
A Software Architecture to Ensure
Surveillance Accountability
Master’s thesis in Software Engineering

MUKELABAI MUKELABAI

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2016

Master’s thesis 2016:NN

A Software Architecture to Ensure
Surveillance Accountability

MUKELABAI MUKELABAI

Department of Computer Science and Engineering
Division of Software Engineering

Chalmers University of Technology
Gothenburg, Sweden 2016

A Software Architecture to Ensure Surveillance Accountability
MUKELABAI MUKELABAI

© MUKELABAI MUKELABAI, 2016.

Supervisors: Thibaud Antignac and Gerardo Schneider
Examiner: Regina Hebig

Master’s Thesis 2016:NN
Department of Computer Science and Engineering
Division of Software Engineering
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: CCTV street surveillance camera, illustrating one, of several forms of surveil-
lance. Surveillance video cameras above marina in Gdynia, Paweł Zdziarski, 2007,
CC2.5 (reframed)

Typeset in LATEX
Gothenburg, Sweden 2016

iv

A Software Architecture to Ensure Surveillance Accountability
MUKELABAI MUKELABAI
Department of Computer Science and Engineering
Chalmers University of Technology

Abstract
To meet various security objectives, organisations may employ surveillance technolo-
gies such as CCTV cameras or many other forms of online surveillance. However,
several concerns have arisen as these technologies are becoming more and more pri-
vacy intrusive; thus threatening the civil liberties of the citizens they are meant to
protect. More particularly, accountability and transparency are the most endan-
gered privacy principles due to these surveillance activities.

The complexity of surveillance activities and proliferation of personal information
in today’s ubiquitous computing world renders access control and encryption tech-
niques insufficient to protect privacy. Hence regulations and systems are needed to
hold surveillance organisations accountable for the misuse of the information they
gather and also make their operations transparent. This requires the use of an
approach that ensures public trust and is also acceptable by Surveillance Organi-
zations (SOs) as it should not compromise the main security objectives of the SO.
However, some proposed approaches to achieve this accountability are either too
weak as they rely on blindly trusting the SO or are too expensive or too intrusive
in their requirements which would make them unacceptable by the SO. In certain
legal cases, a court of law may request the SO to disclose to it, records related to a
citizen under investigation.

This thesis presents an architecture that includes two additional entities to the SO
and Court: a Time Stamping Authority and an independent Data Protection Au-
thority (DPA). This is to ensure the accountability of the SO to the DPA and also
ensure that the SO can never use any observed fact about a Data Subject (a citizen
in this context), in a court of law, without having previously committed that obser-
vation to the DPA.The architecture is evaluated by a model of its protocols which
are for secrecy, authentication and integrity properties using ProVerif, a well known
and mature protocol verification tool. Secrecy is used to prove that a secret obser-
vation cannot be leaked thus compromising the SO’s mission, while authentication
and integrity properties ensure the accountability of the SO.

The results provided by ProVerif show that secrecy and authentication can be pre-
served thus leading to the conclusion that it is possible for Software Engineers to
design architectures that make a surveillance organization accountable while pre-
serving its security objectives.

Keywords: Surveillance, Architecture, Accountability, Transparency, Security, Pro-
tocol, Design, Verification.

v

Acknowledgments
First and foremost, I thank my God who is the source of all wisdom and knowledge
and has sustained me through out my period of study.

Next, I would like to thank my supervisors, Gerardo and Thibaud, for their support
and guidance throughout this project and my examiner Regina Hebig for her con-
structive and invaluable feedback.

Lastly but not the least, I thank the Swedish Institute through whose financial
contribution I have been able to pursue my studies in Sweden, leading to this thesis.

Mukelabai Mukelabai, Gothenburg, June 2016

vii

Contents

List of Figures xiii

List of Tables xv

1 Introduction 1
1.1 Problem Statement . 2
1.2 Research Objectives . 3
1.3 Methodology . 3

1.3.1 Design Science Research . 4
1.3.2 Thesis Design—Methods and Procedures 5

1.3.2.1 Requirements Elicitation 6
1.3.2.2 Proposed Solution 7
1.3.2.3 Assumptions and Limitations 8

2 Literature Review 9
2.1 Surveillance and Privacy . 9
2.2 Accountability . 10

3 Background Theory 13
3.1 Design Notations and Conventions 13

3.1.1 Domain Modeling . 13
3.1.2 Use Case Modeling . 13
3.1.3 Architectural Design . 14

3.2 Protocol Verification . 15
3.2.1 Security Protocols . 16
3.2.2 Channels and Agents . 17
3.2.3 Security Properties . 17
3.2.4 Cryptographic Primitives . 20
3.2.5 Commitment Scheme . 21
3.2.6 Protocol Modeling . 22
3.2.7 Applied Pi Calculus . 27
3.2.8 ProVerif . 30

4 Specification 37
4.1 Domain Description . 37

4.1.1 Surveillance Organisation (SO) 37
4.1.2 Data Protection Authority (DPA) 37

ix

Contents

4.1.3 Court . 37
4.1.4 Time Stamping Authority (TSA) 38
4.1.5 Citizen . 39

4.2 Vocabulary . 39
4.3 Requirements . 39
4.4 Use Cases . 40

4.4.1 Brief Use Cases . 40
4.4.1.1 UC1: Create Record 40
4.4.1.2 UC2: Create Evidence 41
4.4.1.3 UC3: Request Records 42

4.4.2 Misuse Cases . 42
4.4.3 Requirement–Use Case Matrix 42

5 Design 45
5.1 Context Diagram . 45
5.2 Component Diagram . 46

5.2.1 SO Component . 47
5.2.2 DPA Component . 47
5.2.3 Court Component . 48

5.3 Sequence Diagrams . 48

6 Evaluation 51
6.1 Protocol Description . 51
6.2 Incremental Modeling and Verification 52

6.2.1 Secrecy . 53
6.2.1.1 Version 1.0: All Plain 53
6.2.1.2 Version 1.1: Introduce Asymmetric Encryption . . . 56
6.2.1.3 Version 1.2: Introduce SO Identity (pkSO) and TSA

should accept any interlocutor 58
6.2.1.4 Version 1.3: SO reads public key of interlocutor from

channel . 58
6.2.1.5 Version 1.4: SO only proceeds if supplied pk is that

of TSA . 60
6.2.1.6 Version 1.5: Sign timestamp with signature of TSA

to ensure that it’s valid and not forged 61
6.2.1.7 Version 1.6: Sign pair of observation and timestamp

with signature of TSA (SOLUTION1f) 61
6.2.2 Authentication . 62

6.2.2.1 Version 2.0: Model of the SO and the TSA 65
6.2.2.2 Version 2.1: Model of the SO and the DPA 69
6.2.2.3 Version 2.2: Model of the Court and the SO 71
6.2.2.4 Version 2.3: Model of the Citizen and the DPA . . . 73

6.2.3 Correspondence Assertions—Order of Events 74
6.2.3.1 Version 3.0 Order of Events: Citizen–DPA, SO,DPA

and Court . 75

7 Discussion 93

x

Contents

7.1 Results . 93
7.2 Assumptions and Limitations . 94

7.2.1 Assumptions . 94
7.2.2 Limitations . 95

7.3 Implementation Feasibility . 95
7.4 Validity Threats . 98

8 Conclusion 99

Bibliography 101

A Appendix 1 I
A.1 Full Source: Version 1.0 (All Plain) I

B Appendix 2 III
B.1 Version 2.0 SO-TSA Full Source . III
B.2 Version 2.0 SO-TSA ProVerif Output V
B.3 Version 2.1: SO-DPA ProVerif Output VII
B.4 Model Version 2.2: Court-SO ProVerif Output VIII
B.5 Model Version 2.3: Citizen-DPA ProVerif Output IX

C Appendix 3 XIII
C.1 Full Source code for the Protocol . XIII
C.2 ProVerif Output . XXIII

xi

Contents

xii

List of Figures

1.1 Design Science Research . 4
1.2 Thesis Methodology . 6
1.3 Model Iterations . 8

3.1 Notations: Domain Modeling . 13
3.2 Notations: Use Case Modeling . 14
3.3 Notations: Component Diagram . 15
3.4 Notations: Sequence Diagram . 16
3.5 Protocol Modeling Example: Sequence Diagram 25
3.6 Applied Pi Calculus: Plain Process 27
3.7 Applied Pi Calculus: Extended Process 28
3.8 ProVerif: Architecture . 31
3.9 ProVerif: Typed pi Calculus . 33
3.10 ProVerif: Output . 34

4.1 Specification: Domain Model . 38
4.2 Specification: Use Case Diagram . 41

5.1 Design: Context Diagram . 45
5.2 Design: Component Diagram . 46
5.3 Design: Create Record and Evidence Sequence Diagram 49
5.4 Design: Citizen Request Sequence Diagram 49

6.1 ProVerif Output: Version 1.0 . 56
6.2 Model Version 1.1: Asymmetric Encryption 57
6.3 ProVerif Output: Version 1.1 . 58
6.4 Model Version 1.2: TSA Accepts any Interlocutor 59
6.5 Model Version 1.3: SO Reads Public key From Channel 60
6.6 Model Version 1.4: SO Compares Input pk to pkTSA 60
6.7 Model Version 1.5: TSA Digitally Signs Timestamp 61
6.8 Model Version 1.6: TSA Signs Pair of Observation and Timestamp . 62
6.9 Model Version 2.0: Authentication Queries SO-TSA 65
6.10 Model Version 2.0: Secrecy Queries SO-TSA 66
6.11 Model Version 2.0: SO-TSA Authentication 67
6.12 Model Version 2.0: Timestamping an Observation 68
6.13 ProVerif Output for Version 2.0 . 70
6.14 Model Version 2.0: Authentication Queries SO-DPA 70

xiii

List of Figures

6.15 Model Version 2.1: Committing an Observation 79
6.16 ProVerif Output for Version 2.1 . 80
6.17 Model Version 2.2: Authetication Queires Court-SO 80
6.18 Model Version 2.2: SO Macro . 81
6.19 Model Version 2.2: Court Macro . 82
6.20 ProVerif Output for Version 2.2 . 83
6.21 Model Version 2.3: Authentication Queries Citizen-DPA 83
6.22 Model Version 2.3: Requesting the DPA 84
6.23 ProVerif Output for Version 2.3: . 85
6.24 Model Version 3.0: Correspondence Assertions (Order of Events) . . . 85
6.25 Model Version 3.0: SO Events . 86
6.26 Model Version 3.0: TSA Events) . 87
6.27 Model Version 3.0: DPA Events . 88
6.28 Model Version 3.0: Court Events . 89
6.29 Model Version 3.0: Citizen Events) 90
6.30 ProVerif Output for Version 3.0 . 91

7.1 JavaSPI Framework . 96
7.2 ProVerif to JavaSPI . 97

xiv

List of Tables

4.1 Secrecy Table . 40
4.2 Architecture Requirements . 43
4.3 Misuse Cases . 44
4.4 Requirement–Use Case Matrix . 44

6.1 Versioned Functional and Quality Requirements 78

xv

List of Tables

xvi

1
Introduction

This chapter presents an introduction to the thesis by presenting the problem do-
main, research objectives and ending with the research methodology utilised.

In the face of security threats, several surveillance systems have been developed in
various forms such as airport security checks, CCTV cameras, internet based forms
of surveillance, etc. Surveillance is defined as the monitoring of the behaviour, activ-
ities, or other changing information (or dynamic states), usually of people—as is our
context, for purposes such as influencing, managing, directing, or protecting them
[27]. Surveillance tasks can be carried out by private companies, by police services
or by intelligence agencies. However, several concerns have arisen as these systems
become more and more privacy intrusive; hence threatening the civil liberties of the
citizens that they are meant to protect [14].

Privacy is the “claim of individuals, groups, and institutions to determine for them-
selves when, how, and to what extent information about them is used lawfully and
appropriately by others” [47]. The Organisation for Economic Cooperation and De-
velopment (OECD), among others such as Canadian PIPEDA and Asian Pacific
Economic Cooperation (APEC), presents a core framework for privacy protection
through its privacy guidelines found in [34]. One of the privacy principles [35] pre-
sented in these guidelines, which is endangered by surveillance, is the accountability
principle, which states that a data controller (surveillance organisation in our con-
text) should be accountable for complying with measures which give effect to the
other privacy principles stated in the guidelines. Indeed, the need for surveillance
organisations to become accountable has recently gained prominence and is becom-
ing a matter of increasing public interest and policy debate worldwide in sectors
such as academia, freedom activism and politics, as accountability is being seen as
a more desirable mean to protect privacy [34]. For instance, in 2010, the EU Article
29 Working Party on data protection declared the need for surveillance organisa-
tions to adopt an accountability principle [36]. In 2013, the US President instituted
a Board to review and give recommendations on the operations of the NSA fol-
lowing the leaks by Edward Snowden [14]. Finally, in 2014, the privacy advocate
Senator Faulkner of Australia called for “strong and rigorous oversight” over surveil-
lance organisations in order to ensure their “strong and effective accountability” [21].

Accountability is generally defined as the responsibility that an individual or organi-
sation has to someone or for some activity; it is synonymous with answerability. The
main components of accountability are transparency, responsibility, assurance and

1

1. Introduction

remediation [38]; with transparency being the first step to achieving accountability
[37] because it makes wrong acts visible. More precisely, information accountability
means that the use of information by an individual or organisation is transpar-
ent such that it is possible to determine appropriate and inappropriate use under a
given set of rules [47]. A system that provides accountability ensures that individuals
and/or organisations would be held accountable for inappropriate use of information.

Public trust and confidence in matters of privacy is lessened as surveillance organ-
isations become more secretive and prolific in their data collection [15, 14]. Thus
achieving transparency through accountability of surveillance organisations would
regain, to some extent, this lost trust and confidence and would be seen as a first
step to protecting the civil liberties of the citizens that these organisations purport
to protect [25]. Unfortunately, there lies a challenge in striking a balance between
two apparently conflicting goals: meeting security objectives of a surveillance organ-
isation and guaranteeing the privacy of the citizens concerned [14].

1.1 Problem Statement
As already stated, surveillance in its many forms invades privacy and this has led to
vast privacy concerns. In many cases, surveillance operations are secretively carried
out on data subjects without their knowledge; the justification for this is that it is
intrinsic to the nature of these operations and that the operations themselves would
be endangered if transparency was brought into the system. Clarke [15] argues that
natural defenses against technology driven privacy invasion have proven inadequate.
This argument is echoed by Weitzner et al [47] who state that access control mech-
anisms that employ upfront secrecy and information hiding to protect privacy have
proven futile. This is because data is increasingly collected through various means
and personalised. Storage technology ensures that it is available and database tech-
nologies with their analytical power make it discoverable. Hence accountability is
now perceived to be the core concept that should underpin mechanisms aimed at
protecting privacy [34, 47, 38]. However, even with accountability, “mechanisms
must be applied in an intelliegent way, taking context into account and avoiding a
‘one size fits all’ approach” [38].

We here consider the context of a surveillance organisation that gathers information
about data subjects (citizens), which in-turn may be used against the subjects in
court cases involving them. In this case, the court issues an order for the SO to
disclose some information which may relate to the citizen under investigation, to
serve as evidence. The SO then responds by disclosing partial sets of information
matching the court order, if any. Generally the court has no way of verifying that
the availed information truly matches the SO’s internal surveillance activities on the
citizen in question and therefore relies on blind trust.

Furthermore, one privacy principle given by the OECD privacy guidelines is the
“Individual Participation Principle” which guarantees among other things, that the

2

1. Introduction

citizen has the right “to obtain from a data controller, or otherwise, confirmation
of whether or not the data controller has data relating to him”. Under current leg-
islations, a citizen has very weak guarantees of gaining access to information about
surveillance collections and processes of which he is the data subject (even later,
when such a disclosure would no longer defeat the purpose of the collection). De-
pending on the legal framework, he may make a request to the SO (or a delegated
entity) and has to trust the answer without any proof to support it. Even when
the SO answers adequately, its answer may be inaccurate or incomplete because of
the lack of coherence of its database (which is quite common as depicted by CNIL
in France [16]). This lack of transparency generally entails a general lack of public
trust and confidence in the work of the SO and undermines the legitimacy of its
practices. With accountability as the championed remedy to privacy protection, the
challenge still lies in implementing it in a way that would render it acceptable to
the SO without compromising the SO’s central mission.

How can we bring transparency through accountability in the way surveillance or-
ganisations perform surveillance while providing better privacy guarantees? What
methodological approach could Software Engineers follow to build and formally ver-
ify architectures that provide better privacy guarantees in the context of surveil-
lance? These are questions this thesis seeks to answer.

1.2 Research Objectives
The following are the null hypotheses driving this study. The negation of each
hypothesis is treated as the alternative hypothesis which would be favoured if the
corresponding null hypothesis should be falsified.

H1: It is not possible to design an architecture that can be adopted by Software
Engineers to preserve privacy through accountability in surveillance contexts.

H2: It is not possible to formally prove properties of this architecture, notably
regarding the accountability and the confidentiality aspects. The latter should
not compromise the mission of the SO and should prove that the SO cannot
disclose to a court an observation that is not registered with the DPA, without
being detectable by anybody.

H3: It is not possible to automatically extract, from the model of the protocol, an
implementation that makes it possible to develop a proof of concept applica-
tion.

1.3 Methodology
In this section we first introduce the research methodology employed in our study,
namely, Design Science Research [3], and then proceed to describe how we imple-
mented the methodology. Next we present how the requirements for the architecture
were elicited and then conclude by presenting the suggested solution based on the
requirements, followed by the assumptions we made in designing our solution.

3

1. Introduction

1.3.1 Design Science Research
Design Science Research focuses on building and evaluation of artifacts designed to
meet a specific business need. In the context of Information Systems, Design is
considered to be both a process (set of activities) and a product (artifacts) [45].
Design Research ”seeks to create innovations that define the ideas, practices, tech-
nical capabilities, and products through which the analysis, design, implementation,
management, and use of information systems can be effectively and efficiently accom-
plished”[3]. It has two processes—build and evaluate, and four artifacts—constructs,
models, methods and instantiations. The build process develops theories and artifacts
that meet an identified relevant business need. The evaluate process then justifies
the utility and efficacy of the built artifacts using methods can be categorised as
observational (e.g. case studies), experimental (e.g. controlled experiments), an-
alytical (e.g. formal proofs) or testing (e.g. black-box testing). Figure 1.1, taken
from [3], illustrates the concept of Design Science Research. The outcomes of Design

Figure 1.1: Information Systems Research Framework [3].

Research are:
Constructs: Provide a conceptual vocabulary of a problem/solution domain. Con-

structs arise during the conceptualization of the problem and are refined
throughout the design cycle.

Models: Express relationships between constructs to represent a real world situation—
the design problem and its solution space.

4

1. Introduction

Methods: Provide guidance on how to solve the problem e.g. a formal mathemat-
ical algorithm or textual description of best practice approaches.

Instantiations: Operationalizations constructs, model and methods to show that
they can be implemented in a working system.

The following is a summary of the guidelines for conducting design science research
as presented in [3]:

Guideline 1: Design as an Artifact —must produce a viable artifact in the form
of a construct, a model, a method, or an instantiation.

Guideline 2: Problem Relevance —develop technology-based solutions to im-
portant and relevant business problems.

Guideline 3: Design Evaluation —demonstrate rigorously, via well-executed eval-
uation methods, the utility, quality, and efficacy of a design artifact.

Guideline 4: Research Contributions —provide clear and verifiable contribu-
tions in the areas of the design artifact, design foundations, and/or design
methodologies.

Guideline 5: Research Rigor —apply rigorous methods in both the construc-
tion and evaluation of the design artifact.

Guideline 6: Design as a Search Process —search for an effective artifact uti-
lizing available means to reach desired ends while satisfying laws in the problem
environment.

Guideline 7: Communication of Research —design-science research must be
presented effectively both to technology-oriented as well as management-oriented
audiences.

1.3.2 Thesis Design—Methods and Procedures
Following the procedure of Design Research discussed in section 1.3.1, we answered
to each hypothesis (section 1.2) in turn in a constructive way by building artifacts,
validating or invalidating them. More specifically:

Architectural Specification: We first made an exploration of the existing frame-
work in the literature and created a conceptual vocabulary of the problem and
a solution domain along with expressing the requirements of the stakeholders.

Architectural Design: Next we suggested a solution through the design of a con-
ceptual model and software architecture that expresses relationships between
constructs identified in the previous step.

Architectural Evaluation: Since the confidentiality and accountability of sensi-
tive data was of utmost importance, we modeled the sequence diagrams of the
architecture as formal protocols and formally verified secrecy and authenti-
cation security properties to ensure that they guarantee such properties; this
provided some guarantees to the soundness of the architecture with regards to
the verified properties. Results of the evaluation were used to suggest archi-
tectural security patterns that could be applied to the Architectural Design to

5

1. Introduction

achieve the desired security properties.
Implementation Feasibility: Last but not the least, we explored state of the art

tools that make it feasible to automatically extract an implementation from
the model of the protocol, thus bringing about the realisation of the artifact
in an environment.

Figure 1.2: Thesis Methodology using the build and evaluate processes of Design
Science Research.

Figure 1.2 provides a summary of the thesis methodology employed in this study.
The Architectural Specification and Architectural Design were done in a water fall
style. The Architectural Evaluation however was done in a iterative fashion. Each
iteration of the evaluation involved the formal modeling and verification of a secu-
rity property based on the sequence diagrams of the architecture. The verification
of each property was performed in a stepwise manner in order to ascertain what
attacks could be performed at each stage of the protocol. As may be noticed, we use
a double arrow for the relationship between Architectural Design and Architectural
Evaluation; this is because the results of the evaluation later changed the archi-
tectural design to apply security patterns necessary to enforce the desired security
properties.

1.3.2.1 Requirements Elicitation

Requirements for this architecture were derived taking into account some of the
recommendations offered by the US President’s Review Group [14] on Intelligence
and Communications Technologies, appointed in 2013 following the Snowden NSA
revelations. From their summary of the top ten recommendations out of fourty six,
the following were more instrumental to this thesis:

6

1. Introduction

• Private metadata (e.g. telephone metadata) should be stored, if need be, “by
private providers or by a private third party, and which should be available
only after an appropriate order by a court.”

• Public officials should not have access to private information such as bank
records, credit card records, etc. from third parties “without a court order”.

• “We need more transparency in the system”. Providers must disclose to the
public, requests for orders from the government or government should disclose
what orders it issued for information that is unclassified.

• “Significant reforms must be adopted to reduce the risks associated with ‘in-
sider threats’, which can threaten privacy and national security alike. A gov-
erning principle is plain: Classified information should be shared only with
those who genuinely need to know.”

We also drew inspiration from the privacy guidelines [34] and privacy principles [35]
presented by the OECD; most notably the Individual Participation Principle and
the Accountability Principle ealier mentioned.

1.3.2.2 Proposed Solution

To address H1, we introduced two new components, in addition to the SO and the
Court: a Time Stamping Authority (TSA) and a third party Data Protection Au-
thority (DPA). With this proposed architecture, the SO must obtain timestamps
for its surveillance observations from the TSA, then using a commitment scheme
(see section 3.2.5), send commitments of these observations to the DPA who in turn
signifies their receipt by signing them and then retains a copy to be able to service
requests from citizens. With the DPA included, the Court can then verify disclosed
records from the SO following a court order and Citizens can check with the DPA
whether they’ve been under surveillance before or not.

H2 was addressed by modeling the sequence diagrams of the architecture in H1 as
formal protocols in the applied pi calculus and then using the formal models to verify
security properties of the protocols in ProVerif [17]. The main security properties
verified were confidentiality (synonymously referred to as secrecy in this thesis) and
authentication. More details on what these properties involve are given in section
3.2.3. Based on the results of the verification, suggestions were given on what archi-
tectural patterns should be implemented on all ends of participating agents in the
protocol to ensure that the aforementioned security properties are preserved.

A key aspect in this research is that the results of H2 act as a verification of H1.
When a flaw was found in the protocol proposed, a fix was proposed to the previous
result. Such negative results obtained during the iterations were documented as
they were important insights in the problem as well. Figure 1.3 shows the process
followed for modeling the protocol. For each iteration, we considered a requirement
(quality or functional). For each chosen requirement, we modeled a solution and
then verified it. If the solution passed the verification, we proceeded by adding
modeling another requirement provided there were requirements left to model, until

7

1. Introduction

all requirements were modeled and verified. However, if the verification failed, we
remodeled it as an incremented version which would also be verified until the veri-
fication passes. .

Figure 1.3: Model Iterations

1.3.2.3 Assumptions and Limitations

The following were the assumptions we made in the development of this solution
1. The SO does not falsify or forge observations i.e. whatever is committed to

the DPA is considered authentic hence can be used by the court.
2. Protocol considers only verification of evidence based on the records from the

SO and not external witnesses brought in by the court.

Before presenting the rest of our contribution, we begin by exploring already existing
work in the field through a literature review.

8

2
Literature Review

The following sections present a review of the literature on surveillance, privacy, and
accountability.

2.1 Surveillance and Privacy
As already stated, surveillance is the monitoring of the behaviour, activities, or
other changing information (or dynamic states), usually of people for the purpose of
influencing, managing, directing, or protecting them [27]. This monitoring is done
in a number of ways such as computer surveillance online, telephone systems, CCTV
cameras etc. [42] and can be performed by different organisations to serve different
purposes such as control, governance, security, and profit. We here consider the
kind of surveillance performed on individual citizens as opposed to other kinds of
surveillance such as disease surveillance.

As an ambiguous practice, surveillance can have both positive and negative effects:
Governments can use surveillance through their various agencies, to control their
citizens, monitor threats and possibly prevent criminal activity. On the other hand,
this could lead to massive privacy intrusion resulting in a surveillance society without
political and personal freedom, and this has been the outcry of civil rights activists
and privacy advocates in recent years.

With the proliferation of personal information on the Internet and other media
through which surveillance may be conducted, privacy has become more and more
increasingly difficult to preserve.

In order to preserve privacy, some democratic governments and institutions around
the world employ the use of privacy policies , policy statements and laws, to assure
their citizens and clients respectively of some privacy principles such as confiden-
tiality. In cloud computing and other application areas of computer science such as
e-commerce, a number of approaches to preserving privacy, presented and reviewed
by [32], have been proposed and mainly focus on information hiding by means of ac-
cess control mechanisms and encryption techniques. Other approaches also reviewed
in [32] employ public auditing schemes but still in the area of cloud computing.

However, as [47] has argued, all approaches that rely on upfront secrecy and access
control get overwhelmed by the increasingly open information environment and ease

9

2. Literature Review

with which information can be stored, transported, aggregated and analysed. With
the current analytical power, inferences can be made on information which in itself
may not be explicitly revealed. Furthermore, [47] argues that approaches based
on information hiding and restriction may limit human interaction and are not in-
tuitive to the social nature of our human societies and therefore are misplaced in
today’s modern ubiquitous information age and therefore a better alternative would
be to consider ways of making the use of collected data and information accountable.

In [28] is presented the SALT framework which is a multidisciplinary approach to
preserving privacy in video surveillance systems and “serves as a decision support
to assist system designers and other stakeholders in coping with complex privacy
requirements in a systematic and methodological way”. It “provides reusable, generic
and synthetic guidelines, reference information and criteria to be used or modified by
experts and other stakeholders and borders on privacy by design and accountability
by design.” The SALT approach is based on a two step process:

• Guiding surveillance system owners through an assessment process for the
legal/socio-contextual and ethical impact of the envisioned system; this in-
cludes impact assessment on individuals’ privacy.

• During the design phase, designers are referred to socio-contextual, ethical and
logical considerations to reduce on impact of the system on individuals’ privacy.
Accountability features and state of the art privacy preserving technologies are
presented them to reduce such impact and ensure transparency.

2.2 Accountability
A number of different possible approaches to bring more transparency and more
accountability in organisations have been described in the literature. These appear
to lie in a spectrum defined by two extremes: on one end there is pure policy (blind)
trust while on the other end there is pure security by deploying trusted mechanisms
(balancing the lack of trust in the actor). In our context, approaches based on pure
policy would require the citizen or the court to simply trust, without any reserva-
tion, the operations of and information supplied by the SO while approaches based
on pure security would require secure accountability by the SO, leaving no room for
any misbehaving to be undetected at worst, unprevented at best.

One common approach (based entirely on pure policy) drawn from social science
research is to require public organisations to disclose their collected data to specific
independent review boards or public committees or commissions which, in the case
of the SO, would be (only) the courts of law for cases that may require it, the re-
questing party trusting the information supplied and consuming it as it is. While
this approach would be highly welcomed by the SO as it places it under no obligation
to comply with any standard or set of rules, the main drawback is it raises several
questions regarding “whether or not information made available matches internal
organisation activity, whom information is made available to, what sense is made of
the information made available and how the information is used” [33].

10

2. Literature Review

Another approach would be to use third party auditors who would review the in-
ternal operations of the SO and measure them according to “certain principles, ex-
pectations standardised measures, benchmarks, performance indicators and so on”.
However, this approach may have very low or zero acceptability due to the nature
of the SO’s operations. Furthermore, it still falls short of guaranteeing the quality
of the data held by the SO.

Finally, one other approach which lies at the pure security end is the use of “policy
reasoning tools” suggested by Weitzner et al. [47] which are secure devices that can-
not be modified and could be placed at the SO throughout the surveillance system
mediating data access and maintaining logs of data transfers. While this is the most
trustworthy approach, it would also raise acceptability issues by the SO and hence
may not be implementable at all in the context of the SO’s operations.

Pearson [38] suggests that to implement accountability mechanisms in the cloud,
both prospective (and proactive) and retrospective (and reactive) accountability
approaches may need to be considered. Prospective approaches use preventive tools
that prevent an action from continuing to take place or taking place at all (e.g.
an access control list). Retrospective approaches use detective controls that permit
privacy violations but allow them to be detectable so that corrective measures could
be taken. Examples of detective controls are policy-aware transaction logs, language
frameworks and reasoning tools (referred to above). In this thesis we consider the
retrospective approach and do not try to prevent privacy breaches but rather allow
them to be detected.

Drawing from the example of the Fair Credit Reporting Act of 1970 which has suc-
cessfully protected privacy for more than fourty years, not by limiting the collection
of data but by placing strict rules on data usage, Weitzner et al. [47] argue that we
gain better accountability by “making better use of the data and by retaining the
data that is necessary to hold data users responsible for policy compliance”. This
study adopted a similar approach, one in which an independent body would “retain
necessary data to hold the SO accountable”. The SO would be required to make
commitments of its surveillance observations to an independent organization that
we call the Data Protection Authority (DPA). The guarantee that the SO actually
behaves as it is required would be assured by a strong incentive which is that it
cannot disclose any surveillance observation against a citizen in court unless one
that was previously committed to the DPA. Indeed, it would be easy to detect that
an observation has not been committed, and then has been hidden by the SO. This
would ensure transparency as citizens would be able to check with the DPA for any
surveillance operations they may have been subjected to and would also hold the
SO accountable by ensuring that any data they use as evidence in court against a
citizen is consistent with what was committed to the DPA. At the time of this study,
no such an approach had been proposed in the literature.

The next section shall present the necessary backgound theory required to under-
stand the work presented in this thesis.

11

2. Literature Review

12

3
Background Theory

The following sections present design notations used in domain modeling and archi-
tectural design, ending with an introduction to protocol verification. The running
example demonstrating how to model a security protocol from a given architecture
is part of the main contribution to this thesis hence we strongly recommend not
skipping referred section as this will make it easier for the reader to follow along
with the work presented in later chapters.

3.1 Design Notations and Conventions
This section provides the reader a quick introduction to the notations used to model
the domain, use cases, and the architecture. The Unified Modeling Language (UML)
[44] is utilised for all the diagrams presented here. Readers having this knowledge
may skip this section to the next one giving an introduction to protocol verification
(section 3.2).

3.1.1 Domain Modeling
A domain model provides a conceptual vocabulary of a problem and solution do-
main. Figure 3.1 shows the notations used for domain modeling and the meaning
of each relation is detailed in the label attached.

Figure 3.1: Notations used for Domain Modeling [44]

3.1.2 Use Case Modeling
The required behavior of the system is modeled as use cases which describe interac-
tions between a system and its users (also called actors). Figure 3.2 shows how we

13

3. Background Theory

model use cases. We distinguish between business use cases and regular (or system)
use cases. A business use case shows a business goal to be achieved and the actors
that participate to achieve the goal while a system use case shows a single goal the
system and an actor should achieve in their interaction.

Another concept introduced is a misuse case [41], which describes a function the
system should not allow. A misuse case highlights undesired behavior of the system
and therefore models the attacks that a system may be faced with. The difference
between a use case and misuse case is in the goals: a use case brings value to a
system stakeholder while a misuse case is a function which a system shouldn’t allow
because it is unacceptable and brings loss to one or more stakeholders.

Figure 3.2: Notations used for Use Case Modeling [44, 41]

3.1.3 Architectural Design
Architectural diagrams are designed based on the domain model diagrams and use
cases and are modeled using components and interfaces. Components are connected
through Interfaces that are service contracts; one component provides a service
which another component may require. A provided interface is represented by a
hummer while a required interface is represented by a fork. Figure 3.3 illustrates
component-interface-component relationships:
We further modeled communication between components as sequence diagrams
based on the use cases previously defined. There are three main types of mes-
sage exchanges: Synchronous, Asynchronous and Self messages. Synchronous mes-
sages require the sender to wait for a response from the receiver before proceeding

14

3. Background Theory

Figure 3.3: Notations used for Component Diagrams [44]

with other tasks. Asynchronous messages do wait for a response. Self messages are
internal operations performed by a component. Figure 3.4 illustrates these concepts.

3.2 Protocol Verification

The section presents the reader with an introduction to the knowledge essential to
understanding protocol verification. First is presented a discussion of what secu-
rity protocols are, followed by a discussion of the kinds of communicating agents in
protocols, then by a discussion of security properties that are preserved by security
protocols. After that is presented a discussion of cryptographic primitives used to
model protocols, and then a discussion of how to model protocols using the applied
pi calculus and concludes with a presentation of ProVerif which is a protocol verifi-
cation tool. Throughout this section is presented a running example of a protocol in
which two agents communicate; a client and a signature server. The client sends a
message to the server to be signed and the server must respond by digitally signing
the message and sending it back to the client. Based on this example, all the above
discussion of security protocols to verification is covered. It suffices also to mention
that this protocol is actually a simplified version to the communication between
an SO and the DPA when requesting for a signature for an observation during a
commitment. We therefore encourage even experienced readers to skim through the
examples presented here for the purpose of familiarization with the work presented
afterwards.

15

3. Background Theory

Figure 3.4: Notations Used for Sequence Diagrams [44]

3.2.1 Security Protocols
What are Security Protocols?

In Computer science, a communication protocol is a set of rules that govern end to
end telecommunications between two agents (also known as participants or princi-
pals or entities). The protocol provides a specification for the interactions between
the communicating agents. Because of the distributed nature of this communi-
cation, security protocols are therefore distributed and concurrent programs that
secure communication by means of cryptographic techniques such as encryption to
ensure security properties such as confidentiality of data [17]. Examples of com-
munication protocols include the HTTP protocol that governs exchange of data in
HTML format and the SMTP that governs the exchange of email. An example
of a security protocol is the SSL protocol that underlies the https protocol in web
browsers and performs functions such as encrypting web search queries between a
host and a search engine.

Why do we Need to Verify Them?

Security protocols need to be verified because, unlike other safety critical systems,
“properties of security protocols must hold in the presence of an arbitrary adver-
sary”. Any cases of failure or design flaws in such protocols can have huge financial
and societal impact. In an empirical study conducted by Cavusoglu et al in 2004

16

3. Background Theory

[13] on the effect of internet security breach announcements on market value, it
was observed that a breached firm lost about 2.1 percent of its market value within
two days of the announcement, which translates to a market capitalization loss of
$1.65 billion dollars per breach. In his online article of April 2015, Howarth [23]
indicates that the top factors for calculating monetary loss resulting from security
breaches affecting financial institutions were customer reimbursements, and audit
and consulting services and that the New York State Department of Financial Ser-
vices found the deployment of additional security measures as only the third most
costly impact of cybersecurity breaches. Other institutions considered additional
factors such as reputational damage, though difficult to quantity. All these stud-
ies and many other instances of security breaches provide a stronger incentive for
security protocol verification.

3.2.2 Channels and Agents
Protocols use channels to allow agents to communicate; these channels may be a pub-
lic network such as the internet and the agents maybe two computers (or persons)
exchanging messages. Communication protocols usually assume trusted channels
and honest agents where as security protocols assume untrusted channels and dis-
honest (or hostile) agents.

Trusted Channels and Trusted Agents

In a trusted channel, no hostile agents are able to access the medium of communica-
tion in order to interfere with the protocol. Trusted agents are those that cooperate
to achieve the goal of the protocol.

Untrusted Channels and Dishonest Agents

An untrusted channel is one in which hostile agents access the medium of com-
munication to subvert the protocol by means such as reading, modifying, injecting
messages and manipulating messages. An example of an untrusted channel is the
internet. A dishonest agent is one that acts as a regular participant of a protocol
but actually subverts the rules of the protocol to his own advantage. An example of
a dishonest agent may be an e-commerce seller that falsely denies receiving payment
from a client. An attacker is any hostile agent that is either a dishonest agent or an
outsider subverting a protocol through an untrusted channel.

3.2.3 Security Properties
The goal of any security protocol is to ensure that one or more security proper-
ties [17] are preserved. The kind of security properties preserved by a protocol
depends on the purpose of the protocol and context. We present here informal def-
initions of some properties, namely Secrecy, Authentication, Integrity, Anonymity,
Unlinkability, Non repudiation and Fairness. However this thesis focuses on Secrecy,

17

3. Background Theory

Authentication and Integrity; the latter four are given for the purpose of letting the
reader know of some other existing security properties apart from those we address.

1. Secrecy
Secrecy refers to the prevention of unauthorised disclosure of information and
has two flavours: weak secrecy and strong secrecy.

Weak secrecy focuses on reachability and means that an attacker cannot
deduce the contents of a message by reaching a state in a protocol run
where he has knowledge of a secret. This means that given a secret s, and
an attacker’s current knowledge, he should not reach a state where he can
discover the secret s based on his current knowledge of the protocol.

Strong secrecy focuses on indistinguishability and refers to the fact that an
attacker should not be able to deduce any information about the messages
communicated in a protocol run; this deducible information includes, but
is not limited to, the length of messages, and whether or not the same
message has been sent twice.

The difference between weak secrecy and strong secrecy is that, with weak
secrecy it is possible for an attacker to see the difference when the value of
a secret changes, where as it is not the case with strong secrecy [10]. For
instance, “when a process encrypts a message m, an attacker can differenti-
ate between different messages since their ciphertexts will be different” but if
strong secrecy techniques are used such as probabilistic encryption, the ran-
domness in the encryption would yield different ciphertexts for the same value
of m, hence m would be a strong secret.

2. Authentication
Authentication is among the most important security properties and focuses on
verifying identities of communicating entities (agents) or messages exchanged.
Two of its forms are entity authentication and message authentication. Entity
authentication aims at verifying the identity of an entity; that an attacker does
not impersonate an entity A when communicating with an entity B. Message
authentication aims at verifying that a message comes from the agent it claims
to come from; we achieve this through digital signatures.

Closely related to Authentication is the notion of correspondence properties
introduced by Woo and Lam [49]. A correspondence property states that if
an event e has happened, then an event e’ must have happened before. In the
context of a protocol run, we say that if an event e is “B accepts a run of the
protocol”, then an event e’ must have happened before which is, “A started
the run of the protocol”. Four correspondence properties are presented here,
which are Aliveness, Weak Agreement, Non-injective Agreement and Injective
Agreement:

Aliveness: Aliveness is the weakest form of authentication which requires

18

3. Background Theory

that whenever a honest agent A completes a run of a protocol apparently
with another honest agent B, then B has previously run the protocol. This
property fails to capture some attacks such as identity impersonation.

Weak Agreement: In addition to aliveness, this property requires that the
agents agree on their identities.

Non-injective Agreement: Sometimes agreeing on identities may not be
sufficient if we want the agents to agree on some other messages hence
non- injective agreement means that in addition to weak agreement, the
agents run the protocol with the same data set. However this could still
suffer from replay attacks.

Injective Agreement: injective agreement adds to non-injective agreement
by ensuring that every run of a protocol by A corresponds to exactly
one unique run by B. For instance, for each deposit of cash into a bank
account by a client,the bank should credit the client’s account only once.

This thesis utilises injective agreement.

3. Integrity
Integrity prevents unauthorized modification of information. In this the-
sis, integrity is ensured through digital signatures which also provide non-
repudiation.

Other Security Properties

The following are a few more security properties, some of which are addressed im-
plicitly and others are not addressed in this thesis but may be of interest to the
reader.

1. Anonymity
This property aims at prevention of identification of specific properties of
individual events from a set of events. Examples of applications requiring
anonymity are e-voting applications. However, anonymity is incompatible with
authentication hence we did not consider it in our study.

2. Unlinkabibility
Unlinkability is very much used in Radio Frequency Identification (RFID)
systems where it might be desirable not to allow an attacker to link several
sessions i.e. to infer that the sessions involve a same user.

3. Non-repudiation
Non-repudiation prevents an agent from falsely denying responsibility for their
actions; for instance, a sender of a message should not falsely deny having sent
the message. This property is implicit in didital signatures, e.g. the DPA
cannot deny having signed a message.

4. Fairness

19

3. Background Theory

Fairness prevents one participant from gaining advantage over another by
aborting the protocol; for instance one participant pays for merchandise and
the other doesn’t send the merchandise or vice versa.

3.2.4 Cryptographic Primitives
Security protocols make use of cryptographic primitives which include the following:

• Symmetric and asymmetric encryption
• Digital signatures
• Cryptographic hash functions
• Message authentication codes (MACs) also known as keyed hash functions
• Random number generation

Symmetric and Asymmetric Encryption

When plaintext is encrypted, it is called ciphertext. Symmetric encryption uses the
same cryptographic keys for the encryption of plaintext and decryption of cipher-
text. Asymmetric encryption on the other hand uses two kinds of keys: a public key
shared widely and a private key known only by the owner. Using this public key
system, anyone can encrypt a message with the public key of the receiver but only
the receiver can decrypt it with his private key hence in asymmetric encryption, we
keep secret only the private key while the public key is shared without compromising
security [48].
The following are the notations we use for symmetric encryption and asymmetric
encryption given a message m, private key k and the public key of k as pk(k); we
assume that keys are unguessable:

Symmetric encryption:
• senc(m, k) —encrypts m using key k.
• sdec(senc(m, k), k)—sdec(...) is a decryption function that gives m, given its

encryption key k
Asymmetric encryption:

• aenc(m, pk(k))—encrypts m with pk(k).
• adec(aenc(m, pk(k)), k)—adec(...) is a decryption function that gives m, given

that the private key of its encryption is k.

Digital Signatures

A digital signature is like a handwritten signature, it provides authenticity for a
message and ensures that the sender of the message cannot deny having sent the
message (non-repudiation) and also provides some proof that the message wasn’t
modified in transit (integrity). Digital signatures use asymmetric cryptography as
described above. The notation we use for a digital signature given a message m,
private signing key k and public signing key of k as spk(k):

20

3. Background Theory

sign(m,spk(k))

More appropriate functions for retrieving signed messages and verifying signatures
are discussed in later sections.

Cryptographic Hash Functions

A cryptographic hash function is a one way hash function that makes it computa-
tionally impossible to recreate its input data from its hash value. Cryptographic
hash functions are used in digital signatures and message authentication codes but
are not limited to these applications. Given a message m, its hash is denoted as:

• hash(m)

Message Authentication Codes (MACs)

A message authentication code is a piece of information used to provide the authen-
ticity and integrity of a message. However, since message authentication is implicit
in digital signatures, MACs are not useful in this study.

Random Number Generation

A nonce is a number used once in a cryptographic communication and is usually a
random or pseudo-random number that may serve purposes such as being a session
key. In protocols implementing authentication, nonces are used for things such as
preventing old communications from being used in replay attacks by guaranteeing
for instance the uniqueness of a session. A nonce is denoted as N.

If we have two participants A and B, each generating their own nonces, then we de-
note their nonces as Na, and Nb respectively. More generally, we suffix the identity
of an agent or any letter of our choosing to the letter N to denote a nonce generated
by that agent.

In summary, this thesis employs the following cryptographic primitives: symmetric
and asymmetric encryption, digital signatures, hash functions and random numbers
(nonces).

3.2.5 Commitment Scheme
A commitment scheme [22] is a cryptographic technique that allows one party to
commit to a chosen value in a protocol while keeping it hidden from others, but with
the ability to reveal the hidden value at a later point in time. It has two important
properties that must be preserved: the hiding property and the binding property.
The hiding property means that the receiver cannot know the value of the secret
message until revealed by the sender, while the binding property means that the
secret message must be bound to exactly one unlocking message called the opening.

21

3. Background Theory

The two phases of a commitment scheme are the commit phase, and the reveal phase.

The commit phase in some protocols involves the sender sending a single message,
called the commitment, to the receiver. The receiver should not know the specific
value of the message (hiding property). At some later point during the reveal phase,
the sender can send an opening message which would allow the receiver to check
the value of the original hidden message; this works if the original message can be
bound to only one opening message (binding property).

Commitment schemes are used in applications such as: coin flipping [31]—that
allows dispute resolution through coin flipping, and digital signature schemes—that
allow publishing of verifiable hashes of data. This thesis employs a commitment
scheme in the context of a signature scheme to allow the SO to commit observations
to the DPA. However, in order for the DPA to be able to respond to requests from
citizens, some data about the observations e.g. identifiers shall not be hidden from
the DPA.

3.2.6 Protocol Modeling
Material presented in this section gets inspiration from a tutorial [17] by Cortier
and Kremer. However, it is adapted to the protocol contributed in this thesis.

Protocols are implemented in programming languages like C++, C or Java; how-
ever, protocol verification is an instance of formal verification which is performed
on abstract mathematical models of protocols. Abstract models are used because
they provide only the details relevant for the proof unlike concrete programs. The
result of protocol verification is a formal proof that provides the correctness of the
protocol model with regard to a formal specification or property.

Different symbolic models are used to represent and reason about protocols and
these include process algebra (for instance applied pi calculus [1]), strand spaces
[20], constraint systems [29] and Horn clauses [9]. Though differing in many as-
pects, these models all represent protocol messages by terms. Precise details or
values of nonces, keys or identities are abstracted away leaving only the structure
of the message which is modeled as a special labeled graph called a term.

Terms

As already shown in section 3.2.4, cryptographic primitives are represented by func-
tion symbols where a function symbol f has an associated arity (number of argu-
ments). A finite set of function symbols is called a signature (not to be confused
with a digital signature). Variables are used to represent unspecified parts of mes-
sages. Names represent atomic data such as identities, nonces and keys. A standard
signature in the context of security protocols is a set of constructor function symbols
and is represented as

22

3. Background Theory

Fstd = {senc,aenc,pair,pk}

where senc, aenc and pair are symbols of arity 2 representing respectively symmet-
ric encryption, asymmetric encryption, and concatenation, whereas pk is a symbol
of arity 1, representing the public key associated to some private key. The corre-
sponding signature for destructors is given as:

Fdec= {sdec,adec,fst,snd}

corresponding to, respectively, symmetric decryption, asymmetric decryption, first,
and second projections on a pair.

The set of terms of the signature F, the variables X, and the names N is denoted
as T (F,X,N) which is defined as names, variables and function symbols applied to
other terms. Given F0 to be an arbitrary finite set of constant symbols and given a
term algebra T(Fstd ∪ Fdec ∪ F0 ∪X), the properties of concatenation and standard
symmetric and asymmetric encryption can be modeled by the following:

sdec(senc(x, y), y) = x adec(aenc(x, pk(y)), y) = x
fst(pair(x,y)) = x snd(pair(x, y)) = y

fst is a projection on the first term of a pair and snd is a projection on the second
term of a pair.

Assumptions on Perfect Cryptography

Protocol verification assumes perfect cryptography and focuses on the correctness
of the protocol rather than the cryptography; hence the following assumptions are
made about the utilized cryptography:

• One cannot learn anything about or modify an encrypted message unless one
has the right key

• Keys cannot be guessed from encrypted text
• Random numbers cannot be guessed
• Hashes are one way and collision free; one way meaning that a hashed message

cannot have its value retrieved, and collision free meaning that two different
messages should have two unique hashes.

Attacker model

We also assume that the public channel used for communication in a protocol is con-
trolled by an environment that captures the attacker capabilities given by Dolev-Yao
[19]: the attacker can read, modify, delete or inject messages and also manipulate
messages. In particular, the Doley-Yao inference system states that:

• The attacker can concatenate terms and retrieve terms from a concatenation
i.e. given x, y as terms, one can concatenate them as (x,y) and given the
previous concatenation, once can retrieve its terms.

• The attacker can encrypt and decrypt symmetrically given the corresponding

23

3. Background Theory

key i.e. given x, and y as terms, one can senc(x,y) and given the previous
symmetric encryption and a key y, once can retrieve x.

• Similarly, the attacker can encrypt and decrypt asymmetrically given corre-
sponding public and private keys i.e. given x, and y as terms, one can aenc(x,y)
and given an encryption aenc(x,pk(y)) and a private key y, one can retrieve x.

Authentication of agents: Needham Schroeder Protocol

As stated earlier, authentication aims at verifying identities of communicating agents
to ensure that no honest agent is impersonated by an attacker. To authenticate
agents, we use the corrected Needham-Schroeder protocol also known as Needham-
Schroeder-Lowe protocol [26]. The following is the basic NS protocol

1. A —> B: aenc((A,Na),pkB)
2. B —> A: aenc((Na,Nb),pkA)
3. A —> B: aenc(Nb,pkB)

Two agents, A and B, want to authenticate each other by engaging in a challenge
response before they further communicate. A sends an encrypted pair of its identity
A and a nonce Na to B, encrypted with B’s public key. B responds by creating a
new nonce Nb, pairs it with the nonce received from A and sends it back to A by
encrypting it with the public key of A. A would check whether the first projection of
the pair received corresponds to the nonce earlier sent, which is Na and if so, then
sends back B’s nonce Nb. B would in turn also check whether the nonce received
corresponds to the earlier one created which is Nb. At the end of this run of the pro-
tocol, A would know that it was truly communicating with B, and B would also know
that it was communicating with A and the secrecy of the nonces would be preserved.

However, Lowe[26] discovered the man in the middle attack in which an attacker
could impersonate A in its communication with B. Let C be an attacker who im-
personates A:

A —> C: aenc((A,Na),pkC)
C(A) —> B: aenc((A,Na),pkB)
B —> C(A): aenc((Na,Nb),pkA)
C —> A: aenc((Na,Nb),pkA)
A —> C: aenc(Nb,pkC)
C(A) —> B: aenc(Nb,pkB)

First, A sends its identity and its nonce to a dishonest agent C, supposing it to
be B. C then forwards this to B which would respond by sending the two nonces
encrypted with A’s public key. Since C can’t decrypt this pair, it forwards it to A,
at which point A responds by sending back the nonce Nb to C, again supposing it
to be B. At this point C knows the nonce Nb and then forwards the message to B.
Lowe fixed this protocol by letting B include its identity in the message sent back
to A. This way, A is able to check if the message received is truly from B or not.

24

3. Background Theory

The resulting protocol is:

A —> B: aenc((A,Na),pkB)
B —> A: aenc((Na,Nb,B),pkA)
A —> B: aenc(Nb,pkB)

At the end of this authentication, both A and B are certain that they are commu-
nicating to each other and that the nonces Na and Nb are secret.

Modeling a protocol

A protocol is modeled based on the interactions of the communication that takes
place between two agents. In software engineering, since the sequence diagrams of
an architecture provide the interactions between entities, this would be a good place
to start. For each interaction, we must then consider what security properties we
want to preserve and what could go wrong and then apply appropriate cryptographic
techniques.

Let us consider a simple hypothetical use case of a client A requesting for a digital
signature for a secret message m from a server B. The following would be the use
case:

Name: Request signature for message
Main success scenario:
1. A sends message m to B
2. B signs m
3. B sends signed m to A

The corresponding sequence diagram would be what is presented in figure 3.5:

Figure 3.5: Sequence Diagram for Use Case: Request Signature

25

3. Background Theory

From the given sequence diagram in figure 3.5, we then write an informal description
of the protocol as follows:

A —> B: m
B —> A: sign(m,sskB)

The notation A —> B: m indicates that A sends message m to B.

The notation B —> A: sign(m,sskB) indicates that B sends a pair of a message; m
signed with the signing secret key of B—sskB.

From this simple description, we then begin to reason about which security prop-
erties we want to preserve at each point of the protocol. We ask ourselves what
could go wrong at each step. However, certain attacks (bugs) in the protocol may
sometimes not be obvious and that is where automated tools become of assistance,
but we will cover them later. By careful examination of the protocol above, one will
notice that it is possible for an attacker to get hold of m since he controls the chan-
nel of communication; it is also possible for an attacker to impersonate the server
B and give a wrong signature or impersonate the client A and steal the signature
meant for A. Therefore, we should consider properties such as the secrecy of m, and
the authentication of the agents etc. This would mean that we have to modify our
protocol to ensure that these properties are preserved i.e. m is not leaked to an
attacker as it should be secret and that none of the agents is impersonated.

Next, to preserve the secrecy of m, we will introduce asymmetric encryption.

Let pkA, pkB be the public keys of both A and B respectively. The protocol now
becomes:

A —> B: aenc(m,pkB)
B —> A: aenc(sign(m,sskB),pkA)

We now have a protocol that to some extent preserves the secrecy of m by encrypt-
ing any message that transmits m. When sending m to B for signing, A encrypts it
with the public key of B so that only B should be able to decrypt it and also when
sending the signed message to A, B encrypts it with the public key of A so that only
A should be able to decrypt it. Notice that what is encrypted by B is the signed
message.

To preserve authentication we would have to proceed in a similar fashion as above
by ensuring that identities of both entities are sent together with the messages ex-
changed. This means that instead of A only sending m, it should include its identity
which we can assume to be its public key and similarly for B. The following would
be the resulting description:

A —> B: aenc((m,pkA),pkB)

26

3. Background Theory

B —> A: aenc((sign(m,sskB),pkB),pkA)

This would allow A to verify the identity of the server B and vice versa if need be.

The above abstract notation, while convenient to explain a protocol model, does
not completely model the protocol because it has ambiguities and leaves out many
aspects, for instance, concurrency. The next step therefore is to translate it into the
applied pi calculus [1] which would in turn be used by automated tools for protocol
verification. The next section covers the basics of the applied pi calculus necessary
for the reader to be able to follow the study.

3.2.7 Applied Pi Calculus
This discussion of the applied pi calculus is also based on a tutorial [17] by Cortier
and Kremer.

The applied pi calculus represents protocols as processes and has two kinds of pro-
cesses: plain and extended processes.

Plain processes are generated by the grammar in figure 3.6.

P, Q, R := Plain processes
0
P || Q
!P
νn.P
if t1 = t2 then P else Q
in(u, x).P
out(u, t).P

Figure 3.6: Syntax: Plain Process

“t1, t2, ... range over terms, n over names, x over variables and u is a meta-variable
that stands for either a name or a variable of channel type. The 0 process is the
process that does nothing. Parallel composition P || Q models that processes P and
Q are executed in parallel. The replication of P, denoted !P, allows an unbounded
number of copies of P to be spawned. New names are created using the new oper-
ator νn, which acts as a binder and generates a restricted name. The conditional
if t1 = t2 then P else Q behaves as P whenever t1 =E t2 and as Q otherwise.The
statement t1 =E t2 means that the two terms are equal based on some equational
theory. Finally, in(u, x).P expects an input on channel u that is bound to variable
x in P and out(u,M).P outputs term M on channel u and then behaves as P” [17].

Extended processes are generated by the grammar in figure 3.7:

27

3. Background Theory

A, B, C := Extended processes
P
A || B
νn.A
νx.A
{t/x}

Figure 3.7: Syntax: Extended Process

They extend plain processes by active substitutions, and allow restrictions on both
names and variables. An active substitution {t/x} allows processes to address a
term by a variable. The scope of this access may be restricted using the ν operator
on variables. This also allows to define local variables as follows: the construct let
x = t in P is defined as νx.(P ||{t/x}). When the variable x is not restricted, it
means that the environment, which represents the attacker, may use x to access the
term t.

Modeling a Protocol as a Process

Using applied pi calculus we shall now show how to model a security protocol as a
process or processes. Let’s take for instance the protocol we discussed earlier called
Request Signature whose informal description is the following:

A —> B: aenc((m,pkA),pkB)
B —> A: aenc((sign(m,sskB),pkB),pkA)

Each agent in the protocol plays a role and it is the roles that we shall model as
processes. For each role, we shall instantiate the corresponding process with the
required keys e.g. A needs to have a private key skA and the public key of B, pkB,
B needs the private signing key, sskB and the private encryption key skB. Using the
signatures Fstd and Fdec, we model the processes as follows:

The process for the role of A is modeled as follows:

PA(skA, pkB) = νm.out(c, aenc((m, pk(skA), pkB)).
in(c, x).
0.

Process A first creates a fresh and restricted message m and then outputs it on
the public channel c. The message is concatenated with the client’s identity— the
public key associated with the private key skA, and then the pair is encrypted with
the public key of the server B. The client A then begins to wait for input, which
as expected, should be the signed message m. The fact that m is restricted, means
that it is initially unknown to an attacker.

The process for B is modeled as follows:

28

3. Background Theory

PB(sskB, skB) = in(c, y).
let ym = fst(adec(y,skB)) in
let pkY = snd(adec(y, skB)) in
out(c, aenc((sign(ym, spk(sskB)), pk(skB)), pkY)
0.

Assuming we have a function symbol spk(k) that returns the public key associated
with a signing secret key k, the server process B only needs to be instantiated with its
secret signing key sskB and its secret encryption key skB. It first begins by waiting
for input on the public channel c; intuitively this should be a message to be signed.
Once a message is received, it is decrypted using B’s secret key. The received mes-
sage will be a pair containing first the message to be signed and then the public key
of the requesting client. Hence first (fst) and second (snd) projections are made on
the pair and the message to be signed is saved in a variable ym while the public
key of the requesting client is saved in the variable pkY respectively. B then signs
ym with its public signing key associated with the secret signing key sskB and then
pairs the signed message with its identity which is the public key associated with
its private encryption key skB, then encrypts the pair with the received public key
of the requesting client pkY and then outputs the message on the public channel c.

The last phase in the model is to put the processes together into a single process
that actually runs the two processes. We shall call this process P n

rs where rs stands
for the name of our protocol—Request Signature, and n is the version number as
we shall modify it a number of times.

P 1
rs = νskA, skB, sskB.(PA(skA, pk(skB)) || PB(sskB, skB) ||

out(c, pk(skA)) || out(c, pk(skB)) || out(c, spk(sskB)))

At the very top level of the main process above, we create private encryption keys
skA, skB and the private signing key sskB. We then instantiate PA and PB and let
them run in parallel. This shows that the agent identified by pk(skA) is executing
an instance of the role PA with the agent identified by pk(skB).We also output the
public keys of the previously created secret keys on the public channel c and make
them available to the attacker.

This model however, fails to capture Lowe’s man in the middle attack [26] since it
does not include any dishonest agent C. Let us assume that the attacker posses a
secret key skC, we shall modify the previous model and include an instance of PA

which is instantiated with the pk(skC) to indicate that A could start a session with
a dishonest agent C.

P 2
rs = νskA, skB, sskB.(PA(skA, pk(skB)) || PA(skA, pk(skC)) ||

PB(sskB, skB) || out(c, pk(skA)) || out(c, pk(skB)) || out(c, spk(sskB)))

The second version above definitely captures the man in the middle attack; however,
one does not know a priori with whom agents should start a session. We therefore
leave it to the attacker to decide and instead of explicitly adding an instance of PA

starting a session with pk(skC), we include an input that is used to define the public

29

3. Background Theory

key given to the client who has the initiator role. We let PA read a public key from
the public channel and then start a session with that public key; we call the public
key xpk.

P 3
rs = νskA, skB, sskB.(in(c, xpk).PA(skA, xpk) || PB(sskB, skB) ||

out(c, pk(skA)) || out(c, pk(skB)) || out(c, spk(sskB)))

This ensures that the attacker can start a run of the protocol with any public key
available including his. However, version 3 still only captures a single session per
role and this may lead our model to miss out existing attacks because many attacks
require several parallel sessions of the same role. To resolve this, we include repli-
cation (!).

P 4
rs = νskA, skB, sskB.(!in(c, xpk).PA(skA, xpk) || !PB(sskB, skB) ||

out(c, pk(skA)) || out(c, pk(skB)) || out(c, spk(sskB)))

Version 4 allows for multiple arbitrary sessions to be executed by both A and B.
However, it is still possible that both roles PA and PB could be executed by the
same agent. Moreover, this model only allows two honest agents executing several
sessions and yet an attack may require several agents executing several sessions. We
therefore add replication to allow the model to create an arbitrary number of honest
keys, each of which could be used in an arbitrary number of sessions. We also allow
both agents to play both roles by interchanging their public keys.

P 5
rs = !νskA, skB, sskB.(!in(c, xpk).PA(skA, xpk) || !PB(sskB, skB) ||

!in(c, xpk).PA(skB, xpk) || !PB(sskB, skA) ||
out(c, pk(skA)) || out(c, pk(skB)) || out(c, spk(sskB)))

We finally summarise it as follows to allow for the symmetric nature of the roles
expressed in version 5 above:

P 6
rs = !νsk, sskB.(!in(c, xpk).PA(sk, xpk) || !PB(sskB, sk) ||

out(c, pk(sk)) || out(c, spk(sskB)))

3.2.8 ProVerif
For any protocol verification tool, the following three properties are desirable even
though not all may be guaranteed in certain cases [17]:

1. Soundness: any solution found by the procedure is indeed a solution of the
verification technique i.e. the solution is correct.

2. Completeness: whenever there is a solution of the verification technique, there
should exist a path that leads to the solution i.e. no possible solution is left
out.

3. Termination: there is no infinite branch. This is not guaranteed when dealing
with unbounded cases.

Protocol verification is not an easy task to perform manually; therefore tools have
been developed to automatically check whether a protocol can be attacked. The
biggest challenge to automated tools is undecidability caused by unbounded number

30

3. Background Theory

of sessions and this could make even simple properties like secrecy to be undecidable
[30], hence many techniques focus on bounded cases. Examples of tools that focus
on bounded cases are Avispa [5] and Scyther [18].

What is ProVerif?

Tools that handle unbounded cases have also been developed. One such tool is
ProVerif which is considered as the most mature in this approach [17]. ProVerif
is an automatic cryptographic protocol verifier for the Dolev-Yao attacker model;
Figure 3.8 shows its architecture. ProVerif takes protocols written in a variant of
the applied pi calculus called typed pi calculus as input together with some security
property to be verified. The protocol is then automatically translated into a set of
first-order Horn clauses [46, 11] and the properties are translated into derivability
queries. The resolution can have three outcomes: the property is proven and true,
or the analysis does not terminate or the property cannot be proved (which means it
is false), at which point ProVerif tries to reconstruct an attack to help the designer
see how the property could be broken by an attacker, however, there is a possibility
that ProVerif may not be able to reconstruct the attack.

Figure 3.8: ProVerif Architecture[39]

ProVerif is capable of proving the following properties.
• Secrecy
• Authentication (and correspondence assertions)
• Strong secrecy
• Equivalence properties between processes that differ only by terms.

ProVerif Possibilities and Limitations [12]

31

3. Background Theory

• Protocol analysis is considered with respect to an unbounded number of ses-
sions and an unbounded message space owed to some well-chosen approxima-
tions.

• Because of the use of approximations, ProVerif can give false attacks, but if it
claims that the protocol satisfies some property, then the property is actually
satisfied.

• It is capable of attack reconstruction: when a property cannot be proved,
ProVerif tries to reconstruct an execution trace that falsifies the desired prop-
erty.

We now present how to model a protocol using the typed pi calculus. Consider the
simplified Request Signature protocol’s first version:

Basics of Typed pi Calculus

A —> B:m
B —> A:sign(m,sskB)

We want to model this protocol in ProVerif and test that m is secret. Figure 3.9
provides the typed pi calculus model for the above protocol description.
The typed pi calculus provides a type for every variable or name but largely resem-
bles the applied pi calculus in its syntax. ProVerif uses the typed pi calculus to
model protocols.

Source Structure

ProVerif source consists of:
- a sequence of declarations
- the word “process” followed by statements describing the steps of the process.

〈decl〉∗process〈process〉
- decl := free names, constructors, destructors, queries, process macros

ProVerif protocol source files are simply text files saved with a .pv extension (line 1).
Comments are included in the source file by using (**). The keyword type is used
to declare new types (line 4,5). Every statement outside a process macro ends with
a period (.). Constructors are declared using the keyword fun (line 6, and 7). For
each constructor that returns a term, the type of the term must be indicated, e.g.
line 6, and 7. All names or variables must have types, e.g. line 10, and 13. The key
word free is used to declare global names i.e. those that are accessible to all process
including an attacker (line 10). For names that must be hidden1 from the attacker’s
knowledge, the keyword [private] is appended at the end of each declaration (line
13). All queries that check whether a particular property holds for the protocol are
declared using the keyword query e.g. line 15. Secrecy queries are checked using
the function attacker(...), with the name to be checked as the parameter, while
correspondence assertions are declared using events (discussed in later sections).
Process macros are declared to avoid writing all the steps for each process in the
main process (line 30-33). Hence the client process is declared at lines 17-21 and the

1Such names are only considered to be initially hidden from the attacker unless proven to be
truly secret.

32

3. Background Theory

Figure 3.9: Typed pi Calculus for Request Signature

server process at lines 23-37. Each statement in a process macro ends with a semi
colon and the last statement ends with a period to signify the end of the process.
At line 10, we declare a public channel c for the client and server to use for commu-
nication. At line 13 we declare the secret message m. At line 15 we query the secrecy
of m. Internally, ProVerif attempts to prove that a state in which the name m is
known by the attacker is unreachable, hence it tries to prove that not attacker(m)
is true. If the output says not attacker(m) is false, it means that an attacker can
discover the secret m.
The client process A basically follows the two steps of the protocol described above.
First it sends the message m to be signed, using the public channel c (line 20)
and afterwards begins to wait for the signed message which would be saved in the
variable x (line 21).
The server process B similarly waits for an incoming message on the public channel
c to be saved in variable y (line 26) and then signs it using its private signing key
(sskB) and sends it back on the channel (line 27).
The main process first creates a new private signing key (also known as secret signing
key—sskB) at line 31. It then gets the public signing key of sskB, saves it as spkB

33

3. Background Theory

and sends it out on the public channel for anyone to be able to verify the signature
at any point2 (line 32). Line 33 instantiates the two processes and runs them in
parallel.
ProVerif Output
The output of line 15—query attacker(m) is given in figure 3.10:

Figure 3.10: ProVerif Output for Request Signature

ProVerif begins by outputting the steps of each process in the model and then be-
gins to verify each query, in this case we only have one query checking the secrecy
of m. The final result is “RESULT not attacker(m[]) is false.” which means that
the secret m is reachable by the attacker. ProVerif first states which query it is
verifying using the statement “– Query not attacker(m[])”. It then provides an En-

2The destructor for verifying signed messages is not included in this example but is presented
in later sections

34

3. Background Theory

glish description of the derivation denoted by “1. The message m[] may be sent to
the attacker at output 5.” ; A derivation is ProVerif’s internal representation of how
an attacker may break the property being tested. After the English description,
ProVerif then provides a trace of actual steps to take in the protocol in order to
break the property. The English description and trace are only given if the goal is
reachable by an attacker.

From the output, it is then left with the Designer to fix the protocol in order to
preserve the desired security properties. This is the work presented in the Architec-
tural Evaluation section to formally verify that the proposed architecture is sound
with regard to secrecy and authentication aspects.

In summary, verification of security protocols is conducted on abstract models of
the protocols. Protocols are modeled in the applied pi calculus using cryptographic
primitives. The verification is performed by an automated tool—ProVerif (as is
the case in this thesis), while taking into account the attacker model (Dolev-Yao
in this instance). In the next chapter, we present the specification of the proposed
architecture.

35

3. Background Theory

36

4
Specification

This chapter presents a description of the domain, domain model, requirements and
use cases. The domain description provides a list of the key entities of the domain
and their roles. The domain model is a diagram expressing relations between the
constructs in the domain. Requirements present the goals to be achieved to fulfill
the research objectives and use cases are later presented to describe the direction
taken to achieve the goals.

4.1 Domain Description
The proposed architecture consists of five main entities: a Surveillance Organisation
(SO), a Data Protection Authority (DPA), a Court, a Time Stamping Authority
(TSA) and a Citizen—also known as Data Subject (DS). This section, together
with Figure 4.1, presents the concepts related to each of the above entities in the
domain and how they are related.

4.1.1 Surveillance Organisation (SO)
The SO stores surveillance records about citizens. Each surveillance record is called
an Observation. For each observation, the SO must obtain a TimeStamp from the
TSA and a Receipt from the DPA; this is mandatory if such an observation should
become a Record that could be used as Evidence in Court.

4.1.2 Data Protection Authority (DPA)
The purpose of the DPA is to bring about transparency in the operations of the
SO by receiving commitments from the SO about its surveillance observations. The
DPA issues receipts for each timestamped observation committed to it. This enables
the DPA to respond to citizens who may wish to find out if they had been under
surveillance before, thus fulfilling the “Individual Participation Principle” proposed
by the OECD.

4.1.3 Court
The Court is the legal entity that has the sole right of making “public” the surveil-
lance records of a citizen. The court issues a court Order to the SO for surveillance

37

4. Specification

Figure 4.1: Domain Model

records on a particular citizen. Each order may refer to particular metadata such as
an identifier for citizen or some location. The SO then responds by disclosing surveil-
lance records matching the order, if any. However, these records are only considered
valid if and only if they were timestamped by the TSA and signed (receipted) by the
DPA. The court must verify that the submitted records are indeed valid otherwise
are discarded. The combination of a court Order and a Record composes Evidence
that can be used in an court case.

4.1.4 Time Stamping Authority (TSA)

The TSA’s sole purpose is to timestamp observations sent by the SO. Each times-
tamp must correspond to exactly one observation or set of observations sent in one
session.

38

4. Specification

4.1.5 Citizen
A citizen represents any individual that is a data subject of the SO. A citizen can
make requests to the DPA for the purpose of finding out if he/she has been under
surveillance. The DPA must then respond with partial sets of information sufficient
to answer the request.

4.2 Vocabulary
Fact: A Fact is anything observed about a citizen; this could be raw unstructured

data like video surveillance or imagery.
Metadata: Metadata is structured information extracted from facts; this could be

identifiers of citizens (e.g. biometric code, social security number etc), location
and time of the fact.

Observation: An Observation is an identifiable record of surveillance that has po-
tential to be used against a citizen in a court of law. An observation has one
or more Metadata records and may also be linked to some fact. A fact could
exist without being used as an observation; however, metadata only exists to
serve the purpose of constructing an observation.

Record: A Record is a timestamped, and receipted observation. This is the only
kind of observation that is allowed to be sent to a Court upon a court a order.

TimeStamp: A timestamp relates to the time an observation was taken; in this
context it relates to the time an observation is stamped by the TSA in readiness
for registration with the DPA.

Receipt: A signature from the DPA confirming receipt of a commitment from the
SO.

Order: A request for Records matching particular Metadata e.g. location, or iden-
tifiers

Evidence: Verified Records matched with an Order constitute Evidence.

4.3 Requirements
Table 4.2 describes the requirements for the architecture presented in this thesis.
Note that this list of requirements focuses on security and other qualities like avail-
ability or performance etc are not addressed. The first column provides the func-
tional requirements. The second one provides the quality requirements associated
with each functional requirement presented in the first column. The third column
presents the security goal that was intended to be achieved by each requirement in
the corresponding row.

There are three main functional requirements (1) The SO shall register observations
with the DPA, (2) The SO shall disclose records to the Court following a valid court
order and (3) A Citizen shall be able to ask the DPA about any surveillance records
related to him. For each of these requirements, a number of quality requirements
are included which ensure the preservation of the security properties desired in each

39

4. Specification

case. For instance, to ensure that observations sent to the DPA can be trusted
regarding when they actually took place, we require that the SO first timestamps
them and then commits, furthermore, we ensure that timestamps are unique for
each session so that the SO does not reuse timestamps on observations taken at
different times. This procedure is followed for the rest of the requirements and the
reader is referred to Table 4.2 for more details.

Table 4.1 describes which entities can access which items in the domain. This shows
only the items that must be secret to some entities. Xmeans should see, X means
should not see and 0 means unimportant. Identifier is what may be used by a Citi-
zen to request the DPA for records. The DPA only knows identifiers sent by citizens
but not in the commitments.

Table 4.1: Secrecy Table

SO TSA DPA Court Citizen
Observation X X X X X
Timestamp X X X X X
Identifier 0 0 X 0 X

4.4 Use Cases
Figure 4.2 presents three business usecases: create record, create evidence and re-
quest records. The create record use case is initiated by the SO to get an observation
timestamped by the TSA and signed by the DPA. The create evidence usecase is
initiated by the Court to issue an order for records to the SO and receive the re-
quested records if available. The request records use case is initiated by the Citizen
to make an inquiry with the DPA regarding any surveillance records relating to the
Citizen.

4.4.1 Brief Use Cases
The following are brief descriptions of the use cases presented in figure 4.2. Each
description outlines the steps taken by the actors to achieve the goal of the use
case. Note that these are not detailed usecases hence only main scenarios are de-
scribed while alternative scenarios are omitted. In place of alternative scenarios,
mis usecases are presented in Section 4.4.2.

4.4.1.1 UC1: Create Record

Goal: To timestamp and receipt an observation
Actors: SO, TSA, DPA
Main Scenario:

40

4. Specification

Figure 4.2: Business Use Case Diagram

1. SO sends observation to TSA for timestamping.
2. TSA issues timestamp
3. TSA sends timestamped observation to SO
4. SO sends time stamped observation to DPA for receipt
5. DPA receipts observation
6. DPA sends receipted observation, a.k.a Record, to SO
7. SO saves Record

4.4.1.2 UC2: Create Evidence

Goal: To collect and verify surveillance records for a citizen
Actors: Court, SO, DPA
Main Scenario:

1. Court sends order for records to SO
2. SO sends records matching the given order
3. Court verifies records with DPA
4. If confirmed, Court creates evidence from both the order and the records, else

records are discarded

41

4. Specification

4.4.1.3 UC3: Request Records

Goal: To know of any surveillance operations performed on the citizen
Actors: Citizen, DPA
Main Scenario:

1. Citizen sends request to DPA
2. DPA checks among commitments for those matching Citizen
3. DPA notifies Citizen

4.4.2 Misuse Cases
This section presents the actions that should not be allowed in the system; these
are also considered as attacks to the system. As stated earlier, misuse cases have
goals conflicting with the regular use cases. We do not provide much detail about
each misuse case as they are self explanatory. Table 4.3 presents the misuse cases.
In the first column is the actual misuse case, in the second is the security attribute
breached by the misuse case and the third column presents the quality requirement
from Table 4.2 that prevents the attack).

4.4.3 Requirement–Use Case Matrix
Table 4.4 shows the relationship between use cases and requirements; in particular,
for each functional requirement RQ (row), each use case UC (column) that is re-
quired to fulfill the requirement is marked with an X.

42

4. Specification

Table 4.2: Architecture Requirements

Functional Requirement Quality Requirement Security Goal
FR1: The SO shall register
observations with the DPA

QR1a: Observations shall
be time stamped by TSA.

Integrity

QR1b: Timestamps shall be
unique for each observation
i.e. no timestamp shall be
used for more than one ob-
servation.
QR1c: The TSA shall sign
the timestamped observa-
tion to ensure authenticity
of timestamps.
QR1d: The DPA shall sign
only timestamped observa-
tions.
QR1f: The DPA shall check
that timestamps are not
older than a period of time
predefined by the DPA it-
self.
QR1e: Observations shall
remain secret while being
sent to either the TSA or
the DPA.

Secrecy

FR2: The SO shall dis-
close surveillance records to
a Court upon receipt of a
valid Court Order

QR2a: Records shall be
disclosed ONLY following a
corresponding court order

Secrecy (Confi-
dentiality)

QR2b: The Court shall
check the consistency of the
records supplied by the SO
with what was registered
with the DPA.

Integrity

QR2c: The SO shall dis-
close only records commit-
ted prior to the court order.

FR3: A Citizen shall be
able to request records of
surveillance relating to him

QR3a: The DPA shall
access only a partial set
of information (see Section
6.2.2) from observations, to
allow it to service requests
from Citizens.

Secrecy

QR3b: The DPA shall ser-
vice citizen requests with-
out accessing secret obser-
vations.

For all FRs above QR4: All entities shall pro-
vide proof of identity during
their communication.

Authentication 43

4. Specification

Table 4.3: Misuse Cases

Mis Use case Security Attribute
Breached

QR to prevent
attack

SO commits untimestamped ob-
servation

Integrity QR1a, QR1d

SO commits observation with old
timestamp i.e. SO timestamps
observation but does not commit
immediately

Integrity QR1f

SO forges timestamp Integrity QR1c
SO discloses observations without
court order

Secrecy QR2a

SO discloses uncommitted obser-
vations

Integrity QR2b

SO commits observation after re-
ceiving court order for it

Integrity QR2c

SO uses same timestamp for more
than one session (or more than
one observation)

Integrity QR1b

DPA access secret observations Secrecy QR1e, QR3b
DPA sends secret observations to
Citizen

Secrecy QR3a

TSA access secret observation Secrecy QR1e
Any of the agents sends data
without authenticating

Authentication, Se-
crecy

QR4

Table 4.4: Requirement–Use Case Matrix

UC1: Create
Record

UC2: Create
Evidence

UC3: Request
Records

RQ1: SO registers ob-
servation with DPA

X

RQ2: SO discloses
records to Court

X X

RQ3: Citizen requests
DPA for records

X

44

5
Design

This chapter presents the proposed architecture’s context diagram, component dia-
gram and sequence diagram.

5.1 Context Diagram
Figure 5.1 presents the contex diagram of the architecture.

Figure 5.1: Context Diagram

The DPA provides the ICommitment interface to the SO for the latter to be able
to submit commitments of its observations. The TSA provides the ITimeStamp
interface for the SO to be able to obtain timestamps for its observations. The
SO provides the ICourtOrder interface for the Court to be able to issue orders for
records to the SO, while the Court provides the IDisclosure interface for the SO to
be able to respond to orders. The DPA provides the IRecordVerifier interface for
the Court to be able to verify records it receives from the SO before saving them as
evidence. Also, the DPA provides the IRecordRequest to the Citizen for the latter

45

5. Design

to request for any surveillance records related to him. The IObservation is for the
SO to perform surveillance operations on the Citizen and is included here merely
for clarity purposes but is not part of the proposed solution as it only concerns the
SO.

5.2 Component Diagram
Figure 5.2 presents the component diagram of the architecture.

Figure 5.2: Component Diagram

The component diagram presented in figure 5.2 concentrates on the components
relevant to the thesis problem. The reader will notice that since the thesis does not
focus on qualities such as performance and availability of the entire system, compo-
nents to handle such issues are not included; for instance the Storage components
could be structured in different ways to use patterns such as the Replicated Compo-
nent Group [24] for better availability, but as stated, we only present it here as one
functional component to demonstrate our solution. Furthermore, detailed security
architectural patterns that include components e.g. system logs, audit interceptors

46

5. Design

etc are not shown here. Therefore this component diagram focuses on how the com-
ponents proposed in this thesis relate to each other. The following is an explanation
of the SO, DPA and Court components together with their sub-components and in-
terfaces; the TSA and Citizen components are not explained as nothing about them
has changed from the context diagram.

5.2.1 SO Component
At the top level, the SO has three components prefixed with SO; the Logic, Account-
ability and Storage components.
SOLogic: The SOLogic component consists of the OrderHandler, MetaDataHan-

dler and Observer components. The Observer is the main surveillance com-
ponent that gathers facts from citizens. The OrderHandler processes orders
issued by the Court. It receives orders through the ICourtOrder interface and
then forwards them to the MetaDataHandler through the IOrdersHandler in-
terface provided by the latter. The MetaDataHandler collects metadata from
the Observer through the IMetaData interface, which it saves in the SOStorage
component using the ISOStorage interface. Upon request from the Court, the
MetaDataHandler searches for records matching the order and forwards the
records to the OrderHandler component which in turn discloses the records
through the IDisclosure interface.

SOStorage: This component handles data storage for the SO
SOAccountablity: The SOAccountability component consists of the Commitment

and TimeStamp components. In order to perform a commitment of an obser-
vation to the DPA, the observation would be passed from the MetaDataHan-
dler to the Commitment component through the ISOAccountability interface.
The Commitment component passes the observation to the SO TimeStamp
component through the ISOTimeStamp interface, which in turn sends the ob-
servation to the TSA for timestampiing through the ITimeStamp interface.
The TSA responds to the SO TimeStamp component which then sends the
timestamped observation to the Commitment component. The Commitment
component then sends the observation to the DPA through the ICommitment
interface.

5.2.2 DPA Component
The DPA component consists of a RecordVerifier, RequestHandler, Commitmen-
tHandler and DPAStorage component.
RecordVerifier: The RecordVerifier handles verification of records submitted to

the Court by the SO. This is done through the IRecordVerifier interface it
provides to the Court. The RecorfVerifier checks the records submitted by
the Court against its internal storage of commitments using the IDPAVerifier
interface.

RequestHandler: The RequestHandler processes requests from citizens sent through
the IRecordRequest interface. Upon receipt of a request the RecordHandler

47

5. Design

searches for any matching records of the citizen from the DPAStorage using
the IDPARequests interface.

CommitmentHandler: The CommitmentHandler processes commitments from
the SO.

DPAStorage: Depicts all storage for the DPA.

5.2.3 Court Component
The Court component consists of an Orders, Records, and Storage component.
Orders: The Orders component allows the Court to issue orders to the SO through

the ICourtOrder interface.
Records: The Records component handles receipt of records from the SO through

the IDisclosure interface, and verifies the records through the IRecordVerifier
interface provided by the DPA. Once verified, the records are saved to the
Storage component using the ICourtRecords interface.

Storage: Depicts database storage for the Court

5.3 Sequence Diagrams
Figure 5.3 is a presentation of a sequnce diagram that describes the order of events
for the communication between all the entities excluding the Citizen i.e. SO, TSA,
DPA and Court. We combine the steps of UC1—Create Record and UC2—Create
Evidence, to ensure that all steps are carried out in the desired order. This sequence
diagram shall be formalised into a protocol to be verified.

The following are the steps depicted in the sequence diagram in figure 5.3:
1. SO sends observation to TSA for time stamping.
2. TSA issues timestamp
3. TSA sends time stamped observation to SO
4. SO sends time stamped observation to DPA for receipt
5. DPA receipts observation
6. DPA sends receipted observation, a.k.a Record, to SO
7. SO saves Record
8. Court sends order for records to SO
9. SO sends records matching the given order
10. Court verifies records with DPA
11. If confirmed, Court creates evidence from both the order and the records, else

records are discarded

Similarly, the sequence diagram for a citizen request to the DPA is depicted in
Figure 5.4. The citizen first sends his identity to the DPA. The DPA uses identity
to check for any matching commitments from the SO. The DPA then responds with
a message indicating whether records have been found or not.

48

5. Design

Figure 5.3: Create Record and Evidence Sequence Diagram

Figure 5.4: Citizen Request Sequence Diagram

49

5. Design

50

6
Evaluation

To evaluate the proposed architecture with regard to its fulfillment of the security
properties expressed in the requirements (Table 4.2), the sequence diagrams of the
architecture are modeled as security protocols in the applied pi calculus and then
formally verified using ProVerif. Particularly, the architecture must preserve secrecy
of the surveillance observations, and authentication of participating agents. Fur-
thermore, correspondence assertions are also used to ensure that all agents perform
events in the required order.

6.1 Protocol Description
We first start by providing informal narrations of each protocol using sequences of
messages.

Create Record and Evidence

We refer to the combined actions of UC1 and UC2 presented in figure 5.3. The
following are the actions:

1. SO sends observation to TSA for time stamping.
2. TSA issues timestamp
3. TSA sends time stamped observation to SO
4. SO sends time stamped observation to DPA for receipt
5. DPA receipts observation
6. DPA sends receipted observation, a.k.a Record, to SO
7. SO saves Record
8. Court sends order for records to SO
9. SO sends records matching the given order
10. Court verifies records
11. If confirmed, Court creates evidence from both the order and the records, else

records are discarded

We start by writing an informal description of the entire protocol, then model it in
a step-wise fashion: by adding agents to, and security properties to preserve in the
protocol, in an incremental manner as explained in Section 1.3.2.2. For instance,
we start by considering the communication between the SO and the TSA, and the
security property secrecy and then continue with this same set of agents to also test

51

6. Evaluation

for authentication using correspondence events. Later we add the communication
between the SO and the DPA for each of the security properties stated earlier, the
Court and the SO, and conclude with the communication the Citizen and the DPA.

We shall now write an informal description of the protocol as follows:
Let s be an observation, t be a timestamp, f be a signature, o be a court order, and
CT be the Court.

1. SO —> TSA: s
2. TSA —> SO: (s,t)
3. SO —> DPA: (s,t)
4. DPA —> SO: ((s,t),f)
5. CT —> SO: o
6. SO —> CT: (o,s)
7. CT —> DPA: s
8. DPA —> CT:s

Note that the last two steps where CT verifies an observation s by sending it to
the DPA may not be necessary since CT may use a different technique e.g. public
signing key of the DPA to check the signature of the DPA on s thus making the
verification internal to the Court and reducing the steps to:

1. SO —> TSA: s
2. TSA —> SO: (s,t)
3. SO —> DPA: (s,t)
4. DPA —> SO: ((s,t),f)
5. CT —> SO: o
6. SO —> CT: (o,s)

Request Records
The narrations for a citizen request sent to the DPA are as follows: let CIT be a
Citizen, i be an identifier of the citizen and r be the response from the DPA.

1. CIT —> DPA: i
2. DPA —> CIT: r

6.2 Incremental Modeling and Verification

This section presents a model and verification of the entire protocol which includes
all the use cases. First we start by showing a step by step verification for the
communication between the SO and the TSA for the secrecy property so that the
reader can gain an understanding of why we take which steps in the protocol. We
present six versions of this partial model and for each version we explain what
problems or attacks on secrecy could be encountered.

52

6. Evaluation

6.2.1 Secrecy
This section presents models related to secrecy and considers communications be-
tween the SO and TSA only.

6.2.1.1 Version 1.0: All Plain

This first version sends plaintext messages between agents. Lines 1-26 are declara-
tions, while the actual protocol steps are from line 30 to 47. This is in fulfillment of
quality requirement QR1a which requires observations to be timestamped.

Symmetric key encryption

2 type key .
3 fun senc (b i t s t r i n g , key) : b i t s t r i n g .
4 reduc fora l l m: b i t s t r i n g , k : key ; sdec (senc (m, k) , k) =

↪→ m.

Lines 2 to 4 declare symmetric encryption; line 2 declares a type key to represent a
symmetric key, line 3 declares the binary constructor senc which encrypts a given
text represented by the built-in type bitstring, with the given symmetric key. Line
4 declares a destructor sdec for the constructor senc, which is used to manipulate
the terms formed by the constructor, in this instance, to return the plaintext of the
encrypted text.

Asymmetric key encryption

7 type skey .
8 type pkey .
9 fun pk (skey) : pkey .
10 fun aenc (b i t s t r i n g , pkey) : b i t s t r i n g .
11
12 reduc fora l l m: b i t s t r i n g , k : skey ; adec (aenc (m, pk (k))

↪→ , k) = m.

Similarly, lines 7 to 12 declare asymmetric encryption. First, two types are declared–
a secret key skey and its associated public key pkey. Next is declared the unitary
constructor pk(..) which returns the public key associated with the secret key given
as a parameter. Lastly the constructor and destructor for asymmetric encryption
are declared as aenc and adenc respectively.

Digital Signatures

15 type s skey .
16 type spkey .
17 fun spk (sskey) : spkey .
18 fun s i gn (b i t s t r i n g , s skey) : b i t s t r i n g .

53

6. Evaluation

19 reduc fora l l m: b i t s t r i n g , k : s skey ; getmess (s i gn (m, k
↪→)) = m.

20
21 (∗ checks ign r e tu rn s m only i f k matches pk (k) ∗)
22 reduc fora l l m: b i t s t r i n g , k : s skey ; checks ign (s i gn (m, k

↪→) , spk (k)) = m.

Lines 15 to 22 declare functions related to digital signatures which also use pub-
lic key encryption like asymmetric encryption hence only explain the destructors
declared in lines 19 and 22. The destructor getmess allows an agent to retrieve a
signed message while the checksign allows an agent to retrieve a message only if the
supplied public key matches the secret signing key that the message was initially
signed with. Though we do not use getmess, it must be included, otherwise the
capabilities of the attacker would be unnecessarily limited, which would lead to the
protocol missing some attacks. Hence we include it here to show that signed mes-
sages can be retrieved by any agent including an attacker, unless encrypted.

Public channel and secret observation

24 free c : channel .
25 (∗ s i s an obse rvat i on ∗)
26 free s : b i t s t r i n g [private] .

Line 24 declares the public channel used for communication. The attacker listens
on everything sent on this channel in conformance to the Dolev-Yao[19] model de-
scribed in section 3.2.6 . Line 26 declares the name s which we assume to be a
surveillance observation which should be sent to the TSA for timestamping. Recall
that names declared free are globally accessible to all agents including an attacker,
hence we restrict s from the attacker’s knowledge by appending the optional param-
eter [private] to its declaration.

Secrecy query

28 query a t tacke r (s) .

Line 28 declares the query that checks whether s is secret in any run of the the
protocol.

SO process macro

32 l et c l i entSO () =
33 out (c , s) ; (∗ send s to TSA∗)
34 in (c , x : b i t s t r i n g) ; (∗ read timestamped s ∗)
35 0 .

54

6. Evaluation

Lines 32 to 35 declare the process macro for the SO which outlines the steps the
agent playing the role of the SO would take. At line 33, the SO sends the obser-
vation s on the channel c and then begins to wait for a response from the TSA
(presumably) at line 34. Once the response comes through, the SO process ends by
doing nothing (for now) as designated by the zero process (0).

TSA process macro

39 l et serverTSA () =
40 in (c , y : b i t s t r i n g) ;
41 new t : b i t s t r i n g ; (∗ t i s a time stamp which i s

↪→ modeled as a nonce ∗)
42 out (c , (y , t)) ;
43 out (c , t) . (∗make timestamp pub l i c ∗)

Similarly, lines 37 to 43 declare the process macro for the TSA. The TSA starts by
waiting for an input at line 40 which it would receive in the variable y on channel
c. Upon receipt of the observation, the TSA creates a timestamp which we simply
model here as a nonce (represented by a fresh variable of type bitstring) due to
the fact that ProVerif can’t model timestamps [4]. Timestamp is made publicly
accessible by outputting it at line 43. The TSA then sends a pair of the received
observation and the newly created timestamp on the channel c. This is what the
SO would expect to receive at line 34.

Main process

45 process
46
47 ((! c l i entSO ()) | (! serverTSA ()))

Lines 45 to 47 describe the main process where all the macros are then run in par-
allel and with multiple sessions.

We then run the source file to view ProVerif output; the focus is on the query at
line 28 above which checks whether s is secret for the attacker. Figure 6.1 shows
the output of ProVerif for version 1.0 of the model. As expected, the result from
ProVerif is: “RESULT not attacker(s[]) is false.” which means that it is possible for
an attacker to obtain this secret. Looking at the derivation listed at, we notice that
the secret is leaked at output 2 (in the ProVerif output) when the SO sends it to
the TSA. This is because it is in plaintext and it is being sent on a public channel
which is accessible to the adversary. The solution is to use appropriate encryption.

• PROBLEM1a: s is leaked at out(c,(s[,*])) if not encrypted because
c is a public channel; [,*] means whether s is paired with something
else or not, it is vulnerable as long as it’s not encrypted (Quality
requirement QR1e).

• SOLUTION1a: Use appropriate asymmetric encryption.

55

6. Evaluation

Process :
(

{1} !
{2}out (c , s) ;
{3} in (c , x : b i t s t r i n g)

) | (
{4} !
{5} in (c , y : b i t s t r i n g) ;
{6}new t : b i t s t r i n g ;
{7}out (c , (y , t))

)

−− Query not a t tacke r (s [])
Completing . . .
S t a r t i ng query not a t tacke r (s [])
goa l r eachab l e : a t t a cke r (s [])

1 . The message s [] may be sent to the a t tacke r at output
↪→ {2} .

a t ta cke r (s []) .

A more d e t a i l e d output o f the t r a c e s i s a v a i l a b l e with
s e t t raceD i sp l ay = long .

out (c , s) at {2} in copy a

The a t tacke r has the message s .
A t ra c e has been found .
RESULT not a t ta cke r (s []) i s f a l s e .

Figure 6.1: ProVerif Output: Version 1.0

6.2.1.2 Version 1.1: Introduce Asymmetric Encryption

To resolve PROB1a, we let the SO encrypt the secret with the public key of the TSA
so that only the latter can decrypt it with its secret key. Version 1.1 implements
these changes in fulfillment of quality requirement QR1e that requires secrecy for
the observation sent to the TSA. For this version, we only present the relevant parts
of the model that will change.

Figure 6.2 shows version 1.1 of the updated model that includes asymmetric en-
cryption. The steps of each process macro still remain the same but asymmetric
encryption has been introduced. In this regard, the SO is declared with the public
key of the TSA (pkTSA) and its own secret key skSO as parameters. The pkTSA
will be useful to encrypt any message being sent to the TSA and the skSO will be

56

6. Evaluation

30 (∗SO macro ∗)
31
32 l et c l i entSO (pkTSA : pkey , skSO : skey) =
33 out (c , aenc (s , pkTSA)) ;
34 in (c , x : b i t s t r i n g) ;
35 0 .
36
37 (∗TSA macro ∗)
38
39 l et serverTSA (pkSO : pkey , skTSA : skey) =
40 in (c , y : b i t s t r i n g) ;
41 l et sY : b i t s t r i n g = adec (y , skTSA) in
42 new t : b i t s t r i n g ;
43 out (c , aenc ((sY , t) ,pkSO)) .
44
45 (∗main process ∗)
46 process
47 new skSO : skey ;
48 new skTSA : skey ;
49 l et pkSO = pk(skSO) in out (c , pkSO) ;
50 l et pkTSA = pk(skTSA) in out (c , pkTSA) ;
51 ((! c l i entSO (pkTSA, skSO)) | (! serverTSA (pkSO ,

↪→ skTSA)))

Figure 6.2: Model Version 1.1: Asymmetric Encryption

useful for decrypting messages encrypted with the SO’s public key.

Line 39 declares the process macro for the TSA with the public key of the SO (pkSO
and its own secret key skTSA as parameters. At line 41 the decrypted message is
read into variable sY which is then paired with the timestamp t, decrypted with
SO’s public key and then output at line 43. The SO should receive this message at
line 41 and decrypt it with its secret key.

In the main process, we create the secret keys for the SO and TSA at lines 47 and
48, we then generate their corresponding public keys and output them on the public
channel to make them accessible to the attacker. Line 51 then instantiates each
process macro with appropriate parameters.

Figure 6.3 shows the relevant output of ProVerif for the verification of version 1.1
of the model.
The output of ProVerif for version 1.1 states that the secrecy of s is preserved. But
what is incorrect about this model? QR4 requires that all entities shall require proof
of their identity.

• PROBLEM1b–REALITY CHECK: TSA can start a session with
anyone; encryption of (sY,t) should be based on pk of the inter-

57

6. Evaluation

Process :
. . .
−− Query not a t tacke r (s [])
Completing . . .
S t a r t i ng query not a t tacke r (s [])
RESULT not a t ta cke r (s []) i s t rue .

Figure 6.3: ProVerif Output: Version 1.1

locutor.
• SOLUTION1b: Let SO send its pk together with s, then TSA

should also read pkY in addition to sY, so that we have aenc((sY,t),pkY)

Problem1b is more of a reality check than an attack. In reality, the TSA simply
waits for requests for timestamps; it does not matter who the request comes from
hence we should not encrypt whatever message it receives with the public key of
the SO, rather, it should be encrypted with the public key of the agent who sent
the message because it may not always be the case that the messages are from the
SO. Version 1.2 allows the SO to send its identity, which for simplicity purposes
we assume to be it’s public key, together with the secret observation and then al-
low the TSA to encrypt its response with the public key it receives from the message.

6.2.1.3 Version 1.2: Introduce SO Identity (pkSO) and TSA should ac-
cept any interlocutor

Figure 6.4 shows version 1.2 of the model. The difference between version 1.2 and
1.1 is found at lines 33 and 41. At line 33, the SO sends its public key together
with the observation s while at line 41, the TSA reads both values of the pair into
two variables; sY for the observation and pkY for the public key of the interlocu-
tor. ProVerif still proves that s is secret and displays the message “RESULT not
attacker(s[]) is true”. However, another reality check needs to be addressed:

• PROBLEM1c–REALITY CHECK: SO can start a session with any
public key including its own. This is also to fulfill QR4 whch re-
quires entities to prove their identities.

• SOLUTION1c: Let SO start by reading a public key from the chan-
nel and then use it to start a session with the TSA

6.2.1.4 Version 1.3: SO reads public key of interlocutor from channel

Version 1.3 implements solution 1c by allowing the SO to first read a public key
from the channel and then use it to send observations for timestamps. This version
is presented in Figure 6.5.
The changes are effected at line 33 where the SO first reads a public key from

58

6. Evaluation

30 (∗SO macro ∗)
31
32 l et c l i entSO (pkTSA : pkey , skSO : skey) =
33 out (c , aenc ((s , pk (skSO)) ,pkTSA)) ;
34 in (c , x : b i t s t r i n g) ;
35 0 .
36
37 (∗TSA macro ∗)
38
39 l et serverTSA (pkSO : pkey , skTSA : skey) =
40 in (c , y : b i t s t r i n g) ;
41 l et (sY : b i t s t r i n g , pkY : pkey) = adec (y , skTSA) in
42 new t : b i t s t r i n g ;
43 out (c , aenc ((sY , t) ,pkY)) .
44
45 (∗main process ∗)
46 process
47 new skSO : skey ;
48 new skTSA : skey ;
49 l et pkSO = pk(skSO) in out (c , pkSO) ;
50 l et pkTSA = pk(skTSA) in out (c , pkTSA) ;
51 ((! c l i entSO (pkTSA, skSO)) | (! serverTSA (pkSO ,

↪→ skTSA)))

Figure 6.4: Model Version 1.2: TSA Accepts any Interlocutor

59

6. Evaluation

30 (∗SO macro ∗)
31
32 l et c l i entSO (pkTSA : pkey , skSO : skey) =
33 in (c , pkX : pkey) ; (∗ SOL1c∗)
34 out (c , aenc ((s , pk (skSO)) ,pkX)) ;
35 in (c , x : b i t s t r i n g) ;
36 0 .

Figure 6.5: Model Version 1.3: SO Reads Public key From Channel

the channel into variable pkX and then uses it to encrypt its message to the TSA.
However, with this new change, ProVerif shows that the secrecy of s is no longer
preserved. The final result of the output is “RESULT not attacker(s[]) is false”. A
careful examination of the derivation reveals that since the SO is ready to send its
observations to any public key, it may actually end up sending it to an attacker who
will ultimately obtain the secret by decrypting it with his secret key.

• PROBLEM1d: If an attacker has some key k and uses pk(k) to get
a public key, he can ultimately get s (Quality requirement QR1e).

• SOLUTION1d: Restrict who to send s to, by checking that the
starting pk is pkTSA.

6.2.1.5 Version 1.4: SO only proceeds if supplied pk is that of TSA

Figure 6.6 is a presentation of version 1.4 of the model; it implements solution 1d by
checking that the input pk is that of the TSA. This is to still fulfill QR1e requiring
secrecy.

30 (∗SO macro ∗)
31
32 l et c l i entSO (pkTSA : pkey , skSO : skey) =
33 in (c , pkX : pkey) ;
34 i f pkX = pkTSA then (∗SOL1d∗)
35 out (c , aenc ((s , pk (skSO)) ,pkX)) ;
36 in (c , x : b i t s t r i n g) ;
37 0 .

Figure 6.6: Model Version 1.4: SO Compares Input pk to pkTSA

Line 34 provides the necessary check suggested in solution 1d. ProVerif proves that
the secrecy of s is preserved.
The next step is to provide authenticity for the timestamp the SO receives.

• PROBLEM1e: t needs to be validated that it truly comes from the
TSA (Qaulity requirement QR1c).

60

6. Evaluation

• SOLUTION1e: Digitally sign t using the signature of the TSA.

6.2.1.6 Version 1.5: Sign timestamp with signature of TSA to ensure
that it’s valid and not forged

Figure 6.7 presents version 1.5 of the model, which partially fulfills quality require-
ment QR1c by digitally signing the timestamp to provide its authenticity.

39 (∗TSA macro ∗)
40
41 l et serverTSA (pkSO : pkey , skTSA : skey , sskTSA : sskey) =
42 in (c , y : b i t s t r i n g) ;
43 l et (sY : b i t s t r i n g , pkY : pkey) = adec (y , skTSA) in
44 new t : b i t s t r i n g ;
45 out (c , aenc ((sY , s i gn (t , sskTSA)) ,pkY)) .
46
47 (∗main process ∗)
48 process
49 new skSO : skey ;
50 new skTSA : skey ;
51 new sskTSA : sskey ;
52 l et pkSO = pk(skSO) in out (c , pkSO) ;
53 l et pkTSA = pk(skTSA) in out (c , pkTSA) ;
54 l et spkTSA = spk (sskTSA) in out (c , spkTSA) ;
55 ((! c l i entSO (pkTSA, skSO)) | (! serverTSA (pkSO ,

↪→ skTSA , sskTSA)))

Figure 6.7: Model Version 1.5: TSA Digitally Signs Timestamp

Line 41 adds the secret signing key sskTSA of the TSA to the list of parameters
with which the TSA is instantiated. This key is then used to sign the newly created
timestamp at line 45 which is sent together with the observation. Note that what
is signed is only the timestamp t.

• PROBLEM1f: signed t could be reused by SO on other observa-
tions, yet t needs to be fresh and different for each s (Quality re-
quirement QR1b).

• SOLUTION1f: Sign pair (sY,t) with signature of TSA.

6.2.1.7 Version 1.6: Sign pair of observation and timestamp with sig-
nature of TSA (SOLUTION1f)

Figure 6.8 shows version 1.6 of the model, that allows the TSA to sign the pair of the
observation and timestamp rather than the timestamp only thus fulfilling quality
requiremnt QR1b which requires timestamps to be unique.

61

6. Evaluation

39 (∗TSA macro ∗)
40
41 l e t serverTSA (pkSO : pkey , skTSA : skey , sskTSA : sskey) =
42 in (c , y : b i t s t r i n g) ;
43 l e t (sY : b i t s t r i n g , pkY : pkey) = adec (y , skTSA) in
44 new t : b i t s t r i n g ;
45 out (c , aenc (s i gn ((sY , t) , sskTSA) ,pkY)) . (∗SOL1f ∗)
46

Figure 6.8: Model Version 1.6: TSA Signs Pair of Observation and Timestamp

Line 45 shows that the signature is now performed on the pair rather than on the
timestamp only.

In summary encryption techniques improve secrecy and digital signatures are used
to provide a authenticity or trust for messages received. We use signatures from
hence forth whenever we want to ensure trust in a message. In ProVerif there’s no
need to for message authentication codes as message authentication is implicit in
the encryption provided [12].

6.2.2 Authentication
As stated in section 2, authentication aims at verifying identities of communicating
agents to ensure that no honest agent is impersonated by an attacker. We use cor-
respondence events to annotate which point of the protocol has been reached. As
stated earlier, a correspondence property states that if an event e has happened,
then an event e’ must have happened before. In this regard, to authenticate agents,
we use correspondence properties to ensure that if an event e is “B accepts a run of
the protocol”, then an event e’ must have happened before which is, “A started the
run of the protocol”.

This section presents the authentication of all agents in the surveillance architec-
ture’s protocol in fulfillment of requirement QR4 presented in table 4.2, which re-
quires all agents to be authenticated before protocol messages are exchanged. We
represent the agents by the following letters, let:

• A be the SO
• B be the TSA
• C be the DPA
• D be the Court
• E be the Citizen

Correspondence Events

We use the following events to authenticate the agents.
A—B (SO–TSA)

62

6. Evaluation

• event beginAparam(pkey), which is used by the TSA (B) to record the belief
that the initiator whose public key is supplied as parameter has commenced a
run of the protocol with it.

• event endAparam(pkey), which means that the SO (A) believes that it has
successfully completed a run of the protocol with the TSA (B). This event is
executed only when the SO believes it is running the protocol with the TSA
i.e. when pkX = pkB where pkX is the public key A reads in to start a session
with B.

• event beginBparam(pkey), which denotes the SO’s intention to initiate the
protocol with an interlocutor whose public key is supplied as parameter.

• event endBparam(pkey), which records the TSA’s belief that it has success-
fully completed a run of the protocol with the SO. It supplies its public key
pk(skB) as the parameter.

The rest of the events presented below, are similar to the ones presented above in
their respective order.

A—C (SO–DPA)

• event beginACparam(pkey).
• event endACparam(pkey).
• event beginCparam(pkey).
• event endCparam(pkey).

D—A (Court–SO)

• event beginDparam(pkey).
• event endDparam(pkey).
• event beginADparam(pkey).
• event endADparam(pkey).

E—C (Citizen–DPA)
• event beginEparam(pkey).
• event endEparam(pkey).
• event beginCEparam(pkey).
• event endCEparam(pkey).

We also present a new version of the narration which includes all the agents and
the messages exchanged. Let s be an observation, i be the identity of the citizen
associated with observation s, and t be a timestamp.

63

6. Evaluation

SO —> TSA : aenc((hash(s),hash(i)),pkB)
TSA —> SO : aenc(sign(((hash(s),hash(i)),t),sskB),pkA)
SO —> DPA : aenc(sign(((hash(s),hash(i)),t),sskB),pkC)
DPA —> SO : aenc(sign(sign(((hash(s),hash(i)),t),sskB),sskC),pkA)
Court —> SO : aenc(sign(hash(i),sskD),pkA)
SO —> Court : aenc(((s,i),sign(sign(((hash(s),hash(i)),t),sskB),sskC)),pkD)
Citizen —> DPA : aenc(i,pkC)
DPA —> Citizen : aenc(t,pkE)

To summarise, we let obs be (hash(s),hash(i)). The TSA appends a timestamp t
to obs and signs it with its key. Let the signed, timestamped obs be tobs which is
sign((obs,t),sskB). The SO sends tobs as a commitment to the DPA. The DPA then
signs tobs and sends it back to the SO. Let the tobs signed by the DPA be scom
(signed commitment) which is sign(tobs,sskC). The court sends an order by sending
a signed, hashed identity i for the SO to disclose records1. When records matching
i are found, the SO sends a pair of the unhashed observation s and identity i with
scom as aenc(((s,i),scom),pkD). Since the court has the public key of both the DPA
and the TSA, it would verify the unhashed observation s by computing its hash
and comparing it to the hash of s in scom. A citizen makes a request by sending
his identity i to the DPA. Since scom contains the timstamp t associated with this
citizen, the DPA sends t to the citizen else a ‘NO’ answer is sent to indicate that
the DPA does not have surveillance commitments related to the citizen. This leads
to the following summarised version of the narration

SO —> TSA : aenc(obs,pkB)
TSA —> SO : aenc(sign(obs,t),sskB),pkA)
SO —> DPA : aenc(tobs,pkC)
DPA —> SO : aenc(sign(tobs,sskC),pkA)
Court —> SO : aenc(sign(hash(i),sskD),pkA)
SO —> Court : aenc(((s,i),scom),pkD)
Citizen —> DPA : aenc(i,pkC)
DPA —> Citizen : aenc(t,pkE)

We shall now present versions of the protocol corresponding to the incremental au-
thentication and modeling of the agents. The first version authenticates the SO
with the TSA and the last version will authenticate the Citizen with the DPA as
presented in the correspondence events above. Recall that version 1.x discussed in
section 6.2.1 was about secrecy, we build upon that version by adding authentica-
tion which shall be version 2.x where x shall be the iteration number. The following
model versions fulfill the authentication requirement, QR4, which requires agents to
be authenticated. Other specific requirements fulfilled by each version will be stated
in each version.

1This is a simplified version as the court could issue an order based on other criteria such as a
location for instance

64

6. Evaluation

6.2.2.1 Version 2.0: Model of the SO and the TSA

In addition to the authentication requirement (QR4), this version of the model ful-
fills the integrity requirement QR1 which requires an observation to be timestamped.

Authentication Queries

Figure 6.9 presents correspondence events and queries between the SO and TSA for
model version 2.0
The hash function at line 7 represents a one way hash function. Lines 26 to 30

7 fun hash (b i t s t r i n g) : b i t s t r i n g .
25
26 (∗ Authent icat ion que r i e s SO−TSA∗)
27 event beginBparam (pkey) .
28 event endBparam(pkey) .
29 event beginAparam (pkey) .
30 event endAparam(pkey) .
31
32 query x : pkey ; in j−event (endBparam(x)) ==> in j−event

↪→ (beginBparam (x)) .
33 query x : pkey ; in j−event (endAparam(x)) ==> in j−event

↪→ (beginAparam (x)) .
34

Figure 6.9: Model Version 2.0: Authentication Queries SO-TSA

declare the correspondence events between the SO and TSA as earlier explained.
Lines 32 and 33 declare the query that will allow ProVerif to prove that the events
occur in the required order. Line 32 ensures that the event endBparam(pkey) only
takes place after beginBparam(pkey), which intuitively means that the TSA ends its
run of the protocol if the SO began it. Line 33 declares a similar query and ensures
that the SO only ends if the TSA began the run. Injective agreement (inj-event) is
used to ensure that for each run of the protocol on the left of ==>, there is exactly
one run of the protocol on the right. This protects from replay attacks. For instance,
if we left out the injective agreement and just used event, it would mean that the
SO could obtain one timestamp for many observations hence inj-event ensures a
one-to-one protocol run.

Secrecy Queries

Figure 6.10 presents secrecy queries

Since the standard secrecy queries of ProVerif deal with private free names, we can’t
directly test the secrecy of the nonces exchanged between agents, hence we declare
four private free names at line 36 whose secrecy is queried at lines 38-41. The first

65

6. Evaluation

36 free secretObs , s e c r e t Id en t , secretBNa , secretBNb :
↪→ b i t s t r i n g [private] .

37
38 query a t tacke r (secretObs) ;
39 a t tacke r (s e c r e t I d en t) ;
40 a t tacke r (secretBNa) ;
41 a t tacke r (secretBNb) .
42

Figure 6.10: Model Version 2.0: Secrecy Queries SO-TSA

two secretObs and secretIdent represent a secret surveillance observation associated
with a citizen with the secret identity secretIdent. For each process that acts the
role of the Initiator of a protocol run, we test the secrecy of these two names by
encrypting them with the two nonces on the initiator’s side e.g. Na which is created
by A and NX which is the nonce it receives from B. The last two names, secretBNa
and secretBNb, are used to test the secrecy of the nonces on the Responder’s end
e.g. B by encrypting them with nonces Nb, and NY respectively. By having these
four names, we can ascertain as to which side of the communication secrecy is not
preserved [12].

SO-TSA Authentication

Figure 6.11 presents authentication steps for between the SO and the TSA.

Lines 44 to 69 declare the process macro for the SO, whose main difference from the
macro in version 1.6 presented in section 6.2.1 is in lines 45 to 60 which contain the
authentication code. Similarly the process macro for the TSA contains the authen-
tication code at lines 73 to 86. The SO is the initiator for this run hence starts by
reading the public key of its interlocutor at line 46. The event beginBparam(pkX)
is registered indicating that the SO is now ready to start communication with in-
terlocutor with the supplied key (ideally this should be the TSA but it can be any
agent). The SO then creates a new nonce Na at line 49 and sends it to the agent with
the received public key, as a challenge, together with its identity which is its public
key pk(skA). The TSA will receive this message at line 74. At line 75, the TSA
projects on the pair after decrypting it with its secret key and saves the received
nonce in variable NY and the public key of the initiator (which should be the SO)
in the variable pkY. At this point the TSA can register the event that the SO began
the run of the protocol with public key pkY, hence event beginAparam(pkY). The
TSA then creates its own nonce Nb and sends it together with the received nonce
NY at line 78. The rest of the authentication with the SO sending back the received
nonce and sending back to the TSA and both end the authentication checking that
they have truly been communicating with each other i.e. TSA checks that pkY =
pkA and SO checks that pkX = pkB. At lines 58, 59, 84 and 85 we test the secrecy
of the nonces by using them to symmetrically encrypt the four private free names
declared at line 36. This authentication scheme is used for all subsequent agents.

66

6. Evaluation

43 (∗ SO ∗)
44 l et processA (pkB : pkey , skA : skey) =
45 (∗BEGIN AUTH TSA∗)
46 in (c , pkX : pkey) ;
47 i f pkX = pkB then
48 event beginBparam (pkX) ;
49 new Na : b i t s t r i n g ;
50 out (c , aenc ((Na , pk (skA)) , pkX)) ;
51 in (c , m: b i t s t r i n g) ;
52 l et (=Na , NX: b i t s t r i n g ,=pkX) = adec (m, skA)

↪→ in
53 out (c , aenc (NX, pkX)) ;
54 i f pkX = pkB then
55 event endAparam(pk (skA)) ;
56
57 (∗ t e s t s e c r e cy o f nonces ∗)
58 out (c , senc (secretObs , Na)) ;
59 out (c , senc (s e c r e t Id en t , NX)) ;
60 (∗END AUTH TSA∗)

71 (∗ TSA ∗)
72 l et processB (pkA : pkey , skB : skey , sskB : sskey) =
73 (∗BEGIN AUTH SO∗)
74 in (c , m: b i t s t r i n g) ;
75 l et (NY: b i t s t r i n g , pkY : pkey) = adec (m, skB

↪→) in
76 event beginAparam (pkY) ;
77 new Nb: b i t s t r i n g ;
78 out (c , aenc ((NY, Nb, pkY) , pkY)) ;
79 in (c , m3: b i t s t r i n g) ;
80 i f Nb = adec (m3, skB) then
81 i f pkY = pkA then
82 event endBparam(pk (skB)) ;
83
84 out (c , senc (secretBNa , NY)) ;
85 out (c , senc (secretBNb , Nb)) ;
86 (∗END AUTH SO∗)

Figure 6.11: Model Version 2.0: SO-TSA Authentication

Timestamping an observation

Figure 6.12 presents the steps of each process to achieve the goal of timestamping
an observation

67

6. Evaluation

61
62 (∗ begin SO−TSA st ep s ∗)
63
64 out (c , aenc (((hash (secretObs) , hash (

↪→ s e c r e t I d en t)) , Na , pk (skA) ,pkX) ,pkX)) ;
65 (∗ read timestamped obse rvat i on ∗)
66 in (c , tob : b i t s t r i n g) ;
67 (∗ tobs i s s igned pa i r o f obs and t s ∗)
68 l et (tobs : b i t s t r i n g ,=pkB) = adec (tob , skA) in
69 0 .
70
87
88 (∗ begin SO−TSA st ep s ∗)
89
90 in (c , obs : b i t s t r i n g) ;
91 l et (mb: b i t s t r i n g ,=NY,=pkA,=pk (skB)) = adec (

↪→ obs , skB) in
92 (∗ c r e a t e timestamp ∗)
93 new t s : b i t s t r i n g ;
94 out (c , aenc ((s i gn ((mb, t s) , sskB) , pk (skB)) ,pkA)

↪→) .
95
96
97 (∗ Main ∗)
98 process
99 new skA : skey ; l et pkA = pk(skA) in out (c ,

↪→ pkA) ;
100 new skB : skey ; l et pkB = pk(skB) in out (c ,

↪→ pkB) ;
101 new sskB : sskey ; l et spkB = spk (sskB) in out (

↪→ c , spkB) ;
102 ((! processA (pkB , skA)) | (! processB (pkA ,

↪→ skB , sskB)))
103

Figure 6.12: Model Version 2.0: Timestamping an Observation

At line 64, the SO sends a pair of the hash of the secret observation secretObs and
a hash of the identity of the citizen concerned which is secretIdent. The hash of
the secretIdent will be used by the DPA later to identify and respond to citizen
requests. The hash of secretObs shall be used by the Court to verify disclosed
records from the SO upon a court order. Notice that in addition to the pair of
the observation and identity of the citizen, the SO also sends the nonce Na. This
is for the purpose of ensuring that each session with the TSA is unique to avoid
replay attacks. We could have created a new nonce for the TSA to use but since
the TSA already has Na, we use it instead of having to send a new one. The SO

68

6. Evaluation

also sends its public pk(skA) and the public key of its interlocutor pkX. The public
key pk(skA), will allow the TSA to check that the message it is dealing with is from
the SO it previously authenticated with. pkX will allow the TSA to check that the
message it has received is truly meant for it. The TSA will receive this request for
a timestamp at line 90 and then do pattern matching at line 91. The TSA first
reads the pair of (hash(secretObs),hash(secretIdent)) in the variable mb and then
checks that nonce in the message matches the previous one received (=NY), that
the sender is the SO (=pkA) and that this message is meant for the TSA (=pkB)2.
If all these patterns match, the TSA proceeds by creating a timestamp ts and then
pairs it with the message in mb and then signs it with its secret signing key. The
TSA then created a pair from the signed message and its public key pk(skB) and
then encrypts this pair with the public key of the public key of the SO (pkA). The
TSA includes its public key in this message to ensure that when the SO receives it,
it can check that the message has come from the TSA, which is done by the SO at
lines 66 and 68. Therefore timestamped message that the TSA finally sends to the
SO is ((hash(secretObs),hash(secretIdent)),ts). This is the message that the SO will
send to the DPA as a commitment.
Figure 6.13 shows part of ProVerif’s output for version 2.0 of the model. The out-
puts that begin with the word RESULT show that ProVerif proves that the secrecy
of all the private names is preserved and that both correspondence queries are true.
This means that authentication between the SO and TSA is achieved and that the
nonces they exchange are also secret.

As a summary from version 2.0:
• Agents authenticate using the Needham Schroeder protocol.
• When sending messages (not part of authentication), agents send identities to

identity who it is from or who it is intended for.
• Nonces are used to ensure uniqueness of sessions to prevent reply attacks.

6.2.2.2 Version 2.1: Model of the SO and the DPA

Version 2.1 of the model fulfills the functional requirement FR1 which requires the
SO to register observations with the DPA, which together with QR1d, provide in-
tegrity to the observations for them to be used in court.

Authentication Queries

Figure 6.14 presents correspondence events and queries between the SO and the
DPA for model version 2.1

Committing an Observation

2Pattern matching is syntactic sugar for assigning to a local variable and/or checking that a
variable is what it should be

69

6. Evaluation

−− Query not a t tacke r (secretObs []) ; not a t ta cke r (s e c r e t I d en t
↪→ []) ; not a t ta cke r (secretBNa []) ; not a t ta cke r (secretBNb
↪→ [])

Completing . . .
S t a r t i ng query not a t tacke r (secretObs [])
RESULT not a t ta cke r (secretObs []) i s t rue .
S t a r t i ng query not a t tacke r (s e c r e t I d en t [])
RESULT not a t ta cke r (s e c r e t I d en t []) i s t rue .
S t a r t i ng query not a t tacke r (secretBNa [])
RESULT not a t ta cke r (secretBNa []) i s t rue .
S t a r t i ng query not a t tacke r (secretBNb [])
RESULT not a t ta cke r (secretBNb []) i s t rue .
−− Query in j−event (endAparam(x_802)) ==> in j−event (

↪→ beginAparam (x_802))
Completing . . .
S t a r t i ng query in j−event (endAparam(x_802)) ==> in j−event (

↪→ beginAparam (x_802))
RESULT in j−event (endAparam(x_802)) ==> in j−event (beginAparam

↪→ (x_802)) i s t rue .
−− Query in j−event (endBparam(x_1607)) ==> in j−event (

↪→ beginBparam (x_1607))
Completing . . .
S t a r t i ng query in j−event (endBparam(x_1607)) ==> in j−event (

↪→ beginBparam (x_1607))
RESULT in j−event (endBparam(x_1607)) ==> in j−event (

↪→ beginBparam (x_1607)) i s t rue .

Figure 6.13: ProVerif Output for Version 2.0

30 (∗ Authent icat ion que r i e s : SO−DPA∗)
31 event beginCparam (pkey) .
32 event endCparam(pkey) .
33 event beginACparam(pkey) .
34 event endACparam(pkey) .
35
39 query x : pkey ; in j−event (endCparam(x)) ==> in j−event

↪→ (beginCparam (x)) .
40 query x : pkey ; in j−event (endACparam(x)) ==> in j−

↪→ event (beginACparam(x)) .

Figure 6.14: Model Version 2.0: Authentication Queries SO-DPA

Figure 6.14 shows the authentication events between the SO and the DPA declared
at lines 30-34. Lines 39-40 declare the ProVerif queries to prove authentication.
Since the authentication protocol between the SO and DPA is exactly the same as

70

6. Evaluation

the one described for the SO and TSA—Needham Schroeder protocol, its details are
left out here.

Figure 6.15 presents a model of the steps for committing an observation. Once the
SO and the DPA are authenticated, the SO sends to the DPA, the timestamped
observation it got from the TSA. This is done at line 93. As was the case with the
TSA, the SO sends tobs with the nonce Naa, its public key pk(skA) and the public
key of the DPA read in as pkXA. This serves the same purpose as mentioned before.
The nonce for uniqueness of the session, the SO’s public key for DPA to verify that
the message is indeed from the SO and the DPA’s public key for the DPA to verify
that message was meant for it (line 147). Once verified, the DPA checks whether
the message was timestamped and signed by the TSA (line 150) and if verified, signs
and sends back the message at line 159. One aspect not included in this model is
where the DPA can check how old a timestamp is, however we have provided for
that in the model by ensuring that the DPA has access to the timestamp so that in
an actual implementation, it would be able to compare it to the current date against
some set standard of the minimum length of time for timestamps to be declared too
old to be accepted. This would ensure that SO commits immediately after time
stamping. In the main process, we create new secret key skC and secret signing
key sskC for the DPA and then output their corresponding public keys. Below is
ProVerif’s output for version 2.1; we leave out ProVerif’s internal representation of
the processes and only show the parts related to secrecy and correspondence queries.

ProVerif output for version 2.1: SO-DPA

As may be observed from Figure 6.16 showing ProVerif’s out for version 2.1 of the
model, the secrecy of the private names is still preserved and all the agents are
successfully authenticated.

6.2.2.3 Version 2.2: Model of the Court and the SO

This version of the model fulfills the functional requirement FR2 which requires the
the SO to disclose records to a court upon receipt of valid court order. The validity
of the court order is ensured by letting the court sign the order. Furthermore quality
requirement QR2a requires that the SO discloses records only when there’s a court
order. This is fulfilled by letting the SO check for the public key of the court supplied
in the order (line 141 below). This ensures (confidentiality) of the records disclosed
since they are disclosed only to an authorized entity. Quality requirement QR2b
requires that the court shall verify the integrity of the records supplied by the court.
This is done by comparing the hash of the committed observation with the hash of
the disclosed observation (see lines 234-245 in Figure 6.19).
Authentication Queries

Figure 6.17 presents correspondence events and queries between the SO and the
Court for version 2.2

71

6. Evaluation

Disclosing an Observation to the Court

Figures 6.18 (SO macro) and 6.19 (Court macro) show the model for disclosing an
observation to a court upon receipt of a court order.

SO Macro

Figure 6.18 shows the process macro for the SO.
The Court as the initiator begins by sending an order at line 228. The message
consists of the signed hash of the identity of the citizen being investigated, in this
instance, secretIdent. The rest of the parts of the message are standard as has been
discussed: the nonce Nd, the public key of court and the public key of the SO. When
the SO receives this message at line 139, it reads the identity in the variable ords
and then pattern matches to check that the message contains the nonce recently sent
to the court, the public key of the court and the SO’s public key. Once the patten
match is successful, the SO then verifies the signature used on the order; this is to
ensure integrity on the order that it is truly from the court. The checksign returns
the actual hash of the identity which is read into variable di. The SO then sends
a signed pair of the plain observation matching the identity, and the commitment
(reca) received from the DPA during a commitment. This message is sent at line 149.

Court Macro

Figure 6.19 shows the process macro for the court.
The court reads it at line 231 and begins by decrypting it with its secret encryption
key while pattern matching to check that the message is from the SO using =pkA
and reading the decrypted message into variable orec. Next, the court checks the
signature on orec by supplying the public signing key of the SO and reads the result-
ing pair of messages into variables cobs and scom; the former holding the pair of the
plain observation (secretObs) and the hashed identity (secretIdent), and the latter
holding the signed commitment. Next the court checks the DPA’s signature on scom
whose resulting value is read into variable dpaCom. Next the court splits the triple
dpaCom into its actual constituents which are hash(secretObs),hash(secretIdent),ts
which are read into variables recObs, recIdent and cts respectively (line 244). A
split of cobs is made into the plaintext observation read as sCobs and the hashed
identity read as iCobs. A hash of sCobs is then made and compared with the hash
from the commitment which is recObs (line 245). If the two are matched, a check
is then made to ensure that identity sent in the order matches the identity in the
commitment. This ensures that records received correspond to a court order. Then
court process would then save that in the database as evidence but in this model, it
does nothing as indicated by the 0 process. In the main process, we add the secret
encryption key (skD) and the secret signing key (sskD) of the court and then output
their corresponding public keys. The court process and the SO process are instan-
tiated appropriately with the necessary keys. ProVerif output related to version 2.2
is shown below; again we only show the query results.

72

6. Evaluation

ProVerif output for version 2.2: Model of Court–SO

Figure 6.20 shows the ProVerif output for version 2.2. Again, the secrecy of all pri-
vate names is preserved and all agents are authenticated; we only show the results
for the authentication queries.

6.2.2.4 Version 2.3: Model of the Citizen and the DPA

This version of the model fulfills the functional requirement FR3 which requires a
citizen to request the DPA if he has been under surveillance. The quality requirement
QR3 requires the DPA to access partial sets of information from the commitments,
to allow it to respond to the citizen requests without compromising the secrecy of
the observations. This partial set includes {hash(secretIdent),ts} which is the set of
the hashed identity of the citizen and the timestamp of the observation respectively.
The DPA can access this information without having knowledge of what the actual
observation was since it is hashed, hence the secrecy property of the observation is
preserved.

Authentication Queries

Figure 6.21 presents correspondence events and queries between the Citizen and the
DPA for version 2.3

Requesting the DPA

Figure 6.22 shows the steps taken by the Citizen and the DPA in fulfilling the goal
to satisfy a request from a citizen.
The authentication between the citizen and the DPA is not shown in Figure 6.22 but
is similar to the previous pairs of agents. In this instance, the citizen is the initiator
while the DPA is the responder. When the citizen and the DPA are done with the
authentication, the citizen sends a request to the DPA by sending its identity at
line 311 together with the nonce Ne, its public key pk(skE) and public key of the
DPA pkC. This message is read by the DPA at line 236 where the identity received i
read in variable citIdent and then a pattern match is made on the nonce, the public
key of the citizen and that of the DPA. The DPA then checks that the hash of
the identity received matches that of an existing commitment. If so, it sends the
timestamp (together with the citizen’s identity) of the commitment, which would
inform the citizen of when he was under surveillance. This time stamp is signed
by the DPA to give the citizen surety that the message is indeed from the DPA.
The DPA’s response is received by the citizen at line 314. The citizen decrypts the
message using his secret key and pattern matches the DPA’s public key to ensure
that the received message is from the DPA. The citizen then checks the signature
of the DPA and projects on the two components of the paired message which are
the timestamp and the identity (line 316). The citizen then checks that the identity
received matches his identity. In the main process we create a new secret key of the
citizen skE at line 331 and then output its corresponding public key onto the public

73

6. Evaluation

channel. We also instantiate the citizen process accordingly at line 336. ProVerif’s
output is presented below.

ProVerif output for version 2.3: Model of Citizen–DPA

Figure 6.23 shows ProVerif output for the authentication between the Citizen and
the DPA. The result is true indicating that both agents get authenticated. Again
we omit output about secrecy and the previous authentication queries for the other
agents. The complete output can be found in Appendix B.5.

6.2.3 Correspondence Assertions—Order of Events
This section presents version 3 of the protocol by ordering events according to the
protocol narration given in section 6.2.2.

Assume we have a secret observation secretObs which is associated with a citizen
whose identity is secretIdent. The following presents the list of events in the protocol.

Events

Each event takes in as parameters, the secretIdent associated with the secretObs,
and the pkey of the agent initiating the event. Note that the initiator of the event
may not be the same as the one registering the event. However when placing the
events in the protocol, we place them in the process macros for the agents that reg-
ister them. For instance the event receiveCourtOrder is initiated by the court which
issues the order, but it only makes sense to place this event in the process macro for
the SO who actually receives the order because it is possible that the court may issue
an order which the SO never receives. Thus all the following events are deliberately
prefixed with the word receive to show that we concentrate more on the receiving
agent rather than the initiating agent. The advantage of using both the identity
and the public key of the initiator is that the agents agree on both their identities
and the data they are sharing, which strengthens the correspondence property as
compared to when they only agree on their identities [17]

• event receiveCourtOrder(bitstring,pkey) which is registered by the SO when
the Court issues an order.

• event receiveOrdersRecords(bitstring,pkey) which is registered by the Court
when it receives records from the SO in response to a court order.

• event receiveTSRequestFromSO(bitstring,pkey) which is registered by the
TSA when it receives a request for a timestamp from the SO.

• event receiveTSFromTSA(bitstring,pkey) which is registered by the SO when
it receives a timestamped observation.

• event receiveCommitment(bitstring,pkey) which is registered by the DPA
when it receives a commitment from the SO.

• event receiveReceiptFromDPA(bitstring,pkey) which is registered by the SO
when it receives the signed commitment.

74

6. Evaluation

• event receiveCitizenRequest(bitstring,pkey) which is registered by the DPA
when it receives a request from a citizen.

• event receiveDPAResponse(bitstring,pkey) which is registers by the citizen
when he receives a response from the DPA.

Order of Events

We use the notation e ==> e’ where ==> means the event on the left of ==>
happens after the one on the right. Apart from the communication between the
citizen and the DPA, all other events are interrelated; this is to prevent attacks
such as the court sending a commitment for an observation after it has received an
order for that observation. The following is the order of the events corresponding
to quality requirements QR3a, QR1d, QR1a and QR2a respectively.

• receiveDPAResponse(bitstring,pkey) ==> receiveCitizenRequest(bitstring,pkey)
• receiveReceiptFromDPA(bitstring,pkey) ==> receiveCommitment(bitstring,pkey)
• receiveTSFromTSA(bitstring,pkey) ==> receiveTSRequestFromSO(bitstring,pkey)
• receiveOrdersRecords(bitstring,pkey) ==> receiveCourtOrder(bitstring,pkey)

The last three pairs of events shall be nested to enforce the order in which they
should be registered. Nested events are of the form e ==> (e’ ==> e”) which
means that e happens after e’ which in turns happens after e”. Consequently it
means that e must be last event and e” must be the first. The following is a nesting
of the pairs of events between the SO, DPA and Court.

receiveOrdersRecords(bitstring,pkey) ==> (receiveCourtOrder(bitstring,pkey) ==>
(receiveReceiptFromDPA(bitstring,pkey) ==>(receiveCommitment(bitstring,pkey)
==> (receiveTSFromTSA(bitstring,pkey) ==> receiveTSRequestFromSO(bitstring,pkey)
)))).

This gives the following order, beginning with the first event and ending with the
last event.

1. receiveTSRequestFromSO(bitstring,pkey)
2. receiveTSFromTSA(bitstring,pkey)
3. receiveCommitment(bitstring,pkey)
4. receiveReceiptFromDPA(bitstring,pkey)
5. receiveCourtOrder(bitstring,pkey)
6. receiveOrdersRecords(bitstring,pkey)

6.2.3.1 Version 3.0 Order of Events: Citizen–DPA, SO,DPA and Court

Version 3.0 presents a model of the above events. This is in fulfillment of quality
requirements QR1d which requires the DPA to sign only timestamped observations,
QR2a that requires observations to be disclosed only after a court order, and QR2b
that requires to check that observations were committed before being disclosed.

75

6. Evaluation

Correspondence Assertions

Figure 6.24 shows the correspondence events and queries that ensure that events in
the protocol are excited in the desired order.

Lines 61-72 declare the correspondence events and assertions as discussed earlier.

SO Events

Figure 6.25 shows the events registered by the SO.

In the process macro for the SO, the lines of interest are 114, 143 and 175. At line
114, the SO registers the event receiveTSFromTSA(hash(secretIdent),pkB) to which
it passes the hash of the secretIdent and the public key of the initiator of the event,
which happens to be the TSA. This event is registered after the SO receives the
timestamed observation at line 112. At line 143 it registers the event receiveReceipt-
FromDPA(hash(secretIdent),pkC) to which passes the hash of the identity and the
public key of the initiator, which is the DPA. This event is registered only after the
SO receives the signed commitment at line 141. At line 175, the SO registers the
event receiveCourtOrder(di,pkD) which is registered when the SO verifies receipt of
a court order at line 174. The SO passes the received identity and the public key of
the court as parameters.

TSA Events

Figure 6.26 shows the events registerred by the TSA.

The process macro for the TSA registers its event at line 206 which is receiveTSRe-
questFromSO(mbIdent,pkA). The TSA registers this event by passing the received
hashed identity and the public ley of the SO as parameters. This event is only
registered when the TSA receives a request for timestamp at line 203.

DPA Events

Figure 6.27 shows the events registered by the DPA.

The DPA registers two events, one at line 245 and the other at line 274. At line
245, it registers the event receiveCommitment(obsIdent,pkA) which is intiated by
the SO. Recall that events are used to annotate what parts of the oriticl we have
reached, therefore it is worth mentining that these events cannot be placed abitar-
ily; for instance, if we placed the the event receiveCommitment(obsIdent,pkA) after
line 249 when the DPA sends its signed commitment to the SO, the order my be
distorted because the SO may receive the signed commitment and register the event
receiveReceiptFromDPA(hash(secretIdent),pkC) before the DPA registers its event,
therefore it is preferable to put the event before the sending the response to the SO.
At line 274 the DPA registers the event receiveCitizenRequest(hash(citIdent),pkE)

76

6. Evaluation

which is initiated by the citizen with the public supplied as parameter.

Court Events

Figure 6.28 shows the events registered by the Court.

The court registers the event receiveOrdersRecords(recIdent,pkA) only after it has
verified the records it receives from the SO whose public key is supplied as a param-
eter to the event.

Citizen Events

Figure 6.29 shows the events registered by the Citizen.

Finally the citizen registers the event receiveDPAResponse(myIdent,pkC) when it
receives a response from the the DPA with the supplied public key.

ProVerif output for version 3: Order of Events

Figure 6.30 shows ProVerif output for version 3. Only the output related to the
correspondence events introduced in version 3 are included.

The results of both queries show that the order of events is preserved hence these
correspondence assertions are satisfied.

In summary, this section provided a model of the architecture that fulfills require-
ments as expressed in Table 4.2. Table 6.1 provides a summary of which requirement
was fulfilled in each version of the model. Unless otherwise explicitly stated, the
quality requirement being addressed is the problem while the version implementing
it provides a solution, hence some cells in the table are left blank under the problem
and solution columns. QR3b which requires that the DPA shall service citizen re-
quests without accessing secret observations was not formally verified since, in this
model, the SO commits hashed observations. The full listing of the source code of
the entire protocol model and ProVerif output is presented in appendix C

77

6. Evaluation

Table 6.1: Versioned Functional and Quality Requirements

FR QR Security Attribute Increment PROB# SOL#
FR1 QR1a Integrity Version 1.0, 2.0

QR1b Version 1.6 1f 1f
QR1c Version 1.5 1e 1e
QR1d Version 2.1, 3.0
QR1f Version 3.0
QR1e Secrecy Version 1.1, 1.4 1a,1d 1a,1d

FR2 QR2a Secrecy Version 2.2
QR2b Integrity Version 2.2
QR2c Version 3.0

FR3 QR3a Secrecy Version 2.3
QR3b (N/A)

All QR4 Authentication 1.2, 1.3, 2.x 1b, 1c 1b, 1c

78

6. Evaluation

51 (∗ SO ∗)
52 l et processA (pkB : pkey , pkC : pkey , skA : skey) =
91 (∗ begin SO−DPA step s ∗)
92 (∗ tobs = (hash (obs) , hash (ident) , timestamp) ∗)
93 out (c , aenc ((tobs , Naa , pk (skA) ,pkXA) ,pkXA)) ;
94
95 (∗ read record from DPA∗)
96 in (c , r e c : b i t s t r i n g) ;
97 l et (reca : b i t s t r i n g ,=pkC) = adec (rec , skA) in
98 0 .
125 (∗DPA∗)
126
127 l et processC (pkA : pkey , skC : skey , sskC : sskey , spkB : spkey

↪→) =

144 (∗ begin ta sk s ∗)
145 (∗ wait f o r a commitment ∗)
146 in (c , com : b i t s t r i n g) ;
147 l et (cobs : b i t s t r i n g ,=NYC,=pkA,=pk (skC)) =

↪→ adec (com , skC) in
148
149 (∗ check s i gna tu r e o f TSA to ensure cobs has

↪→ timestamp ∗)
150 l et ckObs = checks ign (cobs , spkB) in
151 l et (obsComit : b i t s t r i n g , obsIdent : b i t s t r i n g ,

↪→ obsTime : b i t s t r i n g) = checks ign (ckObs , spkB) in
152
153 (∗ here DPA can check that timestamp i s not

↪→ too o ld
154 e . g . by say ing
155 i f currentDate−obsTime <= minimumLength then

↪→ ∗)
156
157 (∗ s i gn commitment and send i t to SO∗)
158 (∗ ckObs i s (hash (secretObs) , hash (s e c r e t I d en t

↪→) , timestamp) ∗)
159 out (c , aenc ((s i gn (ckObs , sskC) , pk (skC)) ,pkA)) .
160
161 (∗ Main ∗)
162 process
166 new skC : skey ; l et pkC = pk(skC) in out (c ,

↪→ pkC) ;
167 new sskC : sskey ; l et spkC = spk (sskC) in out (

↪→ c , spkC) ;
168
169 ((! processA (pkB , pkC , skA)) | (! processB (pkA

↪→ , skB , sskB)) |
170 (! processC (pkA , skC , sskC , spkB)))
171

Figure 6.15: Model Version 2.1: Committing an Observation

79

6. Evaluation

−− Query not a t tacke r (secretObs []) ; not a t ta cke r (s e c r e t I d en t
↪→ []) ; not a t ta cke r (secretBNa []) ; not a t ta cke r (secretBNb
↪→ [])

Completing . . .
S t a r t i ng query not a t tacke r (secretObs [])
RESULT not a t ta cke r (secretObs []) i s t rue .
S t a r t i ng query not a t tacke r (s e c r e t I d en t [])
RESULT not a t ta cke r (s e c r e t I d en t []) i s t rue .
S t a r t i ng query not a t tacke r (secretBNa [])
RESULT not a t ta cke r (secretBNa []) i s t rue .
S t a r t i ng query not a t tacke r (secretBNb [])
RESULT not a t ta cke r (secretBNb []) i s t rue .
−− Query in j−event (endACparam(x_1346)) ==> in j−event (

↪→ beginACparam(x_1346))
Completing . . .
S t a r t i ng query in j−event (endACparam(x_1346)) ==> in j−event (

↪→ beginACparam(x_1346))
RESULT in j−event (endACparam(x_1346)) ==> in j−event (

↪→ beginACparam(x_1346)) i s t rue .
−− Query in j−event (endCparam(x_2743)) ==> in j−event (

↪→ beginCparam (x_2743))
Completing . . .
S t a r t i ng query in j−event (endCparam(x_2743)) ==> in j−event (

↪→ beginCparam (x_2743))
RESULT in j−event (endCparam(x_2743)) ==> in j−event (

↪→ beginCparam (x_2743)) i s t rue .

Figure 6.16: ProVerif Output for Version 2.1

37 (∗ Authent icat ion que r i e s : Court (D)−SO(A) ∗)
38 event beginDparam (pkey) .
39 event endDparam(pkey) .
40 event beginADparam(pkey) .
41 event endADparam(pkey) .

49 query x : pkey ; in j−event (endDparam(x)) ==> in j−event
↪→ (beginDparam (x)) .

50 query x : pkey ; in j−event (endADparam(x)) ==> in j−
↪→ event (beginADparam(x)) .

Figure 6.17: Model Version 2.2: Authetication Queires Court-SO

80

6. Evaluation

61 (∗ SO ∗)
62 l et processA (pkB : pkey , pkC : pkey , pkD : pkey , spkD : spkey ,

↪→ skA : skey , sskA : sskey) =
. . .

136 (∗ begin s t ep s Court−SO∗)
137 (∗ read court order ∗)
138
139 in (c , ord : b i t s t r i n g) ;
140 (∗ ords i s s igned hashed s e c r e t I d en t ∗)
141 l et (ords : b i t s t r i n g ,=Nad,=pkD,=pk (skA)) =

↪→ adec (ord , skA) in
142
143 (∗ check s i gna tu r e o f court ∗)
144 l et (d i : b i t s t r i n g) = checks ign (ords , spkD) in
145 i f hash (s e c r e t I d en t) = di then
146
147 (∗ send s igned p l a i n secretObs a s s o c i a t ed

↪→ with s e c r e t I d en t
148 toge the r with commitment (reca) , to Court ∗)
149 out (c , aenc ((s i gn ((secretObs , reca) , sskA) , pk (

↪→ skA)) ,pkD)) .
150

Figure 6.18: Model Version 2.2: SO Macro

81

6. Evaluation

(∗ Court ∗)
208
209 l et processD (pkA : pkey , spkA : spkey , skD : skey , sskD : sskey

↪→ , spkC : spkey , spkB : spkey) =
210 . . .
226 (∗ begin s t ep s Court−SO∗)
227 (∗To ensure i n t e g r i t y o f court order , court

↪→ must s i gn ∗)
228 out (c , aenc ((s i gn (hash (s e c r e t I d en t) , sskD) ,Nd,

↪→ pk (skD) ,pkXD) ,pkXD)) ;
229
230 (∗ read r e c e i v ed r e co rd s from SO∗)
231 in (c , c r e c : b i t s t r i n g) ;
232 l et (orec : b i t s t r i n g ,=pkA) = adec (crec , skD) in
233
234 (∗ check SO’ s s i gna tu r e ∗)
235 l et (cobs : b i t s t r i n g , scom : b i t s t r i n g) =

↪→ checks ign (orec , spkA) in
236
237 (∗ check s i gna tu r e o f the DPA in the SO

↪→ commitment (scom) ∗)
238 l et dpaCom = checks ign (scom , spkC) in
239
240 (∗ check that submitted obs i s what was

↪→ committed
241 by comparing hashes
242 Reca l l that dpaCom i s a t r i p l e o f (hash (obs)

↪→ , hash (ident) , timestamp) ∗)
243
244 l et (recObs : b i t s t r i n g , r e c Iden t : b i t s t r i n g , c t s :

↪→ b i t s t r i n g) = checks ign (dpaCom, spkB) in
let (sCobs : b i t s t r i n g , iCobs : b i t s t r i n g) = cobs

↪→ in
245 i f hash (sCobs) = recObs then
246
247 (∗ check that submitted obs i s f o r intended

↪→ Data Subject ∗)
248 i f hash (s e c r e t I d en t) = rec Iden t then
249 0 .

Figure 6.19: Model Version 2.2: Court Macro

82

6. Evaluation

−− Query in j−event (endADparam(x_2049)) ==> in j−event (
↪→ beginADparam(x_2049))

Completing . . .
S t a r t i ng query in j−event (endADparam(x_2049)) ==> in j−event (

↪→ beginADparam(x_2049))
RESULT in j−event (endADparam(x_2049)) ==> in j−event (

↪→ beginADparam(x_2049)) i s t rue .
−− Query in j−event (endDparam(x_4117)) ==> in j−event (

↪→ beginDparam (x_4117))
Completing . . .
S t a r t i ng query in j−event (endDparam(x_4117)) ==> in j−event (

↪→ beginDparam (x_4117))
RESULT in j−event (endDparam(x_4117)) ==> in j−event (

↪→ beginDparam (x_4117)) i s t rue .

Figure 6.20: ProVerif Output for Version 2.2

37 (∗ Authent icat ion que r i e s : Court (D)−SO(A) ∗)
38 event beginEparam (pkey) .
39 event endEparam(pkey) .
40 event beginCEparam (pkey) .
41 event endCEparam(pkey) .

49 query x : pkey ; in j−event (endEparam(x)) ==> in j−event
↪→ (beginEparam (x)) .

50 query x : pkey ; in j−event (endCEparam(x)) ==> in j−
↪→ event (beginCEparam (x)) .

Figure 6.21: Model Version 2.3: Authentication Queries Citizen-DPA

83

6. Evaluation

185 (∗DPA∗)
186
187 l et processC (pkA : pkey , skC : skey , sskC : sskey , spkB : spkey

↪→ , pkE : pkey) =
. . .

235 (∗ begin s t ep s with c i t i z e n ∗)
236 in (c , r eque s t : b i t s t r i n g) ;
237 l et (c i t I d e n t : b i t s t r i n g ,=NYE,=pkE,=pk (skC)) =

↪→ adec (request , skC) in
238
239 (∗ get p r ev i ou s l y saved commitment ∗)
240 l et (obsComit : b i t s t r i n g , obsIdent : b i t s t r i n g ,

↪→ obsTime : b i t s t r i n g) = checks ign (ckObs , spkB) in
241
242 (∗ check i f submitted i d e n t i t y matches

↪→ obse rvat i on ∗)
243 i f obsIdent = hash (c i t I d e n t) then
244 (∗ send timestamp matching c i t i z e n ∗)
245 out (c , aenc ((s i gn ((obsIdent , obsTime) , sskC) , pk

↪→ (skC)) ,pkE)) .
246
292 (∗ C i t i z en ∗)
293 l et processE (pkC : pkey , skE : skey , spkC : spkey) =

. . .
310 (∗ begin s t ep s Cit i zen−DPA∗)
311 out (c , aenc ((hash (s e c r e t I d en t) ,Ne , pk (skE) ,

↪→ pkXE) ,pkXE)) ;
312
313 (∗ read response from DPA∗)
314 in (c , r e sponse : b i t s t r i n g) ;
315 l et (s ignedResponse : b i t s t r i n g ,=pkC) = adec (

↪→ response , skE) in
316 l et (myTime : b i t s t r i n g , myIdent : b i t s t r i n g) =

↪→ checks ign (signedResponse , spkC) in
317 i f myIdent = hash (s e c r e t I d en t) then
318 0 .

Figure 6.22: Model Version 2.3: Requesting the DPA

84

6. Evaluation

− Query in j−event (endCEparam(x_2742)) ==> in j−event (
↪→ beginCEparam (x_2742))

Completing . . .
200 r u l e s i n s e r t e d . The ru l e base conta in s 157 r u l e s . 16

↪→ r u l e s in the queue .
S ta r t i ng query in j−event (endCEparam(x_2742)) ==> in j−event (

↪→ beginCEparam (x_2742))
RESULT in j−event (endCEparam(x_2742)) ==> in j−event (

↪→ beginCEparam (x_2742)) i s t rue .
−− Query in j−event (endEparam(x_5524)) ==> in j−event (

↪→ beginEparam (x_5524))
Completing . . .
200 r u l e s i n s e r t e d . The ru l e base conta in s 155 r u l e s . 17

↪→ r u l e s in the queue .
S ta r t i ng query in j−event (endEparam(x_5524)) ==> in j−event (

↪→ beginEparam (x_5524))
RESULT in j−event (endEparam(x_5524)) ==> in j−event (

↪→ beginEparam (x_5524)) i s t rue .

Figure 6.23: ProVerif Output for Version 2.3:

61 (∗ Correpondence qu e r i e s to ensure c o r r e c t order o f
↪→ events ∗)

62 event rece iveCourtOrder (b i t s t r i n g , pkey) .
63 event rece iveOrdersRecords (b i t s t r i n g , pkey) .
64 event receiveTSRequestFromSO (b i t s t r i n g , pkey) .
65 event receiveTSFromTSA(b i t s t r i n g , pkey) .
66 event receiveCommitment (b i t s t r i n g , pkey) .
67 event receiveReceiptFromDPA (b i t s t r i n g , pkey) .
68 event r e c e i v eC i t i z enReque s t (b i t s t r i n g , pkey) .
69 event receiveDPAResponse (b i t s t r i n g , pkey) .
70
71 query x : b i t s t r i n g , y : pkey ; in j−event (

↪→ receiveDPAResponse (x , y)) ==> in j−event (
↪→ r e c e i v eC i t i z enReque s t (x , y)) .

72 query x : b i t s t r i n g , y : pkey ; in j−event (
↪→ rece iveOrdersRecords (x , y)) ==>

73 (in j−event (rece iveCourtOrder (x , y)) ==>
74 (in j−event (receiveReceiptFromDPA (x , y)) ==>
75 (in j−event (receiveCommitment (x , y)) ==>
76 (in j−event (receiveTSFromTSA(x , y)) ==> in j−event (

↪→ receiveTSRequestFromSO (x , y)))))) .
77

Figure 6.24: Model Version 3.0: Correspondence Assertions (Order of Events)

85

6. Evaluation

86
87 (∗ SO ∗)
88 l e t processA (pkB : pkey , pkC : pkey , pkD : pkey , spkD : spkey ,

↪→ skA : skey , sskA : sskey) =
105 (∗ begin SO−TSA st ep s ∗)
107 (∗ secretObs should be hashed obse rvat i on ∗)
108 out (c , aenc (((hash (secretObs) , hash (

↪→ s e c r e t I d en t)) , Na , pk (skA) ,pkX) ,pkX)) ;
109 (∗ read timestamped obse rvat i on ∗)
110 in (c , tob : b i t s t r i n g) ;
111 (∗ tobs i s s igned pa i r o f obs and t s ∗)
112 l e t (tobs : b i t s t r i n g ,=pkB) = adec (tob , skA) in
113
114 event receiveTSFromTSA(hash (s e c r e t I d en t) ,pkB

↪→) ;
. . .
134 (∗ begin SO−DPA step s ∗)
135
136 (∗ tobs = (hash (obs) , hash (ident) , timestamp) ∗)
137 out (c , aenc ((tobs , Naa , pk (skA) ,pkXA) ,pkXA)) ;
138
139 (∗ read record from DPA∗)
140 in (c , r e c : b i t s t r i n g) ;
141 l e t (reca : b i t s t r i n g ,=pkC) = adec (rec , skA) in
142
143 event receiveReceiptFromDPA (hash (s e c r e t I d en t

↪→) ,pkC) ;
145
146 (∗ end SO−DPA step s ∗)
166 (∗ begin s t ep s Court−SO∗)
167 (∗ read court order ∗) 168
169 in (c , ord : b i t s t r i n g) ;
170 (∗ ords i s s igned hashed s e c r e t I d en t ∗)
171 l e t (ords : b i t s t r i n g ,=Nad,=pkD,=pk (skA)) =

↪→ adec (ord , skA) in
172
173 (∗ check s i gna tu r e o f court ∗)
174 l e t (d i : b i t s t r i n g) = checks ign (ords , spkD) in

175 event rece iveCourtOrder (di , pkD) ;
176
177 i f hash (s e c r e t I d en t) = di then
178
179 (∗ send s igned p l a i n secretObs a s s o c i a t ed

↪→ with s e c r e t I d en t
180 toge the r with commitment (reca) , to Court ∗)
181 out (c , aenc ((s i gn ((secretObs , r eca) , sskA) , pk (

↪→ skA)) ,pkD)) .

Figure 6.25: Model Version 3.0: SO Events
86

6. Evaluation

183
184 (∗ TSA∗)
185 l e t processB (pkA : pkey , skB : skey , sskB : sskey) =
. . .
201 (∗ begin ta sk s ∗)
202 in (c , obs : b i t s t r i n g) ;
203 l e t (mb: b i t s t r i n g ,=NY,=pkA,=pk (skB)) = adec (

↪→ obs , skB) in
204
205 l e t (mbObs : b i t s t r i n g , mbIdent : b i t s t r i n g) = mb

↪→ in

206 event receiveTSRequestFromSO (mbIdent , pkA) ;
207
208 (∗ c r e a t e timestamp ∗)
209 new t s : b i t s t r i n g ;
210 out (c , aenc ((s i gn ((mb, t s) , sskB) , pk (skB)) ,pkA)

↪→) .

Figure 6.26: Model Version 3.0: TSA Events)

87

6. Evaluation

212 (∗DPA∗)
213
214 l e t processC (pkA : pkey , skC : skey , sskC : sskey , spkB : spkey

↪→ , pkE : pkey) =
. . .
231 (∗ begin s t ep s with SO∗)
232 (∗ wait f o r a commitment ∗)
233 in (c , com : b i t s t r i n g) ;
234 l e t (cobs : b i t s t r i n g ,=NYC,=pkA,=pk (skC)) =

↪→ adec (com , skC) in
235
236 (∗ check s i gna tu r e o f TSA to ensure cobs has

↪→ timestamp ∗)
237 l e t ckObs = checks ign (cobs , spkB) in
238
239 l e t (obsComit : b i t s t r i n g , obsIdent : b i t s t r i n g ,

↪→ obsTime : b i t s t r i n g) = checks ign (ckObs , spkB) in
240
241 (∗ here DPA can check that timestamp i s not

↪→ too o ld
242 e . g . by say ing
243 i f currentDate−obsTime <= minimumLength then

↪→ ∗)
244
245 event receiveCommitment (obsIdent , pkA) ;
246
247 (∗ s i gn commitment and send i t to SO∗)
248 (∗ ckObs i s (hash (secretObs) , hash (s e c r e t I d en t

↪→) , timestamp) ∗)
249 out (c , aenc ((s i gn (ckObs , sskC) , pk (skC)) ,pkA)) ;
. . .
271 (∗ begin s t ep s with c i t i z e n ∗)
272 in (c , r eque s t : b i t s t r i n g) ;
273 l e t (c i t I d e n t : b i t s t r i n g ,=NYE,=pkE,=pk (skC)) =

↪→ adec (request , skC) in

274 event r e c e i v eC i t i z enReque s t (hash (c i t I d e n t) ,
↪→ pkE) ;

276
277 (∗ check i f submitted i d e n t i t y matches

↪→ obse rvat i on ∗)
278 i f obsIdent = c i t I d e n t then
279 (∗ send timestamp matching c i t i z e n ∗)
280 out (c , aenc ((s i gn ((obsIdent , obsTime) , sskC) , pk

↪→ (skC)) ,pkE)) .

Figure 6.27: Model Version 3.0: DPA Events

88

6. Evaluation

. . .
282 (∗ Court ∗)
283
284 l e t processD (pkA : pkey , spkA : spkey , skD : skey , sskD : sskey

↪→ , spkC : spkey , spkB : spkey) =
. . .
301 (∗ begin s t ep s Court−SO∗)
302 (∗To ensure i n t e g r i t y o f court order , court

↪→ must s i gn ∗)
303 out (c , aenc ((s i gn (hash (s e c r e t I d en t) , sskD) ,Nd,

↪→ pk (skD) ,pkXD) ,pkXD)) ;
304
305 (∗ read r e c e i v ed r e co rd s from SO∗)
306 in (c , c r e c : b i t s t r i n g) ;
307 l e t (orec : b i t s t r i n g ,=pkA) = adec (crec , skD) in
308
309 (∗ check SO’ s s i gna tu r e ∗)
310 l e t (cobs : b i t s t r i n g , scom : b i t s t r i n g) =

↪→ checks ign (orec , spkA) in
311
312 (∗ check s i gna tu r e o f the DPA in the SO

↪→ commitment (scom) ∗)
313 l e t dpaCom = checks ign (scom , spkC) in
314
315 (∗ check that submitted obs i s what was

↪→ committed
316 by comparing hashes
317 Reca l l that dpaCom i s a t r i p l e o f (hash (obs)

↪→ , hash (ident) , timestamp) ∗)
318
319 l e t (recObs : b i t s t r i n g , r e c Iden t : b i t s t r i n g , c t s :

↪→ b i t s t r i n g) = checks ign (dpaCom, spkB) in
320 i f hash (cobs) = recObs then
321
322 (∗ check that submitted obs i s f o r intended

↪→ Data Subject ∗)
323 i f hash (s e c r e t I d en t) = rec Iden t then
324 event rece iveOrdersRecords (rec Ident , pkA) ;
325 0 .

Figure 6.28: Model Version 3.0: Court Events

89

6. Evaluation

. . .
326
327 (∗ C i t i z en ∗)
328 l e t processE (pkC : pkey , skE : skey , spkC : spkey) =
. . .
345 (∗ begin s t ep s Cit i zen−DPA∗)
346 out (c , aenc ((hash (s e c r e t I d en t) ,Ne , pk (skE) ,

↪→ pkXE) ,pkXE)) ;
347
348
349 (∗ read response from DPA∗)
350 in (c , r e sponse : b i t s t r i n g) ;
351 l e t (s ignedResponse : b i t s t r i n g ,=pkC) = adec (

↪→ response , skE) in
352 l e t (myTime : b i t s t r i n g , myIdent : b i t s t r i n g) =

↪→ checks ign (signedResponse , spkC) in
353 i f myIdent = hash (s e c r e t I d en t) then

354 event receiveDPAResponse (myIdent , pkC) ;
355 0 .

Figure 6.29: Model Version 3.0: Citizen Events)

90

6. Evaluation

−− Query in j−event (rece iveOrdersRecords (x_2942 , y_2943)) ==>
↪→ (in j−event (rece iveCourtOrder (x_2942 , y_2943)) ==> (in j−
↪→ event (receiveReceiptFromDPA (x_2942 , y_2943)) ==> (in j−
↪→ event (receiveCommitment (x_2942 , y_2943)) ==> (in j−event
↪→ (receiveTSFromTSA(x_2942 , y_2943)) ==> in j−event (
↪→ receiveTSRequestFromSO (x_2942 , y_2943))))))

Completing . . .
200 r u l e s i n s e r t e d . The ru l e base conta in s 156 r u l e s . 24

↪→ r u l e s in the queue .
S ta r t i ng query in j−event (rece iveOrdersRecords (x_2942 , y_2943)

↪→) ==> (in j−event (rece iveCourtOrder (x_2942 , y_2943)) ==>
↪→ (in j−event (receiveReceiptFromDPA (x_2942 , y_2943)) ==>
↪→ (in j−event (receiveCommitment (x_2942 , y_2943)) ==> (in j−
↪→ event (receiveTSFromTSA(x_2942 , y_2943)) ==> in j−event (
↪→ receiveTSRequestFromSO (x_2942 , y_2943))))))

RESULT in j−event (rece iveOrdersRecords (x_2942 , y_2943)) ==> (
↪→ i n j−event (rece iveCourtOrder (x_2942 , y_2943)) ==> (in j−
↪→ event (receiveReceiptFromDPA (x_2942 , y_2943)) ==> (in j−
↪→ event (receiveCommitment (x_2942 , y_2943)) ==> (in j−event
↪→ (receiveTSFromTSA(x_2942 , y_2943)) ==> in j−event (
↪→ receiveTSRequestFromSO (x_2942 , y_2943)))))) i s t rue .

−− Query in j−event (receiveDPAResponse (x_6461 , y_6462)) ==>
↪→ i n j−event (r e c e i v eC i t i z enReque s t (x_6461 , y_6462))

Completing . . .
200 r u l e s i n s e r t e d . The ru l e base conta in s 157 r u l e s . 16

↪→ r u l e s in the queue .
S ta r t i ng query in j−event (receiveDPAResponse (x_6461 , y_6462))

↪→ ==> in j−event (r e c e i v eC i t i z enReque s t (x_6461 , y_6462))
RESULT in j−event (receiveDPAResponse (x_6461 , y_6462)) ==> in j−

↪→ event (r e c e i v eC i t i z enReque s t (x_6461 , y_6462)) i s t rue .

Figure 6.30: ProVerif Output for Version 3.0

91

6. Evaluation

92

7
Discussion

This chapter presents a discussion of the results of the evaluation of the architecture,
the assumptions and limitations, feasibility of implementation, and concludes with
a discussion of validity threats.

7.1 Results
The main result of this thesis is a domain model and an architecture comprising
five main entities: the SO, the TSA, the DPA, the Court and the Citizen. The
five were chosen in such a manner as to provide separation of concerns, however,
the role of the TSA and that of the DPA could be combined i.e. the DPA could
issue timestamps itself. That would reduce the entities to four. By allowing the
court to perform internal verification records received from the SO, the architecture
reduces the overhead associated with this cross-communication. With regard to its
fulfillment of the requirements, the architecture has been evaluated by modeling and
formally verifying its most critical parts in ProVerif.

The iterative approach followed in the modeling and verification process provided a
step-wise verification process through which the model was built and verified incre-
mentally. By following a process reminiscent of Test Driven Development in which
developers write tests before writing code, we started out from a model where agents
communicate while exchanging plaintext messages thus modeling the functional re-
quirement and let ProVerif point out what was wrong concerning the quality re-
quirement. This allowed us to use cryptographic primitives relevant to the problem
until the security property being verified was preserved. This verification process
was the most challenging part of the thesis.

This solution employs the Needham Schroeder protocol for authentication of agents.
The Needham Schroeder protocol is a standard protocol for authentication and al-
ready has libraries that implement it [7], which would make it easier when devel-
oping an actual implementation of this protocol by using it as a component off the
shelf, hence there was no need to use a different authentication scheme. Public key
encryption is utilized (in conjunction with authentication) to provide secrecy, and
digital signatures are utilized to provide integrity. Nonces are utilized to guarantee
uniqueness of sessions between agents to prevent replay attacks. This is used in con-
junction with injective event queries that require that for each run of the protocol
by one agent, there exists exactly only one run of the protocol by its interlocutor

93

7. Discussion

thus ensuring authentication and integrity.

ProVerif has provided automated proofs for the preservation of the desired security
properties, namely secrecy, authentication and correspondence assertions used for
ordering events in the protocol.

The following requirements have been successfully modeled and verified by ProVerif:

• The SO can register surveillance observations with the DPA (FR1) and that
observations can be timestamped and signed by the DPA to provide integrity
(QR1a-QR1f).

• The SO can disclose records to a court upon receipt of a court order (FR2).
Furthermore this only happens following a valid court order (QR2a).

• The court is able to verify records submitted to it by the SO, providing integrity
for the records used as evidence in court (QR2b). The court is able to check
whether a record submitted to it was signed by the DPA and timestamped by
the TSA.

• A citizen is able to request the DPA for records of surveillance relating to him
(FR3). The DPA is able to respond to citizen requests without compromising
the secrecy of the observations from the SO (QR3a and QR3b).

• The SO is not allowed to send a commitment for an observation to the DPA
after receiving a court order for that observation (QR2c).

• The model also provides for the DPA to check how old timestamps sent by the
SO are by making timestamps in the commitments publicly accessible (QR1f).

• All agents authenticate each other(QR4).
Based on the foregoing, we reject H1 and H2 (see section 1.2) as this thesis has led
to the design and verification of an architecture that ensures accountability. The
resulting protocol of the architecture ensures that the SO has a strong incentive
to commit all its observations to the DPA (because then the SO can not send an
uncommitted observation to the Court without being detected) and this allows the
DPA to tell the citizens whether or not they have been under surveillance. Thus the
surveillance activity of the SO is controlled by accountability.

7.2 Assumptions and Limitations
This section presents the assumptions adopted during the development of the model,
and the limitations of the model

7.2.1 Assumptions
This model has been built and verified based on the following assumptions (some of
which maybe a repetition of what was presented in section 1.3.2.3.

• The Court verifies integrity of the records submitted by the SO based on the
commitments to the DPA provided that that the original observations were
not fabricated.

94

7. Discussion

• Observations already exist. We do not handle the creation of observations.
• Structured meta data can be queried over observations.
• Cryptographic primitives are perfect (section 3.2.6) and can be composed (this

is applied pi calculus).

7.2.2 Limitations
The following are limitations of this model.

• The model uses only one observation and one citizen; in reality the SO may
send multiple records related to one or more citizens.

• The model uses the unique identity of the citizen for the court to issue an order,
however other criteria could be used such as location, but are not handled by
the model.

• The model does not handle internal attackers where one of the honest agents
becomes compromised. Generally, compromised agents are modeled by adding
an extra process called spy that leaks out secret keys on the public channel
and then require that all other processes check that neither the initiator nor
the responder is a spy. However, this model focuses on modeling external
attackers.

• The model does not include a trusted key server which agents communicate
with to access public keys. We assume there is an existing public key infras-
tructure managing keys.

• Timestamps are modeled as nonces since ProVerif does not support them.
However, they are made public to model the fact that timestamps are not
secret (This is important because you would weaken the attacker model if not
done this way).

• The model does not handle strong secrecy which is modeled using observa-
tional equivalence properties.

These limitations in nowise affect the validity of the results in this thesis. See Section
7.4

7.3 Implementation Feasibility
The third hypothesis (H3) was addressed by studying the feasibility of extracting
implementation code from the modeled protocol of the architecture. Two state of
the art Model Driven Development (MDD) frameworks have been identified that
are capable of implementing security protocols in Java; these are Spi2Java [40] and
JavaSpi [6], with the latter being the latest of the two. With the use of the MDD
paradigm and formal methods, these “frameworks produce security implementations
with high security confidence” [43]. The frameworks allow for modeling of formal
protocols based on the Dolev-Yao attacker capabilities, analysis of the resulting
models to detect different kinds of logical flaws and thus provide proof for the fulfill-
ment of the intended security properties. “Once confidence in model correctness has
been reached, the models can be semi-automatically refined into Java interoperable
implementations, with the guarantee that certain Dolev-Yao security properties are

95

7. Discussion

Figure 7.1: JavaSPI Framework [43]

preserved in the final implementation. This is a first step towards bridging the gap
between the verified abstract formal models, and their concrete implementations.”
[43]

Spi2Java was the first of the two frameworks and uses the spi-calculus for spec-
ifying protocol models. Later on, an Eclipse based graphical user interface called
Spi2JavaGUI was added to Spi2Java to allow for visual modeling and graphical spec-
ification notation for models. However, in an effort to simplify the use of Spi2Java by
experienced Java developers, JavaSPI was recently released. JavaSPI is a framework
similar to Spi2Java and also internally uses the spi-calculus but has a different input
language that is actually a subset of Java with the aid of a dedicated set of libraries.
To verify models, both Spi2Java and JavaSPI internally convert to ProVerif and use
it for verification. Figure 7.1 shows a worksflow diagram of JavaSPI. We here show
the work flow of the JavaSPI framework since it is the more recent and better one
of the two frameworks.

The key aspects to know about JavaSPI from Figure 7.1 are that JavaSPI takes in
a protocol definition of a model written using a subset of the Java language. This
Java based abstract model can be converted to a ProVerif verifiable abstract model
which would then be verified by ProVerif, and the same Java model can also have
Java code generated for its concrete implementation.

Other tools exist that convert from a concrete programing language to ProVerif;
for instance FS2PV[8] is a tool that converts a protocol specification from F# to
ProVerif. However such tools are not relevant to this thesis since what is required
is a conversion from ProVerif’s language to a concrete implementation.

96

7. Discussion

The spi-calculus[2] is an extension of the pi-calculus with predefined cryptographic
primitives. The typed (applied) pi calculus which ProVerif uses to model protocols,
however, allows for user-defined cryptographic primitives. Despite this limitation of
the spi-calculus, it should still be possible to convert the protocol in this thesis, to
the language used by Spi2Java (or JavaSPI) since all the cryptographic primitives
used here do exist in the spi calculus, provided that no mistakes are introduced in
this conversion step. Spi2Java cannot convert automatically from ProVerif’s lan-
guage to Spi2Java’s language and as of this writing, no work exists in this direction;
this is shown in Figure 7.2 .

Figure 7.2: Conversion between JavaSPI and ProVerif

To produce an implementation for the protocol in this thesis using either Spi2Java or
JavaSPI, a conversion of the model has to be made from ProVerif’s language (typed
pi calculus) to the language of the chosen target framework as shown in Figure 7.2.
Automatic conversion is outside the scope of this thesis as there are currently no
existing tools or techniques that do this. Therefore a manual conversion would have
to be done which would involve remodeling the protocol in the target language.
This might raise the question, “why not just model the protocol directly in the
Spi2Java framework language?” Spi2Java, with its use of the spi-calculus is limited
with regards to the definition of cryptographic primitives, hence limiting modeling
capabilities, while ProVerif’s language offers more flexibility. We also did not know
in advance that the spi-calculus orimitives would be enough for our model. ProVerif
is state of the art as most current research on security protocol verification uses it
while the spi-calculus is older. The new framework–JavaSPI—was released when this
thesis was already underway hence could only be considered for future work. Lastly,
since this thesis focused largely on the modeling and verification of the protocol
derived from the proposed architecture rather than implementation, ProVerif, with
its maturity in security protocol analysis and verification, sufficed. However, as
earlier stated, it is possible to convert the model of the protocol in this thesis to the

97

7. Discussion

language used by either Spi2Java or JavaSPI since all cryptographic primitives used
in this protocol are present in the spi-calculus’s set of predefined primitives, hence
we reject H3 in favour of the alternative and state that it is possible to automatically
extract an implementation from the modeled protocol.

7.4 Validity Threats
ProVerif uses a very powerful attacker model capturing the Dolev-Yao capabilities,
which depicts an attacker who has total control of the environment and can manip-
ulate, read and redirect messages, hence we believe the proofs offered by ProVerif
do not leave out any possible attacks except those explicitly stated.The fact that in
all queries performed on this model ProVerif terminated with a proof provides even
more confidence since ProVerif proves over an unbounded number of sessions.

The limitation on not being able to model timestamps does not affect the validity of
the proofs as timestamps basically constitute text representing time and as long as
the timestamps are made public. Studies such as [4] also used an approach similar
to the one used in this thesis. Neither does the lack of a key server affect the validity
of the results as a key server in the model merely serves as a generalization of the
model to make it more realistic. Only most critical aspects have been modeled and
verified here.

This thesis focused on surveillance with regard to disclosure of records to a court.
The results of this study can be generalized to situations that require similar strate-
gies of accountability. This thesis proves that it is possible to maintain the secrecy
of the SO’s observations while making it accountable. The thesis does not assume
the use of trusted components to ensure secrecy hence if other software engineers
wanted to follow this approach to enforce accountability, they can not have worse
guarantees than those provided here.

98

8
Conclusion

To introduce accountability in the operations of the SO, this thesis introduced a
Data Protection Authority (DPA) to which the SO would be required to register
its observations with a strong incentive that it could not disclose to the Court, any
observation that is not register with the DPA without being detected. Hence unreg-
istered observations have reduced utility. To ensure integrity of the observations, the
SO would be required to timestamp them with a Time Stamping Authority (TSA)
before sending it to the DPA. The SO would then disclose observations only upon
receipt of a court order. The introduction of the DPA would allow citizens to request
it if they have been under surveillance before and ultimately bring accountability to
the operations of the SO.

An incremental process was followed for the modeling and verification of the proto-
col resulting from the proposed architecture. Starting from sequence diagrams of the
architecture, protocol narrations were created which were then modeled and verified
in the applied pi calculus ad typed pi calculus in ProVerif. The architecture was
proven sound with regard to preserving secrecy of observations and authentication
of participating agents. Furthermore, ProVerif also proved that it is not possible
for the SO to cheat, for instance, by committing an observation to the DPA after
receiving a court order for that observation.The SO has a strong incentive to commit
all its observations to the DPA (because then the SO can not send an uncommitted
observation to the Court without being detected) and this allows the DPA to tell
the citizens whether or not they have been under surveillance. Thus the surveillance
activity of the SO is controlled by accountability.

A better privacy guarantee is provided by ensuring that observations are disclosed
to the Court only in response to a court order and also allowing citizens to check
with the DPA. The secret observations are still kept secret and citizens only get to
know for instance when they were under surveillance but not what was observed
about them exactly. This could be extended by requiring the SO to declassify some
data depending on the legal framework.

Finally this thesis provided a methodological approach that software engineers could
follow to formally verify a privacy preserving architecture from Requirements, Use
Cases, Domain Model, Architecture, Sequence Diagrams to the protocol Model in
the applied calculus. Future work on this thesis could include modeling of internal
threats as well as providing a concrete implementation of the protocol.

99

8. Conclusion

100

Bibliography

[1] Martín Abadi and Cédric Fournet. “Mobile values, new names, and secure
communication”. In: ACM SIGPLAN Notices 36.3 (2001), pp. 104–115.

[2] Martín Abadi and Andrew D Gordon. “A calculus for cryptographic protocols:
The spi calculus”. In: Proceedings of the 4th ACM conference on Computer and
communications security. ACM. 1997, pp. 36–47.

[3] R Hevner von Alan et al. “Design science in information systems research”.
In: MIS quarterly 28.1 (2004), pp. 75–105.

[4] Myrto Arapinis, Vincent Cheval, and Stéphanie Delaune. “Composing security
protocols: from confidentiality to privacy”. In: Principles of Security and Trust.
Springer, 2015, pp. 324–343.

[5] Alessandro Armando et al. “The AVISPA tool for the automated validation of
internet security protocols and applications”. In: Computer Aided Verification.
Springer. 2005, pp. 281–285.

[6] Matteo Avalle et al. “JavaSPI: A Framework for Security”. In: Developing and
Evaluating Security-Aware Software Systems (2012), p. 225.

[7] Michael Backes and Birgit Pfitzmann. “A cryptographically sound security
proof of the Needham-Schroeder-Lowe public-key protocol”. In: Selected Areas
in Communications, IEEE Journal on 22.10 (2004), pp. 2075–2086.

[8] Karthikeyan Bhargavan et al. “Verified interoperable implementations of se-
curity protocols”. In: ACM Transactions on Programming Languages and Sys-
tems (TOPLAS) 31.1 (2008), p. 5.

[9] Bruno Blanchet. “An efficient cryptographic protocol verifier based on Prolog
rules”. In: csfw. IEEE. 2001, p. 82.

[10] Bruno Blanchet. “Automatic proof of strong secrecy for security protocols”.
In: Security and Privacy, 2004. Proceedings. 2004 IEEE Symposium on. IEEE.
2004, pp. 86–100.

[11] Bruno Blanchet. “Using Horn clauses for analyzing security protocols”. In: For-
mal Models and Techniques for Analyzing Security Protocols 5 (2011), pp. 86–
111.

[12] Bruno Blanchet, Ben Smyth, and Vincent Cheval. ProVerif 1.90: Automatic
Cryptographic Protocol Verifier, User Manual and Tutorial. 2015.

[13] Huseyin Cavusoglu, Birendra Mishra, and Srinivasan Raghunathan. “The ef-
fect of internet security breach announcements on market value: Capital mar-
ket reactions for breached firms and internet security developers”. In: Inter-
national Journal of Electronic Commerce 9.1 (2004), pp. 70–104.

[14] Richard A Clarke et al. Protecting Citizens and their Privacy. Dec. 2013. url:
http://www.nytimes.com/ (visited on 04/27/2016).

101

http://www.nytimes.com/

Bibliography

[15] Roger Clarke. “Internet privacy concerns confirm the case for intervention”.
In: Communications of the ACM 42.2 (1999), pp. 60–67.

[16] CNIL. Conclusions du contrôle des fichiers d’antécédents du ministère de l’intérieur.
June 2013. url: https://www.cnil.fr/sites/default/files/typo/
document/Rapport_controle_des_fichiers_antecedents_judiciaires_
juin_2013.pdf (visited on 04/28/2016).

[17] Véronique Cortier and Steve Kremer. “Formal Models and Techniques for
Analyzing Security Protocols: A Tutorial.” In: Foundations and Trends in
Programming Languages 1.3 (2014), pp. 151–267.

[18] Cas JF Cremers. “The Scyther Tool: Verification, falsification, and analysis of
security protocols”. In: Computer aided verification. Springer. 2008, pp. 414–
418.

[19] Danny Dolev and Andrew C Yao. “On the security of public key protocols”.
In: Information Theory, IEEE Transactions on 29.2 (1983), pp. 198–208.

[20] THAYER Fabrega et al. “Strand spaces: Proving security protocols correct”.
In: Journal of computer security 7.2-3 (1999), pp. 191–230.

[21] John Faulkner. Surveillance, Intelligence and Acountability: an Australian Story.
Oct. 2014. url: http://www.senatorjohnfaulkner.com.au/surveillance-
intelligence-acountability-australian-story/ (visited on 04/27/2016).

[22] Oded Goldreich. Foundations of cryptography: volume 2, basic applications.
Cambridge university press, 2009.

[23] Howarn. The Damage of a Security Breach: Financial Institutions Face Mone-
tary, Reputational Losses. Apr. 2015. url: https://securityintelligence.
com (visited on 04/14/2016).

[24] Rivka Ladin et al. “Providing high availability using lazy replication”. In:
ACM Transactions on Computer Systems (TOCS) 10.4 (1992), pp. 360–391.

[25] James Losey. “Surveillance of Communications: A Legitimization Crisis and
the Need for Transparency”. In: Journal of International Communication 9
(2015), pp. 3450–3459.

[26] Gavin Lowe. “Breaking and fixing the Needham-Schroeder public-key protocol
using FDR”. In: Tools and Algorithms for the Construction and Analysis of
Systems. Springer, 1996, pp. 147–166.

[27] David Lyon. Surveillance studies: An overview. Polity, 2007.
[28] Zhendong Ma et al. “Towards a Multidisciplinary Framework to Include Pri-

vacy in the Design of Video Surveillance Systems”. In: Privacy Technologies
and Policy. Springer, 2014, pp. 101–116.

[29] Jonathan Millen and Vitaly Shmatikov. “Constraint solving for bounded-
process cryptographic protocol analysis”. In: Proceedings of the 8th ACM con-
ference on Computer and Communications Security. ACM. 2001, pp. 166–175.

[30] J Mitchell et al. “Undecidability of bounded security protocols”. In: Workshop
on Formal Methods and Security Protocols. Citeseer. 1999.

[31] Moni Naor. “Bit commitment using pseudorandomness”. In: Journal of cryp-
tology 4.2 (1991), pp. 151–158.

[32] T Jothi Neela and N Saravanan. “Privacy preserving approaches in cloud: a
survey”. In: Indian Journal of Science and Technology 6.5 (2013), pp. 4531–
4535.

102

https://www.cnil.fr/sites/default/files/typo/document/Rapport_controle_des_fichiers_antecedents_judiciaires_juin_2013.pdf
https://www.cnil.fr/sites/default/files/typo/document/Rapport_controle_des_fichiers_antecedents_judiciaires_juin_2013.pdf
https://www.cnil.fr/sites/default/files/typo/document/Rapport_controle_des_fichiers_antecedents_judiciaires_juin_2013.pdf
http://www.senatorjohnfaulkner.com.au/surveillance-intelligence-acountability-australian-story/
http://www.senatorjohnfaulkner.com.au/surveillance-intelligence-acountability-australian-story/
https://securityintelligence.com
https://securityintelligence.com

Bibliography

[33] Daniel Neyland. “The Challenges of Working Out Surveillance and Account-
ability in Theory and Practice”. In: Managing Privacy through Accountability.
Springer, 2012, pp. 83–101.

[34] OECD. OECD Guidelines Governing the Protection of Privacy and Trans
border Flows of Personal Data. July 2013. url: https://www.oecd.org/sti/
ieconomy/2013-oecd-privacy-guidelines.pdf (visited on 04/27/2016).

[35] OECD. OECD Privacy Principles. July 2013. url: http://oecdprivacy.
org/ (visited on 04/27/2016).

[36] Article 29 Data Protection Working Party. Opinion 3/2010 on the principle of
accountability. July 2010. url: http://ec.europa.eu/justice/policies/
privacy/docs/wpdocs/2010/wp173_en.pdf (visited on 04/27/2016).

[37] Frank A Pasquale. “Beyond Innovation and Competition: The Need for Qual-
ified Transparency in Internet Intermediaries”. In: Available at SSRN 1686043
(2010).

[38] Siani Pearson. “Toward accountability in the cloud”. In: IEEE Internet Com-
puting 15.4 (2011), p. 64.

[39] Alfredo Pironti and Riccardo Sisto. A Short Tutorial on Proverif. Aug. 2010.
url: http : / / www . cryptoforma . org . uk / old / 3Sisto . pdf (visited on
05/25/2016).

[40] Davide Pozza, Riccardo Sisto, and Luca Durante. “Spi2java: Automatic cryp-
tographic protocol java code generation from spi calculus”. In: Advanced In-
formation Networking and Applications, 2004. AINA 2004. 18th International
Conference on. Vol. 1. IEEE. 2004, pp. 400–405.

[41] Guttorm Sindre and Andreas L Opdahl. “Capturing security requirements
through misuse cases”. In: NIK 2001, Norsk Informatikkonferanse 2001, http://www.
nik. no/2001 (2001).

[42] Word Systems. Surveillance. Types of surveillance: cameras, telephones etc.
url: hhttp://www.wsystems.com/news/surveillance-cameras-types.
html (visited on 05/01/2016).

[43] Politecnico di Torino. Model-Driven Formally-Verified Implementation of Se-
curity Protocols. 2010. url: http : / / spi2java . polito . it/ (visited on
05/01/2016).

[44] OMG UML. “2.0 specification”. In: URL http://www. omg. org/technology/-
documents/formal/uml. htm (2005).

[45] Joseph G Walls, George R Widmeyer, and Omar A El Sawy. “Building an
information system design theory for vigilant EIS”. In: Information systems
research 3.1 (1992), pp. 36–59.

[46] Christoph Weidenbach. “Towards an automatic analysis of security proto-
cols in first-order logic”. In: Automated Deduction—CADE-16. Springer, 1999,
pp. 314–328.

[47] Daniel J Weitzner et al. “Information accountability”. In: Communications of
the ACM 51.6 (2008), pp. 82–87.

[48] Stallings William. “Cryptography and network security: principles and prac-
tice”. In: Prentice-Hall, Inc (1999), pp. 23–50.

[49] Thomas YC Woo and Simon S Lam. “Authentication for distributed systems”.
In: Computer 1 (1992), pp. 39–52.

103

https://www.oecd.org/sti/ieconomy/2013-oecd-privacy-guidelines.pdf
https://www.oecd.org/sti/ieconomy/2013-oecd-privacy-guidelines.pdf
http://oecdprivacy.org/
http://oecdprivacy.org/
http://ec.europa.eu/justice/policies/privacy/docs/wpdocs/2010/wp173_en.pdf
http://ec.europa.eu/justice/policies/privacy/docs/wpdocs/2010/wp173_en.pdf
http://www.cryptoforma.org.uk/old/3Sisto.pdf
hhttp://www.wsystems.com/news/surveillance-cameras-types.html
hhttp://www.wsystems.com/news/surveillance-cameras-types.html
http://spi2java.polito.it/

Bibliography

104

A
Appendix 1

A.1 Full Source: Version 1.0 (All Plain)

1 (∗ Symetric key encrypt ion ∗)
2 type key .
3 fun senc (b i t s t r i n g , key) : b i t s t r i n g .
4 reduc fora l l m: b i t s t r i n g , k : key ; sdec (senc (m, k) , k) =

↪→ m.
5
6 (∗ Asymetric key encrypt ion ∗)
7 type skey .
8 type pkey .
9 fun pk (skey) : pkey .
10 fun aenc (b i t s t r i n g , pkey) : b i t s t r i n g .
11
12 reduc fora l l m: b i t s t r i n g , k : skey ; adec (aenc (m, pk (k))

↪→ , k) = m.
13
14 (∗ S ign ing ∗)
15 type s skey .
16 type spkey .
17 fun spk (sskey) : spkey .
18 fun s i gn (b i t s t r i n g , s skey) : b i t s t r i n g .
19 reduc fora l l m: b i t s t r i n g , k : s skey ; getmess (s i gn (m, k

↪→)) = m.
20
21 (∗ checks ign r e tu rn s m only i f k matches pk (k) ∗)
22 reduc fora l l m: b i t s t r i n g , k : s skey ; checks ign (s i gn (m, k

↪→) , spk (k)) = m.
23
24 free c : channel .
25 (∗ s i s an obse rvat i on ∗)
26 free s : b i t s t r i n g [private] .
27
28 query a t tacke r (s) .
29
30 (∗SO macro ∗)

I

A. Appendix 1

31
32 l et c l i entSO () =
33 out (c , s) ; (∗ send s to TSA∗)
34 in (c , x : b i t s t r i n g) ; (∗ read timestamped s ∗)
35 0 .
36
37 (∗TSA macro ∗)
38
39 l et serverTSA () =
40 in (c , y : b i t s t r i n g) ;
41 new t : b i t s t r i n g ; (∗ t i s a time stamp which i s

↪→ modeled as a nonce ∗)
42 out (c , (y , t)) .
43
44 (∗main process ∗)
45 process
46
47 ((! c l i entSO ()) | (! serverTSA ()))

II

B
Appendix 2

B.1 Version 2.0 SO-TSA Full Source

1 free c : channel .
2
3 (∗ Publ ic key encrypt ion ∗)
4 type pkey .
5 type skey .
6
7 fun hash (b i t s t r i n g) : b i t s t r i n g .
8
9 fun pk (skey) : pkey .
10 fun aenc (b i t s t r i n g , pkey) : b i t s t r i n g .
11 reduc fora l l x : b i t s t r i n g , y : skey ; adec (aenc (x , pk (

↪→ y)) , y) = x .
12
13 (∗ S ignature s ∗)
14 type spkey .
15 type s skey .
16
17 fun spk (sskey) : spkey .
18 fun s i gn (b i t s t r i n g , s skey) : b i t s t r i n g .
19 reduc fora l l x : b i t s t r i n g , y : s skey ; getmess (s i gn (x ,

↪→ y)) = x .
20 reduc fora l l x : b i t s t r i n g , y : s skey ; checks ign (s i gn (

↪→ x , y) , spk (y)) = x .
21
22 (∗ Shared key encrypt ion ∗)
23 fun senc (b i t s t r i n g , b i t s t r i n g) : b i t s t r i n g .
24 reduc fora l l x : b i t s t r i n g , y : b i t s t r i n g ; sdec (senc (x

↪→ , y) , y) = x .
25
26 (∗ Authent icat ion que r i e s SO−TSA∗)
27 event beginBparam (pkey) .
28 event endBparam(pkey) .
29 event beginAparam (pkey) .
30 event endAparam(pkey) .

III

B. Appendix 2

31
32 query x : pkey ; in j−event (endBparam(x)) ==> in j−event

↪→ (beginBparam (x)) .
33 query x : pkey ; in j−event (endAparam(x)) ==> in j−event

↪→ (beginAparam (x)) .
34
35 (∗ Secrecy que r i e s ∗)
36 free secretObs , s e c r e t Id en t , secretBNa , secretBNb :

↪→ b i t s t r i n g [private] .
37
38 query a t tacke r (secretObs) ;
39 a t tacke r (s e c r e t I d en t) ;
40 a t tacke r (secretBNa) ;
41 a t tacke r (secretBNb) .
42
43 (∗ SO ∗)
44 l et processA (pkB : pkey , skA : skey) =
45 (∗BEGIN AUTH TSA∗)
46 in (c , pkX : pkey) ;
47 i f pkX = pkB then
48 event beginBparam (pkX) ;
49 new Na : b i t s t r i n g ;
50 out (c , aenc ((Na , pk (skA)) , pkX)) ;
51 in (c , m: b i t s t r i n g) ;
52 l et (=Na , NX: b i t s t r i n g ,=pkX) = adec (m, skA)

↪→ in
53 out (c , aenc (NX, pkX)) ;
54 i f pkX = pkB then
55 event endAparam(pk (skA)) ;
56
57 (∗ t e s t s e c r e cy o f nonces ∗)
58 out (c , senc (secretObs , Na)) ;
59 out (c , senc (s e c r e t Id en t , NX)) ;
60 (∗END AUTH TSA∗)
61
62 (∗ begin SO−TSA st ep s ∗)
63
64 out (c , aenc (((hash (secretObs) , hash (

↪→ s e c r e t I d en t)) , Na , pk (skA) ,pkX) ,pkX)) ;
65 (∗ read timestamped obse rvat i on ∗)
66 in (c , tob : b i t s t r i n g) ;
67 (∗ tobs i s s igned pa i r o f obs and t s ∗)
68 l et (tobs : b i t s t r i n g ,=pkB) = adec (tob , skA) in
69 0 .
70
71 (∗ TSA ∗)

IV

B. Appendix 2

72 l et processB (pkA : pkey , skB : skey , sskB : sskey) =
73 (∗BEGIN AUTH SO∗)
74 in (c , m: b i t s t r i n g) ;
75 l et (NY: b i t s t r i n g , pkY : pkey) = adec (m, skB

↪→) in
76 event beginAparam (pkY) ;
77 new Nb: b i t s t r i n g ;
78 out (c , aenc ((NY, Nb, pkY) , pkY)) ;
79 in (c , m3: b i t s t r i n g) ;
80 i f Nb = adec (m3, skB) then
81 i f pkY = pkA then
82 event endBparam(pk (skB)) ;
83
84 out (c , senc (secretBNa , NY)) ;
85 out (c , senc (secretBNb , Nb)) ;
86 (∗END AUTH SO∗)
87
88 (∗ begin SO−TSA st ep s ∗)
89
90 in (c , obs : b i t s t r i n g) ;
91 l et (mb: b i t s t r i n g ,=NY,=pkA,=pk (skB)) = adec (

↪→ obs , skB) in
92 (∗ c r e a t e timestamp ∗)
93 new t s : b i t s t r i n g ;
94 out (c , aenc ((s i gn ((mb, t s) , sskB) , pk (skB)) ,pkA)

↪→) .
95
96
97 (∗ Main ∗)
98 process
99 new skA : skey ; l et pkA = pk(skA) in out (c ,

↪→ pkA) ;
100 new skB : skey ; l et pkB = pk(skB) in out (c ,

↪→ pkB) ;
101 new sskB : sskey ; l et spkB = spk (sskB) in out (

↪→ c , spkB) ;
102 ((! processA (pkB , skA)) | (! processB (pkA ,

↪→ skB , sskB)))
103

B.2 Version 2.0 SO-TSA ProVerif Output

Process :
{1}new skA : skey ;
{2} l e t pkA : pkey = pk (skA) in

V

B. Appendix 2

{3} out (c , pkA) ;
{4}new skB : skey ;
{5} l e t pkB : pkey = pk (skB) in
{6} out (c , pkB) ;
{7}new sskB : sskey ;
{8} l e t spkB : spkey = spk (sskB) in
{9} out (c , spkB) ;
(

{10} !
{11} in (c , pkX : pkey) ;
{12} i f (pkX = pkB) then
{13} event beginBparam (pkX) ;
{14}new Na : b i t s t r i n g ;
{15} out (c , aenc ((Na , pk (skA)) ,pkX)) ;
{16} in (c , m: b i t s t r i n g) ;
{17} l e t (=Na ,NX: b i t s t r i n g ,=pkX) = adec (m, skA) in
{18} out (c , aenc (NX,pkX)) ;
{19} i f (pkX = pkB) then
{20} event endAparam(pk (skA)) ;
{21} out (c , senc (secretObs ,Na)) ;
{22} out (c , senc (s e c r e t Id en t ,NX)) ;
{23} out (c , aenc (((hash (secretObs) , hash (s e c r e t I d en t)) ,Na ,

↪→ pk (skA) ,pkX) ,pkX)) ;
{24} in (c , tob : b i t s t r i n g) ;
{25} l e t (tobs : b i t s t r i n g ,=pkB) = adec (tob , skA) in
0

) | (
{26} !
{27} in (c , m_67 : b i t s t r i n g) ;
{28} l e t (NY: b i t s t r i n g , pkY : pkey) = adec (m_67, skB) in
{29} event beginAparam (pkY) ;
{30}new Nb: b i t s t r i n g ;
{31} out (c , aenc ((NY,Nb, pkY) ,pkY)) ;
{32} in (c , m3: b i t s t r i n g) ;
{33} i f (Nb = adec (m3, skB)) then
{34} i f (pkY = pkA) then
{35} event endBparam(pk (skB)) ;
{36} out (c , senc (secretBNa ,NY)) ;
{37} out (c , senc (secretBNb ,Nb)) ;
{38} in (c , obs : b i t s t r i n g) ;
{39} l e t (mb: b i t s t r i n g ,=NY,=pkA,=pk (skB)) = adec (obs , skB

↪→) in
{40}new t s : b i t s t r i n g ;
{41} out (c , aenc ((s i gn ((mb, t s) , sskB) , pk (skB)) ,pkA))

)

VI

B. Appendix 2

−− Query not a t tacke r (secretObs []) ; not a t ta cke r (s e c r e t I d en t
↪→ []) ; not a t ta cke r (secretBNa []) ; not a t ta cke r (secretBNb
↪→ [])

Completing . . .
S t a r t i ng query not a t tacke r (secretObs [])
RESULT not a t ta cke r (secretObs []) i s t rue .
S t a r t i ng query not a t tacke r (s e c r e t I d en t [])
RESULT not a t ta cke r (s e c r e t I d en t []) i s t rue .
S t a r t i ng query not a t tacke r (secretBNa [])
RESULT not a t ta cke r (secretBNa []) i s t rue .
S t a r t i ng query not a t tacke r (secretBNb [])
RESULT not a t ta cke r (secretBNb []) i s t rue .
−− Query in j−event (endAparam(x_802)) ==> in j−event (

↪→ beginAparam (x_802))
Completing . . .
S t a r t i ng query in j−event (endAparam(x_802)) ==> in j−event (

↪→ beginAparam (x_802))
RESULT in j−event (endAparam(x_802)) ==> in j−event (beginAparam

↪→ (x_802)) i s t rue .
−− Query in j−event (endBparam(x_1607)) ==> in j−event (

↪→ beginBparam (x_1607))
Completing . . .
S t a r t i ng query in j−event (endBparam(x_1607)) ==> in j−event (

↪→ beginBparam (x_1607))
RESULT in j−event (endBparam(x_1607)) ==> in j−event (

↪→ beginBparam (x_1607)) i s t rue .

B.3 Version 2.1: SO-DPA ProVerif Output

−− Query not a t tacke r (secretObs []) ; not a t ta cke r (s e c r e t I d en t
↪→ []) ; not a t ta cke r (secretBNa []) ; not a t ta cke r (secretBNb
↪→ [])

Completing . . .
S t a r t i ng query not a t tacke r (secretObs [])
RESULT not a t ta cke r (secretObs []) i s t rue .
S t a r t i ng query not a t tacke r (s e c r e t I d en t [])
RESULT not a t ta cke r (s e c r e t I d en t []) i s t rue .
S t a r t i ng query not a t tacke r (secretBNa [])
RESULT not a t ta cke r (secretBNa []) i s t rue .
S t a r t i ng query not a t tacke r (secretBNb [])
RESULT not a t ta cke r (secretBNb []) i s t rue .
−− Query in j−event (endACparam(x_1346)) ==> in j−event (

↪→ beginACparam(x_1346))
Completing . . .

VII

B. Appendix 2

S ta r t i ng query in j−event (endACparam(x_1346)) ==> in j−event (
↪→ beginACparam(x_1346))

RESULT in j−event (endACparam(x_1346)) ==> in j−event (
↪→ beginACparam(x_1346)) i s t rue .

−− Query in j−event (endCparam(x_2743)) ==> in j−event (
↪→ beginCparam (x_2743))

Completing . . .
S t a r t i ng query in j−event (endCparam(x_2743)) ==> in j−event (

↪→ beginCparam (x_2743))
RESULT in j−event (endCparam(x_2743)) ==> in j−event (

↪→ beginCparam (x_2743)) i s t rue .
−− Query in j−event (endAparam(x_4069)) ==> in j−event (

↪→ beginAparam (x_4069))
Completing . . .
S t a r t i ng query in j−event (endAparam(x_4069)) ==> in j−event (

↪→ beginAparam (x_4069))
RESULT in j−event (endAparam(x_4069)) ==> in j−event (

↪→ beginAparam (x_4069)) i s t rue .
−− Query in j−event (endBparam(x_5435)) ==> in j−event (

↪→ beginBparam (x_5435))
Completing . . .
S t a r t i ng query in j−event (endBparam(x_5435)) ==> in j−event (

↪→ beginBparam (x_5435))
RESULT in j−event (endBparam(x_5435)) ==> in j−event (

↪→ beginBparam (x_5435)) i s t rue .

B.4 Model Version 2.2: Court-SO ProVerif Out-
put

−− Query not a t tacke r (secretObs []) ; not a t ta cke r (s e c r e t I d en t
↪→ []) ; not a t ta cke r (secretBNa []) ; not a t ta cke r (secretBNb
↪→ [])

Completing . . .
S t a r t i ng query not a t tacke r (secretObs [])
RESULT not a t ta cke r (secretObs []) i s t rue .
S t a r t i ng query not a t tacke r (s e c r e t I d en t [])
RESULT not a t ta cke r (s e c r e t I d en t []) i s t rue .
S t a r t i ng query not a t tacke r (secretBNa [])
RESULT not a t ta cke r (secretBNa []) i s t rue .
S t a r t i ng query not a t tacke r (secretBNb [])
RESULT not a t ta cke r (secretBNb []) i s t rue .
−− Query in j−event (endADparam(x_2049)) ==> in j−event (

↪→ beginADparam(x_2049))
Completing . . .

VIII

B. Appendix 2

S ta r t i ng query in j−event (endADparam(x_2049)) ==> in j−event (
↪→ beginADparam(x_2049))

RESULT in j−event (endADparam(x_2049)) ==> in j−event (
↪→ beginADparam(x_2049)) i s t rue .

−− Query in j−event (endDparam(x_4117)) ==> in j−event (
↪→ beginDparam (x_4117))

Completing . . .
S t a r t i ng query in j−event (endDparam(x_4117)) ==> in j−event (

↪→ beginDparam (x_4117))
RESULT in j−event (endDparam(x_4117)) ==> in j−event (

↪→ beginDparam (x_4117)) i s t rue .
−− Query in j−event (endACparam(x_6115)) ==> in j−event (

↪→ beginACparam(x_6115))
Completing . . .
S t a r t i ng query in j−event (endACparam(x_6115)) ==> in j−event (

↪→ beginACparam(x_6115))
RESULT in j−event (endACparam(x_6115)) ==> in j−event (

↪→ beginACparam(x_6115)) i s t rue .
−− Query in j−event (endCparam(x_8239)) ==> in j−event (

↪→ beginCparam (x_8239))
Completing . . .
S t a r t i ng query in j−event (endCparam(x_8239)) ==> in j−event (

↪→ beginCparam (x_8239))
RESULT in j−event (endCparam(x_8239)) ==> in j−event (

↪→ beginCparam (x_8239)) i s t rue .
−− Query in j−event (endAparam(x_10317)) ==> in j−event (

↪→ beginAparam (x_10317))
Completing . . .
S t a r t i ng query in j−event (endAparam(x_10317)) ==> in j−event (

↪→ beginAparam (x_10317))
RESULT in j−event (endAparam(x_10317)) ==> in j−event (

↪→ beginAparam (x_10317)) i s t rue .
−− Query in j−event (endBparam(x_12434)) ==> in j−event (

↪→ beginBparam (x_12434))
Completing . . .
S t a r t i ng query in j−event (endBparam(x_12434)) ==> in j−event (

↪→ beginBparam (x_12434))
RESULT in j−event (endBparam(x_12434)) ==> in j−event (

↪→ beginBparam (x_12434)) i s t rue .

B.5 Model Version 2.3: Citizen-DPA ProVerif Out-
put

IX

B. Appendix 2

−− Query not a t tacke r (secretObs []) ; not a t ta cke r (s e c r e t I d en t
↪→ []) ; not a t ta cke r (secretBNa []) ; not a t ta cke r (secretBNb
↪→ [])

Completing . . .
200 r u l e s i n s e r t e d . The ru l e base conta in s 157 r u l e s . 14

↪→ r u l e s in the queue .
S ta r t i ng query not a t tacke r (secretObs [])
RESULT not a t ta cke r (secretObs []) i s t rue .
S t a r t i ng query not a t tacke r (s e c r e t I d en t [])
RESULT not a t ta cke r (s e c r e t I d en t []) i s t rue .
S t a r t i ng query not a t tacke r (secretBNa [])
RESULT not a t ta cke r (secretBNa []) i s t rue .
S t a r t i ng query not a t tacke r (secretBNb [])
RESULT not a t ta cke r (secretBNb []) i s t rue .
−− Query in j−event (endCEparam(x_2742)) ==> in j−event (

↪→ beginCEparam (x_2742))
Completing . . .
200 r u l e s i n s e r t e d . The ru l e base conta in s 157 r u l e s . 16

↪→ r u l e s in the queue .
S ta r t i ng query in j−event (endCEparam(x_2742)) ==> in j−event (

↪→ beginCEparam (x_2742))
RESULT in j−event (endCEparam(x_2742)) ==> in j−event (

↪→ beginCEparam (x_2742)) i s t rue .
−− Query in j−event (endEparam(x_5524)) ==> in j−event (

↪→ beginEparam (x_5524))
Completing . . .
200 r u l e s i n s e r t e d . The ru l e base conta in s 155 r u l e s . 17

↪→ r u l e s in the queue .
S ta r t i ng query in j−event (endEparam(x_5524)) ==> in j−event (

↪→ beginEparam (x_5524))
RESULT in j−event (endEparam(x_5524)) ==> in j−event (

↪→ beginEparam (x_5524)) i s t rue .
−− Query in j−event (endADparam(x_8319)) ==> in j−event (

↪→ beginADparam(x_8319))
Completing . . .
200 r u l e s i n s e r t e d . The ru l e base conta in s 157 r u l e s . 16

↪→ r u l e s in the queue .
S ta r t i ng query in j−event (endADparam(x_8319)) ==> in j−event (

↪→ beginADparam(x_8319))
RESULT in j−event (endADparam(x_8319)) ==> in j−event (

↪→ beginADparam(x_8319)) i s t rue .
−− Query in j−event (endDparam(x_11111)) ==> in j−event (

↪→ beginDparam (x_11111))
Completing . . .
200 r u l e s i n s e r t e d . The ru l e base conta in s 155 r u l e s . 17

↪→ r u l e s in the queue .

X

B. Appendix 2

S ta r t i ng query in j−event (endDparam(x_11111)) ==> in j−event (
↪→ beginDparam (x_11111))

RESULT in j−event (endDparam(x_11111)) ==> in j−event (
↪→ beginDparam (x_11111)) i s t rue .

−− Query in j−event (endACparam(x_13802)) ==> in j−event (
↪→ beginACparam(x_13802))

Completing . . .
200 r u l e s i n s e r t e d . The ru l e base conta in s 157 r u l e s . 16

↪→ r u l e s in the queue .
S ta r t i ng query in j−event (endACparam(x_13802)) ==> in j−event (

↪→ beginACparam(x_13802))
RESULT in j−event (endACparam(x_13802)) ==> in j−event (

↪→ beginACparam(x_13802)) i s t rue .
−− Query in j−event (endCparam(x_16809)) ==> in j−event (

↪→ beginCparam (x_16809))
Completing . . .
200 r u l e s i n s e r t e d . The ru l e base conta in s 157 r u l e s . 19

↪→ r u l e s in the queue .
S ta r t i ng query in j−event (endCparam(x_16809)) ==> in j−event (

↪→ beginCparam (x_16809))
RESULT in j−event (endCparam(x_16809)) ==> in j−event (

↪→ beginCparam (x_16809)) i s t rue .
−− Query in j−event (endAparam(x_19580)) ==> in j−event (

↪→ beginAparam (x_19580))
Completing . . .
200 r u l e s i n s e r t e d . The ru l e base conta in s 155 r u l e s . 15

↪→ r u l e s in the queue .
S ta r t i ng query in j−event (endAparam(x_19580)) ==> in j−event (

↪→ beginAparam (x_19580))
RESULT in j−event (endAparam(x_19580)) ==> in j−event (

↪→ beginAparam (x_19580)) i s t rue .
−− Query in j−event (endBparam(x_22415)) ==> in j−event (

↪→ beginBparam (x_22415))
Completing . . .
200 r u l e s i n s e r t e d . The ru l e base conta in s 157 r u l e s . 19

↪→ r u l e s in the queue .
S ta r t i ng query in j−event (endBparam(x_22415)) ==> in j−event (

↪→ beginBparam (x_22415))
RESULT in j−event (endBparam(x_22415)) ==> in j−event (

↪→ beginBparam (x_22415)) i s t rue .

XI

B. Appendix 2

XII

C
Appendix 3

C.1 Full Source code for the Protocol

1 free c : channel .
2
3 (∗ Publ ic key encrypt ion ∗)
4 type pkey .
5 type skey .
6
7 fun hash (b i t s t r i n g) : b i t s t r i n g .
8 fun pk (skey) : pkey .
9 fun aenc (b i t s t r i n g , pkey) : b i t s t r i n g .
10 reduc fora l l x : b i t s t r i n g , y : skey ; adec (aenc (x , pk (

↪→ y)) , y) = x .
11
12 (∗ S ignature s ∗)
13 type spkey .
14 type s skey .
15
16 fun spk (sskey) : spkey .
17 fun s i gn (b i t s t r i n g , s skey) : b i t s t r i n g .
18 reduc fora l l x : b i t s t r i n g , y : s skey ; getmess (s i gn (x ,

↪→ y)) = x .
19 reduc fora l l x : b i t s t r i n g , y : s skey ; checks ign (s i gn (

↪→ x , y) , spk (y)) = x .
20
21 (∗ Shared key encrypt ion ∗)
22 fun senc (b i t s t r i n g , b i t s t r i n g) : b i t s t r i n g .
23 reduc fora l l x : b i t s t r i n g , y : b i t s t r i n g ; sdec (senc (x

↪→ , y) , y) = x .
24
25 (∗ Authent icat ion que r i e s : SO(A)−TSA(B) ∗)
26 event beginBparam (pkey) .
27 event endBparam(pkey) .
28 event beginAparam (pkey) .
29 event endAparam(pkey) .
30

XIII

C. Appendix 3

31 (∗ Authent icat ion que r i e s : SO(A)−DPA(C) ∗)
32 event beginCparam (pkey) .
33 event endCparam(pkey) .
34 event beginACparam(pkey) .
35 event endACparam(pkey) .
36
37 (∗ Authent icat ion que r i e s : Court (D)−SO(A) ∗)
38 event beginDparam (pkey) .
39 event endDparam(pkey) .
40 event beginADparam(pkey) .
41 event endADparam(pkey) .
42
43 (∗ Authent icat ion que r i e s : DPA(C)−Ci t i z en (E) ∗)
44 event beginEparam (pkey) .
45 event endEparam(pkey) .
46 event beginCEparam (pkey) .
47 event endCEparam(pkey) .
48
49 query x : pkey ; in j−event (endBparam(x)) ==> in j−event

↪→ (beginBparam (x)) .
50 query x : pkey ; in j−event (endAparam(x)) ==> in j−event

↪→ (beginAparam (x)) .
51
52 query x : pkey ; in j−event (endCparam(x)) ==> in j−event

↪→ (beginCparam (x)) .
53 query x : pkey ; in j−event (endACparam(x)) ==> in j−

↪→ event (beginACparam(x)) .
54
55 query x : pkey ; in j−event (endDparam(x)) ==> in j−event

↪→ (beginDparam (x)) .
56 query x : pkey ; in j−event (endADparam(x)) ==> in j−

↪→ event (beginADparam(x)) .
57
58 query x : pkey ; in j−event (endEparam(x)) ==> in j−event

↪→ (beginEparam (x)) .
59 query x : pkey ; in j−event (endCEparam(x)) ==> in j−

↪→ event (beginCEparam (x)) .
60
61 (∗ Correpondence qu e r i e s to ensure c o r r e c t order o f

↪→ events ∗)
62 event rece iveCourtOrder (b i t s t r i n g , pkey) .
63 event rece iveOrdersRecords (b i t s t r i n g , pkey) .
64 event receiveTSRequestFromSO (b i t s t r i n g , pkey) .
65 event receiveTSFromTSA(b i t s t r i n g , pkey) .
66 event receiveCommitment (b i t s t r i n g , pkey) .
67 event receiveReceiptFromDPA (b i t s t r i n g , pkey) .

XIV

C. Appendix 3

68 event r e c e i v eC i t i z enReque s t (b i t s t r i n g , pkey) .
69 event receiveDPAResponse (b i t s t r i n g , pkey) .
70
71 query x : b i t s t r i n g , y : pkey ; in j−event (

↪→ receiveDPAResponse (x , y)) ==> in j−event (
↪→ r e c e i v eC i t i z enReque s t (x , y)) .

72 query x : b i t s t r i n g , y : pkey ; in j−event (
↪→ rece iveOrdersRecords (x , y)) ==>

73 (in j−event (rece iveCourtOrder (x , y)) ==>
74 (in j−event (receiveReceiptFromDPA (x , y)) ==>
75 (in j−event (receiveCommitment (x , y)) ==>
76 (in j−event (receiveTSFromTSA(x , y)) ==> in j−event (

↪→ receiveTSRequestFromSO (x , y)))))) .
77
78 (∗ Secrecy que r i e s ∗)
79 free secretObs , s e c r e t Id en t , secretBNa , secretBNb :

↪→ b i t s t r i n g [private] .
80
81 query a t tacke r (secretObs) ;
82 a t tacke r (s e c r e t I d en t) ;
83 a t tacke r (secretBNa) ;
84 a t tacke r (secretBNb) .
85
86
87 (∗ SO ∗)
88 l et processA (pkB : pkey , pkC : pkey , pkD : pkey , spkD : spkey ,

↪→ skA : skey , sskA : sskey) =
89 (∗BEGIN AUTH TSA∗)
90 in (c , pkX : pkey) ;
91 event beginBparam (pkX) ;
92 new Na : b i t s t r i n g ;
93 out (c , aenc ((Na , pk (skA)) , pkX)) ;
94 in (c , m: b i t s t r i n g) ;
95 l et (=Na , NX: b i t s t r i n g ,=pkX) = adec (m, skA)

↪→ in
96 out (c , aenc (NX, pkX)) ;
97 i f pkX = pkB then
98 event endAparam(pk (skA)) ;
99
100 (∗ t e s t s e c r e cy o f nonces ∗)
101 out (c , senc (secretBNa , Na)) ;
102 out (c , senc (secretBNb , NX)) ;
103 (∗END AUTH TSA∗)
104
105 (∗ begin SO−TSA st ep s ∗)
106

XV

C. Appendix 3

107 (∗ secretObs should be hashed obse rvat i on ∗)
108 out (c , aenc (((hash (secretObs) , hash (

↪→ s e c r e t I d en t)) , Na , pk (skA) ,pkX) ,pkX)) ;
109 (∗ read timestamped obse rvat i on ∗)
110 in (c , tob : b i t s t r i n g) ;
111 (∗ tobs i s s igned pa i r o f obs and t s ∗)
112 l et (tobs : b i t s t r i n g ,=pkB) = adec (tob , skA) in
113
114 event receiveTSFromTSA(hash (s e c r e t I d en t) ,pkB

↪→) ;
115
116 (∗BEGIN AUTH DPA∗)
117
118 in (c , pkXA: pkey) ;
119 event beginCparam (pkXA) ;
120 new Naa : b i t s t r i n g ;
121 out (c , aenc ((Naa , pk (skA)) , pkXA)) ;
122 in (c , ma: b i t s t r i n g) ;
123 l et (=Naa , NXA: b i t s t r i n g ,=pkXA) = adec (ma,

↪→ skA) in
124 out (c , aenc (NXA, pkXA)) ;
125 i f pkXA = pkC then
126 event endACparam(pk (skA)) ;
127
128 (∗ t e s t s e c r e cy o f nonces ∗)
129 out (c , senc (secretBNa , Naa)) ;
130 out (c , senc (secretBNb , NXA)) ;
131
132 (∗END AUTH DPA∗)
133
134 (∗ begin SO−DPA step s ∗)
135
136 (∗ tobs = (hash (obs) , hash (ident) , timestamp) ∗)
137 out (c , aenc ((tobs , Naa , pk (skA) ,pkXA) ,pkXA)) ;
138
139 (∗ read record from DPA∗)
140 in (c , r e c : b i t s t r i n g) ;
141 l et (reca : b i t s t r i n g ,=pkC) = adec (rec , skA) in
142
143 event receiveReceiptFromDPA (hash (s e c r e t I d en t

↪→) ,pkC) ;
144
145
146 (∗ end SO−DPA step s ∗)
147
148 (∗BEGIN AUTH Court ∗)

XVI

C. Appendix 3

149
150 in (c , mad : b i t s t r i n g) ;
151 l et (NYD: b i t s t r i n g , pkYD: pkey) = adec (mad,

↪→ skA) in
152 event beginDparam (pkYD) ;
153 new Nad : b i t s t r i n g ;
154 out (c , aenc ((NYD, Nad ,pkYD) , pkYD)) ;
155 in (c , md3 : b i t s t r i n g) ;
156 i f Nad = adec (md3 , skA) then
157 i f pkYD = pkD then
158 event endADparam(pk (skA)) ;
159
160 (∗ t e s t s e c r e cy o f nonces ∗)
161 out (c , senc (secretBNa , NYD)) ;
162 out (c , senc (secretBNb , Nad)) ;
163
164 (∗END AUTH Court ∗)
165
166 (∗ begin s t ep s Court−SO∗)
167 (∗ read court order ∗)
168
169 in (c , ord : b i t s t r i n g) ;
170 (∗ ords i s s igned hashed s e c r e t I d en t ∗)
171 l et (ords : b i t s t r i n g ,=Nad,=pkD,=pk (skA)) =

↪→ adec (ord , skA) in
172
173 (∗ check s i gna tu r e o f court ∗)
174 l et (d i : b i t s t r i n g) = checks ign (ords , spkD) in
175 event rece iveCourtOrder (di , pkD) ;
176
177 i f hash (s e c r e t I d en t) = di then
178
179 (∗ send s igned p l a i n secretObs a s s o c i a t ed

↪→ with s e c r e t I d en t
180 toge the r with commitment (reca) , to Court ∗)
181 out (c , aenc ((s i gn ((secretObs , reca) , sskA) , pk (

↪→ skA)) ,pkD)) .
182
183
184 (∗ TSA ∗)
185 l et processB (pkA : pkey , skB : skey , sskB : sskey) =
186 (∗BEGIN AUTH SO∗)
187 in (c , m: b i t s t r i n g) ;
188 l et (NY: b i t s t r i n g , pkY : pkey) = adec (m, skB

↪→) in
189 event beginAparam (pkY) ;

XVII

C. Appendix 3

190 new Nb: b i t s t r i n g ;
191 out (c , aenc ((NY, Nb, pkY) , pkY)) ;
192 in (c , m3: b i t s t r i n g) ;
193 i f Nb = adec (m3, skB) then
194 i f pkY = pkA then
195 event endBparam(pk (skB)) ;
196
197 out (c , senc (secretBNa , NY)) ;
198 out (c , senc (secretBNb , Nb)) ;
199 (∗END AUTH SO∗)
200
201 (∗ begin ta sk s ∗)
202 in (c , obs : b i t s t r i n g) ;
203 l et (mb: b i t s t r i n g ,=NY,=pkA,=pk (skB)) = adec (

↪→ obs , skB) in
204
205 l et (mbObs : b i t s t r i n g , mbIdent : b i t s t r i n g) = mb

↪→ in
206 event receiveTSRequestFromSO (mbIdent , pkA) ;
207
208 (∗ c r e a t e timestamp ∗)
209 new t s : b i t s t r i n g ;
210 out (c , aenc ((s i gn ((mb, t s) , sskB) , pk (skB)) ,pkA)

↪→) .
211
212 (∗DPA∗)
213
214 l et processC (pkA : pkey , skC : skey , sskC : sskey , spkB : spkey

↪→ , pkE : pkey) =
215 (∗BEGIN AUTH SO∗)
216 in (c , mc : b i t s t r i n g) ;
217 l et (NYC: b i t s t r i n g , pkYC: pkey) = adec (mc ,

↪→ skC) in
218 event beginACparam(pkYC) ;
219 new Nc : b i t s t r i n g ;
220 out (c , aenc ((NYC, Nc ,pkYC) , pkYC)) ;
221 in (c , mc3 : b i t s t r i n g) ;
222 i f Nc = adec (mc3 , skC) then
223 i f pkYC = pkA then
224 event endCparam(pk (skC)) ;
225
226 (∗ t e s t s e c r e cy o f nonces ∗)
227 out (c , senc (secretBNa , NYC)) ;
228 out (c , senc (secretBNb , Nc)) ;
229 (∗END AUTH SO∗)
230

XVIII

C. Appendix 3

231 (∗ begin ta sk s ∗)
232 (∗ wait f o r a commitment ∗)
233 in (c , com : b i t s t r i n g) ;
234 l et (cobs : b i t s t r i n g ,=NYC,=pkA,=pk (skC)) =

↪→ adec (com , skC) in
235
236 (∗ check s i gna tu r e o f TSA to ensure cobs has

↪→ timestamp ∗)
237 l et ckObs = checks ign (cobs , spkB) in
238
239 l et (obsComit : b i t s t r i n g , obsIdent : b i t s t r i n g ,

↪→ obsTime : b i t s t r i n g) = checks ign (ckObs , spkB) in
240
241 (∗ here DPA can check that timestamp i s not

↪→ too o ld
242 e . g . by say ing
243 i f currentDate−obsTime <= minimumLength then

↪→ ∗)
244
245 event receiveCommitment (obsIdent , pkA) ;
246
247 (∗ s i gn commitment and send i t to SO∗)
248 (∗ ckObs i s (hash (secretObs) , hash (s e c r e t I d en t

↪→) , timestamp) ∗)
249 out (c , aenc ((s i gn (ckObs , sskC) , pk (skC)) ,pkA)) ;
250
251
252
253 (∗BEGIN AUTH Ci t i z en ∗)
254
255 in (c , ceq : b i t s t r i n g) ;
256 l et (NYE: b i t s t r i n g , pkYE: pkey) = adec (ceq ,

↪→ skC) in
257 event beginEparam (pkYE) ;
258 new Nce : b i t s t r i n g ;
259 out (c , aenc ((NYE, Nce ,pkYE) , pkYE)) ;
260 in (c , me3 : b i t s t r i n g) ;
261 i f Nce = adec (me3 , skC) then
262 i f pkYE = pkE then
263 event endCEparam(pk (skC)) ;
264
265 (∗ t e s t s e c r e cy o f nonces ∗)
266 out (c , senc (secretBNa , NYE)) ;
267 out (c , senc (secretBNb , Nce)) ;
268
269 (∗END AUTH Ci t i z en ∗)

XIX

C. Appendix 3

270
271 (∗ begin s t ep s with c i t i z e n ∗)
272 in (c , r eque s t : b i t s t r i n g) ;
273 l et (c i t I d e n t : b i t s t r i n g ,=NYE,=pkE,=pk (skC)) =

↪→ adec (request , skC) in
274 event r e c e i v eC i t i z enReque s t (hash (c i t I d e n t) ,

↪→ pkE) ;
275
276
277 (∗ check i f submitted i d e n t i t y matches

↪→ obse rvat i on ∗)
278 i f obsIdent = c i t I d e n t then
279 (∗ send timestamp matching c i t i z e n ∗)
280 out (c , aenc ((s i gn ((obsIdent , obsTime) , sskC) , pk

↪→ (skC)) ,pkE)) .
281
282 (∗ Court ∗)
283
284 l et processD (pkA : pkey , spkA : spkey , skD : skey , sskD : sskey

↪→ , spkC : spkey , spkB : spkey) =
285 (∗BEGIN AUTH SO∗)
286 in (c , pkXD: pkey) ;
287 event beginADparam(pkXD) ;
288 new Nd: b i t s t r i n g ;
289 out (c , aenc ((Nd, pk (skD)) , pkXD)) ;
290 in (c , md: b i t s t r i n g) ;
291 l et (=Nd, NXD: b i t s t r i n g ,=pkXD) = adec (md,

↪→ skD) in
292 out (c , aenc (NXD, pkXD)) ;
293 i f pkXD = pkA then
294 event endDparam(pk (skD)) ;
295
296 (∗ t e s t s e c r e cy o f nonces ∗)
297 out (c , senc (secretBNa , Nd)) ;
298 out (c , senc (secretBNb , NXD)) ;
299 (∗END AUTH SO∗)
300
301 (∗ begin s t ep s Court−SO∗)
302 (∗To ensure i n t e g r i t y o f court order , court

↪→ must s i gn ∗)
303 out (c , aenc ((s i gn (hash (s e c r e t I d en t) , sskD) ,Nd,

↪→ pk (skD) ,pkXD) ,pkXD)) ;
304
305 (∗ read r e c e i v ed r e co rd s from SO∗)
306 in (c , c r e c : b i t s t r i n g) ;
307 l et (orec : b i t s t r i n g ,=pkA) = adec (crec , skD) in

XX

C. Appendix 3

308
309 (∗ check SO’ s s i gna tu r e ∗)
310 l et (cobs : b i t s t r i n g , scom : b i t s t r i n g) =

↪→ checks ign (orec , spkA) in
311
312 (∗ check s i gna tu r e o f the DPA in the SO

↪→ commitment (scom) ∗)
313 l et dpaCom = checks ign (scom , spkC) in
314
315 (∗ check that submitted obs i s what was

↪→ committed
316 by comparing hashes
317 Reca l l that dpaCom i s a t r i p l e o f (hash (obs)

↪→ , hash (ident) , timestamp) ∗)
318
319 l et (recObs : b i t s t r i n g , r e c Iden t : b i t s t r i n g , c t s :

↪→ b i t s t r i n g) = checks ign (dpaCom, spkB) in
320 i f hash (cobs) = recObs then
321
322 (∗ check that submitted obs i s f o r intended

↪→ Data Subject ∗)
323 i f hash (s e c r e t I d en t) = rec Iden t then
324 event rece iveOrdersRecords (rec Ident , pkA) ;
325 0 .
326
327 (∗ C i t i z en ∗)
328 l et processE (pkC : pkey , skE : skey , spkC : spkey) =
329 (∗BEGIN AUTH DPA∗)
330 in (c , pkXE: pkey) ;
331 event beginCEparam (pkXE) ;
332 new Ne : b i t s t r i n g ;
333 out (c , aenc ((Ne , pk (skE)) , pkXE)) ;
334 in (c , me : b i t s t r i n g) ;
335 l et (=Ne , NXE: b i t s t r i n g ,=pkXE) = adec (me,

↪→ skE) in
336 out (c , aenc (NXE, pkXE)) ;
337 i f pkXE = pkC then
338 event endEparam(pk (skE)) ;
339
340 (∗ t e s t s e c r e cy o f nonces ∗)
341 out (c , senc (secretBNa , Ne)) ;
342 out (c , senc (secretBNb , NXE)) ;
343 (∗END AUTH SO∗)
344
345 (∗ begin s t ep s Cit i zen−DPA∗)

XXI

C. Appendix 3

346 out (c , aenc ((hash (s e c r e t I d en t) ,Ne , pk (skE) ,
↪→ pkXE) ,pkXE)) ;

347
348
349 (∗ read response from DPA∗)
350 in (c , r e sponse : b i t s t r i n g) ;
351 l et (s ignedResponse : b i t s t r i n g ,=pkC) = adec (

↪→ response , skE) in
352 l et (myTime : b i t s t r i n g , myIdent : b i t s t r i n g) =

↪→ checks ign (signedResponse , spkC) in
353 i f myIdent = hash (s e c r e t I d en t) then
354 event receiveDPAResponse (myIdent , pkC) ;
355 0 .
356
357
358 (∗ Main ∗)
359 process
360 new skA : skey ; l et pkA = pk(skA) in out (c ,

↪→ pkA) ;
361 new sskA : sskey ; l et spkA = spk (sskA) in out (

↪→ c , spkA) ;
362 new skB : skey ; l et pkB = pk(skB) in out (c ,

↪→ pkB) ;
363 new sskB : sskey ; l et spkB = spk (sskB) in out (

↪→ c , spkB) ;
364 new skC : skey ; l et pkC = pk(skC) in out (c ,

↪→ pkC) ;
365 new sskC : sskey ; l et spkC = spk (sskC) in out (

↪→ c , spkC) ;
366 new skD : skey ; l et pkD = pk(skD) in out (c ,

↪→ pkD) ;
367 new sskD : sskey ; l et spkD = spk (sskD) in out (

↪→ c , spkD) ;
368 new skE : skey ; l et pkE = pk(skE) in out (c , pkE

↪→) ;
369
370 ((! processA (pkB , pkC , pkD , spkD , skA , sskA)) |

↪→ (! processB (pkA , skB , sskB)) |
371 (! processC (pkA , skC , sskC , spkB , pkE)) |
372 (! (processD (pkA , spkA , skD , sskD , spkC ,

↪→ spkB))) |
373 (! (processE (pkC , skE , spkC)))
374)
375

XXII

C. Appendix 3

C.2 ProVerif Output

Process :
{1}new skA : skey ;
{2} l e t pkA : pkey = pk (skA) in
{3} out (c , pkA) ;
{4}new sskA : sskey ;
{5} l e t spkA : spkey = spk (sskA) in
{6} out (c , spkA) ;
{7}new skB : skey ;
{8} l e t pkB : pkey = pk (skB) in
{9} out (c , pkB) ;
{10}new sskB : sskey ;
{11} l e t spkB : spkey = spk (sskB) in
{12} out (c , spkB) ;
{13}new skC : skey ;
{14} l e t pkC : pkey = pk (skC) in
{15} out (c , pkC) ;
{16}new sskC : sskey ;
{17} l e t spkC : spkey = spk (sskC) in
{18} out (c , spkC) ;
{19}new skD : skey ;
{20} l e t pkD : pkey = pk (skD) in
{21} out (c , pkD) ;
{22}new sskD : sskey ;
{23} l e t spkD : spkey = spk (sskD) in
{24} out (c , spkD) ;
{25}new skE : skey ;
{26} l e t pkE : pkey = pk (skE) in
{27} out (c , pkE) ;
(

{28} !
{29} in (c , pkX : pkey) ;
{30} event beginBparam (pkX) ;
{31}new Na : b i t s t r i n g ;
{32} out (c , aenc ((Na , pk (skA)) ,pkX)) ;
{33} in (c , m: b i t s t r i n g) ;
{34} l e t (=Na ,NX: b i t s t r i n g ,=pkX) = adec (m, skA) in
{35} out (c , aenc (NX,pkX)) ;
{36} i f (pkX = pkB) then
{37} event endAparam(pk (skA)) ;
{38} out (c , senc (secretObs ,Na)) ;
{39} out (c , senc (s e c r e t Id en t ,NX)) ;
{40} out (c , aenc (((hash (secretObs) , hash (s e c r e t I d en t)) ,Na ,

↪→ pk (skA) ,pkX) ,pkX)) ;
{41} in (c , tob : b i t s t r i n g) ;

XXIII

C. Appendix 3

{42} l e t (tobs : b i t s t r i n g ,=pkB) = adec (tob , skA) in
{43} event receiveTSFromTSA(hash (s e c r e t I d en t) ,pkB) ;
{44} in (c , pkXA: pkey) ;
{45} event beginCparam (pkXA) ;
{46}new Naa : b i t s t r i n g ;
{47} out (c , aenc ((Naa , pk (skA)) ,pkXA)) ;
{48} in (c , ma: b i t s t r i n g) ;
{49} l e t (=Naa ,NXA: b i t s t r i n g ,=pkXA) = adec (ma, skA) in
{50} out (c , aenc (NXA,pkXA)) ;
{51} i f (pkXA = pkC) then
{52} event endACparam(pk (skA)) ;
{53} out (c , senc (secretObs , Naa)) ;
{54} out (c , senc (s e c r e t Id en t ,NXA)) ;
{55} out (c , aenc ((tobs , Naa , pk (skA) ,pkXA) ,pkXA)) ;
{56} in (c , r e c : b i t s t r i n g) ;
{57} l e t (reca : b i t s t r i n g ,=pkC) = adec (rec , skA) in
{58} event receiveReceiptFromDPA (hash (s e c r e t I d en t) ,pkC) ;
{59} in (c , mad : b i t s t r i n g) ;
{60} l e t (NYD: b i t s t r i n g ,pkYD: pkey) = adec (mad, skA) in
{61} event beginDparam (pkYD) ;
{62}new Nad : b i t s t r i n g ;
{63} out (c , aenc ((NYD,Nad ,pkYD) ,pkYD)) ;
{64} in (c , md3 : b i t s t r i n g) ;
{65} i f (Nad = adec (md3 , skA)) then
{66} i f (pkYD = pkD) then
{67} event endADparam(pk (skA)) ;
{68} out (c , senc (secretBNa ,NYD)) ;
{69} out (c , senc (secretBNb ,Nad)) ;
{70} in (c , ord : b i t s t r i n g) ;
{71} l e t (ords : b i t s t r i n g ,=Nad,=pkD,=pk (skA)) = adec (ord ,

↪→ skA) in
{72} l e t d i : b i t s t r i n g = checks ign (ords , spkD) in
{73} event rece iveCourtOrder (di , pkD) ;
{74} i f (hash (s e c r e t I d en t) = di) then
{75} out (c , aenc ((s i gn ((secretObs , r eca) , sskA) , pk (skA)) ,

↪→ pkD))
) | (

{76} !
{77} in (c , m_67 : b i t s t r i n g) ;
{78} l e t (NY: b i t s t r i n g , pkY : pkey) = adec (m_67, skB) in
{79} event beginAparam (pkY) ;
{80}new Nb: b i t s t r i n g ;
{81} out (c , aenc ((NY,Nb, pkY) ,pkY)) ;
{82} in (c , m3: b i t s t r i n g) ;
{83} i f (Nb = adec (m3, skB)) then
{84} i f (pkY = pkA) then

XXIV

C. Appendix 3

{85} event endBparam(pk (skB)) ;
{86} out (c , senc (secretBNa ,NY)) ;
{87} out (c , senc (secretBNb ,Nb)) ;
{88} in (c , obs : b i t s t r i n g) ;
{89} l e t (mb: b i t s t r i n g ,=NY,=pkA,=pk (skB)) = adec (obs , skB

↪→) in
{90} l e t (mbObs : b i t s t r i n g , mbIdent : b i t s t r i n g) = mb in
{91} event receiveTSRequestFromSO (mbIdent , pkA) ;
{92}new t s : b i t s t r i n g ;
{93} out (c , aenc ((s i gn ((mb, t s) , sskB) , pk (skB)) ,pkA))

) | (
{94} !
{95} in (c , mc : b i t s t r i n g) ;
{96} l e t (NYC: b i t s t r i n g ,pkYC: pkey) = adec (mc, skC) in
{97} event beginACparam(pkYC) ;
{98}new Nc : b i t s t r i n g ;
{99} out (c , aenc ((NYC,Nc ,pkYC) ,pkYC)) ;
{100} in (c , mc3 : b i t s t r i n g) ;
{101} i f (Nc = adec (mc3 , skC)) then
{102} i f (pkYC = pkA) then
{103} event endCparam(pk (skC)) ;
{104} out (c , senc (secretBNa ,NYC)) ;
{105} out (c , senc (secretBNb ,Nc)) ;
{106} in (c , com : b i t s t r i n g) ;
{107} l e t (cobs : b i t s t r i n g ,=NYC,=pkA,=pk (skC)) = adec (com

↪→ , skC) in
{108} l e t ckObs : b i t s t r i n g = checks ign (cobs , spkB) in
{109} l e t (obsComit : b i t s t r i n g , obsIdent : b i t s t r i n g ,

↪→ obsTime : b i t s t r i n g) = checks ign (ckObs , spkB) in
{110} event receiveCommitment (obsIdent , pkA) ;
{111} out (c , aenc ((s i gn (ckObs , sskC) , pk (skC)) ,pkA)) ;
{112} in (c , ceq : b i t s t r i n g) ;
{113} l e t (NYE: b i t s t r i n g ,pkYE: pkey) = adec (ceq , skC) in
{114} event beginEparam (pkYE) ;
{115}new Nce : b i t s t r i n g ;
{116} out (c , aenc ((NYE, Nce ,pkYE) ,pkYE)) ;
{117} in (c , me3 : b i t s t r i n g) ;
{118} i f (Nce = adec (me3 , skC)) then
{119} i f (pkYE = pkE) then
{120} event endCEparam(pk (skC)) ;
{121} out (c , senc (secretBNa ,NYE)) ;
{122} out (c , senc (secretBNb , Nce)) ;
{123} in (c , r eque s t : b i t s t r i n g) ;
{124} l e t (c i t I d e n t : b i t s t r i n g ,=NYE,=pkE,=pk (skC)) = adec

↪→ (request , skC) in
{125} event r e c e i v eC i t i z enReque s t (hash (c i t I d e n t) ,pkE) ;

XXV

C. Appendix 3

{126} i f (obsIdent = c i t I d e n t) then
{127} out (c , aenc ((s i gn ((obsIdent , obsTime) , sskC) , pk (skC))

↪→ ,pkE))
) | (

{128}!
{129} in (c , pkXD: pkey) ;
{130} event beginADparam(pkXD) ;
{131}new Nd: b i t s t r i n g ;
{132} out (c , aenc ((Nd, pk (skD)) ,pkXD)) ;
{133} in (c , md: b i t s t r i n g) ;
{134} l e t (=Nd,NXD: b i t s t r i n g ,=pkXD) = adec (md, skD) in
{135} out (c , aenc (NXD,pkXD)) ;
{136} i f (pkXD = pkA) then
{137} event endDparam(pk (skD)) ;
{138} out (c , senc (secretObs ,Nd)) ;
{139} out (c , senc (s e c r e t Id en t ,NXD)) ;
{140} out (c , aenc ((s i gn (hash (s e c r e t I d en t) , sskD) ,Nd, pk (skD

↪→) ,pkXD) ,pkXD)) ;
{141} in (c , c r e c : b i t s t r i n g) ;
{142} l e t (orec : b i t s t r i n g ,=pkA) = adec (crec , skD) in
{143} l e t (cobs_68 : b i t s t r i n g , scom : b i t s t r i n g) =

↪→ checks ign (orec , spkA) in
{144} l e t dpaCom : b i t s t r i n g = checks ign (scom , spkC) in
{145} l e t (recObs : b i t s t r i n g , r e c Iden t : b i t s t r i n g , c t s :

↪→ b i t s t r i n g) = checks ign (dpaCom, spkB) in
{146} i f (hash (cobs_68) = recObs) then
{147} i f (hash (s e c r e t I d en t) = rec Iden t) then
{148} event rece iveOrdersRecords (rec Ident , pkA)

) | (
{149}!
{150} in (c , pkXE: pkey) ;
{151} event beginCEparam (pkXE) ;
{152}new Ne : b i t s t r i n g ;
{153} out (c , aenc ((Ne , pk (skE)) ,pkXE)) ;
{154} in (c , me : b i t s t r i n g) ;
{155} l e t (=Ne ,NXE: b i t s t r i n g ,=pkXE) = adec (me , skE) in
{156} out (c , aenc (NXE,pkXE)) ;
{157} i f (pkXE = pkC) then
{158} event endEparam(pk (skE)) ;
{159} out (c , senc (secretObs ,Ne)) ;
{160} out (c , senc (s e c r e t Id en t ,NXE)) ;
{161} out (c , aenc ((hash (s e c r e t I d en t) ,Ne , pk (skE) ,pkXE) ,

↪→ pkXE)) ;
{162} in (c , r e sponse : b i t s t r i n g) ;
{163} l e t (s ignedResponse : b i t s t r i n g ,=pkC) = adec (

↪→ response , skE) in

XXVI

C. Appendix 3

{164} l e t (myTime : b i t s t r i n g , myIdent : b i t s t r i n g) =
↪→ checks ign (signedResponse , spkC) in

{165} i f (myIdent = hash (s e c r e t I d en t)) then
{166} event receiveDPAResponse (myIdent , pkC)

)

−− Query not a t tacke r (secretObs []) ; not a t ta cke r (s e c r e t I d en t
↪→ []) ; not a t ta cke r (secretBNa []) ; not a t ta cke r (secretBNb
↪→ [])

Completing . . .
200 r u l e s i n s e r t e d . The ru l e base conta in s 157 r u l e s . 14

↪→ r u l e s in the queue .
S ta r t i ng query not a t tacke r (secretObs [])
RESULT not a t ta cke r (secretObs []) i s t rue .
S t a r t i ng query not a t tacke r (s e c r e t I d en t [])
RESULT not a t ta cke r (s e c r e t I d en t []) i s t rue .
S t a r t i ng query not a t tacke r (secretBNa [])
RESULT not a t ta cke r (secretBNa []) i s t rue .
S t a r t i ng query not a t tacke r (secretBNb [])
RESULT not a t ta cke r (secretBNb []) i s t rue .
−− Query in j−event (rece iveOrdersRecords (x_2942 , y_2943)) ==>

↪→ (in j−event (rece iveCourtOrder (x_2942 , y_2943)) ==> (in j−
↪→ event (receiveReceiptFromDPA (x_2942 , y_2943)) ==> (in j−
↪→ event (receiveCommitment (x_2942 , y_2943)) ==> (in j−event
↪→ (receiveTSFromTSA(x_2942 , y_2943)) ==> in j−event (
↪→ receiveTSRequestFromSO (x_2942 , y_2943))))))

Completing . . .
200 r u l e s i n s e r t e d . The ru l e base conta in s 156 r u l e s . 24

↪→ r u l e s in the queue .
S ta r t i ng query in j−event (rece iveOrdersRecords (x_2942 , y_2943)

↪→) ==> (in j−event (rece iveCourtOrder (x_2942 , y_2943)) ==>
↪→ (in j−event (receiveReceiptFromDPA (x_2942 , y_2943)) ==>
↪→ (in j−event (receiveCommitment (x_2942 , y_2943)) ==> (in j−
↪→ event (receiveTSFromTSA(x_2942 , y_2943)) ==> in j−event (
↪→ receiveTSRequestFromSO (x_2942 , y_2943))))))

RESULT in j−event (rece iveOrdersRecords (x_2942 , y_2943)) ==> (
↪→ i n j−event (rece iveCourtOrder (x_2942 , y_2943)) ==> (in j−
↪→ event (receiveReceiptFromDPA (x_2942 , y_2943)) ==> (in j−
↪→ event (receiveCommitment (x_2942 , y_2943)) ==> (in j−event
↪→ (receiveTSFromTSA(x_2942 , y_2943)) ==> in j−event (
↪→ receiveTSRequestFromSO (x_2942 , y_2943)))))) i s t rue .

−− Query in j−event (receiveDPAResponse (x_6461 , y_6462)) ==>
↪→ i n j−event (r e c e i v eC i t i z enReque s t (x_6461 , y_6462))

Completing . . .
200 r u l e s i n s e r t e d . The ru l e base conta in s 157 r u l e s . 16

↪→ r u l e s in the queue .

XXVII

C. Appendix 3

S ta r t i ng query in j−event (receiveDPAResponse (x_6461 , y_6462))
↪→ ==> in j−event (r e c e i v eC i t i z enReque s t (x_6461 , y_6462))

RESULT in j−event (receiveDPAResponse (x_6461 , y_6462)) ==> in j−
↪→ event (r e c e i v eC i t i z enReque s t (x_6461 , y_6462)) i s t rue .

−− Query in j−event (endCEparam(x_9321)) ==> in j−event (
↪→ beginCEparam (x_9321))

Completing . . .
200 r u l e s i n s e r t e d . The ru l e base conta in s 157 r u l e s . 16

↪→ r u l e s in the queue .
S ta r t i ng query in j−event (endCEparam(x_9321)) ==> in j−event (

↪→ beginCEparam (x_9321))
RESULT in j−event (endCEparam(x_9321)) ==> in j−event (

↪→ beginCEparam (x_9321)) i s t rue .
−− Query in j−event (endEparam(x_12320)) ==> in j−event (

↪→ beginEparam (x_12320))
Completing . . .
200 r u l e s i n s e r t e d . The ru l e base conta in s 155 r u l e s . 17

↪→ r u l e s in the queue .
S ta r t i ng query in j−event (endEparam(x_12320)) ==> in j−event (

↪→ beginEparam (x_12320))
RESULT in j−event (endEparam(x_12320)) ==> in j−event (

↪→ beginEparam (x_12320)) i s t rue .
−− Query in j−event (endADparam(x_15390)) ==> in j−event (

↪→ beginADparam(x_15390))
Completing . . .
200 r u l e s i n s e r t e d . The ru l e base conta in s 157 r u l e s . 16

↪→ r u l e s in the queue .
S ta r t i ng query in j−event (endADparam(x_15390)) ==> in j−event (

↪→ beginADparam(x_15390))
RESULT in j−event (endADparam(x_15390)) ==> in j−event (

↪→ beginADparam(x_15390)) i s t rue .
−− Query in j−event (endDparam(x_18389)) ==> in j−event (

↪→ beginDparam (x_18389))
Completing . . .
200 r u l e s i n s e r t e d . The ru l e base conta in s 155 r u l e s . 17

↪→ r u l e s in the queue .
S ta r t i ng query in j−event (endDparam(x_18389)) ==> in j−event (

↪→ beginDparam (x_18389))
RESULT in j−event (endDparam(x_18389)) ==> in j−event (

↪→ beginDparam (x_18389)) i s t rue .
−− Query in j−event (endACparam(x_21280)) ==> in j−event (

↪→ beginACparam(x_21280))
Completing . . .
200 r u l e s i n s e r t e d . The ru l e base conta in s 157 r u l e s . 16

↪→ r u l e s in the queue .

XXVIII

C. Appendix 3

S ta r t i ng query in j−event (endACparam(x_21280)) ==> in j−event (
↪→ beginACparam(x_21280))

RESULT in j−event (endACparam(x_21280)) ==> in j−event (
↪→ beginACparam(x_21280)) i s t rue .

−− Query in j−event (endCparam(x_24595)) ==> in j−event (
↪→ beginCparam (x_24595))

Completing . . .
200 r u l e s i n s e r t e d . The ru l e base conta in s 157 r u l e s . 19

↪→ r u l e s in the queue .
S ta r t i ng query in j−event (endCparam(x_24595)) ==> in j−event (

↪→ beginCparam (x_24595))
RESULT in j−event (endCparam(x_24595)) ==> in j−event (

↪→ beginCparam (x_24595)) i s t rue .
−− Query in j−event (endAparam(x_27566)) ==> in j−event (

↪→ beginAparam (x_27566))
Completing . . .
200 r u l e s i n s e r t e d . The ru l e base conta in s 155 r u l e s . 15

↪→ r u l e s in the queue .
S ta r t i ng query in j−event (endAparam(x_27566)) ==> in j−event (

↪→ beginAparam (x_27566))
RESULT in j−event (endAparam(x_27566)) ==> in j−event (

↪→ beginAparam (x_27566)) i s t rue .
−− Query in j−event (endBparam(x_30612)) ==> in j−event (

↪→ beginBparam (x_30612))
Completing . . .
200 r u l e s i n s e r t e d . The ru l e base conta in s 157 r u l e s . 19

↪→ r u l e s in the queue .
S ta r t i ng query in j−event (endBparam(x_30612)) ==> in j−event (

↪→ beginBparam (x_30612))
RESULT in j−event (endBparam(x_30612)) ==> in j−event (

↪→ beginBparam (x_30612)) i s t rue .

XXIX

	List of Figures
	List of Tables
	Introduction
	Problem Statement
	Research Objectives
	Methodology
	Design Science Research
	Thesis Design—Methods and Procedures
	Requirements Elicitation
	Proposed Solution
	Assumptions and Limitations

	Literature Review
	Surveillance and Privacy
	Accountability

	Background Theory
	Design Notations and Conventions
	Domain Modeling
	Use Case Modeling
	Architectural Design

	Protocol Verification
	Security Protocols
	Channels and Agents
	Security Properties
	Cryptographic Primitives
	Commitment Scheme
	Protocol Modeling
	Applied Pi Calculus
	ProVerif

	Specification
	Domain Description
	Surveillance Organisation (SO)
	Data Protection Authority (DPA)
	Court
	Time Stamping Authority (TSA)
	Citizen

	Vocabulary
	Requirements
	Use Cases
	Brief Use Cases
	UC1: Create Record
	UC2: Create Evidence
	UC3: Request Records

	Misuse Cases
	Requirement–Use Case Matrix

	Design
	Context Diagram
	Component Diagram
	SO Component
	DPA Component
	Court Component

	Sequence Diagrams

	Evaluation
	Protocol Description
	Incremental Modeling and Verification
	Secrecy
	Version 1.0: All Plain
	Version 1.1: Introduce Asymmetric Encryption
	Version 1.2: Introduce SO Identity (pkSO) and TSA should accept any interlocutor
	Version 1.3: SO reads public key of interlocutor from channel
	Version 1.4: SO only proceeds if supplied pk is that of TSA
	Version 1.5: Sign timestamp with signature of TSA to ensure that it's valid and not forged
	Version 1.6: Sign pair of observation and timestamp with signature of TSA (SOLUTION1f)

	Authentication
	Version 2.0: Model of the SO and the TSA
	Version 2.1: Model of the SO and the DPA
	Version 2.2: Model of the Court and the SO
	Version 2.3: Model of the Citizen and the DPA

	Correspondence Assertions—Order of Events
	Version 3.0 Order of Events: Citizen–DPA, SO,DPA and Court

	Discussion
	Results
	Assumptions and Limitations
	Assumptions
	Limitations

	Implementation Feasibility
	Validity Threats

	Conclusion
	Bibliography
	Appendix 1
	Full Source: Version 1.0 (All Plain)

	Appendix 2
	Version 2.0 SO-TSA Full Source
	Version 2.0 SO-TSA ProVerif Output
	Version 2.1: SO-DPA ProVerif Output
	Model Version 2.2: Court-SO ProVerif Output
	Model Version 2.3: Citizen-DPA ProVerif Output

	Appendix 3
	Full Source code for the Protocol
	ProVerif Output

