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processes in financial asset pricing

Pricing European call options

Master’s thesis in Engineering Mathematics and Computational Science

Shervin Shojaee

Department of Mathematical Sciences
Chalmers University of Technology
Gothenburg, Sweden 2018





Master’s thesis 2018

Stochastic volatility enhanced Lévy processes
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Abstract

This report investigates several stochastic processes used for pricing European call

options. The pure jump Lévy processes are the cornerstone in the different models,

here presented. These do not have a Brownian motion component, therefore the

stochastic volatility is instead introduced as a stochastic time-changing effect. In the

paper “Stochastic volatility for Lévy processes”written by Carr, Geman, Madan and

Yor, the types of stochastic time-changed mean corrected exponential Lévy processes

(type 2 models) used are claimed to be martingales without proof. In the book

“Financial modelling with jump processes” written by Cont and Tankov, an attempt

to prove the martingale property of these has been given but is insufficient. In this

report, a proof of the martingale property is made and presented. Additionally, mean

corrected stochastically time-changed exponential Lévy processes (type 1 models)

are introduced as proposed by Carr, Geman, Madan and Yor. The models are

calibrated against OMXS30 European call options and the calibration performances

of the different models are evaluated.

Keywords: Lévy process, Stochastic time-change, European call option, OMXS30,

Martingale, Calibration, Option pricing, Fast fourier transform, FFT.
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2.3.5 Stochastically time-changed Lévy processes . . . . . . . . . . . . 24

3 Methods 27

3.1 Data selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Numerical optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Results 29

4.1 Calibrated models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

ix



CONTENTS CONTENTS

5 Conclusion 33

5.1 Theoretical framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.2 Optimisation and data selection . . . . . . . . . . . . . . . . . . . . . . 34

5.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Bibliography 36

A Appendix 37

A.1 Option quotes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

x



1
Introduction

1.1 Background

The well-known Black and Scholes model, see [3], has for a long time been used in the

pricing of financial option derivatives. Unfortunately, the model’s accuracy has been

questioned and is today known for its drawbacks in financial option pricing. This has

led to a research intensive field of financial mathematics to find more accurate models

describing option prices. Most models rely on finding another suitable stochastic

process to describe the underlying asset of the derivatives. Such improved models

often include Lévy jump processes, see [18]. It has been argued that a price process

need not to have a diffusion component but has to have a jump component, see [9].

Examples of these kinds of processes fulfilling these conditions are the normal-inverse

gaussian (NIG) process and the tempered stable processes, in particular a special

case of the tempered stable process called the CGMY process, as proposed by [6].

Note that these processes are pure Lévy jump processes with infinite activity (for the

CGMY process when 1 < Y < 2 where Y is a model parameter, see Section 2.3.1)

and henceforth are able cover the effects of any diffusion component, see [6].

Even though these pure jump processes model option prices well, there is room

for improvements. In particular, the variation of the option price over different matu-

rities is not well described by pure Lévy jump processes, as explained by [6]. A likely

reason for this is that the volatility of the underlying asset usually is both stochastic

and inhibits clustering properties (sometimes also called volatility persistence).

Stochastically time-changed exponential Lévy processes have been claimed to

possess martingale property, see [5]. However, no proof has been provided for type-2

processes while proving almost martingale property for type-1 processes (see Sec-

tion 2.3.5 for the definition of process types). An insufficient proof was found in [7],

which only considers bounded stopping times. An attempt to a satisfactory proof

of martingale property of stochastically time-changed exponential Lévy processes is

presented in this report. Some of the models calibrated are of the mentioned type,

which essentially possess the martingale property required in arbitrage-free option

1



1.2. PURPOSE 1. Introduction

pricing.

The different processes in this report are calibrated against European call options

with the OMXS30 index as the underlying asset. The price data used can be found

in Appendix A.1.

1.2 Purpose

The work involve finding suitable stochastic volatility enhanced Lévy processes for

option pricing and determining the validity of these. Whether the models are appli-

cable and performs better than the non volatility enhanced versions of the processes,

will be assessed.

1.3 Objective

It will be investigated whether there are pre-existing stochastic volatility enhanced

Lévy process models to better describe option prices. The models will be compared

with their corresponding Lévy process models without the stochastic volatility en-

hancing properties. The calibration results will be presented.

1.4 Scope

All models are calibrated against European call options based on the OMXS30 index

as the underlying asset. The time to maturity will be at least one calendar month

for all options used for the calibration.

1.5 Report structure

The outline of the report is the following

� Chapter 2 - Theory; Presenting Lévy processes, stochastic time-changed Lévy

processes and option pricing. Numerical method for the calculation of option

prices with fast Fourier transform (FFT) is presented.

� Chapter 3 - Methods; Describing the data selection procedure. Presenting the

numerical optimisation procedure used for calibrating the models against the

selected options data.

� Chapter 4 - Result; The resulting calibrated model parameters are presented.

2



1. Introduction 1.5. REPORT STRUCTURE

� Chapter 5 - Conclusion; Discussing important aspects of the models and opti-

misation procedure. Suggestions for future investigations are presented.
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2
Theory

2.1 Lévy processes

In this chapter the basic properties of Lévy processes, required for the construction

of option price models, are presented.

2.1.1 Basic properties

Recall the definition of a Lévy process.

Definition 2.1 (Lévy process, [7]). A stochastic càdlàg1 process (Xt, t ≥ 0) in Rd

is called a Lévy process if it has the following properties

1. X0 = 0 a.s.

2. Independent increments: given n ∈ N and any partition of time 0 ≤ t0 < · · · <
tn, the random variables Xt0 , Xt1 −Xt0 , . . . , Xtn −Xtn−1 are independent.

3. Stationary increments: given t ≥ 0, h > 0, the law of Xt+h − Xt does not

depend on t.

4. Stochastic continuity: ∀ε > 0,∀t ≥ 0, limh→0+ P(|Xt+h −Xt| ≥ ε) = 0.

Remark 2.2. Condition 4 about stochastic continuity should not be confused with

path-wise continuity of the process. The stochastic continuity condition given in the

definition of Lévy processes does not allow the process to suddenly jump at a given

deterministic time. Although, if the time itself is stochastic, jumps are allowed (see

Example 2.5).

Remark 2.3. If condition 3 is removed, the process is defined to be an additive

process. An additive process is sometimes called an inhomogeneous Lévy process.

1Abbreviation for the French sentence; continue à droite, limite à gauche (right continuous with
left limits).
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2.1. LÉVY PROCESSES 2. Theory

Example 2.4. The standard Brownian motion process is a Lévy process. Standard

Brownian motion processes with or without drift are the only path-wise continuous

Lévy processes.

Example 2.5. The Poisson process is a Lévy process. Note that jumps are evident

in the Poisson process by definition. This does not violate the stochastic continuity

property of Lévy processes because the time at which the jumps arrive are stochastic

(i.e. not deterministic).

Definition 2.6 (Infinite divisibility, [1]). The law of a random variable X is said to

be infinite divisible if for all n ∈ N there exists i.i.d. random variables Y
(n)

1 , . . . , Y (n)
n

such that the law of their sum equals the law of X. That is if ∀n ∈ N, X d=
Y

(n)
1 + · · ·+ Y (n)

n .

Remark 2.7. Often, the random variable X itself is called infinite divisible if the

conditions in Definition 2.6 hold.

Example 2.8. Let L = (Lt, t ≥ 0) be a Lévy process. Then Lt is infinite divisible

for each t > 0. Indeed, the random variable Lt can be expressed as a telescope sum

for each n ∈ N by noting that Lt = (Lt − Lt/2) + (Lt/2 − Lt/3) + · · · + (Lt/(n−1) −
Lt/n) + (Lt/n − L0). Thus, the conclusion follows.

It is necessary to be acquainted with the definition of a measure to characterise

the random jumps of Lévy processes to be able to move on to an important theorem.

Definition 2.9 (Lévy measure, [1, 16]). A Borel measure ν defined on Rd is called

a Lévy measure if

ν({0}) = 0 and
∫
Rd

(|x|2 ∧ 1) ν(dx) <∞.

Example 2.10. A Lévy measure of the form ν(dx) = a exp (−bx)x−11(x>0) dx,

where 1(x>0) is the indicator function which equals 1 for x > 0 and 0 otherwise,

describes the intensity of the jumps of size x of a process with marginals following

the Gamma(a, b) distribution.

Theorem 2.11 (Lévy-Klintchine formula, [7]). A random variable X on Rd with

infinite divisible law µX has the characteristic function

E
[
eiu

TX
]

= φX(u) = eψ(u), u ∈ Rd

where

ψ(u) = −1
2u

TAu+ iγTu+
∫
Rd

(eiuTx − 1− iuTx1|x|≤1) ν(dx)

6



2. Theory 2.1. LÉVY PROCESSES

for which A is a symmetric positive d×d matrix, γ ∈ Rd and ν is the Lévy measure

of the law µX .

Proof. The proof can be found in [13].

Remark 2.12. The triplet (γ,A, ν) is called the generating triplet of the law µX . In

the one dimensional case, they are often written as (γ, σ2, ν).

Remark 2.13. In some textbooks, see [7, 1, 16], ψ(u) is referred to as the character-

istic exponent or Lévy exponent.

Corollary 2.14. If X = (Xt, t ≥ 0) is a Lévy process, the generating triplet for

each Xt is given by (tγ, tA, tν) and for the one dimensional case (tγ, tσ2, tν).

Proof. See [13].

Remark 2.15. Given corollary 2.14, it is noted that the characteristic function of

Lt, L = (Lt, t ≥ 0) being a Lévy process, is φLt(u) = etψ(u) where ψ(u) is the

characteristic exponent of L1.

Lemma 2.16. Let X = (Xt, t ≥ 0) be a Lévy process with the characteristic expo-

nent ψ(u). Assume further that the moment generating function for Xt exists for

each t ≥ 0. Then
eXt

E [eXt ] = eXt−tψ(−i)

where eXt−tψ(−i) is a martingale with respect to the natural filtration of X.

Proof. By Remark 2.15 it follows that

E
[
eXt

]
= E

[
ei(−i)Xt

]
= etψ(−i).

Thus,
eXt

E [eXt ] = eXt−tψ(−i).

Now, denote the natural filtration of X up to time t as FXt . Recall the independent

and stationary increment conditions of Lévy processes stated in Definition 2.1. Then

7



2.1. LÉVY PROCESSES 2. Theory

for 0 ≤ s ≤ t,

E
[
eXt−tψ(−i)

∣∣∣ FXs ] = E
[
eXt−Xs+Xs−tψ(−i)

∣∣∣ FXs ]
= eXs−tψ(−i)E

[
eXt−Xs

∣∣∣ FXs ]
= eXs−tψ(−i)E

[
eXt−Xs

]
= eXs−tψ(−i)E

[
eXt−s

]
= eXs−tψ(−i)e(t−s)ψ(−i)

= eXs−sψ(−i).

Conclusion follows.

Remark 2.17. The result given in Lemma 2.16 is a standard result usually given

as exercises in textbooks. The procedure is sometimes called to mean correct the

exponential Lévy process to retrieve a martingale process.

2.1.2 Further extension of Lévy processes and its properties

Before proving the martingale property for stochastically time-changed mean cor-

rected exponential Lévy processes, some important definitions are introduced.

Definition 2.18 (Power set, [10]). Let Ω be a sample space. The power set of Ω is

defined as P(Ω) = {A : A ⊆ Ω}.

Definition 2.19 (σ-field, [10]). Given sample space Ω. The set A ⊆ P(Ω) non-

empty, is called a σ-field given that the followings are satisfied

1. Ω ∈ A.

2. A ∈ A =⇒ Ac ∈ A.

3. An ∈ A, n ≥ 1 =⇒ ⋃∞
n=1 An ∈ A.

Remark 2.20. The intersection of two σ-fields is still a σ-field.

Remark 2.21. The smallest (by intersection) σ-field containing a set A ⊆ P(Ω) is

denoted by σ(A). Given the σ-fields G and F , a shorthand notation for the generated

σ-field of their union is σ(G ∪F) = G ∨F . For efficient typing reasons, the smallest

σ-field for which a process X is defined on is denoted by σ(X) or σ(Xt, t ≥ 0).

A theorem which will come in handy for proving the martingale property of

a stochastically time-changed mean corrected exponential Lévy process is Doob’s

8



2. Theory 2.1. LÉVY PROCESSES

optional stopping theorem2. For it to make any sense, stopping times have to be

defined.

Definition 2.22 (Stopping time, [13]). A random variable τ is called an F -stopping

time whenever {τ ≤ t} ∈ Ft for all t ∈ T where T is some (ordered, ≤) index set.

Its associated σ-field is denoted by Fτ = {A ∈ F : A ∩ {τ ≤ t} ∈ Ft, t ∈ T}.

Remark 2.23. For a càdlàg process Xt on the index set T adapted to Ft, Xτ is Fτ -
measurable for a T -valued optional time τ . Note that T can be either countable or

T = R+, see [13].

Finally, Doob’s optional stopping theorem can be presented.

Theorem 2.24 (Doob’s optional stopping theorem, [1]). Let X = (Xt, t ≥ 0) be

a càdlàg martingale process with respect to the filtration Ft and S and T bounded3

F-stopping times where S ≤ T a.s., then XS and XT are both integrable with

E[XT | FS] = XS a.s.

Proof. This is a well established result and the proof can be found in almost any

textbook about martingales and stochastic processes. The reader can find the proof

in [13, 15].

Fortunately, the boundedness condition of the stopping times can be relaxed.

The property of uniform integrability of a set of random variables is an important

and useful concept which is needed to be able to relax the boundedness condition

of the stopping times in Doob’s optional stopping theorem. The concept of uniform

integrability was found to be a sufficient additional property of an almost surely

convergent sequence of L1 random variables to also be L1 convergent (to the same

limit), see [10].

Definition 2.25 (Uniform integrability, [10]). A set of random variables X is called

uniformly integrable if and only if

∀ε > 0,∃K ≥ 0,∀X ∈ X , E
[
|X|1|X|≥K

]
< ε

where 1|X|≥K is the indicator function.

It could be difficult to verify uniform integrability of a set directly through the

definition, a sufficient condition can therefore come in handy.

2Also called the optional sampling theorem in various textbooks.
3There exists M, N > 0 such that S ≤M and T ≤ N a.s.

9



2.1. LÉVY PROCESSES 2. Theory

Theorem 2.26 (Sufficient condition for uniform integrability, [10]). Let X be a set

of random variables. Further assume supX∈X E[|X|p] <∞ for some p > 1. Then X
is uniformly integrable.

Proof. See [10].

Remark 2.27. Note that there could exist uniformly integrable sets which does not

satisfy the conditions given in Theorem 2.26.

A more general optional stopping theorem can now be presented which includes

conditions on uniform integrability.

Theorem 2.28 (Generalised Doob’s optional stopping theorem, [13]). Let the càdlàg

process X be a submartingale, supermartingale or a martingale with respect to the

right continuous filtration (Ft)t≥0. Further assume σ and τ to be two Ft-stopping

times, where τ is bounded. Then Xτ is integrable and

Xσ∧τ ≤ E[Xτ | Fσ] a.s.,

Xσ∧τ ≥ E[Xτ | Fσ] a.s.

or

Xσ∧τ = E[Xτ | Fσ] a.s.,

respectively. The statements hold for unbounded τ if and only if X is uniformly

integrable.

Proof. The proof for the case when X is a submartingale can be found in [13]. The

proof can easily be extended to include the cases of supermartingales and martin-

gales.

Consider the case when X is a supermartingale. Then −X is a submartingale

and thus

−Xσ∧τ ≤ E[−Xτ | Fσ] a.s. ⇐⇒ Xσ∧τ ≥ E[Xτ | Fσ] a.s.

Now consider the case when X is a martingale. Then it is both a sub- and

supermartingale at the same time. Henceforth,

Xσ∧τ ≤ E[Xτ | Fσ] a.s.

Xσ∧τ ≥ E[Xτ | Fσ] a.s.
=⇒ Xσ∧τ = E[Xτ | Fσ] a.s.

Conclusion follows.

10



2. Theory 2.1. LÉVY PROCESSES

Remark 2.29. If σ ≤ τ a.s. then Xσ∧τ = Xσ a.s.

To continue with the presentation of properties of martingales, some additional

definitions and theorems are needed.

Definition 2.30 (π-system, [10]). Given sample space Ω. The set A ⊆ P(Ω) non-

empty, is called a π-system given that the following is satisfied

1. A,B ∈ A =⇒ A ∩B ∈ A.

Remark 2.31. In words, a π-system is a non-empty set which is closed under finite

intersections.

Definition 2.32 (λ-system, [10]). Given sample space Ω. The set A ⊆ P(Ω) non-

empty, is called a λ-system given that the followings are satisfied

1. Ω ∈ A.

2. A,B ∈ A, B ⊆ A =⇒ A \B ∈ A.

3. An ∈ A, n ≥ 1, A1 ⊆ A2 ⊆ . . . =⇒ ⋃∞
n=1 An ∈ A.

There is also an equivalent definition, given by replacing condition 2 and condition 3

by

2. A ∈ A =⇒ Ac ∈ A.

3. An ∈ A, n ≥ 1, Ai ∩ Aj = ∅, i 6= j =⇒ ⋃∞
n=1 An ∈ A.

Remark 2.33. A λ-system is sometimes also called a Dynkin4 system.

Remark 2.34. In words, a λ-system is a non-empty set containing Ω which is closed

under increasing limits and by difference.

Remark 2.35. The smallest λ-system containing a set A ⊆ P(Ω) is denoted by D(A).

Theorem 2.36 (Monotone class theorem, [12]). Given a sample space Ω. Let C ⊆
P(Ω) be a π-system containing Ω. Then D(C) = σ(C).

Proof. See [12].

Theorem 2.36 is an important result often used in probability theory. It will be

used to prove that a martingale with respect to a filtration Ft is still a martingale

with respect to an enlarged filtration Ft∨G given that G and Ft are independent at

every t ∈ T , T being an (ordered, ≤) index set. Before continuing, the dominated

convergence theorem and a lemma is introduced.

4After the mathematician Eugene Dynkin, 1924-2014.

11



2.1. LÉVY PROCESSES 2. Theory

Theorem 2.37 (Dominated convergence theorem, [10]). Let Xn → X a.s. as

n → ∞ and further suppose |Xn| ≤ Y a.s. for all n where Y is an integrable

random variable. Then

lim
n→∞

E[Xn] = E
[

lim
n→∞

Xn

]
= E[X].

Proof. See [10].

Lemma 2.38. Let X and Y be two random variables on the probability space

(Ω,F , P ), satisfying E[X] = E[Y ]. Then B = {B ∈ F : E[X1B] = E[Y 1B]} is

a λ-system.

Proof. Because E[X] = E[Y ] is satisfied, it is trivial that Ω ∈ B.

Now consider A,B ∈ B and that B ⊆ A then it will be shown that A \ B ∈ B.

Note that A \B = A ∩Bc. It follows that

E[(X − Y )1A∩Bc ] = E[(X − Y )1A1Bc ]

= E[(X − Y )1A(1− 1B)]

= E[(X − Y )(1A − 1A1B)]

= E[(X − Y )(1A − 1A∩B)]

= [By recalling that B ⊆ A]

= E[(X − Y )(1A − 1B)]

= [By recalling that A,B ∈ B]

= 0.

Finally, given a sequence (An)∞n=1 where An ∈ B, ∀n ∈ N and where An ⊆ An+1,∀n ∈
N it is to be shown that

⋃∞
n=1 An ∈ B. Note that

⋃n
i=1 Ai = An ∈ B for all n ∈ N

because Ai ⊆ Ai+1 and Ai ∈ B for all i ∈ N. This implies that

E
[
(X − Y )1⋃n

i=1 Ai

]
= E[(X − Y )1An ] = 0, ∀n ∈ N

so

lim
n→∞

E
[
(X − Y )1⋃n

i=1 Ai

]
= lim

n→∞
E[(X − Y )1An ] = 0.

Further note that 1An → 1⋃∞
i=1 Ai

a.s. as n→∞ which implies that (X − Y )1An →
(X − Y )1⋃∞

i=1 Ai
a.s. as n → ∞. Additionally, it is evident that |(X − Y )1An| ≤

|X−Y | a.s. ∀n ∈ N and that |X−Y | is integrable because X and Y are integrable.

12



2. Theory 2.1. LÉVY PROCESSES

Therefore, it follows by the dominated convergence theorem that

0 = lim
n→∞

E[(X − Y )1An ] = E
[

lim
n→∞

(X − Y )1An

]
= E

[
(X − Y )1⋃∞

n=1 An

]
,

thus
⋃∞
n=1 An ∈ B. Conclusion follows.

Preservation of martingale property with respect to an enlarged filtration by an

independent σ-field can now be proven.

Theorem 2.39. Let Mt be a martingale with respect to the filtration Ft on the

probability space (Ω,A, P ) and let G ⊆ A be a σ-field independent of Ft for all

t ≥ 0. Then Mt is a martingale with respect to the filtration Ft ∨ G.

Proof. Define the set B = {F ∩G : F ∈ Fs, G ∈ G} where t > s, which is evidently

a π-system containing Ω. Note that σ(B) = Fs ∨ G. Because Mt is a martingale

with respect to the filtration Ft it follows that for F ∈ Fs

E[Mt1F ] = E[Ms1F ] ⇐⇒ E[(Mt −Ms)1F ] = 0

and so, for any set in B, represented by F ∩G where F ∈ Fs and G ∈ G, it follows

that

E[(Mt −Ms)1F∩G] = E[(Mt −Ms)1F1G] = E[(Mt −Ms)1F ]E[1G] = 0.

It was shown in Lemma 2.38 that the set of events (call it C) satisfying E[(Mt −
Ms)1C ] = 0 is a λ-system. Because B ⊆ C as shown above, it is also true that

D(B) ⊆ C. By Theorem 2.36 it follows that σ(B) = D(B) and so Fs ∨ G = D(B).
Therefore, it can be concluded that the martingale property is true for Fs ∨ G.

Note that the integrability and measurable property is inherited with respect to the

enlarged filtration because Ft ⊆ Ft ∨ G.

Remark 2.40. The importance of Theorem 2.39 is substantial in several areas. It

comes in handy especially as a part in proof techniques. In particular, it allows for

certain extensions of filtrations such that the extended filtrations inherits some new,

possibly sought for properties, while still preserving the martingale property of a

certain process.

Finally, a theorem can now be presented giving the martingale property of a

composite process if certain conditions are met. The theorem is the central result

in this report. It gives the foundations for the martingale property of the type-2

models described in Section 2.3.5. This is important since the martingale property
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of processes is a necessary property when assuming arbitrage-free markets. More

about this in Section 2.2.

Theorem 2.41 (Martingale property for composite mean corrected exponential

Lévy processes5). Let M = (Mt, t ≥ 0) be a mean corrected exponential Lévy pro-

cess with respect to its natural filtration FMt and v = (vt, t ≥ 0) be an increasing,

path-wise continuous and Fvt -adapted process independent of M and where v0 = 0.

Further assume that moment generating function for vt exists for all t ≥ 0. Then the

composite process Mv = (Mvt , t ≥ 0), with its natural filtration FMv
t , is a martingale

with respect to the filtration Ft = FMv
t ∨ Fvt .

Proof. Fix s < t and define Fu = FMu ∨ σ(vs̃, s̃ ≥ 0), which is the extension of the

natural filtration of M with the sigma field generated from the entire trajectory6 of

the independent process v. It follows immediately that vs and vt are Fu-stopping

times. Additionally, it is noted that vt ∧ r is a bounded Fu-stopping time for all

r ≥ 0. Furthermore, by Theorem 2.39 it is clear that Mu is a martingale with

respect to the filtration Fu. By Theorem 2.24, it follows that the process Mr∧vt is

a martingale with respect to the filtration F r∧vt , where it shall be noted that r is

the independent variable here. Also note that the process M̃ = (Mr∧vt , r ≥ 0) is

adapted to the filtration (F r∧vt)∞r=0. It follows that the process Mr∧vt is uniformly

integrable because for some p > 2 it follows that

E[|Mr∧vt |p/2] = E
[
exp

(
p

2(Xr∧vt − r ∧ vtψX(−i))
)]

= E
[
exp

(
p

2Xr∧vt −
r ∧ vt

2 ψX(−ip)
)

× exp
(
r ∧ vt

2 ψX(−ip)− pr ∧ vt2 ψX(−i)
)]

≤ E [exp (pXr∧vt − r ∧ vtψX(−ip))]1/2

× E [exp (r ∧ vtψX(−ip)− pr ∧ vtψX(−i))]1/2

= E [exp (r ∧ vt(ψX(−ip)− pψX(−i)))]1/2

≤

E [exp (vt(ψX(−ip)− pψX(−i)))]1/2 , ψX(−ip)− pψX(−i)) > 0

1, ψX(−ip)− pψX(−i)) ≤ 0

and by using the fact that the moment generating function for vt exists and by

5Please note that a similar result has been shown in [7] but it is not a sufficient proof for
more general processes v. Furthermore, in [5] the martingale property has been taken for granted
without actually proving it. The theorem provided here is therefore an extension of the theorem
provided by [7] for the case when M is a mean corrected exponential Lévy process and a proof of
the claim made in [5].

6The author of this report would like to credit Peter Tankov for his explanation and hint about
the extension of a filtration in this way.
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recalling Theorem 2.26. Note that E [exp (pXr∧vt − r ∧ vtψX(−ip))] = 1 because

Lr = exp (pXr − rψX(−ip)) is a martingale (which can easily be verified following

the same procedure as done in the proof of Lemma 2.16), and so by Theorem 2.24,

Lr∧vt is a martingale too.

Now by recalling Theorem 2.28, it follows immediately that

E[Mvt | Fvs ] = Mvs a.s.

It therefore follows that

E[Mvt | FMvs
∨ Fvt ] = E[E[Mvt | F vs ] | FMvs

∨ Fvt ] = Mvs a.s.

henceforth,

E[Mvt | Fs] = E[E[Mvt | Fs ∨ Fvt ] | Fs]

= E[E[Mvt | FMvs
∨ Fvt ] | Fs]

= E[Mvs | Fs] = Mvs a.s.

and the conclusion follows.

Remark 2.42. Parts of the proof above has been inspired by [7, pp. 492-493] and

[17, p. 58].

2.2 Option pricing

Moving on to some financial applications, a brief introduction of a cornerstone in

financial mathematics is presented, the first fundamental theorem of asset pricing.

The theorem presents an important result concerning arbitrage-free markets.

Theorem 2.43 (First fundamental theorem of asset pricing, [19]). If a market model

has a risk-neutral probability measure, then it does not admit arbitrage.

Proof. See [19].

The first fundamental theorem of asset pricing has been further generalized by

introducing concepts such as no free lunch with vanishing risk, sigma-martingales

and semi-martingales where also the converse has been shown to be true, see [8].

For pure Lévy processes, the situation of arbitrage-free markets have been studied

extensively, see [7].
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However, practitioners do not always strictly follow the first fundamental theo-

rem of asset pricing. Instead, they rely on the fact that martingales are models of

so called fair games. That is, given the history of outcomes, a winning bet strategy

does not exist, neither for the participant nor the counterpart. This fact is related

to the fundamental theorem of asset pricing, showing that if an equivalent martin-

gale measure exists (risk-neutral measures are equivalent martingale measures for

discounted processes) such that the discounted7 price process of the assets in the

market are martingales, then the market in the physical world is free of arbitrage.

For practitioners, there are two main paths of choice to price an asset.

1. A model is defined (the process describing the underlying asset) on the proba-

bility space (Ω,F , P ). An equivalent risk-neutral measure Q is found to exist.

Then, by fundamental theorem of asset pricing, the market described by the

model on the probability space (Ω,F , P ) is arbitrage-free, in accordance with

observations of real markets. Only one of the equivalent risk-neutral measures

correctly describes the market’s asset prices. There are several ways of choos-

ing the measure that correctly describes the market’s asset prices, see [18, 14].

2. The assets are assumed to be traded fairly, and thus a martingale process is

chosen to describe the underlying asset which is calibrated against real asset

price data. If the model fits the asset prices well enough, the practitioner

use the result for dynamic hedging purposes or to find abnormal prices in the

market which can be exploited to buy or sell underpriced or overpriced assets

to make a profit.

Usually, low volume traded assets have abnormal prices, as they do not reach

price equilibrium fast enough with respect to the speed of changes of the underlying

asset. As such, the market has implicitly been assumed to be frictionless, in the sense

that there is no cost of trading options (no spread in option prices) as well as that

an option can be immediately sold or bought from the market without delay. More

about implicit assumptions made on markets where the first fundamental theorem of

asset pricing hold can be found in [18]. There have also been some recent extensions

of the theorem which allow for small violations of these assumptions.

For well studied processes, the practitioners path of choice described by 1 would

be preferred. Selecting the correct equivalent martingale measure ensures the pos-

sibility to construct a replicating portfolio of financial derivatives, i.e. financial

derivatives can be priced in a risk-neutral manner.

7Assuming a market has at least one riskless asset, such as a very safe bond, the price process
is discounted by the amount that could have been earned by the riskless asset.
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For newer models, the description in 2 has to be relied on. Unfortunately, the

description given by 2 does not necessary imply that financial derivatives are priced

by the means of risk-neutral pricing, i.e. by martingale pricing methods. This is due

to the fact that replicating portfolios describing the derivatives do not necessary exist

for this case. Nevertheless, the practitioner could still assume that the derivatives

are priced in a similar manner as in case 1. If the calibrated model describes the

prices of a wide variety of financial derivatives well, such as European call options

(see Equation 2.2.1), then the practitioner can assume having a clear description

of the prices of the derivatives not included in the dataset used for calibration.

Another argument (perhaps a harsh one to motivate the use of strategy 2) is to

simply assume that the constructed and calibrated martingale model (in the risk-

neutral world) has an equivalent measure describing the market in the physical world

well enough (by means of statistical terms of historical data), but without proving

it. As stochastically time-changed mean corrected exponential Lévy processes are a

relatively new type of models, strategy 2 will be considered. This is also what has

been proposed in [18], see Section 2.3.5.

This report will focus on European call options. These are contracts which give

the holder of the contract an option, but not an obligation, to buy the underlying

asset at a predetermined future date, called the time of maturity T . The option

contract states at what price K, called the strike price, the underlying asset can be

bought for at time T . Denoting the underlying asset’s price process as S(t) at time t,

the pay-off of the contract at time of maturity is (S(T )−K)+ = max (S(T )−K, 0).
Note that if the price of the underlying asset is lower than K, the holder of the

contract will not exercise the option, as it is cheaper to buy the underlying asset

from the stock-market. The writer of the option on the other hand gives away the

option to buy an underlying asset to the holder, henceforth takes a risk of losing an

asset in the future for a lower price. Therefore the writer of the option will demand

a premium, i.e. the price of the option contract itself. A fair price of the option

contract depends on the pay-off of the contract. It can be shown, assuming the first

fundamental theorem of asset pricing holds, that the fair price C of the European

call option at time t in an arbitrage-free market is (assuming the riskless interest

rate and the dividend rate to be constant r and q, respectively)

C(S(t), t, T,K) = e−(r−q)(T−t)EQ[(S(T )−K)+ | Ft] (2.2.1)

where Q is the risk-neutral measure attained by the market, and Ft a filtration of the

market information up to time t. For more detailed explanation of the fundamental

theorem of asset pricing, see [19].
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2.2.1 Numerical method (FFT)

Closed form analytical expressions are always tractable to be able to quickly calculate

option prices. Unfortunately, the option pricing used in Equation 2.2.1 does not

always yield analytical closed form expressions, it depends on which process has

been chosen to model the behaviour of the underlying asset price.

If the characteristic function of the underlying asset’s price process is known, a

Fast Fourier Transform (FFT) method could be used, see [4]. A brief explanation8

of the method follows.

Consider the European call option with strike K = exp(k), maturity T with the

underlying asset’s price process (S(t), t ≥ 0) and denote sT = log(S(T )). Further

denote the risk-neutral density of the random variable sT as qT (s). The characteristic

function of sT (in the risk neutral world) is expressed as

φsT
(u) =

∫ ∞
−∞

exp(ius)qT (s) ds.

The price of the call option C at t = 0 is according to Equation 2.2.1 then expressed

as

CT (k) =
∫ ∞
k

e−(r−q)T (es − ek)qT (s) ds. (2.2.1)

It is argued that CT (k) is not square integrable because CT → S(0) as k → −∞. It

is therefore proposed to modify CT to obtain a square integrable function by defining

cT (k) = eαkCT (k)

for a suitable α > 0. According to [18], choosing α = 0.75 should suffice to make

cT (k) square integrable for a wide collection of processes, among those, the processes

presented in Section 2.3.

Because cT (k) is square integrable, it is better suited for the Fourier transform.

The Fourier transform9 of cT is

F [cT ](v) =
∫ ∞
−∞

eivkcT (k) dk. (2.2.2)

By noting that F [cT ](v) = F [cT ](−v) because cT is real, it follows from the inverse

8Explanation is provided as there are small errors in the original paper. The errors are mainly
the expression of the call price as well as the representation of an approximated integral using
Simpson’s rule.

9Note the sign convention of the Fourier transform being used.
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Fourier transform that

CT (k) = exp (−αk)F−1[F [cT ]](k)

= exp (−αk)
2π

∫ ∞
−∞

e−ivkF [cT ](v) dv

= exp (−αk)
2π

(∫ ∞
0

e−ivkF [cT ](v) dv +
∫ ∞

0
e−ivkF [cT ](v) dv

)

= exp (−αk)
π

Re
(∫ ∞

0
e−ivkF [cT ](v) dv

)
. (2.2.3)

By inserting Equation 2.2.1 into Equation 2.2.2 it follows that

F [cT ](v) =
∫ ∞
−∞

eivk
∫ ∞
k

eαke−(r−q)T (es − ek)qT (s) ds dk

=
∫ ∞
−∞

e−(r−q)T qT (s)
∫ s

−∞
(es+αk − e(1+α)k)eivk dk ds

=
∫ ∞
−∞

e−(r−q)T qT (s)
(
e(α+1+iv)s

α + iv
− e(α+1+iv)s

α + 1 + iv

)
ds

= e−rTφsT
(v − (α + 1)i)

α2 + α− v2 + i(2α + 1)v . (2.2.4)

Henceforth,

CT (k) = exp (−αk)
π

Re
(∫ ∞

0
e−ivk

e−(r−q)TφsT
(v − (α + 1)i)

α2 + α− v2 + i(2α + 1)v dv
)
.

There are several ways to calculate the integral given in Equation 2.2.3. An often

used, good approximation of the integral is given by using Simpson’s rule, or more

precisely a composite Simpson’s rule, see [11]. Following this procedure, the interval

of integration [0, A] is split into an even N number of equal length subintervals with

the discrete points, vj = (j − 1)η for j = 1, . . . , N + 1 where v1 = 0 and vN+1 = A.

Here, η is the distant between two adjacent points vj and vj+1 for j = 1, . . . , N .

Then,

∫ A

0
g(v) dv ≈ η

3

N/2∑
j=1

(g(v2j−1) + 4g(v2j) + g(v2j+1))

= η

3

 N∑
j=1

g(vj)(3 + (−1)j − δj−1) + g(vN+1)


where δj−1 is the Kronecker delta function. By truncating the integral given in

Equation 2.2.3 through approximation of the interval of integration [0,∞] by [0, A]
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and paying attention to

g(v) = exp(−ivk)F [cT ](v)

it follows that

∫ ∞
0

e−ivkF [cT ](v) dv

≈ η

3

 N∑
j=1

e−ivjkF [cT ](vj)(3 + (−1)j − δj−1) + e−ivN+1kF [cT ](vN+1)


where vj = (j − 1)η for j = 1, . . . , N + 1 and where v1 = 0 and vN+1 = A, as stated

earlier. Henceforth,

CT (k) ≈ η exp(−αk)
3π

× Re
 N∑
j=1

e−ivjkF [cT ](vj)(3 + (−1)j − δj−1) + e−ivN+1kF [cT ](vN+1)
 . (2.2.5)

Consider only the sum

s(k) =
N∑
j=1

e−ivjkF [cT ](vj)(3 + (−1)j − δj−1).

By introducing the points ku = −b+ λ(u− 1) for u = 1, . . . , N where λ is the space

between each point and where b = λ(N − 1)/2, a system of sums have the form

s(ku) =
N∑
j=1

e−ivjkuF [cT ](vj)(3 + (−1)j − δj−1)

=
N∑
j=1

e−iηλ(j−1)(u−1)eibvjF [cT ](vj)(3 + (−1)j − δj−1), u = 1, . . . , N. (2.2.6)

Now taking ηλ = 2π/N , the sum will be in a suitable form for the FFT algorithm

to be used to calculate the set of sums (s(k1), . . . ,s(kN)), and in turn, the values of

the set of call prices (CT (k1), . . . , CT (kN)) using Equation 2.2.5.

Shrinking the size of η will increase the spacing size λ, and vice versa. Because

of this, the need for a fine mesh between the points v1, . . . , vN+1 will lead to rougher

mesh for the spacing of k1, . . . , kN . Luckily, in the case of ku representing logarithm

of strike prices, suitable values for λ can be used such that the set of logarithm

strike prices k1, . . . , kN contains the logarithm of strike prices represented by real

options. This while also yielding a sufficient fine mesh with the enforced η value.

The analysis of the numerical precision of the method is out of the scope of this
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report, the recommended values given by [18] will be considered.

This method works well when the time to maturities of the options are not

too short. When the time to maturities are short, the option price tends to the

intrinsic value (the pay-off), henceforth, the Fourier transform will become highly

oscillatory. Highly oscillatory functions are difficult to integrate numerically, see [4].

Nevertheless, options with such short maturities are outside the scope of this report,

thus the FFT method described above is sufficient.

2.3 Stochastic processes

In the following, the processes that will be considered in this report will be presented,

even though there are other candidates for option pricing as well.

2.3.1 The CGMY process

A Lévy process X = (Xt, t ≥ 0) with X1 having the Lévy triplet (γ, σ2, ν) where,

γ = C
(∫ 1

0
(exp(−Mx)− exp(−Gx))x−Y dx

)
,

σ = 0,

ν = C|x|−1−Y (exp(Gx)1(x<0) + exp(−Mx)1(x>0)) dx

with C,G,M > 0 and Y < 2, is called a CGMY process. Note that these restrictions

of the coefficients C,G,M and Y are sufficient to make ν a valid Lévy measure. It

follows that the characteristic exponent is given by

ψ(u) = CΓ(−Y )((M − iu)Y −MY + (G+ iu)Y −GY ).

The process X is a CGMY(C,G,M, Y ) process where Xt has the marginal law

CGMY(tC,G,M, Y ). For more properties of the CGMY process, see [18, 5].

2.3.2 The Meixner process

A Lévy process X = (Xt, t ≥ 0) with X1 having the Lévy triplet (γ, σ2, ν) where,

γ = αδ tan(β/2)− 2δ
∫ ∞

1

sinh(βx/α)
sinh(πx/α) dx,

σ = 0,

ν = δx−1 exp(βx/α) arsinh(πx/α) dx
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with α > 0, −π < β < π and δ > 0, is called a Meixner process. It follows that the

characteristic exponent is given by

ψ(u) = 2δ log(cos(β/2)/ cosh((αu− iβ)/2)).

The processX is a Meixner(α, β, δ) process whereXt has the marginal law Meixner(α, β, tδ).

For more properties of the Meixner process, see [18].

2.3.3 The NIG process

A Lévy process X = (Xt, t ≥ 0) with X1 having the Lévy triplet (γ, σ2, ν) where,

γ = 2δα
π

∫ 1

0
sinh(βx)K1(αx) dx,

σ = 0,

ν = δαπ−1|x|−1 exp(βx)K1(α|x|) dx

with α > 0, −α < β < α and δ > 0 is called a NIG process where the modified

Bessel function of the third kind with index 1, K1(x), is given by

K1(x) =
∫ ∞

0
exp(−x cosh(u)) cosh(u) du, Re(x) > 0.

It follows that the characteristic exponent is given by

ψ(u) = −δ(
√
α2 − (β + iu)2 −

√
α2 − β2).

The process X is a NIG(α, β, δ) process where Xt has the marginal law NIG(α, β, tδ).

For more properties of the NIG process, see [18, 5].

NIG is an abbreviation for Normal Inverse Gaussian.

2.3.4 Chronometers

As discussed in [5], one could implement a stochastic volatility effect to the Lévy

processes by the use of mean-reverting, positive and monotone increasing process

as a time-change. These stochastic time-changing processes are also referred to as

chronometers, see [2]. Chronometers considered in this report are presented below.

For further explanation see [18].
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2.3.4.1 The integrated CIR process

Consider the CIR process y = (yt, t ≥ 0) that solves the stochastic differential

equation (SDE)

dyt = κ(η − yt)dt+ λ
√
ytdWt

where W = (Wt, t ≥ 0) is a standard Brownian motion. Note that y is a non-

negative process when κ, η, λ > 0. The integrated CIR process Y = (Yt, t ≥ 0) is

then defined as

Yt =
∫ t

0
ys ds.

According to [18], the characteristic function of Yt, given y0, is

E[exp(iuYt) | y0] = φ(u, t;κ, η, λ, y0) = exp(κ2ηt/λ2) exp(2y0iu/(κ+ γ coth(γt/2)))
(cosh(γt/2) + κ sinh(γt/2)/γ)2κη/λ2

where

γ =
√
κ2 − 2λ2iu.

2.3.4.2 The integrated Gamma-OU process

The Ohrnstein–Uhlenbeck (OU) process defined by the following SDE

dyt = −λytdt+ dzλt, y0 > 0

where zt is a Lévy process with no Brownian part (i.e with the Lévy triplet parameter

σ2 = 0), non-negative drift term and with positive increments. The process z =
(zt, t ≥ 0) is sometimes called a Background Driving Lévy Process (BDLP).

As the Gamma(a, b) distribution is self-decomposable there exists an OU process

where yt follows the Gamma(a, b) law for each t ≥ 0. The process is denoted as the

Gamma-OU process, see [18].

The integrated Gamma-OU process Y = (Yt, t ≥ 0) is then defined as

Yt =
∫ t

0
ys ds.

The characteristic function of Yt given y0 is given by

E[exp(iuYt) | y0] = φ(u; t, λ, a, b, y0)

= exp
(
iuy0λ

−1(1− exp(−λt))
)

× exp
(

λa

iu− λb

(
b log

(
b

b− iuλ−1(1− exp(−λt))

)
− iut

))
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with a, b, λ > 0.

2.3.5 Stochastically time-changed Lévy processes

Substituting the time variable of a process by a stochastic process yields a composite

process, since it constitutes of the composition of two processes. The composition

of the CGMY-, Meixner- or NIG process with an integrated CIR or integrated

Gamma-OU process yields the processes with the desired properties discussed in [5].

Properties such as that the infinite activity pure jump models (CGMY and NIG)

can capture both large and small variations while the chronometers should work as

an extension to these models to also capture the variation of option prices over a

set of different maturities. The composite process is denoted as XY = (XYt , t ≥ 0),
where X = (Xt, t ≥ 0), called the base process, is one of either a CGMY-, Meixner-

or NIG process and where Y = (Yt, t ≥ 0) follows either the integrated CIR or

the integrated Gamma-OU process. It is assumed that X and Y are independent

processes. The composite processes are denoted as CGMY-CIR, Meixner-CIR, NIG-

CIR, CGMY-Gamma-OU, Meixner-Gamma-OU and NIG-Gamma-OU. The charac-

teristic functions of these composite processes are easily obtainable, given the char-

acteristic function of the chronometers φY and the characteristic exponent of the

base processes ψX ,

E[exp(iuXYt)] = E [E[exp(iuXYt) | Yt]] = E [exp(YtψX(u))] = φY (−iψX(u)).

Note the special case for which u = −i corresponds to the moment generating

function (which is assumed to exist, a priori).

It is proposed by [18, 5] that the stochastic price process S(t) is given by

S(t) = S0 exp (t(r − q)) exp(XYt)
E[exp(XYt)]

(2.3.1)

where S0 is the price at time t = 0, r instantaneous interest rate and q the dividend

rate. It should be noted however, that nowhere has it been found that the discounted

process S∗(t) = exp(−t(r − q))S(t), where S(t) being given by Equation 2.3.1, is a

martingale with the given base and chronometers defined above. In fact, it has been

argued that the process do not need to be a martingale. In [5] it has been shown

that the process is almost a martingale process, in the sense that a martingale part

of the process is being perturbed. Although, the perturbation is eventually zero (of

no effect to the martingale part of the process), as time increases.

The characteristic function of the logarithm of the process, presented in Equa-
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tion 2.3.1, is given by

E[exp(iu log(S(t))) | S0, y0] = E [exp(iu(log(S0) + t(r − q)
+XYt − log (E[exp (XYt)])))]

= exp (iu(log(S0) + t(r − q))) φY (−iψX(u))
φY (−iψX(−i))iu .

By using Lemma 2.16 and Theorem 2.41, one could also construct a discounted

price process S∗(t) = exp(−t(r − q))S(t) with the martingale property, given by

S(t) = S0 exp(t(r − q)) exp(XYt − YtψX(−i)). (2.3.2)

The characteristic function of the logarithm of the process, presented in Equa-

tion 2.3.2, is given by

E[exp(iu log(S(t))) | S0, y0] = E[exp(iu(log(S0) + t(r − q) +XYt − YtψX(−i)))]

= exp (iu(log(S0) + t(r − q)))
× E[E[exp(iu(XYt − YtψX(−i)))) | Yt]]

= exp (iu(log(S0) + t(r − q)))
× E[exp(iu(−YtψX(−i))) exp(YtψX(u))]

= exp (iu(log(S0) + t(r − q)))
× E[exp(Yt(−iuψX(−i) + ψX(u)))]

= exp (iu(log(S0) + t(r − q)))φY (−uψX(−i)− iψX(u)).

In the following, the different models used will be denoted by BASE-CHRONO-X

where BASE is any of the base processes and CHRONO is any of the chronometers used

in the model. Additionally, X is either 1 or 2 for denoting the used model given by

either Equation 2.3.1 or Equation 2.3.2, respectively, also referred to as type-1 or

type-2 model.
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3
Methods

3.1 Data selection

The option prices used in the calibration have to be liquid as assumptions on fric-

tionless markets have been made, which were discussed in Section 2.2. There are

different ways to select options used for calibration of models. The OMXS30 options

market is small in comparison to other markets, e.g. the S&P500 options market.

As such, the restrictions to select option prices cannot be too narrow as this would

result in too few quotes to calibrate the models against. The requirements of the

selected quotes used for calibration were that the option strikes lie between −10%
to +15% of the spot price, S0, and that the minimum number of open interest of

each option was 100. These requirements can be questioned for being set too low,

but the impact of different requirements for data selection on the calibration results

is outside the scope of this report. The liquidity of these options is assumed to be

sufficient.

3.2 Numerical optimisation

As discussed in Section 2.2.1, in order to extend the set of European call option prices

CT (ku) over a set of maturities T1, . . . ,TM , a matrix of call prices P = (CTm(ku))N,Mu,m=1

is defined, with elements corresponding to different maturities and strikes. The

columns represent the maturities and the rows the strikes of the option prices. Each

column l of P is represented by (CTl
(k1), . . . ,CTl

(kN)) which is (partly) calculated

by using the FFT algorithm of the system of sums given by Equation 2.2.6.

The option prices given by Equation 2.2.3 depend on the Fourier transform

F [cT ](v) which contains the characteristic function of the underlying asset’s price

process, see Equation 2.2.4. If the parameters of the characteristic function are

not known, they need to be found by calibration against real call option prices.

The matrix P is constructed such that the maturity is always represented in one of

the columns and the strike in one of the rows, for each real call option price with
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3.2. NUMERICAL OPTIMISATION 3. Methods

a corresponding strike and maturity. Note that the maturities can have an exact

representation in the columns of P , while the strikes will have an approximate rep-

resentation with an accuracy depending on the step size λ. The theoretical option

prices in P which correspond to the real option prices with respect to strikes and ma-

turities, are selected. Denote the selected theoretical options prices by Cs
1 , . . . ,C

s
L

and their corresponding real option prices by C∗1 , . . . ,C
∗
L, the set of unknown pa-

rameters θ in the underlying asset’s price process is then found by the following

optimisation problem

min
θ

L∑
i=1

(Cs
i (θ)− C∗i )2, (3.2.1)

possibly with some constraints on θ, see Section 2.3.

The optimisation for all models used in this report were conducted with param-

eter values of the numerical procedure corresponding to α = 0.75, N = 212 and

η = 0.25, see Equation 2.2.5 and Equation 2.2.6. These parameter values do not

correspond to the parameter values of the characteristic function of the underlying

asset’s price process, e.g. η here should not be confused with the η in the character-

istic function of the CGMY process as defined in Section 2.3.

The calibration performance was assessed by the root mean square error (RMSE)

RMSE =

√∑L
i=1 (Cs

i (θ)− C∗i )2

L

and by the absolute percentage error (APE)

APE =
∑L
i=1 |Cs

i (θ)− C∗i |∑L
i=1 C

∗
i

.

The calibration was conducted using MATLAB.
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4
Results

4.1 Calibrated models

The models were successfully calibrated. The calibrated stochastically time-changed

Lévy models were not substantially different from each other. Even though some

deviations seem to be present, they are small, see Table 4.1.1. The pure Lévy

base models represent the real option prices correctly as well, even though some

improvements can be achieved by the stochastically time-changed models.

The worst and best model fit (with respect to RMSE) to the real option prices

are graphically illustrated in Figure 4.1.1(a) and Figure 4.1.1(b), respectively. The

calibration and fit of the models are similar and the differences between them are

small. In addition, the options deeply in the money1 are not represented well by the

models, compared to the at the money2 options.

The calibration took much less processing time for the pure Lévy processes than

for the stochastically time-changed Lévy processes, most probably due to the in-

creased number of parameters to be estimated for the stochastically time-changed

processes.

In Table 4.1.1 it can be further noticed that type-1 processes are not generally

a better fit to the option quotes than the type-2 models, and vice versa, the type-2

processes are not generally calibrated better to the quotes than the type-1 processes.

During calibration the starting points were chosen arbitrarily. The choice of

starting point could affect the accuracy of the optimal point considerably if the global

optimiser is not well suited for the optimisation problem defined in Equation 3.2.1.

Nevertheless, the choice of a well-suited starting point was not investigated and

neither was the global optimiser, as it is beyond the scope of this work. It is assumed

that the calibration procedure was conducted well enough for the purpose of this

work.

1In the money is a term used for options where the current price of the underlying asset price
is larger than the strike of that option.

2At the money is the term used for options where the current underlying asset price is close to
the strike of that option.
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(a)

(b)

Figure 4.1.1. Calibration of the OMXS30 call options for the models (a) Meixner and
(b) Meixner-ΓOU-1.
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Table 4.1.1. Result of the calibration of the different models.

Model Estimated parameters RMSE APE

CGMY-CIR-1
C

0.2288
G

5.6382
M

34.9020
Y

0.7782
κ

0.5243
η

0.0002
λ

0.8993 0.7612 0.0139

CGMY-CIR-2
C

0.1345
G

3.7480
M

39.9821
Y

1.0218
κ

20.8166
η

0.8577
λ

1.0001 0.8512 0.0141

CGMY
C

0.0495
G

1.9397
M

62.6217
Y

1.2621 0.9046 0.0174

CGMY-ΓOU-1
C

0.0752
G

3.5282
M

60.1412
Y

1.1725
λ

7.5891 e-05
a

86.5513
b

4.1119 e-10 0.9041 0.0174

CGMY-ΓOU-2
C

1.1918
G

2.7797
M

37.3439
Y

1.0910
λ

1957.1290
a

674.1865
b

9585.4749 0.8549 0.0143

Meixner-CIR-1
α

0.1037
β

-1.5246
δ

2.7790
κ

0.6582
η

0.1540
λ

0.8930 0.7657 0.0142

Meixner-CIR-2
α

0.1035
β

-1.6802
δ

2.8135
κ

24.1721
η

0.8369
λ

1.0002 0.8608 0.0150

Meixner
α

0.1304 -
β

1.7106
δ

1.6676 1.0511 0.0222

Meixner-ΓOU-1
α

0.1071
β

-1.5947
δ

2.6408
λ

1.4943
a

0.4579
b

0.7596 0.7490 0.0138

Meixner-ΓOU-2
α

0.1478
β

-1.6967
δ

1.8782
λ

40.9975
a

763.8758
b

1083.0070 0.9441 0.0187

NIG-CIR-1
α

22.3016
β

-14.3449
δ

0.3333
κ

0.5540
η

0.0477
λ

0.9156 0.7614 0.0140

NIG-CIR-2
α

24.9947
β

-17.0722
δ

0.3530
κ

21.8060
η

0.8502
λ

1.0001 0.8531 0.0145
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Model Estimated parameters RMSE APE

NIG
α

21.8639
β

-15.1313
δ

0.2832 0.9689 0.0198

NIG-ΓOU-1
α

21.8634
β

-15.1308
δ

0.2832
λ

3.3741 e-07
a

1310.9351
b

81.6701 0.9689 0.0198

NIG-ΓOU-2
α

19.1002
β

-13.1386
δ

1.0875
λ

382.2985
a

381.8897
b

1631.2795 0.8818 0.0157
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5
Conclusion

The models considered in this report were successfully calibrated as can be concluded

from Table 4.1.1. There were no substantial differences between the calibrated mod-

els. The choice of chronometers did not seem to affect the calibration result. The

purpose of including stochastic time-change to the models was to better fit them

over the domain of strikes and maturities. The market chosen could have been too

small to find sufficient number of liquid options so that a larger range of maturities

could be used to calibrate the models against. As a result of this, no substantial

differences between the models could be detected. A possible solution could be to

try out these models on a spectrum of different markets. However, small differences

are present and the calibration is in favour for the stochastically time-changed mod-

els. On the other hand, the time efficiency in the calibration of the pure base type

models was superior to the stochastically time-changed models. This was expected

as the number of parameters to be calibrated in the stochastically time-changed

models is larger than in the number of parameters in pure base models. The pure

base models could therefore be sufficient to describe the OMXS30 vanilla options

market.

The Meixner as base process resulted in the best (and worst fit) even though it is

a finite activity model. This makes the necessity of the infinite activity property for

Lévy processes, as discussed by [5], obsolete for the OMXS30 call options market.

5.1 Theoretical framework

Some remarks on the type-2 models are necessary. Recall Equation 2.3.2 and con-

sider that the chronometer Yt is a monotone increasing process. As time progress,

the chronometer attains a large value and it will be less likely for the base process

X to surpass it. Henceforth, the log return will tend to large positive or negative

values. Consequential, the log returns are unlikely to switch sign as time passes by,

in contrast to empirical evidence of financial assets. Nevertheless, the type-2 models

might still be valid price models for short time frames. As have been stated in the
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5.2. OPTIMISATION AND DATA SELECTION 5. Conclusion

report, the type-1 processes are not martingales, but in [5] it has been shown that

they are good enough to represent a static arbitrage-free market.

With regard to the choice of chronometers, the Gamma-OU might be a better

choice since it is easier to simulate than the CIR process. Simulations could be used

to price the options by means of Monte-Carlo methods if desired.

5.2 Optimisation and data selection

In the calibration procedure arbitrary starting points were selected. This might

cause significant errors in the result as the objective function is not well behaved,

e.g. not convex.

The FFT method used calculates a vast amount of prices that are not included

in the calibration procedure. Faster numerical methods for this calibration could

exist.

5.3 Future work

Important remaining investigations are the property of replication under a self-

financing portfolio strategy described with these stochastically time-changed pro-

cesses. The replicative property gives a solid foundation to be able to price options

in the framework that has been done in this work. Nevertheless, the replicative

property is unlikely, since the number of jump sizes are infinite in the models used

which makes the market incomplete with infinite number of equivalent risk neutral

measures.

It has been assumed that the moment generating function of the processes pre-

sented in this report exist. It is recommended to investigate whether this assumption

hold.

To find well motivated starting values in the calibration procedure could speed

up the calibration as well as minimising possible errors in the calibrated results. A

more in-depth investigation of the methods in the choice of global optimiser could

also be of interest to conduct.

Other areas of improvement are to calibrate the models against a larger data set,

preferably the S&P500 vanilla options, or by also including put options in the data

set.
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ical Finance 11.1 (2001), pp. 79–96.

[10] Gut A. Probability: a graduate course. 2nd ed. New York: Springer, 2013.

[11] Heath M. Scientific computing - An introductory survey. 2nd ed. New York:

McGraw, 2001.

[12] Jacod J and Protter P. On probability essentials. 2nd ed. Berlin: Springer,

2004.

[13] Kallenberg O. Foundations of modern probability. New York: Springer, 1997.

35



BIBLIOGRAPHY BIBLIOGRAPHY

[14] Kassberger S and Liebmann T. Minimal q-entropy martingale measures for

exponential time-changed Lévy processes. Finance and Stochastics 15 (2011),

pp. 117–140.

[15] Revuz D and Yor M. Continuous martingales and Brownian motion. 3rd ed.

Berlin: Springer, 1999.
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A
Appendix

A.1 Option quotes

Table A.1.1. The 2017-07-18 OMXS30 European call option closing prices for different
maturities and strikes, retrieved from http://www.nasdaqomxnordic.com. The closing
price of the underlying was 1607.36 SEK the same day. The riskless interest rate was
assumed to be r = 0.0067 with the dividend rate of the underlying estimated to q =
0.036. Quotes and strikes are given in SEK.

Strike (K) 2017-08-18 2017-09-15 2017-12-15 2018-03-16

1460 158.50

1480 142

1500 126.25

1520 111.25

1540 80.75 96.75 110.75

1560 56.50 65.25 83.25

1570 58

1580 51 70.75

1600 38.50 59.25

1610 22

1620 17 27.75 49 65

1630 13 23.25

1640 9.25 19 39.75
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Strike (K) 2017-08-18 2017-09-15 2017-12-15 2018-03-16

1650 6.50 15.50

1660 4.25 12.25 32 47.50

1670 2.85 9.50

1680 1.80 7.50 25.25 40

1690 1.20 5.75

1700 4.25 19.50

1710 3.15

1720 2.35 14.75

1730 1.75

1740 1.30 10.75

1750 1

1760 8

1780 5.25

1800 4

1820 2.60

1840 1.95

1860 1.60
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