
0 . As for any linear code, the complete

encoding process can be described by a matrix vector multiplication:

c =
[
c0, c1, ..., cn−1

]
=
[
m0,m1, ...,mk−1

]
·


1 1 · · · 1
g0 g1 · · · gn−1
...

...
. . .

...
gk−10 gk−11 · · · gk−1n−1

 = m ·G

G is called the generator matrix.
After receiving k coded symbols, the decoding can be done. For this, a system of
k linear equations can be obtained, which can be solved by Gaussian elimination
with complexity of order O(n3). Because of the popularity of Reed-Solomon codes,
there has been much research for more e�cient decoding algorithms. Berlekamp's
algorithm [15] for example and Massey's equivalent algorithm [16] with shift registers
allow decoding in O(n2) complexity. This algorithm, known as Berlekamp-Massey
algorithm, uses the Fourier transform to calculate a syndrome to determine the
error and erasure pattern. In [17] a comparative study of the decoding complexity
of Gaussian elimination in contrast to Berlekamp-Massey's algorithm is given. In
this thesis decoding with Berlekamp-Massey is assumed and the investigation on the
decoding complexity is based on [17].

2.3 Straggler Problem in Distributed Computing

Large scale computations that are performed in a distributed manner su�er from the
so called straggler e�ect. When the computational task is split up directly between
the workers, the result from all workers is needed to reconstruct the solution to the

4

2. Preliminaries

(a) One worker (b) Distributed over ten workers

Figure 2.1: PDF of the computational delay

computation. For large scale clusters this poses a huge problem. One slow server, a
so called straggler, will slow down the whole computation. The computational delay
distribution of the single workers usually has a long tail [5]. One such example can
be seen in Fig. 2.1a where the probability density function (PDF) of the compu-
tational delay of a single server is shown. As the number of servers increases, the
likelihood of at least one of them being a straggler rises fast. Without any counter
measurements, the overall performance in terms of expected runtime of large scale
distributed computations degrades drastically.

Coding theory has been shown to be a useful tool to mitigate the straggler
e�ect [6�12]. By introducing redundancy in the computation, the results of a subset
of all servers is su�cient to reconstruct the solution. MDS codes have been shown to
be an e�cient way of introducing the needed redundancy. By utilizing the k out of n
property, up to n−k servers can be stragglers without any performance degradation
for the overall system. The workload for every single server is higher compared to
uncoded computations (for n servers, the workload is a fraction of 1/k instead of
1/n of the original computational task) and thereby, the expected computational
delay of every server increases as well. But, due to the MDS property, the long tail
of the delay distribution can be cut and the overall expected delay is much lower
than in the uncoded approach.

This e�ect is demonstrated in Fig. 2.1b. The expected computational delay of
the uncoded approach is 0.393 due to the long tail in the pdf. The coded approach
has, regardless of the higher workload per server, an expected delay of 0.299, which
is just 76.2% of the uncoded delay. In this case, by utilizing an MDS code, the
computation can be speeded up by almost 25%.

5

2. Preliminaries

6

3

System Model

In this chapter, the system model is introduced. This includes the computational
task that shall be performed, the architecture of the network of rented servers and
their computational delay distributions, and the impact of adversaries/non-honest
SPs.

3.1 Computational Task

The goal is to perform some linear computation on sensitive data. Linear computa-
tions have repeatedly emerged as crucial element in big data analytics. For example,
gradient descent as solution algorithm to an optimization problem with quadratic
objective function, as often used in machine learning, boils down to a matrix vector
multiplication. We will assume a matrix vector multiplication of the form A · x,
where A ∈ Fr×s and x ∈ Fs have elements of a �nite �eld F, where the cardinality
of F is a power of two, |F| = 2p. A contains sensible data and is assumed to be
huge, such that it is unreasonable to perform this computation locally at the master.
Instead, the master will use a number of untrusted SPs to rent servers for the calcu-
lation. At each SP a group of workers is rented with an additional sub-master (SM)
for this group. Linear combinations of parts of A and random data, which are much
smaller than A, are distributed to the SMs of each group. The SMs perform calcu-
lations on their shares with help from the workers in their group, utilizing an MDS
code to minimize the expected computational delay in their group (mitigating the
straggler e�ect), and send back the obtained results to the master, who, in turn,
can extract the desired solution from the local results.

7

3. System Model

M

SM SM2 SMn

W W W W W W W W

Group 1 Group 2 Group n

W

1

Figure 3.1: Architecture of the network of rented servers

3.2 Architecture

The architecture of the network of rented servers can be seen in Fig. 3.1. The
computational task shall be performed with the help of N servers, which are rented
at n SPs. This means, there are n groups with K = N/n servers each. It is assumed
that all servers have an independent, identically distributed computational delay.
The shifted exponential distribution yields a good balance between observations on
real server clusters and analytical analyzability [9]. The computational delay T of a
single server performing the whole task has a cumulative distribution function (CDF)
of the form

Pr(T ≤ t) = F (t;µ, d) =
(
1− e−µ·(t−d)

)
· σ(t− d), (3.1)

with straggling parameter µ, delay d, and heaviside function σ(τ). Hence, the
expected computational delay T comp of one server performing the whole task is

T comp = d+
1

µ
. (3.2)

3.3 Impact of Adversaries

It is assumed that there are SPs that can not be trusted. This means, data that
is stored at the groups is exposed to adversaries. Furthermore, it is assumed that
multiple SPs work together as one adversary. An adversary has access to the data
stored at u SPs. Furthermore, an adversary knows the used scheme. This means, it
knows the encoding used for straggler mitigation and privacy assurance.

8

3. System Model

While the adversary has access to part of the data, it can not in�uence the
computations itself. It is seen as an eavesdropper that just knows what is calculated
at the workers, but does not change the outcome of the calculations.

9

3. System Model

10

4

Private Scheme

The e�ect of straggling servers and the presence of adversaries impose challenges for
the distributed computing scenario. As coding theory has already shown to provide
tools to mitigate the e�ect of straggling servers, it seems natural to investigate
whether the same tools can tackle the second problem: providing privacy against
adversaries.

In this chapter, a privacy assuring coding scheme is introduced. A concatenation
of two Reed-Solomon codes provides resilience against straggling servers as well as
straggling groups of servers and assure privacy against a number of collaborating
adversaries. An outer (n, k) Reed-Solomon code is used over the groups to mitigate
the e�ect of straggling groups and provide privacy. An inner (K, q) code mitigates
the e�ect of straggling servers. How to choose the code parameters n, k, K, and q
will be explained in Chapter 6.

First, A has to be transformed into a block-matrix. These blocks are taken
together with random matrices as source symbols for the outer code. The obtained
code symbols are sent to the SPs, which, in turn, perform calculations on the coded
symbols utilizing the K servers in their group. In the groups, the inner (K, q) code
is used to mitigate the e�ect of straggling servers by waiting for just the fastest q
servers in the group to obtain the local result. After obtaining the k fastest results
from the groups, the master can extract the desired solution Ax.

4.1 Block Matrix Form

In order for all block matrices to have the same size, matrix A has to be zero
padded. This is done by appending r mod (k − u) zero rows to A. The newly
obtained structure has the form

Ã =

[
A
0

]
∈ Fr̃×s,

where k − u divides r̃.
To conceal any information about A, randomness in the data sent to the groups is

needed. This is done by generating a random matrix R ∈ F
u·r̃
k−u
×s and forming

Â =

[
Ã
R

]
.

Â can be seen as a k × 1 block matrix, where each block is in F
r̃

k−u
×s:

11

4. Private Scheme

Â =



Ã1

Ã2
...

Ãk−u
R1
...

Ru


These k blocks can be taken as source symbols of an (n, k) Reed-Solomon code.

4.2 Encoding

The encoding is done with help of a generator matrix G of a Reed-Solomon code
as introduced in Section 2.2.1. G is a k × n scalar matrix, that de�nes coe�cients
for the linear combination of the message symbols to obtain the coded symbols. In
our case, the symbols are the blocks of Â. The (block-)column of Â can be seen as
a message, that shall be encoded with G. Hence, the encoding can be written as
ÂT · (G⊗I r̃

k−u
), where ⊗ represents the Kronecker product and I r̃

k−u
is the identity

matrix of same dimension as the number of rows in the blocks of Â. By transposing
this equation, the encoded matrix C is obtained as:

C = (GT ⊗ I r̃
k−u

) · Â,

where the columns of C are a codeword of the Reed-Solomon code.

4.3 Computational Tasks

The encoded matrix C can be written in block form as well:

C =

C1
...

Cn


Now every SP i gets Ci to calculate Ci ·x in its group. First, to mitigate the e�ect
of straggling servers, the SM applies a (K, q) Reed-Solomon code on Ci and sends
the coded symbols to the K workers. Then, the servers in the group perform the
calculation on their share and send back the result as soon as they competed their
task. After receiving the result of the q fastest servers, the SM can extract the
solution to Ci · x from the q intermediate results and send this back to the master.

12

4. Private Scheme

4.4 Decoding

The master waits for the fastest k groups to �nish their computation and stores the
results in a vector of the form

Ci1 · x
Ci2 · x

...
Cik · x

 = C(k) · x, with i1 < i2 < ... < ik.

The encoding matrix of the Reed-Solomon code is a Vandermonde matrix and every
quadratic sub-matrix of dimension k, G(k), has full rank. Because of this, it is
invertible and decoding can be done with the inverse of G(k). Assume G(k) is the
sub-matrix of G with columns corresponding to i1, i2, ..., ik. Then it holds that
C(k) = (GT

(k) ⊗ I r̃
k−u

) · Â and the decoding can be done as follows:

((GT
(k))
−1⊗I r̃

k−u
)·C(k) ·x = ((GT

(k))
−1⊗I r̃

k−u
)·(GT

(k)⊗I r̃
k−u

)·Â·x = Â·x =

A · x0
R · x


The �rst r rows are the desired result.

13

4. Private Scheme

14

5

Proof of Privacy

In this chapter, the information theoretic privacy of the proposed scheme is proved.
Thereby, it is assured that up to u coded symbols give no information about the
sensitive data. In other words, it is shown that up to u collaborating SPs gain no
knowledge about A.

Due to the way encoding is done, the (block-)column of C is a codeword of
length n of the used Reed-Solomon code. Since C is row partitioned before it is sent
to the groups, every group receives exactly one out of the n symbols of codeword Â
was encoded in.

Assume an adversary has access to v groups, denoted by i1, . . . , iv. It gains
knowledge about [

Ci1 , · · · , Civ

]
= E,

where E is the vector of eavesdropped symbols of C. For the scheme to be private,
the mutual information between A and E must be zero:

I(A;E)
!
= 0.

As in [18] it holds:

I(A;E) = H(A)−H(A|E)

(a)
= H(A)−H(A|E) +H(E|A,R)

= H(A)−H(A|E) +H(E|A)− I(R,E|A)

(b)
= H(E)− I(R,E|A)

= H(E)−H(R|A) +H(R|E,A)

(c)
= H(E)−H(R) +H(R|E,A),

where (a) follows from H(E|A,R) = 0, because E is a function of A and R, (b)
from H(E) − H(E|A) = H(A) − H(A|E), and (c) from the fact, that R and A
are stochastically independent (H(R|A) = H(R)). This means,

I(A;E) = 0⇔ H(R|E,A) = H(R)−H(E)

R consist of u blocks with r̃·s
k−u elements from F which take one of 2p di�erent,

uniformly distributed values each. This yields

H(R) = log2

(
(2p)

u·r̃·s
k−u

)
=
p · u · r̃ · s
k − u

. (5.1)

15

5. Proof of Privacy

Similarly it holds for E

H(E) = log2

(
(2p)

v·r̃·s
k−u

)
=
p · v · r̃ · s
k − u

. (5.2)

Now, H(R|E,A) has to be determined. For this, E can be written as

E = ÂT ·
(
G(v) ⊗ I r̃

k−u

)
, (5.3)

where G(v) is the sub matrix of G with columns corresponding to i1, . . . , iv. For a
single (block-)element in E holds with (5.3):

Ej = ÂT ·
(
G(ij) ⊗ I r̃

k−u

)
=

k−u∑
l=1

AT
l ·Gl,ij +

u∑
l=1

RT
l ·Gl+k−u,ij , (5.4)

From now on, it is assumed that E and A are known. Every element in Ej can be
seen as the weighted summation of u unknown elements (elements of R) of the �eld
F and there are exactly v of these sums. This means, if v ≤ k, for every element
in Ej there is a system of v linearly independent equations and u unknowns. Note,
that due to the MDS property of the Reed-Solomon code, all k distinct code symbols
are linearly independent. Hence, all v ≤ k distinct equations of the form of (5.4)
are linearly independent. Because of this, as long as v ≤ u, there remain (2p)(u−v)

possible solutions for every position in the blocks ofR. There are r̃·s
k−u such positions.

This leads to:

H(R|E,A) = log2

(
(2p)

(u−v)·r̃·s
k−u

)
=
p · (u− v) · r̃ · s

k − u
(5.5)

With (5.1), (5.2), and (5.5) it can be seen that H(R|E,A) = H(R) − H(E) and
hence, I(A;E) = 0. This holds true as long as v ≤ u < k. Only then there are
(2p)(u−v) possible solutions per entry to (5.4).

16

6

Code Optimization

In this chapter, the proposed scheme (i.e. the code rates) is optimized with respect
to a minimal expected runtime. Furthermore, a sensitivity analysis of the solution is
made. First, the optimization problem is formulated. The objective function and the
feasible set are introduced. Then, a solution algorithm based on an exhaustive search
is explained. The fact that the feasible set is discrete and has a small cardinality
makes it possible to try all combinations of code parameters and search for the one
yielding the smallest expected runtime. In the end, the impact on the runtime of
di�erent groupings of the servers to the SPs is investigated.

6.1 Objective Function

The objective is to minimize the overall expected waiting time. This consists of the
expected computational delay at the groups and the decoding time at the SM and
at the master (decoding of inner and outer code). This means, the objective is:

minimize T = T comp + T dec,inner + T dec,outer (6.1)

In the following subsections, the single composites of T are explained in detail.

6.1.1 Computational Delay

Every SP receives one code symbol of the outer (n, k) Reed-Solomon code. By
utilizing an inner (K, q) Reed-Solomon code for straggler mitigation, the matrix
vector multiplication of the coded symbol and x shall be performed. Thus, the
computational load for every worker is 1

k·q of the computational load of performing

Â ·x. Furthermore, the computational load to compute Â ·x compared to compute
A ·x scales as k

k−u . Combining these factors yields that the computational load for

every worker is a fraction of 1
(k−u)·q compared to performing the initial task A · x.

In (3.1) the CDF of the computational delay F (t;mu, d) is given for one worker
performing the whole task. By applying the introduced scheme, a new, scaled version
is obtained with scaled straggling parameter µ′ = µ ·(k−u) ·q and delay d′ = d

(k−u)·q :

F ((k − u) · q · t;µ, d) =
(
1− e−µ·((k−u)·q·t−d)

)
· σ((k − u) · q · t− d)

=
(
1− e−µ·(k−u)·q·(t−

d
(k−u)·q)

)
· σ(t− d

(k − u) · q
)

=
(
1− e−µ′·(t−d′)

)
· σ(t− d′) = F (t;µ′, d′)

17

6. Code Optimization

Due to the MDS property of the used inner code, the computation in the group is
�nished after the �rst q workers are done with their calculation. The qth smallest
out of K realizations of a random variable is called the qth order statistic. The PDF
fSq(t) of the qth order statistic of a random variable with CDF F (t;µ, d) and PDF
f(t;µ, d) is given by [19]:

fSq(t) =
K!

(q − 1)!(K − q)!
· F (t;µ, d)q−1 ·

(
1− F (t;µ, d)

)K−q · f(t;µ, d) (6.2)

This means, the time one group needs to �nish their task has a PDF fSq(t) according
to (6.2) and a CDF

FSq(t) =

∫ t

−∞
fSq(τ) dτ.

The overall computation is done after the �rst k groups are done with their computa-
tions (and decoding, more in Sections 6.1.2 and 6.3). This means, the computational
delay is the kth order statistic of Sq and has the PDF

fTk(t) =
n!

(k − 1)!(n− k)!
· FSq(t)

k−1 ·
(
1− FSq(t)

)n−k · fSq(t).

Finally, the overall expected computational delay is obtained as

T comp =

∫ ∞
−∞

t · fTk(t) dt (6.3)

with F (t;µ′, d′) as CDF of the computational delay of the single workers.

6.1.2 Decoding Time

There are two codes to decode. First, the SM in each group has to decode the inner
code after the fastest q workers have �nished their calculations. Secondly, the master
has to decode the outer code after receiving the fastest k results from the groups.
In both cases a Reed-Solomon code is used. Hence, they have the same structure
and decoding procedure but di�er in their dimensions. Therefore, the derivation of
the decoding time will be done once for the outer (n, k) code and then the decoding
time of the inner code is obtained by substituting the dimensions to (K, q).

The initial matrix vector multiplication takes rsk
k−u multiplications and r(s−1)k

k−u
additions and the expected computational time is according to (3.2) T comp = d+1/µ.
Assume one addition takes ta time and one multiplication takes log(p)ta time. Than
one obtains on average for ta:

rsk

k − u
· log(p)ta +

r(s− 1)k

k − u
· ta = d+

1

µ
⇔ ta =

(d+ 1/µ) · (k − u)
rk(s log(p) + s− 1)

Decoding a (n, k) Reed-Solomon code with the Berlekamp-Massey algorithm takes
n(n− k − 1) multiplications and n(n− k) additions [17]. Hence,

T dec,outer = n(n− k − 1) · log(p)ta + n(n− k) · ta

= n
(
(n− k − 1) · log(p) + n− k

)
· (d+ 1/µ) · (k − u)
rk(s log(p) + s− 1)

, (6.4)

18

6. Code Optimization

and

T dec,inner = K
(
(K − q − 1) · log(p) +K − q

)
· (d+ 1/µ) · (k − u)
rk(s log(p) + s− 1)

(6.5)

respectively. With (6.1), (6.3), (6.4), and (6.5) the objective function is well de�ned.

6.2 Constraints

There are a couple of �xed parameters. Some are given by the architecture, such
as the computational delay distribution, or rather the straggling parameter µ and
delay d, some by the computational task, such as the matrix dimension r and s and
the �eld size through p, and �nally, some are given by the network design, such as
the number of rented servers N and the security level u.

Moreover, there are the variables that can be tweaked to minimize the over-
all runtime. These are the code dimensions (n, k) and (K, q) respectively. These
variables are subject to speci�c constraints for the scheme to remain feasible. For
example, they all have to be natural numbers larger than zero. Then, it is assumed
that all groups have the same size K and that all N servers are assigned to a group.
Hence, the number of groups n must be a divisor of the number of servers N and
every group gets K = N/n servers assigned. Furthermore, the code rates n/k and
K/q are upper bounded by 1. Lastly, since the desired result can be reconstructed
with the responses of any k groups, the number of SPs the adversary has access to
must be strictly less than k. Otherwise the adversary could reconstruct the result
as well. All these constraints can be expressed as a mathematical model. Variables
that ful�ll the constraints form the so called feasible set. The feasible set together
with the objective function compose an optimization problem given in (6.6).

minimize
n,k,K,q

T = T comp + T dec,inner + T dec,outer (6.6)

subject to n ∈ {n : N mod n = 0},
u < k ≤ n,

K = N/n,

0 < q ≤ K,

n, k,K, q ∈ N

6.3 Solution

There is a straightforward numerical solution to (6.6). Since the feasible set is
discrete and has a cardinality of just

∑
n∈{n:N mod n=0 ∧ n>u}(n−u)·K, an exhaustive

search for the optimal code dimensions is possible. For all feasible groupings, n and
K, it is possible to go through all dimensions of the outer code k; those are in the
range of u+ 1 till n. With the given K, µ′, and d′ the inner code can be optimized.
For every q in the range from 1 to K, T comp can be computed according to (6.3).
Then T dec,inner is added to T comp. The q, for which this sum is the smallest, is the

19

6. Code Optimization

Figure 6.1: Screen shot of the graphical user interface for solving (6.6)

optimal inner code dimension for the given K, k, and u. For every k, the smallest
sum is stored. To this, the decoding time of the outer code is added. The smallest
of these sums is the optimal expected runtime for the given grouping n. After this is
repeated for every feasible grouping, the smallest expected runtime can be obtained
and hence, the solution to (6.6).

Within the framework of this thesis, a graphical user interface that solves (6.6)
for given µ, d, r, s, p, N , and u was developed. It is available in [20]. A screen shot
of the interface can be seen in Fig. 6.1. With help of this program, it can be seen
that it is preferable to spread the servers over as many SPs as possible. The optimal
runtime is achieved if one server is rented per SP. This is somewhat intuitive because
the number of collaborating SPs u is kept constant. The more the information is
spread, the harder it is for a �xed number of groups to gain knowledge about the
information. Thereby, less random data to obscure information is needed and, in
turn, the computational load is lower. This positively a�ects the runtime and is
only opposed by the higher decoding e�ort that is needed for longer codes. While
the inner code is very short, or rather non existent, the outer code is extremely
long. Due to the quadratic nature of the decoding complexity two medium long
codes would be preferable. But apparently the bene�t of less computational load
outweighs the increased decoding complexity.

There remains the problem that renting a small amount of servers at many SPs
may be unreasonable to do. For example, it will be cumbersome, hence expensive
because it takes more organizing and time, to rent one server at 100 SPs. Rather, it
is preferred to rent ten servers at ten SPs. This raises the question how the overall
runtime is a�ected by di�erent groupings, which is addressed in the next section.

20

6. Code Optimization

0 50 100 150 200 250
Number of groups

10

15

20

25

30

35
E
x
p
e
ct

e
d
 r

u
n
ti

m
e

N = 250

Figure 6.2: Impact on the runtime of grouping 250 servers

6.4 Impact of the Grouping on the Runtime

As described in Section 6.3, there are multiple ways to group the N rented servers;
in other words: There are a lot of possible realizations of n, the number of used
SPs. While the solution which utilizes the most SPs is optimal in meanings of the
overall runtime, it will seldom be the cheapest or easiest to implement. That is why
it can be interesting to see which impact the grouping has on the overall runtime.
Thereby, the performance degradation can be estimated to trade o� the additional
cost by using more SPs.

In Fig. 6.2 the overall runtime for N = 250, u = 3, µ = 0.001, d = 1000, r =
2000000, s = 128, and p = 32 is shown. Here, a clear bene�t results from using
as much SPs as possible. There is a reduction in the runtime of 22% by using 250
instead of 125 SPs. But when more servers are used, this holds not true anymore.
Fig. 6.3 shows the impact of grouping on the runtime for multiple N . With N =
1000 servers, there is no notable bene�t of using 1000 SPs over 20 SPs.
This leads to the conclusion that it is de�nitely worth it to check the behavior of the
runtime in dependence of the grouping because the trade o� against the additional
e�orts and costs of using more SPs may turn out in favor for much fewer groups.
The code to generate the plots is based on the same solution algorithm as in the
graphical user interface introduced in Section 6.3 and can be found in [20] as well.

21

6. Code Optimization

0 200 400 600 800 1000
Number of groups

0

20

40

60

80

100

120

140

160

E
x
p
e
ct

e
d
 r

u
n
ti

m
e

N = 100
N = 250
N = 500
N = 750
N = 1000

Figure 6.3: Impact on the runtime of grouping for di�erent numbers of servers

22

7

In�uence of Privacy on the Optimal

Code Rate

MDS codes have been shown to mitigate the straggler e�ect. While increasing the
computational load for every worker compared to the uncoded scheme, they cut o�
the tail of the latency distribution and thereby the overall runtime is decreased.
The smaller the dimension of the code is, the more each worker has to compute
which increases the single computational delays. Simultaneously, the results of fewer
workers are su�cient to reconstruct the solution to the initial problem. This raises
the question of which code dimension yields the minimal overall expected runtime.

Lee et al. minimized in [9] the computational delay for various coding schemes,
including MDS codes and obtained an expression for the optimal code rate for MDS
codes depending on the straggling parameter µ. It is interesting to see how privacy
constraints in�uence these rates. Lee et al. used only one code instead of two as in
the scheme in this thesis. But since the inner code is non existent in the optimal case
(K = q = 1), the two schemes are identical in this regard. The objective to minimize
in [9] is the computational delay of the fastest k out of n servers. In this thesis,
the decoding time was taken into account as well. The generality of Lee's study did
not allow for the inclusion of the decoding complexity of a speci�c code. That is
why the investigation on the optimal code rate will be done in two steps: First, the
in�uence of adding privacy constraints to the computation problem is analyzed for
Lee's objective function. Then, in the second step, the objective is changed to the
one used in this thesis, which additionally takes the decoding time into account as
introduced in Section 6.1.

In Fig. 7.1 the code rate that minimizes the computational delay for a speci�c
straggling parameter and the resulting time can be seen for di�erent levels of privacy.
In this case, normalized privacy means the number of collaborating SPs u divided
by the total number of used SPs n. Lee's original values form the blue curves
corresponding to a normalized privacy of zero. As can be seen, privacy constraints
favor a higher code rate and slow down the overall computation. Even for very low
straggling parameters, which correspond to a long tail in the latency distribution, the
code rate does not fall below 0.4 for a normalized privacy of 10%. Interestingly, the
constraints from Section 6.2 demand only k > u which suggests that the optimal
code rate for low µ settles at 0.1 rather than 0.4. Hence, there must be another
explanation for the observed increase in the code rate.

23

7. In�uence of Privacy on the Optimal Code Rate

10-1 100 101

µ, Straggling parameter

0

2

4

6

8

10

12

14

16
n
T
∗

T ∗ ×n as a function of µ

Normalized Privacy = 0.0
Normalized Privacy = 0.1
Normalized Privacy = 0.5

10-4 10-3 10-2 10-1 100 101 102 103 104

µ, Straggling parameter

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

k
∗
/n

k ∗

n as a function of µ

Normalized Privacy = 0.0
Normalized Privacy = 0.1
Normalized Privacy = 0.5

Figure 7.1: Parameters that minimize Lee's objective function for di�erent levels
of privacy

The additional computational load imposed by the privacy constraints scales
relatively to the initial computational load as k

k−u −1. For �xed u, lim
k→∞

k
k−u −1 = 0.

Hence, a high code rate reduces the additional computational load and thereby the
expected computational delay is reduced as well. That is why an increase in the
code rate beyond the constraint k > u is observed.

A further increase in the code rate can be observed when the decoding time is
taken into account as well. As shown in Section 6.1.2, a higher code rate reduces
the complexity of decoding. Fig. 7.2 shows the optimal code rates depending on µ
for a normalized privacy of 0.1 and di�erent sizes of the matrix A. To quantify the
decoding complexity, the code length n has to be set. Here, n = 100 which yields u =
10. As can be seen, for a large matrix the impact of decoding is marginal. Compared
to the initial computation, the decoding process is negligible. For a comparatively
small matrix, the decoding complexity has a noticeable impact. Hence, a higher code
rate is favored, as expected. Strangely, the computations on the small matrix take
more time than on the big matrix. This is due to the e�ect that direct comparison
between the curves in Fig. 7.2 is not fair. The straggling parameter is kept constant
while the matrix sizes change. Hence, for the smaller matrices slower servers are
used for the calculation. Because of this, the runtime is higher. To make a fair
comparison, the straggling parameter has to be adapted.

24

7. In�uence of Privacy on the Optimal Code Rate

10-1 100 101

µ, Straggling parameter

0

2

4

6

8

10

12

14

16
n
T
∗

T ∗ ×n as a function of µ

r times s = 1000000.0
r times s = 2000000.0
r times s = 20000000.0

10-4 10-3 10-2 10-1 100 101 102 103 104

µ, Straggling parameter

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

k
∗
/n

k ∗

n as a function of µ

r times s = 1000000.0
r times s = 2000000.0
r times s = 20000000.0

Figure 7.2: Parameters that minimize the overall runtime for di�erent sizes of A

In Fig 7.3 the straggling parameter is adapted to the size of the computation. The
biggest matrix is taken as reference. This means, the straggling parameter results
from the runtime distribution of one server performing the whole computation on
the tallest matrix. This does not change the observed e�ect on the code rate. The
more impact the decoding has, the higher is the optimal code rate. For the runtime
on the other hand, a qualitative change in the behavior is observed. As expected,
the taller the matrix, the more time the computation takes.

In conclusion, privacy constraints and decoding complexity favor higher code
rates when the overall runtime should be minimized. While even slight privacy
requirements in�uence the code rate gravely, the impact of the decoding complexity
depends strongly on the proportion of the code length to the matrix size.

25

7. In�uence of Privacy on the Optimal Code Rate

10-1 100 101

µ, Straggling parameter

0

2

4

6

8

10

12

14

16

n
T
∗

T ∗ ×n as a function of µ

r times s = 1000000.0
r times s = 2000000.0
r times s = 20000000.0

10-4 10-3 10-2 10-1 100 101 102 103 104

µ, Straggling parameter

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

k
∗
/n

k ∗

n as a function of µ

r times s = 1000000.0
r times s = 2000000.0
r times s = 20000000.0

Figure 7.3: Optimal parameters with adjusted straggling parameters. The tallest
matrix acts as reference.

26

8

Conclusion and Future Work

In this thesis a coding scheme was presented which guarantees privacy of data and
mitigates the straggler e�ect in distributed computations. Already well studied
structures from straggler mitigation were utilized in combination with random source
symbols to shorten the computational delay and preserve privacy at the cost of
additional computational load. The code parameters have been chosen to minimize
the overall expected runtime, composed of the computational delay and decoding
time, of the computation. It was observed that privacy favors higher code rates
compared to standard, non-private computations because an increased code rate
decreases the additional privacy related computational load.

The approach in this thesis is based on MDS codes which have �xed code di-
mensions. An alternative idea is to use rateless codes. Instead of de�ning code
dimensions a priori without knowledge of the actual straggler behavior of the net-
work, code symbols are generated on demand. Due to this adaptive procedure,
unnecessary aggregation of resources is omitted. Recently, this approach gained
more and more attention in the light of distributed computing. Because of the ran-
dom encoding of rateless codes we tried to assure privacy by keeping the encoding
secret instead of generating random source symbols which lead to an increased com-
putational load. Unfortunately, we were not able to come up with a scheme where
we can proof privacy. But the shown potential of these codes to mitigate the e�ect
of stragglers encourages more intense research into private, distributed computing
schemes based on rateless codes.

27

8. Conclusion and Future Work

28

Bibliography

[1] L. A. Barroso, J. Clidaras, and U. Hoelzle, The Datacenter as a Computer: An
Introduction to the Design of Warehouse-Scale Machines. Morgan & Claypool,
2013.

[2] �Google Cloud Platform.� [Online]. Available: https://cloud.google.com/

[3] �Microsoft Azure.� [Online]. Available: https://azure.microsoft.com/

[4] �Amazon Web Services.� [Online]. Available: https://aws.amazon.com/

[5] J. Dean and L. A. Barroso, �The tail at scale,� Communications of the ACM,
vol. 56, pp. 74�80, 2013.

[6] C. Karakus, Y. Sun, S. Diggavi, and W. Yin, �Straggler Mitigation in Dis-
tributed Optimization Through Data Encoding,� 31st Conference on Neural
Information Processing Systems, 2017.

[7] S. Li, S. M. M. Kalan, A. S. Avestimehr, and M. Soltanolkotabi, �Near-optimal
straggler mitigation for distributed gradient methods,� in 2018 IEEE Interna-
tional Parallel and Distributed Processing Symposium Workshops (IPDPSW),
May 2018, pp. 857�866.

[8] S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, �A uni�ed coding framework
for distributed computing with straggling servers,� in 2016 IEEE Globecom
Workshops (GC Wkshps), Dec 2016, pp. 1�6.

[9] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran,
�Speeding up distributed machine learning using codes,� IEEE Transactions
on Information Theory, vol. 64, no. 3, pp. 1514�1529, March 2018.

[10] A. Serverinson, �Coding for Distributed Computing,� Chalmers University of
Technology, 2017.

[11] A. Severinson, A. Graell i Amat, and E. Rosnes, �Block-diagonal coding for
distributed computing with straggling servers,� 2017 IEEE Information Theory
Workshop (ITW), pp. 464�468, 2017.

[12] A. Severinson, A. G. i Amat, and E. Rosnes, �Block-diagonal and LT codes
for distributed computing with straggling servers,� CoRR, vol. abs/1712.08230,
2017.

29

https://cloud.google.com/
https://azure.microsoft.com/
https://aws.amazon.com/

Bibliography

[13] C. E. Shannon, �A mathematical theory of communication,� Bell System Tech-
nical Journal, vol. 27, no. 3, pp. 379�423, 1948.

[14] I. S. Reed and G. Solomon, �Polynomial codes over certain �nite �elds,� Journal
of the society for industrial and applied mathematics, vol. 8, no. 2, pp. 300�304,
1960.

[15] E. R. Berlekamp, Algebraic coding theory [by] Elwyn R. Berlekamp. McGraw-
Hill New York, 1968.

[16] J. Massey, �Shift-register synthesis and bch decoding,� IEEE transactions on
Information Theory, vol. 15, no. 1, pp. 122�127, 1969.

[17] G. Garrammone, �On decoding complexity of reed-solomon codes on the packet
erasure channel,� IEEE Communications Letters, vol. 17, no. 4, pp. 773�776,
2013.

[18] S. Kumar, E. Rosnes, and A. Graell i Amat, �Secure repairable fountain codes,�
IEEE Communications Letters, vol. 20, no. 8, pp. 1491�1494, Aug 2016.

[19] B. C. Arnold, N. Balakrishnan, and H. N. Nagaraja, A First Course in Order
Statistics (Classics in Applied Mathematics). Philadelphia, PA, USA: Society
for Industrial and Applied Mathematics, 2008.

[20] R. Schlegel, 2018. [Online]. Available: https://github.com/ReentSchlegel/
OptimalGroupingParameters.git

30

https://github.com/ReentSchlegel/OptimalGroupingParameters.git
https://github.com/ReentSchlegel/OptimalGroupingParameters.git

	List of Figures
	List of Acronyms
	List of Symbols
	Introduction
	Preliminaries
	Information Theory
	Coding Theory
	Reed-Solomon Codes

	Straggler Problem in Distributed Computing

	System Model
	Computational Task
	Architecture
	Impact of Adversaries

	Private Scheme
	Block Matrix Form
	Encoding
	Computational Tasks
	Decoding

	Proof of Privacy
	Code Optimization
	Objective Function
	Computational Delay
	Decoding Time

	Constraints
	Solution
	Impact of the Grouping on the Runtime

	Influence of Privacy on the Optimal Code Rate
	Conclusion and Future Work
	Bibliography

