
Real-time route prediction of emergency
vehicles
An implemented algorithm for predicting the route choices of
emergency vehicles, with the purpose of sending preemptive
warnings to other drivers

Master’s thesis in Mathematics

ALFRED ARVIDSSON
JAKOB HENDÉN

DEPARTMENT OF MATHEMATICAL SCIENCES

CHALMERS UNIVERSITY OF TECHNOLOGY

Gothenburg, Sweden 2022

www.chalmers.se

www.chalmers.se

Master’s thesis 2022

Real-time route predicion of emergency vehicles

An implemented algorithm for predicting the route choices of
emergency vehicles, with the purpose of sending preemptive warnings

to other drivers

ALFRED ARVIDSSON
JAKOB HENDÉN

Department of Mathematical Sciences
Division of Algebra and Geometry

Chalmers University of Technology
Gothenburg, Sweden 2022

Real-time route prediction of emergency vehicles
An implemented algorithm for predicting the route choices of emergency vehicles,
with the purpose of sending preemptive warnings to other drivers
ALFRED ARVIDSSON
JAKOB HENDÉN

© ALFRED ARVIDSSON, JAKOB HENDÉN, 2022.

Supervisors:
Marina Axelson-Fisk, Mathematical Sciences
Anna Brunzell, Carmenta Automotive

Examiner:
Martin Raum, Department of Mathematical Sciences

Master’s Thesis 2022
Department of Mathematical Sciences
Division of Algebra and Geometry
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: A still of a visualisation of the algorithm running. Blue dots are emergency
vehicles, orange crosses their destinations, green lines the most probable routes,
transparent green other possible routes and blue lines are the area in which to warn
drivers.

Typeset in LATEX, template by Kyriaki Antoniadou-Plytaria
Printed by Chalmers Reproservice
Gothenburg, Sweden 2022

iv

Real-time route prediciton of emergency vehicles
An implemented algorithm for predicting the route choices of emergency vehicles,
with the purpose of sending preemptive warnings to trafficants
ALFRED ARVIDSSON
JAKOB HENDÉN
Department of Mathematical Sciences
Chalmers University of Technology

Abstract

Nordic Way 3 is an EU-funded project that aims to develop software solutions for
a better and safer traffic environment. One of the companies involved with Nordic
Way 3 is Carmenta Automotive who, among other things, are responsible for route
prediction of and preemptive warnings about approaching emergency vehicles. By
predicting the routes of emergency vehicles and sending preemptive warnings to
surrounding drivers this is a contribution to the goals of Nordic Way 3.

In this thesis project, an algorithm for predicting which specific path is chosen
by emergency vehicle drivers is developed and implemented. The current position
and destination of the emergency vehicle, as well as live data regarding traffic and
incidents on the roads is used as basis for the prediction. The modified A*-algorithm
is tested using a set of varied realistic emergency missions, and shows promising
performance. It generally predicts the most probable path together with a few
feasible alternative paths.

Keywords: route, prediction, emergency, vehicle, a-star, a*, algorithm, software

v

Acknowledgements

We want to thank our supervisors, both at Chalmers and Carmenta Automotive,
Marina Axelson-Fisk and Anna Brunzell for their help during the thesis work and
their valuable insights. We are also grateful to our opponents Theodor Stenhammar
and David Bejmer for insightful feedback. Futhermore we want to thank the other
members of the Carmenta Automotive team for their help with implementation.
Last but not least, thank you to Martin Raum for great input and making the
entire examination process trouble free.

The Authors, May 2022

vii

Contents

List of Figures xiii

List of Tables xv

1 Introduction 1
1.1 Background . 1
1.2 Purpose . 2
1.3 Limitations . 3
1.4 Problem Formulation . 3

2 Theory 5
2.1 Geographic data types . 5

2.1.1 LineString . 5
2.1.2 The GeoJSON standard . 6

2.2 Graph traversal algorithms . 6
2.2.1 Greedy algorithms . 6
2.2.2 The A* algorithm . 7

2.2.2.1 The Bidirectional A* algorithm 8

3 Methods 9
3.1 Theoretical methods . 9

3.1.1 Definition of the algorithm’s end goal 9
3.1.2 Definition of an emergency vehicle Mission 9
3.1.3 Mapping from geospatial data to traversable search tree 10

3.1.3.1 Nodes & Edges . 10
3.1.3.2 Direction . 10
3.1.3.3 Road segment speed classes/categories 11
3.1.3.4 Road types . 11

3.1.4 Speed multiplier . 11
3.1.5 Road type multiplier . 11

ix

Contents

3.1.6 Road network weighting . 12
3.1.7 Available data flows . 12
3.1.8 The route difference quota . 12

3.2 Software methods . 13
3.2.1 Calculating distance from geographic coordinates 13
3.2.2 Data Loading and pre-processing 13
3.2.3 Traffic incidents, road work and maintenance data 14
3.2.4 The microservice’s different functions 14

3.2.4.1 RouteProbabilityService 14
3.2.4.2 AmbulanceSimulator 14

3.2.5 Message passing . 15
3.2.6 Visualization of algorithms calculations and results 16

4 Results 17
4.1 The development of the algorithm . 17
4.2 The final algorithm . 21

4.2.1 Helper classes . 22
4.2.2 Algorithm . 22

4.3 Testing the software . 24
4.3.1 Functionality . 25
4.3.2 Adaptability & Future quality 26

4.4 Demonstration of execution . 27
4.4.1 Sahlgrenska hospital to Långedrag 27
4.4.2 Sahlgrenska hospital to Eriksberg 28
4.4.3 Sahlgrenska hospital to inner town 29
4.4.4 Sahlgrenska hospital to Örgryte 30
4.4.5 Sahlgrenska hospital to Vasastaden 31
4.4.6 Östra hosptial to Sävedalen 32
4.4.7 Sahlgrenska hospital to Majorna 32
4.4.8 Mölndal hospital to Rävekärr 33
4.4.9 Mölndal hospital to Tolltorpsdalen 34

4.5 Performance . 34
4.6 Utility . 34

5 Discussion 35

6 Conclusion 39

Bibliography 41

x

Contents

A Appendix 1 - Batched road database creation query I

xi

Contents

xii

List of Figures

2.1 An example of a LineString defined by three points. 6
2.2 Visualization of the A* algorithm searching outwards from the start

point. 8
2.3 The bidirectional a* algorithm searching outwards from both the start

and end point. 8

3.1 Sketch of the software architecture. Solid green services were devel-
oped specifically for this project. 15

3.2 A prototype of a preemptive warning message shown in a car HUD . 16

4.1 An illustration of large overlapping search spaces leading to large
circle areas . 18

4.2 An illustration of a generated alternative route that barely differs
from the main one . 19

4.3 An illustration of nodes being cut and new routes found as a result. . 20
4.4 Illustration of how converting road LineStrings to individual nodes

loses the implied height information. 21
4.5 Sahlgrenska hospital to Långedrag . 27
4.6 Sahlgrenska hospital to Eriksberg, before and after node removal . . . 28
4.7 Sahlgrenska hospital to inner town 29
4.8 Sahlgrenska hospital to Örgryte . 30
4.9 Sahlgrenska hospital to Vasastaden 31
4.10 Östra hospital to Sävedalen . 32
4.11 Sahlgrenska hospital to Majorna, before and after node removal. . . . 32
4.12 Mölndal hospital to Rävekärr . 33
4.13 Mölndal hosptital to Tolltorpsdalen 34

xiii

List of Figures

xiv

List of Tables

3.1 Speed classes . 11
3.2 Road types . 11
3.3 Example rows of the complete routing database table. 14

xv

List of Tables

xvi

1
Introduction

Route planning is the practice of evaluating which path to take through an envi-
ronment where multiple possible paths will lead to the destination. This is done
unconsciously in everyday life when walking, bicycling and driving for example.
The evaluated paths can differ in many ways, and in a complicated environment
many factors influence the decision. For example speed, road condition, familiarity
and certain needs such as bike lanes or gas stations. An emergency vehicle driver
choose routes with the goal of arriving at the destination as quickly and as safely as
possible.

The way computer scientists solve problems such as route prediction is by developing
algorithms that given certain factors produces results that are indicative of the
results a human counterpart would produce given the same circumstances. In this
thesis project, an algorithm that predicts the path chosen by an Emergency Vehicle
driver to their destination will be developed.

1.1 Background

This thesis project will be focused on using software- and data engineering to pro-
duce real time route predictions for emergency vehicles, with the purpose of sending
preemptive warnings to traffic along this route. The project is a part of a larger
initiative called Nordic Way 3, in which several parties with interest in the auto-
motive industry collaborate to develop new technologies centered around connected
roads and traffic infrastructure. One of the pilots within the project relates to in-
creased awareness of emergency vehicles on the roads, specifically sending preemp-
tive warnings to the driver’s Heads Up Display (HUD) when an emergency vehicle
is approaching, as well as evaluating driver behaviour when receiving such warnings.

The purpose of receiving a warning in the driver’s HUD is to prepare the driver to
be extra careful, and be ready to make way for an overtaking emergency vehicle.

One of Carmenta’s roles in Nordic Way 3 is to develop the technology for sending

1

1. Introduction

preemtive warnings to drivers, as well as identifying when and where to send these
warnings. As this thesis project aims to create a true-to-life algorithm for predicting
route choice by an emergency vehicle driver, as well as implementing this function-
ality into Carmenta’s software product TrafficWatch, it is a direct contribution to
Carmenta’s work in Nordic Way 3. It is also in a broader sense a contribution to-
wards reaching the interconnected and smart road network of the future, leading to
fewer incidents and less damage to infrastructure [1].

Emergency Vehicle Approaching (EVA) messages have been classified as a highly
beneficial service for society by the European Commission. The commission have
also stated that it should be deployed as soon as possible, as it shortens the response
time for emergency vehicles, leads to a better experience for road users, and leads
to a smoother and safer traffic flow when an emergency vehicle is approaching [1].

The Swedish National Road and Transport Research Institute (VTI) is conducting
research regarding warning regular drivers about approaching emergency vehicles.
The results of this thesis will be beneficial to the project, as good predictions of
emergency vehicle driving patterns are essential to keeping the false-positive rate
low when sending out such warnings [2].

1.2 Purpose

The aim of the thesis is to develop an algorithm that determines different feasible
routes along with their relative probability for emergency vehicles in real time. The
thesis will investigate which parameters influence route choices and if it is possible to
make accurate predictions. The predictions should be usable for sending preemptive
warnings to other vehicles along the most probable route.

The prediction algorithm and visualizations of its results are valuable additions to
TrafficWatch, as route prediction is a valuable feature for a control-tower application,
which is an application used to guide and assist connected vehicles. This plays an
important role in improving connected autonomous vehicles’ situational awareness.
[3]

Connected and Autonomous Vehicles and a smart interconnected road transport
system is presented by the Swedish Transport Administration as one important
step towards increased accessibility, road safety and reduced climate impact [4].
EVA messages and precise route predictions align well with the development of this
vision.

2

1. Introduction

1.3 Limitations

The testing, validation and development of the algorithm is limited to data from
the Gothenburg area. It is assumed that this will be representative of most other
cities, as well as more rural areas since there is generally a lot fewer factors to take
into account there. There is more often than not less traffic, fewer alternative routes
and the roads are similarly sized.

The data sources used are limited to the existing data providers currently used by
other parts of Carmenta TrafficWatch.

Due to the project’s complete length of 20 weeks including research, development,
implementation and optimization most phases of the project are limited in terms
of what time can reasonably be spent while still ensuring completion. Limitations
include the amount of factors taken into account when developing the algorithm, the
degree to which the solution is hardware optimized, the algorithm’s efficiency beyond
functional performance and the evaluation of the algorithm’s prediction accuracy.

1.4 Problem Formulation

The project is comprised of two main goals. Firstly, create and optimize an al-
gorithm that produces a set of probabilistically evaluated possible routes for an
emergency vehicle given a start and end point, and other real-time traffic related
parameters. Secondly, implement the algorithm and a graphical visualization of it
as a microservice compatible to be used in TrafficWatch.

In addition to the main goals, the efficacy of the algorithm for implementation
in accordance with the specifications of the Emergency Vehicle Awareness pilot in
Nordic Way 3 should be discussed.

3

1. Introduction

4

2
Theory

In this chapter, all concepts and theories this project entails will be presented. These
are mainly computer science concepts surrounding algorithm theory, geometry and
geospatial systems. In chapter 3, the theory presented here will be put into context.

2.1 Geographic data types

To make computations with and analyze geometric and geographic data, spatial
properties such as coordinates and directions need to be represented digitally. In
this section, the formats and standards used for storing routes, road networks and
paths are explained and defined.

2.1.1 LineString

A LineString is in the context of Geographic Information Systems a geometric object
consisting of a series of connected lines. It is formally specified by the sequence of
points which act as the connection points between each line segment. A LineString’s
direction is in the context of this report implied by the order of the points [5].

5

2. Theory

Figure 2.1: An example of a LineString defined by three points.

An example of a street in LineString format is presented below.

Text:
LINESTRING (30 10, 10 30, 40 40)

2.1.2 The GeoJSON standard

GeoJSON is a data format based on JavaScript Object Notation, and is used for ex-
change of geospatial information. By combining multiple JSON objects, geographic
features and their properties are represented by the specific combination sequence
[6]. For example, a LineString is a curve specified by a combination of geographic
Points expressed in coordinates [7] formatted as a JSON object.

2.2 Graph traversal algorithms

Graph traversal is in computer science the process of traversing vertices in a graph
according to some rule, with the purpose of exploring its structure [8]. Example
problems that are solved using graph traversal include calculating the shortest path
or testing a graph for bipartiteness. Depending on the problem at hand, different
rules or traversal algorithms have different efficiency [9, 8].

2.2.1 Greedy algorithms

Algorithms that are greedy follows the problem-solving heuristic of making short-
sighted choices that are optimal only given the current state of the environment.
By acting locally optimally, greedy algorithms does not evaluate future possibili-

6

2. Theory

ties or advantages and tend to result in sub-optimal solutions or fail entirely when
traversing complex environments [10, 11].

2.2.2 The A* algorithm

The A* algorithm is a popular pathfinding algorithm because of its flexibility and
usability in a range of different contexts [12]. The algorithm was originally described
by Dijkstra, however in a more general setting [13]. The common implementation of
A* differs slightly, for example when choosing in which order to explore the nodes.
The A* algorithm is described below in Pseudocode 2.1.

openSet := {startNode}
cameFrom := {}

gScore := map with default value PositiveInfinity
gScore[start] := 0

fScore := map with default value PositiveInfinity
fScore[start] := 0

while openSet is not empty:
current := the node in openSet having the lowest fScore
if current = goal:

retreive path by backtracking to startNode

remove current from openSet
for each neighbour of current:

temp_gScore := gScore[current] + d(current, neighbour)
if temp_gScore < gScore[neighbour]:

cameFrom[neighbour] := current
gScore[neighbour] := temp_gScore
fScore[neighbour] := temp_gScore + h(neighbour)
if neighbour is not in openSet:

add neighbour to openSet

Pseudocode 2.1: The A* algorithm

The A* algorithm guides its search by evaluating the total cost of the path through
each node evaluated, by selecting to explore from the node with the lowest F-score
[14]. fScore[n] should be interpreted as the shortest path from the start to node n.

7

2. Theory

Since the node with the lowest fScore is always chosen first, the optimal paths will
be found when the node chosen is the goal node.

Figure 2.2: Visualization of the A* algorithm searching outwards from the start
point.

2.2.2.1 The Bidirectional A* algorithm

The bi-directional A* search algorithm makes two parallel A* searches, one origi-
nating in the destination and working backwards, and the other search originating
in the start location. When these two searches meet, a good path between the start
and goal node is obtained [15] by backtracking outwards from the meeting point
(often called midpoint) back to the two searches respective starting points.

A reason for using a bi-directional A*-algorithm is the execution time, since the space
searched by the algorithm is generally half compared to a traditional A*-algorithm.
The smaller search space is visualized in 2.2 compared to 2.3.

Figure 2.3: The bidirectional a* algorithm searching outwards from both the start
and end point.

8

3
Methods

In the first part of this section, the theoretical methods, definitions, data mod-
ification and data structures that were used are described. In the second part,
implementations specific to our developed software are described.

3.1 Theoretical methods

In this chapter, all the theoretical models used in this project will be presented.
The chapter also includes project-specific definitions, data structures and theoretical
concepts. Areas include custom pre-processed data structures and factors, models
of a city environment and project-specific statistics used.

3.1.1 Definition of the algorithm’s end goal

The algorithm that is developed in this thesis project should compute different
routes through a real road network (Gothenburg City) as well as individual relative
probabilities of the emergency vehicle driver taking each route using real-time data
flows such as the emergency vehicle’s current position and other complementary
geospatial information.

3.1.2 Definition of an emergency vehicle Mission

An emergency vehicle mission is a task in which an emergency vehicle (such as an
ambulance) is supposed to drive to a specific location. The emergency vehicle’s
location is continuously updated, but the end location remains the same from the
point of creation to the point of completion.

9

3. Methods

3.1.3 Mapping from geospatial data to traversable search
tree

In this section the various geospatial data used in this project will be described. The
existing geometry data is stored as LineStrings together with metadata including
but not limited to their speed class, road type, and a label indicating their allowed
driving direction (forward, backwards or both ways). This data was converted into
custom data structures chosen for the purpose of providing fast lookup and low
graph traversal times.

3.1.3.1 Nodes & Edges

The interconnected road network is represented as a graph of Nodes. In addition to
an id and coordinates, each Node contains a list of inNodes and outNodes represent-
ing which adjacent nodes exists in the network. Thus, a connection between two
Nodes can be interpreted as a road. These roads (edges) are stored in memory as a
dictionary with the start and end node as key, and the weighted distance between
them as the value.

Definition Node:
int: id
double: latitude
double: longitude
List of Node: inNodes
List of Node: outNodes

Pseudocode 3.1: Definition of a Node

3.1.3.2 Direction

The definition of a Node, specifically the inclusion of the lists inNodes and outNodes,
implies the direction from which it’s possible to arrive into a node, as well as which
nodes can be reached when travelling out of a node. The road network structure
therefore entails directionality, which is an essential component when depicting a
real road network.

Bidirectional roads are created by adding two adjacent nodes to both each others’
lists inNodes and outNodes respectively.

10

3. Methods

3.1.3.3 Road segment speed classes/categories

The speed class indicates the upper speed limit between two nodes. Speed classes
exist for the most common speed limits used on Swedish roads. The speed classes
are shown in table 3.1.

3.1.3.4 Road types

The size indicates what type of road connects two nodes. For example, bicycle roads,
country roads or a high-speed motorways are different road types. The purpose of
this data is to indicate the ability for an emergency vehicle to exceed the speed limit
and easily pass traffic. The road types are described in table 3.2.

Table 3.1: Speed classes

Speed Class Id Max speed limit
1 130 km/h
2 110 km/h
3 90 km/h
4 70 km/h
5 50 km/h
6 30 km/h

Table 3.2: Road types

Road Type Id Example
1 Highway
2 Expressway
3 Large road
4 Small road

5 Small accessways,
bike lanes, etc.

3.1.4 Speed multiplier

To convert the distance and metadata of a specific road segment to the time it
takes to traverse it (which is of greater interest), its distance can be multiplied with
the inverse of the speed limit of that road segment. This value is called the speed
multiplier. Unit analysis clearly describes this rationale:

distance[m] ∗ speedMultiplier[1/m
h

] = time[h]

3.1.5 Road type multiplier

To better model real emergency vehicle driving, the network’s weights are scaled
depending on the road type of each road segment. This value is called the road type
multiplier.

Example:
A 90km/h road segment is classified as a large city road with multiple lanes. This
road type indicates good ability drive fast and pass other traffic. The weighted

11

3. Methods

distance of this road segment is adjusted with a road type multiplier Rm < 1.0
to make the algorithm interpret this road as shorter than a smaller, but otherwise
identical, 90km/h road segment.

3.1.6 Road network weighting

As the goal of the algorithm is to predict the emergency vehicle driver’s route choice,
the weighting of the road network should represent a road segment’s likeliness of
being chosen by the driver. The factors speed, road type, distance, together with
constants and a collection of penalties (if a segment is not classified as a normal car
road, if there are ongoing incidents, etc.), make up the function for the complete
evaluation of a road segment. It outputs a weighted score representing the time it
would take to traverse it and the likelihood of it being chosen. This weighted score
is then used for the tree search that the algorithm performs.

The specific weighting function will not be disclosed in this report.

3.1.7 Available data flows

The live data flows that are implemented is all data from TrafficWatch that is called
an "Incident". This data can according be divided into two groups; traffic incidents
and road work and maintenance.

Traffic incidents data is information such as the locations and severity of collisions
or other unplanned events impacting impacting traffic, like weather or congestion.

Road work and maintenance data contains information such as temporary road
closures, maintenance of sidewalks or shafts, asphalt paving or similar. Road work
or maintenance can either close a lane, or just obstruct it from normal usage. These
cases are distinguished by either removing a road completely if its non-traversable,
or penalize the corresponding graph weighting if it is traversable.

3.1.8 The route difference quota

Evaluation of which routes are deemed plausible alternatives to the main route pre-
diction is done using something called the route difference quota. This is a statistic
that evaluates if an alternative route is sufficiently different from the best route, but
still sufficiently good to be a plausible route.

The quota is calculated by dividing the difference in weighted distance (between the
fastest route and the route being evaluated) with the total weighted distance of the

12

3. Methods

route being evaluated that does not overlap with the shortest route. This quota
must be below a certain threshold, with the idea being to penalize long detours and
prefer varying route choices.

This quota is important as an alternative route needs to be sufficiently different from
the main one. If an alternative route could be identical to the main route except for
one small turn, it would not be helpful as it does not provide any new indication of
what additional areas could be warned. The quota threshold should be set between
giving sufficiently diverging paths, and giving too long detours.

3.2 Software methods

This section will describe the software methods used in this project. These include
specific software implementations of data flows and details about the microservices’
structure.

3.2.1 Calculating distance from geographic coordinates

The distance in meters between two points expressed as geographic coordinates can
be calculated by utilizing the spherical law of cosines acos(sinφ1 ∗ sinφ2 + cosφ1 ∗
cosφ2 ∗ cos∆λ) ∗R [16] where φ is latitude, λ is longitude and R is earth’s radius.

As the earth is approximately spherical and the mean radius is 6371km [17], the
distance between two coordinate points is closely enough approximated for most
purposes [16] by the following equation:

distance = arccos
(
sin

(
π ∗ lat1

180

)
∗ sin

(
π ∗ lat2

180

)
+

cos
(
π ∗ lat1

180

)
∗ cos

(
π ∗ lat2

180

)
∗ cos

(
π ∗ lon2−lon1

180

))
∗ 6.371 ∗ 106

This is the equation used to convert coordinate differences to distance in meters in
this project.

3.2.2 Data Loading and pre-processing

To remove redundancy and transform the data to better suit the development of
routing algorithms, an SQL query [A] was used to generate a database of each
traversable path between every two nodes. In addition to the coordinates of each
two neighbouring nodes, each entry in this database contains the pre-computed
distance in meters between each node pair as well as its speed category, road type

13

3. Methods

("size"), and labels indicating if the road segment is traversable by any car ("car"),
or only emergency vehicles ("emve").

The resulting database shown in table 3.3 contains all information needed for rout-
ing.

road_id fromLat fromLon toLat toLon speed size car emve distMeters
96734 54.3201 10.1425 54.3256 10.1498 7 2 Y Y 6.77
96734 54.3257 10.1498 54.3201 10.1425 7 2 Y Y 6.90
96735 54.3257 10.1498 54.3353 10.1636 6 1 Y Y 20.44
96735 54.3353 10.1636 54.3257 10.1498 6 1 N Y 18.14
...

Table 3.3: Example rows of the complete routing database table.

3.2.3 Traffic incidents, road work and maintenance data

Traffic incidents, road work and maintenance data was already being distributed
on a shared messaging framework in Carmenta’s TrafficWatch. The solution im-
plemented is creating a listener that subscribes to these messages, and sends them
to the RouteProbabilityService. The messages are then unpacked and the desired
information is saved. This is then used to modify the weighted road network ac-
cordingly.

3.2.4 The microservice’s different functions

The complete system developed in this project consists of two independent services
with different responsibilities. Each independent service is described in this section.

3.2.4.1 RouteProbabilityService

This is the main service of this thesis project. This service consumes emergency ve-
hicle mission data such as locations and destinations, extracts the relevant map data
from database, builds a the traversable road network tree structure, and computes
as well as returns the route predictions used by the front end web application. Route
predictions are updated every time a position update from an emergency vehicle is
received.

3.2.4.2 AmbulanceSimulator

This service is a substitute for an actual emergency vehicle live mission data flow,
used for development, debugging and demo purposes. It sends the mission desti-

14

3. Methods

nation as well as pre-determined locations with a fixed delay, simulating an actual
ambulance sending the data RouteProbabilityService expects. In the 3.1 this service
or a live ambulance data feed is called AmbulanceService.

Figure 3.1: Sketch of the software architecture. Solid green services were developed
specifically for this project.

3.2.5 Message passing

The messages that are sent between services are sent by message publishers, with
one publisher for each type of message. The publishers publish their messages
to a RabbitMQ exchange, which is then responsible for routing the message to
the appropriate queue. It is these queues that are listened to, meaning a separate
program can wait for something to appear on the queue to then take action when
it does.

The different messages have different payloads, either GeoJSON objects with coordi-
nate data for points or linestrings, as well as additional attributes such as probability
(to customize how the information should be visualized), or an instance of aMission.

An example message that is sent between the RouteProbabilityService and the front
end application is shown in Pseudocode (3.2).

{
"Properties": {

"Id": "2",

15

3. Methods

"Probability": "0.7"
},
"Geometry": {

"Coordinates": "[57.70244, 11.9738357, 57.7036621, 11.1974791]",
"Type": "LineString"

},
"Type": "Feature"

}

Pseudocode 3.2: Example payload sent to the front-end application.

3.2.6 Visualization of algorithms calculations and results

The results of the algorithm are multiple calculated routes, where one is the primary
and (according to the algorithm) the best. The primary route is visualized as a solid
green path on the map, and alternative routes are visualized as weaker transparent
green paths. Road segments that should be preemptively alerted are shown as
pulsating blue. A snapshot of this can be seen on the cover.

The amount of alternative paths shown is based on the route different quota. This
results in more paths being shown in the graphical user interface if there are more
feasible alternatives, and less otherwise. The relative probabilities are based on the
weighted distances of the routes that pass the threshold.

Figure 3.2 shows an example view of a driver’s HUD (Heads Up Display) when
getting a preemptive warning message.

Figure 3.2: A prototype of a preemptive warning message shown in a car HUD

16

4
Results

This chapter presents the results of the master thesis. Firstly, the focus lies on the
iterative development process used when developing the algorithm. Secondly, the
final algorithm is presented in pseudocode. After that, a theoretical statement and
research analysis is made about software testing and testing adequacy. Finally, the
algorithm’s performance is exemplified through 9 varied demonstration cases, and
the practical utility of the algorithm is reviewed.

4.1 The development of the algorithm

The first algorithm implemented was a naive algorithm that only tried to search
its way through the network via directed search. Since the coordinates of the start
and end point were known, in each intersection the path that progressed the agent
furthest towards the goal (in euclidean distance) was chosen. This worked for easy
test scenarios but suffered the inevitable drawbacks of naivety, such as getting stuck
in dead-end streets.

Modifying the naive implementation to be able to back out of dead-ends was con-
sidered, but was discarded as the inherent problems with naive algorithms was
envisioned to bring about future problems and poor performance. Instead focus was
put into finding an existing non-naive algorithm to use as a starting point.

When researching path-finding algorithms, multiple articles used modified versions
of the A* algorithm. Examples include Path Planning with Modified a Star Algo-
rithm for a Mobile Robot [18] and Path planning of automated guided vehicles based
on improved A-Star algorithm [19]. The A* algorithm is popular in computer science
due to its optimality and efficiency, and was a natural choice as a starting point for
the algorithm.

A bidirectional version of the A* algorithm was implemented as further improve-
ment, as it theoretically reduces the search space by a factor of two, while still
performing similarly.

17

4. Results

A problem with all implementations thus far was that they produced only one single
result. They were designed to terminate after finding a shortest path. This was
problematic since multiple paths are needed to be able to compare them. The
comparison is important to be able to calculate relative probabilities.

One way the algorithm could find multiple paths, was by continuing the search
until supplementary mid nodes were found. This solution turned out to be inef-
ficient, since the search spaces tended to overlap significantly before feasible route
alternatives were identified. Large overlaps means unnecessary calculations and slow
execution. The search space and computation time grows exponentially when search
radii of the two searches grow.

Notice in figure 4.1 that the search space (sum of the circles’ areas) is very large
when finding a distinctly different route.

.
Figure 4.1: An illustration of large overlapping search spaces leading to large circle
areas

Another modification making it possible to find multiple routes, was to not terminate
when a route was found. Instead, the midpoint that was found was removed from
the road network, and a new search was made. This resulted in alternative paths
being found, which was a step in the right direction, but the alternative routes that
were found often differed very little, see 4.2. The routes tended to differ mostly in
the area where the two searches overlapped, leading to the alternative paths being
identical close to the start and destination. This is likely not representative of the
actual route options a driver might consider.

Figure 4.2 shows an example of how similar routes this method returns.

18

4. Results

.
Figure 4.2: An illustration of a generated alternative route that barely differs from
the main one

A new solution for finding multiple routes was implemented, where certain nodes
along the already found routes were cut from the road network before making a new
search. In essence, this is equivalent to the question; "If you’re not allowed to drive
on this road, which route would you choose instead?". By definition it’s sufficient
to remove only one node from the network to be guaranteed a new route with the
next search. This is because if the node removed is included in the found route, it’s
now impossible to traverse this node and find the exact same route.

The first route found is, in practice, near enough always the fastest (assuming correct
weighting of the graph). This can be called the main route. Nodes are cut from
the main route one at a time, and for each node cut a new search is made. If the
resulting alternative route does not fulfill our criteria for being a plausible option,
another node is cut from the part of the alternative route not overlapping with the
main route.

The algorithm was at this stage performing satisfactory, but the weighting of the
road network was not yet fine-tuned. If the road network is weighted incorrectly,
even a perfect algorithm would be unusable in practice. To make accurate predic-
tions it’s necessary to have a road network with weights that correspond to actual
traversal times. The road network should be weighted by more than just distance.
Additional parameters should influence an emergency vehicle’s ability to traverse
the road quickly. For practical use, the parameters must also be defined for every
road.

19

4. Results

Figure 4.3: An illustration of nodes being cut and new routes found as a result.

To account for the time taken to traverse a road, each distance was multiplied with
a speed multiplier based on the speed limit of the road. Since emergency vehicles
can drive above the speed limit, some property indicating the ability to drive over
the limit was also desired. The road type and corresponding road type multiplier
adjusts for the size and type of road.

When dividing roads into different types, consideration was put into getting a divi-
sion rightfully representing different abilities to speed over the limit. By the same
principle, small country roads or bicycle lanes were assumed to negatively impact the
driving speed, where narrow gaps or tight turns could slow down passage. Therefore,
penalizing factors were defined for the roads of smaller size, and boosting factors
were defined for large roads.

While running the algorithm on a road network grid, differences in preference be-
tween horizontal and vertical roads of the same length were noticed. This was an
apparent problem, as it favored driving north/south rather than east/west. The
reason for this discrepancy was that distance was at this point calculated using the
euclidean formula on the geographical coordinates. A degree latitude was wrongfully
assumed to draw an equally long line on the earth’s surface as a degree longitude.
The problem was mitigated after recomputing the coordinate-differences to actual
distances.

As an emergency vehicle can drive against the rules of a normal car in an emergency,
we wanted to add extra flexibility to the routing possibilities. At least in Gothenburg
city, we recognized that emergency vehicles can drive in bus lanes & parkways for
example. One of Carmenta’s data providers did have data indicating which types
of vehicles can drive on each road segment. Labels such as pedestrian, car and
emve indicated if pedestrians, normal cars and emergency vehicles were allowed

20

4. Results

on the road in question. A large bicycle road would presumably have the label
combination {pedestrian = True, car = False, emve = True} for example. This
data was combined with the existing data set, leading to the final database structure
as shown in table 3.3.

In certain cases we noticed strange behaviour, where routes would go off certain
elevated highways like there were no height difference. If two LineStrings were
defined using some shared exact points the search could not distinguish between
a flat intersection and two roads crossing each other at different heights (such as
an elevated highway passing above a road). Upon further thought this should not
have been surprising, since the data set only contained two-dimensional lat, lon-
geographical coordinates. See figure 4.4 for a visual explanation.

Figure 4.4: Illustration of how converting road LineStrings to individual nodes
loses the implied height information.

As height information is non-existent, this problem is unsolvable with the current
map data source. The temporary workaround used in the few cases found was to
remove problematic nodes manually, meaning no routes could cross them at all,
and therefore not causing this problem. It should be mentioned that height data is
available but was not obtained due to time constraints, and the problem affected
far from all test cases.

4.2 The final algorithm

Below the final algorithm is presented in pseudocode. Some operations are simpli-
fied, such as which nodes to cut, due to confidentiality requirements or irrelevance.

21

4. Results

The implementation is fairly straight forward, however the performance of the algo-
rithm is largely determined by the weighting of the road network and which nodes
are chosen to be cut between iterations.

4.2.1 Helper classes

To make the algorithm more readable we use a helper class, here called SearchUtility.
An instance of SearchUtility contains the data structures required to do an A*
search, and since we will be searching from both the start and the end node we need
two such Search Utilities.

Definition SearchUtility:
queue := sorted queue of Node sorted by double
dists := map of Node to distance from start/end
visited := set of Node
otherSearch := SearchUtility

Defintion GenerateSearchUtilities():
searchUtilityStart := new SearchUtility
add startNode to searchUtilityStart.queue with value 0.0
searchUtilityStart.dists[startNode] = 0.0

searchUtilityEnd := new SearchUtility
add endNode to searchUtilityEnd.queue with value 0.0
searchUtilityEnd.dists[endNode] = 0.0

searchUtilityStart.otherSearch := searchUtilityEnd
searchUtilityEnd.otherSearch := searchUtilityStart
searchUtilities := {searchUtilityStart, searchUtilityEnd}

Pseudocode 4.1: Helper classes used to simplify the algorithm

4.2.2 Algorithm

minDist := positive infinity
nodesToCut := list of Node
routes := list of routes

do for desired number of different route options:

22

4. Results

continueSearch := True
GenerateSearchUtilities()
while continueSearch:

for each searchUtility in searchUtilities
if length of searchUtility.queue > 0

node := first Node in searchUtility.queue
if node is in searchUtility.otherSearch.visited

route := backtrack route from node to startNode and endNode
dist := searchUtility.dists[node] +

searchUtility.otherSearch.dists[node]
if dist < minDist

minDist = dist
if this is the first route found

nodesToCut := some selected nodes from route
else

cut a node from the part of the route that does not
overlap with the shortest route

uniqueDist := distance of the route that does not
overlap with the shortest route
quota := (dist - minDist) / uniqueDist
if qouta < some threshold

add route to routes
re-add cut nodes
cut new node from nodesToCut

continueSearch := False
break

add node to searchUtility.visited
for each neighbour to node

newDist := searchUtility.dists[node] +
distance between node and neighbour

add neighbour to searchUtility.queue with value newDist
searchUtility.dists[neighbour] := newDist

else if length of searchUtility.otherSearch.queue = 0
No route could be found
continueSearch := False
break

23

4. Results

return routes

Pseudocode 4.2: The final algorithm

The cutting of nodes is essential for producing multiple routes. The selection of
nodes to cut happen in two different ways, one for selecting nodes from the primary
route (the first route found), and another for nodes in alternative routes (all except
the first route found).

From the primary route, only one node at a time is cut. In other words, the cut
node is always re-added before a new node is cut. A selection of nodes to be cut is
identified in the same iteration as the first route is found. There are many ways of
selecting these nodes, an example would be to select every node at some specified
interval, either absolute or relative to total route length. Another alternative would
be to cut nodes directly after crossings, to force another route through intersec-
tions. In our implementation, the number of nodes selected in this step dictates
the maximum number of alternative routes, since we stop searching for alternatives
once a route that meets the threshold value is found. Instead of searching for more
alternatives, the node cut from the primary route is re-added, and the next one is
cut instead.

When an alternative route is found that does not meet the threshold value, an
additional node is cut. To be certain of a new unique route in the next iteration,
any node that is part of the alternative route but not a part of the primary route
could be cut. Again there are several ways to select which specific node to cut, for
example the first, last, or in the middle. In our implementation we continue to cut
nodes from the alternative routes until either an alternative that meets the threshold
value is found, or there are no more possible routes to find. When either of those
things happen, the cut nodes are re-added, and a new search is started with the
next node to be cut from the primary route.

4.3 Testing the software

Evaluating the functionality of software is not a trivial task, as it is the process
of executing programs with the intent of finding unintentional errors made by the
developers [20]. Software quality can not be tested directly, but instead related
factors such as correctness and usability can be tested to indicate software quality
in terms of functionality. The adaptability (future quality) of a program largely
depends on the factors flexibility, reusability and maintainability, and is largely
important for the program’s future expansion, improvement and reliability [21].

24

4. Results

4.3.1 Functionality

Hall and May (1997) presents three approaches to software functionality testing of
which the most relevant for this project is structural testing. Structural testing is the
practice of evaluating the coverage of elements in the structure or the specification
of the program [22].

One form of structural testing is specification-based structural testing. Instead of
testing the software against specific measurable performance criteria or pre-defined
program flow-graphs, it is based on comparing program outputs with what can be
considered to be correct according to its specification, which in turn suggests test
adequacy [22]. Specification-based structural testing is suitable in this case due
to the unquantifiable nature of its ground-truth correctness. Because the projects
purpose is clear, to compute fast routes for emergency vehicles between two points in
a city environment, the visualized program outputs can be evaluated and analyzed
in terms of their adequacy for an emergency vehicle to take.

Path Coverage is a criterion in software testing that requires all execution paths of
a programs flow graph’s entry to its exit to be tested [22]. The purpose is to not
leave execution paths untested, and therefore susceptible to unwanted behaviour. It
does not guarantee correctness, since a limited set of tests has to be chosen for it
to be practically useful in most programs [22]. The impracticality of path coverage
applies to the path calculation algorithm developed in this project.

The software takes the same path through its flow graph and it is rather the calcu-
lation made by the route calculation algorithm that is to be tested for sufficiency.
The path coverage criterion is therefore more suitably applied to a set of different
routes for the software to calculate rather than program execution paths.

Four parameters have been identified as the key differentiators between routes.
These are route length, road types, speed limit, as well as amount of segments
traversed. To approximate algorithm path coverage, nine different emergency sce-
narios have been produced. The nine scenarios start at different hospitals, and the
destinations contains the Gothenburg city center, as well as different neighbour-
ing areas. The nine scenarios contains variations of all key differentiators, and can
therefore as a group reasonably be expected to approximate path coverage of the
algorithm. This, in turn, means that the performance shown in the test scenarios is
expected to reasonably reflect the performance of the algorithm in most emergency
events in the Gothenburg area.

25

4. Results

4.3.2 Adaptability & Future quality

The typical software quality factors for adaptability & future quality are flexibility,
reusability and maintainability [21].

The software developed in this project has had future quality in mind both during
the design process, as well as during the actual development process. The soft-
ware is divided into multiple classes, each with separate areas of responsibility. One
example of this is the RouteProbabilityServiceHandler, which acts as a Controller
and is responsible for delegating work and maintaining connection with the front-
end as well as the message broker. Another example is the class RoadMap, which
is responsible for calculating routes and building the road network data structure.
Reusable code components should be self-contained and have clearly defined bound-
aries with respect to what their purposes are [23]. This structure of high cohesion
and loose coupling was intentional, with the purpose of simplifying reusability and
maintainability.

The program structure of a detached and isolated calculations microservice that
listens to a separate stream of emergency vehicle position messages means that the
main program is independent from and unaware of the origin of these messages.
This allows emergency vehicle messages to be simulated during development, and
the emergency vehicle simulator to be replaced with a live feed without additional
modification of the main program.

It is a conflict of interests that the algorithm’s performance is evaluated by its
creators. This is suboptimal, and should be adressed by letting an independent
third party evaluate the performance without input from the creators. But since
this project is performed by the authors of this report, as well as in a limited time
frame, diligence has been put into making fair evaluations to the best of our ability
and to highlight advantages and disadvantages with the same regard.

26

4. Results

4.4 Demonstration of execution

The performance of the route prediction algorithm was evaluated and verified using
nine different synthetic scenarios. Real world data from SOS Alarm did not become
available in time for the project deadline, therefore scenarios were constructed to
be a realistic reflection of various destinations where an emergency vehicle might
respond to an emergency. The locations are spread out across Gothenburg and all
three major hospitals are included.

To the determine if the routes predicted by the algorithm are reasonable a number
of soft criteria were used. For example; are there any obvious shortcuts missed,
any unreasonable detours chosen, are large roads preferred? Combining this with
our local knowledge of Gothenburg’s road network it’s possible to make statements
about the algorithm’s performance.

The biggest issue found in testing could be easily remedied with better underlying
map data. It was however not possible to obtain because of the time frame, but it
is readily available. This will be further explained under chapter 5. Discussion.

4.4.1 Sahlgrenska hospital to Långedrag

Figure 4.5: Sahlgrenska hospital to Långedrag

This scenario results in a both a main route and alternative routes that are rea-
sonable. The predictions mostly go along large higher-speed roads, which are likely
choices. Notice that the main route found is strikingly similar to a strictly short-
est path. Some of the alternative routes are long detours from the main one (for
example seen in the top right).

27

4. Results

4.4.2 Sahlgrenska hospital to Eriksberg

Figure 4.6: Sahlgrenska hospital to Eriksberg, before and after node removal

This scenario is an example of problems in the underlying map data. One of the
alternative routes suggested includes first taking a ferry and then teleporting from
the water to the top of the bridge Älvsborgsbron. This is obviously not possible and
stems from the lack of height information in the data set. When a node is manually
removed to prevent this, reasonable routes are suggested.

28

4. Results

4.4.3 Sahlgrenska hospital to inner town

Figure 4.7: Sahlgrenska hospital to inner town

The routes predicted in this scenario are valid. The predictions are nearly equal
in length, and travel mainly along high speed roads. Due to previous knowledge
of possible traffic jams or long waiting times at red lights in the Vasastaden area,
the alternative route could sensibly be preferred over the main route. Though this
knowledge should not impact the prediction as a traffic jam would be reported as
an incident in TrafficWatch, making the algorithm take this into consideration. An
emergency vehicle can also run a red light.

29

4. Results

4.4.4 Sahlgrenska hospital to Örgryte

Figure 4.8: Sahlgrenska hospital to Örgryte

Many alternative routes are shown. Both the topmost and lowermost alternative
routes are long detours. Their speed could be similar, as the results indicate, but
these are considered unlikely and should probably have been filtered out.

30

4. Results

4.4.5 Sahlgrenska hospital to Vasastaden

Figure 4.9: Sahlgrenska hospital to Vasastaden

The main route and full alternative route predictions are the only reasonable routes.
The extra alternative turn that goes around Annedal is an unlikely choice when the
main route’s road continues and goes straight towards the goal.

31

4. Results

4.4.6 Östra hosptial to Sävedalen

Figure 4.10: Östra hospital to Sävedalen

The primary route is likely the best one. The alternatives routes are fairly long
detours in comparison.

4.4.7 Sahlgrenska hospital to Majorna

Figure 4.11: Sahlgrenska hospital to Majorna, before and after node removal.

This scenario shows how the underlying map data is essential for good route predic-
tions. The primary route suggested goes straight through Slottsskogen park, which
is technically allowed but highly unlikely to be chosen due to both pedestrians and
road barriers. When a node is manually removed to prevent this specific route, the
primary route instead becomes one of the alternative, more realistic, routes. This
indicated that the penalty for driving on roads where cars are not allowed should
possible be higher.

32

4. Results

4.4.8 Mölndal hospital to Rävekärr

Figure 4.12: Mölndal hospital to Rävekärr

The primary route is a good choice, but once again we see that some alternative
routes could be considered to be to much of a detour to be realistic options.

33

4. Results

4.4.9 Mölndal hospital to Tolltorpsdalen

Figure 4.13: Mölndal hosptital to Tolltorpsdalen

In this scenario, the only two feasible route options are correctly identified and the
fastest is chosen as the primary one.

4.5 Performance

Generally, the primary route identified is the fastest one. Alternative routes are
often feasible options, however some could be argued to be to long detours. This
suggests that the threshold for accepting alternative routes as a feasible option needs
to be altered. Choosing the threshold, and the calculation used for producing the
statistic to compare with, is not trivial and there is still room for improvement in
this area.

4.6 Utility

The algorithm generally identifies the fastest route, which does contain the best area
in which to send preemptive warnings. Though, since the manual intervention is
needed in certain cases, such as manually removing nodes when the underlying data
set is imperfect, the software at its current state as well as the current data source
needs further refinement before being ready for production deployment.

34

5
Discussion

The map data sourced from one of Carmenta’s existing data providers was imperfect.
This was demonstrated during the test scenarios, where some impossible emergency
vehicle paths were predicted, such as driving off of elevated highway roads. This
problem, along with most problems highlighted in the test scenarios are due to
imperfect map data. The missing information to solve this is height data for each
recorded coordinate. If height data existed either fully or just as an approximation,
it could be used to only allow possible ways to turn in each node, solving the
teleportation problems.

In certain cases the data was not incorrect, but rather incomplete. In section 4.6
a route recommendation contains a ferry ride over the water. Technically an emer-
gency vehicle would have been allowed on the ferry, and since the distance is short
the scoring function considered this a feasible alternative despite the ferry having
a slow speed limit. Situations like this does not indicate the algorithm needs alter-
ation, but rather that the data needs updating so that unreasonable "roads" such as
ferry rides are excluded. Taking a ferry ride would undeniably lead to a substantial
amount of overhead both in boarding, leaving land and docking at the destina-
tion. And this is assuming the optimal case where the ferry leaves immediately at
emergency vehicle arrival.

In a production setting it’s possible that a better approach to finding alternate
routes would be to cut more nodes close to the emergency vehicles current location
and fewer far away. This is because it’s really only interesting to know where the
emergency vehicle might travel in the very near future. Since it’s possible to re-
evaluate route predictions as new location updates from the emergency vehicles
become available it might not be necessary to find alternative routes far away from
the emergency vehicles current position.

An interesting extension to the algorithm which was excluded due to time limitations
was to incorporate penalties for turning. Not only is there time overhead implied
in each turn an emergency vehicle makes due to deceleration, acceleration, and

35

5. Discussion

cautiousness by the driver. Turning an emergency vehicle also spawns tangible
safety hazards for unstrapped emergency vehicle staff inside an ambulance, and also
to a potential physically harmed patient. Due to this, it is not unreasonable to think
that an emergency vehicle driver would prefer to stay on straighter roads. A turning
penalty could be incorporated in our software by penalising the amount of unique
roads in a path. This value will in practice be equal to "the amount of turns made".
A critical component in making this result in more accurate predictions in practice
is to find the suitable penalty for a turn.

Graphhopper [24] is an open-source routing algorithm that has use cases similar
to the algorithm developed in this thesis. It supports multiple routing algorithms
including Dijkstra’s as well as another variant of the bidirectional A* algorithm.
Being a much more complete and optimized routing engine with support for mobile
navigation clients and other nice-to-haves, it is in a production state. The A* algo-
rithm that Graphhopper uses has many similarities to our algorithm, but differs in
for example the weighting of the network. Interestingly, Graphhopper incorporates
a type of turning penalty like proposed above, called turn weight. It is a weight addi-
tion that approximates the time a turn adds, with values stored for edges and nodes
in a turnCostStorage. Because of the large amount of factors impacting the time a
single turn will add to a route, the approximations will likely never be quite right.
A thorough comparison between arbitrary score boosts multiplied by the amount of
unique roads like proposed by us, the turn weight approach used by Grasshopper,
and real driving data would be interesting.

We have found few established approaches and existing articles regarding the prob-
lem of finding alternative paths, or multiple shortest paths using the A* algorithm.
It is established that the algorithm can be extended to find the N shortest paths,
but debated whether it can be extended to do so in polynomial time. This could
explain the lack of work using an A*-algorithm to find multiple paths. The approach
taken in this thesis is limited in terms of computation time by having a low fixed
threshold of node-cutting and re-searching iterations between terminating and can-
celling the search for alternatives. This makes it a feasible alternative for real-world
use regardless of time complexity.

The natural next step for this project is to validate the algorithm outputs against real
world data. It’s possible that the real world performance is sufficient, but changes
might need to be implemented. The first thing to alter would likely be the weighting
of the road network, since this is what determines which routes the algorithm deems
fast. The goal of the weighting is to be an analog to the time required to travel

36

5. Discussion

the corresponding route in the real world, since short time to the destination is the
number one priority for emergency vehicles. There might be other parameters with
great effect on the time taken that have not been considered in this project.

Our assessment is that the necessary infrastructure for practical implementation of
sending preemptive emergency vehicle warnings is in place. GPS coordinates are
accurate enough for determining emergency vehicle positions. The wireless con-
nectivity standards used today is sufficient in speed and latency for deploying an
application like this, since the data sent (warnings and positions) do not require sub-
stantial bandwidth. The warnings are to be sent 10-15 seconds in advance, meaning
no specific requirements for latency exists.

37

5. Discussion

38

6
Conclusion

The results indicate that probable emergency vehicle routes can be predicted using
a modified bidirectional A*-algorithm. The problems encountered originate from
a bad data source, rather than the algorithm design. The performance demon-
strated in 9 varied test cases indicate that the algorithm performs sufficiently well
to generally identify the most probable path, containing the road segment to send
warnings along. The problems demonstrated can be remedied using a better data
source which is readily available but were not included in this project due to time
limitations.

For this to be confirmed, validation against real emergency scenarios needs to be
performed, and the accuracy of warned areas needs to be low enough to comply with
the results of VTI’s research of acceptable false-positive rates for driver warnings,
so that trust is established in the system and it can fill its intended purpose.

39

6. Conclusion

40

Bibliography

[1] Anna Johansson Jacques. Emergency Vehicle Warnings. Swedish Transport
Administration. url: https://www.nordicway.net/flagship/emergency-
vehicles (visited on 04/26/2022).

[2] Carmenta Group. SE NordicWay Emergency Vehicle Approaching C ITS Ser-
vice. 2019. url: https://www.youtube.com/watch?v=gqN2aABeOPs.

[3] Kristian Jaldemark. Private Communication. Gothenburg, 03, SE, 2022.

[4] Louise Olsson. Färdplan - digitaliserat vägrtransportsystem version år 2022
(kort version). Trafikverket. Mar. 18, 2022. doi: http : / / trafikverket .
diva-portal.org/smash/get/diva2:1651949/FULLTEXT01.pdf.

[5] John R. Herring. “OpenGIS® Implementation Standard for Geographic infor-
mation - Simple feature access - Part 1: Common architecture”. Version 1.2.1.
In: (May 2011).

[6] Howard Butler et al. “The GeoJSON Format”. In: (2016). doi: https://www.
rfc-editor.org/rfc/pdfrfc/rfc7946.txt.pdf.

[7] Tom Proctor. Polygonal Chain. url: http://wiki.gis.com/wiki/index.
php/Polygonal_chain (visited on 03/02/2022).

[8] Riccardo Di Sipio. “Quick Guide to Graph Traversal Analysis”. In: (). url:
https://towardsdatascience.com/quick-guide-to-graph-traversal-
analysis-1d510a5d05b5 (visited on 05/11/2021).

[9] Thomas H. Cormen et al. Introduction to Algorithms. MIT Press, July 2009.

[10] Paul E. Black. Greedy algorithm. Feb. 2005.

[11] Jørgen Bang-Jensen, Gregory Gutin, and Anders Yeo. “When the greedy al-
gorithm fails”. In: (2004). doi: https://doi.org/10.1016/j.disopt.2004.
03.007.

[12] Amit Patel. Introduction to A*. Stanford University. url: http://theory.
stanford.edu/~amitp/GameProgramming/AStarComparison.html (visited
on 03/08/2022).

41

https://www.nordicway.net/flagship/emergency-vehicles
https://www.nordicway.net/flagship/emergency-vehicles
https://www.youtube.com/watch?v=gqN2aABeOPs
https://doi.org/http://trafikverket.diva-portal.org/smash/get/diva2:1651949/FULLTEXT01.pdf
https://doi.org/http://trafikverket.diva-portal.org/smash/get/diva2:1651949/FULLTEXT01.pdf
https://doi.org/https://www.rfc-editor.org/rfc/pdfrfc/rfc7946.txt.pdf
https://doi.org/https://www.rfc-editor.org/rfc/pdfrfc/rfc7946.txt.pdf
http://wiki.gis.com/wiki/index.php/Polygonal_chain
http://wiki.gis.com/wiki/index.php/Polygonal_chain
https://towardsdatascience.com/quick-guide-to-graph-traversal-analysis-1d510a5d05b5
https://towardsdatascience.com/quick-guide-to-graph-traversal-analysis-1d510a5d05b5
https://doi.org/https://doi.org/10.1016/j.disopt.2004.03.007
https://doi.org/https://doi.org/10.1016/j.disopt.2004.03.007
http://theory.stanford.edu/~amitp/GameProgramming/AStarComparison.html
http://theory.stanford.edu/~amitp/GameProgramming/AStarComparison.html

Bibliography

[13] Edsger W Dijkstra. “A note on two problems in connexion with graphs”. In:
Numerische mathematik 1.1 (1959), pp. 269–271.

[14] W. Zeng and R.L. CHURCH. “Finding shortest paths on real road networks:
the case for A*”. In: International Journal of Geographical Information Science
(Dec. 12, 2007). doi: https://doi.org/10.1080\%2F13658810801949850.

[15] Amit Patel. Variants of A*. Stanford University. url: http : / / theory .
stanford . edu / ~amitp / GameProgramming / Variations . html (visited on
03/08/2022).

[16] Chris Veness. Calculate distance, bearing and more between Latitude/Longi-
tude points. Movable Type Ltd. url: https://www.movable-type.co.uk/
scripts/latlong.html (visited on 03/08/2022).

[17] David R. Williams. Earth fact sheet. National Aeronautics and Space Admin-
istration. url: https://nssdc.gsfc.nasa.gov/planetary/factsheet/
earthfact.html (visited on 03/08/2022).

[18] František Duchoň et al. “Path Planning with Modified a Star Algorithm for a
Mobile Robot”. In: Procedia Engineering 96 (Dec. 27, 2014).

[19] Chunbao Wang et al. “Path planning of automated guided vehicles based
on improved A-Star algorithm”. In: 2015 IEEE International Conference on
Information and Automation. 2015, pp. 2071–2076. doi: 10.1109/ICInfA.
2015.7279630.

[20] Glenford J. Myers, Corey Sandler, and Tom Badgett. The Art of Software
Testing. John Wiley Sons, Sept. 2011.

[21] Jiantao Pan. “Software Testing”. In: 18-849b Dependable Embedded Systems
(1999). doi: http://www.sci.brooklyn.cuny.edu/~sklar/teaching/s08/
cis20.2/papers/software-testing.pdf.

[22] Patrick A. V. Hall and John H. R. May. “Software Unit Test Coverage and
Adequacy”. In: ACM Computing Surveys, Vol. 29, N. 4 (Dec. 1997).

[23] B. Jalender B., A. Govardhan, and P. Premchand. “DESIGNING CODE
LEVEL REUSABLE SOFTWARE COMPONENTS”. In: International Jour-
nal of Software Engineering Applications (IJSEA), Vol.3, No.1 (Jan. 2012).
doi: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.
1069.6383&rep=rep1&type=pdf.

[24] Peter karussell.Graphhopper. https://github.com/graphhopper/graphhopper.
2022.

42

https://doi.org/https://doi.org/10.1080\%2F13658810801949850
http://theory.stanford.edu/~amitp/GameProgramming/Variations.html
http://theory.stanford.edu/~amitp/GameProgramming/Variations.html
https://www.movable-type.co.uk/scripts/latlong.html
https://www.movable-type.co.uk/scripts/latlong.html
https://nssdc.gsfc.nasa.gov/planetary/factsheet/earthfact.html
https://nssdc.gsfc.nasa.gov/planetary/factsheet/earthfact.html
https://doi.org/10.1109/ICInfA.2015.7279630
https://doi.org/10.1109/ICInfA.2015.7279630
https://doi.org/http://www.sci.brooklyn.cuny.edu/~sklar/teaching/s08/cis20.2/papers/software-testing.pdf
https://doi.org/http://www.sci.brooklyn.cuny.edu/~sklar/teaching/s08/cis20.2/papers/software-testing.pdf
https://doi.org/https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1069.6383&rep=rep1&type=pdf
https://doi.org/https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1069.6383&rep=rep1&type=pdf
https://github.com/graphhopper/graphhopper

A
Appendix 1 - Batched road
database creation query

MSSQL Query
1 IF NOT EXISTS (SELECT * FROM sysobjects WHERE name = 'RoadSegments' AND xtype = 'U')
2 CREATE TABLE RoadSegments (
3 road_id INT NOT NULL,
4 fromLat FLOAT NOT NULL,
5 fromLon FLOAT NOT NULL,
6 toLat FLOAT NOT NULL,
7 toLon FLOAT NOT NULL,
8 dist FLOAT NOT NULL,
9 speed INT NOT NULL,

10 size INT NOT NULL,
11 car NVARCHAR(1),
12 emve NVARCHAR(1),
13 PRIMARY KEY (fromLat, fromLon, toLat, toLon));
14

15 DECLARE @batches INT = (SELECT COUNT(*) FROM dbo.RoadNetworkWithNodes) / 2500;
16 DECLARE @batch_loop INT = 1;
17 DECLARE @Geoms TABLE(road_id INT, geom GEOMETRY, speed INT,
18 size INT, dir NVARCHAR(1), car NVARCHAR(1), emve NVARCHAR(1), batch INT);
19 DECLARE @Geoms2 TABLE(road_id INT, geom GEOMETRY, speed INT,
20 size INT, dir NVARCHAR(1), car NVARCHAR(1), emve NVARCHAR(1), rownr INT);
21 DECLARE @rows INT;
22 DECLARE @row_loop INT;
23 DECLARE @line GEOMETRY;
24 DECLARE @points INT;
25 DECLARE @point_loop INT;
26 DECLARE @point1 GEOMETRY;
27 DECLARE @point2 GEOMETRY;
28 DECLARE @road_id INT;
29 DECLARE @speed INT;
30 DECLARE @size INT;

I

A. Appendix 1 - Batched road database creation query

31 DECLARE @dir NVARCHAR(1);
32 DECLARE @car NVARCHAR(1);
33 DECLARE @emve NVARCHAR(1);
34 DECLARE @dist FLOAT;
35

36 INSERT INTO @Geoms(road_id, geom, speed, size, dir, car, emve, batch)
37 SELECT LINK_ID, GEOM, SPEED_CAT, FUNC_CLASS, DIR_TRAVEL, AR_AUTO, AR_EMVE,
38 NTILE(@batches) OVER(ORDER BY (SELECT 0)) AS batch FROM dbo.RoadNetworkWithNodes;
39

40 WHILE @batch_loop <= @batches
41 BEGIN
42 INSERT INTO @Geoms2(road_id, geom, speed, size, dir, car, emve, rownr)
43 SELECT road_id, geom, speed, size, dir, car, emve, ROW_NUMBER() OVER(ORDER BY (SELECT 0))
44 FROM @Geoms WHERE batch = @batch_loop;
45 SET @rows = (SELECT MAX(rownr) FROM @Geoms2);
46 SET @row_loop = 1;
47 WHILE @row_loop <= @rows
48 BEGIN
49 SELECT @line = geom, @road_id = road_id, @speed = speed, @size = size, @dir = dir,
50 @car = car, @emve = emve FROM @Geoms2 WHERE rownr = @row_loop;
51 SET @points = @line.STNumPoints();
52 SET @point_loop = 2;
53 WHILE @point_loop <= @points
54 BEGIN
55 SET @point1 = @line.STPointN(@point_loop-1);
56 SET @point2 = @line.STPointN(@point_loop);
57 SET @dist = SQRT(SQUARE(@point1.STY-@point2.STY)+SQUARE(@point1.STX-@point2.STX));
58 IF (@dir = 'B')
59 BEGIN
60 INSERT INTO dbo.RoadSegments(road_id, fromLat, fromLon, toLat, toLon, dist,
61 speed, size, car, emve) VALUES (@road_id, @point1.STY, @point1.STX, @point2.STY,
62 @point2.STX, @dist, @speed, @size, @car, @emve);
63 INSERT INTO dbo.RoadSegments(road_id, fromLat, fromLon, toLat, toLon, dist,
64 speed, size, car, emve) VALUES (@road_id, @point2.STY, @point2.STX, @point1.STY,
65 @point1.STX, @dist, @speed, @size, @car, @emve);
66 END
67 ELSE IF (@dir = 'F')
68 INSERT INTO dbo.RoadSegments(road_id, fromLat, fromLon, toLat, toLon, dist,
69 speed, size, car, emve) VALUES (@road_id, @point1.STY, @point1.STX, @point2.STY,
70 @point2.STX, @dist, @speed, @size, @car, @emve);
71 ELSE
72 INSERT INTO dbo.RoadSegments(road_id, fromLat, fromLon, toLat, toLon, dist,
73 speed, size, car, emve) VALUES (@road_id, @point2.STY, @point2.STX, @point1.STY,
74 @point1.STX, @dist, @speed, @size, @car, @emve);
75 SET @point_loop = @point_loop + 1;

II

A. Appendix 1 - Batched road database creation query

76 END;
77 SET @row_loop = @row_loop + 1;
78 END;
79 SET @batch_loop = @batch_loop + 1;
80 DELETE FROM @Geoms2 WHERE 0 = 0;
81 END;

III

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

CHALMERS UNIVERSITY OF TECHNOLOGY

Gothenburg, Sweden

www.chalmers.se

www.chalmers.se

	List of Figures
	List of Tables
	Introduction
	Background
	Purpose
	Limitations
	Problem Formulation

	Theory
	Geographic data types
	LineString
	The GeoJSON standard

	Graph traversal algorithms
	Greedy algorithms
	The A* algorithm
	The Bidirectional A* algorithm

	Methods
	Theoretical methods
	Definition of the algorithm's end goal
	Definition of an emergency vehicle Mission
	Mapping from geospatial data to traversable search tree
	Nodes & Edges
	Direction
	Road segment speed classes/categories
	Road types

	Speed multiplier
	Road type multiplier
	Road network weighting
	Available data flows
	The route difference quota

	Software methods
	Calculating distance from geographic coordinates
	Data Loading and pre-processing
	Traffic incidents, road work and maintenance data
	The microservice's different functions
	RouteProbabilityService
	AmbulanceSimulator

	Message passing
	Visualization of algorithms calculations and results

	Results
	The development of the algorithm
	The final algorithm
	Helper classes
	Algorithm

	Testing the software
	Functionality
	Adaptability & Future quality

	Demonstration of execution
	Sahlgrenska hospital to Långedrag
	Sahlgrenska hospital to Eriksberg
	Sahlgrenska hospital to inner town
	Sahlgrenska hospital to Örgryte
	Sahlgrenska hospital to Vasastaden
	Östra hosptial to Sävedalen
	Sahlgrenska hospital to Majorna
	Mölndal hospital to Rävekärr
	Mölndal hospital to Tolltorpsdalen

	Performance
	Utility

	Discussion
	Conclusion
	Bibliography
	Appendix 1 - Batched road database creation query

