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Efficient learning with privileged information in nonlinear time series
Bastian Jung

Department of Computer Science and Engineering

Chalmers University of Technology and University of Gothenburg

Abstract

In domains where sample sizes are limited, efficient learning algorithms are critical.
Learning using privileged information (LuPI) offers increased sample efficiency by
allowing prediction models access to information at training time that is unavailable
when the models are used. In recent work, it was shown that for prediction in linear-
Gaussian dynamical systems, a LuPI learner with access to intermediate time series
data is never worse and often better in expectation than any unbiased classical
learner. We provide new insights into this analysis and generalize it to nonlinear
prediction tasks in latent dynamical systems, extending theoretical guarantees to the
case where the map connecting latent variables and observations is known up to a
linear transform. In addition, we propose algorithms based on random features and
representation learning for the case when this map is unknown. A suite of empirical
results confirm theoretical findings and show the potential of using privileged time-
series information in nonlinear prediction.

Keywords: Machine Learning, Privileged Information, Time Series, Sample Effi-
ciency, Latent Dynamical Systems
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Introduction

Due to the vast amounts of data available in various fields, supervised machine learn-
ing has become a part of our daily lives. However, this data abundance is limited
to certain domains. In healthcare, for example, machine learning practitioners have
to deal with the problems of small data sets and high dimensionality [1]. Conse-
quently, it is critical in these domains to make optimal use of all data available when
creating prediction models, meaning there is a demand for sample efficient machine
learning algorithms. When predicting the disease status of a patient at a set follow
up time based on the data of a first medical examination, classical supervised learn-
ing techniques often use only the initial data for learning, even when informative
data is generated at intermediate time steps. This could be information that is rou-
tinely collected after the first examination and before the follow up, such as further
clinical tests or a patient’s medication or vital signs. This data is often ignored in
traditional supervised learning as it is unavailable when the model is finally used.
The added data of intermediate time points is privileged as it can only be used for
learning but not for making predictions [2]. Privileged information (PI) that occurs
as intermediate steps of a time series, just like in the example, holds the potential
of learning more accurate prediction models that require less data. We demonstrate
sample efficient learning algorithms that leverage this additional information while
predicting the outcome as a nonlinear function of the baseline input. Comparing
to the alternative of classical learning, which ignores privileged time-series informa-
tion, we identify conditions and algorithms for which privileged learning is clearly
preferable.

Context. Improving the sample efficiency of prediction algorithms with side in-
formation has been approached from a variety of directions. Learning using priv-
ileged information (LuPI) was first presented as a machine learning paradigm by
Vapnik & Vashisht [2] and is motivated by the analogy of a student learning with
the help of a teacher. While the teacher can provide tips and tricks during the
learning phase, the student must perform the intended task without external help
eventually. Generalized distillation [3] has unified this approach with distillation
by Hinton et al. [4], which can be seen as model compression technique that is
also aimed at making more accurate predictions using a powerful teacher model.
Multi-view learning [5] suggests learning to predict the same outcome from different
perspectives to increase sample efficiency.

Existing theoretical results for learning from side-information guarantee improved
learning rates [6][7] or give tighter generalization bounds [8] for large sample sizes
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1. Introduction

under appropriate assumptions. However, privileged information is not always ben-
eficial: It must be related to the task of interest [9], otherwise the learning may be
hindered rather than improved. However, previous work fails to identify for which
exact settings learning with privileged information is provably preferable to classi-
cal learning. Moreover, previous works are uninformative about whether learning
with PI has benefits in practical problems with small sample sizes, which is where
efficiency is needed the most.

Karlsson et al. [10] studied LuPI in the context of predicting an outcome observed
at the end of a time series based on variables collected at the first time step. They
showed that making use of data from intermediate time steps in particular settings
always leads to lower or equal prediction risk—for any sample size—compared to
the best unbiased model which does not make use of this privileged information.
However, their method called learning using privileged time series (LuPTS) was
limited to settings where the outcome function of the data generating process, and
estimators of it, are linear functions of baseline features observed at the start of the
time series. Moreover, their analysis did not study how the variance reduction that is
obtained from using privileged information behaves as a function of increased input
dimension. Hayashi et al. [11] also learned from privileged intermediate time points
but their study was limited to empirical results for classification using generalized
distillation.

Problem statement. In the course of this project we aim to identify problem
settings and algorithms where privileged time-series information is provably useful,
meaning one can expect lower prediction error using a privileged learning algorithm
compared to a classical learner that does not make use of privileged information.
In particular we are interested in time series of the form X, Xs, ... X7,Y, where
intermediate steps X, ..., Xr are considered privileged information and the task is
to predict the outcome Y as a nonlinear function of the baseline features X;.

Contributions. This project extends the LuPTS framework of Karlsson et al. [10]
to nonlinear models and prediction tasks in latent dynamical systems (Chapter 3).
In this setting, we prove that learning with privileged information leads to lower risk
compared to learning without it when the nonlinear map connecting latent variables
and observations is known up to a linear transform. In doing so, we also find that
when the representation dimension grows larger than the number of samples, the
benefit of privileged information vanishes. We show that privileged learners used
with random feature maps can learn optimal models consistently, even when the
relationship between latent and observed variables is unknown, but may suffer from
bias in small samples. As a remedy, we propose several representation learning
algorithms aimed at trading off bias and variance. In experiments (Chapter 4) we
find that privileged time-series learners with either random features or representation
learning reduce variance and improve latent state recovery in small-sample settings
on both synthetic and real-world regression tasks. In Chapter 5 the contributions
of this project are discussed in the context of related work, while also pointing out
promising directions for future research.
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Limitations. While this project compares privileged against classical learning,
the algorithms proposed and analyzed are only compared to alternatives within the
same hypothesis class. This means we do not compare the predictive performance
of our algorithms against current state-of-the-art methods for long-term time series
prediction. It is not the goal to propose a single best model for the regression tasks
considered. Instead the project intends to demonstrate the potential of incorporating
privileged information into the training processes of prediction models that are often
used in practice today and that do not make use of this additional information
yet. Further, we do not analyze the benefit of privileged information in general, the
project scope is restricted to discrete time series of a fixed length where the outcome
is observed at the end of such a sequence. While the theoretical results presented
make assumptions about the data generating process we discuss the strength of
these assumptions and also test resulting algorithms on real-world data where the
conditions demanded by our assumptions cannot be guaranteed.

Notation. We denote random variables or random vectors using capitalized letters
X. A value drawn from such a random variable is given in lowercase letters x. Design
matrices containing the samples of random variable X are denoted by bold type X.
Spaces that samples = reside in are presented using calligraphic characters X.



1. Introduction




2

Background

2.1 Learning using privileged information

Learning using privileged information was introduced as a paradigm of machine
learning in 2009 by Vapnik & Vashisht [2] and has been used in many different
ways for a variety of applications. It describes an extension of the popular machine
learning paradigm of supervised learning. The inventors of this approach motivated
their work with the analogy of a student learning with a helping teacher. During
the learning process the teacher will provide additional information to the tasks to
be solved, such as explanations, comments and hints (privileged information). For
instance, students might be told which examples are similar. The student will con-
sider this side information in order to facilitate the learning. In the end however,
the student is expected to solve the same class of tasks without the added support
given by the teacher.

Supervised learning is concerned with learning a model f e F: X — Y, predicting
an outcome Y € ) from a variable X € X. It is the goal to find a function f that is
in some sense close to the true function f that describes the relationship of Y and
X which have joint distribution p(X,Y’). Note that f might not be deterministic.
To find a function f the goal would often be to minimize the generalization error

R(f) = Exy [L(Y, f(X)] , (2.1)

where £ : Y x Y — R is a real-valued loss function describing the similarity of the
two functions when applied to the random variable X. In a typical machine learning
setting, one does not have access to the true distribution p(X,Y’) which makes direct
minimization of R(f) impossible. Instead one can minimize the empirical risk 2(f).
Let (x;,y;) denote a sample of p(X,Y"), where X is the independent variable while Y
is the dependent variable of a regression problem. Assuming we observe m samples
of the random variables X and Y, the empirical risk can be written as

A A 1 o
R(f) = m Zﬁ(f<xz>7yz) . (2.2)
i=1

Consequently, a learning algorithm can minimize the empirical risk as a proxy for
the generalization error by finding a function

A

f =argmin R(f) . (2.3)
feF



2. Background

While the supervised machine learning approach consists of learning from samples of
the form (X,Y), learning from privileged information means learning from triplets
(X, Zp,Y), where Zp € Zp is privileged information which means it is only observed
during training. For both paradigms the goal is to learn E[Y|X] but in the PI case
one hopes that the privileged information Zp is informative about the conditional
distribution p(Y|X) and thus allows for a better estimate of this expectation for a
given amount of data.

To demonstrate the idea behind learning from privileged information consider the
following example: Imagine a smart measuring device recording mechanical vibra-
tions while mounted on an aircraft turbine. The task is to detect dangerous turbine
states in advance to warn pilots about a potential equipment failure ahead of time.
Let dangerous states be denoted with Y = 1 while Y = 0 are normal turbine condi-
tions. When making predictions the device can only access the signals of the sensors
it is equipped with, which are the vibration measurements X. During the develop-
ment of this device the engineers developing the turbine may use a large array of
different and expensive sensors to measure sound, temperature, air flow and other
variables in addition to the signals coming from the smart measuring device. These
additional variables are not available when the prediction model in the smart mea-
surement device will be used, they are privileged information Zp that can only be
incorporated into the learning process. The hope is that the additional data will
improve the learning, such that the smart device makes more accurate predictions
when it is used as a finished product despite not having access to the same variables
as during training when the turbine was developed.

When this new paradigm of machine learning was introduced, Vapnik et al. pre-
sented a modified version of support vector machines (SVM) that benefits from
privileged information. In particular the added information was used to predict the
slack variables corresponding to each training example. The modified version was
found to deliver more accurate results on classification tasks compared to the classi-
cal SVM alternative and therefore first demonstrated the potential of learning from
privileged information.

2.2 Distillation

Learning from privileged information is closely related to the concept of distillation
that was introduced by Hinton et al. [4]. The problem addressed by this technique
was that very often a large cumbersome model would perform better on some given
task while a simpler model is more computationally efficient and might be easier to
implement on limited hardware. The idea behind distillation is to first produce so
called soft targets by training a large model on the training data. In a second step
one then trains the smaller model using a modified loss function which compares
the predictions to the labels of the training data as usual but also to the soft targets.

Consider predicting the binary labels Y from X in a classification task. Neural
networks usually produce a logit f(X;) as an output that can be converted into a

6



2. Background

class probability ¢; via the softmax function or the logistic function o(z) for a binary
classification setting. Let f be a classifier such that ¢; = o(f(X;)) is the probability
of a given example belonging to class one. An optimal classifier minimizes the
cross-entropy loss

L(Y,0(X)) == =Y log(o(f(X)) = (1 = Y)log(1 — o (f(X))). (2.4)

In distillation one minimizes the empirical cross entropy loss using a class of very
flexible models Fr to find a well performing model fr. The index T denotes that
this flexible model has the role of a teacher.

LY, o(f(X3))) = =Yilog(a(f(Xy)) = (1 = Yi)log(1 — o (f(X3)))  (2.5)
fr=argmin} L(Y,, 0(f(X,))) (2.6)

feFr =1

In the second step one would then use the class probabilities produced by the flexible
model s; := o(f,(X;))) as an additional soft target to train a model that belongs to
a more restrictive class of functions Fg. This model is also called a student model
and minimizes the combined loss

A

fs = arg ?mZu = NL(Y:, o (F(X0)) + AL(si,0(£(X0)) - (2.7)
&S5 =1

The hyperparameter A € (0,1) is used to trade off the importance of fitting the

training data versus matching the soft targets. The intuition behind this approach

is that a lot of useful information is contained in the soft targets which is difficult

to extract from the labels.

Lopez-Paz et al. later unified the concept of distillation with learning from privi-
leged information [3], calling the new framework generalized distillation. In essence,
the authors argue that both approaches first learn a teacher function fr on samples
of the form p(Z,Y) to produce some form of soft targets before fitting a student
function fg. In the case of Vapnik’s approach, Z is privileged information and
does not match the explanatory variable X. In contrast Hinton’s distillation sets
Z = X and trains the teacher function on samples from p(X,Y). In generalized
distillation the student function fg is then trained on a combination of the original
targets Y; and the soft targets s; provided by the teacher function, while balanc-
ing the two objectives with the imitation parameter A just as shown in objective 2.7.

The motivation behind these two approaches presented in this section differ despite
their common structure. In distillation one uses a very rich teacher model to ex-
tract a very useful representation from large amounts of baseline data X. Such a
representation would be hard to extract with a simple model. Vapnik’s approach
does not require a rich teacher model but instead aims to make use of the very rich
representation offered by the privileged information Z that is either hard to extract
or not present in the baseline data X. This is done to use a given amount of data
more efficiently.
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2.3 Ordinary least squares regression

The ordinary least squares estimator finds a parameter ¢ that minimizes the em-
pirical risk given by the mean squared error £ over a given data set consisting of
m tuples of the form (X,Y) where X € X C R¥ and Y € ) C R% The ordinary
least squares estimator is the maximum likelihood estimator for the case where Y
is a linear function of X with added Gaussian noise with zero mean and covariance
0?1, where I is the ¢ x ¢ identity matrix.

=0'Y +e (2.8)
e ~ N(0,0°1) (2.9)

The likelihood L of observing the data set D consisting of independent identically
distributed samples (X, Y;) drawn from the distribution p(X,Y) is

p(Xi, Y2) (2.10)

~
Il

.
Il
i

I

-
I
—

p(YilXi)p(Xi) (2.11)

I

.
Il
—

ded2wa[)éexp(——;(O@——@T)Q)TJIOQ——QTAQ»)pLYQ (2.12)

To obtain the maximum likelihood estimator, one can minimize the negative log
likelihood.

~log(L) o 30 5 (% — 67X (% — 67X0) + log(p(X,) (2.13)
= YT - 0T + Y logplX) (210
- s i 1% — 07X + 3 log(p(X,) (2.15)

= i=1

Consequently, the maximum likelihood estimator minimizes the sum of squared

residuals Y [|(Y; — 07 X;)||3. In the following the OLS estimator is derived. Let
i=1

X € R™* and Y € R™ be a data set with m samples and k features for X and a
single feature for Y without loss of generality.

1
min L‘::§|\Y—X9H§ (2.16)

Taking the derivative with respect to € and setting it to zero one gets the following
optimality condition for this convex optimization problem:

S =X (Y-X0)=0 (2.17)

— X'X0=X"Y (2.18)
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If one has linearly independent features and k& < m, then X' X € R*** must be
invertible. In this case the unique ordinary least squares (OLS) solution is:

bors = (X' X)'XTY (2.19)

However, it might be the case that one has more features than samples m < k. In
this case one can show that a solution to the condition in equation 2.18 is

Oors: = (X' X)'X"Y | (2.20)

where (-) is the Moore-Penrose pseudoinverse that replaces the regular matrix in-
verse (-)7! [12]. The solution fprs, for the underdetermined case is not unique. In
other words, there are many hyperplanes that fit the training data perfectly. To see
this, notice that it was assumed that £ > m which means that X cannot have full
column rank. This is equivalent to saying the nullspace of X is not empty. Now
one can see that any vector v € R* that lies in the nullspace of X can be added to
Oors+ and this new solution still satisfies the optimality condition of equation 2.18:

X" X(Oorsy +v)=X"Y (2.21)

< X" Xborss + XT)\(/E =X'Y (2.22)
=0

— X" Xbors+ =X"Y (2.23)

However, it can be shown that there is always a solution that has the smallest norm
10]|3 and that this solution is exactly fprs,. Notice that the solutions fprg and
Oors+ are almost the same. In fact, these solutions can be given in one unified
expression:

Oors = (X' X)TXTY (2.24)

When we assume k£ < m, then we know X T X is invertible. In this case the Moore-
Penrose inverse is identical to the regular matrix inverse, i.e. (X' X)) = (XTX)™!,
and only one unique solution exists. When k£ > m there are many possible solutions
and equation 2.24 gives the minimum norm solution of the least squares problem.

2.4 Bias-variance decomposition

When using empirical risk minimization to fit a hypothesis h: X CRF 5 Y C R,
the expected risk with squared error loss £ : ) x J — R can be decomposed into
three parts that provide a principled framework to discuss the characteristics of
prediction models: Bias, variance and irreducible noise [13]. We use the squared
error loss

A

L(y, hp(x)) = (y — h(x))* (2.25)

9
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and consider the prediction risk, that is the expected loss
Epxy [L(Y.hip(X))] =Ep [ / L(h(z), hp(z))p(z)de (2.26)

+//£(h(w)>y)p(x,y)dwdy :

noise

The true hypothesis one wants to learn is h(-), while it is corrupted by noise such
that we observe y; instead of h(x;) in our data sets D € D with D = {(z;, ;) }1";.
The second term of (2.26) is irreducible noise in the labels and does not depend
on the predictions h(z). It is the same for all prediction models. We turn to the
first term and derive the bias-variance decomposition for a fixed point x € X where
fLD(x) is our model evaluated at x after being trained on a randomly chosen fixed
data set D.

We may expand the first term of (2.26) by adding and subtracting Ep[hp(z)], ob-
taining

L(h(x), hp(z)) =(h(z) - Eplhip(2)] + Eplhp ()] - hp(x))’ (2.27)

Now one can compute the expectation over data sets D € D which lets the final
term vanish.

Ep(L(h(z), hp(z))) = (ED hp(x) - h(:@]) +ED[(3D(:U) —ED[ﬁD(a;)])Q] (2.28)

bias? variance

Substituting this back into (2.26) one gets
expected loss = bias? 4 variance + noise ,

which is what is commonly referred to as the bias-variance decomposition. Bias
describes the difference between the mean prediction made by a model for a given
point x and the true function at that point. Variance describes the deviation of
predictions around the mean prediction of the model. In the course of this project
we analyze learning algorithms in terms of the bias and variance of their hypotheses
in expectation over data sets.

2.5 Kernel methods

Linear methods have many advantages. They are easy to implement and there exists
a closed form optimal solution in the case of ordinary least squares, ridge regression
[14] and others. Further, one can interpret a trained model in a straightforward way

10
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by analyzing the coefficients of 0. However, linear models often lack the expressive-
ness that is required to solve certain problems. Often the true function one is trying
to learn is just not linear. As a result, there is a need to extend linear methods to
make non-linear predictions with similar algorithms.

Feature maps. One possible extension of linear methods is the use of feature
maps. Imagine trying to learn the following function.

f:R=R (2.29)
Y = f(X) =00X>+ 60, X + 0, (2.30)

If one only has samples consisting of tuples of the form (z,y) a linear model h(x) =
0"z does not fit this data very well as Y is not linear in z. One easy solution is to
use a feature map ® : X — H in order to project the data into a different space.
For this example one could use the map

O(z)= |z |. (2.31)
1

Applying the linear estimation method on the modified data, which are samples of
(®(x),y), can yield a much lower generalization error as the estimator h(-) = 67 ®(-)
is now in the same hypothesis class H as the true function f, meaning the estimator
now has the capability to represent the true function which was not the case before
using the feature map. We call this the realizable case and refer to the non-realizable
case when the true function f is not in the hypothesis class H of the estimator i € H.

Although it is useful in making predictions that are a nonlinear in the input, the
approach of using feature maps poses new problems. For instance it is not obvious
how to choose the basis functions that make up the feature map @ in order to produce
features that facilitate the learning. This might also be highly problem specific. For
this reason one might want to include very many basis functions with leads to very
high dimensional feature spaces which in turn might make the computation of the
feature map expensive.

The kernel trick. Coming from the perspective of feature maps one might want
to avoid the explicit computation of the features ®(x). Many algorithms can be
expressed in terms of dot products between training samples only. Consequently, it
would be very useful to have access to a function x :=: X x X — R which computes

the dot product { -, - ) between two samples x and z’ in the feature space H
directly:

K: XXX =R (2.32)

Kz, ') = (@(x), () (2.33)
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X P H

(@(x), @(z')) inner product { - , - )

Figure 2.1: Feature space X and the reproducing kernel Hilbert space (RKHS)
‘H of a reproducing kernel . Instead of first projecting to the RKHS using a the
feature map ® before computing an inner product, one may make use of the kernel
function x directly. This is especially useful if the feature space of the RKHS is
high-dimensional or not even finite.

kernel /@(I, :U’)

Such a kernel function x therefore offers a shortcut if the estimation algorithm used
requires only the computation of dot products between samples. Rather than having
to apply the feature map in order to get ®(x) and ®(z2’) before then computing the
inner product { -, - )%, one can simply compute x(x,z’) instead. This notion is
illustrated by Figure 2.1.

The idea behind what is often referred to as the kernel trick is to find a way to
express an estimator only in terms of dot products between samples in X and then
to replace those dot products by the kernel function. As a consequence one does
not even need to know the explicit feature map ® in order to use a linear prediction
method on feature vectors that lie in the space H.

Kernel functions as similarity measures in linear spaces. Scalar products
can be regarded as a similarity measure between data points. The same intuition
can be applied to kernel functions which can be viewed as generalized dot products.
This means that X can be any space and is not restricted to R?. One can therefore
apply kernel machines on data of any kind as long as one has access to a similarity
measure between different examples. After having presented the broad ideas behind
using kernel functions, their properties and definitions shall be shown in more detail.
Most definitions and concepts presented in this subsection are restated from the work
of Scholkopf and Smola [15].

Kernel matrix. At first we define the kernel matrix K which is also sometimes
called the Gram matrix. Given a function x : X x X — R and data points
1, T, ..., T, € X, it is defined as the m x m matrix with elements

Ki; = k(z, z;) - (2.34)

12



2. Background

Positive definite kernels. A kernel function  is called positive definite if it gives
rise to a positive-semi-definite kernel matrix K. When a kernel produces a positive-
definite kernel matrix, meaning the matrix has only positive eigenvalues, it shall be
called strictly positive definite. From this definition we get the following properties
of positive definite kernels.

The diagonal elements of the kernel matrix K must be non-negative, meaning

K(xi, ;) >0 (2.35)

and the kernel must be symmetric:
K(xi,xj) = k(xj, x;) (2.36)

Reproducing kernel Hilbert spaces. A reproducing kernel Hilbert space (RKHS)
is a space of functions that is a realization of the feature space associated with a
particular kernel function k. Instead of thinking about the feature map ® applied
to every data point x; one can picture the RKHS as a space in which each pattern
x; is represented by a function g : X — R that is parametrized by x;, such that
g(+) = k(x;,-). As with all linear spaces H contains linear combinations of those
functions:

f=> aik(z;,-) (2.37)
with f e H,2;, € X,a € R (2.38)

Here the sum uses the index 7 to point out the correspondence of the scalar «; and
a particular x; € X. However, the sum can be understood as a sum over all x € X.
One can give the following formal definition for the RKHS:

Definition 1 (Reproducing Kernel Hilbert Space). Let X' be a nonempty set and
H a Hilbert space of functions f : X — R. Then H is called a reproducing kernel
Hilbert space which has a dot product (-,-) and the norm ||f|| = \/{f, f) if there
exists a kernel function k with the following properties:
o K has the reproducing property: (f,k(z,-)) = f(x)Vf € H
which also means (k(z;, ), k(x;,-)) = k(x4 ;)
o r spans H which means H = span{k(x,-)|r € X} where X denotes the com-
pletion of a set X, meaning that all Cauchy sequences converge within H

The reproducing property. The reproducing property of positive definite ker-
nels means that x is the representer of evaluation. Computing the dot product
between some function f € H and the function x(z,-) is the same as evaluation of
f at z.

(f;k(x,-)) = f(z)

13



2. Background

The proof is simple. Let f = > ax(z;,-) be a functional in the RKHS H.

(fi6(y, ) = O ak(xi, ), k(y, ) (2.39)

= 3 alr(wi ). Ay, ) (2.40
= Z ak(x;,y)) (2.41)
= f(y) (2.42)

The second equality uses the linearity of the inner product while the third uses the
fact that the kernel function is defined to resemble dot products between elements
in the RKHS.

The representer theorem. Although the RKHS A might have infinite dimen-
sions, the representer theorem tells us that for regularized convex optimization prob-
lems like described below, one can find a solution that can be expressed as a kernel
expansion of the training data [16]. This means that the solutions of empirical risk
minimization problems in the high dimensional RKHS always lie in the span of the
training data.

Theorem . Let X be a non-empty set, let k be a positive-definite kernel on H x H
and let (z1,v1), (T2, Y2), -..(Tn, yn) € H xR, Further, let g be a strictly monotonically
increasing real-valued function on [0,00] and consider an arbitrary cost function
c:H xR?> = RU{oo} and a class of functions F

F={re® | 0= Sant) AER wex Il <o}y
=1

Here R is the space of functions from X to R. The norm || - || is the one associated
with the RKHS H and the kernel x, such that for any z; € X, 5; € R, 1 € N

= iiﬁzﬂjﬁ(zu zj) - (2.44)

i=1j=1

;@K(Zi, )

Then any f € F minimizing the regularized risk functional

(@1, 91, f(21)), s (@, yns fn))) + g ((FID (2.45)

admits a representation of the form

£6) = S aunten,) (2.46)

2.6 Kernelizing ordinary least squares

In order to use the OLS estimator in a reproducing kernel Hilbert space ‘H, we need to
be able to express a new prediction § = 6/, = only in terms of dot products between
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2. Background

the training samples in X which are arranged into a design matrix X € R™*¥,
containing m samples and k features. Further, we want the new test sample z € R*
also to only occur in terms of dot products with training samples. This can be
achieved by using the following matrix identity:

(ATATAT = AT(AAT)T (2.47)

This identity is proven simply by using singular value decomposition on A and using
some properties of the Moore-Penrose pseudoinverse. Applying it to the general OLS
estimator given in equation 2.24 yields an expression where the matrix multiplication
between training samples always takes place in the feature dimension:

hors(x) = 056 = (X" X)) XTY) z (2.48)
= (X'TXXNH'Y) (2.49)
Y ' (XX Xz (2.50)

Instead of fitting a linear function in R*, one can now do so in the space that
one gets after applying the feature map ® : X — H to the data. This function
shall correspond to a kernel k such that k(z,2’) == (®(x), ®(2'))y. Z refers to
the m X d design matrix that one gets by applying the feature map ®(-), which
corresponds to kernel k, to each row of X. d is the resulting number of features and
is the dimensionality of the RKHS. Note that the feature map may not always be
known and that d might not be finite for some kernel functions. Analogously, let z
denote this feature map applied to the test vector x. Instead of using the feature
map explicitly, one can use the kernel trick which means replacing ZZ" by K as
specified in equation 2.34. Kernelized ordinary least squares therefore takes on the
form:

Oors = Z'(ZZ")'Y (2.51)

— 0,52 =Y (ZZ")'Zz (2.52)

caors = (ZZ")Y'Y =K'Y (2.53)

hors(z) =3 aun(X;, ) (2.54)
=1

From this expression one can see that by kernelizing the OLS estimator one gets a
non-parametric version of this estimator where the similarity between the training
samples X; and the new input x are computed to make a new prediction. Note
also that one does not require access to the feature map ® as the estimator can be
computed in terms of the kernel function s : X x X — R used on training examples
in X only. However, one needs to have access to all training data when making a
new prediction, meaning after training the data needs to be kept in memory. This
is different for the parametric version, where one uses a feature map instead of a
kernel and stores a parameter vector s but not the data.
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2. Background

2.7 Deep representation learning

How information is presented can make information processing tasks more difficult
or much easier. This general principle is the motivation for representation learn-
ing which is concerned with discovering a more useful representation of the data
that makes subsequent learning tasks easier. Many problems can be hard or easy
depending on how they are posed. As an example imagine the task of learning to
separate points inside the unit circle in R? from the ones outside. If the data is given
in cartesian coordinates, this problem is clearly not linearly separable and the data
representation seems unsuited for the task at hand. If we change the representation
to polar coordinates, the task becomes linearly separable in one dimension, which is
a huge simplification as this problem can now be solved with linear model. Just like
the transformation to polar coordinates, good representations are ones that make
subsequent learning tasks easier [17].

One can therefore view supervised learning on deep neural networks as representa-
tion learning: The last layer of a multi-layer perceptron can be viewed as solving a
linear regression problem while the layers before have the task to find a representa-
tion of the data that makes a linear model feasible.

With supervised training one does not impose any restrictions on the learnt represen-
tation other than it being useful for the task at hand i.e. regression or classification.
However, one often wants to do unsupervised representation learning in order to
benefit from large amounts of unlabeled data that is more readily available com-
pared to labelled data. In a second step one uses the learned representation to
solve a supervised learning problem. In this context one wants the representation
to have desirable properties which means imposing restrictions. A good example of
this approach are variational autoencoders [18], which learn to represent the input
data with independent latent variables. In this case the independence of these latent
features is a useful restriction since it makes them much easier to analyze.

Representation learning with neural networks plays a key role in many different do-
mains such as natural language processing [19], graph learning [20], computer vision
[21] and others. As we make use of neural networks when combining representation
learning with LuPI in Chapter 3.4, we also give a very brief introduction to learning
with neural architectures as well.

2.7.1 Neural networks

The perceptron invented by Rosenblatt in 1958 is often seen as the starting point
for machine learning with neural networks [22]. Simple feedforward neural networks
are composed of layers of neurons. Each neuron in such a network is connected to
every neuron in the previous layer and every neuron in the following layer of the
network. During a forward pass through the network, which means computing the
hypothesis iL(l’) for a given input z, the states of the neurons in the first layer are
set to the values of the input, then the layers of neurons successively update their
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states until the output is obtained from the neuron states in the last layer. Every
neuron ¢ in layer [ is parameterized by a weight vector W; ;) and a bias scalar b ).
Each neuron computes its state s ; using the McCulloch-Pitts dynamics during a
forward pass [23]:

S(,i) = U(W(Tl,i)s(l—l,:) — b)) (2.55)

The non-linear function o is called an activation function. The name is due to the
notion of certain neurons being active when their output is non-zero which is anal-
ogous to the activation of neurons in the mammalian brain. Therefore, the function
o which is usually the same for all neurons determines for which inputs a neuron
is activated and for which it remains inactive. Popular activation functions are the
rectified linear unit (ReLU) and the sigmoid function. A review of different activa-
tion functions and their characteristics are found in [24].

It has been shown that multi-layer perceptrons (MLP) such as displayed in Figure
2.2 have universal function approximation capabilities which means that by tuning
the weights W, and bias terms b; an MLP can approximate any continuous function
arbitrarily well given the network is large enough [25].
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Figure 2.2: Multi-layer perceptron with a single hidden layer, six input neurons,
nine neurons in the hidden layer and five output neurons. For a forward pass through
the network the input states s; are set to the input data. Then the McCulloch-Pitts
dynamics are computed for the hidden layer as specified in equation 2.55 which pro-
duces the hidden states s5. At last the same procedure is carried out for the neurons
in the last layer which produce the output states s3. The connections between the
neurons visualize the weight matrices Wy and W, meaning this network consists
of 54 + 45 = 99 weights and 9 4+ 5 = 14 biases.
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When fitting a neural network to approximate an arbitrary function using empirical
risk minimization one does not have access to a closed form solution of how to set the
weights W, and the bias terms b;. This is the case because deep neural networks are
compositions of non-linear functions which turns empirical risk minimization into a
non-convex optimization problem. As a consequence, neural networks are trained
using improved variants of stochastic gradient descent. This has the disadvantages
that training a neural network often requires many iterations (gradient descent steps)
and one cannot hope that the training converges to a specific set of parameters
eventually. On the other hand, the stochastic gradient descent updates mean that
the training is less likely to get stuck in a local minimum during the optimization
process as the noise in the gradient estimates can cause a temporary increase in
the expected loss [23]. To perform stochastic gradient descent the training data is
divided into batches. For each batch consisting of m samples the gradient of the
prediction error £ with respect to each parameter vector of the network is computed,
resulting in the following update:

L= Z(f(%) — ) (2.56)

=1
W(l,i) — W(l,z‘) — OCVW(M)E (2.57)
bl “— bl — aVbLE (258)

The gradients for these updates are usually computed using the backpropagation
algorithm, in which the error occurring in later layers is used to compute the error
for layers closer to the input neurons. Hence the updates are computed in the
opposite direction compared to the forward pass which produces a prediction. For
details on backpropagation and how this is implemented in popular deep learning
frameworks such as PyTorch [26], the interested reader may have a look at the
corresponding chapter of [17].

18



3

Learning from privileged time
series information

3.1 Problem setting

In this section the exact problem that this thesis investigates shall be described
mathematically. The different assumptions used in the theoretical analyses of later
sections make use of the concepts introduced here.

Problem structure. Let X, X,, ... Xy with X, € X C R* be random variables
that occur in the form of a time series, meaning that these variables are ordered
chronologically and X; is observed at time ¢t € {1,2, ... T'}. Further,let Y € Y C RY
be called the outcome that can be regarded as the last element of the time series. In
general we assume that Y is a nonlinear function of X; with added Gaussian noise.
In particular we represent the outcome as the composition of a nonlinear function
®: X - Z CR?and a linear function parameterized by 6 € R%*4 leading to the
form of

Y = h(X1) +e where h(-)=0"®(X,), e~N(0,0?). (3.1)

Notice, that this structure provides a very general framework. In the course of this
project the nonlinear function ® will be referred to as the representation function.
The task of interest is predicting the outcome Y from baseline features X;, while
considering X, X3, ... Xr to be privileged time-series information, meaning this
information is available only for learning but not for making predictions. Two par-
ticular kinds of data generating processes that fit this description, and that will be
discussed in detail later, are illustrated in Figure 3.1.

In theoretical analysis, our work only considers the case where the time series is
produced by a system which satisfies the Markov condition. This means that the
conditional distribution of each variable X; given its predecessors has the following
property:

p(Xe| X1, Xioo, ... X1) = p(Xi¢| Xi1) (3.2)
Further, as we assume that Y is either observable at time T or thereafter, we also
make a similar assumption about the outcome:

p(Y|Xt,Xt_1,Xt_2,...X1) :p(Y|Xt) (33)
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Oobserved unobserved privileged
Figure 3.1: Linear-Gaussian data generating process on the left and the generalized
version of a latent dynamical system on the right. W is the observation generating
function, turning latent states { Z;} into observed variables { X;}. The representation
function @ is the left inverse of W.

For the joint distribution of all the random variables introduced above, this means
that one gets the following factorization:

p(X0, X X0, Y) = p(Y|X7) [Hp<xt|xt_1>]p<xl> | (3.4

t=2

Intuitively, the Markov assumption means in this particular setting that X; contains
all relevant information about the future of the sequence that is given by X, ;.

Data sets, algorithms and risk. Let D denote a data set D € D which contains
m € N, samples. Each sample is one observed time series consisting of T" steps plus
the outcome, meaning D = {(x;1,Z;2,...,xi1,¥:) }ir,. Data sets are drawn inde-
pendently and identically distributed from an unknown joint distribution p over all
random variables of our time series.

Learning algorithms &/ : D — H map data sets D to a hypothesis h. To make a
prediction ¢ the hypothesis is evaluated at inference time on a new test point x
such that § = ﬁ(xl) We are interested in the expected risk }_%p produced by different
algorithms as measured by a loss function £:)Y x Y — R:

R, =Ep[R,] with R, =, [L(h(X;),Y)] and h = /(D) (3.5)

In other words, the risk describes the loss incurred on average over many data sets
D for a given algorithm .o7. Throughout this project we consider the squared error
loss L(y,y') = ||y —y'||3 for regression tasks to quantify the performance of different
learning algorithms, as it is the goal to predict Y from Xj.

An algorithm is considered good if it has low expected risk Rp. In the regression tasks
of this thesis this relates to low prediction error. We compare privileged learning
algorithms @7p to classical learning algorithms 7. Privileged learners use samples
of the joint distribution of (Xi, Xs,...Y) during training, i.e. they make use of
privileged time-series information. Classical learners on the other hand only observe
samples of the form (X7, Y’), which means they do not have access to privileged time-
series information which makes this the common supervised learning approach. At
test time both algorithms predict the outcome Y only from X;. This project seeks
to identify conditions and algorithms for which the expected risk is lower when using
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3. Learning from privileged time series information

privileged information R,(/p) < R,(</). In other words we intend to find settings
where privileged information is provably useful for making better predictions. When
doing so, we compare algorithms that produce hypotheses h that are part of the same
hypothesis class H > h. This means not comparing linear estimators to non-linear
estimators and not comparing different classes of non-linear estimators with each
other. We analyze estimators of the form h(-) = 67 ®(.) inspired by the problem
definition of (3.1). We ensure the classical and privileged learners are of the same
class by letting their representation functions ®p (privileged) and & (classical)
share a hypothesis class, while combining each of the two with a linear estimator:

he(-) = 050p(-) and ho(-) = 0.9c() (3.6)

Consequently, differences in risk cannot be attributed to differences in approximation
capability, instead they must be due to (i) information use, (ii) objective function
and / or (iii) differences in optimization when no closed form solution is available.

In the following we introduce the data generating processes (DGPs) that will play an
important role in the assumptions used for our theoretical results. The first is fully
observed system using linear dynamics and the second is a nonlinear generalization
of the first.

3.1.1 Linear-Gaussian system

In the following we describe linear-Gaussian systems as illustrated on the left side of
Figure 3.1. Such a DGP produces time series consistent with the setting described in
(3.1), while being fully observed. The system therefore contains no latent states and
is made up of linear transitions and additive Gaussian noise. The baseline variable
X, is sampled from an arbitrary distribution after which each subsequent variable
X411 is computed as a linear function of its predecessor X; plus Gaussian noise. At
last the outcome is also a linear function of X7. The previous work of Karlsson et
al. [10] is based on assuming that data is generated by a linear-Gaussian system as
described by the following structural equations.

Definition 2 (Linear-Gaussian system). Let X; be drawn from an arbitrary distri-
bution and let A, € R¥™* and B € RF*9,

X1 =A X, + Uy VUt €{1,2, ... T—1}
Y =" X+ U,
U ~N(0,%) Vte{2 ... ,T,y}
U; denote independent noise variables with Gaussian distribution. The transitions
are determined by matrices A; and (3, while the noise is additive. As a consequence

the expected outcome E[Y|X] can be described as a linear function of first random

variable X7,
E[Y|X||=pTAL...AJA] X, . (3.7)

One may also notice that every random variable of the system can be described as
a linear function of an earlier variable in expectation. In the next subsection this
framework is generalized into a latent dynamical system.
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3.1.2 Latent linear-Gaussian system

The second system we introduce is the basis for most of the results of this project.
The data generating process of a latent-linear Gaussian system is very similar to the
linear-Gaussian system described above and is in fact a generalization of it. Its chain
of linear transitions is hidden behind the observation generating function ¥ which
produces observed variables {X,} from hidden or latent variables {Z;}. The chain
of variables 71, Zs, ... ,Zp,Y is generated as a linear-Gaussian system as shown
in Definition 2. The data generating process described by the definition below is
illustrated on the right side of Figure 3.1.

Definition 3 (Latent linear-Gaussian system). Let Z; be drawn from an arbitrary
distribution and let ¥ : Z — X be an injective function with ® : X — Z its left

inverse. With A, € R and 8 € R [et variables Z, be latent and X, be the
observations generated as

Zi =AZ 4+ Uy Yt €{1,2, ... T—1}
X, =V(7,)
Y =3"Zr + U,
U ~N(0,2) Vte{2 ... ,T,y}

The notation is changed here compared to the system in Definition 2 such that X, is
always an observed variable, while Z; describes a latent variable. The data generated
by such a system therefore comes in tuples of the same form (X;, Xo, ... , X7, Y).
Notice that in comparison to the fully observed linear-Gaussian system in Defini-
tion 2, here E[Y|X;] is not necessarily a linear function of X;. This now depends
on the choice of the observation generating function W. We assume it is an injective
function, meaning it has a left inverse ® : X — Z, such that

F= QW) Ve Z. (3.8)

U being injective means that all information in Z; is also contained in X;. In other
words, Z; can be reconstructed from X, if one knows ®. We refer to ¢ as the rep-
resentation function as it reveals the unobserved representation z; that produced a
particular data point x;. The latent system is a generalization of the simpler linear-
Gaussian system as the two become identical when W(z) = z. Further, it is easy to
show that when W is a linear function the latent dynamical system one obtains is
in fact also a linear-Gaussian system. This highlights that Definition 3 provides a
more general framework compared to Definition 2.

Latent dynamical systems similar to the ones presented here have proven successful
at modelling a variety of phenomena as for example fluid dynamics in physics [27]
and human brain activity in neuroscience [28]. In the next section, we assume that
data is generated from a latent linear-Gaussian system and that its representation
function ® is known up to a linear transform.
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3.2 Learning with true representations known

In this section we present the generalized LuPTS algorithm and derive it from previ-
ous work on learning from privileged time-series information. We prove its improved
sample efficiency compared to the classical learning alternative on latent dynami-
cal systems as presented in Definition 3 for the case when the true representation
function of the data generating process is known up to a linear transform. While
doing so, we notice a phase transition in the generalized LuPTS estimator, that
lets the benefit of privileged information vanish when the number of features is
higher than the number of samples. At last, we reason about the bias and variance
characteristics of generalized LuPTS and its use with popular kernels.

Classical learning with OLS. Before introducing generalized LuPTS, we present
the classical learning alternative that this new algorithm will be compared to. Let
d: X — Z C R? be an estimate of the true representation function ® as introduced
in Definition 3. If the true representation function ® is known, i.e. ®(-) = ®(-), then
using an ordinary least squares estimator on the inferred latent states ZieZC R
will result in the minimum variance unbiased estimator that does not make use of
privileged information. In other words, the classical learner applies the estimated
representation function @ to the baseline features X; and uses OLS linear regression
afterwards. Let Z, € R™*4 be the design matrix containing the inferred latent states
Z, = @(Xt) of time step ¢ for m training samples, then the estimator he takes the
following form, analogous to (2.24):

ho() = 058() with 0 = (Zo Zo)'Zo Y (3.9)

In the coming section the privileged learning alternative to this classical learning
algorithm is presented.

3.2.1 Generalized LuPTS

To predict Y from X; generalized LuPTS infers the latent state Z; = ®(X;), then
simulates the linear transition dynamics of the latent linear-Gaussian system in a
stepwise fashion before producing its estimate of the outcome. This is visualized on
the right pane of Figure 3.2. During training, generalized LuPTS infers all latent
states {Zt} from {X;} using the estimated representation function and minimizes
the error for each transition individually, i.e. it fits the OLS estimators {flt, B} to
model each transition of the time series in the latent space implied by ®. One can
therefore view generalized LuPTS as minimizing the following objective

m [T—-1 . R i ~~— A~ i .
Comin ST AT () — S| + 15T R — I3, (3.10)
A1,Az, oo Ar1,8 0 =1 L =1
where x,@ is time step ¢ of the i-th training example. Notice, that because P is
fixed, the objective is separable between the different time steps, meaning every lin-
ear estimator A; or 8 can be fit individually using ordinary least squares. The left
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Figure 3.2: Visualization of the stepwise estimation approach of generalized LuPTS
(Algorithm 1). Parameters {flt, B } are fit independently, minimizing the single step
squared error (losses L;) using ordinary least squares. During inference the latent
dynamics are simulated from start to end to estimate the outcome.

pane of Figure 3.2 illustrates the single step losses in the latent space during training,.

In the following the generalized LuPTS algorithm is presented in two versions: The
first uses an explicit fixed feature map ®, while the second uses a reproducing kernel
k(z,2') = (®(x), d(z')) and therefore only applies the feature map implicitly. In
the following matrices written in bold letters are the design matrices Z,e 2 C Rmxd
consisting of m samples arranged along the rows and d features on the columns. We
denote the dimensionality of the true latent variables Z; with d, while d refers to the
dimension of the estimated latent variables Z, implied by d. These spaces might be
of different dimensionality. We may now present the generalized LuPTS algorithm.

Algorithm 1: Generalized LuPTS
Input: Data D = ({X;},Y) with X € R™**, 'Y € R™,

Representation d:x — Zorkenel K: X x X > R
if using a fixed representation $ then

Zi = [D(x11), .0, Py )] fort=1,..,T
. 1 ) T
O = [tljl (ZtTZt)TZ;,thJrl} (2727)'2.Y

Ay B

he(-) = 81 ®(.)

Ise if using kernel x then
Kt = H(Xt,Xt> fOr t= 1, ,T
a =Kl [Hthz IA{tIA{ﬂ Y
BP(’);: Yy k(g )

return hp

[©)

Note that while generalized LuPTS is constructed with latent dynamical systems
in mind, it is a generalization of the linear LuPTS algorithm presented by Karlsson
et al [10]. Latent linear-Gaussian processes like described in Definition 3 become
linear-Gaussian systems when the observation generating function is also linear x =
U(z) = Mz for some matrix M. The same logic applies to generalized LuPTS: It
becomes Karlsson’s linear LuPTS whenever the representation function d is linear,
which makes Algorithm 1 a generalization.
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Generalized LuPTS with kernels. After the introduction of Algorithm 1, its
kernel version shall be derived from the alternative of using a fixed feature map.
The hypothesis hp(-) = 0,®(-) returned by generalized LuPTS makes use of the

parameter
T—1
b= | T1 (21 20)'2] Zuso | (2420) 21X | (3.11)

t=1

At B

which is a composition of the single step OLS estimators (compare to Figure 3.1).
To transform this into the kernel variant one takes two steps. First one uses the
simple matrix identity from equation (2.47) in order to reveal Gram matrices ZtZtT
of the estimated latent states of different time steps ¢. In the next step the Gram
matrices are replaced by the kernel matrices K; corresponding to the kernel x,

Now one may define o := K! [HtT:Q KtIA{I] Y in order to use hy(-) = X", ar(z1, )
for a new prediction. Notice that this form is exactly the same as for kernelized OLS
as shown in Section 2.6. Given the same kernel x, the only difference between these
two estimators is how a is computed. This highlights again that these two learning
algorithms produce hypotheses in the same class.

We may now state our main Theorem about generalized LuPTS. It says that when
data is generated by a latent linear-Gaussian system with the true representation
function known up to a linear transform, generalized LuPTS is never worse in terms
of sample efficiency compared to classical learning for any sample size in expectation
over data sets.

Theorem 1. Let D be a data set drawn from a distribution p, as produced by a
dynamical system as described in Definition 3. Assume that the left inverse ® :
X — Z of the observation function V¥ is known up to a linear transform, explicitly
or through a kernel k(z, ') = (d(z), D(2')), i.e., there exists a matriz B with linearly
independent columns such that ®(x) = B®(z) with ® : X — Z for allz € X. Then,
it holds for the privileged learner <7,(D) = hy (generalized LuPTS of Algorithm 1)
and the classical learner /(D) = he (3.9),

R(e#) = R(ets) — By, x,[Varp(he(X1) | 7)) - (3.12)
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Proof sketch. First we show in Lemma 1 that generalized LuPTS and the classical
learner make the same predictions if the learned representation is linearly close
(as given in the assumption) to the true representation. Then we consider three
different cases for the dimensionality of the true latent system d and the sample
size m: (i) When m = d the kernel matrices will be invertible, yielding the result
of Proposition 1, which means the risk is the same for both algorithms. (ii) When
m < d the technical assumptions required for the theorem statement cannot be
fulfilled. (iii) When m > d we can use Lemma 1 to reason about an estimator using
the true map & and for this latter estimator Theorem 1 of Karlsson et al. [10] holds,
which gives the desired result. A full proof is given in Appendix A.1. O]

Theorem 1 implies that Algorithm 1 will accrue lower or equal risk in expecta-
tion over data sets than the classical learner since Varp(-) > 0. The assumptions
about the data generation process are restrictive: Not every function for which
Y = 0T®(X,) additionally obeys X; = ¥(Z;) for all time steps. However, our as-
sumptions on the data generating process are much more general than the results
of Karlsson et al. [10], who make a similar statement for linear Gaussian-systems
and linear estimators. Firstly, our result extend the LuPTS approach to nonlinear
estimation through either feature maps or kernels. Secondly, one may use the kernel
variant on objects that are not vectors in R*. All that is required is having access
to a kernel x that can act as a similarity measure for two objects.

At last, we also extended LuPTS to the underdetermined case by using the Moore-
Penrose pseudoinverse [12]. When doing so, we notice that generalized LuPTS
undergoes a phase transition with exploding variance when the number of features
d become larger than the number of samples m, after which the benefit of privileged
information vanishes and generalized LuPTS becomes equivalent to the correspond-
ing classical learner. This is the statement of the following proposition.

Proposition 1. Let d:x o ZC RY be any map with corresponding kernel k.
Let K, be the Gram matriz of k applied to X, and let he, hy be classical (3.9) and
privileged (Algorithm 1) estimates. Then,

Kt is invertible for allt —> ﬁp = iLC.

K, is noninvertible whenever m > d, assuming linearly independent features.

Proof sketch. When the Gram matrices K; are invertible, the pseudo-inverse coin-
cides with the inverse, and factors KtKI in the generalized LuPTS estimator cancel,
making it equal to the classical learner. O

Proposition 1 says that the gap in risk between privileged and classical learning
closes when one has more features d than samples m. However this is only a state-
ment about generalized LuPTS, it does not state that no better privileged learner
exists. Figure 3.3 illustrates the behaviour of generalized LuPTS and the classical
learner when increasing the number of features d for a fixed sample size m. The
double descent behaviour exhibited by our algorithm in Figure 3.3 is familiar from
previous analyses on linear estimators [29]. The variance of both estimators in-
creases as the number of features approaches the point d = m. When the variance

26



3. Learning from privileged time series information

O 9 < CZ< m > CZ> m >
0.8 '
0.7] R, | —— OLS
o |  =e=: LuPTS
 0.61 \ |
0.4 | /“\
0.3 -

50 100 150
Features, d

Figure 3.3: The two regimes of generalized LuPTS. Shown is the average coeffi-
cient of determination R? (higher is better), which is proportional to the empirical
squared error risk for two learning algorithms and varying feature counts over 50
data generating processes as described in Definition 2. When the number of features
d is smaller than the number of samples m = 100 and the features are linearly in-
dependent, one gets lower risk on average compared to classical learning according
to Theorem 1. However, when d>m generalized LuPTS and the classical learner
(OLS) become equivalent as shown by Proposition 1.

reduces for a second time, generalized LuPTS and its corresponding classical learner
obtain the same risk.

Theorem 1 requires that the representation function is known up to a linear trans-
form. In practical problems where the data generating process is unknown, this
cannot be expected. As a consequence it is of great practical interest to explore the
use of generalized LuPTS with kernels or feature maps that work well for unknown
representation functions. This is discussed in detail in the following section.

3.3 Random feature maps for unknown represen-
tations

As generalized LuPTS can be used with any feature map or kernel, universal kernels
come to mind for the case where the representation function ® which connects ob-
servations {X,} to latent variables {Z;} is unknown. Universal kernels have dense
reproducing kernel Hilbert spaces, which allow for the approximation of any con-
tinuous function [30]. The idea of combining generalized LuPTS with such a kernel
is appealing as one could approximate any unknown representation function. A
popular example of a universal kernel is the Gaussian radial basis function kernel
K(z,x") =exp (]| — x;ﬁl |2). Tt is viewed as a generalization of the polynomial kernel
with infinitely many basis functions that make up its associated feature map, thus
its corresponding RKHS has infinite dimensionality. An issue arises from combining
universal kernels with generalized LuPTS: It can be shown that universal kernels al-
ways produce positive definite and thus invertible kernel matrices [31]. Proposition 1
tells us, that this leads to generalized LuPTS becoming equivalent with the classical
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3. Learning from privileged time series information

learner using the same kernel. As a consequence, we cannot expect any advantage
from using privileged time-series information when combining generalized LuPTS
with universal kernels.

Random features as an approximation of universal kernels. As a conse-
quence, we look to random feature methods as an alternative to universal kernels,
as these methods can be seen as approximating the RKHS of universal kernels. The
idea behind these approaches can be briefly described by sampling a random matrix
W that is multiplied with variates x before applying an elementwise nonlinear func-
tion. Using those new features one can then fit a linear model. The most popular
example of this are random Fourier features introduced by Rahimi et al. in 2007
[32]. The authors show that one can approximate any arbitrary continuous func-
tion with this approach if only given enough features and samples. Random Fourier
features (RFF) are computed as

@EFF(x) = \/ﬂi {cos(\/%WAT/x + b)} : (3.13)

The number of random features is denoted by 02, meaning Wy € ka‘i, while
b € R? describes a bias term for each random feature. The cosine function is
applied elementwise and the elements of W)y, are sampled from a Gaussian distri-
bution (Wyx);; ~ N(0,1). The biases are sampled from a uniform distribution
b; ~ U(0,27). v is a bandwidth hyperparameter that just like the number of ran-
dom features needs to be chosen manually. After sampling the features one would
then fit the parameter 6 of a linear model to obtain the estimator h(-) = HT@}Y{FF(-).

In similar work, Sun et al. [33] present random ReLU features (RRF) which also
have universal approximation capabilities and make use of the rectified linear unit
function f,(-) = max(0,-). Random ReLU features are computed with slightly
different sampling. The random weights are sampled uniformly (Wy,);; ~ U(—1,1)
with Wy, € RF*d and also here v plays the role of a bandwidth hyperparameter. Let
[z, y] denote the concatenation of vectors x and y, then random ReLU features are
given by

& () = (WS [2:1]) . (3.14)

While universal kernels produce kernel matrices K; that are always invertible and
thus render generalized LuPTS equivalent to classical learning, combining random
features with generalized LuPTS allows us to control the number of features d mak-
ing sure d<m. As a consequence, we get the advantage of the universal approxi-
mation capabilities of random features and the variance reduction associated with
generalized LuPTS. We point out, that the variance reduction promised by The-
orem 1 only holds for the case where the representation function is known up to
linear transformation, however one may hope to find such a representation with the
use of random features given enough samples and features. Next, we justify the use
of random features with generalized LuPTS by showing that this algorithm can be
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3. Learning from privileged time series information

made universally consistent.

Consistency of generalized LuPTS with random features. Consistency is a
desirable property of estimators and describes the notion that an estimator converges
in probability to the true function in the limit of infinite samples m. Sun et al. [33]
show that random features ® combined with a linear model A(-) = 6T®(-) can
approximate any noiseless continuous function f : X — ) up to arbitrary precision
in the limit of samples m and features d. We apply the same reasoning to generalized
LuPTS to state: Generalized LuPTS with a random feature map can be made a
universally consistent estimator of h(xy) = E[Y |x1] under appropriate assumptions.
For a precise statement and a proof see Appendix A.2. As universal consistency
describes the asymptotic behaviour in the limit of infinite samples and random
features, this offers only limited insight into the benefits of privileged information
in small sample settings, where performance will be a bias-variance trade-off.

Variance reduction & bias amplification. Generalized LuPTS is only guaran-
teed lower variance compared to the classical estimator when data is produced by a
latent-linear Gaussian system with its representation function known up to a linear
transform, see Theorem 1. Despite having theory only for this case, our empirical
results (Section 4) suggest this applies more widely, as we have never seen an ex-
ample of privileged time-series information use resulting in a bias increase. When
® is a bad approximation of ® the classical and the privileged learners used in this
chapter will be biased. Next we demonstrate that LuPTS may amplify this bias,
meaning that it increases with the number of privileged time points, compared to
classical learning. We show this theoretically in Appendix A.3 and demonstrate it
empirically here.

Figure 3.4 illustrates the prediction accuracy of different variants of generalized
LuPTS trained and tested on data from latent-linear Gaussian systems with varying
sequence lengths. For experiment details see Appendix A.4. Linear LuPTS performs
worse than the classical learner (OLS) as the observation generating function W is
not linear here, in other words linear LuPTS is strongly biased and Theorem 1
does not hold for it. If linear LuPTS was unbiased, meaning data is produced by a
linear dynamical system as in Definition 2, we would expect the privileged learner
to outperform the classical learner. Here, bias is amplified as the sequence length
increases, which lets the gap between the classical and the privileged learner grow.
For the random feature variants of Section 3.3, each privileged learner performs
better compared to its classical counterpart even for long sequences which highlights
that these methods exhibit little bias. In summary there are two opposing effects
at play here: If generalized LuPTS is biased, i.e. the representation d is bad,
the stepwise prediction approach amplifies this bias, while it appears that it always
results in lower variance. Whether our privileged learner is still preferable to classical
learning in terms of prediction risk appears to depend on the amount of bias that
gets amplified. Our experiments imply the variance reduction mostly dominates
when using random features, whereas this is not always the case for linear LuPTS.
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Figure 3.4: Different variants of Algorithm 1 and the classical learning alternative
(3.9) applied on data sets with varying sequence lengths generated by Square-
Sign(d = 10, ¢ = 3) which is latent-linear Gaussian system as described by Defini-
tion 3. We use m = 1000 samples and report the mean coefficient of determination
R? over 500 repetitions. Notice that for the linear models in (gray and black) the

classical learner outperforms the privileged learner with this gap increasing with 7.
The nonlinear models (colored) do not follow this pattern.

The phenomenon of bias amplification is familiar from e.g., model-based and model-
free reinforcement learning [34], where a longer roll out horizon amplifies the bias
induced from using a model, while using no model results in high variance. As the
bias with random features may still be high for small sample settings as will be seen
in the experiments of Chapter 4, we next present privileged representation learning
algorithms to trade off bias and variance more efficiently.

3.4 Privileged time series representation learning

Up until now the representation ® was considered fixed, either because ® was known
up to a linear transform (explicitly or implicitly) or because of the use of random
feature methods. In practical problems ® cannot be expected to be known in general
and as argued above random feature methods may still suffer from high bias in small
sample settings. As a consequence, this section is inspired by marrying the ideas
behind generalized LuPTS with the expressiveness of deep representation learning.
To demonstrate how generalized LuPTS is related to the algorithms that follow
in this Section, we highlight that Algorithm 1 produces minimizers {flt}, B of the
following objective with respect to o = {{flt}, B} with fixed ®

i A O (z;4) (i)(:p,tH)Hz

L (@) := [ >

=1

| TIPS
+ 7 BrO(zir) — ui

j . (3.15)

Recall that this is an equivalent loss to the formulation given in (3.10). Objec-
tive (3.15) and the systems described by Definition 3 lend themselves to methods
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Figure 3.5: Classical (left) and privileged (right) representation learners. P is
shared across all time steps. GPA{L models the direct maps 6, to the outcome; SRL
models the single steps A; and §. CRL combines the two.

which also learn the representation ® in addition to the latent dynamics {A;, 5}.
Next, we present three representation learning algorithms, which do exactly this.
All learners that we compare as part of the same hypothesis class use equivalent
encoders, parameterized by neural networks, to represent &D() and linear layers to
model the relations between the latent variables {Z;} and the outcome Y. The
classical learner predicts the outcome linearly from Z1. All architectures that we
present in the following are visualized jointly in Figure 3.5.

SRL. The first privileged representation learner directly optimizes objective (3.15),
just like generalized LuPTS, but now also learning the representation P, parameter-
ized by a neural network. We refer to this model as stepwise representation learner
(SRL). As we will see in experiments, a drawback of this approach is that representa-
tions may favor predicting transitions 2; ; — Z; ;41 with small error, while losing infor-
mation relevant for the target outcome in the process. At test time, for a new input
1, SRL composes the stepwise dynamics to output hp(z1) = TAL .. AT ®(x). In
essence, SRL is closely related to LuPTS but instead of using a fixed representation
with OLS estimators for the single step transitions, it uses a learned representation
and does not make use of a closed form solution.

GRL. To avoid the information loss of SRL, we consider its conceptual opposite,
using privileged time series information only to predict the outcome. To do this,
a linear output layer 9? Z, is used to predict Y at every time step ¢. Recall that,
in the latent dynamical system of Definition 3, the expected outcome is linear in
the latent state at any time step. This second representation learning method is
related to multi-view learning, in which predictions of the same quantity are made
from multiple “views” [35]. Here, we make predictions of Y from T different time
steps during training, while only having access to one perspective at test time. We
dub the model greedy privileged representation learner (GRL) due to its focus on
the outcome. It minimizes the objective

1 N T

T NT

2
GRL((I) {91:

D(zit) — i (3.16)

.
i=1t=1
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During inference this algorithm returns h,(-) = 6 ®(-). We introduce an additional
hyperparameter A € (0,1) to place more weight on the loss term that is relevant
at inference time. As a consequence, we choose w; = A for t = 1 and w; =1 — A
otherwise. We expect GRL to have less bias than SRL, but higher variance since
less structure is imposed on the representation o,

CRL. Finally, we combine the previous two approaches (SRL and GRL), modelling
all latent linear transitions as well as the linear outcome function for every time step.
We introduce a hyperparameter A € [0, 1] to trade off the two types of losses and
arrive at the combined representation learner (CRL). With o = (®, {A,}, {6,}) the
entire parameter vector, CRL minimizes the objective

2 1—A

T

N(T —-1)d

A

A (1) — d(aie)|.

(3.17)
We make test-time predictions using hp(z1) = 6] ® (), which is exactly the same
as in GRL for simplicity. This is not the only possible choice as one could combine
different linear estimators to get from Zi to Y, essentially choosing a path along
different arrows in the right panel of Figure 3.5. One may also view GRL as a special
case of CRL as they become equivalent for A = 1 in (3.17) and (3.16). In the coming
chapter we analyze the representation learning algorithms introduced here together
with different variants of generalized LuPTS empirically.

A
LCR,L<a) :

NTq o t (I 7t) Y
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4

Experiments

We compare classical learning to variants of generalized LuPTS (Algorithm 1) and
the privileged representation learners of Section 3.4 on two synthetic and three
real-world time-series data sets empirically. The former are designed to satisfy the
assumption of a latent linear dynamical system (Definition 3) with a nonlinear ob-
servation function. The latter are time series data sets where one could reasonably
hope that privileged time-series information would be helpful for making more ac-
curate predictions. We (i) verify our theoretical findings by analyzing the sample
efficiency and bias-variance characteristics of the given algorithms; (ii) demonstrate
that generalized LuPTS with random features succeeds in settings where linear
LuPTS suffers from large bias; (iii) point out that privileged representation learners
offer even greater sample efficiency in practice (all in Section 4.3) and (iv) study
how well these algorithms recover the true latent variables {Z;} and how this re-
lates to predictive accuracy (Section 4.4). At first we give some insights on how the
experiments described in this section were conducted.

4.1 Experiment setup

All prediction tasks that models are tested on in the course of this chapter are
regression problems and we report the mean coefficient of determination (R?), pro-
portional to the squared-error risk R, for varying sample sizes, sequence lengths and
prediction horizons. For a given data set, we select a combination of training set sizes
and sequence length. For each unique combination of these parameters the models of
interest are trained repeatedly with different random sampling. For each repetition
the data is split into a train and a test set randomly before hyperparameter tuning
(using cross-validation) is performed. Next, a given model is retrained on the full
set of training data of the selected sample size. At last, each model’s predictions on
the test set are scored using the coefficient of determination R?. On synthetic data
the test set contains 1000 samples. In the case of real-world data, where samples are
limited, we test on 20% of all available data. Every model uses standardized data for
training and inference. Hyperparameter tuning is carried out using random search
with five-fold cross-validation in every repetition. The preprocessing used for real-
world data and the generation procedure of synthetic data is unique to each data set.

The algorithms considered in the following are divided into two groups. The first

group comprises generalized LuPTS with the linear kernel (LuPTS) and the two ran-
dom feature maps shown in Section 3.3: Random Fourier features (Fourier RF) [32]
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4. Experiments

and random ReLU features (ReLU RF) [33]. The classical learners for this group are
OLS estimators used with the same kernel or feature map. The second group con-
sists of the representation learners SRL, GRL and CRL, as well as the corresponding
classical representation learner (Classic Rep.). For tabular data, their encoder is a
multi-layer perceptron with three hidden layers of 25 neurons each, producing 25
dimensional latent states {Z;}. For the image data they use LeNet-5, which is a
simple convolutional neural network introduced in 1989 by Yann LeCun for the task
of recognizing handwritten digits [36]. The classical learner (Classic Rep.) uses the
same encoder with a linear output layer. The results presented were found to be
robust to small changes in training parameters such as learning rate or batch size.
For more details on the training process we refer to Appendix A.4. All experiments
required less than 3000 GPU-h to complete using NVIDIA Tesla T4 GPUs. In the
next section we give brief descriptions of the data sets used in our experiments.

4.2 Data sets

In the following we first introduce two synthetic data sets designed specifically for
this project before presenting three real world data sets from a broad range of
domains.

Square-Sign. The synthetic data sets make use of a latent dynamical system
to generate the latent variables {Z;}. We choose a Gaussian distribution for 7,
sample transition matrices {A;, As, ... Ap, [} and compute the latent variables
subsequently using the structural equations of Definition 3. For details on how the
transition matrices and noise variables are sampled we refer to Appendix A.4. After
computing the latent variables, we use a nonlinear deterministic injective observation
function ¥. For Square-Sign this nonlinear transformation ¥ : R — R?¢ maps
each latent feature Z ) to a two dimensional vector such that

X = \IJ(Z(t)) = [Z(2t,1)> Sgn(Z(tyl))7 T Z(2t,d)7 Sgn<Z(t’d)>]T' (4'1)

We point out that this nonlinear function meets the criteria laid out in Definition 3
and injective.

Clocks-LGS. The image data set Clocks-LGS is constructed very similarly to
Square-Sign, as it makes use of the same latent-linear Gaussian system. The latent
system has dimensionality d = 2, meaning Z, € R?. As observations this system
generates grayscale images of 28 by 28 pixels which are reminiscent of clocks, hence
the name. Each latent component is represented by one clock hand, one being a line
pointing outwards from the center of the image which is marked with a circle, the
other being a circle that orbits the image center. The exact value of each component
is encoded in the position, size and fill of each of the two clock hands. The outcome
is a linear function of the last latent state as in Square-Sign. We chose the image
prediction task to test our algorithms on domains where neural networks are largely
successful at finding good representations [37]. Further, we intend to investigate
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[-8.75, 1.71]

[8.12, -3.06]

[-12.30, -17.37]

Figure 4.1: Example sequences of Clocks-LGS with T' = 5 are displayed on the
left. On the right we give three examples of how the latent states are represented as
images. Both hands are at the top center for a value of (0,0) and arrive there again
for (27, 27) moving counterclockwise with increasing values.

whether the representation learning ideas presented in Section 3.4 are relevant for
high dimensional observations such as images. For details on the image generation
process please see Appendix A.4. Figure 4.1 displays five example sequences of
Clocks-LGS on the left side and three observations X; with their corresponding
latent variables Z; on the right.

Alzheimer Progression ADNI We also predict the progression of Alzheimer’s
disease of medical patients as measured by the outcome of the Mini Mental State
Examination (MMSE) [38]. As part of the examination patients must answer a
variety of questions and they are scored on their answers. The scores give an indica-
tion of the severity of the patient’s condition. The anonymized data were obtained
through the Alzheimer’s Disease Neuroimaging Initiative (ADNI) [39] under the
LONI research license. While patient measurements were taken every 3 months,
the outcome of interest is the MMSE score 48 months after the first examination.
Privileged information are the measurements taken at 12, 24 and 36 months. The
ADNI data set was also used by Karlsson et al. with linear LuPTS, demonstrating
that privileged time-series information is helpful in predicting the progression of
Alzheimer. For more information on ADNI see Appendix A.4.

Traffic. The Metro Interstate traffic volume data set (Traffic) [40] contains hourly
records of the westbound traffic volume on the interstate 94 highway between Min-
neapolis and St. Paul, MN as reported by the Minneapolis Department of Transport.
In addition, the data contains weather features and a holiday indication. We predict
the traffic volume for a fixed time horizon given the present observations. In our
experiments, privileged information is observed every four hours. Figure 4.2 gives
an example of how the traffic volume and the weather vary over the course of one
month in this data set. For details on the preprocessing steps taken on this data
set, we refer to Appendix A .4.
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Figure 4.2: Traffic volume, cloud coverage in percent and the air temperature in
Kelvin shown for the month of January 2018 as reported in the Traffic data set.

PM, 5 air quality. At last we also predict the air quality in the five Chinese cities
of Beijing, Guangzhou, Shanghai, Shenzen and Chengdu. To do so we use the PM, 5
data set as described by Liang et al. [41]. The data contains hourly measurements
of the PM, 5 particle concentration as well as weather features like temperature, air
pressure, wind direction and others. Similarly to ADNI this data set was used in
previous work with privileged time series by Hayashi et al.[11] and Karlsson et al
[10]. For the exact preprocessing of the air quality data we refer to AppendixA 4.

4.3 Sample efficiency, bias & variance

The main goal of our work is to improve the sample efficiency of learning algorithms
by incorporating privileged time-series information. We aim to make more accurate
predictions using less data by using privileged information during the training pro-
cess. Figure 4.3 shows the different variants (linear and nonlinear) of generalized
LuPTS and the corresponding classical learners evaluated in terms of sample effi-
ciency on all five data sets, excluding the image task. Across all prediction tasks
and sample sizes, nonlinear variants of generalized LuPTS outperform their classical
counterpart in terms of sample efficiency. On the Traffic prediction task, general-
ized LuPTS combined with random ReLU features [33] outperforms linear LuPTS as
the former appears to exhibit less bias. On the synthetic data of Square-Sign, lin-
ear models reach their best accuracy quickly, while they are limited by their lack of
expressiveness. Generalized LuPTS amplifies this bias, making linear LuPTS much
worse than the classical learner (OLS) in this case. Random feature methods attain
higher accuracy here eventually but are generally less sample efficient. Generalized
LuPTS combined with random features manages to decrease this gap significantly,
providing the benefits of nonlinear estimation with fewer samples. However, non-
linear models are not always superior to linear models even when the sample size
increases: We do not see improvements using random features on the prediction
tasks of ADNI and PM, 5 but the privileged learners are preferable to their clas-
sical counterpart there also.
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Figure 4.3: Predictive accuracy of generalized LuPTS evaluated on four data sets,
over 60 repetitions. The shaded area represents one standard deviation above and
below the mean over repetitions.

The representation learners proposed in Section 3.4 are evaluated on the same data
sets and on the image prediction task Clocks-LGS. In addition we include an
approach that has been suggested by Hayashi et al [11]. They use generalized dis-
tillation (GD) as introduced by Lopez-Paz [3] for classification tasks and regard
intermediate time points of time series as privileged information similar to the ap-
proach taken in this project. We adapt this setting to our regression problems to
provide a baseline method. For the GD model we use the same architecture as for
the classical learner and train it using a combined loss function with soft targets
similar to (2.7), see Section 2.2. The soft targets are provided by a more capable
teacher model that learns to predict the outcome from all time steps X1, Xy ... Xr
rather than just X;. For details on the GD alternative we refer to Appendix A.4.

We present the predictive performance of the representation learners applied to
four data sets in Figure 4.4. The results demonstrate that directly transferring the
LuPTS objective to neural networks in the form of SRL results in subpar perfor-
mance compared to the classic approach. When analyzing this phenomenon on more
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Figure 4.4: Predictive accuracy of the representation learners over 25 repetitions.
Generalized distillation is used as proposed by [11]. For details, see Appendix A.4.

prediction tasks with a variety of sequence lengths we noticed that this is partic-
ularly true for longer time series. When there is only a single step of privileged
time-series information, SRL often performs better than classical learning. This is
strongly reminiscent of the bias amplification effect discussed in Section 3.3. Over-
all, SRL does not seem to have a strong enough incentive to learn representations
which accurately predict the outcome. Generalized distillation for privileged time
series as suggested by Hayashi et al. [11], does not improve upon classical learning
in our tasks, either.

On all experiments displayed in Figure 4.4, CRL and GRL outperform the classical
learner. The predictive accuracy of these models is similar on most tasks, as may be
explained by the fact that CRL may reduce to GRL when choosing A = 1 in objec-
tive 3.17. Noticeably, the general observation of GRL and CRL being more sample
efficient than the classic model, neither appears to depend on the neural architecture
used for the encoder, nor does the modality of the data play an important role, as
the image prediction task Clocks-LGS (Figure 4.4c) demonstrates. When compar-
ing with these results with the best performance achieved by generalized LuPTS one
notices that the representation learners are more sample efficient, despite requiring
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Figure 4.5: Estimated squared bias and variance of models trained on Square-
Sign (T =5, d = 10, ¢ = 3) over random training sets (60 for left group, 25 for the
right), evaluate on 1000 test points.

a validation set for training. For additional empirical results using other sequence
lengths on the same data sets, we refer to Appendix A.6.

In order to understand how privileged information leads to more accurate predic-
tions we analyze the bias and variance characteristics of our algorithms. As seen in
Section 2.4, the prediction bias depends on the expected outcome given the baseline
variables E[Y|X;]. This quantity is not accessible in real world data sets but on
synthetic data, where the transition matrices and noise variables are known, we can
estimate the expected squared prediction bias, Ex, [(Ep[« (D)](X;)—E[Y|X1])?], by
computing Ey[Y|X;]. In addition we compute the variance of the different estima-
tors analyze these metrics over a variety of training set sizes, while always predicting
on the same 1000 samples of X every time.

Figure 4.5 depicts bias and variance for all models on the Square-Sign data. On
the left panel, all variants of generalized LuPTS exhibit lower variance than classical
learning, despite being biased. This is remarkable as it is not at all guaranteed by
Theorem 1. Generalized LuPTS only provably reduces variance when the represen-
tation function is known up to a linear transform and with random features meth-
ods this cannot be assumed. This is observed widely: Across all experiments, we
have never encountered an example where the use of privileged information has not
resulted in lower variance compared to classical learning. On the contrary, the priv-
ileged learners suffer higher bias than the comparable classical learners because of
the bias compounding over the individual prediction steps as shown in Appendix A.3
and demonstrated empirically in Figure 3.4. For the random feature variants how-
ever, the bias decreases with the number of samples. This is obviously not the case
for the linear models, their bias remains constant and here LuPTS attains higher
bias than OLS.

The representation learners display similar characteristics on the right panel of Fig-
ure 4.5. First of all one notices that privileged time series learners offer a reduction
in variance compared to classical learning (Classic Rep.) also here. Learning the
transitions between latent variables Z; appears to be associated with low variance
and high bias as demonstrated by the results of SRL, see objective (3.15). GRL
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however, which does not model the single step forward transitions, exhibits the
lowest bias and the largest variance of all privileged learners. As CRL is able to
trade off between these two objectives, the estimates for its variance and bias lie
in between the corresponding values of the other two privileged learners. While all
these models use the same encoder combined with a linear model, one can view the
additional loss terms used by the privileged learners as useful regularization using
extra data which reduces variance and in some cases also bias (see GRL). The CRL
algorithm can therefore be regarded as modelling the data generating process under
the assumption of a latent dynamical system while also trading off between bias and
variance.

Concluding, we point out that generalized LuPTS with random features benefits
from privileged time-series information in all settings explored in this project and
always appears to offer a reduction in variance compared to classical learning. While
some settings do not benefit from nonlinear estimation others certainly do. In these
settings generalized LuPTS used with random features requires less data to provide
the advantages of nonlinear estimation compared to classical learning. Despite this
gain, such methods may still exhibit high bias in small sample settings. As a rem-
edy, we demonstrate representation learning based on neural network architectures
that can trade off bias and variance more beneficially, further highlighting the great
potential of learning with privileged time series. We witness a variance reduction
when modelling intermediate steps of the sequences also here and make large im-
provements in prediction accuracy compared to classical learning in small sample
settings.

4.4 Latent variable recovery

Under the assumptions made in Theorem 1, it is sufficient to identify the represen-
tation function ® up to a linear transform B to have provable gains from privileged
information over a classical learner. This poses the question whether the repre-
sentation learning algorithms of Section 3.4 find such a representation, whether
privileged information is helpful in doing so and how this relates to their predictive
performance. Moreover, representation learning is not only motivated by discov-
ering representations that are useful for subsequent tasks such as making accurate
predictions of the outcome but often it is also desired to recover the distinct causal
signals that underlie the observed data. Nonlinear independent component analy-
sis (nonlinear ICA) [42], which has also been applied to time series via contrastive
learning, is a perfect example of this. This motivation paired with the knowledge
that the latent variables Z; are accessible for synthetic data sets inspired us to assess
to what extent a representation d that is linearly close to the true representation
has been found.

As a proxy for the existence of such a linear transform, we are interested in the

mean correlation coeflicients as produced by Canonical Correlation Analysis (CCA)
[43]. Similar to principal component analysis (PCA) [44], CCA is a dimensional-
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Figure 4.6: Mean R? and SVVCA coefficient over 25 training runs for the represen-
tation learning algorithms applied to Clocks-LGS with (7' = 5,¢ = 1) on the left
and (T = 5,q = 2) on the right. Faded markers show individual runs, solids markers
represent averages over training runs for fixed sample size m. The annotations refer
to the sample size of corresponding means.

ity reduction technique. Instead of retaining as much variance as possible with a
given number of orthogonal components, CCA finds maximally correlated directions
between two sets of data that can be of different dimensionality. Given design matri-
ces of true representations Z, and estimates of it 7., CCA sets out to find matrices
U c R4V € R¥4 such that the correlation

pi = Corr((ZuU) ), (ZaV) o)) 42

for each direction j is maximized, where all directions are orthogonal to each other.
One can then compute the correlation coefficients for all j € {1,2,...,d}. We
compute the mean p of the correlation coefficients over directions and time steps
t, meaning p is equal to one when all T estimated representations can be perfectly
aligned with the true representations by CCA. In turn one gets p = 0 when the
representations are uncorrelated. As the latent states of neural networks contain
noisy dimensions that result in erroneously high correlation coefficients when using
CCA [45], we report the mean coefficients of Singular Vector Canonical Correlation
Analysis (SVCCA) as presented by Raghu et al. [46]. This method first uses PCA
[44] to remove noisy dimensions before applying CCA to the remaining components.

In Figure 4.6 we illustrate the mean SVCCA coefficients together with the prediction
performance of the representation learners as measured by R2. Higher is better in
both metrics. We display the results of training runs for multiple sample sizes and
repeat each training run 25 times for random data sets of the same size. On the left
panel of Figure 4.6 the data generating process is configured for a one dimensional
outcome ¢ = 1, whereas the outcome is two dimensional on the right ¢ = 2. The
privileged learners GRL and CRL clearly do not only predict the outcome more
accurately than the classic representation learner but also produce higher SVCCA
coefficients when comparing the three for a fixed sample size. The difference is par-
ticularly large on the left panel of Figure 4.6 where the privileged learners need to
recover two-dimensional latent variables to learn the dynamics accurately while only
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the different representation learning algorithms applied to the Square-Sign task
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Figure 4.8: Visualizing the representations learned by Classic Rep. and CRL after
applying SVCCA. The recovery target is shown on the left. Both estimators are
best in class and were trained on 2500 samples.

a single latent dimension is useful in predicting the outcome. Similar observations
can be made for the more simple problem of Square-Sign in Figure 4.7, where
one can witness a strong trend of GRL and CRL outperforming the classical learner
in terms of both metrics. Analyzing the results of SRL we note that it recovers
the latent variables remarkably well when the latent dimensionality is equal to the
outcome dimensionality ¢ = d = 2 as seen on the right side of Figure 4.6.

To verify our findings with an example, we demonstrate the algorithm’s capability
to recover the latent variables using a visual example. To do so we visualize the
representations learned by Classic Rep. and CRL on Clocks-LGS with a single
outcome component ¢ = 1 in Figure 4.8. Making use of the fact that we can access
the true observation generating process ¥ we construct a grid of 150 x 150 points
on a square around the origin in the latent space Z C R?. Every point is assigned
a unique color on this grid as seen on the left of Figure 4.8. For each point z we
compute a clock image as an observation x = W(z) and pass it to the encoder of
a representation learner, producing z = CiD(x) Just like above, we use SVCCA to
reduce the dimensionality of the estimated representations Z and map them back
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to the original latent space Z linearly. At last we plot the resulting representation
with each point retaining its color. In the case of an optimal recovery, i.e. p = 1,
one would see a perfectly colored square as shown for the ground truth on the left.
Analyzing the images, we notice that the representation produced by the classic
representation learner has large gaps and that some colors are placed in the wrong
regions (green in the left bottom corner). In contrast the right picture corresponding
to CRL is much more coherent with the target. Both models displayed here produced
the highest mean SVCCA coefficients for their model type and a sample size of
m = 2500. Concluding, the use of privileged time-series information does not only
increase the sample efficiency of existing algorithms but can also aid the recovery
of latent variables in latent dynamical systems when combined with representation
learning.
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Discussion

A large body of work is dedicated to improving the sample efficiency of learning
algorithms with additional information. Existing analyses of learning using privi-
leged information [2] [11], generalized distillation [3] or multi-view learning [47] [5]
provide asymptotic learning rate improvements [7] or constant factor reduction of
generalization bounds by reducing the size of the hypothesis class [8]. However,
neither of these results claim that a privileged learner is provably preferable to a
classical learner in small-sample settings as has been argued in the Introduction. In
particular we are not aware of a theoretical result tight enough to establish a lower
bound on the risk of a classical learner that is higher than the upper bound for a
privileged learner.

Our problem is related to multi-task representation learning by Maurer et al. [48].
This is easily seen when reviewing the objective functions of GRL (3.16) and CRL
(3.17). However, our problem is different in that only one task is of interest after
learning. In estimation of causal effects, learning from surrogate outcomes [49] has
been proposed to increase sample efficiency. Surrogate variables contain information
about the outcome but are observed independently [50]. Just like privileged infor-
mation surrogates may be viewed as side information to aid the learning process.
However, this work assumes the surrogates might be observed when the outcome is
unavailable. In other words surrogates are meant to compensate missing outcomes.
Theoretical results do not give any guarantees in terms of sample efficiency when
outcomes and surrogates are observed together at all times [51] [52].

Theorem 1 relies on the representation function ® being identified up to a linear
transformation. Nonlinear independent component analysis (ICA) aims to solve
precisely this problem [53], which is disentangling the signals that have made up
the observations using an unknown nonlinear function. It has been shown that non-
stationary time series provide the conditions for identifiability through contrastive
learning [54]. These results make for a potentially interesting connection between
learning using privileged time series and nonlinear ICA. This is emphasized by the
results of Section 4.4 where we demonstrate empirically that privileged time-series
learning improves the recovery of latent variables.

As mentioned earlier, using privileged information that is observed as intermediate
time points of time series has been studied by Hayashi et al. [11] and Karlsson
et. al [10]. While the former uses logistic regression models to solve classification
tasks, their results are not informative about regression tasks and do not provide
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theoretical insights. The authors argue that taking a similar approach using neural
networks might hold promise which has been confirmed empirically in Chapter 4.
Karlsson et al. [10] proved the superiority of privileged learning in terms of sample
efficiency in the case of linear-Gaussian dynamical data generating processes with
linear estimators. Their work is certainly the foundation for what has followed as
part of this project. Not only, did we extend their results to learning with kernels
or feature maps in latent dynamical systems but we also demonstrated that the
stepwise estimation approach of LuPTS is equivalent to classical learning in the
underdetermined regime. We generalized their framework and can now argue about
the benefits of privileged learners with much more general assumptions about the
data generating process, however there might be cases when the assumption of a
latent linear-Gaussian system is still too strong of a restriction, although we have
not seen clear evidence of this in any of the prediction tasks considered.

There are a number of open questions that make for promising directions for future
research in the field covered by this thesis. First of all, it would be desirable to make
fewer structural assumptions about the data generating process and prove benefits
of privileged time-series learners also then. One could imagine that a result similar
to Theorem 1 could hold when the causal graph of the DGP is not a chain of linear
transitions in the latent space but a directed acyclic graph with linear dependencies
instead. Further, it is an open question whether privileged time series information is
provably useful when the observation generating function is not injective, meaning
one cannot hope to fully recover the true latent states. As generalized LuPTS
amplifies bias and reduces variance compared to classical learning, it remains to
be shown when exactly the variance reduction dominates this trade-off that occurs
when the observation generating function is not known up to a linear transform like
assumed by Theorem 1. Closely related to this question, we highlight that although
we have never seen an example where the use of privileged information has resulted
in increased variance, the variance reduction is not guaranteed by Theorem 1 in the
case where the true representation function has not been recovered up to a linear
transform. Proving that generalized LuPTS leads to a variance reduction even then
would be an important milestone of future work. We showed that generalized LuPTS
offers no advantages over classical learning when its kernel matrices are invertible as
stated in Proposition 1. We avoided this condition by using random feature methods
generating fewer features than samples but there might be other approaches worth
investigating. Moreover, a regularized variant of the generalized LuPTS algorithm
and corresponding theory would be desirable, as this could provide a privileged
learning variant of kernel Ridge regression. We are optimistic that the utility of this
work will inspire future research in these different directions so that the limitations
mentioned will be overcome in order to provide a wide range of efficient learning
algorithms that utilize privileged time-series information.
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Summary

The main goal considered by this project is to improve the sample efficiency of ma-
chine learning algorithms by incorporating privileged time-series information into
the learning process. In particular, we set out to do this for the case where the out-
come is likely to be a nonlinear function of the input. We approach this challenge
by adapting the linear LuPTS algorithm of Karlsson et al. [10] to nonlinear settings
through fixed representation functions or reproducing kernels which gives rise to the
generalized LuPTS algorithm as introduced in Chapter 3.

We extend the existing framework of learning using privileged time series to latent
dynamical systems and prove that privileged learning is preferable to classical learn-
ing when the function connecting latent variables and observations is known up to
a linear transform. In doing so we demonstrate that generalized LuPTS undergoes
a phase transition around the point where the number of samples is equal to the
number of features, after which the gains from privileged information vanish in the
underdetermined regime.

For the case when representation functions are unknown we combine generalized
LuPTS with random feature methods such as random Fourier features [32] or ran-
dom ReLU features [33] and show that this can be turned into a consistent learning
algorithm. We empirically demonstrate a variance reduction through the use of
privileged information using these methods despite the fact that this is not always
guaranteed by existing theory. It is pointed out that generalized LuPTS with ran-
dom features makes more accurate predictions than classical learning in settings
where linear LuPTS fails dramatically due to high bias. However, we also show
that combining privileged time series learning with random features might still pro-
duce large bias in small sample settings. As a remedy, we propose representation
learning algorithms using privileged information to trade off bias and variance more
efficiently.

We verify our theoretical findings for generalized LuPTS empirically on two synthetic
and three real world data sets. We analyze the bias and variance characteristics for
all algorithms and witness a reduction in variance for all privileged learners when
comparing to the classical alternative. For the representation learning algorithms
the empirical results show even greater performance compared to generalized LuPTS
when using privileged information. Analyzing the ability of these models to recover
the latent variables of latent dynamical systems, we see advantages of using privi-
leged information also there.

47



6. Summary

We discuss how our work relates to existing results on similar problems and point
out that we are not aware of other results that establish a clear preference for priv-
ileged learners on small sample settings with nonlinear estimation. At last, exciting
directions for future research based on the findings of this project are identified,
as the benefits of learning with privileged information will hopefully prove to be
valuable in real-world applications with small sample sizes, in the near future.
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Appendix

A.1 Proof of Theorem 1

Our proof requires an additional technical assumption: that the matrix of true latent
states Z; = [®(214), ..., P(24)] T, for all ¢, for a random data set D has independent
columns with probability 1. This implies that rank(Z;) = d and m > d. We
consider this a minor restriction since it would only be violated if either a) two or
more components of Z; were perfectly correlated—in this case, a smaller system
with same distributions over observations could always be constructed—or b) if we
observe fewer samples than necesary to determine the system (m < d). Note that
this does not require that the dimension d of the estimated representation P is
smaller than m. We begin by proving that both classical and LuPTS estimators are
invariant to a particular form of linear transformation of the representation P.

Lemma 1. Assume we have a latent linear Gaussian system as desribed in Defi-
nition 3 such that for a data set D of m samples, the matriz of true latent states
Z; = [D(X14);..; D(Xont)] has linearly independent columns with probability 1. Let
AF be the LuPTS algorithm using the system’s true map ®(-) with ®(¥V(z2)) =
2 Vze Z. Let mfp‘i’ be the same algorithm using a different map ®(-). We assume
that 3B : ®(x) = BO(z)Va € X. Analogously, we denote the classical learners ,fo)

and 2. If B € R¥™? has linearly independent columns we have

Proof. Let Z; € R™“ be made up of the rows Zy; ) = ®(Xy(;,)) when X; € R™* is
the design matrix belonging to data set D. In the same fashion we define 7, € Rm>d
using the map d instead. By assumption, Z; and B € R4 have independent
columns such that BfB = I. These assumptions are used for matrix identities
involving the Moore-Penrose inverse below. We compute the prediction on a new
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test point x for the classical learner:

A

W2 (@) = (27 20)2]Y) ()

71

(2]2:) ZTY>T BIBd()

— 0¥ (x)

C

The arguments for the privileged learners are analogous:

A A A A A

)
B (o) = [(ZI 22 2 (2]22)1 20 2 .. <Z;ZT>*Z;Y] b()

[(BT)T(ZIZI)TBTBZIZQBT(BT)T(ZQZQ)TBTBZJZ?,BT
T
. (BT)T(Z;ZT)TBTBZ}Y] Bd(x)

N
Z)VZ] Zy( ZTZQ)TZTZ;),(ZTZT)TZTY] B'B®(x)

I
D‘> "

O

Proof of Theorem 1. We consider the generalized LuPTS estimator Bg’ (+) treat-
ing different cases for the number of samples m and latent state dimension d
in turn. By the added technical assumption, that the true latent state Z; =
[®(214), ..., P(xm,)]" has rank d for all ¢ with probability 1, and the assumption
that @ is linearly Close to ®, by a matrix B € R4 of yank d such that 7, =7,B7,
we get that rank(Z;) = d for all t. This also implies d < d.

(i) m = d: In this case, the Gram matrix K, = Z,Z] has full rank and thus is
invertible for all t. By Proposition 1, LuPTS coincides with the classical learner.

Hence, E; «, [Varp (he(X1) | he)] = 0 and R(#%) = R().

(ii) m < d: In this case, there does not exists a linearly close, as defined above,
representation ® to ® since the rank of Z;, must be smaller than d. This contradicts
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that rank(zt) = d. Independently, if the conditions of Proposition 1 hold, the same
equivalence holds as in the case m = d.

(iii) m > d: In this case, the kernel Gram matrix K, = Z,Z; has rank d < m and
is never invertible.

Three sub-cases remain: a) When d = d, the matrix B is invertible and square,
the covariance matrix f)t = ZtT Zt is invertible for all ¢ and our estimator coincides
with linear LuPTS [10] in the space implied by ®. To see this, note that Lemma 1
implies that Bg’() makes the same predictions as a different generalized LuPTS
estimator ﬁf() using the true map ® when the two representation functions are
related through B, as defined in the Theorem statement. Consequently, we may
analyze the latter estimator instead of the first. It uses the parameter

(Z1Z7)'Z1Y .

Ay B

T-1
b, = { 11 (z/z.,)'z] Z, .,

t=1

We know by assumption that the covariance matrices ¥y = (Z;Z;) € R¥? have
full rank for all ¢. This implies that the Moore-Penrose pseudoinverse (-)" may be
replaced by the regular matrix inverse (-)~! in the expression above, yielding

ép —

T-1
[ (Z07)7'2 2.1 | (Z]20)'2]Y
t=1 <

A, B

which is equivalent to the LuPTS estimator of [10] used on a linear-Gaussian system
in the space Z rather than in X'. In this case, Theorem 1 from Karlsson et al.[10]
yields the desired result. b) If d > d, 3 is not invertible but, due to Lemma 1,
we can instead study a representation which is an appropriate linear transform
B € R™4 away from Z, and apply the result of Karlsson et al.[10] as described for
the case d = d. Note that in this case B is non-square but has linearly independent
columns as required. ¢) If d < d, the assumed matrix B cannot exist with the stated

conditions (the assumptions of Theorem 1 are not satisfied).
O

A.2 Universality of random features for LuPTS

A learning algorithm o7 is said to be universally consistent if, for any continuous
function h, the output of & converges in probability to h. That is, for a random
dataset D,, of m i.i.d. samples drawn from a distribution p, and any ¢ > 0,

Jim Pr{[[«(Dy) — hllr2) > €] =0

Sun et al. [33] prove that (norm-bounded) linear regression applied to random ReL.U
features (RRF) is universally consistent. Specifically, the estimator

. N . 1m L
hrrr(z) = GTq)g{’f{F(x) with 6 = argmin — Z(GT(ID}*{’I%F(@) — yi)2
o:l013<R> T =

ITT
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is universally consistent for univariate continuous functions of x. We can apply
the same result for LuPTS by considering each parameter estimate of the latent
dynamical system given ®, with norms restricted by R,

R B LA - .
[Ad].; = aﬁmlb{} p— S (@ Phip(wis) — Phip(wig1);)? for j € [d],t € [T —1]
a:l|la §< 2 =1
(A.1)
. R LA
B = ?ﬁlgngl o S (0T OhRe (i) — i) (A.2)
: 5< 2 i=1

Let Hgreru denote the set of linear functions applied to d random ReLU features,
with uniform random projection coefficients w; ~ U(S?), j =1, ...,d.

Hrervd = {h X = R h(z) = Zd:aja(w;[x; 1])} )

Corollary 1 (Follows from Proposition 5 in [33]). Let data be produced by latent-
dynamical system just as described in Definition 3 with noiseless transitions and
outcomes, Uy =0 fort =2,....T, and Uy = 0. Define g;(z;) = V(A ®(z;)) = 1441
and assume that for any fired RRF representation <i>d~, each component 7 =1, ..., d of
the transition target satisfies @Dd(gf())(j) € HypoLu g Let Ay be the minimizer of the
single-step transitions as defined in (A.1). Then, for any € > 0 and a large enough
number of random features d and samples m, with probability > 1 — 9,

1A] @ 4(e) = Sylwin)] < e

The result is a special case of Proposition 5 in [33] applied to the transition functions
in our problem. Putting this together for all time-steps, we get the following result.
Proposition 2 (Universal consistency of RRF LuPTS). Assume that U = 0,Uy =
0. By the consistency of RRF regression, we have for a sufficiently large number
of random features d and samples m, that with probability at least 1 — /T, for
estimates (A.1), (A.2)

1BT®(Xr) — V|12 < €

and
Vt=1,.,T—1:|A]®(X,) — ®(Xiy1) |12 < €,

Then, further assume that the largest eigenvalue Amax(A¢) < R for any t and ||| <
R. Then, with probability at least 1 — 6,

[(Ar- Ap 1 B)TB(X,) = V1) < O(TRTe)
Proof. Let || - || = || - [[z2(p)- Then, applying a union bound to each of the T' (e, §)-
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assumptions

(A Ar1B)T0(X0) = Y| = [[(Ar - Apo1B)T0(X) — V|
BT@(XT) + BT(i)(XT) -Y|
X1) = BT0(X7) | + 18T 0(Xr) - Y|
<Ay Api B) T (X)) — BTAT L &(Xpy) + BT (Af_ ®(Xro1) — O(X7))| + €
(Ar_1B) " &(Xp_1)|| + |87 (Af_, ®(X7r-1) — D(X1))|| +e

<Re

< TRTe.
O

Proposition 2 shows that LuPTS with fandom ReL.U features can be turned into
a universally consistent estimator of any (noiseless) continuous function of X; by
adding a norm constraint to each linear parameter.

A.3 Compounding bias

We can describe the compounding bias of the LuPTS estimator due to a biased
representation @, in comparison with the standard OLS estimator, by propagating
the error in @ through the estimates. Assume that

Y = QTCI)(Xl) +e= (Al s AT_16>T(I)(X1) + 6,

A

Then, let Z; = ®(X;) and for an estimate &, assumed for simplicity to have the
same dimension, d = d,

Zt == (i)<Xt) - @(Xt) + Rt

where R; is the residual w.r.t. ®. Let bold-face VariablesA indicate multi-sample
equivalents of all variables. Further, define ¥, = ZtT Z; and X, = Z;r Z;.
Fitting 6 to ® using the classical learner (OLS) yields an estimate

0, =372 Y
Now, define Q, = R/ Z, + Z] R, and we have
éc = (21 —|— Ql)fl(Zl + Rl)TY
= (S H+HANZ +R)TY
=05+ (AZ] +37'R))Y
where A; = —Eflﬁl(El +0)7 9} is the OLS estimate of 8 for the true ® and the
second line follows from the Woodbury matrix identity. The norm of A; is related

to the condition number of ;. The expectation of the first term is #, and the
expectation of the remaining terms is the bias.
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Now, we can do the same thing for the privileged estimator. Let’s start with 7" = 2.

0, =572 2,57 2] Y
= (ST FAN(Z +R) T (Zo +Ry) (5 +A)(Ze +Ry)TY
- é + A (2R + AZ))Y + (ST'Z Ry + 7R Zy + A 2] Z,)3

Thus, the difference in bias between the two estimators is

0. —6,] =E[0; — ;]

+E[(AZ] +ST'R)Y — A(AZ) +55'R))Y
- (EIIZIR2 + Eflszz + AIZIZ2)B]

More generally, we can express this difference recursively as below.

Proposition 3. Let 9 = A - ATﬂ be a privileged estimator using a linearly biased
representation &), and let A;“ be the same estimator using an unbiased representation
®*. Then, the bias of ép is

A

E[6, — 0] = E[0, — 0] = E[Exf" + (A1 --- Ar)(5 - B7)]

where E; is the compounded error in transition dynamics, computed recursively as
follows

A A A A A A A A A

By = (A A) = (A7 A]) = B AT + (A A)(Ag = A7)

with Ey = 0. In the worst case, the bias of ép grows exponentially with T'.

A.4 Experiment setup & data processing

In the following we give a detailed description of the experimental setup used to
obtain the results presented in Chapter 4 as well as the additional results that are
shown in Appendix A.6. For a given data set, we select a combination of training
set sizes and sequence length. For each unique combination of these parameters
the models of interest are trained repeatedly with different random sampling. For
each repetition the data is split into a train and a test set randomly before hyperpa-
rameter tuning and model training are performed. At last each model’s predictions
on the test set are scored by computing the coefficient of determination R?. On
synthetic data the test set contains 1000 samples. In the case of real-world data,
where samples are limited, we test on 20% of all available data.

The preprocessing used for real-world data and the generation procedure of synthetic
data is unique to each data set. We refer to the data set specific subsections for
detailed descriptions of how each data set is processed. During the experiments
each model uses standardized data for training and inference. To perform the data
rescaling we use the StandardScaler implementation that is part of scikit-learn [55].
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Hyperparameter tuning. The tuning of hyperparameters is carried out for each
repetition and is implemented using random search and five-fold cross-validation.
Each hyperparameter is sampled from a fixed interval of possible values. An overview
of the ranges of different hyperparameters determined through random-search is pro-
vided in Table A.1. For the experiments with variants of generalized LuPTS we sam-
ple ten sets of hyperparameters before retraining on all training data using the best
set of parameters. For the representation learners we merely sample five values for \.

Parameter Description Used in Algorithm Value Range
NRr number of random features all random feature methods [0.05m, 0.8m)]
YRRF bandwith parameter Random ReLU methods [0.01, 10]
YRFF bandwith parameter Random Fourier methods [0.001,0.1]
A loss function parameter GRL & CRL 0,1]

Table A.1: Overview of all hyperparameter determined by hyperparameter tuning.
m denotes the number of samples, meaning that nzp is chosen from different ranges
depending on the size of the training set.

Neural network training. The training of neural networks involves many choices
and hyperparameters. We choose PyTorch’s implementation [56] of the Adam opti-
mizer [57] to train the representation learning models. If not specified otherwise the
results shown in this project are obtained using a learning rate of 0.0001, a batch
size of 30, leaky ReLU activations and a maximum of 1500 training epochs. In the
case of neural network models, the sample sizes reported as part of the experiments
denote the combined size of the training and validation set, where the validation set
contains 20% of those samples. We use early stopping during the training process
by keeping track of the validation loss. If a model does not improve the validation
loss over a waiting period of 200 epochs we stop training early and set the network
parameters to the values that obtained the lowest validation loss up until that point.
In order to make sure that are results are not dependent on the specific choice of
the parameters just described, we performed additional experiments. We tested dif-
ferent sets of training parameters to make sure our results are robust to changes in
these fixed parameters.

Generalized distillation. In order to compare our algorithms to the alternative
of using generalized distillation for privileged time series as presented by [11], we
implemented a model that i) produces hypotheses of the same class as our other
algorithms and ii) that adopts the learning paradigm of a student model incorporat-
ing soft targets produced by a teacher model into its loss function. For tabular data
our teacher model is a multi-layer-perceptron (MLP) with 7" k input neurons such
that all X; are used as input. It makes use of five hidden layers, each consisting of
100 neurons. In the case of the image data generated by Clocks-LGS, the teacher
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uses an implementation of LeNet-5 on all variables X; (while sharing the encoder
parameters) before concatenating the 25-dimensional output of this encoder. This
combined representation is then processed by an MLP with a single hidden layer
with 25 neurons. The loss function used for the student model producing the esti-
mate hg is architecturally identical to the classic representation learner used in all
experiments. When training the student model the mean squared error on the data
and the error corresponding to the soft targets of the teacher model are combined
via a hyperparameter A:

1 2 . 1 - I
Lap = A= |lhe(xi) = yill3 + (1 = X)=>_ [he(x:) = hicacher(2:)]]3
m;3 m;3

The hyperparameter is determined via hyperparameter tuning in all repetitions as
described for other hyperparameters in this section. All other training procedures
follow the same logic as described above.

Resources. For the training of the representation learning algorithms we use a
cluster of graphics processing units (GPUs) in order to reach the number of experi-
ment repetitions required for our work. A single experiment like shown in Figure 4.4c
takes several hours on 100 NVIDIA Tesla T4 GPUs. While the random feature meth-
ods do not require GPU training, they still require hyperparameter tuning which is
why we compute results such as presented in Figure 4.3 on many CPU cores in par-
allel. While the experiments on neural networks cannot reasonably be reproduced
on a single desktop machine, this is still possible within a few days for the random
feature methods.

A.5 Data set preprocessing

A.5.1 Alzheimer progression

To test our algorithms on the task of predicting the progression of Alzheimer’s dis-
ease (AD) we use an anonymized data set obtained through the Alzheimer’s Disease
Neuroimaging Initiative (ADNTI) [39] under the LONI Research License. The initia-
tive is large multi-site research study on the brains of over 2000 AD patients which
collects many features such as genetic, imaging and biospecimen biomarkers. The
data consists of measurements taken every 3 months with some observations missing.
The outcome of interest in our experiments is the Mini Mental State Experiment
(MMSE) score 48 months after the first measurement[38]. Privileged information
are the measurements taken between those time points, at 12, 24 and 36 months
into the program.

Data processing. The processing procedure used in this project is borrowed di-
rectly from the work of [10]. There is a large amount of missing information in
the ADNI data set. The missingness varies with the time of when measurements
were taken. Further some subjects were not present at some of the follow-up ex-
aminations. To deal with the missingness patients without an observation for the
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final follow up (the outcome Y') are excluded from our experiments. Further, we
also require that patients are present at all intermediate time steps (12, 24 and 36
months after the first measurement) which we use as privileged information. We
one-hot encode categorical features and exclude features for which more than 70%
of the observations are missing. To deal with the remaining missing values, mean
imputation is used. Due to the filtering that we apply as a result of the missing
data we only obtain 502 suitable sequences that we can use for our experiments.

A.5.2 Traffic data

The Traffic data set [40] obtained through the UCI machine learning repository
[58] contains hourly measurements of the traffic volume as well as weather features
and holiday information. The raw data contains 48.204 records. An overview of all
available features is given in Table A.2.

Feature Type Description

Date Time Timestamp date and time (CST)

Holiday String name of holiday if applicable

Weather Description String brief free text description of the weather
Weather Main Categorial  contains categories like clear, clouds, or rain
Rain_ 1h Numerical rain in ﬁ

Snow 1h Numerical ~ snow in ﬁn 5

Temp Numerical  temperature in Kelvin

Traffic Volume Numerical  hourly reported westbound traffic volume

Table A.2: Features available in the Traffic data set.

Data processing. We noticed extreme outliers in the data set as well as implau-
sible numerical values for the temperature and rain features. Further, records for
some of the hours of the timeframe (2012 - 2018) covered by this data set are miss-
ing. To deal with the extreme outliers we calculate the mean and standard deviation
of each feature and remove records which contain values that are further than six
standard deviations from the mean of a particular feature. We also remove a fea-
ture entirely if there is no variation left after this filtering. This is the case for the
snowfall feature as snow is very rare in Minneapolis. From the date and time of
each record we calculate the weekday which we add as a one-hot encoded feature
and also represent the hour of the day h € {0,1,...23} as two separate periodic
features given by

2w - h 2w - h

o1 ) e

This ensures that a timestamp just before midnight produces similar features com-
pared to just after midnight. We one-hot encode the holiday information, making
no difference between different types of holidays, and make this feature persist over
a full calendar day. In the original data set the holiday information is only specified
for the first hour of the day. The column Weather Main contains some weather

)| . (A.3)

tperiodic - Sin(
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conditions that are very rare, such as smoke and squall. As a consequence we group
the different conditions before encoding them as binary variables. In particular we
make drizzle, rain and squall one single feature while also grouping together fog,
haze, mist and smoke as they all affect visibility.

time series selection. After this preprocessing that leaves only numerical values
and one-hot encoded categorical values we group the data together as time series
used for the experiments. In order to do so we specify a desired sequence length
T + 1 and a sequence step size in hours. With this information we iterate through
the data set assembling time series with i) no values missing ii) the correct length
and step size and iii) at least a seven hour gap between each pair of sequences. The
third condition is introduced to make sure one does not end up with very similar
cases (for short sequences in particular) in training and test set.

A.5.3 Square-Sign

The Square-Sign data set serves as a test environment for learning from privileged
time series information where one can assure the conditions described by Definition 3
to hold. In particular this means creating a linear-Gaussian system which remains
unobserved and combining it with an observation generating function ¢ : Z2 — X.

Latent linear-Gaussian system. The first component that makes up the gen-
eration process for Square-Sign (and Clocks-LGS) is the linear-Gaussian system
which is latent, just as depicted on the right side of Figure 3.1 with Z, € R%. The
first step in the data creation process is sampling each of the d components of Z;
from N(0,5). Then the subsequent latent variables Z;,; are computed as

Zig=A Zi+ e, e e RY ¢, N(0,1) .
For the outcome we use the same form but with different dimensionality:
Y =8"Z; + €y, €y € RY

Off-diagonal elements of the transition matrices A, € R%? are sampled from a
normal distribution A(0,0.2) while the diagonal elements are set to one. In a
second step we compute the spectral radius of the randomly created matrices A;
via eigenvalue decomposition, obtaining the components UAU . We then set the
spectral radius to a predefined value \A,,,. = 1.3 and reassemble the matrix as

A, U/\Z\WCAUT .

The coefficients of [ are drawn from the same normal distribution as the ones of A;
but undergo no further changes.

Observation generating function. As the dimensionality d of the latent space
Z is not fixed we use an observation generating function that is not restricted to
a specific value of d. For each element in Z; € Z = R? we create two elements
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in X; € X = R* by denoting its sign separately from its square. This gives the
following nonlinear observation generating function:

Xy =9(Zy) = [Z(zm), sgn(Zw1))s - - Z(2t7d), sgn(Z(tyd))]T

A.5.4 Clocks-LGS

This data set serves the purpose of testing our algorithms on a different modality
with high dimensional data. In particular the idea was to use image data as this is a
domain where neural networks have been very successful. For this reason we combine
a latent dynamical system with an image generation process which we explain in
detail in this section.

Latent linear-Gaussian system. We use exactly the same setup as we do for
the Square-Sign latent dynamical system as described in Section A.5.3. The only
difference here is the dimensionality of the latent variables, transition matrices and
the outcome. For Clocks-LGS we generally have d = 2 and ¢ € {1, 2}.

Image generation. The second part of Clocks-LGS is creating images from two
dimensional latent vectors Z; = [Zt(l), t(z)]T. The goal was to keep it the process
simple while using small black and white images of 28x28 pixels. In addition we
wanted each image to have no ambiguity with respect to the latent state it represents.
We represent the first component by a clock hand mounted at the image center. One
can think of Zt(l) as the angle in radian, meaning the hand points straight up for
Zt(l) =0or Zt(l) = 27 and straight down for Zt(l) = 7. To visualize a full rotation
we increase the size of the cirle around the image center in discrete steps for each
mutliple of 27. For negative values the circle is empty (black) while it is filled (white)
for positive values. For the second component we make use of the same logic but
instead of a clock hand, we only use a circle that orbits the image center. The two
hands cannot obscure each other as the orbiting cirle uses a larger radius.

A.5.5 Air quality

Due to health concerns the air quality in Chinese cities has become an important
topic. The PMj 5 data set contains hourly meteorologic information and the con-
centration of small particles (PMy5) for the cities Beijing, Shanghai, Guangzhou,
Chengdu and Shenyang [59]. The individual features available for all cities are listed
in Table A.3. In addition to the features listed, the data includes the date and time
of each record. Just like in the preprocessing of Traffic we compute a periodic time
feature using expression A.3 to represent the time of day of each record. For each
numerical feature we calculate the mean and standard deviation and remove rows
with values that are more extreme than six standard deviations from the mean. We
also remove rows with missing categorical features, which are then represented as
one-hot vectors. Apart from differences in the preprocessing we consider the same
prediction task as [10] which is predicting the future particle concentration for a
fixed time horizon given current observations.
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Feature Type Description

season Numerical  season (1 to 4) of the data in this row
PM Numerical ~ PM, 5 particle concentration in jug/m?
DEWP Numerical  dew point in °C

TEMP Numerical  air temperature in °C

HUMI Numerical — humidity in %

PRES Numerical  atmospheric pressure in hPa

cbwd Categorical combined wind direction in {N,W,S.E, NW, SW, NE, SE}
Iws Numerical — cumulated wind speed in m/s
precipitation Numerical  hourly precipitation in mm

Iprec Numerical  cumulated precipitation in mm

Table A.3: Features available as part of the PM, 5 data set on the air quality of
five large Chinese cities.

A.6 Additional experiment results

In the course of this section we present a larger scope of our experimental results.
We demonstrate the predictive accuracy of the algorithms introduced in Chapter 3
in terms of the mean coefficient of determination R? over different settings on five
data sets. The variation of the results over repetitions is represented by the shaded
areas in the visualizations, which denotes one standard deviation above and below
the mean value.

A.6.1 Two regimes of generalized LuPTS

As seen in Figure 3.3 and demonstrated by Proposition 1, generalized LuPTS be-
comes equivalent to the corresponding classical learner when the number of features
dis larger than the number of samples m. In the following we provide the experiment
details that led to Figure 3.3.

In order to evaluate the dependency on the number of features we used linear LuPTS
and OLS on a synthetically generated linear-Gaussian system as displayed on the
left of Figure 3.1. We use the same setup as for the latent dynamics in Square-
Sign but without a nonlinear observation generating function. For each number
of features k = d = d we sample 50 such systems with different dynamics, each
producing a training and test set with fixed sample size m = 100 and test set size of
1000 samples. The systems are all configured with 7' = 3 and ¢ = 10. We train and
score both estimators on all of the data generating systems before computing the
mean coefficient of determination over all systems with the same number of features.
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A.6.2 Alzheimer progression

OLS LuPTS (Linear) OLS ReLU RF LuPTS ReLU RF OLS Fourier RF LuPTS Fourier RF
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(a) Generalized LuPTS
on the reduced setting,
T =2.

(b) Representation
learners and generalized
distillation on the re-

(c) Representation learn-
ers and generalized distil-
lation on the full setting,

duced setting, T' = 2. T =4.

Figure A.1: Generalized LuPTS and the representation learning algorithms tested
in terms of their predictive accuracy on different settings of the ADNI prediction
task. Each experiments are based on 25 repetitions while the random feature ex-
periment consists of 60 repetitions.

A.6.3 Clocks LGS
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(b) Sequences of length
four, two privileged time
points, T = 3.

(a) Sequences of length
three, one privileged time
point, T" = 2.

Figure A.2: Prediction accuracy of the representation learning algorithms and
generalized distillation on Clocks-LGS with a two dimensional output and varying
sequence lengths. Each experiment is based on 25 repetitions.
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A.6.4 Square-Sign
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Figure A.3: Predictive accuracy (R?) of the different variants of generalized LuPTS
applied to the prediction task offered by Square-Sign. The DGP was configured
with different sequence lengths and the experiments represent 60 repetitions.
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Figure A.4: Predictive accuracy of the different representation learners introduced
in Section 3.4 when applied to the Square-Sign data set for different sequence
lengths. The experiments are based on 25 repetitions.
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A.6.5 Traffic data
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Figure A.5: Prediction accuracy of the different variants of generalized LuPTS on
Traffic with varying sequence lengths. Based on 60 repetitions and four hour steps

in each time series.
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Figure A.6: Prediction accuracy of the different representation learning algorithms
and generalized distillation on Traffic with varying sequence lengths. Based on 25

repetitions and four hour steps in each time series.
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A.6.6 Air quality
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Figure A.7: Predictive accuracy of the different generalized LuPTS variants on
the prediction task posed by the PM, 5 data set. All experiments use time series
of length five (7" = 4), where each time step is two hours long. The results were
computed based on 60 repetitions.
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Figure A.8: Evaluation of the sample efficiency of the represenation learning algo-
rithms of Section 3.4 on the PM, 5 air quality prediction task. All experiments use
time series of length five (T' = 4), where each time step represents two hours. The
results were computed based on 25 repetitions.
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