
graphVR

A VR web application for interactive 3D-graphs

Bachelor’s thesis in Computer Science and Engineering

MIRANDA ALDRIN HENRIK BOSTRÖM ROBIN EDQUIST
OSCAR JOHANSSON JACOB NILSSON

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2018

Bachelor’s thesis DATX02-18-16

graphVR

A VR web application for interactive 3D-graphs

MIRANDA ALDRIN, HENRIK BOSTRÖM, ROBIN EDQUIST,
OSCAR JOHANSSON, JACOB NILSSON

Department of Computer Science and Engineering
Division of Computer Science and Engineering

Chalmers University of Technology
Gothenburg, Sweden 2018

graphVR
A VR web application for interactive 3D-graphs
MIRANDAALDRIN, HENRIK BOSTRÖM, ROBIN EDQUIST, OSCAR JOHANS-
SON, JACOB NILSSON

© MIRANDA ALDRIN, HENRIK BOSTRÖM, ROBIN EDQUIST, OSCAR JO-
HANSSON, JACOB NILSSON, 2018.

Supervisor: Thommy Eriksson, Department of Computer Science and Engineering
Examiner: Morten Fjeld, Department of Computer Science and Engineering

Bachelor’s Thesis DATX02-18-16
Department of Computer Science and Engineering
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: The open world scene in the application graphVR.

Typeset in LATEX
LATEX-template created by DAVID FRISK, 2016
Gothenburg, Sweden 2018

iii

graphVR
A VR web application for interactive 3D-graphs
MIRANDAALDRIN, HENRIK BOSTRÖM, ROBIN EDQUIST, OSCAR JOHANS-
SON, JACOB NILSSON
Department of Computer Science and Engineering
Chalmers University of Technology

Abstract
The study presented in this paper is a Bachelor’s thesis at Chalmers University

of Technology. The purpose of the study was to find out how to transform statistical
tabular data into interactive VR graphs. It was achieved by creating the application
graphVR using the framework A-Frame. The project was carried out as a technical
development project, which used user tests and continuous evaluation to guide the
design of the application.

The project was based on an iterative development process, and produced two
prototypes, used during the user tests, and one final product. The thesis discusses
the complete method of developing graphVR, including the system architecture, the
environmental models used, and the graph components which were created specifi-
cally for the application.

Keywords: virtual reality, information visualization, JavaScript, A-Frame, VR,
Three.js.

iv

Sammandrag
Studien som presenteras i den här rapporten är ett arbete gjort på kandatnivå

på Chalmers. Studiens mål var att undersöka hur man kan presentera statistisk
data i en interaktiv VR miljö. För att uppnå målet skapades applikationen graphVR
som använde sig av ramverket A-Frame. Projektet var en teknisk utvecklingsstudie
som använde sig av användartester och kontinuerlig utvärdering som en guide för
designen av applikationen.

Projektet använde en iterativ utvecklingsprocess och producerade två proto-
typer, som användes för användartesterna, och en slutprodukt. Rapporten diskuterar
hela metoden som använts för att producera graphVR, inklusive systemarkitekturen,
3D modellerna som användes och grafkomponenterna som var specifikt skapade för
applikationen.

v

Acknowledgements
We want to thank our supervisor Thommy Eriksson for his extensive help

throughout the project. We also want to thank the people who helped us in the user
tests and the IT faculty for giving us access to their media lab.

Miranda Aldrin, Gothenburg, May 2018
Henrik Boström, Gothenburg, May 2018
Robin Edquist, Gothenburg, May 2018

Oscar Johansson, Gothenburg, May 2018
Jacob Nilsson, Gothenburg, May 2018

vii

Contents

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Purpose . 1
1.2 Problem Statements . 2
1.3 Scope of the Project . 2
1.4 Tools . 3

1.4.1 Frameworks and Programming Languages 3
1.4.1.1 A-Frame . 3
1.4.1.2 JSON . 3
1.4.1.3 ECMAscript . 4

1.4.2 VR Hardware . 4
1.4.3 Modelling Software . 5
1.4.4 Version Control . 6

2 The Design Process and Evaluation of the Application 7
2.1 Define Phase . 8
2.2 Make Phase . 9
2.3 Learn Phase . 11

2.3.1 Ethical Testing Procedure . 12
2.3.2 Camera Set Up . 12
2.3.3 Test structure . 13

3 Design Requirements 17

4 Using the A-Frame Framework and System Architecture 19

5 3D Graphs 21
5.1 Text . 21
5.2 3D Grid . 22
5.3 3D Bar Graph . 23
5.4 3D Line Graph . 25
5.5 3D Scatter Graph . 26
5.6 Data table . 27

ix

Contents

6 Environment 29
6.1 How to Work in Blender . 30
6.2 Tutorial . 33
6.3 Museum . 37
6.4 Open World . 39
6.5 Immersive Scatter Graph . 40
6.6 Lights and Shadows . 41

7 VR Controller Interactions 45

8 Evaluation of the application 48
8.1 Test 1 . 48
8.2 Test 2 . 49

9 Result 52

10 Discussion 53
10.1 Discussion of Results . 53
10.2 Validity of User Tests . 55

11 Conclusion 57

Bibliography 59

A User Stories I

B Applications Evaluated III

C Test Document 1 VI

D Test Document 2 X

E Consent Form for User Testing XIV

F Results of User Test 1 XVI

G Results of User Test 2 XXV

H Storyboard of the initial stages of the tutorial XXXVI

I Steps of the tutorial XXXVIII

x

List of Figures

1.1 Figure describing the different Degrees Of Freedom. 5
1.2 Illustration of the Github workflow used during the project. 6

2.1 The high-level iterative process as seen in Jason Jerald’s book The
VR Book: Human-Centered Design for Virtual Reality [35, p. 370] . . 8

2.2 An illustration of the workflow used during the project. 10
2.3 The camera set up for the user tests. The blue area indicates what

the camera included in the recording. 13
2.4 Flowchart of user tests . 14

5.1 A 3D-grid with more lines on the x-axis compared to the other axes. . 23
5.2 A 3D grid with two vertical lines for each 2D grid. 23
5.3 A bar graph. 24
5.4 A rotated bar graph. 25
5.5 Line graph . 26
5.6 3D scatter graph with flat colored sprites. 27
5.7 Scatter graph with sprites that look like spheres. 27
5.8 Scatter graph implemented with Three.js sphere meshes. 27

6.1 A mesh of a cube in Blender. It is possible to see the vertices, edges,
and faces of the model. 30

6.2 The room mesh in Blender. It is possible to see all the subdivided
squares. 31

6.3 Without baked textures, the room does not have the same depth as
the room with baked textures. 31

6.4 The room as seen in our application, with baked textures. 32
6.5 The UV map for the room in the museum. 32
6.6 The red edges of the model are the seams that were put on the model

by hand. 33
6.7 The help board designed for the first user test. The figures of the

two Rift controllers are taken from a picture from Wikimedia [67]
under public domain. Then the picture was modified in Photoshop
[68], creating the border and the labels. The final image was then
imported into A-Frame [8] with the image tag. 34

6.8 An early sketch of the tutorial . 35
6.9 An early sketch of the tutorial . 35

xi

List of Figures

6.10 The first state in the tutorial, encouraging the user to teleport towards
the circle. In it, no other elements of the scene is visible. 36

6.11 Once the user has teleported to the circle, the tutorial will enter the
second state, the move state. The move diagram, move text, and
move controller become visible and the user is encouraged to move
the graph. 36

6.12 An example of the controller models used in graphVR. This is a depic-
tion of the controller which tells the user where the interaction move
is positioned. 37

6.13 An early sketch of the layout of the museum environment in graphVR 38
6.14 The final museum scene in graphVR 39
6.15 The open-world scene in graphVR . 40
6.16 The immersive scatter graph environment. The user is surrounded

by all the data points. 41
6.17 A spot light component directed towards the controllers in the mu-

seum. The component creates a cone of light and casts a sharp shadow. 42
6.18 A point light component shining in all directions and creating a softer

light. 42
6.19 A scene with a point light and an ambient light. Each side of the bars

in the bar graph can be distinguished. 43
6.20 A scene with only ambient light. All sides of the bars on the bar graph

are the same colors. To the left of the graph it is hard to distinguish
which bar is which. 43

7.1 Screen capture of user navigating using teleport. 47

8.1 Figure describing the different Degrees Of Freedom. 49
8.2 Figure describing the different Degrees Of Freedom. 50

H.1 The user enters the tutorial and is asked to teleport to a designated
place. XXXVI

H.2 The user is asked to move a bar graph to a designated place. XXXVI
H.3 The user is asked to rotate a bar graph. XXXVI
H.4 Once the user has completed the tutorial, they will go to the museum.XXXVII

I.1 The first state in the tutorial, encouraging the user to teleport towards
the circle. XXXVIII

I.2 The second state in the tutorial, encouraging the user to move the
graph. XXXIX

I.3 The third state in the tutorial, showing the view after the user has
moved the graph in state 2. XXXIX

I.4 Still the third state,encouraging the user to rotate the graph. XL
I.5 The fourth state in the tutorial, showing the view after the user has

rotated the graph. XL
I.6 The fourth state in the tutorial, encouraging the user to go to either

the museum, the open world, or the immersive scatter graph. XLI

xii

List of Tables

2.1 A table of the specific tasks used in User Test 1, and why they were
performed. 15

2.2 A table of the specific tasks used in User Test 1, and why they were
performed. 16

8.1 The relationship between completion-time of the tutorial and previous
experience with both VR and video games. 51

xiii

1
Introduction

Data has been collected by humans for thousands of years [1, p. 1-2]. To
make this information easier to interpret, data visualization has been used to form a
tangible representation of the information [2]. It helps to manage the collected data
as well as predict what could happen if a set of conditions are met [3, p. 1]. The
point of data visualization is to visually show the relationships between variables,
and the more variables analyzed, the more discoveries could be made.

One way to analyze the collected data is to use information visualization, a
type of data visualization. Information visualization is a computer-supported
interactive visual representation of abstract data to help amplify cognition [3, p.
13]. The fact that information visualization is interactive aids the understanding of
the data. However, currently most diagrams are viewed on 2D platforms, such as
computer screens or tablets and because of the nature of the 2D platform, there are
some limitations with the interactions. This is where we believe a virtual reality
information visualization application could shine.

Virtual reality (VR) has developed significantly since the 1990’s [4, p. 158].
Early VR headsets were clunky, caused motion-sickness and disorientation. How-
ever, with new headsets such as Oculus Rift [5] and improved motion tracking, VR
has become a viable option for game development and virtual experiences. Because
of this, VR is making its way to the commercial markets [6] and might even become
mainstream in the future. It lends itself well to situation awareness and interac-
tivity [7, p. 610]. Thus, the nature of VR could provide a way for us to display
multi-dimensional graphs and see trends in the data not seen on a 2D platform.
When viewed as a virtual experience it would be possible to use this technology to
continue the exploration of multi-dimensional graphs and bring out new patterns.

It is with this premise that we decided to develop graphVR, a VR web applica-
tion for interactive 3D-graphs. The idea was to see if A-Frame [8], a web framework
used to build virtual experiences, is suitable for developing a VR application for
information visualization.

1.1 Purpose
The purpose of this project was to develop a web application to explore the

grounds of information visualization in VR. The application should allow the user to
analyze and interact with statistics in a virtual environment by using VR controllers.
One of the difficulties to overcome was to transform statistical data sets to 3D
graphs. To ensure that the best possible design choices were made during the design

1

1. Introduction

process, user tests were performed to evaluate the application further with external
test subjects.

1.2 Problem Statements
Questions connected to the design of the application:

• How to design useful interactions for information visualization software
• How to create a VR application that is easy to use for the user
• How to design an environment suitable for a virtual reality application

Questions connected to the development of the application:

• How to transform tabular data into graphs
• How to model graphs as A-Frame components
• How to create environments with lights and shadows in A-Frame

1.3 Scope of the Project
The statistical viewing tool, graphVR, is a Bachelor’s thesis project of five

students from Chalmers University of Technology. All members of the group have a
background in computer science and have spent 400 hours per person on the project.
The 400 hours consisted of developing and documenting the application graphVR,
writing this report, giving two oral presentations and attending lectures held by
the university. No group member had prior experience in developing nether web
applications nor VR applications.

In graphVR, the user is able to interact with data presented in the form of
graphs to facilitate the understanding of the graphs. Since graphVR is a web ap-
plication it is not accessible through Oculus store [9], Steam [10] or any other dis-
tribution platform. The headset we developed for was primarily Oculus Rift since
this is what was accessible to us during the project. graphVR handles three types
of diagrams: bar graph, line graph, and scatter graph. It allows the application to
have some variation and still be developed within the short time frame.

Our product was developed in English and our target audience is English
speaking users. English was chosen to be able to reach a broader audience. Physical
and mental abilities or disabilities were also not taken into account. Making the
product accessible to all was not a priority.

Statistics may not directly harm people, but manipulated statistics could be
indirectly harmful. It could result in decision makers coming to the wrong conclu-
sion. In this project our aim is not to handle these ethical questions but instead
to make the graphs as correct and easy to read as possible. This works indirectly
towards handling these ethical dilemmas but is again not our goal.

2

1. Introduction

1.4 Tools
To create graphVR, specific tools were needed. The application as devel-

oped using the framework A-Frame [8] together with the programming language
JavaScript. However, not all parts of the application was possible to produce us-
ing JavaScript. 3D models were used throughout the application and the models
were made using the 3D modelling software Blender [11]. The application was also
mainly developed for the VR head mounted display (HMD) Oculus Rift.

1.4.1 Frameworks and Programming Languages
Choosing what framework and the programming language to use when devel-

oping an application is a crucial part of the development process. The framework
A-Frame was used because of its simplicity and cross-platform capability. Other
frameworks like Unity is also a good choice for developing VR applications, but
the advantage with A-Frame is that even though there are homemade solutions for
porting VR apps created in Unity [12] to run on the web with webVR, A-Frame
does this native. A-Frame is built on top of Three.js [13], which is a graphics library
written in the JavaScript programming language.

There are many frameworks made for unit testing in JavaScript, but we settled
on using Mocha [14] to run the tests and Chai [15] for assertion. A-Frame uses
both Mocha and Chai for testing of the framework, therefore it was easy to find
information on how to adapt the tests to graphVR.

1.4.1.1 A-Frame

Three.js is a lightweight graphics library that uses WebGL to create GPU-
accelerated 3D animations using the JavaScript language. The library provides
<canvas>, <svg>, CSS3D and WebGL renderers, which commonly used for render-
ing on the web [13].

A-Frame is a web-framework that enables developers to make WebVR with
HTML and entity components. WebVR is an open specification that is used to
bring VR to the web environment. Just because A-Frame is based on HTML, it
is easy to understand for a developer as well as for a designer. Since it is built on
top of HTML, it also allows the use of other frameworks and libraries as Node.js
[16] and React [17]. A-Frame also supports most VR headsets such as Vive, Rift,
Windows Mixed Reality, Daydream, GearVR, Cardboard and could also be used for
augmented reality. The main core of A-Frame is its component entity system and
is built on top of Three.js [18].

1.4.1.2 JSON

Javascript is a convenient language when it comes to data collection with
JSON. JSON stands for JavaScript Object Notation which is a format that is com-
monly used when transmitting data in web applications[19]. In this project JSON
is used as a way to collect data from statistical databases and transfer it to our

3

1. Introduction

application. The way graphVR does this is to translate JSON objects to Javascript
objects and then use the object for visualizing the data [19].

1.4.1.3 ECMAscript

ECMAscript is a standardization that was mainly created to standardize JavaScript.
This scripting standard is object-based, which means that an ECMAscript program
uses clusters of objects that has the ability to communicate with each other. Large
ECMAscript programs are supported by modules, where each module explicitly
identifies declarations it uses that need to be provided by other modules and which
of its declarations are available for use by other modules [20].

The modules are managed by Webpack, which is a static module bundler for
modern JavaScript application and the server that we used was managed by Web-
pack Dev Server. When Webpack processes your application, it internally builds a
dependency graph which maps every module your project needs and generates one
or more bundles. In this project Webpack was used to easily add new Javascript
modules and keep track of which ones are used [21].

1.4.2 VR Hardware
The headset and controllers we used was Oculus Rift, henceforth referred to as

the Rift. The Rift is a VR platform that allow for six degrees of freedom (DOF) [22]
giving it full mobility and makes it work in a room-scale VR experience. Degrees
of freedom refers to the different movements tracked in the VR environment. They
are categorized into two groups: pitch, yaw, roll and sway, surge, heave. It is called
3-DOF (three degrees of freedom) when pitch, yaw and roll allows are present, which
allows you to rotate in all three space axis. 6-DOF (six degrees of freedom) is the
presence of the first three DOF combined with sway, surge, and heave which not
only let you rotate in all three space axis, but also move in all three spatial directions
[23, p. 68]. A visual explanation can be seen in Figure 1.1.

4

1. Introduction

Figure 1.1: Figure describing the different Degrees Of Freedom.

The Rift controllers enables six degrees of freedom and while the application
would be manageable with the first three, six degrees makes for a much better
experience. The headset has a resolution of 1080x1200 per eye, 110 degrees field of
view and a refresh rate of 90 Hz [24]. The resolution affects how well you can see
details and in our case we had to consider how well text would be readable. The
high refresh rate is good since it reduces nausea from motion sickness. The motion
sickness occurs mainly when the camera is moving while the user’s head is still,
making what the users see not align with what the user feel.

1.4.3 Modelling Software
Some parts of graphVR needed to be made with a 3D modelling software. We

used two types of methods to produce models. Most models were made by our
own designers, specifically for graphVR. The second method we used was to modify
models taken from online 3D modelling libraries.

A-Frame [8] recommends using one of four types of programs to make 3D
models: Blender [11], MagicaVoxel [25], Autodesk Maya [26], or MaxonCinema4D
[27]. Both Autodesk Maya and MaxonCinema4D are expensive software with an
extensive library of features. Most of these features were unnecessary for the purpose
of creating models for graphVR. That left us with Blender and MagicaVoxel. They
are both open-source software with a supportive community and multiple tutorials.
Ultimately, Blender was chosen because of its intuitive modeling workflow [28].
There were also a lot of learning resources for Blender which contributed to the
decision.

Most models were made from scratch in Blender. However, there was one
model which was quite complicated and thus part of the model was taken off of
Thingiverse [29], a 3D sharing platform, and was modified to fit our needs.

When exporting a model, there are multiple file formats that can be used. A-
Frame supports glTF, OBJ, and COLLADA when using 3D models in an application

5

1. Introduction

[30]. The glTF format is used as it provides an advantage over the other two
formats. It is an open-source “specification for the efficient transmission and loading
of 3D scenes and models by applications” [31]. In A-Frame, glTF offers “scene
information”, such as information about lights and cameras, and provides “more
robust materials and shaders” [32], which is why it is the recommended format.
The Khronos glTF exporter extension [33] was used to be able to export the model
to glTF format from Blender.

1.4.4 Version Control
Since a big part of this project was the development of the web application, a lot

of work was done through coding and multiple people was working on the application
at once, it is important to have a clear and structured workflow when working with
the code. There are many tools available to help with version control, like Github,
Bitbucket, and Cloud Source by Google. All of these would have provided sufficient
support, as the differences between them are not too big but as management of
Github is taught at Chalmers all members have good knowledge of how to work
with that system. Therefore to accomplish this the we used Github[34] for version
control as it saved time that would be needed to learn a new version control system.
For code management within the repository the following workflow was used (see
figure 1.2).

Figure 1.2: Illustration of the Github workflow used during the project.

6

2
The Design Process and

Evaluation of the Application

According to Jerald in his book The VR Book: Human-Centered Design for
Virtual Reality, the recommendation for designing a VR application is to use an
iterative design process [35, p. 369]. Designing for virtual reality is quite different
from designing for a 2D platform as there are few standardized design rules and
generally there is a lack of knowledge when it comes to designing for VR. Because
of the lack of knowledge, both for us as designers, and in the business as a whole,
it was important to achieve continuous discovery. Continuous discovery is the
ongoing process of engaging users during the design process [35, p. 374]. We always
strove towards discovering new insights. The goal was to continuously understand
what users wanted to do in the the application, why they wanted to do it, and
how they could do it in the most efficient way possible. Using continuous discovery
helped us as designers to understand the users, and it was then possible to apply
that knowledge to graphVR.

The iterative approach was also chosen because it worked well with our agile
development process. More about the agile development process can be found in
Section 2.2. It was important to rapidly prototype our designs, and due to time
constraints, the development team always had to have new designs to work on.
Therefore, the iterative design process was best suited for designing graphVR.

We followed the high-level iterative process Jerald recommends, as seen in Fig-
ure 2.1. It consists of:

• The define phase, which answers the question “What do we make?” and it
includes creating requirements, storyboards, and user stories.

• The make phase, which answers the question “How do we make it?” and
includes the actual process of designing prototypes and making the final prod-
uct.

• The learn stage, which answers the question “What works and what does
not work?” and the answers are then used in the define stage to help define
the next iteration.

7

2. The Design Process and Evaluation of the Application

Figure 2.1: The high-level iterative process as seen in Jason Jerald’s book The
VR Book: Human-Centered Design for Virtual Reality [35, p. 370]

In theory, each phase is a separate phase and performed in sequence, however
during our project some stages were interwoven and performed in parallel to each
other. This is a common occurrence according to Jerald [35, p. 371]. For example,
while designing a new element or fixing an old one during the make phase, it was
not uncommon to learn from the existing designs while we were doing it, because
we continuously kept testing the product during the development. This made it
possible for us to find more insights of what worked and what did not.

Because of a limited time frame, we chose not to perform all the design methods
suggested for each phase in The VR Book: Human-Centered Design for Virtual
Reality, but hand picked the methods that were the most relevant for our project.

2.1 Define Phase
In the beginning of a project, the define phase is when the overall problem

and the general design idea are defined [35, p. 379]. However, these definitions
do not need to be concrete from the beginning since it is possible to narrow down
the definitions in the next iteration. This means that throughout the project, the
definition of the problem and the design will evolve as the project and application
evolves.

This was how graphVR developed. When the project began, the scope of the
project was very wide. Because of this, the first iteration was based on a general idea
of the application and we kept defining the project throughout the design process.
It took many iterations before it was possible to form a concrete idea of the final
design.

During each iteration, many changes to the design can occur, so throughout
this process, it is important to continuously justify these changes [35, p. 379]. We
tried to thoroughly justify each change to the design so that it was known why the
change was made. When justifying changes, we also tried to define what it was we
were trying to achieve and why it was being done.

8

2. The Design Process and Evaluation of the Application

To aid the define phase, we used multiple design methods: user stories, story-
boards, and design requirements. All methods were chosen to aid in the communi-
cation between designers and developers

In agile development, user stories are often used to define short concepts or
functions a user might want to see in the application [35, p. 392]. However, this
method can also be used for the design elements of an application. We used user
stories for both the development and design of graphVR. All stories were written
from the point of view of the person who would benefit from the element (developer,
user, designer). The story also stated a goal (what the person wants) and a reason
(why the person wants it). A collection of some of our user stories can be seen in
Appendix A.

The storyboard method is a method where interactions are sketched out in a
similar manner as a comic strip, where each interaction is one frame in the strip. It
is used to easily convey how an interaction will lead to an event, which can be quite
an abstract idea to try to pitch to the rest of the development team. The storyboard
used can be found in Appendix H.

There are both strengths and weaknesses to this method when it comes to
storyboards and VR development. On one hand, they can be a good supplement
to clearly convey interactions with objects. But if those actions are non-linear,
a linear method, such as a storyboard, is not the optimal method. Because of
this, storyboards were mainly used in the design of the more linear scenes in the
application, as seen in Appendix H.

Based on our user stories and the storyboards we developed, design require-
ments were created for the application. A list of requirements is a list of expres-
sions “such as descriptions of features, capabilities, and quality” [35, p. 395]. They
should be concise and definitive statements to be used to determine if the system is
working as expected.

During each new iteration, the design requirements were updated for the
project to reflect what we had learned from the previous iteration. The design
requirements can be seen in Chapter 3.

2.2 Make Phase
The make phase is where all the implementation of the application or prototype

occurs [35, p. 401]. For graphVR, two prototypes were produced for the user tests
discussed in Section 2.3 as well as a final product, using the design requirements
decided upon in the previous phase. It was during this phase that all the tools
presented in Section 1.4 were used. For example, the graphs used in graphVR were
developed and the environments surrounding those graphs were modelled.

The traditional way of working in projects are called waterfall. This is when
the development is split into 4 phases: analysis, design, code and test. Then each
phase is performed consecutively, one phase at a time [36]. This in contrast to agile
development where all phases are done continuously throughout the project from
start to end [36]. Studies have shown that an agile development style improves
both the quality and development time of the product compared to the traditional
waterfall model [37]. Improved quality and speed is desirable and therefore it was

9

2. The Design Process and Evaluation of the Application

decided that an agile development process should be applied. The agile process used
during this project is not a complete, already defined process such as Scrum, instead
it was based on previous competences in the project group of agile development
processes. We decided to do it this way since learning the complete process of a new
method would be time consuming and not worth prioritizing in this type of project.
A visualization of this work methodology is presented in Figure 2.2.

Figure 2.2: An illustration of the workflow used during the project.

A sprint is a set period of time for each iteration of the process. In our case,
this was one week. A backlog is a list of items that is a suggestion or a requirement
to finish. There is a general product backlog where any possible additions to the
application can be added and sprint backlog, which is the list of items that should
be completed during the sprint. In the start of each sprint, a meeting was held and
the product backlog was discussed to decide what should be moved to the sprint
backlog, the previous sprint was also evaluated during this meeting. When the
backlog item is implemented, it needs to be evaluated and if any changes needs to
be made, the item is placed back in the sprint backlog to be adjusted in the next
sprint, otherwise it’s marked as done and no changes are made to this part of the
application if not necessary.

According to the agile process, we continuously evaluated VR applications and
statistics programs that already exist on the market, see Appendix B. Doing this
gave us an understanding of what features would work well in graphVR as it allowed
for testing and evaluation of features without having to implement the features in
our application. This helped us to not only make better design choices, but to also
implement them quickly. Design choices that worked well in other applications did

10

2. The Design Process and Evaluation of the Application

not always work as well in graphVR. That is when the evaluation of graphVR came
into play and we had to figure out a way to adjust the implementations to work well
for our scenario, or simply find a solution that would work better in our case.

To test the quality of the code, specifically the vital data processing parts of
the code that transform the tabular data to graphs, traditional unit testing was
used. Traditional unit testing is the practice of writing unit tests after writing
the application. A unit is the smallest working part of the application like a method
or class [38, p.10], and the idea is to divide the application into units and write tests
for all units.

Another method used was sketches. They were used to formalize design ideas
and communicate them to the development team. Sketches are rough drawings,
not intended to be finalized work, but only used as a rough guide for the actual
development of the product.

Because of the short time span of the project, most of our implementations in
the make phase aimed towards the final product. Not all implementations were as
perfected as a final product, but we continued building on the existing design and
implementation during each iteration.

2.3 Learn Phase
During the learning phase, the goal is continuous discovery [35, p. 427]. Be-

cause of the fact that there are fewer standards for designing in VR, it is important
to constantly try to learn from all parts of the design process, even during phases
outside of the learning phase. While it is a good idea to be focused on learning
during all phases of the project, the learning phase is dedicated to it.

Throughout all phases, but especially in the learning phase, we actively sought
out any difficulties for the user and anything that could be considered a failure in the
application. Finding failures in an application can help with the design of a better
solution [35, p. 428]. We did this by continuous evaluation during the development
of graphVR as well as performing two user tests.

In order to gather qualitative information about our design choices, two user
tests were performed. Before the tests were performed, test documents were written
as per Hoa Loranger’s recommendations in the article Checklist for Usability Studies
[39]. In the test documents, general goals were decided upon as well as the tasks the
users were to complete. The tests were qualitative studies and because of the limited
time-span, the participants were students from the university at both Bachelor and
Master levels. The test documents for user test 1 and user test 2 can be found in
Appendices C and D.

According to Nielsen Norman Group, the optimal sample size for a qualitative
user test is five participants [40]. The return of investment, the cost versus usability
findings, is the greatest around five participants because the test will not produce
enough new usability findings for the cost of increasing the sample size. In our case,
time will be regarded as the cost, and since we do not have a lot of it, the sample size
chosen was five participants. However, during the first test the sample size ended
up being four people, as one user dropped out at the last minute.

11

2. The Design Process and Evaluation of the Application

The thinking aloud method was used for the user testing [41]. The method is
frequently used when performing user testing on regular platforms such as computers
and smartphones, and was also useful with a VR environment. The method urges
the user to think out loud as they are performing the tasks of the test. The method
gives the facilitators an idea of why the user performed the task as he did. While
the observations of the test provide better understanding of what is wrong with the
product, the thinking aloud method allows the facilitators to also understand why
the users did as they did. Especially in a VR environment, where the users are
disconnected with the facilitators during testing. They are disconnected because
they can hear the surroundings, but not see it.

Our target audience for the application was people with a wide range of VR
experience. We wanted the application to be accessible by both new users as well as
experienced users. This was reflected in the user tests, as there were both novices as
well as advanced users. In the first test, three people had only tried a VR headset
one to two times, for roughly 15 minutes per time. The last user in the test owned
an HMD. For the second test, all users had used a headset before. Two people had
developed applications for VR and tried it thoroughly throughout the development
process. Two people had limited experience, and had only demoed a VR headset 2-3
times before. The last person owned his own headset and has advanced experience
with VR.

2.3.1 Ethical Testing Procedure
Testing in VR comes with some privacy issues, depending on how the data

from a user is handled. In both tests, the user’s physical and virtual presence was
recorded. Because of this we formed a contract, seen in Appendix E, with each test
subject giving us permission to use the data in our research. The contract included
a clause, which allows the user to end all involvement in the test, including allowing
the subject to request a deletion of the data collected.

We only recorded the users during the user testing. We never record anything
from the user after this.

Before each user test, the user was informed about the possible nauseating
effects the head mounted display can cause. The user was always able to abort the
test temporarily or permanently at any time.

2.3.2 Camera Set Up
When a user uses an HMD, it is harder to read the person’s face when they are

performing a task. To be able to analyze the user’s actions in accordance to what
is happening on the screen, the test was recorded using both a video camera as well
as a screen recording software. Both tests recorded audio as well. The camera used
in the first test was a Canon 5D Mark IV and the second test was recorded using a
Fujifilm X-T20. The screen recording software used was OBS Studio [42].

The floor plan of the set up of the video camera can be seen in Figure 2.3. As
seen in the figure, the camera was set up behind the monitor, filming the user from
the front and capturing the full body movements. The facilitator of the test was

12

2. The Design Process and Evaluation of the Application

positioned to the left of the user and the scriber to the right. A facilitator is the
person who interacts with the user during the test and tells the user what tasks to
complete [43]. The scriber records observations and takes notes on the answers to
the interview questions [43].

Figure 2.3: The camera set up for the user tests. The blue area indicates what
the camera included in the recording.

The set up allowed us to use the recordings when evaluating the results of
the test. VR is also much more physical than regular devices, and it is therefore
important to capture the physical observations of the user to, for example, see if
they tried to move the controller in a way that we had not thought of before.

2.3.3 Test structure
The two user tests were performed to ensure that the development of the

application was going in the right direction. The general test structure can be seen
in the flowchart featured in Figure 2.4.

13

2. The Design Process and Evaluation of the Application

Introduction: Informed
the test subject how
the test were to be

played out and about the
possible side effects of

using a VR headset (for
example motion sickness)

Contract: The test leaders
instructed the test subject on
their rights and then a contract
was signed to make sure they
were aware of their rights

Testing: The test subjects were
given a list of specific tasks to

perform and encouraged to think
aloud. The performance was

video taped and screen recorded.

Interview: An exit in-
terview was performed
after the test was done,
collecting answers to spe-
cific questions while also
collecting general thoughts

Figure 2.4: Flowchart of participants’ progress through the phases of the trial

The users were introduced to the test and were told about the side-effects of
wearing HMD’s as well as how the test was going to be performed. Then, a consent
form was presented to the participants, as seen in Appendix E. They were also
informed that they could stop the test at any time and to contact us if they want
their recordings and data deleted.

The first test was set up in a way to help us understand how the users would
interact with the VR system as a whole and had more specific tasks, tasks that
have a narrower focus and usually results in a right or wrong answer [39]. The four
tasks performed during the test, as well as the purpose of the task can be seen in
Table 2.1.

14

2. The Design Process and Evaluation of the Application

Table 2.1: A table of the specific tasks used in User Test 1, and why they were
performed.

Task no. Task Purpose

1

How many summer
homes were sold in
Stockholm during Q2
in 2016?

To check how the user interacts
with the bar graph, if they use the
interactions as they were intended
to be used

2

What is the trend for
summer home prices
in Stockholm over the
past decade?

To see if the graphs are able to
be analyzed, even in a 3D envi-
ronment

3

Give an example of a
county with a large
population and a high
median wage.

To see how the user interacts with
the scatter graph, as well as if
they use the interactions present
in the application

4
Give an example of
a county with a high
median rent.

To see how the user interacts with
the scatter graph, as well as if
they use the interactions present
in the application

The main goal of the test was to see how users would use and interact with the
graphs in the application. We wanted answers to general questions, such as would
the user understand how to read the graphs, was the controls hard to understand,
and did the room feel claustrophobic. We wanted to know if we should keep working
on the existing design, or if we needed to redesign the application and move in a
different direction. Since no one in the group had worked with VR before, we needed
to test out fundamental things, such as if the navigation control we had chosen was
a good fit for graphVR.

In the second test, the product was more developed and it was possible to do
a more in depth test of the system. Therefore, there were both exploratory and
specific tasks, testing interactions as well as the user’s personal experience of the
whole system. Exploratory tasks are open-ended tasks created to get the user to
explore the system and find out how the user interacts with it [39]. The five tasks
performed during the test and their purpose, can be seen in Table 2.2.

15

2. The Design Process and Evaluation of the Application

Table 2.2: A table of the specific tasks used in User Test 1, and why they were
performed.

Task no. Task Purpose

1
Do the tutorial and
then continue to the
museum.

To check if the user is able to com-
plete the tutorial without help
and learn how to perform the in-
teractions

2
Explore the museum
and tell us your initial
reactions

To get insights into what the user
thinks about the museum as a
whole

3

What was the three
most common pro-
gramming languages
in 2017?

To see how the user interacts with
the bar graph, as well as if they
use the interactions mentioned in
the tutorial

4

Can you see any
general trend in the
relation between job
searching time, salary,
and years spent
coding professionally?

To see if the user still can ana-
lyze the 3D graphs, even after the
changes made in the second pro-
totype

5

Choose any data
point and tell us how
much time the person
spends on looking for
a new job.

To see how the user interacts with
the scatter graph, as well as if
they use the interactions taught
in the tutorial

The test document for the second test can be found in Appendix D. Since the
application was further along in the design process, it helped with confirmation of
the design choices.

A structured interview was conducted at the end of each session. The questions
and observations from the first and the second test can be found in Appendix F
and G respectively. All questions collected subjective measurements, measurements
about the ease of use or satisfaction of the product [39], and the questions were
mostly questions about how the system was to use, if the controls were easy to learn
and use, and if the application was frustrating to use.

Once the tests had been completed, a list of problems with the application was
written and used in the design phase in the next iteration to design and develop
fixes for those problems.

16

3
Design Requirements

The final version of graphVR is a tool for viewing graphs in a virtual envi-
ronment on the web. The application consists of four different scenes: a tutorial, a
museum, a world where you are placed within a graph and an open world. In these
scenes three different types of graphs are presented. The graphs can be interacted
with in various ways that allow for easier readout.

Design requirements are a set of statements that defines the features, capa-
bility, and quality of the product which is developed [35, p. 395]. The design
requirements helped the development team to prioritize what to work on as the
highest priority was to ensure the entire list was satisfied by the final product.

The requirements were established in multiple ways. Some were already speci-
fied by the project specification whereas others had to be specified during the project
through research, testing, and evaluation. Since many of the requirements have been
specified throughout the project through evaluation of earlier versions of the appli-
cation, the list of requirements are fulfilled by the final product. The final list of
requirements can be found in the list below.

• The application should have VR-Support
• The application should run on the web
• The application should support Oculus Rift
• The application should be developed using A-Frame combined with Three.js
• The application should clearly present data in a way where no data is hidden
• The application should be able fetch data and and transform the data to make

it suitable for visualization
• The application should be able to visualize data
• The application should teach new users how to interact with the application
• The user should feel that the application is fun to use
• The user should feel that the application is easy to use
• The user should be able to draw some conclusion from analyzing the data
• The user should not feel claustrophobic when using the application
• The user should not have any issues understanding the controls
• The user should not become sick by using the application
• The user should be in a closed environment
• The user should be able to use use the application without help
• The user should be able to move around in the environment
• The user should be able to move a graph
• The user should be able to see the graph from every angle
• The user should be able to rotate a graph

17

3. Design Requirements

• The user should be able to see the value of a data point
• The user should be able to select a data point and compare it to other data

points

18

4
Using the A-Frame Framework

and System Architecture

A-Frame [8] is a framework that is built on the Three.js [13] application pro-
gramming interface (API) for Javascript [44] that uses the entity-component-system
(ECS) architecture [18]. This architectural type is a common choice within 3D ap-
plication and game development [18]. ECS follows the composition over inheritance
and hierarchy principle [18], which can be read about more in detail here in Java;
desing: objects, UML, and process by Knoernschild [45].

As stated in the name, this architectural pattern is built up by three parts,
entities, components, and systems [18]:

• An entity is a container where components can be attached to construct
something new.

• Components are reusable modules which can be attached to entities, to give
that entity some sort of attribute, like appearance, behaviour or functionality.

• Systems are global services that can be used to handle groups of components,
in our case this would be the scene in which all the entities are placed.

A-Frame includes many pre-built components, where you can modify the com-
ponents of an entity when placing it in the virtual world. However, the pre-built
components are not enough for every project, like this one. Therefore some of the
entities used within graphVR have been built from scratch using Three.js but they
can be used the same way as the pre-built components. An example of components
which are developed specifically for this project are the graphs. Using only pre-built
components could also introduce some problems in the form of performance issues
as these are built for as general of purpose as possible, therefore rewriting simple
components and using those instead improved the performance of the application
notably.

To create custom components in A-Frame, Three.js is used. To create an object
in Three.js materials which describe the appearance of an object, is combined with
geometries which describe the shape of the object, to create a mesh. This mesh
combined with behaviour and logic can then be used as a component in A-Frame
[46].

As stated above, the components are created using Three.js [47]. When placing
the components in the virtual world, it is done through a HTML [48] document, an
example of which can be found in Listing 4.1 [18].

,

19

4. Using the A-Frame Framework and System Architecture

1 <a- entity
2 grid bars="color:blue" position ="1 2 0";
3 ><a-entity >

Listing 4.1: Code example of how objects are placed in the virtual environment
using HTML

<a-entity> is the element name of the tag, explaining to A-Frame that a
generic entity should be created. The grid, bars, and position then tells the tag
what attributes that be included. In this case, the entity should be a grid entity,
consisting of bars placed at a specific position. In some cases an attribute value is
needed, like in the case of position. This value tells the graph at what position the
graph should be placed relative to the scene. The way this is used in graphVR is that
a graph is defined as a type of grid depending on the data in the graph is numerical
or categorical and also what content the graph should contain and present the data
as, namely bars, point-clouds or lines. The way this is built makes future expansion
of graphVR. All that is needed is to build the new contents to present the data in
a new way. Also, thanks to this way of building the application, it makes it really
simple to present the same data in many different ways, as not all data is suitable
for all types of graphs. Therefore numerical and categorical data is separated in our
implementation of graphVR, as some operations used to generate the graphs only
work with one type of data.

20

5
3D Graphs

Graphs are visualizations that present the relationship between groups of nu-
merical data [49, p.164]. The term 3D graph, can according to Harris [49, p.401], be
interpreted either as a graph with three axes, or as a graph that has two axes and
an added cosmetic depth, to look 3D [49, p.401]. From this point on, we will refer
to 3D graphs as graphs that have three axes. 3D graphs can cause problems if they
are not able to be seen from different angles, since it could cause data points to be
hidden from the reader. Hidden data points are a problem if the graph is displayed
in a static context, for example, on a paper or in a computer application where the
camera or the 3D graph can not be moved or rotated.

We chose to implement 3D graphs in graphVR because hidden data points can
be seen by moving around a 3D graph in a VR environment or by rotating a 3D
graph using a VR controller. The types of 3D graphs that have been implemented
in graphVR are the following: a 3D bar graph, a 3D line graph and a 3D scatter
graph. Every 3D graph has some common attributes, such as a 3D grid, a title, axis
tick labels and axis legends. Each 3D graph also has some unique attributes such
as different data point visualizations (bars, lines, points, etc.). In this project we
have explored how these 3D graphs can be implemented as combinations of different
A-Frame [8] custom components.

5.1 Text
A text component is needed for each 3D graph to have a title, axis legends,

tick labels for each axis and a value indicator above all data points. a-text [50] is
a native A-Frame [8] component that can be used for all 3D grid text purposes.
The problem with a-text is its limited amount of stock font families and that the
text can not be outlined. Another approach to create text is to make a custom
text component using the HTML5 Canvas [48], which can render text decorated by
CSS fonts [51], making it possible to outline text and to use all CSS generic fonts
[51]. The HTML5 Canvas can be rendered onto a Three.js texture[52] and then be
attached to an A-frame component.

Billboarding is a technique that can be used on 2D objects to make them
always face the viewer [53, p.257]. This technique is useful to use on text in VR since
stationary text can only be read from certain angles. A downside to billboarding is
that it makes a scene more unrealistic since text in the real world does not always
face the viewer.

In our implementation of a custom text component, we chose to use the

21

5. 3D Graphs

HTML5 Canvas to render text because of the flexibility we got by using CSS fonts.
We chose to billboard our text component since it made it easier to read all types
of text on the 3D graphs.

5.2 3D Grid
3D grids can be used as helping lines for users to read and compare data points

in a 3D graph. A problem with 3D grids is that data points which are placed in
the middle graph can be difficult to compare to the grid (to approximate a value)
since they are far away from each other. This can lead to data points values being
misread.

A 3D grid component in A-Frame can be built by combining three 2D grid
components. A 2D grid component can be created with the help of the Three.js
[13] grid helper object [54], which sole purpose it to create grids. The problem with
using the grid helper object is that grids can only be made quadratic [54]. Another
approach to create grids is to make a 2D grid component out of Three.js line meshes
and cross them to form grids with any dimensions, and with any amount of lines in
any direction.

We chose to implement a 3D grid component with line meshes. This made it
possible to create 3D grids that only had two vertical lines (see Figure 5.2), which
was useful when 3D graphs did not need 3D grids with vertical lines. It also made it
possible to create 3D grids with more lines on one axis (see Figure 5.1), which was
useful for graphs with high precision data.

A problem that occurred when we used line meshes was that intersections with
ray casters only occurred directly on the lines. We wanted intersections to happen
as if the 2D grids were planes. We solved this by adding three transparent planes
as a hemicube on top of the 3D grid, to fix the intersection problem.

This was also useful since the planes, when made half transparent, could make
it easier for the user to distinguish data points from the environments if they had
similar colors.

22

5. 3D Graphs

Figure 5.1: A 3D-grid with more lines on the x-axis compared to the other axes.

Figure 5.2: A 3D grid with two vertical lines for each 2D grid.

We added line labels to graph axes by using two different methods. The first
method was to create an axis of labels for an interval of values, which was useful
for numerical values. The second method used was to add a fixed array of values to
an axis, which was useful for categorical data. Both methods could be used on any
axes, making it possible to create 3D graphs that had differently placed label axes.

5.3 3D Bar Graph
A 3D bar graph displays rows of bars that represents grouped data series [49,

p.80-81]. All bar rows can be separated by color to make it easier for the user to

23

5. 3D Graphs

identify bars that belong to the same data series [49, p.403]. Transparent bars can
be used to give the user a more complete overview of all bars in a 3D bar graph [49,
p.403]. The downside to transparent bars is that it can be difficult to distinguish
individual bars since the bars’ colors and lines are blended together [49, p.403].

We decided to create a 3D bar graph with bar rows with unique colors and the
option for all bars to be semi-transparent, for the reasons mentioned above. This
was implemented by combining a 3D grid component with a matrix of Three.js box
meshes. We input the statistical data into the 3D bar graph as a matrix, where
each row in the matrix represented one data series. Each row in the matrix could
then be mapped to the heights of the bars in each bar row. Each bar was also made
hoverable meaning when intersected with a raycaster it would change color and show
the hovered bar’s value. The result of the 3D bar graph can be seen in Figure 5.3
and Figure 5.4.

Figure 5.3: A bar graph.

24

5. 3D Graphs

Figure 5.4: A rotated bar graph.

5.4 3D Line Graph
A 3D line graph displays lines that represents multiple data series [49, p.207-

208]. Lines can have different colors to help the user differentiate between different
data series [49, p.403]. A problem with the 3D line graph is that the same data can
be displayed on a 2D graph by simply removing the z-axis and placing all lines on
a 2D plane. In comparison a 3D bar graph can not directly be made as a 2D graph
since the bars would overlap and some bars would not be visible.

We implemented the line graph by combining a 3D grid component and rows
of continuous lines with unique colors using the Three.js[13] line meshes. We decided
to not have an 3D grid z-axis with line names, instead we attached text labels to
each line at their last heights (see Figure 5.5). Having the line name close to the
line made it more clear which line belonged to which line label. To make it possible
to hover each data point on the graph Three.js box meshes were added on each data
point. When the boxes were hovered with a raycaster, the value of the point was
shown as a label on the box.

We input the statistical data into the 3D line graph as a matrix, where each
row in the matrix represented one data series. The heights of each point on each line
segment was then mapped to their respective data series in the matrix and placed
out on the z-axis of the 3D line graph.

25

5. 3D Graphs

Figure 5.5: Line graph

5.5 3D Scatter Graph
A 3D scatter graph is a variation of a point graph with only quantitative scales

or a combination of quantitative and sequence scales [49, p.291]. A 3D scatter graph
is used to observe patterns of distributions among a large quantity of data points[49,
p.291]. This makes it difficult to read individual data points [49, p.291], if that is
something that the user wants to do.

One method of implementing a 3D scatter graph, which Canter [55] used in
his 3D scatter graph project found here [55], is to attach Three.js’s Points [56] as a
particle system to an A-frame component. Sprites which in Three.js always faces the
viewer [57], can be attached to each point in the particle system. Another method
to create a 3D scatter graph is to use sphere or box meshes from Three.js to create
all points as individual A-frame components, compared to the Points system which
would be one single A-frame component.

We implemented a 3D scatter graph with the possibility to be added to a scene
as either a particle system or as a group of meshes. The reason behind the decision
was that a particle system performed better with large quantities of data compared
to meshes, and meshes worked better with A-frame’s raycaster component to handle
interactions with the 3D graphs compared to the particle system.

We tried two textures used as sprites in the particle system, one that looked
like spheres (see Figure 5.6) and one with a simple color (see Figure 5.7). A scatter
graph implemented with sphere meshes, can be seen in Figure 5.8.

The statistical data input our 3D scatter graph component was an array of
3D points. These points were placed out directly either as Points particles or as
Three.js meshes, into the 3D scatter graph.

26

5. 3D Graphs

Figure 5.6: 3D scatter graph with flat colored sprites.

Figure 5.7: Scatter graph with sprites that look like spheres.

Figure 5.8: Scatter graph implemented with Three.js sphere meshes.

5.6 Data table
A table of statistical data can be used to create 3D graphs. This works by

using a number of columns in a table to represent different data series, which can be

27

5. 3D Graphs

placed and used in 3D graphs as spheres, points or any other data point visualization.
Statistical data can be transferred to a data table with text files. Two examples of
text file types used to transfer data are JSON [19] and CSV [58]. JSON can store
tabular data as JSON objects where the keys in each object represent table columns
and each object in the JSON array represent a table row[55], as seen in Listing 5.1.
CSV can store tabular data as rows of comma-separated values where the table
columns are the first row and all other rows are table rows. A problem with parsing
CSV in JavaScript is that it requires a third party library, compared to JSON files
that can be parsed by using a native JavaScript method.

1 [
2 {
3 "city": " Stockholm ",
4 "date": "2017 -01 -01",
5 " temperature ": 10.8
6 },
7 {
8 "city": " Gothenburg ",
9 "date": "2017 -01 -02",

10 " temperature ": 12.0
11 },
12 {...}
13]

Listing 5.1: JSON scheme with columns: city, date, temperature. Based on a
JSON schema used for a 3D scatter graph by Canter [55].

In our implementation of a table, we used a JavaScript object as the table,
with keys as columns and the values as arrays of statistical data. We used JSON to
transfer statistical data into the table object since a third party CSV parser would
have added an unnecessary dependency to the project.

We used the same method to choose which three columns in the table that
would be used for the creation of a 3D graph component as Canter [55] did in his
3D scatter graph component [55]. This meant that the same JSON file of statistical
data could be used for numerous 3D graphs.

Statistics from a table can not be used directly when creating a 3D graph.
First, the tabular data has to be transformed into arrays of data point positions and
labels. We solved this by having methods that could be used for both categorical
and numerical data to get point positions that would fit each 3D graph with a fixed
size. Another feature added was the possibility to offset data points, which was
useful when the minimum value of a numerical value was greater than zero. Doing
an offset on all data points reduced the amount of empty space in each 3D graph.

28

6
Environment

The environment plays a big part in a VR application, since the user is en-
capsulated by the virtual world. The environment consist of both virtual rooms
or backgrounds, as well as attributes which contribute to the environment, such as
lights and shadows.

Before designing the environment, we had to decide if we wanted a stationary
environment or an interactive environment. One example of a stationary environ-
ment is CalcFlow [59], which is an open source software used to look at vectors and
other mathematical graphs in 3D. The user is stationary and the only environment
is a graph in front of the camera. The graph can be manipulated, but there is no
navigation controls. This seems to work well for that application, but since the idea
for graphVR was to be able to see more than one diagram in a space, a stationary
environment did not work. So we narrowed it down to an interactive environment
quite quickly.

There were two main types of interactive environments we had to choose be-
tween: an open world or an enclosed space. Before starting the development of
graphVR, the application Tilt Brush [60] was studied. Tilt Brush is an open world
painting tool designed by Google for painting in VR. The application is still designed
for only one main object. When we tried the navigation tool, we easily got lost in
the open world. This was a problem we did not want to have in our application.

That left us with an enclosed environment, where all the graphs were on dis-
play. We got the idea talked about in Chapter 3 from Circopia Solution’s the Hall
[61]. The initial idea was to make an enclosed museum with both the instructions
and the graphs present.

For a large part of the project, the main goal for the environment was a room
with three different graphs because of the reasons stated above. However, the end
result was actually a combination of an enclosed space and an open world. We de-
cided that, even though the enclosed space was the most user friendly environment,
it should be up to the user if they want to have a distraction free environment or
not. We also decided to have a scene where the user is in the scatter plot in an open
environment, as there was a market for it.

Lights and shadows also play a big part in bringing depth to the scenes. They
were both used in all scenes to create a more realistic environment.

29

6. Environment

6.1 How to Work in Blender
In Blender [11], a common type of object in a 3D scene is a mesh. Meshes are

made up of vertices, edges, and faces and create a polygonal figure [62]. In Figure
6.1 it is possible to see that a vertex is created by two edges meeting, an edge is the
connection between two vertices, and the face is the area created when closing three
or more edges.

Figure 6.1: A mesh of a cube in Blender. It is possible to see the vertices, edges,
and faces of the model.

The mesh used in Figure 6.1 is a primitive, a built in mesh of a commonly
used shape, and it is common to use them to make more complicated models [63].
Because of the many ways it is possible to combine primitives, there are different
ways to build a 3D model. In the case for the museum, mentioned in Section 6.3,
the room was built out of a plane and then the walls were extruded from that plane.
The plane, which at first consists of only one face, was subdivided, creating multiple
faces on the plane. The squares closest to the edge was then extruded, making the
plane thicker in those particular areas. The final mesh can be seen in Figure 6.2.

30

6. Environment

Figure 6.2: The room mesh in Blender. It is possible to see all the subdivided
squares.

To add a texture to the model, a material color was assigned to the object and
then baked into the texture of that object. Baking is used as a tool to speed up the
rendering process by baking in the lights and shadows into the textures itself instead
of having to render them every time [64]. It also helps to reduce the polygon count
of an object, thus making it better for performance as A-Frame does not have to
render as many polygons on the model. However, we mostly did it because it gave
the room a depth that A-Frame’s lights and shadow components could not provide.
The difference between the room with baked textures and without can be seen in
Figures 6.3 and 6.4. It was also used for the other 3D models present in the scene.

Figure 6.3: Without baked textures, the room does not have the same depth as
the room with baked textures.

31

6. Environment

Figure 6.4: The room as seen in our application, with baked textures.

When a texture is baked, it creates an image, which is then applied to the
model. However, since the model is in 3D and an image is flat, UV-mapping is used.
UV mapping is a process to flatten out a 3D object, to then be able to apply a flat
image to the flat model [65]. This creates a UV map, a 2D mesh mapping out all
the vertices, edges, and faces of the model. An example of a UV map can be seen
in Figure 6.5, which is the UV map for the walls of the room in the museum. This
allows the image to put a texture on both the front and the back of the model all
in one image. The image is then wrapped around the object according to the map.

Figure 6.5: The UV map for the room in the museum.

To be able to bake a texture, the model first has to be UV-unwrapped. It is a
method to unwrap the UV map from the model itself [66]. This is done by flattening
the model at all the seams of the model. Two methods can be used to do this: it can
be done automatically by Blender, which means that Blender assumes where the

32

6. Environment

seams are, or by placing out seams by hand. Both methods were used as Blender ’s
automatic UV unwrapping worked well in some cases, but for the museum’s room
the UV-map was not correct when unwrapped automatically. Seams were placed on
all corner edges as seen in Figure 6.6.

Figure 6.6: The red edges of the model are the seams that were put on the model
by hand.

Once the model is unwrapped, then it is possible to bake the texture onto a
canvas, creating an image to wrap around the model.

6.2 Tutorial
The tutorial evolved from a simple static board to a fully interactive separate

scene. In the first iteration of our application, the tutorial was just a simple help
board showing what each button did, as see in Figure 6.7. The idea was that the
interactions would be intuitive and easy enough to only need a simple picture for
the user to understand the controllers.

33

6. Environment

Figure 6.7: The help board designed for the first user test. The figures of the two
Rift controllers are taken from a picture from Wikimedia [67] under public domain.

Then the picture was modified in Photoshop [68], creating the border and the
labels. The final image was then imported into A-Frame [8] with the image tag.

Unfortunately, it was apparent after evaluating the aplication, that the users
did not read the whole board and quickly went on with the tasks they were given.
More information about the insights from user test 1 can be found in Section 8.1.
In the end, the result of having a simple help board was that the users only found
the navigation command and did not use any of the other interactions.

The result of the first user test was an evolved tutorial with a separate scene
before the main museum scene. Two early sketches of the tutorial can be seen in
Figures 6.8 and 6.9. As can be seen in the figures, we considered two types of layouts.
The layout seen in Figure 6.8 was an idea to have multiple rooms leading up to the
main museum, where each room consisted of teaching the user one interaction. The
second sketch, seen in Figure 6.9, featured a hallway leading the user from one
diagram to another.

Both ideas were built around the fact that we wanted the tutorial to be inter-
active for the user, as well as specifically pointing out all of the different functions
available in graphVR. First the user was forced to teleport, then learn how to move
a diagram, and after that how to rotate a diagram. In both sketches, a game state
system was to be used, where each introduction of an interaction was a state. Once
the action had been performed, the current state would become invisible, and the
next state would become visible. For example, in the first stage, once the user tele-
ported to a specific location, the next state, the move state, would become visible.
In the end, the user would had learned all of the necessary skills to use graphVR.

34

6. Environment

Figure 6.8: An early sketch of the tutorial

Figure 6.9: An early sketch of the tutorial

There were some important aspects to consider when designing the tutorial.
It is suggested to have as little text as possible so avoid overwhelming the user and
make sure they remember what the game controls are after they have completed the
tutorial [69]. We also had to come up with a way to force the user from one event
to another. Since we wanted it to be interactive and similar to a game, it was not
an option to just have the user press the A button and read the instructions. In the
end, we decided that the second sketch would allow us to guide the user more than
the first, and thus seemed like the better choice.

Because the idea for the tutorial was a linear series of event, a storyboard was
drawn up to show the consecutive events and make the idea of the tutorial more
clear to the developers. The storyboard can be seen in Appendix H.

35

6. Environment

The game states of the tutorial was implemented through an A-Frame system
and each step in the tutorial was a state, which took the user from one step of the
tutorial to another. Once an event was completed, another event started. The first
scene can be seen in Figure 6.10. Once the player teleported to the circle, a new
state began and the changed into Figure 6.11. All states in the tutorial can be seen
in Appendix I.

Figure 6.10: The first state in the tutorial, encouraging the user to teleport
towards the circle. In it, no other elements of the scene is visible.

Figure 6.11: Once the user has teleported to the circle, the tutorial will enter the
second state, the move state. The move diagram, move text, and move controller

become visible and the user is encouraged to move the graph.

The final design of the tutorial is a simple environment consisting of a light
plane and sky. The floor is at 50% opacity to still be able to see a graph if it has
been pulled through the floor. Jason Jerald’s book The VR Book: Human-Centered
Design for Virtual Reality, suggests to have subdued colors as the surroundings and
highlight the important objects in the environment with lighter colors [35, p. 238].
A subdued, darker color scheme was tried, but we felt that the lighter scheme suited
our application more.

36

6. Environment

Because the tutorial was not connected directly to the museum or any of the
other scenes, there needed to be a way to go from the tutorial to those other scenes.
Fortunately, A-Frame has created an entity similar to VR version of the hyperlink,
the link traversal [70]. It acts as a portal from one scene to the next, and worked
well for connecting our different scenes together.

A controller model was made for the tutorial to ensure inexperienced VR
users could visually see where the buttons for the action was. An example of this
can be seen in Figure 6.12. Because the controllers were 3D models, the user could
physically look around it by moving their head in real life. The Rift controller
models are built by KingRahl [71] and downloaded from the digital design sharing
website Thingiverse, under a creative commons licence. They were then modified
with labels for the different interactions.

Figure 6.12: An example of the controller models used in graphVR. This is a
depiction of the controller which tells the user where the interaction move is

positioned.

6.3 Museum
As previously mentioned, the idea from the start was to create a room which

displayed diagrams, much like statues or artworks in a regular museum. There have
been multiple iterations of the actual museum model, going from a simple plane, to
a square room, and in the end a large room with windows. An early sketch of the
museum layout can be seen in Figure 6.13. The layout is actually quite similar to
the final layout.

37

6. Environment

Figure 6.13: An early sketch of the layout of the museum environment in
graphVR

38

6. Environment

At first, the goal was to have a photo realistic surrounding, especially when it
came to the textures. However, we noticed that this interfered with the reading the
graphs. To fix this a more minimalistic theme was adopted. The walls and floors
were monochrome so there was not as much noise when looking at the graphs. A
picture of the final museum can be seen in Figure 6.14.

Figure 6.14: The final museum scene in graphVR

The current and final version of the museum consists of one room. In the
room, there is a scatter graph showing the relationship between developers’ salaries,
how long they have worked, and how much time they spend searching for a new job
each month. There is also a bar graph of the most popular programming languages
in 2017. Finally, there is a line graph to the right of the bar chart. To the left of
the starting position, a controller model shows the user all of the possible controller
interactions.

During the design process, the idea to have windows in the museum was a con-
scious choice to make the room feel less claustrophobic. We tried making skylights,
small rectangular windows and smaller windows, but in the end we chose large win-
dows on the three largest walls. This also contributed to the lighting because we
can have a light source, coming from the outside of the room.

6.4 Open World
Towards the end of the project, we decided that the users should have a choice

whether they wanted to be in an enclosed space or in an open world. Therefore, an
open world was added as an option and the user could choose between the museum
and an open world after completing the tutorial.

39

6. Environment

Figure 6.15: The open-world scene in graphVR

The open world shown in Figure 6.15 has a similar layout to the museum,
with all the diagrams and the helper controller, but the environment is much more
similar to the tutorial. The floor and background are the same colors, and the floor
is the same plane entity as in the tutorial.

The choice to include an open world environment came from the idea to have
a distraction free space to analyze the graphs in.

6.5 Immersive Scatter Graph
The immersive scatter graph environment was a product of the last user test.

Many users mentioned that what they liked the most about the program was to be
able to stand inside of a graph.

The environment is just a large scale scatter graph and all interactions work
the same way as in the other scenes. A picture of the environment can be seen in
Figure 6.16

40

6. Environment

Figure 6.16: The immersive scatter graph environment. The user is surrounded
by all the data points.

6.6 Lights and Shadows
In A-Frame, there already exists components which tell an entity to act as a

light source [72]. Lights create shadows and helps enlighten the environment around
the user. There are five different types of lights in A-Frame: directional, ambient,
spot, point, and hemisphere.

The directional light component is light coming from one direction far away,
similar to the sun or the moon. The position of the light cannot be changed, but the
light can be pointed towards a specific direction by using the position component.
They are the most efficient lights to use if the scene has real time shadows.

Two other directional light sources are the spot component and the point
component. However, compared to the directional light component, they both act
similarly to actual light bulbs, where the point component can be compared to a
single light bulb and the spot component is similar to actual spotlights. The spot
component casts light in a single direction and forms a cone shape as seen in Figure
6.17. The angle of the cone can be adjusted, which means that it is possible to
decide how wide the light should shine. The point light seen in Figure 6.23, is an
omni-directional light source, which means that it sheds light in all directions. Both
of these are good to use in places where actual light bulbs would be present, but
they can be used in other instances as well.

41

6. Environment

Figure 6.17: A spot light component directed towards the controllers in the
museum. The component creates a cone of light and casts a sharp shadow.

Figure 6.18: A point light component shining in all directions and creating a
softer light.

The ambient and hemisphere components are similar to each other and cast
light globally in the scene. These lights do not contribute to casting shadows, but
contribute to a more natural feel in the environment.

Ambient light interacts globally with the components in the scene and is a
process where a light tries to simulate indirect lighting. Ambient light brings about
realism in the scene and makes sure the shadows do not appear black, but act as
naturally as shadows do in the real world. It is recommended by A-Frame to have
an ambient light present in every scene [72].

As previously stated, the hemisphere light is similar to an ambient light, but
can be used for scenes where the sky and the ground are distinctly different colors.
For example, if the ground is green grass but the sky is blue. It is possible to decide
both the ground color and the sky color, which is why it is good for a scene where
the ground and the sky needs two different types of light.

Because the three scenes in graphVR are built around different environments,
we needed to use different types of lights in each scene. All scenes needed a direc-

42

6. Environment

tional light and an ambient light to create a natural look in the environment. The
directional light component was used to simulate the light coming from far away
and the ambient light was used to create indirect lighting in the scenes. However, in
the museum another light source was chosen: the point light component. To create
shadows, a light needs to have a direction. Because the scene is inside a room, the
light outside was not enough to light up the inside of the museum. Either the point
light or the spot light had to be used to create a brighter scene as well as create
shadows in the museum. Because the different elements in the museum was to be
moved by the user, the spot light seemed too focused on one point to work for the
museum. Therefore a point light was chosen to light up the inside of the museum.

Having a directional light in the scene, either a directional light component
or a point light component, was important to create depth in the bar graph. In
Figures 6.19 and 6.20, it is possible to see the difference shadows make. To be able
to separate the different bars in the bar graph, shadows were needed.

Figure 6.19: A scene with a point light and an ambient light. Each side of the
bars in the bar graph can be distinguished.

Figure 6.20: A scene with only ambient light. All sides of the bars on the bar
graph are the same colors. To the left of the graph it is hard to distinguish which

bar is which.

43

6. Environment

A shadow component is available in A-Frame and is simple to use. The com-
ponent allows entities to cast shadows onto other objects and also receive shadows
that are cast onto them.

In A-Frame, shadow maps can be set to only be calculated on the first frame
or to update every frame. Updating in every frame costs more from a performance
perspective, but is needed if the shadows are supposed to behave as expected when
moving objects. However, in Blender it is possible to bake a texture and add the
shadows onto the model itself, see Section 6.1. We used a combination of baked
shadows and real time shadows. We wanted to have real time shadows because the
diagrams would be moved by the user and it would look strange if its shadow stayed
in place.

44

7
VR Controller Interactions

VR controller refers to the system implemented in the application, which adds
the ability to interact with the environment by using the physical controllers, that
the user hold in the hand while using the application. The keystone of these con-
trollers are a method called raycasting. Raycasting is done by sending out an invisi-
ble or visible ray from a point and detect if any objects that can be collided with are
intersected by the ray [73]. This is done by taking the origin of the ray and setting
a direction for it. The program will then check for all objects in the ray’s path and
add them to an array [74]. The first item that is intersected is put in the beginning
of the array, which also probably is the item that the user want to analyze further.
Therefore all other data points are being ignored.

In the case of graphVR the raycaster is a laser pointer on the right hand, which
helps the user know what he or she is pointing at, as there is a line to trace until
it collides with an object. The values of this object can be used by graphVR and
thereby be interacted with by the user. As it is most likely the first object that
is being intersected that the user want to interact with, all other objects are being
ignored. Without this technique, it would be difficult for the program to know what
object the user wants to interact with.

In the beginning of the project super-hands by Will Murphy was used as it
was a multi-purpose tool that implemented many additional features to A-Frame
specifically for interactions, like allowing the user to grab an object or notifying
when an object is being hovered [75]. Unfortunately, using super-hands introduced
compatibility issues with other components used. Therefore we had to build a similar
tool to super-hands.

The tool that we built to replace super-hands uses the laser-controls compo-
nent [76] from A-Frame to determine what objects the user is pointing at and also
showing the correct controllers matching the ones that the user is holding. The laser-
controller component created is called graph-controller. Graph-Controller also,
in addition to what the laser-controller implements, also implements interactions.
The interactions scale and rotate are done from the three.js object when called.
To move an object the right trigger button is pressed, and the entity becomes a
child of the graph-controllers and follows the movement while the trigger button is
pressed. When the trigger button is released the entity goes back to being a child of
the scene and stops following the controllers. Due to the data being presented in a
3D world, it is possible that the user can not see data points that are hidden behind
other points, therefore we find that the interactions are necessary for the user to get
a fair view of the graphs. By scaling the graph the perspective isn’t really changed
but it makes it possible to focus on one portion of graph if needed.

45

7. VR Controller Interactions

As for analysis of the data, it is important that the user is able to get exact and
correct data from each data point that is being presented in the graph. Therefore
as a help tool for the user, a small display is mounted on one of the controls where
the user can see all the values of the data point of which he or she has selected and
then compare it to other values. This is also a kind of highlighting that is good for
selecting points from large clusters of data and for hiding unnecessary details that
is not in the scope of interest for the user [3].

Already in the pre-studies we realized that there are many ways to handle
navigation within VR. Therefore we had to do some evaluation of each of the possible
methods for VR-stat. We found that the possible options would be:

• Teleport, point where to go and press the trigger button to get there
• Move with the joystick, like in common first person shooter games
• One stationary spot, no navigation for moving further distances than the mo-

tions you do physically
As we tested other VR applications, the move with joystick option was quickly

excluded. This made the users who tested this method motion sick very quickly. This
was probably, as Wikström states in his study about walking- and rotation speed
for effective navigation in VR, due to the sensory conflict theory [77]. Basically this
theory tells us that when the sense of balance, sight and other nervous systems which
determine the movement and direction of the body are stimulated by conflicting
information. This would happen all the time if you were to navigate with the
joystick since every time the user would want to move he or she would see that she
is moving but the sense of balance and feel would conflict. Therefore this method
was scrapped for this project.

The choice between the other two options was not as easy. We found that
both worked quite well and did not cause any motion sickness. We think that both
of these could have been used for this project successfully hat not been for the fact
that we ended but using teleport as we wanted to showcase multiple graphs at once,
as that would allow the user to compare the different graphs. To do this we found
that if we placed all the graphs in the room and allowed the user to move around
as s/he wished and also moved the graphs as they pleased, no functionality would
be harmed by the navigation choice. Unfortunately we found some cases of users
struggled with using the teleport navigation accurately.

To implement the teleport functionality, the teleport controller was used [78].
This allowed the user to use the left controller to navigate around the environment
by pointing where to go and pressing the left trigger button. The development team
did testing and evaluation of different ways to navigate around the environment and
settled on teleport being the most convenient. Teleport was also appreciated by the
test subjects as a tool for navigating around the environment.

46

7. VR Controller Interactions

Figure 7.1: Screen capture of user navigating using teleport.

47

8
Evaluation of the application

Two user tests were performed to aid in the development of graphVR. They
provided valuable insights into the current design state of the application as well as
providied information about possible future design changes.

The results from the user tests were qualitative, with both observations from
the facilitators as well as answers to the interview questions. The recorded footage
of the tests was also evaluated after the tests were completed. All observations,
interview questions, and answers can be found in appendices F and G for user test
1 and 2 respectively.

The findings helped form the final product of graphVR and resulted in a further
understanding of the users.

8.1 Test 1
This section is a summary of the data that was gathered in the first user test.

We found that the choice of using teleport as a navigation tool was appreciated by
the test subjects and easy for the users to understand as noted in interview question
1 found in Appendix F. By inspecting the test subjects, it was found that even
though there was a help board displaying all the controls, the test subjects did not
read this and therefore struggled getting started. A picture of this board can be
found in Figure 6.7. This was a problem we had not foreseen and unfortunately
only one user tested the other features, apart from teleport and to read data from a
hovered data point. This user was very familiar with VR, since he owned a headset
of his own, which probably contributed to why he figure the controls out faster than
the other users. As a result of this we decided to construct a tutorial to teach the
user about all the features he or she could use.

One of the test subjects did not even read the data by hovering the data point,
instead he looked at the axis marks which gave him a close estimation of the correct
value. Apart from this, all test subjects managed to complete the tasks we assigned
them. When one of the test subjects questioned our data in the graph, we realized
that the graph was reading the data the wrong way, this had to be solved.

A positive remark was that the test subjects liked that they were bound by a
room so that they knew that they did not miss anything. The room also was not too
small so that the test subjects would feel claustrophobic. The room felt somewhat
too bright and therefore made text difficult to read, to reduce this problem we
decided to mute the colors of the walls and the ceiling.

All the test subjects expressed that they were very impressed by the application

48

8. Evaluation of the application

and were entertained while using graphVR, this is a good sign that the application
did not feel difficult to use and had a good flow for the user. It is also one of the design
requirements found in Chapter 3 that should be met, this was primarily expressed in
question 11 “Was the program easy to use?” in Appendix F . During the evaluation
of this test to improve for the second user test, we found that introduction questions
for the test subjects would have been useful to make the test subject comfortable
with the test and also to get some information that could be useful to us before we
began the test, such as if the test subject felt confident in using a computer. Having
these types of questions are also suggested by Doody in her presentation at Harvard
[79] and something we learned when designing the next test.

8.2 Test 2
The second user test generated many useful insights into what changes needed

to be made to graphVR. Based on the post-test interview, the application was gen-
erally easy to use and it was, for the most part, not frustrating to use. The controls
were easy to use and to understand. To see all questions and answers, see Appendix
G. However, there were some major design flaws that surfaced during the test.

One of the main goals for the user test was to see if the newly implemented
tutorial would help the user learn the controls in a better way. However, only 3
out of 5 users manged to complete the first task of going through the tutorial and
continue to the museum without any help from the facilitator.

The biggest problem with the tutorial was that the circle used to indicate
where to teleport, as seen in Figure 8.1, was also used in the next event to indicate
where to move the diagram, as seen in Figure 8.2. This caused a lot of confusion,
and user 1, 2, and 4 even teleported to the circle in the second figure. User 4 was
even so confused he had to restart the test twice before understanding that the
diagram was supposed to be moved into the circle. In the final product, the circle
was only used for indicating where to teleport. This is described in Section 6.2.

Figure 8.1: Figure describing the different Degrees Of Freedom.

49

8. Evaluation of the application

Figure 8.2: Figure describing the different Degrees Of Freedom.

Another problem people had was that the text disappeared as soon as the
diagram was moved, however the next scene did not appear until the diagram was
moved into the circle pictured in Figure 8.2. This also caused a lot of confusion
and two users asked out loud if they had missed something in the text because they
could not advance in the tutorial. In the final product, the text did not disappear
and the next event was made visible as soon as the diagram is moved.

To see how previous VR experience and video game experience affected the
user’s performance, the completion time of the tutorial compared to experience was
noted and can be seen in Table 8.1. As can be seen in the table, there does not
seem to be any correlation between VR experience, video game experience, and the
time it took to complete the tutorial. User 3, the user with the least amount of
experience using VR, and users 1 and 2, the users with the most experience, have
similar completion times. The same thing can be said about video game experience.
Unfortunately, we did not have any user without VR or video game experience.
Because of the lack of controlled variables, as well as the low amount of people used
in the test, no real conclusion can be drawn. However, it does seem as if there is no
correlation between the completion time of the tutorial and previous experience.

50

8. Evaluation of the application

Table 8.1: The relationship between completion-time of the tutorial and previous
experience with both VR and video games.

User VR experience Video game experience Completion-time

1
Has demoed VR 3-4
times, developed for
VR

No 2 min 20 sec

2
Has demoed VR 3-4
times, developed for
VR

No 1 min 24 sec

3 Has demoed VR for 15
minutes once Yes 1 min 57 sec

4 Has demoed VR 2-3
times Yes 3 min 30 sec

5 has demoed VR 3-4
times Yes 55 sec

Despite the problems the users faced in the tutorial, we saw a great improve-
ment of the users learning the controls. Once they had made it to the museum, the
users did not seem to have any problems with the controls, and the other four tasks
were completed by all users without any problems.

During the second task, when the users were asked to explore the museum,
two users actually stood in the scatter graph and explored it. Both user 1 and 4 said
that what they liked most about the application was to stand inside the diagram.
We took this information and created an environment consisting of only a scatter
graph, as talked about in Section 6.5.

As seen in user test 1, the environment of the museum was still appreciated.
It was not claustrophobic and user 1 even said “The last room [the museum] was
better than the first room [the tutorial]. It was good because you could see the
walls.” The enclosed space seems to be the best option for our application.

A few other features that were brought up during the user test were the ability
to scale, highlight data points that you are pointing to, and being able to pull the
diagrams closer to you. Three users wanted to use a scaling function during the
test. Two users also mentioned being able to pull a diagram closer because “what
was tricky was to get the right distance to the thing you are looking at. Because
you cannot do that with the selection, you have to do that with the teleport. For
example, reading the text was too small, you had to move closer because you cannot
pull the diagram closer.” Both scale and highlight have been implemented in the
final product, and the other interaction would have been implemented had there
been enough time.

51

9
Result

graphVR is a VR web application that displays statistical data in three different
graphs: scatter graph, bar graph, and line graph. The graphs can be viewed in three
different environments: a museum, an open world, or a world where you are standing
in a scatter graph. A tutorial is also available for users not familiar with the controls
of the application.

There are several interactions for the user to utilize. The users can interact
with the graphs through scale, move, rotate and read specific data points. It is also
possible to move around in the VR environment using a teleport function.

To read more about the functionalities of graphVR see Chapters 5, 6 and 7.
graphVR satisfies all our design requirements, but there are several improve-

ments that could be made to make the product look better visually, discussed in
Chapter 10.

52

10
Discussion

As we can see in the result, we have achieved what we set out to do: to create a
VR program for the web, which displays data in graphs. We found that our product
proves that it is possible to visualize statistics and interact with the visualized data,
which is presented in three different 3D-graphs. To be able to do this we needed the
right tools and frameworks to build our application and A-Frame played a big role
in enabling that.

10.1 Discussion of Results
A-Frame [8] was convenient when developing the application. It took very

little effort to get a first demo up and running since the framework makes it quick
and easy to create environments and entities, while being compatible with all VR
hardware.

When the application got more complicated however, we noticed that when
using Three.js [13], it was much easier to build the individual custom components
instead of using A-Frame’s primitive components.

We found the three graphs available in graphVR to have different strengths
and weaknesses. Both the bar graph and the scatter graph had added value in the
VR environment, however the line graph was for the most part less clear to analyze
in the VR environment.

The bar graph made it easier to see trends in categorical data when different
categories was shown behind each other. In other words, when three dimensions of
data was compiled into the bar graph, it was easier to see a general trend. However,
this came with a drawback. Since some data could be hidden behind other data,
it was sometimes difficult to see all bars at the same time. To counteract this, a
semi-transparent component was created. The graph is most suitable for sets of two
categorical and one numerical data.

The scatter graph also added some additional value when displayed in 3D,
possibly more so than the bar graph. It did not have as big of a problem with
hidden data points, since the point of the graph was to see patterns in the tabular
data. It added a dimension of data and enabled the user to see the depth of the data
points and clearly see clusters of data. In future projects, it could be possible to
add another dimension by changing the size of the spheres or adding another data
set and comparing the two sets. It is this graph that we believe works best in VR
out of the graphs we have developed. This graph is most suitable for data sets of
three numerical data.

53

10. Discussion

However, we found that the 3D line graph added no extra value in the VR
environment compared to a 2D platform. It contains no extra dimensions compared
to a 2D line graph, where the lines are different colors. The 3D graph also has a
disadvantage since it is easier to compare the lines if they are flat on a 2D surface
than if they are distorted by perspective in 3D space. In its current state, the
line graph is not suitable for a 3D environment. This could be researched further,
and perhaps there is a way to display another dimension of the graph or possibly
a different way of displaying two data dimensions, but currently the 2D version is
better.

Although we find our product satisfies our goal, there are several things that we
think could be improved with this product. Because of time limitations, there were
multiple functions and ideas that were not implemented, but could be interesting to
explore in the future.

During the last user test a few functions were suggested by the users. One
function we did not have time to implement was a function to move the diagrams
closer or farther away, similar to a lasso. This is something we as designers have
discussed as well, even before the users mentioned it. This function would help
make graphVR easier to use. The teleport function works well for large jumps and
general navigation, however, it is quite difficult to fine tune your position and the
position of the graph. The lasso would enable you to stand anywhere and move a
graph anywhere with greater ease.

Currently, the museum scene is minimalistic in its appearance, the graphs as
the only objects in the room. Since the original idea was to create a museum of
diagrams, it would be a nice feature to have more than just three diagrams as well
as possibly some lamps and other objects that could be found in a real museum.
Another idea would be to put the diagrams on podiums, like statues in a museum.
The user could grab the diagram they want and bring it into the center of the room
for further inspection.

All graphs are currently implemented using only standard Three.js geometries
and materials. No custom shaders are used, which could have improved the perfor-
mance and the visual results of the graphs. A future work of improvement graphVR
could be to implemented custom shaders to improve the overall quality of all graphs.

The way we have built the application, we are mostly focusing on how people
can view the diagrams. It is possible to move two diagrams next to one another
and compare them and it is also possible to pinpoint specific data points in the
diagrams with the read data point or hover function. However, it is not possible
to do extensive statistical analysis in graphVR. There would need to be more tools
available, like a pen tool which can be seen in CalcFlow [59], a filter to filter the
data shown, a way to zoom to a detailed level and crop the data shown.

Something we noticed when developing the controls for the application, was
that there is a limit of functionality because of the lack of buttons. If there is to be
more functionality added to the app, like a lasso tool, scaling, and a pen function,
there would need to be a menu for all the functionality. For example, it would be
possible to implement a menu on the wrists much like the the menu in Tilt Brush
[60]. It is very intuitive and would probably work well in a more complex application.

Because the tutorial was a late addition to the application, we did not have as

54

10. Discussion

much time as we wanted to create the environment for it. Therefore the environment
is a simple plane entity for the user to walk on. However, if time would have allowed
it, the environment of the tutorial would have been further developed. The initial
idea was to have a corridor which would take the user from one state to another.
The corridor would provide visual queues to guide the user forward.

Another queue that would be a great addition to the tutorial would be the use
of audio. Because of the virtual environment, it is possible to position audio where
event happen. For example, once the user moves the diagram in the second part of
the tutorial, a sound would come from the rotation diagram as it becomes visible.
This would draw the attention of the user and act as another queue to guide the
user forward, since they can hear that the sound came from the left.

If this product is viable as an option for viewing data at this time is hard to
determine. On one hand you get some nice functionality, it is more fun and there
are no major drawbacks. On the other you lack tools to properly analyze the data
and you need the VR hardware to use the application. In future studies it would be
interesting to compare these graphs to existing 2D graphs and 3D graphs on an 2D
media. At this time we do not see graphVR as a product to be used commercially but
perhaps as a demo for how data visualization is possible in webVR with A-frame.

In general the graphVR was well received by our testers, if it was the application
or simply the experience of VR that they found enjoyable is hard to tell, but we are
ultimately happy with the result of this project.

10.2 Validity of User Tests
It is important to understand what the result from the user tests could be

originating from. Therefore analyzing the validity of the user tests is important.
For a start, the user test group of 9 people were quite homogeneous as all

test subjects were younger than 30 years old and studied at Chalmers University of
Technology. It could then be argued that all of these young people used to being in
a technical environment and therefore might have had an easier time coping with
new systems than the average person.

We set a goal to try the application on five test subjects in each of the two user
tests. Unfortunately due to illness, only four out of the five test subjects showed
up on the first test. This could result in less usability problems being found. The
second test was done on a full set of five people.

The tests were performed on two separate groups of people to make sure that
the second test didn’t give false indications that the application was more intu-
itive and easy to understand due to experience from the previous test. The prior
experience of VR applications were varied between all the test subjects.

Unfortunately the users did not test stable versions of the application in the
tests. This resulted in that some users experienced performance issues and hard to
know how much this affected the users’ view of the application and if it made them
more hesitant to explore further on their own as these could be very disorientating.

It was sometimes hard to interpret the results that were found in the user
tests, especially in some special cases where we as test conductors clearly saw that
the user struggled with the task but when asked about it in the post test interview

55

10. Discussion

the users did not acknowledge the struggle. There were also results from different
test subjects that resulted in contradicting results. We mostly decided on follow
our observations rather than what the the test subjects claimed they experienced if
our observations and the interview answers contradicted each other. One possible
reason for this is that some users might have been overwhelmed by using VR for the
first time and enjoyed it even though they were clearly struggling and therefore did
not experience that they were struggling. As Christopher Murphy writes, "listening
and observing are both important and will provide you with different insights". He
tells us that listening gives us as facilitators insight of the subjective preferences of
the test subjects, like what features they like and so on, while observing tells us how
the user will use the application [80].

56

11
Conclusion

The purpose of this project was to develop a web application for information
visualization in VR. The application, graphVR, was developed using A-Frame. To
help the design process both internal and external evaluation in the form of user
tests of the application were done. The resulting application is an application with
four different scenes: a tutorial, a museum, an open world, and a scene with an
enlarged scatter plot. All scenes used A-Frame’s light and shadow components to
create a more realistic experience, as well as baked textures on the models.

We learned throughout the process to continuously evaluate the product and
try to learn from our mistakes. Performing user tests is a good way to understand
the user and see how they respond to the design.

Multiple interactions were implemented in the final application. Move, scale,
rotate, and read data point was the functionalities we deemed the most vital. How-
ever, it could be useful to implement more analytical interactions in the future.

Tabular statistical data was transferred to a data table component, where data
series were gathered, transformed and lastly send to each 3D graph component to
be visualized as different data points (bars, points, lines, etc.).

Our conclusion is that an iterative design process works well for developing a
VR application for the web. A-Frame [8] is a good framework for creating infor-
mation visualization in VR. The built in components are useful and it is easy to
implement your own components as it is built on JavaScript and HTML. However,
it is easier to create custom components in Three.js and that is what was done in
this project.

Through completing the project, we have come up with a few recommenda-
tions for anyone trying to produce graph visualization software using A-Frame. We
recommend:

• Whether a static or interactive tutorial is used, the controls need to be very
obvious to the users. We tried both types of tutorials, and they both had
problems. But we would recommend having an interactive tutorial as it is
easier to encourage the users to try out all functions.

• To keep in mind that users do not read voluntarily. Keep all texts to a mini-
mum and make sure the main point is easily understood.

• That that the environment consists of muted colors, with dark backgrounds
and light objects, as they seemed to work the best in a virtual environment.

• To use A-Frame’s lights and shadows. They work well for VR environments.
• To keep the primary object in the view of the user. The user is able to look

around the environment, but during our user tests, the users mainly noticed
the objects right in front of them.

57

11. Conclusion

• Using teleport for navigation instead of using the joystick. Using the joystick
disorients the user’s mind and can cause motion sickness quicker than the
teleport navigation can.

• Using a representation of the controllers in the application as the user’s hands.
The user is then able to reference the virtual controllers to understand where
the buttons are on the real controllers. It is then possible to use the name
of the fingers to indicate the trigger (index finger) and grab (middle finger)
buttons when teaching the controls.

• To have more than one focus group during the user tests. It is then possible
to try out all the different functionality you might think the application could
need. This would be especially good if the developers and designers are not
used to developing for a VR environment.

• To perform evaluations of the application continuously throughout the devel-
opment process. This will help both designers and developers to know they
are on the right track.

• To not create one custom A-Frame component per graph, instead separate
graph parts and functionalities into different custom components and reuse
them to avoid code duplication.

• To process statistical data on the client side of the application and make
sure that all data processing methods are unit tested to give the application
credibility.

58

Bibliography

[1] E. Olshannikova, A. Ometov, Y. Koucheryavy, and T. Olsson, “Visualizing big
data with augmented and virtual reality: Challenges and research agenda”,
Journal of Big Data, no. 2.22, 2015.

[2] A. Unwin, C.-h. Chen, and W. K. Härdle, Handbook of Data Visualization.
Berlin, Germany: Springer-Verlag, 2008, isbn: 9783540330363.

[3] S. Few, Now You See It: Simple Visualization Techniques for Quantitative
Analysis. Oakland, CA: Analytics Press, 2009, isbn: 9780970601988.

[4] Y. Rogers, H. Sharp, and J. Preece, Interaction Design - Beyond human-
computer interaction. The Atrium, Southern Gate, Chichester, West Sussex,
PO19 8SQ, United Kingdom: JohnWiley & Sons Ltd., 2015, isbn: 9780470665763.

[5] Oculus VR, Oculus rift, 2012. [Online]. Available: https://www.oculus.com/
rift/.

[6] Statista. (2017). Worldwide virtual reality (vr) headset unit sales by brand
in 2016 and 2017 (in millions), [Online]. Available: https://www.statista.
com/statistics/752110/global-vr-headset-sales-by-brand/ (visited
on 02/02/2018).

[7] C. Donalek, G. Djorgovski, S. Davidoff, A. Cioc, A. Wang, G. Longo, J. S. Nor-
ris, J. Zhang, E. Lawler, S. Yeh, A. Mahabal, M. Graham, and A. Drake, “Im-
mersive and collaborative data visualization using virtual reality platforms”,
p. 610, Oct. 2014.

[8] A-Frame, What is a-frame? [Online]. Available: https://aframe.io/docs/
0.7.0/introduction/#what-is-a-frame (visited on 02/01/2018).

[9] Oculus. (2018). Rift experiences|oculus, [Online]. Available: oculus%20store
(visited on 05/13/2018).

[10] Valve corp. (2018). Welcome to steam, [Online]. Available: https://store.
steampowered.com (visited on 05/13/2018).

[11] Blender Foundation. (1998). Blender, [Online]. Available: https : / / www .
blender.org/ (visited on 05/11/2018).

[12] Unity, Unity Technologies. [Online]. Available: https://unity3d.com (visited
on 05/14/2018).

[13] Three.js. [Online]. Available: https://threejs.org/.
[14] MochaJS, Mocha - the fun, simple, flexible javascript test framework. [Online].

Available: https://mochajs.org (visited on 05/14/2018).

59

https://www.oculus.com/rift/
https://www.oculus.com/rift/
https://www.statista.com/statistics/752110/global-vr-headset-sales-by-brand/
https://www.statista.com/statistics/752110/global-vr-headset-sales-by-brand/
https://aframe.io/docs/0.7.0/introduction/#what-is-a-frame
https://aframe.io/docs/0.7.0/introduction/#what-is-a-frame
oculus%20store
https://store.steampowered.com
https://store.steampowered.com
https://www.blender.org/
https://www.blender.org/
https://unity3d.com
https://threejs.org/
https://mochajs.org

Bibliography

[15] ChaiJS, Chai. [Online]. Available: http : / / www . chaijs . com (visited on
05/14/2018).

[16] NodeJS, Node.js. [Online]. Available: https://nodejs.org/en/ (visited on
05/14/2018).

[17] Facebook Inc., React - a javascript library for building user interfaces. [Online].
Available: https://reactjs.org (visited on 05/14/2018).

[18] A-Frame. (2018). Entity-component-system - a-frame, [Online]. Available: https:
//aframe.io/docs/0.8.0/introduction/entity-component-system.html
(visited on 04/18/2018).

[19] (2014). The javascript object notation (json) data interchange format, [On-
line]. Available: https://tools.ietf.org/pdf/rfc7159.pdf (visited on
04/15/2018).

[20] Ecma International, Standard ecma-262, 2017. [Online]. Available: https :
//www.ecma- international.org/publications/standards (visited on
05/13/2018).

[21] Open Source, Concepts. [Online]. Available: https : / / webpack . js . org /
concepts (visited on 05/14/2018).

[22] B. Lang. (Feb. 2013). An introduction to positional tracking and degrees of
freedom (dof), [Online]. Available: https://www.roadtovr.com/introduction-
positional-tracking-degrees-freedom-dof/ (visited on 04/10/2018).

[23] L. C. Hale, “Principles and techniques for designing precision machines”, PhD
thesis, MIT, Massachusetts, Feb. 1999.

[24] J. Martindale. (2018). Oculus rift vs. htc vive, [Online]. Available: https:
//www.digitaltrends.com/virtual- reality/oculus- rift- vs- htc-
vive/ (visited on 04/04/2018).

[25] ephtracy. (2015). Magicavoxel, [Online]. Available: https://ephtracy.github.
io/ (visited on 05/11/2018).

[26] Autodesk. (1998). Autodesk maya, [Online]. Available: https://www.autodesk.
eu/products/maya/overview (visited on 05/11/2018).

[27] Maxon. (1990). Maxoncinema4d, [Online]. Available: https://www.maxon.
net/en/products/cinema-4d/overview/ (visited on 05/11/2018).

[28] Pluralsight. (2015). 3ds max, maya lt or blender - which 3d software should
i choose for asset creation?, [Online]. Available: https://www.pluralsight.
com/blog/film-games/3ds-max-maya-lt-blender-3d-software-choose-
asset-creation (visited on 04/26/2018).

[29] Thingiverse, Thingiverse. [Online]. Available: https://www.thingiverse.
com/ (visited on 05/09/2018).

[30] A-Frame, 3d models. [Online]. Available: https://aframe.io/docs/0.8.0/
introduction/models.html (visited on 04/26/2018).

[31] KhronosGroup, Gltf. [Online]. Available: https://www.khronos.org/gltf/
(visited on 04/26/2018).

60

http://www.chaijs.com
https://nodejs.org/en/
https://reactjs.org
https://aframe.io/docs/0.8.0/introduction/entity-component-system.html
https://aframe.io/docs/0.8.0/introduction/entity-component-system.html
https://tools.ietf.org/pdf/rfc7159.pdf
https://www.ecma-international.org/publications/standards
https://www.ecma-international.org/publications/standards
https://webpack.js.org/concepts
https://webpack.js.org/concepts
https://www.roadtovr.com/introduction-positional-tracking-degrees-freedom-dof/
https://www.roadtovr.com/introduction-positional-tracking-degrees-freedom-dof/
https://www.digitaltrends.com/virtual-reality/oculus-rift-vs-htc-vive/
https://www.digitaltrends.com/virtual-reality/oculus-rift-vs-htc-vive/
https://www.digitaltrends.com/virtual-reality/oculus-rift-vs-htc-vive/
https://ephtracy.github.io/
https://ephtracy.github.io/
https://www.autodesk.eu/products/maya/overview
https://www.autodesk.eu/products/maya/overview
https://www.maxon.net/en/products/cinema-4d/overview/
https://www.maxon.net/en/products/cinema-4d/overview/
https://www.pluralsight.com/blog/film-games/3ds-max-maya-lt-blender-3d-software-choose-asset-creation
https://www.pluralsight.com/blog/film-games/3ds-max-maya-lt-blender-3d-software-choose-asset-creation
https://www.pluralsight.com/blog/film-games/3ds-max-maya-lt-blender-3d-software-choose-asset-creation
https://www.thingiverse.com/
https://www.thingiverse.com/
https://aframe.io/docs/0.8.0/introduction/models.html
https://aframe.io/docs/0.8.0/introduction/models.html
https://www.khronos.org/gltf/

Bibliography

[32] A-Frame, Why use gltf? [Online]. Available: https://aframe.io/docs/0.8.
0/components/gltf-model.html#why-use-gltf (visited on 04/26/2018).

[33] KhronosGroup, Gltf-blender-exporter. [Online]. Available: https://github.
com/KhronosGroup/glTF-Blender-Exporter (visited on 04/26/2018).

[34] GitHub. (2018). Github, [Online]. Available: https://github.com (visited on
02/01/2018).

[35] J. Jerald. (2016). The vr book: Human-centered design for virtual reality, [On-
line]. Available: https://dl-acm-org.proxy.lib.chalmers.se/citation.
cfm?id=2792790 (visited on 05/04/2018).

[36] J. Rasmusson,Agile vs waterfall. [Online]. Available: http://www.agilenutshell.
com/agile_vs_waterfall (visited on 05/07/2018).

[37] VersionOne. (2018). Version one 12th annual state of agile report, [Online].
Available: https://explore.versionone.com/state-of-agile/versionone-
12th-annual-state-of-agile-report (visited on 05/03/2018).

[38] H. Ahmed, H. Saleh, E. C. (.-b. collection), and K. (.-b. collection), JavaScript
Unit Testing, English, New. Birmingham: Packt Publishing, Limited, 2013,
isbn: 9781782160625;

[39] H. Loranger. (Apr. 2016). Checklist for planning usability studies, [Online].
Available: https://www.nngroup.com/articles/usability-test-checklist/
(visited on 05/10/2018).

[40] J. Nielsen. (2012). How many test users in a usability study?, [Online]. Avail-
able: https://www.nngroup.com/articles/how-many-test-users/ (visited
on 02/01/2018).

[41] ——, (2012). Thinking aloud: The #1 usability tool, [Online]. Available: https:
//www.nngroup.com/articles/thinking-aloud-the-1-usability-tool/
(visited on 02/04/2018).

[42] Open Broadcaster Software. (2012). Obs studio, [Online]. Available: https:
//obsproject.com/ (visited on 05/10/2018).

[43] D. Nessler. (Mar. 2016). A guide to paper prototyping & testing for web in-
terfaces, [Online]. Available: https://medium.com/digital-experience-
design/a-guide-to-paper-prototyping-testing-for-web-interfaces-
49e542ba765f (visited on 05/11/2018).

[44] Mozilla, Javascript | mdn. [Online]. Available: https://developer.mozilla.
org/bm/docs/Web/JavaScript (visited on 05/14/2018).

[45] K. Knoernschild, Java; desing: objects, UML, and process. Addison-Wesley,
2002.

[46] A-Frame,Writing a component-a-frame. [Online]. Available: hhttps://aframe.
io/docs/0.8.0/introduction/writing-a-component.html#example-
follow-component (visited on 05/14/2018).

[47] ——, Javascript, events, dom apis - a-frame. [Online]. Available: https://
aframe.io/docs/0.8.0/introduction/javascript-events-dom-apis.
html (visited on 05/11/2018).

61

https://aframe.io/docs/0.8.0/components/gltf-model.html#why-use-gltf
https://aframe.io/docs/0.8.0/components/gltf-model.html#why-use-gltf
https://github.com/KhronosGroup/glTF-Blender-Exporter
https://github.com/KhronosGroup/glTF-Blender-Exporter
https://github.com
https://dl-acm-org.proxy.lib.chalmers.se/citation.cfm?id=2792790
https://dl-acm-org.proxy.lib.chalmers.se/citation.cfm?id=2792790
http://www.agilenutshell.com/agile_vs_waterfall
http://www.agilenutshell.com/agile_vs_waterfall
https://explore.versionone.com/state-of-agile/versionone-12th-annual-state-of-agile-report
https://explore.versionone.com/state-of-agile/versionone-12th-annual-state-of-agile-report
https://www.nngroup.com/articles/usability-test-checklist/
https://www.nngroup.com/articles/how-many-test-users/
https://www.nngroup.com/articles/thinking-aloud-the-1-usability-tool/
https://www.nngroup.com/articles/thinking-aloud-the-1-usability-tool/
https://obsproject.com/
https://obsproject.com/
https://medium.com/digital-experience-design/a-guide-to-paper-prototyping-testing-for-web-interfaces-49e542ba765f
https://medium.com/digital-experience-design/a-guide-to-paper-prototyping-testing-for-web-interfaces-49e542ba765f
https://medium.com/digital-experience-design/a-guide-to-paper-prototyping-testing-for-web-interfaces-49e542ba765f
https://developer.mozilla.org/bm/docs/Web/JavaScript
https://developer.mozilla.org/bm/docs/Web/JavaScript
hhttps://aframe.io/docs/0.8.0/introduction/writing-a-component.html#example-follow-component
hhttps://aframe.io/docs/0.8.0/introduction/writing-a-component.html#example-follow-component
hhttps://aframe.io/docs/0.8.0/introduction/writing-a-component.html#example-follow-component
https://aframe.io/docs/0.8.0/introduction/javascript-events-dom-apis.html
https://aframe.io/docs/0.8.0/introduction/javascript-events-dom-apis.html
https://aframe.io/docs/0.8.0/introduction/javascript-events-dom-apis.html

Bibliography

[48] W3C, Html 5.2. [Online]. Available: https://www.w3.org/TR/html5/index.
html#contents (visited on 05/14/2018).

[49] R. L. J. Harris, Information Graphics: A Comprehensive Illustrated Refer-
ence, English. New York: Oxford University Press, Incorporated, 2000, isbn:
9780195135329.

[50] A-Frame, <a-text>. [Online]. Available: https://aframe.io/docs/0.7.0/
primitives/a-text.html (visited on 05/10/2018).

[51] (Mar. 15, 2018). Css fonts module level 3, [Online]. Available: https://www.
w3.org/TR/css-fonts-3/ (visited on 05/13/2018).

[52] Creating text. [Online]. Available: https://threejs.org/docs/#manual/
introduction/Creating-text (visited on 05/31/2018).

[53] T. McReynolds, D. Blythe, S. (.-b. collection), E. C. (.-b. collection), and I.
ebrary, Advanced graphics programming using openGL, English, 1st ed. San
Francisco, CA: Elsevier Morgan Kaufmann Publishers, 2005, isbn: 1558606599;
9781558606593;9780123814999;0123814995;0080475728;9780080475721;

[54] Gridhelper. [Online]. Available: https://threejs.org/docs/#api/helpers/
GridHelper (visited on 05/14/2018).

[55] Z. Canter. (2018). Aframe - scatterplot, [Online]. Available: https://github.
com/zcanter/aframe-scatterplot (visited on 05/31/2018).

[56] Line. [Online]. Available: https : / / threejs . org / docs / #api / objects /
Points (visited on 05/08/2018).

[57] Sprite. [Online]. Available: https://threejs.org/docs/#api/objects/
Sprite (visited on 05/13/2018).

[58] (Oct. 2005). Common format and mime type for comma-separated values (csv)
files, [Online]. Available: https://tools.ietf.org/html/rfc4180 (visited
on 05/13/2018).

[59] Nanome. (2016). Calcflow, [Online]. Available: http://store.steampowered.
com/app/547280/Calcflow/ (visited on 04/18/2018).

[60] Google, Tilt brush. [Online]. Available: https://www.tiltbrush.com/.
[61] C. Solutions, The hall. [Online]. Available: https://aframe.io/examples/

showcase/museum/.
[62] Blender Foundation, Structure. [Online]. Available: https://docs.blender.

org/manual/en/dev/modeling/meshes/structure.html (visited on 05/13/2018).
[63] ——, Primitives. [Online]. Available: https://docs.blender.org/manual/

en/dev/modeling/meshes/primitives.html (visited on 05/13/2018).
[64] ——, Render baking. [Online]. Available: https : / / docs . blender . org /

manual/en/dev/render/blender_render/bake.html (visited on 05/14/2018).
[65] Blender, Overview. [Online]. Available: https://docs.blender.org/manual/

en/dev/editors/uv_image/uv/overview.html#uvs-explained (visited on
05/13/2018).

62

https://www.w3.org/TR/html5/index.html#contents
https://www.w3.org/TR/html5/index.html#contents
https://aframe.io/docs/0.7.0/primitives/a-text.html
https://aframe.io/docs/0.7.0/primitives/a-text.html
https://www.w3.org/TR/css-fonts-3/
https://www.w3.org/TR/css-fonts-3/
https://threejs.org/docs/#manual/introduction/Creating-text
https://threejs.org/docs/#manual/introduction/Creating-text
https://threejs.org/docs/#api/helpers/GridHelper
https://threejs.org/docs/#api/helpers/GridHelper
https://github.com/zcanter/aframe-scatterplot
https://github.com/zcanter/aframe-scatterplot
https://threejs.org/docs/#api/objects/Points
https://threejs.org/docs/#api/objects/Points
https://threejs.org/docs/#api/objects/Sprite
https://threejs.org/docs/#api/objects/Sprite
https://tools.ietf.org/html/rfc4180
http://store.steampowered.com/app/547280/Calcflow/
http://store.steampowered.com/app/547280/Calcflow/
https://www.tiltbrush.com/
https://aframe.io/examples/showcase/museum/
https://aframe.io/examples/showcase/museum/
https://docs.blender.org/manual/en/dev/modeling/meshes/structure.html
https://docs.blender.org/manual/en/dev/modeling/meshes/structure.html
https://docs.blender.org/manual/en/dev/modeling/meshes/primitives.html
https://docs.blender.org/manual/en/dev/modeling/meshes/primitives.html
https://docs.blender.org/manual/en/dev/render/blender_render/bake.html
https://docs.blender.org/manual/en/dev/render/blender_render/bake.html
https://docs.blender.org/manual/en/dev/editors/uv_image/uv/overview.html#uvs-explained
https://docs.blender.org/manual/en/dev/editors/uv_image/uv/overview.html#uvs-explained

Bibliography

[66] ——, Mapping types. [Online]. Available: https : / / docs . blender . org /
manual/en/dev/editors/uv_image/uv/editing/unwrapping/mapping_
types.html#unwrap (visited on 05/13/2018).

[67] Evan-Amos. (Sep. 2017). The vr book: Human-centered design for virtual re-
ality, [Online]. Available: https://commons.wikimedia.org/wiki/File:
Oculus-Rift-Touch-Controllers-Pair.jpg (visited on 05/10/2018).

[68] A. Systems. (Feb. 1990). Photoshop, [Online]. Available: https://www.adobe.
com/Photoshop (visited on 05/09/2018).

[69] D. Jamieson. (Aug. 2015). The designer’s notebook: Eight ways to make a
bad tutorial, [Online]. Available: https://gamedevelopment.tutsplus.com/
tutorials/4-ways-to-teach-your-players-how-to-play-your-game--
cms-22719 (visited on 04/27/2018).

[70] A-Frame. (2017). Link traversal, [Online]. Available: https://aframe.io/
blog/aframe-v0.6.0/ (visited on 05/12/2018).

[71] KingRahl. (Jun. 2015). Oculus touch controller mockups, [Online]. Available:
https://www.thingiverse.com/thing:878939 (visited on 05/09/2018).

[72] A-Frame, Lights. [Online]. Available: https://aframe.io/docs/0.8.0/
components/light.html (visited on 04/27/2018).

[73] D. N. Schuurman. (2013). Unity - raycasting, [Online]. Available: https://
unity3d.com/learn/tutorials/topics/physics/raycasting (visited on
04/10/2018).

[74] A-Frame. (2018). Aframe/raycaster.js at master aframevr/aframe, [Online].
Available: https://github.com/aframevr/aframe/blob/master/src/
components/raycaster.js (visited on 04/17/2018).

[75] W. Murphy. (2017). All-in-one natural hand controller, pointer, and gaze in-
teraction library for a-frame, [Online]. Available: https : / / github . com /
wmurphyrd/aframe-super-hands-component (visited on 02/15/2018).

[76] a-frame. (2018). Laser-controls, [Online]. Available: https://github.com/
aframevr/aframe/blob/master/docs/components/laser- controls.md
(visited on 04/02/2018).

[77] S. Wikström. (2017). Gång- och rotationshastigheter för effektiv navigering i
vr, [Online]. Available: https://liu.diva-portal.org/smash/get/diva2:
1083448/FULLTEXT01.pdf (visited on 04/20/2018).

[78] Fernandojsg, Aframe-teleport-controls. [Online]. Available: https://github.
com/fernandojsg/aframe-teleport-controls (visited on 03/15/2018).

[79] S. Doody, Starter questions for user research. [Online]. Available: http://
projects.iq.harvard.edu/files/harvarduxgroup/files/ux-research-
guide-sample-questions-for-user-interviews.pdf (visited on 05/13/2018).

[80] C. Murphy. (2018). A comprehensive guide to user testing, [Online]. Available:
https://www.smashingmagazine.com/2018/03/guide- user- testing/
(visited on 04/26/2018).

63

https://docs.blender.org/manual/en/dev/editors/uv_image/uv/editing/unwrapping/mapping_types.html#unwrap
https://docs.blender.org/manual/en/dev/editors/uv_image/uv/editing/unwrapping/mapping_types.html#unwrap
https://docs.blender.org/manual/en/dev/editors/uv_image/uv/editing/unwrapping/mapping_types.html#unwrap
https://commons.wikimedia.org/wiki/File:Oculus-Rift-Touch-Controllers-Pair.jpg
https://commons.wikimedia.org/wiki/File:Oculus-Rift-Touch-Controllers-Pair.jpg
https://www.adobe.com/Photoshop
https://www.adobe.com/Photoshop
https://gamedevelopment.tutsplus.com/tutorials/4-ways-to-teach-your-players-how-to-play-your-game--cms-22719
https://gamedevelopment.tutsplus.com/tutorials/4-ways-to-teach-your-players-how-to-play-your-game--cms-22719
https://gamedevelopment.tutsplus.com/tutorials/4-ways-to-teach-your-players-how-to-play-your-game--cms-22719
https://aframe.io/blog/aframe-v0.6.0/
https://aframe.io/blog/aframe-v0.6.0/
https://www.thingiverse.com/thing:878939
https://aframe.io/docs/0.8.0/components/light.html
https://aframe.io/docs/0.8.0/components/light.html
https://unity3d.com/learn/tutorials/topics/physics/raycasting
https://unity3d.com/learn/tutorials/topics/physics/raycasting
https://github.com/aframevr/aframe/blob/master/src/components/raycaster.js
https://github.com/aframevr/aframe/blob/master/src/components/raycaster.js
https://github.com/wmurphyrd/aframe-super-hands-component
https://github.com/wmurphyrd/aframe-super-hands-component
https://github.com/aframevr/aframe/blob/master/docs/components/laser-controls.md
https://github.com/aframevr/aframe/blob/master/docs/components/laser-controls.md
https://liu.diva-portal.org/smash/get/diva2:1083448/FULLTEXT01.pdf
https://liu.diva-portal.org/smash/get/diva2:1083448/FULLTEXT01.pdf
https://github.com/fernandojsg/aframe-teleport-controls
https://github.com/fernandojsg/aframe-teleport-controls
http://projects.iq.harvard.edu/files/harvarduxgroup/files/ux-research-guide-sample-questions-for-user-interviews.pdf
http://projects.iq.harvard.edu/files/harvarduxgroup/files/ux-research-guide-sample-questions-for-user-interviews.pdf
http://projects.iq.harvard.edu/files/harvarduxgroup/files/ux-research-guide-sample-questions-for-user-interviews.pdf
https://www.smashingmagazine.com/2018/03/guide-user-testing/

A
User Stories

• As a user I want to see a scatter graph in the museum.
• As a user I want to scale a bar graph with the help of a measurement that

already exist (i.e a constant).
• As a user I want to rotate a bar chart to be able to see all bars in the graph.
• As a user I want see Stack Overflow Developer survey statistics in a bar graph

to be able to analyze it.
• As a user I want to see multiple words in correct order along the x-, y- and

z-axis, so I can know what each row in the bar graph is.
• As a user I want a skybox to be able to separate the background with the

ground.
• As a user I want to see two bar charts in the same world to be able to compare

them.
• As a user I want to press a bar chart with a "laser" and get some type of

response to be able to get more information about a data point.
• As a user I want to use my controller to teleport around in the world to be

able to move around in the environment.
• As a developer I want clean code and good code structure for better under-

standing.
• As a developer I want to set the bar size (width/depth) of the bar chart, to

be able to decide how big a graph will be in the the environment.
• As a user I want to see two graphs in a "museum" to be able to interact with

them.
• As a user I want to see one word in VR to be able to use it in the graphs.
• As a user I want to scale a graph with my controllers to make it intuitive to

scale it.
• As a user I want to see a sign with some basic controls in the beginning of the

museum to be able to learn how to interact with graphs.
• As a user I want a nice museum with textures to be able to walk around in an

enclosed environment.
• As a developer I want a 3D model to work with for the "museum" to be able

to view it in VR.
• As a user I want to see a scatter graph with data from the Stack Overflow

survey to be able to analyze it.
• As a user I want to rotate a graph with my controllers to be able to see hidden

data in the graphs.
• As a user I want to rotate an object without gravity and around the y-axis to

be able to rotate the object from far away.

I

A. User Stories

• As a user I want to see the data(height), x-label, z-label on my controller to
be able to see the data more clearly.

• As a user I want to press a bar and see the data(height), x-label and z-label
of the bar to be able to see the data more clearly.

• As a user I want to be able to read the text of the graphs to understand what
they graphs represent.

• As a user I want windows in the museum to get a look outside so the room
does not feel claustrophobic.

• As a user I want to read messages of all tutorials that explains how the program
works so that I can learn how the interactions work.

• As a user I want simple colors in the museum to be able to see the text of the
graphs more clearly.

• As a developer I want states to move between the different steps of the tutorial
to be able to clearly move from one event to another.

• As a user I want to see controller models that show how I interact with all
graphs to be able to understand where the controls are on the controller.

• As a user I want one color of all bars in the graph so as to not create any
confusion as to what the colors mean.

• As a user I want the models and text in the tutorial to be positioned in a good
way to make it easy to see and read the text and the models.

• As a developer I want organized event handling to make the code more struc-
tured.

• As a user I want to portal between the tutorial and the museum to act as a
hyperlink between two scenes.

• As a developer I want all graphs to be implemented with THREE.js or shaders
to improve performance.

II

B
Applications Evaluated

III

App Evaluated Conclusion of Evaluation
Guns'n'Stories It felt somewhat disturbing being stationary in one

place. This made it quite boring since you were stuck
with the same view the entire time It was difficult to
aim accurately.

Space Station Explore It was difficult to judge distance to things in this app
which made it feel like everything was out of reach
that you should grab. Also since a lot of movement was
done without our physical body moving made it very
disturbing and the motion sickness came quickly.

Tilt Brush In this app being stationary didn't feel disturbing, you
were able to spin the object that you were handling
and the painting felt accurate. The environment that
you were placed in felt spacious and gave a feeling of
freedom which was nice, but because it felt so
spacious and you were trapped in a stationary position
it felt difficult to fill the room with paint.

Space Pirate Trainer In this game it felt very appropriate to be stationary in
one place. The room felt open but you were stuck on a
spaceship and I didn't feel any need that it would be
better if I moved overthere. The spaceship made it feel
like there was boundraries.

The Hall
Teleporty controls allowed the user to move around
quickly and at the same time not feel motion sickness.
The museum environment that was being presented
felt spacious and no feeling of being trapped occured.
Also since it was so easy to move around they could
have multiple areas showcasing different items and no
difficulty to move between these.

Dirt Rally Having the head move (car) without the user's actual
head move in real life became very disturbing quickly.
The experience was very immersing though.

D3js This site allowed for many inspirations of how data
could be visualized in different ways. Although being in
2d many of them, it gave some clue to how it would
look in a 3d environment.

A-Blast See Space Pirate Trainer.
Lights on aframe.io This app gave great insight in how lights could be used

in A-Frame. For navigation, in this app you were
stationary but in a completely open environement. This
was very disturbing because there was no floor to
stand on, this made it feel very disorientating when
looking down.

Freedom Locomotion VR This game allowed for motion through moving your
hands back and forth jogging in place as well as
through joystick. The first option was just very clumsy
and didn't feel natural at all. Moving through using the
joystick caused motion sickness in just a couple of
minutes and also didn't feel natural since you were
moving like on rails.

Aframe - Scatterplot Example of how particles can be used in a scatter
graph.

Aframedc Showed that graphs can be split into multiple
components that should be coded individually to avoid
code duplication.

C
Test Document 1

VI

Test plan for user test #1

1 The Goal of the test

The goal of the test is to see if a user can use prototype #1 to read both of
the diagrams (bar graph and scatter plot). We want to see if the user can figure
out the current controls and be able to teleport, move a diagram, and rotate it.
Specifically, we want to see if a user can intuitively use the prototype to find the
correct data in the diagrams. The results from this test will be used to enhance
the usability of the next prototype.

2 Logistics

There will be two test times: Thursday 22/2 between 12:45 and 17:00 and
Friday 23/2 between 13:00 and 14:00. The test will take place in Medialabbet
at Kuggen at Chalmers Lindholmen.

We will be performing a moderated, in-person test. The test will be per-
formed in Swedish because that is the language the participants are most com-
fortable with, but all the test subjects have been asked if they speak English.
The workflow is seen in the following flow chart:

1

Introduction: Tell the test
subject how the test will
be played out and about

the possible side effects of
using a VR headset (for
example motion sickness)

Contract: The test leaders
will instruct the test subject

on their rights and then a con-
tract will be signed to make sure

they are aware of their rights

Testing: The test subjects will
be given a list of specific tasks to
perform and encouraged to think
aloud. The performance will be
video taped and screen recorded.

Interview: An exit interview
will be performed after the test
is done, collecting answers to
specific questions while also
collecting general thoughts

3 Participant profiles

All of the participants are Bachelor and Master students at Chalmers Uni-
versity of Technology. They have limited to no previous experience with virtual
reality applications before the test. All of them speak both English and Swedish.

4 Tasks

• How many summer homes were sold in Stockholm during Q2 in 2016?

• What is the trend for summer home prices in Stockholm over the past
decade?

• Give an example of a county with a large population and a high median
wage.

• Give an example of a county with a high median rent.

2

5 Metrics and questionnaires

We have chosen to do an interview after the test is completed. This choice
is based on the fact that we want to know about the user’s general experience
when using the application. However, we have also come up with a few questions
to bring up during the interview which will allow us to get some quantitative
data from the study as well. During the interview we will ask the following
questions:

• How easy were the controllers to use? (scale 1-5) Did you understand how
the controllers worked straight away? Did you experience any specific
difficulty when using them? Did you use the help sign before starting
your tasks?

• Was the program easy to use? (scale 1-5) Did you feel you could follow
our instructions without any problems?

• How frustrated with the application did you feel during the test? (scale
1-5) Is there any specific action or event you can point out as frustrating?

• Which function did you think was the most useful?

• What did you most like about the application?

• What did you think about the environment? How trapped did you feel by
it? (scale 1-5)

• How easy was it to navigate? (scale 1-5)

• Do you have any other insights you want to share?

6 Description of the system

The application is a web application that can be used with an Oculus Rift.

3

D
Test Document 2

X

Test plan for user test #2

1 The Goal of the test

The goal of our second test is to see if the tutorial we have developed will
help the users to learn the controls better than the last prototype we tested.
Because our users didn’t manage to use all controls last time, we also want to
check the functionality of the controls and see if the users think they are useful.

2 Logistics

The test will take place on: Tuesday 27/3 between 11:00 and 14:00. The
test will be performed in Medialabbet at Kuggen at Chalmers Lindholmen.

We will be performing a moderated, in-person test. The test will be per-
formed in Swedish because that is the language the participants are most com-
fortable with, but all the test subjects have been asked if they speak English.
The workflow is seen in the following flow chart:

1

Introduction: Tell the test
subject how the test will
be played out and about

the possible side effects of
using a VR headset (for
example motion sickness)

Contract: The test leaders
will instruct the test subject

on their rights and then a con-
tract will be signed to make sure

they are aware of their rights

Testing: The test subjects will
be given a list of specific tasks to
perform and encouraged to think
aloud. The performance will be
video taped and screen recorded.

Interview: An exit interview
will be performed after the test
is done, collecting answers to
specific questions while also
collecting general thoughts

3 Participant profiles

All of the participants are Bachelor and Master students at Chalmers Uni-
versity of Technology. They had a various amount of experience with virtual
reality applications before the test. All of them speak both English and Swedish.
They all have a good understanding of how to use a computer.

4 Tasks

• Do the tutorial and then continue to the museum.

• Explore the museum and tell us your initial reactions

• What was the three most common programming languages in 2017?

• Can you see any general trend in the relation between job searching time,
salary, and years spent coding professionally?

• Choose any data point and tell us how much time the person spends on
looking for a new job.

2

5 Metrics and questionnaires

Before the test starts, we have composed a few introductory questions for
the users:

• Have you ever used a VR headset before?

• Do you have a good understanding of computers?

• Do you play video games?

Our tutorial is based on tutorials for video games, and it would be interesting
to see if there is any difference between people who usually play video games
and people who don’t. Hopefully, the tutorial will be helpful to everybody. We
also assume good knowledge with computers when developing the application.

We have chosen to do an interview after the test is completed. This choice
is based on the fact that we want to know about the user’s general experience
when using the application. However, we have also come up with a few questions
to bring up during the interview which will allow us to get some quantitative
data from the study as well. During the interview we will ask the following
questions:

• Was it easy to learn how the controls worked? How easy were the con-
trollers to use? (scale 1-5) Did you think the tutorial gave you enough
information to use the controllers correctly? Did you experience any spe-
cific difficulty when using them? How easy was it to navigate using the
teleport function?

• Was there any part of the controls that you did not use? If so, why and
what controls?

• Was the program easy to use? (scale 1-5)

• Was there anything that went wrong during your test?

• How frustrated with the application did you feel during the test? (scale
1-5) Is there any specific action or event you can point out as frustrating?

• Which function did you think was the most useful?

• What did you most like about the application?

• What did you think about the environment?

• Do you have any other insights you want to share? Was there anything
missing from the application?

6 Description of the system

The application is a web application that can be used with an Oculus Rift.

3

E
Consent Form for User Testing

XIV

User test consent form

During the user test:

● You will be asked to perform tasks on a web application with virtual reality goggles.
● Your performance will be both physically and virtually recorded using a camera and a

screen capturing program.
● We will conduct an interview after you have the tasks have been performed.

Participation in this user test is completely voluntary. You may at any point stop the test.

The information gathered in this test will be used in a bachelor’s thesis report at Chalmers
University of Technology. The results will in no way be linked to you personally and no names or
other confidential information will be mentioned in the thesis. You also have the right to request
the deletion of any record of your involvement.

For any further questions or information, please contact Miranda Aldrin (email omitted).

I have understood the above information and agree with it.

____________________________________ ____________
Subject’s signature Date

F
Results of User Test 1

The questions with scales from 1-5 goes from negative to positive. For example,
in question 1, the scale goes from not easy to very easy.

XVI

F. Results of User Test 1

XVII

F. Results of User Test 1

XVIII

F. Results of User Test 1

XIX

F. Results of User Test 1

XX

F. Results of User Test 1

XXI

F. Results of User Test 1

XXII

Subject #1
Answers to the tasks:

1. 543
2. No
3. Nybro
4. Järfälla

● Had used VR before, but limited
● Did not read the tutorial
● Only used teleport (did not notice there were other controls)
● “Why are they different colors?” referring to the bar graph
● Had a hard time navigating

During interview:

● “Learned while time went on” (lärde sig under tidens gång)
● Had a hard time with the scatter plot. Suggested a change like a grid
● Frustrated over not being able to read the scatter plot
● The environment is a little bit boring

○ Maybe have a view from the windows?
● Teleport was useful
● Felt free to walk around the diagram, which was nice

Subject #2
Answers to the tasks:

1. 540-ish
2. Q2-Q3 seems to have more buyers
3. Nybro
4. Järfälla

● Has used VR before, but limited
● Didn’t find the teleport button (or any other button), and needed help

○ Was told that there might be a hint

During interview:

● Learning-curve
○ The controls got easier after a while, but in the beginning it was not something

you are used to
● Wants a more streamlined controller
● Make the tutorial board smaller, so you can go up to it and

○ The lines on the tutorial board were difficult to see

Subject #3
Answers to the tasks:

1. 543
2. More sold in later quarters
3. Soruman
4. Sorsele

Interview:

● Difficult to know which button to use
○ Wanted to use thumb-button to teleport
○ Used the tutorial sign, but not to its full extent. Did not see if

● Seems like a better way to look at statistics
● The laser pointer was good
● It was nice to be able to jump around and look at things from a different angle
● Could use an interactive tutorial

Subject #4
Answers to the tasks:

1. 543
2. Ökar under sommarmånaderna
3. Nybro
4. Järfälla

Interview:

● Controllers were intuitive
● The tutorial was not intuitive however

○ The lines were too close to the color of the controllers on the tutorial board
● In the scatter plot: one of the axis (z axis) was not eye catching enough and was missed

when trying to perform the task
● It would have been hard to use if you wanted to use make your own statistics and

visualize it
● Sometimes you can get lost
● The data points in the scatter plot that are outliers are hard to see because the data

point is yellow and the background is white
○ They are also high up (because the scatter plot is large)

■ Maybe be able to scale it?
● En tydligare turorial behövs

G
Results of User Test 2

The questions with scales from 1-5 goes from negative to positive. For example,
in question 1, the scale goes from not easy to very easy.

XXV

G. Results of User Test 2

XXVI

G. Results of User Test 2

XXVII

G. Results of User Test 2

XXVIII

G. Results of User Test 2

XXIX

G. Results of User Test 2

XXX

G. Results of User Test 2

XXXI

G. Results of User Test 2

XXXII

G. Results of User Test 2

XXXIII

●
●
●

●

●
●
●

●

●

●
●
●
●
●

Person 1

— TUTORIAL—
Texten försv6nn s7 hon inte kunde r=tt6 till sitt fel i 6tt hon inte förstod v6r
hon skulle st=ll6 di6gr6mmet i tutori6len

Hon förstod inte v6r hon skulle st=ll6 di6gr6mmet i tutori6len - hon
hopp6de ist=llet dit

Tryckte p7 fel kn6pp n=r hon skulle port6ler6,ville teleporter6 in i den

— MUSEUM —
H6de v6rit nice om punkten m6n pek6r p7 highlight6s p7 n7got s=tt
Kl6r6de 6ll6 fr7gor ut6n sv7righet
Ville kunn6 sk6l6 di6gr6mmet

— POST INTERVIEW —
Föredrog inst=ngt rum över öppenheten i tutori6len
Di6gr6mmen v6r lite för stor6
Feedb6ck p7 vilken d6t6punkt som =r select6d

Person 2

— TUTORIAL—
Förstod inte v6r h6n skulle flytt6 di6gr6mmet först

— MUSEUM —
Ville flytt6 di6gr6mmet n=rm6re sig sj=lv
Kl6r6de 6ll6 t6sks p7 egen h6nd ut6n 6tt vi ens fr7g6de
Anv=nde 6ll6 funktioner

— POST INTERVIEW —
D7ligt 6tt texten försv6nn d7 h6n ville b6r6 börj6 gör6 s6ker och n=r h6n
sen gick tillb6k6 s7 jh6de texten försvunnit
Inte intuitiv6 d7 kontrollern6 v6r olik6 mell6n v=nster och höger h6nd och
h6de ingen 6ning om v6d m6n h6de för toolset
Vill kunn6 dr6 s6ker n=rm6re
Nice med fönster
B6r gr6phen v6r br6 storlek
Gill6de hur br6 6tt flöt p7, 6llt h6n ville gör6 kunde h6n och 6llt b6r6 flöt p7
Vill kunn6 flytt6 sig n=rm6re

●
●
●
●

●

●
●
●

●
●

●
●
●
●

Person 3

— TUTORIAL—
Förstod inte v6r m6n skulle st=ll6 di6gr6mmet

— MUSEUM —
Kunde inte se n7gon trend

— POST INTERVIEW —
Jobbigt 6tt teleporter6 tillb6k6
Tyckte inte teleportens kurv6 v6r intuitiv
All6 behövdes men rot6tion minst
Vill h6 en kn6pp för 6tt flytt6 s6ker l=ngre bort eller n=rm6re

Person 4

— TUTORIAL—
L=ste inte instruktionern6, förstod inte 6tt m6n skulle flytt6 di6gr6mmet till
punkten
Texten försv6nn
Ville st=ll6 rot6tionsdi6gr6mmet p7 m6rkeringen
Anv=nde sig 6v 6ll6 funktioner

— MUSEUM —
Ville sk6l6 ner sc6tter - di6gr6mmet
L=ste inte 6v texten för d6t6punkten ut6n j=mförde mot sk6lorn6 p7 sid6n

— POST INTERVIEW —

Person 5
— TUTORIAL—

— MUSEUM —
Tyckte texten v6r sv7r 6tt l=s6
Tyckte f=rgen p7 texten sm=lte in i t6ket
Gr6fen 7kte igenom golvet
Anv=nde sig 6v 6ll6 funktioner

— POST INTERVIEW —

H
Storyboard of the initial stages of

the tutorial

Figure H.1: The user enters the tutorial and is asked to teleport to a designated
place.

Figure H.2: The user is asked to move a bar graph to a designated place.

Figure H.3: The user is asked to rotate a bar graph.

XXXVI

H. Storyboard of the initial stages of the tutorial

Figure H.4: Once the user has completed the tutorial, they will go to the
museum.

XXXVII

I
Steps of the tutorial

Figure I.1: The first state in the tutorial, encouraging the user to teleport
towards the circle.

XXXVIII

I. Steps of the tutorial

Figure I.2: The second state in the tutorial, encouraging the user to move the
graph.

Figure I.3: The third state in the tutorial, showing the view after the user has
moved the graph in state 2.

XXXIX

I. Steps of the tutorial

Figure I.4: Still the third state,encouraging the user to rotate the graph.

Figure I.5: The fourth state in the tutorial, showing the view after the user has
rotated the graph.

XL

I. Steps of the tutorial

Figure I.6: The fourth state in the tutorial, encouraging the user to go to either
the museum, the open world, or the immersive scatter graph.

XLI

	List of Figures
	List of Tables
	Introduction
	Purpose
	Problem Statements
	Scope of the Project
	Tools
	Frameworks and Programming Languages
	A-Frame
	JSON
	ECMAscript

	VR Hardware
	Modelling Software
	Version Control

	The Design Process and Evaluation of the Application
	Define Phase
	Make Phase
	Learn Phase
	Ethical Testing Procedure
	Camera Set Up
	Test structure

	Design Requirements
	Using the A-Frame Framework and System Architecture
	3D Graphs
	Text
	3D Grid
	3D Bar Graph
	3D Line Graph
	3D Scatter Graph
	Data table

	Environment
	How to Work in Blender
	Tutorial
	Museum
	Open World
	Immersive Scatter Graph
	Lights and Shadows

	VR Controller Interactions
	Evaluation of the application
	Test 1
	Test 2

	Result
	Discussion
	Discussion of Results
	Validity of User Tests

	Conclusion
	Bibliography
	User Stories
	Applications Evaluated
	Test Document 1
	Test Document 2
	Consent Form for User Testing
	Results of User Test 1
	Results of User Test 2
	Storyboard of the initial stages of the tutorial
	Steps of the tutorial

