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Acoustic Impulse Response Prediction Using Regularized Regression
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KARIN HULLING
Division of Applied Acoustics
Chalmers University of Technology

Abstract
Different methods of calculating the impulse response of rooms have been developed
over the years and is an important measure within e.g. room acoustics and build-
ing acoustics. In this thesis work, two different regularized regression models were
evaluated to see if it is possible to estimate the rooms’ impulse response simply by
knowing some features of the room. This way, the room impulse response would be
obtained in a much more simple and straightforward way compared to the already
existing methods.

The two models that were evaluated in this thesis work are called LASSO (Least
Absolute Shrinkage and Selection Operator) and ridge regression, these models both
generate a weight vector, given a training set and a target. Considering a large data
set of different room properties as the training set, the target describes a new set of
room properties. The aim was to be able to describe the target as the superposition
of the training set multiplied with the weight vector, generated by the models. This
weight vector was then tested to see if the relationship also could be applied to the
impulse responses, by the superposition of the impulse responses in the training set
multiplied with the same weight vector.

One difference between the two models is that the LASSO model can shrink the co-
efficients belonging to the less important features to zero, while for ridge regression,
the coefficients can only get close to zero. This is what encourages sparsity in the
LASSO model, which turned out to be a winning concept.

Results showed that the LASSO model estimated room impulse responses around
20 dB better than the ridge regression model. The results also show that there is
potential for these models with some adjustments within the model, but also by
weighing the features in order of importance.

Keywords: Room impulse response, LASSO, Ridge regression, Acoustics, Regression
models, MCRoomSim, Pyroomacoustics, Sparse representation
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1
Introduction

1.1 Background

Within room acoustics the main parameters affecting the impulse response of a
room, are size and shape of the room as well as the absorption and scattering
coefficients of the interior surfaces. A common method used to calculate the rever-
beration time of a room is to excite the room with either an impulse (deterministic
impulse method) or an interrupted broadband noise (interrupted noise method) and
measure the time it takes for the sound pressure level to drop 60 dB [7], [6]. In
room simulators, concepts such as image source modeling and ray tracing are often
used and have grown to be successful methods in order to estimate the room im-
pulse response [4]. However, these methods can become very computationally heavy.

Imagine instead being able to find the impulse response simply by knowing the main
parameters describing the room.

In this thesis the way of trying to achieve this by using two kinds of regularized
regression models, will be explored. Assuming that the variables that, in a good
way, can describe a room are known, the amount of input variables are quite many.
In fact, if considering seven center frequencies, the amount of input variables is 93.
Three variables describing the dimensions of the room, three variables describing
the position of the sound source and three variables describing the position of the
receiver (microphone). The rest of the input variables represent the absorption and
scattering coefficients which are defined for six surfaces and seven center frequen-
cies, resulting in 6 · 7 · 2 = 84 variables. Together with the nine variables describing
the room dimensions, source and receiver position this results in 9 + 84 = 93 input
variables.

1.2 Purpose

The purpose of this thesis is to be able to describe the impulse response of a room
by only knowing a set of room properties such as room dimensions, source position,
receiver position, absorption coefficients and scattering coefficients.
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1. Introduction

1.3 Aim
There are a few ways of determining an impulse response of a room, in this thesis
there will be a focus on regularized regression models. By finding a relationship
between the training set and the target containing the room properties, the same
relationship will be applied to the training set containing the corresponding room
impulse responses and in that way obtain the estimated room impulse response.

1.4 Limitations
During the room simulation process of this work, the room properties are limited.
The width of the rooms will range from 6 m to 7 m with a step size of 0.5 m,
while the depth of the room will consistently be 5 m and the height 3 m. This also
implies that the rooms are of shoe-box character. The absorption coefficients will
be limited in such a way that the reverberation time stays within the range of 0.3 s
to 1 s. Because of this, the results of this thesis work will not be applicable for all
sorts of rooms.

1.5 Previous and related work
The main inspiration to this thesis, is a work in which the authors used the LASSO
model in order to estimate the HRTF (Head Related Transfer Function), using
anthropometric features as input data [11]. The idea was that the same sparse
combination of the input data, could be used to describe the magnitudes of an
HRTF. By learning a sparse vector to represent a set of anthropometric features as
the linear superposition of the anthropometric features of a training set, the same
sparse vector could be used on the HRTF data. Among other models that where
evaluated, the outcome of this study shows that the best results were obtained when
using the LASSO-approach. Therefore, in this thesis work, the same concept will
be evaluated, since the structure of the data is somewhat similar.
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2
Theory

The following chapter will cover a recapitulation of the theory of some acoustics, the
theory of data and model preparations and regularized regression model techniques
that are required to understand in order to follow this thesis throughout.

2.1 Acoustics

2.1.1 Absorption and Scattering
Absorption coefficients, α, holds a value between 0 and 1, where 0 corresponds to
total reflection and 1, total absorption [5, Chapter 6].

Scattering coefficients is a measure of the amount of energy that is reflected in a dif-
fuse manner on a surface due to roughness or unevenness. The scattering coefficients
holds a number between 0 and 1, where 0 indicates total specular reflection (90° an-
gle between incoming and reflected sound wave) and 1 totally diffuse reflection as
can be seen in Figure 2.1.

Figure 2.1: Considering the black line as a surface, such as a wall, the blue left
hand side line represents the incoming sound wave and the blue line to the right

hand side the reflected specular sound wave. It can be seen that the angle between
the incident and reflected wave is 90°. The green arrows represents the diffuse

reflection of the incident wave.

2.1.2 Image Source Model and Ray Tracing
The image source model (ISM) is a technique that is used to obtain a rooms’ im-
pulse response in a simple and straight forward way and lies under the category of
geometrical acoustics. Instead of tracing each ray from source to receiver through

3



2. Theory

reflections of the interior surfaces of the room, so called mirror sources can be found
and the rays from the image source can be traced to the receiver as shown in Figure
2.2. The reflection order describes the number of times a reflection has been mir-
rored. In the figure the reflection order is displayed with a number in each of the
mirrored rooms.

Figure 2.2: 2D visualization of the image source model concept. "R" (red circle)
stands for receiver and "S" (blue circle) for the source. The square colored in green
represents the room and the surrounding white squares represents the mirrored

rooms. The outdrawn lines shows a reflection of order 1.

In a truly specular reflection, the squared pressure of the reflected wave is the squared
pressure of the incoming wave multiplied with 1 − α, meaning the amount that is
not absorbed by the material of the surface

p2
refl = p2

in(1− α) (2.1)

The total squared pressure of e.g. the direct sound and the first reflected sound is
obtained by uncorrelated addition of the squared rms-values

p2
tot = Wρ0c

(
1

4πR2
0

+ 1
4πR2

1

)
(2.2)

where W is the sound power of the source, ρ0 the density of the medium which
the sound is traveling through, c the speed of sound, R0 the distance between the
source and receiver (direct sound) and R1 the distance between the image source

4



2. Theory

and receiver (first reflection)[8, Section 4.2].

2.1.3 Schröder’s Backward Integration
The reverberation time of a room is defined as the time it takes for the level of the
total squared pressure to drop 60 dB. The difficulty with this approach is that the
pressure level fluctuates due to interference and resonating frequencies that appear
and makes it hard to determine the exact time for the decay of 60 dB. A way to
circumvent this was discovered by M.R. Schröder, and the method is now called
the Schröder’s Backward Integration [10]. The Schröder’s backward integration is a
method of determining the envelope of the decaying squared pressures by backward
integration. Thus, the pressure, p, is squared and integrated backwards as

S = 10 log
[ 1
Cref

∫ ∞
t

p2(t)dt
]

(2.3)

where Cref is a chosen constant [1]. This way it is possible to find the envelope, S, and
determine the decay time. Figure 2.3 shows an example of a Schröder curve and its’
belonging impulse response where the envelope is calculated for the reverberant field
of the impulse response, i.e. not including the direct sound. It is then normalized
to its’ first value, hence the curve starts at 0.

Figure 2.3: The figure shows a plot of an impulse response in dB (blue) and its’
belonging Schröder curve (red). The Schröder curve is normalized with respect to

it’s first value.

5



2. Theory

2.2 Data and Model Preparations

2.2.1 Training and Test set
For a model to learn to generate a certain output given an input, it requires data to
train with. This part of the data is called the training set, which in comparison to the
test set should be large. The model is fit to the training set and the test set is used to
evaluate the error of the output created by the model. In a real life scenario, the test
set is unknown and before the model is used in such case, it should be evaluated and
tuned in a way such that the prediction is as close to the true output as possible [17].

There is no general rule on how to split the data, the training set however, must be
large enough to cover as many variations within the whole data set as possible. If
the test set is very small, the results only show how good or bad the model predicts
a certain type of data.

A data set can be represented by a matrix of size N ×F , where N is the amount of
data examples and F the number of features. If the test set is considered as 10% of
the data, the size will be N · 0.1× F and the training set N · 0.9× F .

2.2.2 Normalization
To better represent a set of features, the data can be scaled with a min-max nor-
malization as

x′ = x− xmin

xmax − xmin
(2.4)

which will result in features with a value between 0 and 1. The matrix containing
the features for all data sets can then be presented as X ∈ [0, 1]N×F .

2.2.3 Overfitted Model
Within the data set, each example is unique in its’ own way. When a model becomes
overfitted, it can effectively model the random uniqueness of the training set but fails
to generalize for a broader data set meaning that it can easily fail to predict the test
set. Another problem occurs when the model, rather than describing the relationship
within the data, begins to describe random errors. These two in combination, are not
very helpful when it comes to predicting data. Figure 2.4 shows an example of data
points in two dimensions, where the red curve represents an overfitted model and the
blue line represents a model which is fitted to the data points in a more generalized
way. The overfitted model can effectively represent the training examples but fails
with the test examples, in other terms this means that the model has low bias but
high variance. The generalized model can better represent both the training and
test examples, it has more bias but lower variance [9].

6



2. Theory

Figure 2.4: Visualization of an overfitted model (red curve) and a more
generalized model (blue line). The overfitted model is fitting the training examples

very well, but fails to predict the test examples.

2.2.4 Cross-validation

Presented in Figure 2.5 is a cross-validation scheme with five folds. One fold con-
tains one test set (red box in the figure) and the rest the training set. When using
cross-validation the model is trained several times, each time with a different train-
ing and test data setup. The idea of cross-validation is to train and test the model
with different parts of the data. The model is then described as the average of all
the iterations. This could result in a more balanced model, which in turn prevents
overfitting [15, Section 3.1].

The number of folds used during cross-validation can vary by the choice of the user.
The largest number of folds possible, is the amount of examples present in the data,
this is called leave-one-out cross-validation.

7



2. Theory

Iteration 1

Iteration 2

Iteration 3

Iteration 4

Iteration 5

5 Folds

Figure 2.5: Illustration of cross-validation. The red segment represents the test
set and the white segments the training sets. Each fold is individually used to

create a model. The resulting model is the average of all iterations.

2.3 Regularized Regression Models

2.3.1 Sparse Representation and LASSO
LASSO is an abbreviation for the least absolute shrinkage and selection operator
and is a regression model that uses `1 regularization technique. The model finds a
vector, β = [β1, β2, ..., βN ], which holds weight values such that a new set of features,
y, can be estimated as y = βTX, where X contains the N number of training sets.
This means that y is generated as a linear superposition of the N training sets. This
weight vector can be found through the following minimization problem

β̂ = arg min
β

 F∑
f=1

(
yf −

N∑
n=1

βnXn,f

)2

+ λ
N∑
n=1
|βn|

 (2.5)

where the first part of the equation represents the minimization of the difference
between y and the new version of y. The right-hand side of the equation represents
the `1 regularization and contains the variable λ which is a penalty term that regu-
lates the strength of the `1 penalty and the sparsity of the model.

When the first part of the equation is large, meaning that βnXn is not a good rep-
resentation of y, λ will be large which in turn will shrink βn to zero, introducing
sparsity. When the opposite is obtained, the penalty will be low and βn will be
different from zero. When λ = 0, no parameters will be set to zero and the estimate
will be the same as for a linear regression model.

As λ increases, the bias increases and the variance decreases. With low bias, the
model can very well describe the examples in the training set. The variance is the
sum of the squared difference between a predicted value and the actual value. If the
model has low variance it can in a good way predict a test example given the training
set [17]. This would mean that the ideal model, has both low bias and low variance.
However, if the model has low bias it can easily fail to predict new data, meaning
that the model is overfitting the training set i.e. the model has high variance.

8



2. Theory

This means that these two parameters in a way contradict each other, it is often not
possible to have very low bias and at the same time a very low variance. The optimal
model is therefore defined as the perfect balance between these two. To be able to
find this combination, λ can be determined through cross-validation explained in
Section 2.2.4, where the selected λ-value is the λ with the best cross-validation-
score measured in the proportion of the variance (R2). When implementing cross-
validation a regression algorithm called LARS (Least-angle regression) can be used,
which finds the feature that is most correlated to the target in each step and identifies
the most relevant λ value [14, Section 1.1.3.1.1].

2.3.2 Ridge Regression
Unlike LASSO, ridge regression uses the `2 regularization technique, which in the
minimization problem appear in the second term as

β̂ = arg min
β

 F∑
f=1

(
yf −

N∑
n=1

βnXn,f

)2

+ λ
N∑
n=1
|βn|2

 (2.6)

adding the magnitude squared of the coefficients as penalty. This means that as
λ increases the coefficients get smaller, but will never be zero, since it gives higher
penalty to the larger weights, resulting in no sparsity. The weight vector can be
used in the same way as described in Section 2.3.1 and λ can be found with cross-
validation and singular value decomposition (SVD) [12, Section Linear Models].
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3
Methods

This chapter goes through the steps of choosing and using a room simulation soft-
ware, which then is used to create the room impulse response data. Also, this
chapter explains how the two regularized regression models were setup and tested.

3.1 Data Creation

3.1.1 Room Simulation Software

There are different room simulation software to choose from, the ones that were eval-
uated in this thesis work are MCRoomSim [2], pyroomacoustics [13], and gpuRIR
[3]. The reason to not only work with one simulation tool, is to decrease the risk
of working with a biased data set. With more variation, the more robust the end
product will become.

MCRoomSim is a room simulation program that can be used with Matlab. It
allows for multiple sources and receivers and can simulate both diffuse and specular
reflections. The software uses ISM (explained in Section 2.1.2) to simulate the spec-
ular reflections and a diffuse rain algorithm, which is a rapid stochastic ray tracing
method, to simulate the diffuse part. A room created with MCRoomSim can be
seen in Figure 3.1 with dimensions (x, y, z) = [10, 5, 3] m, with a source placed in
position [5, 2, 1] m ( ) and receiver placed in [7, 3, 2] m ( ).

11



3. Methods

Figure 3.1: Visualization of a room created in the room simulation tool
MCRoomSim, with dimensions (x, y, z) = [10, 5, 3] m. A source is placed in
position [5, 2, 1] m (red sphere) and receiver in [7, 3, 2] m (blue sphere).

The simulation tool pyroomacoustics has a Python object-oriented interface and
allows for both specular and diffuse reflection simulations. The reflections are simu-
lated with the ISM method, however there is no specified method for the diffuse part
of the sound field. An impulse response created in both MCRoomSim and Pyrooma-
coustics, with the same room setup can be seen in Figure 3.2. The room impulse
response obtained from pyroomacoustics drops 60 dB much quicker compared to
MCRoomSim and seems to lack the same diffuse properties that MCRoomSim can
simulate. This raised the idea of creating a room impulse response with only spec-
ular reflections in pyroomacoustics and adding that to an impulse response created
in MCRoomSim with only diffuse reflection. This however, did not seem to work
due to an uncertain delay in the impulse response.

12
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Figure 3.2: An impulse response created in Pyroomacoustics and Mcroomsim
with the same settings.

If looking closer at the first peak (direct sound) in each of the impulse responses,
one finds that the first peak created by pyroomacoustics is found at sample 451
while for MCRoomSim it is found at 925. By knowing the distance between source
and receiver and the sampling frequency (Fs = 44100 Hz), it is possible to calculate
where one could expect to find the first peak. Firstly the distance, d, between the
source and receiver was calculated with the following equation

d =
√

(xsource − xreceiver)2 + (ysource − yreceiver)2 + (zsource − zreceiver)2 (3.1)

the delay in time was then calculated and when multiplying the time, T , with the
sampling frequency, Fs, the delay in samples can be obtained

T = d

cair
Npeak = T · Fs

(3.2)

which was approximately 411 for this particular example, but it can vary due
to rounding errors. When using pyroomacoustics, it introduces a delay by de-
fault, called the global delay, of 40 samples meaning that the delay is actually
451− 40 = 411, which matches the delay that was calculated. For MCRoomsim the
delay is 925− 411 = 514, which was consistent for all simulations.

13
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Even though the method of using MCRoomSim and pyroomacoustics together now
seemed to be possible, it was uncertain how to obtain entirely specular reflections
from pyroomacoustics. When setting all scattering coefficients to zero, the result
ended up not as expected. Because of uncertainties around default scattering values
and running out of time, it was decided to not use pyroomacoustics.

The software gpuRIR, as the other two simulation software, uses ISM to calculate
the impulse response of a room. It is different from the others since it uses GPUs
(Graphics Processing Units), which increases the speed of the calculations [3]. Even
though this software seemed to be a good candidate to the data creation step, there
was no access to computers with GPUs and because of that, gpuRIR was ruled out.
After evaluating the three software, the only candidate left was MCRoomSim.

3.1.2 MCRoomSim Input Variables
The simulation tool was used to create room impulse responses of several rooms, by
stepping through a set of room dimensions created from a given minimum and max-
imum room dimension with a certain step size. The minimum and maximum room
dimensions were set to xmin = 6 m and xmax = 7 m and the step size to 0.5 m. The
depth and height of the room stayed the same for all simulations, y = 5 m and z = 3
m. The unique number of room dimensions is 3. This number of room dimensions
was chosen because of the time limit, since the simulation program takes around 2
to 5 minutes per simulation there was not enough time for a larger room dimension
set. Instead the focus was on just a few room dimensions and more variations of
source positions, receiver positions, absorption and scattering coefficients.

In order to obtain features that does not follow a certain pattern, to later prevent
overfitting (explained in Section 2.2.3), the rest of the input data was selected in a
somewhat random manner.

When the room dimensions were set up, absorption and scattering coefficients (ex-
plained in Section 2.1.1) were generated. The scattering coefficients were obtained
with a normal distributed random function in Matlab, following an underlying pat-
tern, where the scattering coefficient overall increases with frequency. The amount
of scattering coefficient sets was set to 5. Absorption coefficients were selected with
a constraint, a maximum and minimum allowed reverberation time. The lowest
acceptable reverberation time was set to 0.3 s and the maximum to 1 s. These coef-
ficients were then generated in the same way as the scattering coefficients, resulting
in about 3 to 10 sets of absorption coefficient per room dimension set.

The number of source positions was determined by the size of the room. For each
simulation a source position was determined in a random manner, but within the
constraint of not being closer than 1 m to each surface. For each source position a
set of receivers were placed in the room. By randomizing 100 positions within the
room, the ones that satisfied the requirement of being at least 1 m from all surfaces
and the source, were saved and used in the simulation. This setup resulted in a total
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of around 50000 simulations.

3.1.3 Other settings
MCRoomSim also allows to implement other settings, such as air absorption, speed
of sound, order of specular reflections, number of rays to trace from the source and
the directivity of source and receiver.

The air absorption setting was set to "True", meaning that the simulation takes
air absorption into consideration when calculating the room impulse response. The
speed of sound is calculated in the simulation software as

cair = 20.05 ·
√
T + 273 (3.3)

where the temperature, T , was set to 20°C, resulting in cair ≈ 343.2 m/s.

Given the size of the room, absorption and scattering coefficients, MCRoomSim can
estimate the appropriate order of specular reflections. The number of rays should
also preferably vary depending on the size of the room, this number was set for each
simulation, where the number of rays increases with room size. The directivity of
both the source and receivers were set to be omnidirectional.

3.1.4 Room Impulse Response
After each simulation, the calculated room impulse response was truncated to the
length where the level of the squared impulse response was decreased by 60 dB
compared to the direct sound (first peak). The room impulse response data is rep-
resented in pressure with its’ original sign.

3.2 Estimating the Room Impulse Response

3.2.1 Structure data
The room features were ordered in such a way that each row of the input data cor-
responds to a room with 93 features, where each room has a corresponding room
impulse response. Then the data was, in a random manner, split into training and
test sets (explained in Section 2.2.1), where 10 % of the data was considered as the
test set.

The room feature data was scaled according to Equation 2.4. Different minimum and
maximum references were chosen, to be able to evaluate different scaling approaches.
The first approach was to scale each feature with the minimum and maximum refer-
ence of itself (scaling method 1), i.e. each feature was scaled separately. The second
approach was to scale the room dimensions, source position and receiver position
with the maximum and minimum value within that data set (scaling method 2).
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Likewise, all the absorption coefficients were scaled on their own and all the scat-
tering coefficients on their own.

For a better prediction, any component that can be calculated manually should be
eliminated from the data set. In this particular case, the index of the first peak
(direct sound) of the impulse response can be found by knowing the source and
receiver position with Equations 3.1 and 3.2. Therefore, the impulse response was
shifted in a way such that the first peak is found at index 0. The first peak was kept
in order to later be able to shift the estimated impulse response to the right index,
however, even the value of the first peak can be calculated according to Equation
2.2 (using only the direct sound part). Because of this, the first peak along with the
following 2 ms, was replaced with the true values.

3.2.2 LASSO model setup
In order to tune the parameter λ in Equation 2.5, cross-validation explained in
Section 2.2.4 was implemented. The cross-validation was applied to the training
set of each test setup, this way the λ with the best cross-validation score (R2) was
chosen and used in Equation 2.5 to generate the sparse vector, which contains one
weight value per training example. By assuming that the linear relationship found
between the room features of the training set and the test set, as

Xtest =
N∑
n=1

βn ·Xtrain,n (3.4)

also can be found between the impulse responses, the estimated impulse response
was calculated as the superposition of the room impulse responses belonging to the
training set multiplied with the sparse vector as

ĥ =
N∑
n=1

βn · hn (3.5)

where hn is a vector containing the impulse response of one training example.

The algorithm used for these calculations was a sklearn class called linear_-
model.LassoLarsCV [14, Section 1.1.3.1.1], which has a built in cross-validation
algorithm, and LARS stands for least angle regression (explained in Section 2.2.4).

3.2.3 Ridge Regression model setup
The implementation of the ridge regression model was similar to the process of
using LASSO. Now however, λ, was tuned to Equation 2.6. The weight vector β
was generated, again, such that Equation 3.4 was fulfilled before using it to estimate
the impulse response. The class linear_model.RidigeCV in sklearn [14, Section
1.1.2.4], which has a built in cross-validaiton algorithm, was used to find λ and to
obtain the weight vector.
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3.2.4 Model Validation

3.2.4.1 Schröder Curves

To evaluate the models, the Schröder’s backward integration, explained in Section
2.1.3, was applied to the estimated and true impulse response and the root mean
squared error (RMSE) was calculated between the estimated and true envelope in
dB. In order to apply the backward integration, the trailing zeros of the impulse re-
sponse were eliminated as well as the first peak along with the following 2 ms. The
integral in Equation 2.3 was then calculated and flipped resulting in an envelope
corresponding to the impulse response. The envelopes were then normalized to the
maximum value of the true envelope. This process was performed for all the test
examples and the models were evaluated by the average RMSE. To be able to com-
pare the RMSE values, the worst and the best estimators were held as a reference.
The best model estimation, is the estimation with the lowest RMSE value obtained
over all estimations, and the worst is the highest RMSE over all estimations. As
another reference, the average RMSE values between the Schröder curves in the test
set created by the simulation software were calculated with the first test example
as a reference. This will give a reference of how good the models are compared to
an average guess based on the test examples. With Equations 3.1 and 3.2 the index
of the first peak was calculated and the impulse response along with the Schröder
curve was shifted to the correct index.

The RMSE value was calculated by subtracting the evelope of the true and estimated
Schröder curve. However, if the estimated curve is either shorter or longer compared
to the true, the obtained RMSE value is very high since one of the curves will have
very high negative values while the other much lower negative values. Where the
sound pressure is 0, the sound pressure level will, in reality, be minus infinity. To
avoid this a small number, 10−300, is added to the sound pressure, meaning that
whenever the pressure is 0, the pressure level is -6000 dB. The RMSE value between
the two whole Schröder curve will thus give an indication of how good the length of
the impulse response is estimated. To better represent the length error however, the
average length difference between the estimated and true impulse responses were
calculated, so instead of comparing the whole Schröder curve RMSE, the average
length difference was evaluated. To be able to compare how good the estimation is
to the point where the true and estimated impulse response are different from 0 in
sound pressure, the Schröder curves were set to the exact same length before the
RMSE value was calculated, this is later referred to as the truncated RMSE value.

3.2.4.2 Tests

The models were tested with different room setups. The first setup that the models
were tested on was a room with consistent room dimensions, absorption and scat-
tering coefficients, but varying the source and receiver positions (Test 1). This test
allowed for the evaluation of how good the models are at estimating the impulse
response within the same room. The second room setup was the same as the first
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setup but now also varying the absorption and scattering coefficients (Test 2). Fi-
nally, the models were tested with varying all the room properties (Test 3).

3.2.4.3 Test Size Validation

With each model, a percentage of the data set was used as a test set as been
mentioned before. To ensure that the test set is sufficiently large and that the
results do not vary too much, the two models were used in a way that all examples
in the data set (from Test 1) was once used as a test example. When one test
example is chosen, the rest acts as the training set. The reason why this setup was
not applied to all the tests was that with larger data sets the longer time it takes
for the model to produce an estimation and because of time limitation, this was not
an option. This means that the results from this test are based on the data setup
from Test 1, and the outcome is applied to Test 1, 2 and 3.
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4
Results and Discussion

In this chapter, the results of the various tests performed on the models are pre-
sented. The RMSE values and length differences are evaluated and presented in
a table after each section to easier compare the different models. For each model,
a random estimation example will be shown as a visualization of the estimations,
this example can be compared with the true example shown in the subsection "True
Impulse Response" under each Test section.
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4.1 Test 1
During the first test, the rooms’ dimensions were (x, y, z) = (5, 6, 3) m and the
simulations were carried out for 21 source positions and around 60 receiver positions
per source position resulting in a total of 1274 data sets. In the following subsections,
the reference or true impulse response and Schröder curve along with the results from
the ridge regression and LASSO model will be shown for both scaling methods.

4.1.1 True Impulse Response
The room impulse response of test example 10 created by the simulation software is
shown in Figure 4.1. In the following room impulse response estimations, this room
impulse response is referred to as the true impulse response and is what the models
are requested to recreate.

Figure 4.1: Room impulse response together with its’ Schröder curve of test
example 10, computed by the simulation software MCRoomSim. In comparison to

the following figures, this is referred to as the true impulse response.
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4.1.2 Ridge Regression, Scaling Method 1
Figure 4.2, shows the estimated impulse response of test example 10 using ridge
regression and scaling method 1. The average RMSE of the truncated Schröder
curve is 4.1279 dB, the average length difference is 2238 samples or 51 ms and around
17% of the estimations are shorter than the true. As can be seen in the figure, the
fact that the estimated impulse response is a superposition of all training data is
quite visible. Since the squared pressure level of the impulse responses fluctuates,
the estimated looks like it represents the average level. This result could be an effect
of having a too small training set and will be discussed later on.

Figure 4.2: Estimated room impulse response of test example 10 using ridge
regression and scaling method 1. The plot shows the estimated curve to the point
where the pressure level has dropped 60 dB. This particular estimation has an

RMSE of 3.8749 dB.

21



4. Results and Discussion

4.1.3 Ridge Regression, Scaling Method 2
Using ridge regression with scaling method 2 resulted in an average RMSE of 3.4531
dB. The estimated impulse response of test example 10 is shown in Figure 4.3 and
results are similar to the first scaling method but slightly better. The average sample
length error is at around 2010 samples or 46 ms, which is less than for scaling method
1, and around 15% of the estimations result in a too short sample length.

Figure 4.3: Estimated room impulse response of test example 10 using ridge
regression and scaling method 2. The plot shows the estimated curve to the point
where the pressure level has dropped 60 dB. This particular estimation has an

RMSE of 3.8899 dB.
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4.1.4 LASSO, Scaling Method 1
Moving on to the LASSO model, the first scaling method gave a result of 4.1607 dB
in average RMSE. Figure 4.4, shows a plot of the estimated room impulse of test
example 10, which shows that the estimated impulse response has larger fluctuations
compared to the ridge regression models. The average sample length is around 2277
samples or 52 ms off, and 19% of the estimations are shorter than the true impulse
response. The amount of sparsity in this model is around 96%, meaning that only
around 50 training examples are used in the estimation.

Figure 4.4: Estimated room impulse response of test example 10 using LASSO
and scaling method 1. The plot shows the estimated curve to the point where the
pressure level has dropped 60 dB. This particular estimation has an RMSE of

1.0010 dB.
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4.1.5 LASSO, Scaling Method 2
Lastly, the second scaling method was applied to the LASSO model. This method
resulted in an average RMSE of 3.4175 dB for the truncated version, which is just a
bit lower compared to the first scaling method with the LASSO model. The impulse
response of test example 10 is shown in Figure 4.5 and shows that even more of
the fluctuations are incorporated in the estimation compared to the first scaling
method. The difference in length is on average 1949 samples or 44 ms, and 37% of
the estimations are shorter than the reference. For this model the sparsity is around
98%, and only around around 20 training examples are used in the estimation.

Figure 4.5: Estimated room impulse response of test example 10 using LASSO
and scaling method 2. The plot shows the estimated curve to the point where the
pressure level has dropped 60 dB. This particular estimation has an RMSE of

0.9526 dB.
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4.1.6 Comprehension of the RMSE Values
In Table 4.1, the mean RMSE values for each model are listed together with the
lowest and highest RMSE value as explained in Section 3.2.4. Overall, the sec-
ond scaling method seems to work better for both models. The best estimation
is obtained with the LASSO model together with scaling method 2, but with very
small marginals. However, the major difference between LASSO and ridge regres-
sion seems to be that the LASSO model can better estimate the fluctuations in
the impulse response. It seems that the ridge regression model needs more training
data to base the estimate on. When looking at the average length difference, it can
be seen that also the LASSO model together with scaling method 2 estimates the
length of the impulse response most accurately.

As explained in Section 3.2.4.1, the average RMSE of test example 1 and the rest
of the test examples created by the simulation software were calculated in order to
see how different each test example is to one another. This resulted in an RMSE of
1.3631 dB for the truncated which in this context shows that the results obtained
in Test 1 are quite poor.

Table 4.1: Comparing the average RMSE values within Test 1 for each of the
models with different scaling methods, scaling method 1 is marked with s1 and
scaling method 2 with s2. The best model value is the lowest obtained RMSE
value/lowest length difference over all estimations, and the worst is the highest
obtained RMSE value/lowest length difference over all estimations.

Model Lowest RR s1 RR s2 LASSO s1 LASSO s2 Highest
Truncated

Schröder curve
RMSE (dB)

0.3557 4.1279 3.4531 4.1607 3.4175 39.0522

Average
Length

Difference (samples)
2 2238 2010 2277 1949 8403
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4.2 Test 2
During the second test, the rooms’ dimensions was still (x, y, z) = (5, 6, 3) m, but
now also the absorption and scattering coefficients are varying. The simulations were
carried out for 15401 data examples with 10% test size. In the following subsections,
the reference or true impulse response and Schröder curve along with the results from
the ridge regression and LASSO model will be shown for both scaling methods.

4.2.1 True Impulse Response
The room impulse response of test example 120 is shown in Figure 4.6. In the
following visualizations of the estimations, this room impulse response is the true
impulse response and is what the models are requested to recreate.

Figure 4.6: Room impulse response of test example 120 together with its’
Schröder curve of a room, computed by the simulation software MCRoomSim. In
comparison to the following figures, this is referred to as the true impulse response.
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4.2.2 Ridge Regression, Scaling Method 1
In Figure 4.7 is the result of an estimation (test example 120) done with ridge
regression and scaling method 1. The results in this test are very different from
the first test since now the fluctuations are incorporated in the estimation, but the
Schröder curve is around 25 dB lower than the true. The average RMSE over all
test examples is 27.0605 dB, the average length error is 6120 samples or 139 ms and
23% of the estimations result in a too short sample length.

Figure 4.7: Estimated room impulse response of test example 120 using ridge
regression and scaling method 1. The plot shows the estimated curve to the point
where the pressure level has dropped 60 dB. This particular estimation has an

RMSE of 30.0055 dB.
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4.2.3 Ridge Regression, Scaling Method 2
Similar results to scaling method 1 were obtained when using ridge regression to-
gether with the second scaling method, and the result for test example 120 can be
seen in Figure 4.8. The average RMSE 27.2972 dB, the average error in sample
length is 6031 samples or 137 ms and 23% of the estimations are shorter than the
true.

Figure 4.8: Estimated room impulse response of test example 120 using ridge
regression and scaling method 2. The plot shows the estimated curve to the point
where the pressure level has dropped 60 dB. This particular estimation has an

RMSE of 29.9595 dB.
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4.2.4 LASSO, Scaling Method 1
When using the LASSO model together with the first scaling method, the average
RMSE turned out to be 5.6072 dB for the truncated version, which is around 2
dB higher compared to Test 1. The sample length error is 1612 samples or 37 ms
and 26% of the estimation are too short. This model does a much better estimation
compared to the ridge regression models. The sparsity for this model is around 99%,
meaning that the estimation is based on around 148 training examples.

Figure 4.9: Estimated room impulse response of test example 120 using LASSO
and scaling method 1. The plot shows the estimated curve to the point where the
pressure level has dropped 60 dB. This particular estimation has an RMSE of

1.9166 dB.
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4.2.5 LASSO, Scaling Method 2
For the second scaling method, using the LASSO approach, the obtained average
RMSE is 7.4138 dB for the truncated Schröder curve which is surprisingly higher
than the first scaling method. The estimation of test example 120 is shown in Figure
4.10 and is about 2 dB lower compared to the true value. Since for Test 1, the second
scaling method showed a better result compared to the first for the LASSO model,
it is surprising that Test 2 shows the opposite. The sample length error for this test
is 5843 samples or 132 ms and the length is 37% of the time too short. The sparsity
for this model is around 99%, meaning that the estimation is based on around 148
training examples.

Figure 4.10: Estimated room impulse response of test example 120 using LASSO
and scaling method 2. The plot shows the estimated curve to the point where the
pressure level has dropped 60 dB. This particular estimation has an RMSE of

1.7755 dB.
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4.2.6 Comprehension of the RMSE Values
All the Schröder curve RMSE results from Test 2 are gathered in Table 4.2 and
shows that the LASSO model together with scaling method 1 gives the best result.
For this test, the first scaling method gave better results for most of the RMSE
values, which as mentioned before is different from the first test where the second
scaling method gave better results. Overall, the LASSO model outperforms the
ridge regression model but the RMSE values are a bit higher compared to Test 1.
The reason for this could be that there are too many variation in the training set
and since the estimation is a superposition of the training set, this could mean that
impulse response to predict is not similar enough to the training set leading to a
poor estimation. When looking at the average length difference, it can be seen that
the LASSO model together with scaling method 1 is also estimating the length most
accurately.

The average RMSE between true Schröder curves of test example 1 and the rest
of the test examples is 7.5064 dB. This again shows that the estimations are quite
poorly estimated for the ridge regression models. Both the LASSO models however,
have lower RMSE values than than this reference, which shows that the relationship
between the room features is somewhat correlated to the relationship between the
impulse responses.

Table 4.2: Comparing the average RMSE values within Test 2 for each of the
models with different scaling methods, scaling method 1 is marked with s1 and
scaling method 2 with s2. The best model value is the lowest obtained RMSE
value/lowest length difference over all estimations, and the worst is the highest
obtained RMSE value/lowest length difference over all estimations.

Model Lowest
RMSE RR s1 RR s2 LASSO s1 LASSO s2 Highest

RMSE
Truncated

Schröder curve
RMSE (dB)

0.2604 27.0605 27.2972 5.6072 7.4138 31.9945

Average
Length

Difference (samples)
2 6120 6031 1612 5843 17215
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4.3 Test 3
During the third and final model test, all room features are varying and the number
of simulations were 49594 with a test size of 10%. In the following subsections, the
reference or true impulse response and Schröder curve along with the results from
the ridge regression and LASSO model will be shown for both scaling methods.

4.3.1 True Impulse Response
For visualization, the impulse response and Schröder curve of test example 1000 is
shown in Figure 4.11 and is referred to as the true.

Figure 4.11: Room impulse response of test example 1000 together with its’
Schröder curve of a room, computed by the simulation software MCRoomSim. In
comparison to the following figures, this is referred to as the true impulse response.
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4.3.2 Ridge Regression, Scaling Method 1
When applying the ridge regression model with scaling method 1 to the data set,
the average RMSE resulted in 28.6582 dB for the truncated version. The estimation
of test example 1000 can be seen in Figure 4.12 and as seen before, the Schröder
curve is around 25 dB lower than the true. The length on average is off by about
6135 samples or 139 ms where about 20% of the estimations are too short.

Figure 4.12: Estimated room impulse response of test example 1000 using ridge
regression and scaling method 1. The plot shows the estimated curve to the point
where the pressure level has dropped 60 dB. This particular estimation has an

RMSE of 27.4692 dB.
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4.3.3 Ridge Regression, Scaling Method 2
For the second scaling method when using the ridge regression model, the average
RMSE is 28.6320 dB for the truncated version. The average length difference is 6102
samples or 138 ms and 21% of the estimations are estimated too short compared to
the true. The impulse response of test example 1000 is shown in Figure 4.13 and it
appears to be very similar to the one created with the first scaling method. Com-
paring the RMSE values with the first scaling method, the second scaling method
is slightly better.

Figure 4.13: Estimated room impulse response of test example 1000 using ridge
regression and scaling method 2. The plot shows the estimated curve to the point
where the pressure level has dropped 60 dB. This particular estimation has an

RMSE of 27.4208 dB.
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4. Results and Discussion

4.3.4 LASSO, Scaling Method 1
In Figure 4.14 the estimation of test example 1000 done with the LASSO model
and scaling method 1 is presented. The average RMSE for all estimations is 5.94783
dB for the truncated version and is the highest RMSE value so far with this setup.
The average length difference is 1574 samples or 36 ms and 25% of the estimations
are shorter than the true. Even for this test, the LASSO model outperforms the
ridge regression model, it is consistently around 20 dB better. The weight vectors
for this model has a sparsity of around 99%, which means that around 500 training
examples are used in the estimations.

Figure 4.14: Estimated room impulse response of test example 1000 using the
LASSO model and scaling method 1. The plot shows the estimated curve to the
point where the pressure level has dropped 60 dB. This particular estimation has

an RMSE of 5.1936 dB.
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4. Results and Discussion

4.3.5 LASSO, Scaling Method 2
For the second scaling method the LASSO model estimations resulted in an RMSE
of 6.0211 dB for the truncated version. The majority of the tests now show slightly
better results when using the first scaling method. The average length difference
is 1553 samples or 35 ms and 26% of the estimations are shorter than the true. In
Figure 4.15 is the estimation of test example 1000, which has similar appearance as
the true. The weight vectors for this model has a sparsity of around 99%, which
means that around 500 training examples are used in the estimations.

Figure 4.15: Estimated room impulse response of test example 1000 using the
LASSO model and scaling method 2. The plot shows the estimated curve to the
point where the pressure level has dropped 60 dB. This particular estimation has

an RMSE of 5.4809 dB.
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4. Results and Discussion

4.3.6 Comprehension of the RMSE Values
In Table 4.3 all the RMSE values and length difference from Test 3 are listed to-
gether with the lowest and the highest obtained RMSE and length difference values.
Again, it is visible that the LASSO model outperforms the ridge regression model
and as also seen in Test 2, the first scaling method give better results. Since the
models in this test predicts room impulse responses of room also with different sizes,
it is not surprising that the average RMSE values are a bit higher.

The average RMSE value calculated for all test examples with test example 1 as
reference is 7.3736 dB. This shows that the LASSO models does a relatively good
estimation.

Table 4.3: Comparing the average RMSE values within Test 3 for each of the
models with different scaling methods, scaling method 1 is marked with s1 and
scaling method 2 with s2. The best model value is the lowest obtained RMSE
value/lowest length difference over all estimations, and the worst is the highest
obtained RMSE value/lowest length difference over all estimations.

Model Lowest
RMSE RR s1 RR s2 LASSO s1 LASSO s2 Highest

RMSE
Truncated

Schröder curve
RMSE (dB)

0.4268 28.6582 28.6320 5.9478 6.0211 71.8733

Average
Length

Difference (samples)
0 6135 6102 1574 1553 20183
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4. Results and Discussion

4.4 Test Size Validation
As described in Section 3.2.4, the ridge regression model was tested with the data
set from Test 1, where each data example was used once as a test set, while the
other acted as a training set. The results in average RMSE is presented in Table
4.4.

This test shows that Test 1 might have a too small training set, even though it
resulted in lower RMSE values. However, the results from Test 1 seems to lack the
property of a fluctuating impulse response which in this test it does not, but instead
the Schröder curve start at around 20 dB lower compared to the true curve. This
would mean that a test size of 10% is not enough.

Since the results ended up being relatively similar to Test 2 and 3 however, the test
size of 10% was assumed to be a somewhat appropriate size and was used for the
remaining tests. It seems that it does not depend on the percentage of the test size,
but rather how large the training set is.

With more training data the RMSE values were expected to be lower, but that is
not the case for this setup. The only reasonable explanation to this, is that in Test 1
the training set is simply to small for the model to be able produce a good estimate,
especially for the ridge regression model.

Table 4.4: Comparing the average RMSE values obtained in Test 1 with a test size
of 10% with a test setup where all data sets are once considered as a test set while
the rest are considered training set. This test is called Test 4 in this table. TSC
stands for truncated Schröder curve ans ALD average length difference.

Model RR s1 RR s2 LASSO s1 LASSO s2
Test 1, ALD
(sample) 2238 2010 2277 1949

Test 4, ALD
(sample) 2267 2197 2719 2616

Test 1, TSC
RMSE (dB) 4.1279 3.4531 4.1607 3.4175

Test 4, TSC
RMSE (dB) 24.6400 26.1884 5.2014 4.4127
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5
Conclusion

To summarize the results from this thesis work, it shows that the LASSO model
outperforms the ridge regression model by about 20 dB when looking at the trun-
cated Schröder curve. The estimations with the lowest RMSE values were obtained
during Test 1, which is not too surprising since all room features in the data set
were consistent except for the source and receiver positions. This means that the
training and test sets are more similar to each other in comparison to the train-
ing and test sets for the other tests. However, the average RMSE between all true
Schröder curves in the test sets has a lower value than the average RMSE of the
estimates, which means that the estimates are relatively poor. This would mean
that the relationship between the room features is not a good representation of the
relationship between the impulse responses.

Even though the data set in Test 3 had about the same amount of source and re-
ceiver positions for each set of room dimensions as in Test 1, the room sizes were
0.5 m apart. Since the estimate is a superposition of all room impulse responses this
means that even the smallest room, depending on the weight value, contributes to
the estimation of the biggest room, even though they might not have very similar
impulse responses. If the step size between each room instead was e.g. 0.1 m, a
better estimation might have been obtained. Even though the LASSO model seems
to estimate the impulse responses with low RMSE, its’ RMSE value is still not very
different from the average RMSE of the true curves from the test set. The relation-
ship between the room features for both Test 2 and Test 3 is a better representation
of the relationship between the impulse responses compared to Test 1, but the av-
erage RMSE values are still not majorly different from the average RMSE between
the true curves in the test set.

Since the only difference between the LASSO model and the ridge regression model
is that LASSO introduces sparsity, this would mean that sparsity has a major impact
on the estimation. This in turn means that some training examples are more im-
portant to the estimation and perhaps even some features are more important than
others. A possible way to achieve better estimations, would maybe be to weigh the
features in order of importance. When scaling the features, the more important
features can be multiplied with a factor representing its importance. For example,
a change in one absorption coefficient affects the impulse response much less than
changing one of the room dimension variables. By weighing the features, this po-
tentially could help the models make a better prediction.
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5. Conclusion

Even though I would think that this way of estimating an impulse response could
work with some adjustments, it would require a lot more data if adjusting the model
to handle all sorts of room sizes, including non shoe-box shaped rooms. As a last
conclusion, this way of estimating an impulse response is a much more straight-
forward and simple way compared to the already existing methods but as it seems
now, the relationship between the room features is not a very good representation of
the relationship between the impulse responses. To improve these models, weighing
the features in order of importance could perhaps make a huge difference in the
estimations.
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