

Secure Cloud Storage

B.Sc. Thesis in Computer Science and Engineering

Ahlstedt, Mattias
Altensten, Simon
Erlandsson, Andréas
Hildén, Johannes
Johansson, Rasmus
Reitmaier, Rebecka

Chalmers University of Technology
University of Gothenburg
Department of Computer Science and Engineering
Gothenburg, Sweden 2017

Title: Secure Cloud Storage

Authors: Mattias Ahlstedt, Simon Altensten, Andréas Erlandsson,
Johannes Hildén, Rasmus Johansson, Rebecka Reitmaier

Supervisor: Michal Palka

Examiner: Thomas Hallgren

c© Mattias Ahlstedt, 2017
c© Simon Altensten, 2017
c© Andréas Erlandsson, 2017
c© Johannes Hildén, 2017
c© Rasmus Johansson, 2017
c© Rebecka Reitmaier, 2017

Department of Computer Science and Engineering
Chalmers University of Technology
University of Gothenburg
SE-412 96
Gothenburg, Sweden
Telephone + 46 (0)31 - 772 1000

The Authors grants to Chalmers University of Technology and University of Gothenburg
the non-exclusive right to publish the Work electronically and in a non-commercial purpose
make it accessible on the Internet. The Author warrants that he/she is the author to the
Work, and warrants that the Work does not contain text, pictures or other material that
violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example
a publisher or a company), acknowledge the third party about this agreement. If the
Author has signed a copyright agreement with a third party regarding the Work, the
Author warrants hereby that he/she has obtained any necessary permission from this
third party to let Chalmers University of Technology and University of Gothenburg store
the Work electronically and make it accessible on the Internet.

Abstract

This bachelor of science thesis describes and discusses the development of a secure
cloud storage service. The service is secure in the sense that no one other than the
owner of the file can access the information stored with our service. Our solution does
not require implementation of a cloud storage service but instead uses an existing
cloud service and adds a security layer to it. On top of that we have also produced a
protocol for how to share encrypted files between users of the system without revealing
any vital information to the server, nor to any potential adversaries.

Keywords: End-to-end Encryption, E2EE, Client-side Encryption, Secure Cloud
Storage

Sammanfattning

Detta kandidatarbete beskriver och diskuterar utvecklingen av en säker molnlagringstjänst.
Säker syftar här p̊a att endast ägaren av en fil kan komma åt informationen som la-
grats. V̊ar lösning lägger till funktionaliteten som säkrar informationen p̊a existerande
molntjänster för lagring, vilket innebär att vi inte behöver implementera en helt ny
molntjänst fr̊an grunden. Utöver detta har vi även skapat ett protokoll för att kunna
dela filer mellan användare av tjänsten utan att exponera informationen för varken
servern eller andra obehöriga.

Acknowledgements

We would like to thank our supervisor Michal Palka for his help throughout the en-
tirety of the project. Michal has guided us through both technical and non-technical
problems. He has also broadened the group’s view which has led to a more interesting
project.

Contents

1 Introduction 1

1.1 Background . 1

1.2 Purpose . 2

1.3 Problem statement . 2

1.3.1 Client-side encryption . 2

1.3.2 Account management . 2

1.3.3 Cloud storage . 2

1.3.4 Sharing of files . 3

1.4 Scope . 3

1.4.1 Application type . 3

1.4.2 Cryptographic libraries . 3

1.4.3 Handling files . 3

1.4.4 Client encryption key . 4

1.4.5 Cloud service . 4

1.4.6 Target audience . 4

1.4.7 Smartphone compatibility . 4

2 Theory 5

2.1 Symmetric encryption . 5

2.1.1 Block ciphers . 5

2.1.2 Block cipher modes . 6

2.2 Asymmetric encryption . 6

2.3 Hashing . 7

2.4 Pseudo random number generation . 8

2.5 Key derivation function . 8

3 Method 9

3.1 Early stages of the project . 9

3.2 Implementation . 9

3.3 A tool for privacy . 9

3.4 Work methodology and tools . 10

4 Result 11

4.1 Graphical user interface . 11

4.2 High-level architecture . 13

4.3 How security is achieved . 13

4.3.1 Registration . 15

4.3.2 Login . 16

4.3.3 Uploading a file . 17

4.3.4 Downloading a file . 18

4.3.5 Sharing a file . 19

4.3.6 Changing passphrase . 21

4.4 Front-end . 21

4.4.1 How Elm was chosen . 21

4.4.2 The Elm architecture . 23

4.4.3 Cryptography in the browser . 24

4.4.4 Algorithm choices . 25

4.4.5 Choice of block cipher mode of operation 26

4.4.6 File manipulation . 26

4.5 Back-end . 26

4.5.1 Python - Back-end language . 27

4.5.2 Tornado - Communication between front-end and back-end 27

4.5.3 Database . 27

4.6 Cloud Storage . 28

5 Discussion 30

5.1 Security considerations . 30

5.2 Security vulnerabilities . 31

5.3 Forward secrecy . 31

5.4 Scalability . 32

5.5 Evaluation of front-end . 32

5.6 Evaluation of back-end . 33

5.7 Design principle and architecture of the back-end 33

5.8 Related work . 34

5.9 Haste.App . 34

5.9.1 Choosing Haste.App . 34

5.9.2 Moving away from Haste.App . 34

5.10 Ethical perspectives . 35

6 Conclusion 36

1 INTRODUCTION

1 Introduction

This section provides a background to the project and motivates why it is of interest. It
also defines and clarifies the main problem and the scope of the project.

1.1 Background

The emergence of the Internet had a huge impact on the way we share and store informa-
tion. Even though it started off small it has now evolved into something that many people
are depending on in their everyday life. The evolution of the Internet has introduced
many new concepts, amongst them is cloud storage. Cloud storage refers to storing data
remotely through the use of the Internet, often on servers hosted by big companies such
as Google and Amazon, thereby making it accessible to you wherever you are.

Even though cloud storage is very convenient and makes plenty of people’s work easier,
you have to consider who has access to the things you store there. In most cases when you
store information in the cloud through a third-party provider, the information is encrypted
on their servers to prevent anyone but you from accessing your information. There are
two problems with that they encrypt the data themselves. The first problem is that the
cloud service provider has access to both the encryption keys and the encrypted files.
This means that they have full access to anything you store at their servers. The second
problem occurs if the cloud provider gets hacked, then the hacker has full access to all the
information since both the encrypted files and the keys are stored in the same place. A
solution to both of these problems is to use client-side encryption [1].

When using client-side encryption, the encrypted data is still stored with the cloud pro-
viding company. The major difference is that the encryption keys are kept by the user,
ensuring that only the user has access to the information [1]. This means that the infor-
mation is unreadable to both the cloud providing company as well as an adversary.

Today there are several big cloud service providers with well developed infrastructure,
such as Google Drive and Dropbox [2][3]. However, both of these lack the client-side
encryption. Then there are several smaller companies that provide client-side encryption
but fail to deliver on the infrastructure, for example Sync and Crypho [4][5].

Our vision for this project is to build a service that combines the powerful infrastructure
of giants such as Google Drive or Dropbox with the security and privacy of client-side
encryption. Our biggest competitor that manages to combine these two is called Tresorit
[6].

1

1 INTRODUCTION

1.2 Purpose

The purpose of the project is to develop a web-based secure file storage and sharing service
targeted at companies. It is secure in the sense that only the owner of a file and users
who have had the file shared with them may access the information. This implies that the
service provider has no knowledge of what information is stored with their service.

1.3 Problem statement

The main challenge of the project is to provide absolute privacy. No one but the people you
choose should have access to your information. The following subproblems are identified
as crucial parts of the project.

1.3.1 Client-side encryption

In order to ensure that the stored data is accessible only by the owner of the file, or by
any accounts that have been granted permission by the owner, all encryption needs to be
handled client-side. This means that the server is never to have access to any of the users’
cryptographic keys. A way to handle metadata, file storage and key storage is necessary
to ensure this.

Since the solution is supposed to be web-based, performance and security properties will
be taken into consideration when choosing and integrating the necessary cryptographic
protocols that are to be run in a web browser.

1.3.2 Account management

Each user should be able to register with an email and a passphrase. A passphrase is a
longer password that may include blank spaces. When choosing a passphrase, restrictions
which guarantees the strength of the passphrase will be needed.

There is also need for a way to handle the case of a user unregistering from the system.
Any future versions of any files that were shared with the previous user should no longer
be accessible for them.

1.3.3 Cloud storage

Our service will be compatible with a variety of different external cloud services. This
is to ensure that it is possible for us to offer companies the option to choose what cloud

2

1 INTRODUCTION

service they want to use. Therefore, all parts of the application that interacts with the
cloud storage must be developed in a way that facilitates modification.

1.3.4 Sharing of files

A major concern with the system is how to handle the sharing of files between users. To
allow users to share the encrypted data amongst one another, the keys for the encrypted
files must be passed around between users. A protocol for handling sharing that denies
the server and potential adversaries access must therefore be devised.

1.4 Scope

Due to the constrained time frame of the project, some limitations regarding the function-
ality of the end product are set.

1.4.1 Application type

The service is going to be a web application which consists of both a client-side component
and a server-side component. Alternatives to a web application would have been to develop
a native application or a browser extension. The reason for choosing a web application is
that it is cross-platform and cross-device by default, as opposed to a native application or
a browser extension. A native application or a browser extension would have needed extra
work to be functional on for example both a computer running windows and a phone
running android. Another advantage of a web application is that it does not require
installation.

1.4.2 Cryptographic libraries

None of the cryptographic algorithms that are necessary for the service to function will
be implemented by us. Existing cryptographic libraries will be used.

1.4.3 Handling files

The service only support the downloading, uploading and sharing of files. There will not
be an implementation of live editing. If a file is to be edited, it has to be downloaded,
locally edited, and then uploaded again with the same settings as the previous file.

3

1 INTRODUCTION

1.4.4 Client encryption key

The system is not going to use any hardware based keys. The only thing a user needs to
access their account is their passphrase. A hardware key is a key file which is stored in a
specific unit’s hardware. The reasons for not using a hardware key is that it complicates
accessing your account from multiple devices. Also, it is troublesome to access files on the
storage of the local machine from the browser without requiring user interaction.

1.4.5 Cloud service

Instead of developing directly against an existing cloud storage company, a server with an
open source based cloud storage solution will be used. This is to simplify the development
process. A future migration to another cloud service will be possible but is not part of
the scope of this project.

1.4.6 Target audience

The product that is being developed is deemed suitable for companies since it is common
for them to have large volumes of confidential information. Because of this and in order
to narrow down the project and get more strict user needs, the target audience will been
set to companies.

1.4.7 Smartphone compatibility

The system’s graphical user interface (GUI) does not have a focus on being compatible
with smartphones or tablets.

4

2 THEORY

2 Theory

Information security commonly mentions three properties which needs to be fulfilled in
order to communicate securely: confidentiality, integrity and authenticity [7]. All of these
properties are most often achieved through the use of cryptography.

Confidentiality means that none other than the sender and intended recipient should be
able to understand the information. Integrity means that the receiver can verify that the
received information is identical to the sent information. Lastly, authenticity means that
the recipient knows that the sender is who they claims to be [7].

This section gives a presentation of the cryptographic theory and some other technolo-
gies and concepts that are required to fully understand this thesis. It will present the
cryptographic primitives used in this project as well as give an overview of how they work.

2.1 Symmetric encryption

Symmetric encryption is probably the most fundamental primitive used in any crypto-
graphic system. It is the simple principle of locking information with one key. Symmetric
encryption uses a key k and a pair of an encryption and a decryption algorithm (E,D).
To encrypt a plaintext p you would need to use the key and the encryption algorithm
to produce the ciphertext E(k, p) = c. To retrieve the plaintext from the ciphertext you
would need to use the decryption algorithm D and the same key as before D(k, c) = m
[8].

There are two types of symmetric-key encryption, one is called block ciphers and the other
one is called stream ciphers [9]. In this bachelor thesis only block ciphers are used and the
focus will therefore be on explaining those.

2.1.1 Block ciphers

When you have a fixed-size block of data, for example a 128-bit block, you can encrypt
it using a block cipher. Block ciphers encrypt a fixed-size block of plaintext data and
outputs a ciphertext of the same size. A block cipher utilises a key k which is used with
the encryption algorithm E, E(k, p) = c where c is the result ciphertext and p is the
plaintext. The same applies for the decryption algorithm D, D(k, c) = p.

There are many block ciphers available, but not all of them are considered good. Therefore
the U.S. government decided to create a standard for symmetric encryption. The current
standard is called ”Advanced Encryption Standard” (AES). The U.S. government did not
want to create this standard by themselves, therefor they started a competition in which
researches could submit their proposals. Out of five finalists the Rijndael encryption

5

2 THEORY

algorithm won and have since 2001 been the AES. Common key-sizes for AES are 128,
192 and 256 bits [8].

2.1.2 Block cipher modes

Since a block cipher can only encrypt one block of plaintext, there is need for a way to
encrypt multiple blocks using a block cipher algorithm and the solution is block cipher
modes. A block cipher mode is a protocol for how to use a block cipher to encrypt plaintext
of a size greater than one block and the greater part of the block cipher modes requires
that the length of the plaintext is a multiple of the block size [8].

Two of the most used block cipher modes are CBC (cipher block chaining) and CTR
(counter). CBC is a block cipher mode where the output of the previous block is used
to generate the output of the next block. This is done in order to ensure that two equal
plaintext blocks never output the same ciphertext blocks. This is done by manipulating
the current block of plaintext with a bitwise XOR operation together with the previously
encrypted block of ciphertext before encrypting it. This is the definition of the ciphertext
for block i [8]:

Ci = E(K,Pi ⊕ Ci−1)

Since every block depends on the previously encrypted block, the very first encryption
of this block cipher mode requires some additional input. This input, C0, the so called
initialisation vector or IV, has to be chosen randomly if the first block is to be encrypted
in a non predictable way [8].

CTR is a block cipher mode that produces a stream cipher. A stream cipher does not
use the plaintext as an input for creating the ciphertext as CBC does. Instead the cipher
creates a pseudorandom stream of bytes, also called key stream. The plaintext is then
manipulated with a bitwise XOR operation with this generated key. A nonce is used for
creating randomness in the CTR mode so that the same plaintext never generate the same
ciphertext. A nonce is a number which is only used once and is always unique. CTR is
defined below, where Ki is the key stream [8]:

Ki = E(K,Nonce||i)

Ci = Pi ⊕Ki

2.2 Asymmetric encryption

Asymmetric encryption is a family of encryption algorithms where you use a key pair
instead of a single key. The algorithms usually consists of a secret key sk, a public key pk,
an encryption algorithm E and a decryption algorithm D [10]. The major difference in
comparison to symmetric encryption is that one key is used for encryption and the other
for decryption.

6

2 THEORY

Let us consider the use of such an algorithm where you want to send the message m to
a recipient. Before any messages can be sent there is some necessary setup. The receiver
must generate a key pair (pk, sk) and publish the public key [11]. The sender can then
encrypt the message with the public key of the recipient and produce the ciphertext E(pk,
m) = c. For the receiver to read the plaintext message m they simply needs to decrypt
the ciphertext with their secret key, D(sk, c) = m.

The security of these algorithms is based on an assumption of computational hardness [11].
This means that the security is entirely based on the premise that it is computationally
unfeasible to solve the problem without knowing the secret key. For example, if you take
two large prime numbers p1 and p2 and multiply them to get the product p1 ∗p2 = n. The
operation is easy to perform, but it is deemed unfeasible to find the primes p1 and p2, if
they are sufficiently large, given only the product n. So if encryption is based on using
the product n and decryption is based on using the primes p1 and p2, then it is easy to
send ciphertexts but hard to generate plaintexts from these ciphertexts without knowing
p1 and p2.

Asymmetric encryption algorithms are performing slower compared to symmetric encryp-
tion algorithms and are therefore mostly used for exchanging or agreeing upon a key that
can be used for symmetric encryption [11].

Some of the asymmetric encryption algorithms have a secondary use, ensuring authenticity
[10]. This is due to the fact that some of these algorithms works both ways. A sender
can encrypt their name with the secret key and produce a signature E(sk, m) = σ. The
signature can then be appended to a message and verified by the recipient by performing
the following calculations D(pk, σ) = m, which yields the original message. The public key
pk is published as of the setup and therefore anyone can verify the author of the message.
For performance reasons it is commonly the hash of the message that is signed, i.e. E(sk,
H(m)) = σ, where H is a cryptographic hash function.

2.3 Hashing

Cryptographic hash functions are deceptive in that the name is easily confused with the
hashmap. This report is only concerned with cryptographic hash functions and any men-
tion of hash functions will therefore refer to the cryptographic ones.

A hash function is a function which scrambles the input into something that seems to be
completely random data. The cryptographically secure hash functions are also determin-
istic one-way functions which means that it is computationally unfeasible to determine
the input given only the output. The properties of hash functions makes them suitable for
storing login information on servers. Instead of storing the password on the server, you
can store a hashed version of the password. Later at login, you can hash the password
client-side, send it to the server and then compare to the stored hash on the server. This
way the server can be sure that the user entered the correct credentials, without knowing

7

2 THEORY

the actual credentials.

An important property of hash functions is collision-resistance. Since there is an infinite
number of inputs but only a finite number of outputs there will be collisions. The collision-
resistance property does not eliminate collisions, it merely declares that these collisions
can not occur in a feasible time frame [8].

2.4 Pseudo random number generation

A computer is a deterministic machine which implies that it is incapable of coming up
with completely unpredictable numbers [8]. To solve this problem humans have come up
with a way for the computer to construct numbers that seem random. To do this, the
computer takes external inputs from the outside world and then does certain computa-
tions on those inputs [8]. The inputs could for example be timings of mouse movements
or keyboard strokes, making the numbers seem random [12]. The problem is that if you
for two different occasions happen to have the same input data you will get the same out-
put number, thereby only making the output number pseudo random. The computation
of calculating the random inputs into a number is done by complex algorithms. These
complex algorithms are usually hash functions [13].

2.5 Key derivation function

A key derivation function (KDF) is used to derive cryptographically secure keys from
arbitrary inputs that lack the properties of cryptographically secure keys [14]. Along with
this input, the function also uses a cryptographic salt to derive the new cryptographic key.
A salt is some data which gives the KDF resistance against so called dictionary attacks
[15]. The KDF can be even harder to crack by iterating the function several times, at the
cost of time efficiency. A KDF can for example be used for creating a cryptographic key
from an arbitrary phrase which is easy to memorise for a human.

8

3 METHOD

3 Method

Understanding and solving problems is something that can be done very differently.
Throughout this project the group has gone through many different stages to solve the
problems connected to the task of creating a secure cloud storage service. Below is a
description of how the group has worked throughout different parts of the project.

3.1 Early stages of the project

In the beginning of the project, most of the time was spent on research. The entire group
started off reading about the design principles and practical applications of cryptography.
The cryptography theory is the most important and complicated part of the project. It is
also something that was completely new to most of the group members in the beginning
of the project. After obtaining a good basic understanding of the cryptography theory
the group moved on to researching how to build a complete system consisting of both a
front-end and a back-end and what parts to include in the two. The group also researched
what development tools and languages were required for developing the desired product.

To minimise the time spent on research we made sure to always split up the reading tasks
amongst the entire group. Each person then summarised the reading into a document
which then was shared with the rest of the group. The group could then read it and
get a quick overview, thereby saving time and effort. We also made sure to spend a small
amount of time discussing each persons summary in a meeting to make sure that the entire
group had the same level of understanding.

3.2 Implementation

When the development environment was set up and ready the group started with creating
prototype programs. One prototype program was developed for every individual feature
to get a better understanding of how difficult it would be to implement. Examples of such
features were encrypting a file, downloading a file, uploading a file and keeping track of user
accounts. After making sure that all of the core functionality was possible to implement
we started putting the prototypes together and working on what would eventually become
our prototype.

3.3 A tool for privacy

When talking about privacy on the Internet there really is only one solution, cryptography.
Since the cryptography area is very well developed the group did not see any advantages

9

3 METHOD

for creating their own cryptography protocols. Because of this the group only has used
existing cryptography protocols from well known libraries.

When creating the system’s first security protocol the group did it through an extensive
discussion. In this discussion the group talked about many different aspects as efficiency
and privacy. The most important aspect was the security of the application. The system’s
protocol went through many iterations where the group discussed aspects as possible
attacks and flaws.

3.4 Work methodology and tools

With six members in the group some coordination was needed. To structure the work
during the project a version of the popular agile management process Scrum has been
used[16]. The work has been split up into sprints of two weeks and in the beginning of
every sprint there was a meeting for planning the upcoming sprint, deciding what tasks to
include, how long each task should take to complete and who should be in charge of each
task. This helped with making sure that work got done and was done in a organised and
efficient manner. The usage of Scrum also made sure that no unnecessary or duplicated
work was done. In the end of every sprint there was a meeting for reviewing the latest
sprint, talking about what went well and what could been improved for the next sprint.
Our supervisor has helped us review and plan our sprints, he also acted as the product
owner. To help keep track of the sprint tasks the collaboration tool Trello was used[17].
In Trello the tasks was defined and marked with how much time they would take. The
usage of Scrum and Trello gave a good overview of who did what tasks and that no work
was being forgotten.

The group has also had a lot of work sessions were the group met and worked together.
In these meetings we worked together or by ourselves on different tasks. We believe that
these meetings were very efficient since if a question arose it could quickly be discussed
and solved together.

For communication the group used Slack [18]. Slack is a communication app where you
can have different chat channels within a group. The group used the different channels
depending on the subject, for example the group had a ”general” channel and a ”meetings”
channel. The different channels made it easier to find information within Slack.

Throughout the project Git [19] has been used for version controlling the code. Along
with Git have we used the web service Github [20] to store the code online and share it
between the group members.

10

4 RESULT

4 Result

This section present how the application looks and works. Planned functionality that has
not yet been implemented will also be presented, but as how it is intended to work in
the future. This unimplemented functionality will be described with a clear distinction so
that there is no doubt in what is implemented and what is not.

4.1 Graphical user interface

When the user first encounters the application they start at the login page where they
either can sign in or register to the system, Figure 1 shows the GUI. If the user tries to
sign in by providing a correct email address and passphrase, they will be logged in and
forwarded to the main page. If the email address or passphrase is wrong, a small red text
will be shown with the text ”wrong” and the view will not change.

Figure 1: The start page of the application.

If the user clicks on the ”Register” button the system will forward the user to a registration
view, Figure 2 shows the GUI for registering. When the user has registered they are
directly forwarded to the main page.

11

4 RESULT

Figure 2: The register page of the application.

The main page is where you access the core functionality of the product, the GUI of the
main page is shown in Figure 3. Since the idea was to have teams with shared files, the GUI
has been influenced by it even though some functionality has not yet been implemented.
To the left in Figure 3 is the team-section. In the team-section the teams associated with
the user are supposed to appear. However, teams as a concept is dependant on the sharing
functionality, and since sharing has not been implemented neither has the teams. If the
user clicks on a team, the file-section would have updated and shown the files which was
shared within that team. The button ”Manage Team” was supposed to change the view
into a new view where the user could manage the chosen team. This button would only
show if the user was an administrator for that specific team.

To upload a file the user can choose a file with the button ”Choose file”. When the file
has been chosen the button will show the file and the user can then click on ”Upload file”.
When this is done the file is sent to the cloud and its meta data is sent to the database. To
download a file a user clicks on a file in the file-section and then clicks on the ”Download”
button. If a user wants to delete a file then the user can choose a file and then click on the
”Delete” button. The ”Delete” button functionality has not not yet been implemented.

When a user clicks on a file in the file-section it turns blue, to make it easier for the user
to understand which file has been selected. There is some information attached to each
file, the file name, the owner of the file, the file size and the upload date of the file. Some
of this file information is not currently shown in the main view.

When the user wants to log out they can use the ”Log out” button. In the upper right
corner there is a navigation bar where the user can choose between ”Home” and ”Profile”.
If the user clicks on ”Home” the main page will appear and if the user instead clicks on
”Profile” a new page is supposed to appear where the user could manage its application
information, this has not been implemented.

12

4 RESULT

Figure 3: The main page of the application where one file is selected.

4.2 High-level architecture

The high-level architecture of the prototype can be viewed in Figure 4. It consists of a
front-end which runs in the client’s browser and a back-end server which communicates
with the front-end. The back-end also consists of a database that keeps track of the users
and which files belong to which user. The back-end sends and fetches the relevant files
from the external cloud. All files will be stored in the same file-area in the cloud.

Figure 4: Diagram of the high-level architecture.

4.3 How security is achieved

This section will present the scheme that has been devised in order to provide security
to the users of the product. It will also feature flow-charts of different procedures within

13

4 RESULT

the system. All abbreviations used in the explanations of the cryptographic parts can be
found in Table 1. It should be noted that this is the intended solution, everything is not
implemented in the product as of yet.

The only security feature that is currently implemented is the encryption and decryption
of files using AES. There is one flaw in the current implementation which is that for each
file that is encrypted, a new key and initialisation vector are generated. However, only
the most recently generated key and initialisation vector are stored, and they are stored
in the application memory only.

A consequence of the current implementation is that if more than one file is uploaded
during a session, only the most recently encrypted file can be decrypted. Also, the key
and initialisation vector are not being saved between sessions. This results in the problem
that files which were uploaded during earlier sessions are now unusable since the keys for
these files are lost.

The current implementation is not secure and only works as proof of concept in the sense
that it shows that the cryptographic library Forge has been imported and is working as
intended. More about Forge in section 4.4.3.

pw passphrase

mk main key

fk file key

pk public key for asymmetric cipher

sk secret key for asymmetric cipher

AES symmetric encryption algorithm

RSA asymmetric encryption algorithm

SHA3 hashing algorithm

KDF key derivation function

Table 1: Dictionary for abbreviations used in the security explanation

The notation AES(k,m) means that the message m is encrypted using the AES algorithm
with the key k. The main key will be generated from the passphrase of the user when
they sign in, mk = KDF(pw + “mainke”, salt). This key will be used to store any other
keys associated with the users account on the server. The server also has its own RSA key
pair. The following information will be stored on the server for each user:

• pk

• salt

• KDF(pw + ”pass”, salt)

• AES(mk, sk)

14

4 RESULT

• AES(mk, fki), for each file i

At the beginning of each session a session key, AES key, is generated and shared through
RSA. AES is primarily used for the communication since AES is more efficient than RSA.
The following is also appended to all messages for the sake of message integrity and sender
verification:

• SHA3(c) = h, where c is the sent ciphertext.

• RSA(sksender, h), where h is the hash of the ciphertext.

4.3.1 Registration

At registration, an asymmetric key pair (pkuser, skuser) and a salt is generated. The
following information exchange will take place between the client and the server as a
result of registration. After registration a user is considered logged in.

1. Client → Server: RSA(pkserver, m)
m = keysession + pkuser

2. Client → Server: AES(keysession, m)
m = given name + family name + email + salt + h
h = KDF(pw + ”pass”, salt)

3. Client → Server: AES(keysession, m)
m = AES(mk, sk)

Figure 5: Flow-chart of Registration procedure

15

4 RESULT

The procedure of registering a user shown in Figure 5 is completed in four steps.

1. The user inputs email, pw and name in the registration form. Upon clicking the
register button, a request is sent to the back-end to check in the database that the
email is not yet registered.

2. A boolean is returned from the back-end, if it is true the user is asked to retry(the
email is already registered). Otherwise the pw is concatenated with the string ”pass”
and passed to the KDF alongside a generated salt. The reason for appending ”pass”
is to distinguish the string from the one used to generate the mk. The KDF generates
a hash of the pw + ”pass”, with the salt(a bit string) to increase strength against
dictionary attacks. The output of the KDF is a hash and is used by the back-end to
be compared to the hash generated from the user-inputted pw upon login.

3. The email, salt and hashed pw belonging to the user is sent to the user meta of the
database and registered there.

4. A notification is sent to the user alerting them that the registration was completed,
and the user is considered logged in.

4.3.2 Login

Login is performed by passing the email and hashed pw to the server after a session key
has been established.

1. Client → Server: RSA(pkserver, m)
m = keysession + pkuser

2. Client → Server: AES(keysession, m)
m = email + h
h = KDF(pw + ”pass”, salt)

16

4 RESULT

Figure 6: Flow-chart of Login procedure

As seen in Figure 6 the login procedure has four fundamental stages.

1. The user provides email and pw. When the login button is pressed, a request is sent
to the back-end to look up the salt associated with that email.

2. The salt and the pw concatenated with the string ”pass” is sent to the KDF which
generates the hash of the pw.

3. The email and hashed pw are checked against the credentials saved in the user meta
withing the database. The hash is used to isolate the back-end from the actual pw.

4. A boolean is returned from the database. If it is true the user is logged into the
system. If it is false the login attempt fails and the user will need to retry.

4.3.3 Uploading a file

As a new file is selected for upload, the bytes of the file are read into an array buffer. This
buffer is then encoded as an array of 8-bit unsigned integers. Since Elm only supports
sending strings over WebSockets, we chose to encode the array as a UTF-8 string. The
string is then passed on to be encrypted with a newly generated file key fk. The message
AES(keysession, m), where m = AES(fk, file) + AES(mk, fk) is then passed to the server.
It is assumed that a session key has already been established at login.

17

4 RESULT

Figure 7: Flow-chart of Upload procedure

The procedure of uploading a file is visualised as a flow-chart in Figure 7. First, the user
chooses a file to upload. When the user presses ”upload”, a unique fk is generated and
used to encrypt the file. This way each file gets an unique key which, if shared, can’t give
access to anything other than that file. Then the user’s mk is used to encrypt the fk.
These two encrypted objects are then uploaded to the back-end. This way the server can
store the encrypted fk, to which only the client has the key. The database knows who
the user is since the start of the session.

4.3.4 Downloading a file

It is assumed that prior to downloading a file, a session key has been established at login.

1. Client → Server: AES(keysession, filename)

2. Server → Client: AES(keysession, m)
m = AES(mk, fk) + file

The downloaded file is then decrypted with the fk and converted back from an UTF-8
string into an array of 8-bit unsigned integers. The array is fed to a JavaScript blob (binary
large object), which is a file representation in JavaScript, and written to a file which is
placed in the default download folder of the browser. A flow-chart of this procedure is
visualised in Figure 8.

18

4 RESULT

Figure 8: Flow-chart of Download procedure

4.3.5 Sharing a file

As a member is invited to a team, the following process will take place for each file that
needs to be shared. The current member is referred to as Client1 and the newly invited
user is Client2.

1. Server → Client1: AES(keysession, m)
m = AES(mkuser1, fk)

2. Client1 → Server: AES(keysession, m)
m = user2 + RSA(pkuser2, fk)

The next time user2 signs in, the following exchange will happen without any need for
user interaction.

1. Server → Client2: AES(keysession, m)
m = RSA(pkuser2, fk)

2. Client2 → Server: AES(keysession, m)
m = AES(mkuser2, fk)

If a file is added to an existing team, the same procedure will take place for each user in
the team.

In the case where a user is kicked from or leaves a team, all the files that are shared with
that team need to be uploaded again in accordance with the procedure in Section 4.3.3
and with new file keys.

The sharing of a file takes some iterations between the client and the server, but can be
explained with Figure 9. Breakdown of the figure:

19

4 RESULT

1. The name of the file to be shared is sent to the back-end to retrieve the fk of the
file. This is stored encrypted with the user’s mk and needs to be decrypted from
ciphertext to plaintext.

2. The sharer needs to know the pk of the users whom the file is intended to be shared
with. Then the fk is duplicated for each user and asymmetrically encrypted with
that user’s pk.

3. The encrypted fks are sent to the back-end in order to be stored in the database
for respective user.

4. Here User1 is used as an example. User1 retrieves the encrypted fk from the
database and decrypts it with their sk.

5. Now User1 can encrypt it again with the mk and store it in the database. With
this protocol the encrypted fks stored for each user on the server is only able to be
decrypted into plaintext again using the specific user’s sk.

Figure 9: Flow-chart of Sharing procedure

20

4 RESULT

4.3.6 Changing passphrase

The passphrase is used for generating the main key which in turn is used to store a user’s
keys on the server. The main key has no connection with the stored files. This means
that the only action that is necessary when changing password is re-encrypting the users
secret key and the file keys with the new main key. Since the amount of data is relatively
small and it is encrypted with AES, this is not a problem. Though this functionality has
not been implemented yet.

4.4 Front-end

Since the intent behind the product is to move the encryption client-side, most of the
application logic ends up in the front-end. The front-end is implemented in a purely
functional domain-specific language called Elm and the communication with the server
goes through WebSockets. Following is a description of the design decisions and thoughts
that lies behind the code structure. Furthermore, there will be an explanation of how the
client-side encryption is implemented.

WebSockets is a protocol enabling a two-way communication between the client (front-
end) and the server (back-end), the protocol is initialised with a handshake followed by
basic messages layered over TCP [21]. This means that when a connection is established
over a pre-defined port, messages can be sent freely from the front-end to the back-end
and vice versa. We chose to use WebSockets for the client-server communication due to
the difficulties with file manipulation in Elm. Encoding the encrypted files as strings and
passing them over WebSockets simplified the uploading process significantly in comparison
to previous attempts with HTTP.

4.4.1 How Elm was chosen

Initially the idea was to have a type safe solution by generating both the front-end and
back-end using Haste.App. However, due to lack of progress and technical issues, discussed
further in Section 5.9, a decision was made to replace Haste.App. To find a suitable front-
end replacement, a number of requirements was established:

• Crypto library with various functionality, described briefly below.

– Asymmetric encryption is necessary for passing keys for file sharing.

– Symmetric encryption is needed to encrypt files before uploading them.

– Key derivation function is important, otherwise the generation of main keys is
impossible.

– Hashing is needed to store passphrases securely in the database.

21

4 RESULT

– There is also a need for authentication, to be sure the correct user is signed in.

– Pseudo random number generator, PSNG, is needed to generate the filekeys.

• A source of entropy is necessary to generate randomness through the PRNG.

• For obvious reasons it is important that the compiled code of a web application is
runnable in a web browser.

• Graphical elements are needed to present files, but also to illustrate a clean and
intuitive file structure.

• The front-end needs to be able to read user credentials, both upon sign up and login.

• There is also a need for local file browsing, to choose the file to upload.

• Reasonably simple handling and manipulation of graphical elements, enabling design
of a user friendly interface.

• Communication with the back-end is imperative, for sending and receiving informa-
tion upon activities like signing up and logging in.

Since the program is intended to run in a web browser environment JavaScript would have
to be involved in some way and so two main alternatives was derived; writing the code
directly in JavaScript or using something that compiles to JavaScript.

Ultimately Elm, which is a domain specific language that compiles to HTML, CSS and
JavaScript, was chosen as the preferred front-end [22]. The choice was made with the
requirements in mind. The cryptographic properties of the front-end is of great importance
to provide the desired functionality of the product. They are in different ways involved
in file sharing, signing up, logging in, encrypting files and so on. However, Elm in itself
does not have much to offer regarding cryptographic packages but there is functionality
to import JavaScript functions which makes it possible to make use of any JavaScript
based crypto library. The requirement of a reliable source of entropy can also be met
by importing JavaScript functions. Graphically presenting files, reading user credentials
and browsing local files is also possible to achieve within Elm or through the imports of
JavaScript functions, as well as handling graphical elements. Communicating with the
back-end is possible within Elm. Hence, Elm meets the requirements of our front-end.

The decision was also partially based on personal preference. Eliom, a competitor to Elm,
was quickly ruled out due to being built on OCaml, which none of the team members have
any prior experience of[23] [24]. React in combination with Redux is a viable alternative
to create the program completely in JavaScript[25] [26]. However, JavaScript in itself
is not very developer friendly in a way that it lets the programmer get away with code
containing erroneous behaviour. This in turn can cause runtime errors, which are costly.
Elm on the other hand does not allow this type of errors due to being type safe, resulting
in smooth running applications. Elm also offers better performance than React, which is
a plus. This combined with the team’s previous experience of typed functional languages
influenced the choice of Elm.

22

4 RESULT

4.4.2 The Elm architecture

Elm is currently in an early state, version 0.18, which means not all of the functionality
that you expect from HTML, CSS and JavaScript is currently available, e.g. file manipu-
lation. Elm has solved this problem through an abstraction called ports. Ports allows for
interoperability with JavaScript, which means that anything that is missing in Elm can
be written in JavaScript instead.

Elm has a built in architecture that splits every application into three parts: model, update
and view. The model is a record which keeps the current state of the application, the
update function updates the state of the application based on events, and the view listens
to the model and determines what to show based on the current state of the application.

The events that are consumed by the update function can be fired from the view, e.g. a
button press, or from subscriptions. Subscriptions is Elm’s way of letting systems outside
of Elm communicate with Elm, and in our case it is mainly used for receiving websocket
messages from the server and receiving return values from the parts written in JavaScript.

The majority of the CSS used in the application comes from the framework Bootstrap
[27]. It is downloaded to the user client through a content delivery network, CDN, which
is shown in Figure 10. To use the style sheet which is using Bootstrap, you only need to
include it in the view with the type Html Msg. In Figure 11 it is illustrated how the style
sheet is used in the function view.

Figure 10: How the Bootstrap CSS is imported.

23

4 RESULT

Figure 11: How the stylesheet is used in the view function.

4.4.3 Cryptography in the browser

As previously mentioned client-side security is a major part of this project. Since Elm does
not have a lot to offer regarding cryptographic libraries this functionality had to be filled
by importing a JavaScript library, Forge [28]. Forge is an extensive cryptographic library
and it contains implementations of all the cryptographic primitives that was needed for
this project.

Forge only supports one algorithm for public key encryption, RSA [29]. Only having one
alternative is not a significant problem in this case, since RSA has been approved as a
standard by NIST [30]. Furthermore, there is a good chance RSA is the world’s most used
public key cryptosystem. One reason for this is its versatility, as RSA can be used as a
tool in both digital signatures and public key encryption [8].

Forge offers three different block ciphers in the forms of RC2, DES and AES. However
only the latter is relevant to this project since DES has been proven inadequate and RC2
is considered vulnerable [8] [31].

24

4 RESULT

A variety of hash functions are implemented in Forge. Including MD5 and SHA-1, which
should not be used since both of them are considered broken [8]. However, the secure hash
functions SHA-256, SHA-384 and SHA-512 are also included. The three of them all use
the SHA-3 as underlying hashing algorithm [32] [33].

Forge includes an implementation of the password based key derivation function 2, PBKDF2
[34]. PBKDF2 is part of the Public Key Cryptography Standards, PKCS, series created
by RSA Laboratories. PBKDF2 works by taking a password, a salt, an iteration count
and desired key length as inputs, it then derives a key from these inputs by applying a
pseudo random function. Optionally this pseudo random function can be passed as a fifth
input to the key derivation function [35].

Forge provides a PRNG based on the Fortuna algorithm. It also comes with an API for col-
lecting entropy, but if possible the internal browser function window.crypto.getRandomValues
will be used instead [28].The Fortuna algorithm works in three stages. First it creates ran-
dom amounts of pseudorandom data from a fixed-size seed through its generator. Fortuna
also has an accumulator that is capable of collecting and pooling entropy. The third stage
is seed file control, this makes it possible to generate random data shortly after re-starting
the computer [8].

Providing functionality within all the branches of cryptography needed for this product
is a significant challenge though the vast capabilities of Forge made things easier since
there was only one library needed for all the cryptography primitives. Forge has another
advantage, according to benchmarking it is fast [36] [37]. Performance is not the primary
concern when discussing crypto libraries, but still a relevant quality since it affects the
usefulness of the library. The importance of reasonable performance also increases with
the number of complex crypto operations performed. However, the benchmarking results
from the speed test should be reviewed with some caution since the test itself has not been
updated for several years and may be outdated, there is also little information about how
it has been implemented.

4.4.4 Algorithm choices

Regarding cryptography algorithms there were several choices to be made. AES was cho-
sen as preferred block cipher algorithm, used for symmetric encryption. The decision was
based on AES being the official standard and partially due to AES having good perfor-
mance [8]. On similar grounds RSA was chosen for asymmetric encryption purposes, it is
the standard algorithm and also very widely used. For hashing SHA-3 was chosen. Though
SHA-2 is a good alternative and an approved standard, SHA-3 is the latest standard [38].
Hence, SHA-3 is the more modern of the two and there is not really a reason to use SHA-2
over SHA-3 in a new and modern application.

25

4 RESULT

4.4.5 Choice of block cipher mode of operation

Regarding block cipher modes of operation there had to be a decision of which one to
go for. Mainly there were two alternatives, either CBC or CTR. Both these modes have
been approved by NIST. They are recommended for use in cryptographic systems in
combination with a symmetric key block cipher algorithm that has been approved by
Federal Information Processing Standards, for instance AES[39].

For this project CBC, with a random IV, was chosen instead of CTR. The reason for this
is that nonce generation is perilous and a serious source of security weaknesses, due to not
being able to guarantee that the nonce is unique. This problem is not unique for CTR, it
is also present when using CBC with nonce generated IV. However, it can be avoided by
using a random IV instead. In general CBC is a good mode, it is robust and can resist
some abuse [8].

However, CTR is also an interesting alternative. It has a clear advantage over CBC,
performance. When using CBC the encryption process has to be done serially, since the
encryption of each block is dependant on the one before. However, in CTR this is not the
case and the encryption can be parallelized [39]. This can increase performance and in
turn also usability of the application.

4.4.6 File manipulation

File manipulation and file I/O is something that is not yet implemented in Elm. At first
an Elm-package file-reader, which is a ported version of JavaScript’s file-reader, was used
for file manipulation. Later this was changed to plainly use the actual JavaScript package.

4.5 Back-end

The back-end currently consists of mainly two different modules, the database and the
websocket handler. The websocket handler is an object class which is instantiated for
each connection request. As a request is received from the client-side it is split up
into two parts, the request type and the required parameters. For example the request
”login|email|passphrase” is split into login and a list of parameters [email, passphrase].
The handler then forwards the parameters to the responsible module. The server response
will be sent asynchronously when the request has been processed, e.g. ”login|ok”.

There are other modules planned but not currently implemented. Firstly, there will be
a module that handles all interaction between the server and the cloud storage. This
module is currently in prototype stage. Secondly there will be a module that implements
or utilises a library that contains the algorithms AES, SHA3 and RSA. These algorithms
are needed server-side in order to encrypt the data sent over the web socket and verifying

26

4 RESULT

the sender and the integrity of sent messages.

4.5.1 Python - Back-end language

Perl, PHP, Ruby, Node.JS, Java and Python was all researched and weighted against
each other, but ultimately Python was chosen as back-end language. Python is a general-
purpose language widely used for writing the server-side of various applications. This
means that the necessary functionality is possible to implement and there exists plenty of
resources that will ease the implementation.

With Python the back-end goals were achieved and are done in a modular way. With
Python there should also not be any implementation restraints on what has not yet been
implemented.

4.5.2 Tornado - Communication between front-end and back-end

The back-end was first done in Django Python, but Django had too much extra function-
ality that was not needed, so the back-end was made in Tornado Python instead.

Django works by having a folder, called ”app”, with a number of files in them for each ma-
jor functionality and/or ”path” of the website which was unnecessarily complex. Django
also only works with html-files as standard which was troublesome.

Tornado is much simpler and lightweight as it only uses a python class for each handler
and then some extra code for defining which port to listen to and which handler each path
should use.

4.5.3 Database

All metadata is stored on the back-end in a MySQL database [40]. The databases contains
two tables, ”Usermeta” and ”Filemeta”. Usermeta is a simple table without any special
features and just stores metadata regarding the user with columns for name, email, hashed
password, salt, encrypted secret key and public key. However the columns for salt, en-
crypted secret key and public key are not yet implemented in the product. Filemeta is a
table which stores metadata about the files, with the columns for name, size and owner.
The owner column is a foreign key field which points to a certain row (user) in the User-
meta table. This way there is one table for all the users, Usermeta, and one for the files,
Filemeta, with a mapping between a user and their files through the foreign key field
”owner” for each file. A picture of the database and its tables are visualised in Figure 12.

27

4 RESULT

Figure 12: Representation of the database and its tables

The communication with MySQL and constructing of MySQL-queries was made with the
python library Peewee, which is an api for executing queries in a more intuitive way using
specific functions instead of constructing queries on your own [41].

4.6 Cloud Storage

One of the main selling points of the project is to connect the powerful infrastructure of
the big and well known cloud service providers with the security of client-side encryption.
To simplify the development process and reduce legal issues the group has for the sake of
the prototype in this project instead chosen to use an open source cloud service solution.
This means that the group has full control of the cloud service similarly to what it would
be like if there was a collaboration with a larger cloud service company. There has also
been put emphasis on making all development towards the cloud service modular so that
a swap of cloud service would be simple.

The cloud is currently also developed with a dummy storage functionality, where the files
are saved in the same repository as the code. The cloud service is up and running but has
not yet been connected to the uploading functionality on the website.

An open source cloud, Owncloud, has been set up as a placeholder cloud service to receive
files [42]. Owncloud has an API which works with python which the back-end is done in
and the hosting of the cloud is done on the same server as the back-end and so the cloud
compatibility is only a few lines of code which saves the file in an organised matter on the
cloud. Owncloud has a structure of individual user accounts but these are not used in our
implementation. We instead store all of our data in a single Owncloud-users account and
keep track of who owns what file by the use of our database with metadata.

28

4 RESULT

The choice of Owncloud was made by looking at some prerequisites. The cloud service
should be open source and free to use. Furthermore that it was also possible to control it
via some python-API to guarantee it being compatible with the rest of our back-end.

29

5 DISCUSSION

5 Discussion

In this section there are discussions about the key issues of the project and also some
security discussions about the level of security in external libraries and how the systems
security could be enhanced with forward secrecy. There is also evaluations of the languages
which have been used in the project and an ethical discussion at the end.

5.1 Security considerations

As mentioned in Section 1.4.2 there was no intent to implement any cryptography prim-
itives ourselves. This is since our current knowledge of cryptography is not sufficient
enough to do so. The implementation of these primitives would probably have been con-
siderably less trustworthy than an established cryptographic library. Hence, creating a
cryptographic library of your own would risk compromising the security of the system.

There are several risks with using an external cryptographic library. Some of these risks
are bugs within the library, incorrect implementation of cryptographic primitives and a
misunderstanding of how the library is meant to be used.

Bugs are deemed unlikely since Forge has been around for almost four years, which is
plenty of time to find and correct early stage bugs [43]. Secondly, Forge has no less than
17 contributors, which suggests that bugs caused by tunnel visioning are unlikely.

Judging whether the implementation of the cryptographic primitives are correct or not
is very difficult. The reason for this is that it is very hard to do reliable testing in
Cryptography [8]. It is possible to send a test vector and check the output to determine
if the result is correct. However, this only shows that the algorithm at hand works as
intended, it does not guarantee that the system is secure.

For the system to be secure the entire solution has to be implemented properly. Forge is
well documented and this helps prevent misuse but the risk is always there. To minimise
this risk the group has carefully researched how to make proper implementations with
Forge.

Apart from the cryptography library there are other libraries in use. Tornado that han-
dles the back-end part of the communication between the front-end and the back-end,
and Peewee that makes it easier to make MySQL queries in Python. Tornado can not
compromise any information as it only handles encrypted data. If someone would break
the communication the result would only be a possible sabotage of information. Peewee
follows the same principle of only allowing for an intruder to destroy information rather
than accessing it. If someone would be able to change the database through Peewee they
could remove the information of what users are linked to what files. This would make our
system lose track of who owns what and thereby making the files non accessible.

30

5 DISCUSSION

A general thing to keep in mind is that the testing of security systems is very difficult. Due
to this and the limited time frame of the project there have not been enough time to include
any practical testing of the cryptographic solution. It has however been theoretically
evaluated and deemed to not have any obvious security flaws. In conclusion the service is
secure if the assumptions regarding Forge as well as the theoretical evaluation hold.

With our current thought out solution the access of a user’s information is completely
dependant on that user’s passphrase. If the passphrase is compromised that user’s account
is compromised as well. This solution is used because then the user can reach their files
from any machine as long as they has memorised the passphrase. This would not not have
been possible if the cryptographic keys would have been kept locally on each machine
instead.

5.2 Security vulnerabilities

We have identified some problems regarding the security of our application that we have
not had the time to come up with solutions for. Firstly, an adversary could sabotage
the stored information by replicating an old session. Consider the scenario where a user
uploads a document and then at a later point in time uploads a new version of the same
document, overwriting the first version. If an adversary re-sends the encrypted data from
the first session, the document will be overwritten by a prior version and the newer version
is lost.

Secondly, there is a problem with the sharing protocol that can result in compromised
data. As a client requests another users public key, in order to share a file key with
another user, an adversary could intervene. If the adversary pretends to be the server and
supply their public key to the client, then the client is essentially handing out the file key
to the adversary. This can be solved if the server works in trusted mode by having the
server sign the sent data. In the case of a server working in un-trusted mode, we have not
solved how to store a secret on the server that can be used for verification.

5.3 Forward secrecy

One problem with the currently planned encryption scheme is that if at any point an
adversary acquires the means to decrypt the RSA encryption that is used at login, see
section 4.3.2, they can read all messages sent to or from all users. This is since at login,
the client sends a session key to the server by encrypting it with the public RSA key of
the server. Since the server’s public key is the same for all users, all the data that is
stored with our application is compromised. Cracking the session key implies accessing
the emails and hashed passwords which in turn implies full access to all data.

An optimal solution should imply that if a session is compromised, none of the previous
session nor any future sessions should be compromised. This is commonly referred to

31

5 DISCUSSION

as forward secrecy and there are handshaking algorithms that provides this. In the case
of further development, after the end of the project, a solution which provides forward
secrecy should be implemented.

5.4 Scalability

Regarding the scalability of the application, primarily two aspects are being taken into
consideration. Those two aspects are the amount of users of the application and the
amount of data traffic passing through our system. Regarding the amount of data stored,
it lies mostly with the restrictions from the third-party cloud provider.

In our current solution, all files that are uploaded to the cloud passes through our back-
end. This is not a good solution since it scales very poorly with increasing amounts of
data traffic. A better solution would be to have the client requests cloud access from
the back-end and then directly sends the files to the cloud. We have not come up with
how to implement this without giving the client a permission that would also allow the
user to sabotage the storage. The problem lies in giving the client write permission when
uploading a file.

With regards to the amount of users, there does not seems to be any major problem. The
only implication of increasing amounts of users, apart from the data traffic, is the amount
of meta data we need to store and we believe that this is not a problem.

Lastly, we have the amount of users per team. Sharing a file with a team results in doing
an RSA encryption of the file key for each receiver. It is not clear whether it is realistic to
consider the performance problem caused by sharing a file with too many users. However,
it can not be used to bottleneck the back-end since the encryption is performed client-side.

5.5 Evaluation of front-end

The decision to use Elm as front-end for our product was in general a good call. Learning
Elm is rather easy, especially if the programmer in question has some prior experience
of functional programming. It is an advantage to be familiar with the data structures
commonly found in such languages. The syntax is different, but still reminds you of
Haskell. Apart from the fact that Elm does not really care if you are an experienced
programmer or a beginner. The reason for this is the architecture, Elm pretty much forces
the programmer to use it. At first it was a bit cumbersome, but the more you get used
to Elm the more obvious the brilliance behind the architecture becomes. The code is
automatically neat and structured, which makes development so much easier compared to
structuring the code yourself.

One thing to keep in mind is that Elm is young, for this project version 0.18 was used. Due
to this there is some desired functionality missing. For example the support for file manip-

32

5 DISCUSSION

ulation is absent. As mentioned previously this problem was solved by using JavaScript
for those parts. However, as soon as the ports and subscriptions were implemented cor-
rectly things went smoothly and importing JavaScript libraries was not much hassle at
all. Another example of missing functionality are the WebSockets. Presently they only
support strings, which means that all files need to be encoded to strings before being sent
between the front-end and back-end. On the other hand Elm’s age may be taken as a good
thing. Being this good and user friendly while still being a comparatively young language
shows that Elm has the potential to become something great.

5.6 Evaluation of back-end

There where two primary reasons for choosing Python as a back-end language. Firstly,
Python has a large and active developer community and is commonly used for similar
software projects. This means that there are numerous sources on the Internet where you
can find help and suggestions for common problems. Secondly, due to the time constraint
on the project it was necessary to choose a language with a low learning curve. Python
has a general reputation amongst developers to be an easy language to learn. It also has
similarities to Java, in which we have prior experience.

Moving away from the web framework Django and instead using Tornado for client-server
communication was a good choice. We had no use for all the additional features that
Django provided and therefore made the implementation with Tornado less complex.

5.7 Design principle and architecture of the back-end

As mentioned earlier in the current solution all communication between the user and the
cloud passes through our back-end, seen in Figure 4. A clear disadvantage with this is
the risk of massive data transfer, which could cause a negative effect on the usability of
the system. The reason for this derives from the principle of using end-to-end encryption
where only the user has access to their files. The only way to be sure of this is to have a
single account at the cloud service operated by us. The user’s files is then placed within
the storage space of the central account of the cloud service. This is what makes the
back-end a communication bridge between the cloud and the user.

It would be possible to let the user communicate with the cloud service directly. However,
then there is no guarantee that a user can not access another user’s files. Even if they are
encrypted damage can be done in the sense of deleting sensitive information. This would
not be acceptable, thus a compromise was made. Since security is the top priority of this
project the decision to have the back-end work as a middle hand was clear.

33

5 DISCUSSION

5.8 Related work

There are several companies that provide cloud storage services with client-side encryption.
Most of them however does not combine it with the infrastructure of bigger cloud storage
services[4][5]. Our main competitor is called Tresorit and is the only competitor hosting
a service that shares our vision of combining the two[6]. Their solution includes a native
application and a web application, both which include client side encryption and the
powerful third-party storage backend Azure hosted by Microsoft[44]. Tresorit also has
sharing implemented in something that they call tresors. Tresors are very much like our
thought out solution for including sharing with what we call teams. Just like our teams
the tresors works as a file area where you can store files and then invite the people you
want to have access[45]. Tresorit has a well developed solution for the same problem that
we are trying to solve and due to being a leading company in the industry as well as having
workforce of 50 employees it is very likely that their product will keep on improving[46].

5.9 Haste.App

Haste.App is a Haskell framework for creating web applications. It compiles Haskell code
into both a JavaScript front-end and a binary back-end [47]. Haste.App was initially
intended to be a big part of the project but got removed from the development process
about two months into the project. The reason for its intended inclusion and later removal
is discussed below.

5.9.1 Choosing Haste.App

Haste.App was initially introduced to the project group by the supervisors. It was pitched
by the supervisors as an alternative to the more common way of writing a separate front-
end and back-end. With Haste.App it is instead possible to write both front-end and
back-end in the same file, all this in Haskell which has the advantage of including Haskell’s
type safety.

With this introduction and the fact that most of our group had more experience with
Haskell than any commonly used language for developing web applications the group
thought that Haste.App was worth a try.

5.9.2 Moving away from Haste.App

Haste.App started off slow with our group having quite a few different complications with
the installation and initial setup. Installing Haste.App to use for compiling front-end was
not a problem but when it came to also compiling the back-end some trouble occurred.

34

5 DISCUSSION

These setup problems occurred foremost because of the lack of documentation. After some
existential troubleshooting it started working and development of prototypes was started.
Though at this point the version of Haste.App that were being used, 0.5.5.1 (the current
stable release), did not have support for any cryptography modules which was undoubtedly
needed for the project. Anton Ekblad was contacted, the creator of Haste.App, and asked
about this upon he provided a newer unreleased version. This version, 0.6.0.0, had support
for a cryptography module and would in theory work with what was intended to develop.

Version 0.6.0.0 was however even more of a hassle to install and after trying to install it for
over a week the decision that Haste.App was not the most optimal library for the project
was made and new solutions was going to be researched. The primary problem with this
installation was again the lack of documentation, for example there was no information
about the need of external libraries.

The single biggest reason for having such big problems working with Haste.App is the fact
that is a quite unknown framework. Few persons use it and thereby there is few posts
about it on the Internet. The easiest way to overcome a problem in programming is to
search for information about it on the Internet and this was simply not possible. The
one place where you could get information about Haste.App was on the official Haste.App
API and even there the documentation was limited.

5.10 Ethical perspectives

End-to-end encryption is a controversial topic and should not be taken lightly. Services
where the data is fully hidden could be used for illegal activities such as trading illegal
data and wares. Illegal data such as child pornography could be stored with a service as
this one without anyone knowing. It is therefor important for the providing company to
think about how to prevent these types of criminal activities. The alternative, to not use
end-to-end encryption, has its own negative usage areas. Large cloud providing companies
could monitor your data and even give or sell it to other parties such as governments.

End-to-end encryption could be an attractive property for some companies. One reason for
this is to protect corporate secrets, both legal and illegal. A completely secure service of
this kind could offer a significant step in prevention of industrial espionage. Consider a tech
company for example; Imagine if the company has come up with some revolutionising new
technology and wants to do everything they can to protect it against competitors. Then the
end-to-end encryption property makes sure that the information is only accessible by the
company’s employees. In combination with a non-compete clause this would technically
ensure that the information stays within the company.

35

6 CONCLUSION

6 Conclusion

Due to the unfortunate start caused by the problems with Haste.App, the prototype pro-
duced during the project is far from where we had hoped it to be. It does not provide a
practically applicable version of any of the desired functionality that was planned. How-
ever, despite the lacking prototype implementation we have provided a foundation that
should make further implementation relatively trivial.

The cryptographic library, the server database and the client-server communication are
all working as intended. With regards to the modularity of the cloud, it should be rather
easily exchangeable. Since Python is a widely used language for writing back-ends for web
applications, most of the larger cloud storage providers have provided Python APIs for
their respective service. For example the Google Drive API [48], the Dropbox API [49],
and the Amazon S3 API [50].

We have planned and theoretically evaluated both our security protocol as well as the
performance of our web application and believe that if the issues that are brought up in
the discussion are addressed, we would have a working product.

36

REFERENCES

References

[1] T. Gaffer. (2016). Why client-side encryption is the next best idea in cloud-based
data security, [Online]. Available: http://www.infosectoday.com/Articles/

Client-Side_Encryption.htm#.WRV_3-XyiUk (visited on 2017-05-12).

[2] Google. (2017). About google drive, [Online]. Available: https://www.google.se/
drive/about.html (visited on 2017-02-09).

[3] Dropbox. (2017). About dropbox, [Online]. Available: https://www.dropbox.com/
security (visited on 2017-02-09).

[4] Sync. (2017). Features of sync, [Online]. Available: https : / / www . sync . com /

features/ (visited on 2017-02-09).

[5] Crypho. (2017). Main page, [Online]. Available: https://www.crypho.com/ (visited
on 2017-05-30).

[6] Tresorit. (2017). Security of tresorit, [Online]. Available: https://tresorit.com/
security (visited on 2017-02-09).

[7] Therry Chia. (2012). Confidentiality, integrity, availability: The three components of
the cia triad, [Online]. Available: http://security.blogoverflow.com/2012/08/
confidentiality-integrity-availability-the-three-components-of-the-

cia-triad/ (visited on 2017-05-12).

[8] F. Ferguson, B. Schneier, and T. Kohno, Cryptography engineering. Wiley Publish-
ing, Inc., 2010, pp. 13, 43, 53, 54, 59, 63, 65, 66, 71, 72, 78, 79, 81, 82, 142, 195.

[9] R. A. Mollin, An Introduction to Cryptography, Second Edition. Chapman and Hall,
2006, pp. 86, 91.

[10] Python Cryptographic Authority. (2017). Asymmetric algorithms, [Online]. Avail-
able: https://cryptography.io/en/latest/hazmat/primitives/asymmetric/
(visited on 2017-05-11).

[11] W. Stallings, Cryptography and Network Security: Principles and Practice. Prentice
Hall, 1990, p. 165, isbn: 9780138690175.

[12] Mark Ward. (2015). Web’s random numbers are too weak, researchers warn, [On-
line]. Available: http://www.bbc.com/news/technology-33839925 (visited on
2017-05-12).

[13] A. Gholipour and S. Mirzakuchaki. (2011). A pseudorandom number generator with
keccak hash function, [Online]. Available: http://www.ijcee.org/papers/439-
JE503.pdf (visited on 2017-05-12).

[14] B. Kaliski. (2000). Pkcs #5: Password-based cryptography specification, [Online].
Available: https://www.ietf.org/rfc/rfc2898.txt (visited on 2017-05-12).

[15] S. Alexander. (2012). Passwords matter, [Online]. Available: http://bugcharmer.
blogspot.se/2012/06/passwords-matter.html (visited on 2017-05-12).

[16] Scrum Alliance. (2016). Learn about scrum, [Online]. Available: https://www.

scrumalliance.org/why-scrum (visited on 2017-02-09).

REFERENCES

[17] Trello. (2017). Trello, [Online]. Available: https://trello.com/ (visited on 2017-02-10).

[18] Slack. (2017). Slack, [Online]. Available: https://slack.com/ (visited on 2017-05-29).

[19] Git. (2017). Main page, [Online]. Available: https://git-scm.com/ (visited on
2017-05-09).

[20] Git Hub. (2016). Hello world, [Online]. Available: https://guides.github.com/
activities/hello-world/ (visited on 2017-02-09).

[21] I. Fette and A. Melnikov. (2011). The websocket protocol, [Online]. Available: https:
//tools.ietf.org/html/rfc6455 (visited on 2017-05-03).

[22] E. Czaplicki. (2017). Elm, a delightful language for reliable webapps, [Online]. Avail-
able: http://elm-lang.org/ (visited on 2017-05-04).

[23] Eliom. (2016). Eliom, [Online]. Available: http://ocsigen.org/eliom/ (visited on
2017-05-12).

[24] OCaml. (2016). Ocaml, [Online]. Available: https : / / ocaml . org/ (visited on
2017-05-12).

[25] React. (2017). React, [Online]. Available: https://facebook.github.io/react/
(visited on 2017-05-12).

[26] Redux. (2016). Redux, [Online]. Available: http://redux.js.org/ (visited on
2017-05-12).

[27] Bootstrap. (2017). Bootstrap, [Online]. Available: http : / / getbootstrap . com/

(visited on 2017-05-09).

[28] D. Bazaar/Forge. (2017). Forge, [Online]. Available: https://github.com/digitalbazaar/
forge/blob/master/README.md (visited on 2017-05-08).

[29] D. Longley. (2017). Rsa, [Online]. Available: https://github.com/digitalbazaar/
forge/blob/master/lib/rsa.js (visited on 2017-05-08).

[30] N. I. of Standards and Technology. (2013). Digital signature standard, [Online].
Available: http://dx.doi.org/10.6028/NIST.FIPS.186-4 (visited on 2017-05-08).

[31] M. Mathur and A. Kesarwani. (2013). Comparison between des , 3des , rc2 , rc6
, blowfish and aes, [Online]. Available: http://www.met.edu/Institutes/ICS/
NCNHIT/papers/33.pdf.

[32] D. Longley. (2017). Forge, [Online]. Available: https://github.com/digitalbazaar/
forge/blob/master/lib/sha512.js (visited on 2017-05-08).

[33] N. I. of Standards and Technology. (2015). Secure hash standard, [Online]. Available:
http://dx.doi.org/10.6028/NIST.FIPS.180-4 (visited on 2017-05-08).

[34] D. Longley. (2017). Ket derivation function 2, [Online]. Available: https://github.
com/digitalbazaar/forge/blob/master/lib/pbkdf2.js (visited on 2017-05-09).

[35] B. Kaliski. (2000). Rfc 2898, [Online]. Available: https://www.ietf.org/rfc/
rfc2898.txt (visited on 2017-05-09).

[36] M. Rosica. (2012). Javascript cryptography speedtest, [Online]. Available: http:

//cryptojs.altervista.org/test/simulate- threading- speed_test.html

(visited on 2017-05-10).

REFERENCES

[37] D. Tarr. (2014). Performance of hashing in javascript crypto libraries, [Online]. Avail-
able: http://dominictarr.github.io/crypto-bench/ (visited on 2017-05-10).

[38] NIST. (2017). Nist releases sha-3 cryptographic hash standard, [Online]. Available:
https://www.nist.gov/news-events/news/2015/08/nist-releases-sha-3-

cryptographic-hash-standard (visited on 2017-05-11).

[39] M. Dworkin. (2001). Recommendations for block cipher modes of operation, [On-
line]. Available: http://dx.doi.org/10.6028/NIST.SP.800- 38A (visited on
2017-05-30).

[40] Oracle. (2017). About mysql, [Online]. Available: https://www.mysql.com/about/
(visited on 2017-05-12).

[41] C. Leifer. (2016). Peewee, [Online]. Available: http://docs.peewee-orm.com/en/
latest/ (visited on 2017-05-12).

[42] ownCloud. (2017). Owncloud, [Online]. Available: https://owncloud.org/ (visited
on 2017-05-08).

[43] D. Bazaar/Forge. (2013). First release of forge, [Online]. Available: https://github.
com/digitalbazaar/forge/releases?after=0.1.6 (visited on 2017-05-12).

[44] Tresorit. (2017). Third party services, [Online]. Available: https : / / support .

tresorit.com/hc/en-us/articles/216114397-Third-party-services (vis-
ited on 2017-05-30).

[45] ——, (2017). Work securely within teams, [Online]. Available: https://tresorit.
com/business (visited on 2017-05-30).

[46] ——, (2017). The tresorit story, [Online]. Available: https : / / tresorit . com /

about-us (visited on 2017-05-30).

[47] A. Ekblad. (2016). What is haste? [Online]. Available: http://www.haste-lang.
org/ (visited on 2017-02-09).

[48] G. Developers. (2017). Python quickstart, [Online]. Available: https://developers.
google.com/drive/v3/web/quickstart/python (visited on 2017-05-29).

[49] D. developers. (2017). Dropbox for python, [Online]. Available: https : / / www .

dropbox.com/developers/documentation/python (visited on 2017-05-29).

[50] A. W. Services. (2017). Aws sdk for python (boto3), [Online]. Available: https:
//aws.amazon.com/sdk-for-python/ (visited on 2017-05-29).

