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Abstract

The recent renaissance of virtualization brought with it the resurgence of ideas
for hypervisor based security services. As such, virtual machine introspection
(VMI) has been proposed for both passive and active monitoring. While pas-
sive monitoring is the method for detecting intrusions, active monitoring allows
intervention of a Virtual Machine (VM) behavior, which is proper for intrusion
prevention. Several VMI techniques for security purposes have been deployed
in di�erent virtualization solutions. XenProbes, XenAccess, and Ether are ex-
amples of deployed VMI for Xen.

The goal of this thesis is the design and the implementation of a security func-
tion that actively monitors the integrity aspect of guest virtual machines. OS
debugging is the method used for active VMI. In this method, Xen built-in ca-
pability for OS debugging is used, to control, and to intervene in the behavior
of guest virtual machines.

A well-known drawback of VMI in "high-rate" applications is the cost of context
switches between the trusted monitor and the virtual machine being monitored.
As a result, �low-rate� security functions are probably more suitable candidates
for VMI applications. The proposed security functions are low-rate solutions for
systems' integrity property. In the attempt to de�ne proper low-rate security
functions di�erent available �lesystem integrity solutions like DigSig and IMA
are surveyed.

As DigSig is limited to ELF �les and IMA is not developed completely and is
not immune against rootkits, a new security function is developed in this thesis.
In this process, IMA is used as the basis of the designed security function. The
security function validates the RSA signature of accessed �les in guest virtual
machines. It prevents �le access in case of violation. This security function starts
early in the boot process of a guest VM to properly ensure its integrity property.
Having implemented the security function, its security strength, performance,
and limitations are analyzed. Finally it is concluded, while this security function
imposes negligible performance penalty, it improves the security attributes of a
virtual machine.

Keywords: Virtual Machine Introspection, VMI, OS Debugging, Kernel Debug-
ging, Filesystem Integrity
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Chapter 1

Introduction

1.1 Problem Description

Integrity is one aspect of security. Wikipedia de�nes integrity:

"Integrity is a concept of consistency of actions, values, methods, measures,
principles, expectations, and outcomes. In ethics, integrity is regarded as the
honesty and truthfulness or accuracy of one's actions. Integrity can be regarded
as the opposite of hypocrisy, in that it regards internal consistency as a virtue,
and suggests that parties holding apparently con�icting values should account
for the discrepancy or alter their beliefs."1

Filesystem integrity is the property of keeping �lesystem states, such as �lesys-
tem structure, content of �les, in a known valid state. Although there can be
many de�nitions of a valid state, in my opinion it is up to the system adminis-
trator to de�ne.

Filesystem integrity is an important part of system security. Having compro-
mised a system, the attacker tries to maintain its access by maliciously altering
�les or by installing malware on �lesystem which is usually a non-volatile mem-
ory. In addition violating �lesystem integrity may lead to system compromise
in �rst place. For these reasons, it is vital for system security to guarantee its
integrity including �lesystem integrity.

Some solutions are available for �lesystem integrity, but they all have �aws or
limitations. Tripwire2 is a well-known security function that calculates hash
of �les and stores them locally; then tripwire re-calculates �le hashes on regular
time intervals to �nd changes in �lesystem[1]. However Tripwire is a user space
solution, which makes it vulnerable to kernel rootkits. Kernel rootkits, which

1http://en.wikipedia.org/wiki/Integrity, April 2012
2http://sourceforge.net/projects/tripwire
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are common today, disable security functions like tripwire from privileged space,
i.e. kernel space. In addition tripwire is a passive security mechanism; therefore
it cannot prevent malicious modi�cations in �lesystem. DigSig[2] is another
attempt to solve the �lesystem integrity problem. DigSig signs executable �les
and veri�es their signatures whenever those executable �les are �mmap�ed into
memory for execution. Although it is more e�ective than tripwire, still it is
vulnerable to kernel rootkits. DigSig works only with ELF executable �les;
which means it cannot monitor other important �les like scripts. In addition, as
DigSig keys are stored in the kernel space, they are accessible by kernel rootkits.
There are other solutions for �lesystem integrity, which are designed for either
user space or kernel space. As a result they are vulnerable to kernel exploits;
and not all of them are able to prevent �lesystem compromise.

Since the highest privilege level in an OS is the kernel space, any solution works
in the kernel space is considered ine�ective against kernel rootkits. Recently,
and mostly after the advent of the processor virtualization technology, which
provided the basis for native virtualization, virtualization has been used for se-
curity purposes. Advanced Intrusion Detection Environment (AIDE)3

is an equivalent of tripwire that takes advantage of virtualization. AIDE uses
its agents in guest virtual machines to gather information about the guest VMs
�lesystem. It then repeats this information gathering about the target �le sys-
tems to �nd modi�cations[3]. Even though AIDE is more e�ective than tripwire,
it is still a passive security function. While detection is bene�cial, prevention is
desired.

Finally, most security functions for integrity property check �le contents in
�lesystem. However a malware can alter a �le when it is loaded in memory. As
a result, to address integrity aspect of a system, it is important to verify �le
integrity when it is loaded in memory. Integrity Measurement Architec-
ture (IMA)4 is a new security function in the Linux kernel, which checks �les
integrity when they are mapped into memory[4]. However, not all IMA modules
are developed yet, and it is still a kernel space solution.

1.2 Goal

The goal of this thesis is the design and the implementation of a security func-
tion that actively monitors the integrity aspect of guest virtual machines. The
security function designed in this thesis, is RSA signature veri�cation of �les
when they are loaded in guest VM memory. All important �les, generally �les
owned by root user, in a guest virtual machine are signed with a private key in
a trusted machine. When the target VM is created, the signature of important
�les in that VM is veri�ed by the proper public key. In case of violation, access

3http://aide.sourceforge.net
4http://linux-ima.sourceforge.net/
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to that �le is denied, otherwise permitted. The signature veri�cation has to be
performed in a trusted domain in a virtualized environment, and preferably only
the required public key should be known to the trusted domain. The private
key is secret and only used for virtual machine preparation. This key policy
is designed to improve the security attributes of guest virtual machines and
virtual environment as will be described in section3.1. To properly guarantee
the integrity requirement of guest virtual machines, the security function, must
start early enough in boot process. It has to start either when the guest virtual
machine is created or early in its boot process. This approach ensures that
integrity of all accessed �les in the target VM is checked.

1.3 Challenges

To ful�ll the project goals, some problems have to be solved. Semantic gap is the
di�erence between understanding of an external entity, i.e. VM or hypervisor,
about the internal aspect of the target VM, and what is actually happening
inside that VM. This gap is a major problem not only for this project but also
for any other VMI system. This will be discussed further in section 2.2.2.

Having solved the semantic gap, a method has to be found to retrieve required
information and a way to enforce proper policies to the guest VM. In addition,
combining the methods chosen for VMI and the tool used for policy enforcement
is the point where the novel idea of designing this security function resides.
Section 3.1 focuses on these issues.

Another important limitation is performance penalty. Since the virtual machine
introspection causes context switching, system performance is reduced by the
number of context switching that happens in the system. So it is important
to design security function in a way that the least number of context switching
occurs. Performance penalty is discussed in section 2.2.1.

Finally, it is desirable to introspect a virtual machine as soon as possible; there-
fore virtual machine introspection should start with the creation of a virtual
machine, or early in the boot process of virtual machines. This will be ex-
plained in section 3.6. Solving these problems are complex procedures. The
solutions used in these security functions are described in this report.

1.4 Document Organization

In chapter 2 the background information in the area of virtualization and vir-
tual machine introspection are given. In the last part of chapter 2, two available
security functions for the integrity of the Linux systems are described. One of
those security functions is used in this thesis. Chapter 3 explains system speci�-
cations, and design goals. Chapter 4 focuses on the design and implementation
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of the security function, while in chapter 5 possible attacks, performance anal-
ysis, and limitations of the designed systems are discussed. Finally chapter 6
talks about the future work, and summarizes the project.
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Chapter 2

Background

In this chapter, the information that the security functions rely on is presented.
In the �rst section a brief description of virtualization is given. Then detailed
information about Virtual Machine Introspection (VMI), its methods, and avail-
able libraries are described. Finally two security functions for the integrity of
the Linux systems are reviewed. One of them is used in this thesis.

2.1 Virtualization

In a legacy Operating System (OS), kernel is the entity which controls hard-
ware, and it has the highest privileges. To virtualize a VM, OS should be
tricked to think that it is controlling hardware, while actually another entity
named Virtual Machine Monitor (VMM) or hypervisor is controlling it. VMM
is responsible for handling hardware. It should give the guest OS the illusion of
running on the top of hardware. There are two types of VMM[5]:

1. Type I: VMM resides exactly on the top of hardware, and controls it
directly, depicted in Figure 2.1.

2. Type II: VMM resides on the top on another OS and uses its services to
interface with hardware, depicted in Figure 2.2.

Since Type I VMMs interface hardware directly they have better performance,
and they are more reliable. Therefore type I VMM� with native virtualization is
used in this project. Native virtualization was not possible until the advent of
processor virtualization technology. Before that, paravirtualization was used for
type I VMMs. To illustrate native virtualization a concept named protection
ring need to be explained.
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Figure 2.1: VMM type I

Figure 2.2: VMM type II

2.1.1 Protection Rings

Each CPU has a set of privilege levels which are called "protection rings"[6]. In
each ring only a set of de�ned instructions is permitted to be executed. Execut-
ing an instruction which needs higher privilege causes an exception interrupts
to be generated. Figure 2.3 depicts the concept of protection rings.

This picture shows x86 architecture of protection rings in Intel and AMD CPUs.
In x86 architecture, there are 4 rings and ring 0 is the highest privileged ring.
Only small number of instructions need ring 0 privileges, while most instructions
only need ring 3 privileges. In operating systems, the kernel runs in the ring
0. So it has full access to all resources, and hardware. User space applications
run in ring 3. Ring 1 and 2 are designed for drivers, but in practice they have
never been used. The reason is, the number of protection rings di�ers between
di�erent CPU architecture. If an OS is designed to use all protection rings in
a speci�c CPU architecture, it loses its portability to other CPU architectures.
However, most processors have at least two protection rings, so designing an
OS for two protection rings does not a�ect its portability. That is the reason
almost all major OSs are designed for two protection rings. Kernel runs in the
most privileged ring, and user space applications runs in least privileged ring[6].
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Figure 2.3: protection rings

2.1.2 Paravirtualization

As what mentioned earlier, to virtualize an OS, VMM should control it. However
in the design of operating systems, kernel runs in the highest privilege ring, and
this opposes the VMM design. For this reason it is not possible to virtualize a
legacy OS with a type I VMM, as they both need to run in ring 0. To solve this
problem Paravirtualization was used for type I VMMs. In paravirtualization
guest OS is modi�ed so that instead of working with hardware directly, the
OS uses hypervisor calls to VMM[5]. In this approach OS is aware that it is
going to be run in a virtualized environment. Usually OS is modi�ed to make
kernel runs in ring 1, and user space applications runs in ring 3. This design
lets VMM to run in ring 0 and controls guest OS[5]. This is shown in Figure
2.4. This design has good performance, but the only problem is about OS
modi�cation. Modifying an OS is very complicated, and not source code of
every OS is available.

2.1.3 Native Virtualization

Fortunately by introduction of virtualization technologies in CPUs, virtualizing
an unmodi�ed OS has become possible. Intel introduced Intel VT-x and AMD
introduced AMD-sv. Other processor manufactures added the same technol-
ogy into their CPU architectures. In Fact, they designed two security modes
into their CPUs architecture, named root and non-root modes. This is shown
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Figure 2.4: Paravirtualization

in Figure 2.5. Using this architecture, unmodi�ed OS runs in the ring 0 of the
non-root mode. To virtualize an unmodi�ed OS, VMM has to run in root-mode,
which has higher privileges than non-root mode[7]. This allows VMM to con-
trol the guest VM kernel. Executing instructions which need higher privileges
like accessing hardware causes CPU to generate an exception interrupt, which
triggers VMM to take control. VMM then decides how to handle the situation
and makes guest OS believe it is controlling hardware. The transition from the
non-root mode to the root mode is called VM EXIT, while the transition from
the root mode to the non-root mode is called VM Entry[8].

There are many example of type I and type II VMM. Xen, VMware ESX, and
Microsoft Hyper-V are type I VMMs, and KVM, VirtualBox, and VMware
workstation are examples of type II VMMs. In this project, Xen is chosen as it
is a fast open source type I hypervisor.

2.1.4 Xen

Xen1 is an open source type I hypervisor. It supports both Para-virtualization
and native virtualization. In Xen terminology each guest VM is called �do-
main�. There is a special domain called Dom0. Dom0 is a trusted domain and
paravirtualized[9]. Using special hypercall named dom0_op, dom0 can manage

1http://www.xen.org/
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Figure 2.5: Native virtualization

Xen VMM and other virtual machines. For example dom0 can request Xen to
map a guest VM memory pages into its own memory address. Other ordinary
VMs are called DomU.

Figure 2.6: Xen architecture
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There are di�erent libraries in Dom0 for di�erent purposes. XenControl library
allows Dom0 applications to interact with Xen through dom0_op hyper call.
In addition, there is a central database, named XenStore which contain a list
of guest VMs and their information. Guest VMs can access XenStore through
XenBus and Dom0 access it using the XenStore library. It worth mentioning
Xen VMM is a very thin layer of software which does not contain hardware
drivers. Xen uses drives in the Dom0 kernel to control hardware. It is even
possible to delegate the driver role to another DomU which is called the driver
domain. Xen introduces a set of generic and widely used hardware to each
DomU. OS in a DomU installs drivers, called Front End drivers (FE drivers),
for available hardware. Using this method, the FE drivers can communicate
with the real hardware in Dom0 by available drivers in Dom0, called Back End
(BE) drivers[10]. This is depicted in Figure 2.6. In this scheme DomU believes
that it is controlling hardware while VMM can control DomU access.

2.2 Virtual Machine Introspection

Virtual Machine Introspection (VMI) is the act of observing state of a VM from
an external entity that can be either VMM or another guest VM[11]. In Xen
terminology the external entity is either Xen VMM or Dom0. In addition it
is important to de�ne what the state of a VM is. State of a VM is a set of
information about internal structure of a VM that can help to understand what
is happening inside that VM. This includes content of CPU registers, volatile
and nonvolatile memory and I/O data. To gain knowledge about a guest VM it is
possible either to use all internal information of that VM or just only important
information[12]. Here, the tradeo� is between cost and complexity of retrieving
required information. While it may seem better to �nd as much information as
possible about a guest VM, in practice this needs a large amount of time and
CPU cycle. Therefore the trend is to retrieve only required information for a
speci�c application. If a designer wants to �nd the list of installed modules in
the kernel, he/she does not need to �nd information about hard disk content.

In addition, there are two di�erent approaches toward VMI. It is possible either
to passively monitor a guest VM or actively control it[9]. Passive systems are
usually polling based systems that periodically check the guest VM. However,
active systems use event triggered methods to intervene in the guest VM nor-
mal behavior. While passive monitoring is helpful in detecting intrusion, active
monitoring helps in preventing intrusion. Although the idea of active monitor-
ing is attractive, it is not a trivial task. Not only information has to be retrieved
from the guest VM, but also a method has to be found for controlling its behav-
ior. As these tasks are non-trivial, active monitoring methods are rarely used
in available libraries and solutions.

In the next sections some limitations and facts about VMI are described.
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2.2.1 Switching Performance

As mentioned earlier, transitions from the root mode to the non-root mode, and
vice versa are called VM Exit and VM Entry respectively. These transitions are
complex operations compared to normal system operations. For this reason they
are considered CPU intensive functions. If VMI application is located in VMM,
then 2 transitions are needed for VMI: One VM exit from DomU to VMM, and
a VM Entry from VMM to DomU. However, if VMI application is located in
the Dom0 then 4 transitions are required: a VM Exit from DomU to VMM,
a VM Entry from VMM to Dom0, then a VM Exit from Dom0 to VMM, and
�nally a VM Entry from VMM to DomU.[13]. This process is shown in Figure
2.7.

Figure 2.7: context switching

While locating VMI into VMM seems to be a better solution, it makes VMM
more complicated. Best practice for VMM design is to implement it as small
as possible so that the chance of �nding vulnerability in VMM reduces. For
this purpose almost all VMI libraries and applications, except a few have imple-
mented VMI in Dom0. However, since VMI in Dom0 needs four transitions, it is
not proper for high-rate applications as it would su�er from poor performance.
As a result, in all VMI libraries and applications studied in this thesis, high-rate
solutions are implemented in VMM and low-rate solutions are implemented in
Dom0.

2.2.2 Semantic Gap

Semantic gap is the di�erence between the external viewpoint about the internal
aspect of a guest VM and what actually happens inside it[11]. Whatever exists
in a guest VM are all meaningful, data structure, variables, and etc. But from
VMM or Dom0 point of view, all those meaningful information are just a bunch
of meaningless bits. This means that there is a gap between internal view of a
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VM and view of an outside entity about that VM; this gap is called semantic
gap, as shown in Figure 2.8.

VMI application should somehow bridge this semantic gap, to be able to retrieve
required information. Basically a VMI application can be either semantically
aware or semantically unaware[9]. A semantically aware application has built-in
information about the target, like memory addresses for speci�c information or
related data structures. However VMI application should have a list of this
information for di�erent OSs, OS versions and architectures. On other hand
there are unaware VMI applications which do not have initial information about
internal data structure but built it overtime. Figure 2.9[9] shows an example of
bridging the semantic gap.

Figure 2.8: semantic gap

As an example, Linux systems use a linked list to keep information of running
processes. By knowing the kernel version, and the address of linked list head, one
can �nd its location; then by parsing the linked list the list of running processes
can be retrieved. �system.map� is a �le which contains the address of symbols
in the Linux kernel. Therefore, by searching through that �le one can �nd
address of �init_task�, the head of mentioned linked list[14][9]. �system.map� is
an important �le for introspecting Linux virtual machines.

2.2.3 VMM and VMI Detection

In a bare metal computer, if a malware compromises the kernel, it gains the
highest privileges. Therefore, it can perform any task while hiding itself from
the kernel or any kind of security function. But in a virtualized environment,
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Figure 2.9: semantic gap example

VMM is the highest privileged entity. For this reason it is hard for a malware
in a guest VM to hide its existence from VMM. In addition, it cannot perform
any arbitrary task. Nowadays, a malware having compromised the kernel tries
to �nd out if it is running in a bare metal computer or a guest VM; so that it
can possibly escalates its privileges by compromising VMM or hiding itself from
VMM.

The �rst important question is, whether it is possible for a guest VM to deter-
mine VMM existence. And it turns out that in all major virtualization solutions
a guest VM can detect VMM. As a matter of fact, for cooperative virtualization
between VM and VMM which result in improved performance, hypervisors are
intentionally designed to be detectable[14]. There are di�erent ways to detect
VMM. Usually a VMM exports virtual hardware, like virtual buses for com-
munications. However, there are other ways for VMM detection. Using timing
analysis, a process can �nd anomalies in execution frequencies to conclude VMM
existence.[14, 15]. In addition, the anomaly in page fault analysis can result in
VMM detection. In this method, if a process �nds out that a memory page
is swapped out while it was supposed to be in memory, it can assume VMM
exists[14].

The next important question is, whether it is possible to detect VMI security
function. Even though this question has not yet been answered, if a malware
detects VMM then it can assume a VMI security function exists as well and then
attempts to hide its existence[14]. At the time of writing this report, there has
not been any malware that can reliably hide itself from VMM or VMI security
function[14]. This is the result of the fact that VMM has higher privileges, and
has the ability to observe whatever a malware can possibly perform in a guest
VM.
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2.2.4 Exploits

In a virtualized environment, VMM has full access to all resources, and has the
highest privileges. Therefore it is obvious that a compromised VMM leads to
compromised VMs. This is the reason why securing VMM is very important.
For example, there has been exploits for Xen, like CVE-2007-4993 and CVE-
2011-1898 which let a guest VM run arbitrary commands in Dom0 privileges.
So it is vital to secure VMM as much as possible. A good practice for VMM
is to keep its code as small as possible, to reduce the probability of �nding its
vulnerabilities[11].

In addition, Dom0 is a special and trusted domain in Xen environment. Dom0
has the ability to access DomUs resources, like memory addresses. Therefore,
like VMM, a compromised Dom0 leads to compromised DomUs. All in all the
security of Dom0 is as important as security of VMM.

Since the VMI security function is executed with the highest privileges in either
VMM or Dom0, it is very important to keep it secure; because vulnerability in
VMI e�ectively leads to whole system compromise.

2.2.5 Methods

In this section, di�erent methods that are available for implementing VMI are
described.

2.2.5.1 VM State Access

What VMM provides for VMI is the access to the guest VM state[11]. A VM
state is de�ned by its CPU registers, memory space and I/O access of that
VM. However VMM can only provide low level access to the VM state, so VMI
basically only can observe a set of bits using VMM. A VMI application should
provide a layer of knowledge and intelligence about guest OS to gain the ability
of translating low level view of guest VM into meaningful information. As an
example a VMI should have knowledge about windows XP internal structure to
be able to check its validity. For VMI, it is not necessary to have full knowledge
of the guest OS, but only helpful information like IDTR2, system call, virtual
memory I/O. A VMI application can either poll a VM periodically or rely on
an event to check a VM state[12]. VM state access is only a method for passive
VMI, and compromise detection. Even though accessing a VM state is needed
for active introspection, there is no way to actively introspect a VM using only
this method. There are other methods that are used for active monitoring, but
they all need VM state access as a basis for their functions.

2.2.5.2 Guest OS Hooks

2Interrupt Descriptor Table Register (IDTR) is a special register in x86 architecture that
points to interrupt vector table for handling interrupts.
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Figure 2.10: hooks

This method is more intrusive, since it needs guest OS modi�cation. In this
methods some hooks are inserted into guest OS. They send back required infor-
mation and events to the security driver in Dom0 through a small code named
stub code in DomU. This is shown in Figure 2.10. Usually hooks are kernel
modules. This method is used for active monitoring and preventing compro-
mises.

2.2.5.3 Interrupts

In all computer architectures, there are interrupts that facilitates VMI. Ex-
amples of those interrupts are context switching interrupts which are available
in native virtualization[12]. However, some general system interrupts, such as
page-faults; invalid opcode can be useful as well. One interesting interrupt is
the debugging exception interrupt, which is a built-in debugging mechanism in
modern processors. Breakpoints used in this debugging scheme are called hard-
ware breakpoint in contrast to software breakpoints that will be explained in
section 2.2.5.4. Using this interrupts processor generate debug exception when
instruction pointer(IP) register hit addresses de�ned in debug address registers.
This is very useful but usually this mechanism is limited to small number of
breakpoints, as it is based on registers in CPU. x86 architecture has only 4
debug address registers for this purpose[12].

2.2.5.4 Kernel Debugging

Kernel debugging is like debugging exceptions in CPU architecture, except that
instead of being implemented in CPU it is a part of VMM. Kernel debugging
basically works by inserting breakpoint opcode in arbitrary memory addresses.
This type of breakpoint is called software breakpoint. When processor executes
this opcode, it generates a debugging exception interrupt, and then executes
its interrupts handler[8]. This Interrupt leads to SIGTRAP signal in the Linux
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system which is caught by a debugger. In contrast to debug exception and
hardware breakpoints, more functionality can be provided in this method. In
addition the number of breakpoints is not limited. These bene�ts are the results
of the fact that this method is software centric. Xen has a built-in mechanism
for kernel debugging, which will be used in this thesis[10].

2.2.6 Solutions

In this section a survey of some available VMI libraries and applications are
provided.

2.2.6.1 XenProbe

XenProbe[13] is a VMI library for Xen 3.x. However, it is not updated any
more. XenProbe works in Dom0 user space, and was developed to be used for
active monitoring. This library uses �system.map� �le to bridge the semantic
gap, and uses kernel debugging techniques by replacing original opcode with
breakpoint opcode. XenProbe stores the original opcode in a memory space
called out-of-line execution area (OEA). To handle OEA and original opcode
XenProbe needs a kernel module in guest OS named XenProbesU.

2.2.6.2 XenAccess

XenAccess[16] is a VMI library that provides passive monitoring. It has the
capability of monitoring guest VM memory states and disk activities. Moni-
toring memory states is based on mapping guest VM memory to monitoring
VM address space. In addition it provides a layer of intelligence to bridge the
semantic gap. Up to present moment, at the time of writing this report, only
32-bit guest OS is supported. Monitoring disk activity is based on intercepting
disk I/O through the blktap driver. XenAccess monitor disk activity by modi-
fying blktap BE driver in dom0. Figure 2.11[16] shows structure of XenAccess.
Unlike some other monitoring libraries, XenAccess does not change guest OS
nor install any software or modules in guest VM. XenAccess is under active
development, and it is compatible with Xen 3.x to Xen 4.0. As there are some
major changes in Xen 4.1, at the time of writing this report, XenAccess cannot
work with it. XenAccess is a well-known monitoring library, and it has been
used in many monitoring applications. For example, Psyco-virt[17], an intrusion
detection tool, uses host and network intrusion detection techniques with VMI
methods. Psyco-virt uses XenAccess to retrieve guest VM states, beside other
methods it uses.

2.2.6.3 libvmi

Recently developers of XenAccess have released a new VMI library, called lib-
vmi. It supports Xen 3.x to 4.1, and KVM. libvmi is an attempt to develop a
general passive monitoring VMI library that works with di�erent virtualization
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Figure 2.11: XenAccess

solutions[18]. Since libvmi recently has been released, at the time of writing this
report, there is not so much information available about it.

2.2.6.4 Lares

Lares[19] is a VMI application, from XenAccess developers, and it was developed
to show how to implement active monitoring systems. Larse install hooks, which
are kernel modules, inside guest VM to actively monitor a guest VM.

2.2.6.5 Ether

Figure 2.12: Ether
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Unlike other VMI libraries, Ether[15] takes a new approach for VMI. It uses two
components, one in VMM and the other in Dom0. Ether is an active VMI library
and it is very context switching intensive. Ether monitors system calls, memory
writes, context switching and other events in a guest VM. For this reason it
is placed in VMM to reduce the number of required context switching which
improves its performance. While the Ether component in VMM is responsible
for VMI, the user space component is responsible for management and bridging
semantic gap. Structure of Ether is depicted in Figure 2.12[15]. In addition,
Ether needs guest modi�cations. This library is not active anymore, and has
never been updated[15].

2.2.6.6 VIX

This tool suite was developed mainly for digital forensics investigation[14]. Cur-
rently digital forensics methods are based on o�ine examination of a system,
which lack information from memory or other volatile information. VIX pro-
vides a suite of tools to passively check and examine a live system. Therefore
it can access target system memory beside other information to �nd system
intrusions[14].

2.2.6.7 gdbsx

gdbsx is not a VMI library, but an embedded gdb server in Xen VMM[10]. Its
main purpose is for kernel debugging; however it can also be used for VMI.
gdbsx is basically a gdb server, which can communicate with gdb[10]. In fact,
gdb server is a small stub code, designed for embedded systems with limited
resources that are unable to run gdb by themselves. Communication between
gdb and gdbsx is shown in Figure 2.13. gdbsx is an implementation of gdb
server in Xen, and it is only accessible from Dom0. It communicates with gdb
using a plain text protocol called Remote Serial Protocol (RSP) over serial or
network devices[10].

Figure 2.13: gdb server
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Figure 2.14: Kernel debugging by gdbsx

gdbsx uses �xc_ptrace� function from XenControl library, described in section
2.1.4, to insert software breakpoints into guest VM memory address space[8].
When CPU hits those breakpoints, VMM pauses the target VM and gives con-
trol to gdb to debug the target guest OS. This is shown in Figure 2.14[8].

To automate the debugging process, gdb provides three di�erent interfaces[20].

1. Libgdb: It is not a complete and active library, mostly an idea for extend-
ing gdb. Up to now two versions of this library has been published. But
since this library has been changed in each version of gdb, and also there
is no documentation, it has never been used for extending gdb function-
alities.

2. Machine Interpreter (MI): It is a text interface to gdb, and is designed for
development of systems that use debugger as a small part of them.

3. Python: Since gdb version 7, it is possible to write python scripts, taking
advantage of a gdb module, and then ask gdb to execute it. Using this
new capability in gdb, one can extend gdb functionalities. This method is
newer than MI so it is not widely used like MI; but it has good documen-
tation.

2.2.7 VMI Libraries and Applications Summary

Table 2.1 compares di�erent VMI libraries. Among solutions listed in Table 2.1
only XenAccess, libvmi, and gdbsx are being updated.
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Monitoring Method VM Modi�citaion Platform

XenProbe Active Exceptions Yes Xen 3
XenAccess Passive State Access No up to Xen 4.1
libvmi Passive State Access No Xen 4.1, KVM
Ether Active Exceptions Yes Xen 3.1
VIX Passive State Access No N/A
gdbsx Active Kernel Debugging No Xen

Table 2.1: VMI Libraries

2.3 Filesystem Integrity

Integrity, keeping a system in a known state, is a property of security, and to
secure a system, it is vital to satisfy this requirement. For Linux systems solu-
tions have been deployed to address integrity requirements, like tripwire. But
they are usually passive solutions that cannot prevent violations. Nevertheless
they are user space or kernel space solutions which are ine�ective against kernel
exploits. The goal of this thesis is to implement a security function for Linux
systems using VMI to satisfy this security property. Two available security func-
tions for integrity requirements in Linux systems named DigSig, and IMA are
studied. In the following sections a brief description of them is covered.

2.3.1 DigSig

DigSig[2] is an attempt to ensure Linux systems integrity in kernel space. Unlike
tripwire and similar solutions, which are user space applications, DigSig is a
Linux kernel module. It veri�es the RSA signatures stored in the header of ELF
executable �les. Filesystem labeling is needed before using DigSig. Generally,
this is a procedure to add an attribute to �les on �lesystem. Bsign, a tool
developed for this purpose, is used to add the signature segment to ELF headers.
Then DigSig uses LSM hooks like �mmap� hooks to control �sys_execve� system
call which executes binaries. Although DigSig is an e�ective solution, it has some
limitations. First it only checks ELF binaries, so it cannot check scripts or other
important �les. Second, kernel rootkits have been developed, and as a result
kernel space solutions like DigSig are no longer secure enough against kernel
exploits[2].

2.3.2 Integrity Measurement Architecture (IMA)

Integrity Measurement Architecture (IMA)[4] is developed to protect Linux sys-
tems against accidental and malicious �lesystem modi�cations. Like DigSig,
IMA is a kernel space solution, however as it uses Trusted Platform Module
(TPM)3, IMA can be more secure than DigSig. Another advantage of IMA is
that, it does not depend on the ELF header. So it can verify integrity of any

3http://www.trustedcomputinggroup.org/
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arbitrary �le. IMA has some functionality for verifying integrity of a Linux
system remotely or locally. Those functions are[4]:

1. Collect: this module calculates a hash value for each �le.

2. Store: this module stores collected hash values in a run time table located
in the kernel.

3. Attest: this module allows remote veri�cation.

4. Appraise: which prevents access to a maliciously altered �le.

5. Protect: which protects �lesystem against o�ine attacks.

Module Status

IMA Accepted in kernel 2.6.30
EVM Accepted in kernel 3.2
IMA-Appraisal Posted
IMA-Appraisal-Directory N/A
IMA-Appraisal-Digital-Signature Posted
EVM-Digital-Signature Posted

Table 2.2: IMA functions

IMA has several di�erent modules; some of them are now available in the Linux
kernel mainline; some of them have been posted to be part of the mainline kernel
and some parts are under development. Table 2.2 lists IMA modules and their
status at the time of writing this report.

2.3.2.1 IMA

The �rst three functionalities of IMA (collect, store, and attest) are in the
mainline kernel since version 2.6.30. These functions are called just IMA. IMA
is responsible for computing the hash of �les solely based on their content; then
it stores computed hash values in a run time measurement list which acts as a
cache. IMA uses the inode version of �les to detect modi�cations. It calculates
new hash for modi�ed �les. Therefore, IMA works on �lesystems mounted by
�i_version� �ag.

2.3.2.2 IMA-Appraisal

While base modules of IMA only compute and store hashes, IMA-Appraisal[4]
is the appraise functionality of IMA. It is responsible for local integrity valida-
tion and enforcement. It adds an extended attribute to �le inode named "secu-
rity.ima", which contains the valid hash digest of �les. IMA-Appraisal compares
the current hash of �les with the good hash digest stored in �security.ima�. If
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they do not match which denotes a malicious modi�cation, IMA-Appraisal pre-
vents �le access. However since it is based on hash values, IMA-Appraisal is
vulnerable to o�ine attacks; an attacker can modify a �le and then update its
corresponding good hash digest stored in the �le extended attribute. There is
another IMA module named �ima-appraisal-digital-signature� that uses digital
signature instead of hashes. At the time of writing this report this module is not
posted yet. IMA-Appraisal is posted to the kernel mailing list, and it supposed
to be accepted in Linux mainline kernel in near future.

2.3.2.3 EVM

Extended Veri�cation Module (EVM)[4] is another IMA module. This module
provides a method to detect o�ine attacks against �les security extended at-
tributes, like "security.selinux", "security.SMACK64", and "security.ima". EVM
computes a HMAC using encrypted or trusted keys over those security extended
attributes. The computed HMAC is stored in another extended security at-
tribute, "security.evm", in the �le inode. Trusted keys are based on TPM but
encrypted keys are user de�ned keys, which are less secure than trusted keys.
EVM is now part of the Linux mainline kernel since version 3.2.
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Chapter 3

Design and Implementation

In this chapter, design and implementation of the security functions are pre-
sented. First speci�cations and goals of these security functions are described;
then design and implementation detail of each security function is given. Fi-
nally, it is explained how these two security functions are started early in the
boot process of a guest VM.

3.1 Speci�cation

The goal of this project mainly is to design a system that veri�es �le signatures
when they are loaded into a guest VM memory. When a �le is accessed, its
signature is veri�ed by a public key that is associated to the private key used
for initial signing. Xen is chosen as the virtualization environment, because
it is a fast open source virtualization solution. Xen already has the VMI� tool
needed for this project. The signature veri�cation is performed in a trusted
domain that is Dom0 in Xen. VMI application runs in Dom0 which has special
privileges to access other guest VMs, DomUs.

Kernel debugging is the method used for VMI, and it is already incorporated
in the Xen VMM. Figure 3.1 shows the overall system design. The VMI appli-
cation uses a python program to connect to gdbsx, the gdb server implemented
in Xen. This program performs the security function. gdbsx provide facility
for VMI application to insert breakpoints in any arbitrary guest VM memory
addresses, as described in section 2.2.6.7. Whenever CPU executes a breakpoint
in the guest VM, it generates a breakpoint exception interrupt, and executes
the related interrupt handler. As Xen controls this interrupt, it �nds out about
the breakpoint hit in the guest VM. As a consequence, Xen pauses the guest
VM, and gives control to Dom0 which in turn generates a SIGTRAP signal.
This signal is handled by a debugger, the security function.
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By means of VMI, Dom0 is noti�ed whenever a �le is accessed in the target
DomU; then in Dom0, VMI application performs the security function by veri-
fying the �le signature using the proper public key. XenStore is used to retrieve
domain ID of a guest VM, which is needed for connecting to gdbsx.

As the nature of the chosen security function is intervening in the behavior
of a guest VM, an active monitoring method is needed for this project. As a
result, unlike passive monitoring not only information has to be retrieved from
guest VM but also a method has to be found to control its behavior, i.e. policy
enforcement. In my opinion there are two di�erent viewpoints for enforcing
policy to guest VMs:

1. External enforcement: enforcement occurs externally like, pausing, or
stopping VM.

2. Internal enforcement: in which the security function forces a guest OS to
perform a task, like by changing permissions.

External enforcement is usually used for passive monitoring, and internal en-
forcement is the proper method for active VMI. The fact that active monitoring
and internal enforcement are non-trivial to implement, made them rarely used
in available libraries and solutions, as explained in section 2.2.7.

Figure 3.1: general schematic of security functions

To enforce internally, denying �le access, either a new module has to be installed
or an available mechanism in the Linux kernel has to be used. In this thesis,
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IMA-Appraisal is the mechanism controlled in a VM to enforce proper policies.
IMA-Appraisal stores the 160-bit SHA1 digest of �les in the extended attribute
of a �le, �security.ima�. In contrast to storing good digest values centrally in a
database, saving good SHA1 digests in the �le inode removes the search delay.
This improves performance of the security functions. IMA-Appraisal is used to
store valid crypto values in �les extended attributes and to enforce internally
in a VM. In addition, IMA implements an internal cache, run time table, which
improves performance.

While IMA and gdbsx both are available tools, the novelty in this approach is
designing a security function that takes advantage of them. The problem here
is to �nd a way to combine IMA and gdbsx capabilities and to implement a
security function which is signature veri�cation of loaded �les in the guest VM.

To improve the security attributes of the system, VMI application possesses only
the public key, and does not have the private key. The private key is only used
to prepare the guest VM image on a trusted machine. In this procedure, the
private key is used to sign each �le on �lesystem. This fact has impact on the
system design. While only the public key is needed for signature veri�cation,
the private key is used for signing. Essentially whenever a �le is modi�ed its
signature has to be updated as well. The set of �les the security function will
check depends on the security policy and can be con�gured. Therefore it could
be the case that veri�cation only happens for important �les, �les owned by
root, which are expected to be immutable.

However, regarding this limitation, i.e. updating the �le signature, one more
security function is designed. This second security function uses only one secret
key to verify the HMAC-SHA1 digest of �les. HMAC-SHA1 is chosen, since its
output digest is the same size as SHA1, which is 160-bit. Since these two crypto
functions generate 160-bit digest, no kernel modi�cation is required. While in
the RSA signature veri�cation, the Linux kernel should be modi�ed to be able to
work with 4096-bit RSA signatures. In this report the RSA veri�cation design is
named VMI-RSA and the HMAC-SHA1 validation design is named VMI-HMAC
respectively. Here is a brief description of these two security functions:

1. VMI-HMAC: A low-rate context switching security function which vali-
dates HMAC-SHA1 digests of �les, in a guest VM when they are loaded
in memory. The security function runs in Dom0, and uses a secret key.

2. VMI-RSA: A low-rate context switching security function which veri�es
the RSA signature of �les when they are loaded in memory of the guest
VM. Veri�cation occurs using a proper public key in Dom0. Dom0 and
the applied security function do not possess the private key used for initial
signing.

35



VMI-HMAC and VMI-RSA security functions are described in more detail in
sections3.3 and 3.4 respectively.

3.2 VMI

In these VMI systems kernel debugging is used for virtual machine introspection.
The general idea is to use gdb to connect to gdbsx and debug the guest VM.
But breakpoint interrupt handling process should be automated for the security
functions. There are 3 ways to automate, and to control gdb, as they are
described in section 2.2.6.7, using libgdb, Machine Interpreter (MI) and python
extension. Python extension is used in this thesis, since it allows us to take
advantage of python libraries. The following example shows how it is possible
to use gdb python extension[20].

To bridge the semantic gap, some initial information is provided to gdb. Pri-
marily, the architecture of guest VM has to be explicitly speci�ed; whether it
is a 32-bit OS or 64-bit OS. On the other hand to allow gdb to access variables
and structures in the guest VM kernel space, gdb needs to access the compiled
directory of the kernel. This allows gdb to know about exact structure of that
kernel. Finally, the unzipped version of the kernel �le has to be available to
the security functions. This �le contains symbol information of the kernel, and
matches information in the �system.map� �le. All these information is given to
gdb to let it access the guest VM kernels freely, as you can see in the following
code[20].

# !/ usr / b in /gdb −P

import gdb

# ar c h i t e c t u r e o f gue s t VM
gdb . execute ( " s e t a r c h i t e c t u r e i386 : x86−64: i n t e l " )

# path to the d i r e c t o r y o f compi led k e rne l
gdb . execute ( " d i r e c t o r y kerne l_compi led_directory " )

# path to the k e rne l symbol f i l e − unzipped ke rne l f i l e
gdb . execute ( "symbol− f i l e path_to_symbol_file " )

# connect to gdbsx
gdb . execute ( " t a r g e t remote 1 2 7 . 0 . 0 . 1 : l o c a l p o r t " )

# in s e r t b r eakpo in t
gdb . execute ( "break breakpoint_symbol " )
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Since VMI application inserts breakpoints in the kernel locations to control and
handle �le accesses, it is vital to remove those breakpoints before detaching
from the guest VM. If the security functions detach from the guest VM before
removing all breakpoints, a breakpoint hit leads to kernel panic. For a normal
application, not having a SIGTRAP handler just leads to program termination,
but in case of the kernel, the consequence is more severe, a kernel panic. To
control this situation, all breakpoints in guest VM are removed before detaching
from it. The following code is used for this purpose:

def cleanup ( ) :
for br in gdb . breakpo int s ( ) :

br . d e l e t e ( )

3.3 VMI-HMAC Security Function

IMA-Appraisal extended attribute, �security.ima�, is 160-bit, while the RSA
signature, the goal of this project, is 4096-bit. For this reason it was decided to
design and implement the VMI-HMAC security function that uses the original
160-bit, and does not change the length of �security.ima�. In this model, VMI
in Dom0 possesses a secret key and using that key, it veri�es the integrity of
�les and updates their extended attributes.

Reading the IMA source, it was noticed that IMA uses the �ima_calc_hash�
function for calculating the SHA1 digests. This function is only called by the
�ima_collect_measurement� function. To verify the integrity of �les, VMI-
HMAC changes the IMA knowledge of its crypto function. VMI-HMAC in-
tercepts �ima_calc_hash� function �ow. It is possible to replace the calculated
SHA1 digest by inserting a breakpoint in either where �ima_calc_hash� returns
or where it is called. Function �ima_collect_measurement� is chosen for this
purpose. This function calls �ima_calc_hash� function. Following code shows
the structure of �ima_collect_measurement�:
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Secur i ty / i n t e g r i t y /ima/ima_api . c :

int ima_collect_measurement ( i i n t , . . . ) {
. . .
I f ( . . . ) {

. . .
// c a l c u l a t e SHA1 d i g e s t
r e s u l t = ima_calc_hash ( . . . , i i n t−>

ima_xattr . d i g e s t ) ;

// Breakpoint l o c a t i o n
. . .

}
. . .

}

By inserting a breakpoint after where the �ima_calc_hash� function is called,
the �le hash digest, stored in �iint->ima_xattr.digest�, can be replaced with
HMAC-SHA1 digest. The security function computes the HMAC_SHA1 digest
using the secret key. Either an o�ine breakpoint using �asm(�INT3�)� or a
run time breakpoint using gdb works here. A discussion of di�erent types of
breakpoints is provided in section 3.6. When CPU executes a breakpoint it
gives control to the breakpoints handler which is gdb/gdbsx, and then �nally
the following python program is executed:

VMI−HMAC. py :

# read SHA1 d i g e s t c a l c u l a t e d by IMA
Resp=gdb . execute ( "p/x i i n t−>ima_xattr . d i g e s t " , . . . )
. . .
# ca l c u l a t e HMAC−SHA1 us ing s e c r e t key
HmacObj = hmac . new ( Key , Resp , ha sh l i b . sha1 )
. . .
# rep l a c e SHA1 d i g e s t wi th HMAC−SHA1 d i g e s t
gdb . execute ( " s e t i i n t−>ima_xattr . d i g e s t="+HmacObj .

hexd ige s t ( ) , . . . )
. . .

In this code, VMI application �rst reads the SHA1 digest computed by IMA. It
computes HMAC value based on the secret key and the SHA1 digest. Finally
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VMI replaces the SHA1 digest with the computed HMAC-SHA1 digest. It worth
mentioning, some data processing steps are required between these instructions,
since outputs cannot be used directly as input to the other functions. However,
the general idea is still as mentioned above.

Figure 3.2: VMI-HMAC Security Function

IMA-Appraisal decides whether to allow or to deny �le access based on the
comparison of the current digest of �les and the �security.ima� attribute. By
intercepting IMA crypto function, VMI-HMAC changes IMA view of crypt func-
tion from SHA1 to HMAC-SHA1. Figure 3.2 shows generally how VMI-HMAC
works.

To make this system work �lesystem has to be labeled; so each �le contains
the correct HAMC-SHA1 computed by the secret key instead of the original
SHA1 digest. Without having �lesystem labeled, it is not possible to run guest
VM in the IMA-Appraisal enforcement mode. However, as VMI-HMAC has
intercepted IMA crypto function, it is possible to label �lesystem using normal
IMA labeling method, inside the guest VM. The method is to boot guest VM
in the IMA-Appraisal �x mode, and then open all �les as following:

1. Load kernel using "ima_appraise=�x" mode

2. Use the following command to label �lesystem:

• Find / -uid 0 -exec head -n 1 '{}' \;
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In addition, a BASH script, �setxattr-hmac.sh�, is developed to label the �lesys-
tem o�ine. To use it, guest VM �lesystem needs to be mounted. The set of
steps needed for labeling are:

1. Mount �lesystem:

• Mount <device> <path>

2. To label one speci�c �le:

• setxattr-hmac.sh <key> <�lename>

3. To label �lesystem:

• Find <path> -uid 0 -exec setxattr-hmac.sh <key> '{}' \;

Having �lesystem labeled, it is possible to run the guest VM in the IMA-
Appraisal enforcement mode, taking advantage of VMI application in Dom0.
VMI-HMAC is implemented, and it works correctly.

3.4 VMI-RSA Security Function

The major problem in implementing a security function that uses RSA sig-
natures is the fact that IMA uses 160-bit hash digests. For this reason IMA
internal variables and structures use 160-bit �elds. To support the 4096-bit
RSA signatures, some kernel modi�cations are needed. The following changes
are made in IMA code to let it support the 4096-bit RSA signatures:
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s e c u r i t y / i n t e g r i t y /ima/ima . h :

#define IMA_DIGEST_SIZE SHA1_DIGEST_SIZE

to

#define IMA_DIGEST_SIZE 512

s e c u r i t y / i n t e g r i t y / i n t e g r i t y . h :

struct evm_ima_xattr_data {
u8 type ;
u8 d i g e s t [SHA1_DIGEST_SIZE ] ;

}

to

struct evm_ima_xattr_data {
u8 type ;
u8 d i g e s t [ 5 1 2 ] ;

}

Having made these changes, IMA works �ne with 4096-bit length �elds. These
changes do not a�ect IMA normal behavior since all variable and structure �elds
are initiated with 0.

As one of the design requirements of VMI-RSA, Dom0 and the security function
should not possess the private key. Therefore it is not possible to update �les
extended security attributes. For updating a �le's attribute the private key is
needed. As a result it is not possible to update, or create new �les that meet IMA
criteria, by default �les owned by root user. However, it is practical to verify
the RSA signature stored in extended security attributes, by intercepting IMA-
Appraisal behavior in �ima_appraise.c�, and in �ima_appraise_measurement�
function. The following code shows the structure of this function:
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Secur i ty / i n t e g r i t y /ima/ ima_appraise . c :

int ima_appraise_measurement ( i i n t , f i l e , . . . ) {
. . .
// ge t extended a t t r i b u t e , s e c u r i t y . ima , from

f i l e inode
inode−>i_op−>ge txa t t r ( . . . , f i l e , xattr_value ,

. . . ) ;

// Ca l cu l a t e curren t SHA1 d i g e s t o f f i l e
s t a tu s = evm_veri fyxattr ( f i l e , . . . , i i n t ) ;

. . .
// compare curren t SHA1 d i g e s t wi th extended

a t t i b u t e , s e c u r i t y . ima
rc = memcmp( xattr_value . d ige s t , i i n t−>ima_xattr .

d i ge s t , IMA_DIGEST_SIZE) ;

// breakpo in t l o c a t i o n

I f ( rc ) {
// v e r i f i c a t i o n f a i l e d
s t a tu s = INTEGRITY_FAIL;
. . .

} else {
// v e r i f i c a t i o n passed
s t a tu s = INTEGRITY_PASS;
. . .

}
. . .

}

This function �rst reads the security extended attribute of the �le, and then
computes the current SHA1 digest of the �le, and �nally compares those values.
If they match, then the check is passed and IMA-Appraisal allows �le access.
Otherwise IMA-Appraisal denies �le access.

Filesystem is labeled o�ine using a private key. In the �lesystem labeling process
�security.ima� attribute of a �le is set to its RSA signature. RSA signatures are
calculated based on the content of �les using the private key. Having made
changes to IMA to support the 4096-bit RSA signatures, IMA-Appraisal loads
the signature from �lesystem and compares it to the current digest of �le. The
result of comparison is de�nitely false. However if VMI-RSA intercepts IMA-
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Appraisal at this point using a breakpoint, it can verify the signature using
the correct public key and the SHA1 digest IMA provides; then VMI-RSA can
change the result of comparison to any arbitrary value. In this code, variable
�rc� stores the comparison result of current SHA1 digest, and the �security.ima�
attribute. If VMI-RSA changes �rc� based on the result of the RSA signature
veri�cation, it can change IMA-Appraisal behavior. If the veri�cation fails,
VMI-RSA forces the IMA-Appraisal to deny �le access. Otherwise, it forces the
IMA-Appraisal to allow �le access.

A breakpoint is inserted exactly after the �memcmp� call. This can happen by
adding an o�ine breakpoint, using �asm(�INT3�)� or by using a run time break-
point using gdb. No matter which type is used, at that point, a debug exception
interrupt is generated which is handled by gdb/gdbsx. Finally the VMI-RSA
security function is executed. The general code that used is as following code:

VMI−RSA. py :

# read curren t c a l c u l a t e d hash d i g e s t
hash = gdb . execute ( "p/x i i n t−>ima_xattr . d i g e s t " , . . . )

# read s i gna tu r e s t o r ed in s e c u r i t y . ima extended
a t t r i b u t e

s i gna tu r e = gdb . execute ( "x/128wx xattr_value . d i g e s t " ,
. . . )

i f Ver i f yS i gna tu r e l ( s i gnature , hash , pub l i ckey ) == True :
# s t a t u s = INTEGRITY_PASS;
re sp=gdb . execute ( " s e t rc=0" , . . . )

else :
r e sp=gdb . execute ( " s e t rc=1" , . . . )
# s t a t u s = INTEGRITY_FAIL;

Figure 3.3 depicts how generally this security function works.

This RSA signature veri�cation system works �ne. However before using it the
�lesystem has to be labeled so each �le has its own signature in the �security.ima�
extended attribute. The process of labeling the �lesystem is like the VMI HMAC
solution except that it is not possible to label using normal IMA-Appraisal
method. The only possible method of labeling the �lesystem is to label it o�ine,
using the private key. A BASH script, setxattr-rsa.sh, is developed to perform
this task.

1. Mount �lesystem:
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Figure 3.3: VMI-RSA Security Function

• Mount <device> <path>

2. To label one speci�c �le:

• setxattr-rsa.sh <private key> <�lename>

3. To label �lesystem:

• Find <path> -uid 0 -exec setxattr-hmac.sh <private key> '{}' \;

Having �lesystem labeled, guest VM can be run in the IMA-Appraisal enforce-
ment mode using the VMI RSA security function.

3.5 Immutable Files Extension

As previously mentioned, by providing incorrect SHA1 digest to VMI applica-
tion, attacker may compromise the kernel and fool the security functions. To
address this �aw an extension is added to the security functions with regard
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to immutable �les. Some �les in guest VM �lesystem are immutable and are
not supposed to be changed. For this reason the security functions have to
retrieve the identical SHA1 digest from the guest VM kernel for the same �le.
Good SHA1 digests for immutable �les are computed, and stored in a local �le
in Dom0. Whenever a �le is accessed and checked by either VMI-HMAC or
VMI-RSA solutions, the �le name and absolute path is retrieved. Then by com-
paring the SHA1 digest provided by IMA with the good known SHA1 digest, it
can be concluded if IMA in the guest VM kernel has been compromised. Since
both VMI-HMAC and VMI-RSA work based on the SHA1 digest that IMA
calculates, this extension works with both solutions. The pseudo code for this
mechanism is:

Compute good d i g e s t o f immutable f i l e s and s t o r e in <db>
Star t guest VM
Run VMI app l i c a t i o n
Wait f o r i n t e r r up t s

Read <f i l ename>
Retre ive <current d ige s t> from IMA in guest VM
Search <f i l ename> in <db> and read <va l i d d ige s t>
I f <current d ige s t> != <va l i d d ige s t>

Pause guset VM

To �nd the �lename and the absolute path, information in the stack is parsed
when handling interrupts. Using gdb up to 10 functions in the stack is retrieved,
and their arguments are parsed to �nd �lename and �le path.

It worth mentioning that, the security functions pause the guest VM when they
�nd out that IMA in guest VM is compromised. This behavior is logical as
if IMA is compromised VMI application cannot trust IMA, and using security
functions is useless.

3.6 Boot Process

To increase the integrity protection of a guest VM, it is reasonable to start the
security functions early in the boot process. This should happen as soon as
possible so integrity of all �les accessed in that guest VM can be checked. The
method used in this project for VMI is kernel debugging, which is based on
breakpoints. A solution should be �gured out to insert breakpoints into proper
locations in the kernel space as soon as the kernel is loaded into memory. The
problem here arises from the fact that gdbsx uses software breakpoints, which
are based on replacing an opcode located in the intended memory address with
the breakpoint opcode. When CPU executes the breakpoint opcode, it generates
a debugging exception interrupt, which is caught by debugger. So basically a
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method has to be �gured out to �nd when the kernel is loaded into memory by
boot loader. Then breakpoints can be safely inserted into the kernel memory
space. There are several ways to solve this problem:

1. Pending breakpoints[20]: gdb supports a set of breakpoints called pending
breakpoints, which are basically breakpoints for addresses that are not
loaded into memory. gdb handles this type of breakpoints by keeping
their criteria, and whenever gdb loads a library, it checks if that library
meets the pending breakpoint criteria. However this cannot be used for
this project which debugs the Linux kernel, not a normal application.

2. Hardware (HW) breakpoints[20]: unlike software breakpoints, HW break-
points use CPU registers to generate a debugging exception interrupt.
Desired addresses are loaded into special CPU registers. Whenever In-
struction Pointer (IP) register points to those addresses, CPU generates
an INT3 interrupt. This interrupt is handled by the debugger. Using HW
breakpoints, CPU debugging registers are set with proper addresses when
guest VM is being created. This method eliminates the need of knowing
when kernel is loaded into memory. Although this is a favorite solution,
gdbsx has not yet supports HW breakpoints.

3. Boot loader introspection: As another solution, it is possible to �rst insert
breakpoints into boot loader space, where the boot loader gives control to
the kernel. At that point it is certain that kernel is in memory and break-
points can be inserted. However, this method is boot loader dependent,
which is not preferable.

4. Delayed VMI execution: By delaying execution of the security functions,
the kernel may happen to be loaded in memory. An e�ort to insert a
breakpoint in memory repeats until it succeeds. Delay time should be
reasonable. It should not be too long so a part of the guest VM process
passes without VMI. Nevertheless it should not be too short causing that
the guest VM spends a lot of time in loop.

5. O�ine breakpoints: debugging is based on INT3 interrupt. The source
code of Linux kernel can be modi�ed to generate this interrupt when IP
is in the proper locations. Assembly INT3 instruction generates a debug
exception interrupt. So if this instruction is added to the source code, the
compiled kernel will generate this interrupt at proper locations. The only
problem with this solution is the kernel modi�cation. In addition when
o�ine breakpoints are used, cautions should be taken to not panic kernel.
If CPU executes INT3 instruction in the kernel while there is no interrupt
handler, kernel crashes. This makes using modi�ed kernel completely
dependent on the security functions. However, for these systems, o�ine
breakpoints are used in special way that does not a�ect normal kernel
behavior at all.
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In these systems an o�ine breakpoint is used carefully to eliminate most of its
disadvantages. Instead of adding breakpoint instruction in favorite locations, it
is only added in the function that IMA-Appraisal arguments are parsed. This
makes it possible to load the kernel normally without the security functions
if the �ima_appraise=� argument is not given to the kernel as an argument.
But by giving �ima_appraise=� arguments, a SIGTRAP is generated, which is
caught by VMI application. In this design, at this point software breakpoints
are inserted into the kernel memory at the proper location to accommodate the
security functions. This is depicted in Figure 3.4. Using o�ine breakpoints in
all needed locations results in losing �exibility, and the modi�ed kernel cannot
be used independently at all when IMA is enabled.

Figure 3.4: Boot Process Breakpoint

Having inserted breakpoints in the kernel, as soon as it is loaded into memory
is not enough to ensure the integrity of a guest VM. Basically the boot process
has to be checked completely. If not checked, an attacker can load another op-
tional kernel without IMA-Appraisal and VMI. For this reason in these systems
integrity of MBR and boot loader, GRUB in my con�guration, are checked. To
check MBR, the hash of the �rst 512 bytes of guest VM image is computed,
and is kept in the VMI application con�guration �le. While creating the guest
VM, its current MBR is compared against the good known value stored in the
con�guration �le. This guarantee that MBR is not changed. In addition to
verifying the integrity of the boot loader, the hash of all �les in the �/boot�
path including kernel �les are compared with the good known values that are
calculated in the trusted machine. It is assumed, all �les in the �/boot� are
immutable. They are not supposed to be changed by a normal user or even
root. Any unexpected modi�ed �le makes the security functions to pause the
guest VM.

Totally, this system ensures the integrity of a guest VM �lesystem by verifying
MBR and boot loader integrity, and by starting VMI as soon as the kernel is
loaded in memory.
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Chapter 4

Results

Having designed and implemented the desired security functions, they are ana-
lyzed in terms of performance, constraints and robustness against attacks. First,
some possible attacks and solutions against them are explained. Performance
analysis of the security functions comes in the next section. In the end, some
limitations of these systems are listed.

4.1 Attacks

It is important to �gure out the possibility of any attack against implemented
security functions. Attacks which lead to VMI detection, like timing anomaly
and page fault anomaly works here as well, as described in section 2.2.3. How-
ever, they are all general attacks, not speci�c to these systems. One attack that
is speci�c to these security functions is based on the fact that IMA in the guest
VM kernel is used. Having compromised the kernel, an attacker can disable
IMA, which e�ectively disables these security functions. On the other hand,
using the compromised kernel, an attacker can trick these systems by providing
incorrect hash digests instead of the current updated ones. The possibility of
disabling IMA in the kernel is not answered in this report. However to address
the second possibility, providing incorrect hash digests using the compromised
IMA to trick security functions, the immutable �les extension is added to both
the VMI-HMAC and the VMI-RSA designs. This extension is explained in
section 3.5.

As some �les are immutable, it is expected to receive the same hash digest
from IMA for the same �le. By comparing the digest provided by IMA and the
good known digest, it can be concluded if IMA is working correctly. Although
an attacker can provide the correct hash for those speci�c �les, since it is not
apparent to the attacker which �les are being checked, he/she cannot predict it
and consequently cannot trick this extension.
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Another attacking point against these security functions is IMA policies. It is
possible either to change IMA policies, or to change attributes of �les, so that
an important �le does not meet the IMA policy. Setting IMA policy happens
early in the boot process by the initram �le. Therefore it is hard to compromise
it. By default IMA policy is to check �les owned by the root user, and this does
not include special �les like the ones in �proc� and �sys� �lesystem. On the other
hand, if an attacker gains root access in the guest VM then he/she can change
the �le owner to read or modify the content of �les. However, this is not an
e�ective attack, as privilege is reduced from root access to other user's access.
One way to mitigate this attack is to change IMA policies to check all �les and
not just �les owned by root. Even though, this increases system load, the guest
VM is more secure. This attack point is not addressed in these systems, but by
adding new functionalities it can be solved.

4.2 Performance

In this section the performance of the designed security functions is analyzed.
A set of test cases is used to measure the performance of di�erent system con�g-
urations, like bare metal, Dom0, DomU with or without IMA-Appraisal. Four
tests are used in which a task is repeated 6 times. The task is the process of
reading the �rst 10KB of all �les in a de�ned set. Linux �dd� tool is used for
reading 10KB from �les. Description of used sets is listed below.

1. Set 1: A set of 100 10MB �le with total size of 1GB

2. Set 2: A set of 20000 52KB �les with total size of 1GB

3. Set 3: A set of 100 100MB �les with total size of 10GB

4. Set 4: A set of 20000 520KB �les with total size of 10GB

To consider IMA internal cache, the run time table, in this analysis each test
repeats its task 6 times. If IMA-Appraisal is enabled the �rst iteration shows
its e�ect in system performance. Other 5 iterations show normal behavior of
the Linux system. Since IMA stores the hash digest of �les in an internal run
time table, it appraises a �le only the �rst time that �le is accessed. As long as
the �le content is not changed, IMA-Appraisal would not appraise it again. As
a result, after the �rst iteration, execution time of later iterations is basically
like in systems without IMA-Appraisal functionality. Except that there is an
extra IMA run time table lookup step. To verify the result of tests, each test is
repeated 3 times. In system con�gurations that IMA-Appraisal is enabled, for
each three runs of tests, the system is restarted to �ush out the IMA run time
table. But in the system con�gurations without IMA-Appraisal functionality, 3
runs of tests are executed in a loop. The list of system con�gurations used for
the system measurement is as the following:
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1. Bare Metal: a system con�guration which neither virtualization nor IMA-
Appraisal is enabled.

2. Bare Metal-IMA: a bare metal con�guration, but IMA-Appraisal is en-
abled. This con�guration is used to measure impact of IMA-Appraisal in
the bare metal system.

3. Dom0: Dom0 in the Xen environment without IMA-Appraisal functional-
ity.

4. Dom0-IMA: Dom0 in the Xen environment with IMA-Appraisal enabled.
This con�guration is used to measure impact of IMA-Appraisal in Dom0.

5. DomU: DomU in the Xen environment without IMA-Appraisal function-
ality.

6. DomU-IMA: DomU in the Xen environment with IMA-Appraisal enabled.
This con�guration is used to measure impact of IMA-Appraisal in DomU.

7. DomU-BR: DomU in the Xen environment with IMA-Appraisal and VMI.
But VMI only returns control to Dom0, and no special task is performed.
This system con�guration is used to measure impact of context switching.

8. DomU-HMAC: DomU in the Xen environment with IMA-Appraisal en-
abled. This con�guration is used to measure the performance of the VMI-
HMAC solution.

9. DomU-RSA: DomU in the Xen environment with IMA-Appraisal enabled.
Performance of the VMI-RSA solution is measured in this con�guration.

These tests are run on a computer with an Intel Core i7-2829QM, 2.30GHz
processor, which has Intel VT support, 16GB memory size, and a 7200 RPM
hard drive. The DomU used for testing is installed on a physical hard drive,
and has 12GB memory capacity. Fedora 16, 64-bit, is used as OS for all system
con�gurations, with default packages and setup. The Linux kernel used is 3.2.0-
rc1 with IMA-Appraisal patched.

To measure the execution time of tests, NTP service is run on all system con-
�gurations. NTP servers are synchronized with a set of stratum 1 and 2 NTP
servers. Precision of NTP servers are nanoseconds, but after arithmetic calcu-
lations precision is reduced to microseconds. In addition, to reduce the timing
error, execution time of all the 6 iterations of tests are not recorded. But only
the �rst iteration and the average of all other 5 iterations are recorded. The
result of tests with milliseconds precision are stated in Table 4.1.
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Test 1 Test 2 Test 3 Test 4
100 �les 20,000 �les 100 �les 20,000 �les

10 MB each 52KB each 100 MB each 520KB each
Total 1GB Total 1GB Total 10GB Total 10GB

1st Ave. 1st Ave. 1st Ave. 1st Ave.
Bare Metal

0.260 0.046 22.033 11.123 0.332 0.046 34.504 11.123

Bare Metal
18.398 0.047 1034.534 11.124 106.386 0.047 1110.298 12.186

with IMA
Dom0

0.252 0.059 28.827 13.460 0.347 0.060 39.143 13.467

Dom0
18.643 0.144 1098.977 46.854 106.872 0.144 1175.865 47.495

with IMA
DomU

0.348 0.059 31.873 13.450 0.506 0.059 49.075 13.462

DomU
15.158 0.060 86.159 13.601 98.002 0.066 199.328 30.183

With IMA
VMI

15.522 0.064 911.183 14.338 117.502 0.097 931.106 14.384
Breakpoint
VMI

20.980 0.135 1985.688 30.713 120.916 0.206 2010.153 30.977
HMAC
VMI

23.995 0.109 2402.922 24.750 124.306 0.109 2449.640 25.085
RSA

Table 4.1: Test results

From Table 4.1, following patterns can be deduced:

1. The performance of DomU-IMA is better than bare metal-IMA and Dom0-
IMA, while initially it was expected to observe di�erent results. It is not
yet �gured out what is the reason behind this pattern; but as this happens
only when IMA is enabled, it is believed that it is due to the internal
structure of IMA.

2. In system con�gurations which IMA-Appraisal is not used, such as bare
metal, Dom0 and DomU, initially it was expected to observe almost iden-
tical values for the �rst execution time and the average execution time
of other iterations. But �rst execution time is longer than the average
value. This happens as for the �rst iteration, Linux has to load �les into
memory. For other iterations, �les are already loaded into memory. Test
results, in these system con�gurations indicates the impact of Linux cache
on performance.

3. In cases where IMA-Appraisal is enabled, the �rst execution time is con-
siderably longer than the average time value of the rest iterations. This
shows the impact of IMA-Appraisal in the systems. During �rst iteration
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of tests, IMA has to calculate hash digests of �les, while in other iterations
their hash digests are read from IMA run time table. Since �les content
has not changed, the hash digest need not to be re-computed.

4. In cases that IMA is enabled the average execution time after the �rst
iteration is longer compared to systems that IMA is not used. The reason
is IMA has to look up its run time table. This induces a little performance
overhead on the system.

5. In systems that IMA-Appraisal is enabled, �rst execution time of test 1
is almost 6 times longer than �rst execution time of test 3. In test 1,
10MB �les are read while in test 3 100MB �les are read. Although more
tests are needed here, but It demonstrates IMA performance decreases
dramatically as the �le size grows.

6. By considering �rst execution time of tests in DomU or systems that are
implemented in DomU, it can be observed that for big �les, i.e. 10MB
and 100MB �les, the overhead is mostly due to the use of IMA. However,
for small �les, i.e. 52KB and 520KB �les, over head is mostly the result of
context switching. In test 1 �rst execution time grows from 0.348 seconds
in DomU to 15.158 seconds in DomU with IMA enabled. In test 3, the
same pattern holds. But in test 2, �rst execution time suddenly grows
from 86.159 seconds in DomU-IMA to 911.183 seconds in DomU-BR. This
pattern holds for test 4 as well.

7. The �rst execution time in DomU-IMA, VMI-BR, VMI-HMAC, and VMI-
RSA are considerably longer than the �rst execution time in DomU. How-
ever, the average values of those systems are almost the same. IMA-
Appraisal and VMI context switching are CPU intensive functionalities,
but as an internal cache, IMA run time table, is used, the overall system
performance is acceptable.

8. By comparing results of tests, it appears that the performance penalty
induced by VMI-RSA is almost the same as the performance penalty in
VMI-HMAC. As a result it can be concluded these two security functions
are almost identical regarding system performance.

All in all these tests have shown that even both IMA-Appraisal and VMI context
switching are CPU intensive tasks, using an internal cache, IMA run time table
in these designs, improves the system performance dramatically.

4.3 Limitations

According to the system speci�cation and the implementation, these two secu-
rity functions have some limitation:
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1. Since VMI-RSA is designed not to possess the private key it cannot update
�les extended security attributes. This means �les which meet IMA policy,
by default �les owned by root user, cannot be updated in this system. All
changes and updates have to happen using other interfaces. To add or
update a �le, its signature should be provided by a trusted party.

2. To start VMI early in boot process, an o�ine breakpoint is inserted in the
kernel. This modi�cation made the kernel dependent on the security func-
tions. Even though this happens only when IMA-Appraisal is enabled by
the �ima_appraise=� argument. E�ectively this means in the mentioned
condition it is not possible to boot the kernel without VMI. The Best so-
lution to overcome this limitation is to use hardware breakpoints instead
of software ones.

3. These security functions need the compiled kernel directory for bridging
the semantic gap. Since VMI-HMAC and VMI-RSA security functions,
need to access variables and structure, gdb needs compiled kernel directory
to access its variables.

4. Performance penalty is the result of context switching. A number of con-
text switching happens for handling the breakpoint interrupts. Context
switching is considered CPU intensive tasks. These switching reduces
system performance. To mitigate this penalty, the least number of break-
points have to be inserted. For this reason in each of these systems only
one breakpoint is used.

Limitation 1 is the result of system speci�cation, while limitations 2 and 3 are
the result of the implementation. However, performance penalty in limitation
number 4 is related to the nature of breakpoints and context switching.
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Chapter 5

Conclusion

5.1 Contribution

In this thesis, Virtual Machine Introspection (VMI) and its application in secu-
rity area are studied. After deep survey of VMI and available VMI libraries, two
security functions are designed. They use an active VMI method to satisfy the
integrity requirement of a guest virtual machine. Although the main goal was
to design a system that veri�es the RSA signature of �les in the target guest
VM, as a result of limitation about �le modi�cation, one more security function
with a slightly di�erent approach was designed.

In the main design the security function veri�es the RSA signature of �les, when
they are loaded in the guest VM. This veri�cation happens in Dom0 by VMI
application, using the proper public key. But since the system speci�cations
prohibit Dom0 and the security function from possessing the private key, this
design loses the ability to modify �les in normal ways. This is not a major
problem since the security policy only meets the �les that are important and
are meant to be immutable. However, another security function capable of
modifying �les and their security attributes was designed. In the second design,
the VMI application in Dom0 checks the HMAC-SHA1 digest of �les, when that
�le is accessed in the guest VM. HMAC-SHA1 crypto function uses a secret key
that is known to Dom0 and the security function. While the �rst design is more
secure, the second one has no problem with �le modi�cation. Both solutions use
Integrity Measurement Architecture (IMA) to retrieve the needed information,
and to enforce the security policy. IMA is a new security function in the Linux
kernel, but as it is a kernel space solution it is vulnerable to rootkits. These
security functions take advantage of IMA-Appraisal and VMI to raise security
properties of a guest VM.

Both solutions use the kernel debugging techniques, which are implemented
in the Xen hypervisor. The Xen hypervisor has a built-in gdb server, which
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can communicate with gdb. By using the python extension in gdb, one can
automate the debugging process. These security functions take advantage of
this possibility to control the behavior of a guest VM. By inserting a breakpoint
in a guest VM kernel, these systems get control of the target VM whenever
that breakpoint is hit. While most VMI libraries and applications are passive
solutions, the VMI method used in this thesis, is able to actively monitor a
guest VM for prevention purposes. In addition, it is already incorporated in the
Xen hypervisor.

As it is vital for guest VM integrity to be checked constantly, the security func-
tions starts as soon as the guest VM kernel loads in the memory. To guarantee
the integrity of the boot process, the hash of MBR, and boot loader �les includ-
ing kernel �les, are validated against good known hash digests. These checks
guarantee that the correct and known boot loader loads a valid kernel.

Having implemented these two security functions, a number of possible attacks,
and solutions for some of them, are enumerated. To answer the possibility
of kernel compromise in guest VM, which can lead to IMA misbehavior, the
immutable �les extension is added to each of these systems. The idea behind
this extension is to compare the good known hash digest of immutable �les
with the values provided by IMA. For immutable �les it is expected to retrieve
identical known digests from IMA.

One major drawback of VMI is its performance penalty for high rate applica-
tions. Some context switches are required to handle a breakpoint interrupt.
These context switches reduce the system performance. For this reason, VMI
has been suggested for low rate application. In this thesis low rate VMI ap-
plications are designed to mitigate this limitation. In each design only one
breakpoint is used. After implementing a prototype of the security functions,
their performances are measured. Four di�erent tests are used to measure per-
formance of 9 di�erent system con�gurations, such as bare metal, Dom0. By
comparing measured results, it is realized that the nature of these security func-
tions reduces system performance. However, as IMA uses an internal cache, the
wholes security function does not have signi�cant performance penalty. This
means that for normal applications, the performance penalty is negligible while
the security characteristics of the guest VMs are clearly improved.

5.2 Future Work

Having completed the system implementation, the project reached to a point
that, further system development required complete IMA modi�cation. Hence
one obvious way to improve these systems is to not rely on IMA and to develop a
new kernel module. Using a new kernel module provides the possibility of adding
new functionalities to these security functions. Furthermore the RSA design
issue about �le modi�cation is another area that needs more research. Finally,
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to start VMI application early in the boot process minute kernel modi�cation
had to be made. Although this modi�cation does not a�ect kernel normal
behavior, it is desirable to have a solution which does not need any kernel
modi�cation. One possible and clean solution is using the hardware breakpoints
instead of software ones. However, currently hardware breakpoints are not
implementing in gdbsx in Xen. A path to improve the system is, to develop
hardware breakpoints capability or to �nd another solution which does not
require any kernel modi�cation.
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