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The Impact of Adopting Continuous Integration on the Delivery Time of
Pull Requests
A Partial Replication and Extension
Yunfang Guo
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract

The practice of Continuous Integration (CI) is indispensable in the software develop-
ment process nowadays. In a distributed and collaborative context, CI is a paradigm
for integrating all changes from different developers quickly and safely. Thus the
adoption of CI is considered to fasten delivering new functionalities. A study by
Bernardo et al. doubted this claim, conducted an empirical study and found that
only half of the investigated projects deliver Pull Requests (PR) faster after CI. In
this study, considering the threats to the validity in their study, as well as the gen-
eralizability of their findings, a partial replication study, a comparison to projects
that never apply CI, and an extension study based on other projects with CI are
carried out. Through analysis on 132,006 merged PRs of 82 GitHub projects, I find
that the results of Bernardo et al.’s work still stand, that CI could not always fasten
delivery activities after CI. In addition, by comparing the statistical performance
of projects that apply CI with those that never apply CI, it is proved that similar
changes in development activities can only be observed in projects with CI adopted.

Keywords: continuous integration, pull-based development, replication study, deliv-
ery delay, Travis-CI
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1
Introduction

The concept of Continuous Integration (CI), which was promoted by Martin Fowler’s
2000 blog post [1], is now a popular practice in software community [2]. It helps
the developers integrate changes frequently in a collaborative manner [1]. As a dis-
tributed and cooperative practice, CI is commonly used in both commercial (e.g. Mi-
crosoft [3]) and open source software (OOS) development (e.g. Mozilla [4]). Though
CI is more popular and important on OOS platforms (e.g. GitHub) due to the
inner attributes of OOS projects like contributors are volunteers and geographically
distributed [5].

Much previous research has investigated the impacts brought by CI on OOS projects.
Vasilescu et al. [6] found that the core developers discover more bugs using CI. PRs
submitted by core developers are more likely to get processed, accepted and merged
with CI. Ståhl and Bosch claim that the integrators tend to release more frequently
after CI [7]. Different from their studies, inspired by Bernardo et al.’s work [8], I
report on a study of how the adoption of CI impacts the delivery behavior of Pull
Requests (PR) in GitHub open source projects in this paper.

1.1 Statement of the Problem

A recent publication by Bernardo et al. [8] did interesting research in this field. Their
work empirically analyzed whether CI improves the time-to-delivery of merged Pull-
Requests (PRs) that are submitted to GitHub projects. The results revealed that
only 51.3% of the projects deliver merged PRs more quickly after adopting CI. The
authors claimed that the large increase of PR submission, merge and delivery rate
after CI was a possible reason as to why projects deliver PRs more slowly after the CI
introduction. However, for Research Question 1 (RQ1) and RQ2 in this paper, the
authors have chosen to compare the overall statistics of before and after applying CI,
which may have considerable threats. Firstly, they did not consider whether hidden
patterns exist in regard to time, for example a growth in the number of submitted
PRs, which may falsify the conclusion. Secondly, they did not compare their results
with projects that never applied CI in the first place.
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1. Introduction

Specifically, the most crucial internal threat might exist in the approach of observing
the pattern of the merge delay—the time interval between a PR was created and
merged—and the delivery delay—the time interval between when it’s merged and
released. They analyzed the two metrics by testing the null hypothesis that is two
distributions come from the same population (α = 0.05). The threat could be that
the number of PR submission, merge and delivery may have a relationship with time
and normal growth in pull request submissions. In the thesis work, efforts are made
to investigate if such hidden pattern exists and whether the results of the authors
still hold if the pattern is controlled for.

Another important threat is that their control was limited to projects that applied
CI, and did not take projects which never applied CI into consideration. If one
would find similar results even for projects that never integrated CI, then CI cannot
be the causal reason for the results the original paper observed. Thus, control over
projects employed CI and never employed CI is conducted in this thesis.

One possible external threat would be generalizability. In the replication part of this
study, data is collected from a number of different open source projects in GitHub.
The analysis is carried out using the same approaches and verify if the results still
hold for new data.

Hence, the work of this thesis project includes (1) conducting a partial replication
study of the RQ1 and RQ2 of the original paper, (2) validating their findings by
applying another methodology that I consider more robust with regarding to the
above-mentioned internal threats, (3) supporting the generalizability through col-
lecting and analyzing more open source projects, as well as (4) extending their study
to get deeper understanding on the delivery process of a PR. In RQ3 of Bernardo
et al.’s work, they investigated which factors have a strong influence on the delivery
time of PRs after adopting CI by using multiple regression modeling. In this the-
sis, new metrics are added to the model, evaluated and compared to the previous
metrics.

1.2 Research Questions

This study investigated the following Research Questions (RQs):

RQ0: Can the original results be reproduced? The first task of this study is a partial
replication of the original paper. The necessity of conducting replication study is
provided by many previous works as stated in Section 3.4, and rooted from the
authors’ concern for the internal threats to the validity. Besides, replication works
can give me a more detailed, complete understanding of the original study, which
lays a good foundation for later research tasks.

RQ1: Can similar results to the original study are found when applying an alter-
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1. Introduction

native statistical method? This question is raised because of the concern for the
impact of normal growth in PR submissions on the results. It is investigated using
the same projects and data, with a different methodology. The results show that
consistent with the original study, CI adoption does not lead to a faster delivery
speed of merged PRs.

RQ2: Are there any other metrics that have strong explanatory power if added to
the linear regression model in the original paper? To investigate what other metrics
could explain the delivery time of a PR, a new metric which focuses on the time
referring to when a PR came into the release cycle shows strong influence in some
of the models.

RQ3: Can similar results be found when applying the same methodology to projects
that never introduced CI? This question is put forward because of the concern for the
results of controlling over projects that never employed CI. The outcome indicates
that the performance of projects without CI is more different than the same as the
original findings.

RQ4: Can similar results are found when applying the same methodology to different
projects that introduced CI in their lifecycle? This research question aims to test the
generalizability of the original study, and the result reveals that the new projects
share similar statistical performance with the projects in the original study.

1.3 Outline

Chapter 2 identifies the key concepts used throughout this study. The last section of
this chapter summarizes the approaches and main results from the original study, to
give the reader an overview of what this paper is replicating. Chapter 3 presents pre-
vious related work, as well as the necessity of replication work. Chapter 4 describes
the way of collecting projects and metadata, and the research methodologies used.
The results from this study along with a comparison with the original paper are
presented in Chapter 5. Chapter 6 discusses the study’s threats to validity. Lastly,
this paper ends with a summary of the thesis work and suggested future work in
Chapter 7.
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2
Background

This chapter explains the important concepts that a reader would need to know to
understand this work. Background knowledge of Continuous Integration, GitHub
and Pull-based Development are the core concepts in this study. Besides, an overview
of the original study is presented in Section 2.3.

2.1 Continuous Integration

Continuous Integration (CI) is a practice which has originated from Agile software
development and Extreme Programming. It is a development practice of merging
all developer working copies to shared mainline several times a day. Each integra-
tion is then verified by an automated build, which allows the errors to be detected
and located as early as possible [9]. CI is intended to bring many benefits, such as
quickening the delivery of new functionalities [10], reducing problems of code inte-
gration in a collaborative environment [11] and therefore the stability of the code in
the main repository is guaranteed. Based on the above reasons, CI is widely used
in practice nowadays. In particular, the popular projects favor CI according to the
study of Hilton et al. [12]. Some well-known CI services are Jenkins, Travis-CI,
Bamboo, TeamCity, etc.

2.2 GitHub and Pull-based Development

There are two general ways in which people contribute to open source projects on
GitHub, shared repository and pull-based development. In the way of a shared
repository, the owner of the repository shares read and write access to the main
repository, enabling external contributors to push their local changes directly to the
central repository. The study focuses on pull-based development whose development
process is shown in Figure 2.1. The detailed process is described below.

Step1: The main repository is not shared with the external developers. Instead, the

5



2. Background

Figure 2.1: An overview of the Pull-based Development on GitHub

contributor forks the central repository then clones it to a local repository. Now the
owner of the forked repository is the contributor, so any changes can be made to
this repository without inferring the main project or other forked repositories.

Step2: The contributor makes changes to the local repository, commits the changes.

Step3: The contributor submits the local changes to the main repository by opening
a Pull Request in the central repository. This action is either done on the GitHub
portal, or by GitHub API, or by git commands. The opened PR specifies which
branch that the changes will be merged into.

Step4: After a PR is submitted, the Travis-CI service automatically merges it into
a test branch. The service then runs all the tests for the whole project to check if
the PR breaks the codebase. If the PR doesn’t pass the CI check, the contributor
will need to update the PR until it passes the check.

Step5: After careful inspection to the changes in the PR, and several rounds of
discussion regarding how to improve the code quality or new ideas about the func-
tionalities, the integrator decides to approve the PR, then merges and closes it. A
PR could be closed without merged either by an integrator or the author of the PR.

2.3 Summary of the Original Study

As the work of this study is a partial replication and extension to the work of
Bernardo et al[8], a quick summarization of their study is necessary. To investigate
whether CI improves the delivery time of merged Pull-Requests in open source
projects on GitHub, they collected 162,653 PRs and 7,440 releases of 87 projects by
GitHub API. They addressed the following three research questions:

6



2. Background

RQ1: Are merged pull requests released more quickly using continuous integration?
RQ2: Does the increased development activity after adopting CI increases the de-
livery time of pull requests?
RQ3: What factors impact the delivery time after adopting continuous integration?

By applying non-parametric tests to the merge time, delivery time of PRs, they
drew the conclusion for RQ1 that only half of the projects deliver merged PRs
faster after adopting CI. And surprisingly, 71.3% of the studied projects merge PRs
faster before CI, not after CI. In RQ2, through non-parametric tests, they deducted
that the considerable increase on PR submission, merge and delivery rate and the
sum of code churn per release could be possible reasons as to why projects do not
deliver merged PRs faster after adopting CI. Besides, the number of releases per year
does not change significantly after CI. In RQ3, they built linear regression models
for each project and used the Wald X2 maximum likelihood test to evaluate the
explanatory power of each variable. The result showed that after CI adoption, a PR
had a smaller delivery time when the time it was merged was closer to the end of
the release cycle.
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3
Related Work

This chapter describes the previous work in related fields and how the research
questions in the study try to fill in gaps presented in the field. Section 3.1 presents
findings in applying pull-request-based development in open source projects. Section
3.2 describes the influence of the usage of CI from varies aspects. Following this,
Section 3.3 revolves around the effects caused by the interaction between CI and
PR, which is also the research focus of this study. Finally, Section 3.4 shows the
necessity of conducting replication study and the present situation of a replication
study in the Software Engineering field.

3.1 Pull-request-based Development

Related works have shown that PR-based-development has its advantages in open
source projects. Vasilescu et al. [11] collected 223 GitHub projects and found that
for an overwhelming majority of projects (39 out of 45, or 87%), builds corresponding
to PRs are much more likely to succeed than builds corresponding to direct pushes.
Gousios et al. [13] found that 14% of repositories are using PRs on GitHub. They
selected 291 projects from GHTorrent corpus and conducted empirical researches.
The conclusion is the PR model offers fast turnaround, increased opportunities for
community engagement and decreased time to incorporate contributions. They also
investigated the lifecycle characteristics of PRs and determining the factors that
affect them. The factors including the size of PR, tests, discussion, and code review.
Different from Gousios et al., I focus on the quantitative impact of the introduction
of CI in PR’s delivery time.

3.2 How Adopting CI Influences Projects

Previous researchers have investigated the impact of adopting CI in projects from
multiple aspects. Most papers showed that the introduction of CI is beneficial to
projects. Manglaviti et al. [14] examined the human resources that are associated
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with developing and maintaining CI systems. They analyzed 1,279 GitHub reposito-
ries that adopt TRAVIS CI using quantitative methods. The authors found that for
projects with growing contributor bases, adopting CI becomes increasingly beneficial
and sustainable as the projects ages.

There is a strong expectation that CI should improve the productivity of projects.
Ade Miller [15] analyzed influence made by CI by summarizing their experience with
CI in a distributed team environment at Microsoft in 2007. He collected various data
related to CI in their daily work then did quantitative analysis. He claimed that
teams moving to a CI driven process can expect to achieve at least a 40% reduction
in check-in overhead when compared to a check-in process that maintains the same
level of the code base and product quality. Ståhl and Bosch [7], argued based on
survey-based evidence [16] that build and test automation saves programmers time
for more creative work, and should thus increase productivity. Stolberg argued that
CI practices could speed up the delivery of software by decreasing integration times
[17]. However, not all researches agree on the adoption of CI improves productivity.
For instance, Parsons et al. [18] find no clear benefits of CI on either productivity
or quality.

3.3 The Interaction Between CI and PRs

This paper focuses on whether CI has an impact on the PRs and there are already
many previous works in this research track. Hilton et al. [19] analyzed 34,544 open
source projects from GitHub and surveyed 442 developers. The authors found that
70% of the most popular GitHub projects use CI. The authors found that CI helps
projects release twice as often and that when using CI, the PRs are accepted 1.6
hours sooner in median.

Vasilescu et al. [11] studied the usage of Travis-CI in a sample of 223 GitHub projects
written in Ruby, Python, and Java. They found that the majority of projects (92.3%)
are configured to use Travis-CI, but less than half actually use it. In follow-up
research, Vasilescu et al. [6] investigated the productivity and quality of 246 GitHub
projects that use CI. They found that projects that use CI could have more PRs got
processed, more are being accepted and merged when they are submitted by core
developers. This increased productivity does not appear to be gained at the expense
of quality.

Zhao et al. [20] conducted an empirical study to investigate the transition to Travis-
CI in a large sample of GitHub open-source projects. They quantitatively compared
the CI transition in these projects using metrics such as commit frequency, code
churn, PR closing, and issue closing. In addition, they conducted a survey with a
sample of developers of those projects. They used a set of three questions related
to the adoption of Travis and CI. They also asked how their development process
was adapted to accommodate the transition to CI. The main results of their study
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are: (i) a small increase in the number of merged commits after CI adoption; (ii)
a statistically significant decreasing in the number of merged commit churn; (iii)
a moderate increase in the number of issues closed after CI adoption; and (iv) a
stationary behavior in the number of closed PRs as well as a longer time to close
PRs after the CI Adoption.

Yu et al. [21] collected 103,284 PRs from 40 different GitHub projects. They tried
to investigate which factors affect PR evaluation latency in GitHub by applying a
linear regression model and quantitative analysis. They found that the size of PR
matters and the availability of the CI pipeline are actional strong predictors. In Yu
et al.’s later work [22], they again used a linear regression model to analyze which
factors affect the process of the pull-based development model in the context of CI.
The authors found that the likelihood of rejection of a PR increase by 89.6% when
the PR breaks the build. The results also show that the more succinct a PR is, the
greater the probability that such a PR is reviewed and merged earlier.

3.4 Replications Studies

As Bernardo et al. suggested, replications of their study in different settings are
necessary [8]. The necessity of replication study has been supported by many prior
works. The results of any one study cannot simply be extrapolated to all environ-
ments because there are many uncontrollable sources of variation between different
environments [23]. Successful replication increases the validity and reliability of the
outcomes observed in an experiment [24]. There are studies in criminology and ed-
ucation area reporting that replication studies are necessary, but too rare [25][26].
More generally, in the social and life sciences, researchers have realized that the
replication crisis is an ongoing methodological crisis since the results of many sci-
entific studies are difficult or impossible to replicate or reproduce on subsequent
investigation, either by independent researchers or even by the original researchers
themselves [27].

Basili et al. agreed and claimed that replication study in the software engineering
is also necessary but difficult [28]. It’s because an experiment in this field usually
involve a large number of context variables. However, according to the study of
Silva et al. [29] by presenting a systematic mapping study of replications in the
software engineering field, they concluded that the absolute number of replications
is still small, in particular considering the breadth of topics in software engineering.
Their study retrieved more than 16,000 articles, from which they selected 96 articles
reporting 133 replications. In further detailed, an empirical study in the Agile
Release Engineering (ARE) field is necessary according to Karvonen et al. [30].
Through a systematic literature review, they analyzed 619 papers and selected 71
primary studies that are related to ARE practices. They found that only 8 out of
the 71 primary studies empirically investigate CI. They highlighted that empirical
research in this field is highly necessary to better understand the impact of adopting
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CI on software development. Due to these reasons, in this report I replicate part of
the original research to validate the original results and conduct some extension to
further explore the studied area.
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4
Approach

This chapter describes the way of collecting projects and metadata in Section 4.1.
In Section 4.2, the methodologies for analyzing the data are detailed. Figure 4.1
gives an overview of the dataset that is used into different RQs respectively and
distinct methodologies applied in each RQ. For RQ0, RQ1, and RQ2, the dataset
from the original study with additional data is applied. The RQ3 and RQ4 use
an new dataset collected from GitHub. For the first three RQs, the methods and
procedures for different analysis purposes are reused from the original study as well
as inspired by related previous works. The last two RQs apply all analysis methods
in the first three RQs.

Figure 4.1: The data fed into RQs, the methods applied in each RQ.
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4. Approach

4.1 Data Collection

Section 4.1.1 describes how the new projects used in this study were collected. Sec-
tion 4.1.2 shows how the metadata of PRs and releases was collected.

4.1.1 Studied Projects

The 87 previous projects are investigated in RQ0–the original study and the meta-
data of the projects have been published by the authors online1. RQ1 and RQ2,
which are considered validation and extension to the original study, need additional
data such as the exact time point when a PR was merged for the 87 projects. This
information is collected directly through the GitHub API.

For the research work in RQ3 and RQ4, two new datasets are required. Projects with
CI adoption will be used in RQ4, while projects that never apply CI are required in
RQ3. The process of project selection closely follows the process in the original study
[8]. In Figure 4.2, the upper workflow depicts the process of collecting projects with
CI adoption and the bottom workflow shows the procedure of collecting another set
of projects.

Figure 4.2: The process of project selection. The upper workflow shows the process
of collecting projects with CI, the bottom workflow shows the procedure of collecting
projects without CI.

Step1: identify the 800 most popular projects for each of these languages. Java,
Python, PHP, Ruby, and Javascript on GitHub making use of GitHub API. The

1https://prdeliverydelay.github.io/#datasets
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popularity depends on the number of stars of a project. This search was done on
April 5th, 2019. There are 2763 projects in all. The reason for the total number is
2763 instead of 4000 is if one project using both Java and Javascript was collected
twice. Besides the projects had been used in the original study are filtered out for
the analysis purpose of validating the original results by using completely different
datasets.

Step2: check whether a project applied CI tools. In this study, only projects adopted
Travis-CI are considered valid projects with CI. Projects that use Jenkins don’t keep
the entire CI history, thus there is no way of knowing the time a project introduced
CI. The date of the first Travis-CI build is collected using the Travis-CI API, and
the time of when the first build was created is considered the CI adoption time.
1652 out of 2763 projects adopted Travis-CI and 1,111 do not apply Travis-CI.

Step3: gather merged PRs of each project. Similar to Bernardo et al., this study
excludes projects that have less than 100 merged PRs before or after the time when
CI was adopted, so as to guarantee enough data to conduct later analysis. A sim-
ilar timepoint is chosen for projects do not apply CI by an investigation from the
originally studied 87 projects. Dividing the days before the CI introduction over the
overall analyzed lifetime for every project, I get a mean of 0.382, a median of 0.38, a
variance of 0.085. In other words, from the sample of 87 projects, I could conclude
that projects usually introduces CI service after 38% of its lifetime. Then I define the
timepoint where 38% of its lifetime as the “mock-ci-timepoint” for projects without
CI adoption. Again, projects that have less than 100 merged PRs before or after
the mock-ci-point are excluded. Firstly by querying the MongoDB raw dataset of
the project GHTorrent, which mirrors data offered by GitHub Restful API2 [31], I
get the number of PRs of each project, then filter out the projects with less than
200 PRs. Only 103 remain among 1,111 projects without CI adoption, 295 remain
among 1652 projects that applied CI projects. Furthermore, after linking PRs to
releases (the first two steps in Section 4.1.2), projects without releases before or after
CI are removed. Projects have less than 100 linked PRs before or after CI adoption
are also excluded, and the same is true for projects without CI adoption. 28 out of
98 no-ci-projects are left, 54 out of 295 ci-projects remain.

Step4: filter out toy projects. GitHub is an open platform that hosts a variety of
projects. A toy project could be a student’s homework or for different purposes
other than general software development activities, for example, this kelseyhigh-
tower/nocode3 is incredibly popular but was just created for fun. In a case similar
projects remain after the former three steps, they should be excluded so as to keep
functional-similar projects and ensure the accuracy of this study.

2https://developer.github.com/
3https://github.com/kelseyhightower/nocode
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4.1.2 Data Collection Process

The data collection process is partially parallel to the project selection process.
Figure 4.3 shows the process of collecting PR and release information for every
project, no matter if it adopts CI or not. Each step of the process is detailed below.

Figure 4.3: The process of collecting data.

Step1: clone projects to local repository. Although almost information of a project
is available via the GitHub API, sometimes it is more efficient to clone the project
locally. In this study the data of releases and tags are needed. It is more convenient
to gather the releases and related information via a git command in a local project
folder.

Step2: link PRs to releases respectively. Firstly all releases of a project are collected
via git command along with with start date, publish date and duration of a release.
On GitHub one can make a pre-release which is identified as non-production ready4.
It is found that for one production-intended release, there might be more than one
pre-release, and usually a pre-release is named with a prefix or suffix pre, beta, rc
(release candidate), alpha. In this study, the pre-releases are filtered out to decrease
the variety in data because the integrator may launch pre-releases arbitrarily. Then I
compute the diff between two consecutive releases, and the diff lists commit that were
included in one release but not in another. In the commits log, I locate the record of
merging a PR by searching for commits with message ’Merge pull request #<X>’
(which is automatically generated by git when a PR is merged). For example, a
commit with message ’Merge pull request #312’ is found in the diff between v1.0
and v1.1, v1.0 is released earlier than v1.1, then I link the #312 PR to the release
v1.0. After a merged and delivered PR is found, I send a request via GitHub API
to collect the information of a PR: create date, merge date, close date, latest update
date, PR id, author, the number of added and deleted lines (churn), pull number.

Step3 and Step4: get the unreleased PRs by GitHub API then compute metrics on
the ground of all metadata. Apart from the merged and released PRs, metadata of
merged and unreleased PRs are necessary to the analysis work. There are 67,309
released PRs and 17,178 merged but unreleased PRs from 54 projects that adopted
CI, 35,123 released as well as 12,396 merged but not released PRs from 28 projects

4https://help.github.com/en/articles/creating-releases
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without CI adoption. The detailed description of PR-wise and release-wise metrics
are covered in Section 5.3.

4.2 Analysis Work

For the different analysis purposes of each research question, the collected data
and computed metrics are analyzed by different methodologies as described in this
section.

4.2.1 Non-parametric tests

The first part of the thesis work is a partial replication of the RQ1 and RQ2 of the
original study. The two research questions focused on the statistical performance
of the metrics the authors proposed by comparing the data distribution before and
after the CI adoption, that if the performance of one metric changes with a high
significance, then one can claim that the introduction of CI strongly influenced the
projects from this perspective. The authors applied non-parametric tests and got
good results, hence the methods are again used in the analysis work of RQ3 and
RQ4 in this study.

In further detailed, for each metric, the data is split into two buckets regarding
whether the time data of the record was before the CI adoption or after. Firstly
the authors applied the Mann-Whitney-Wilcoxon (MWW) test, which is a non-
parametric test that does not require the assumption of normal distributions. The
null hypothesis is two distributions come from the same population with α = 0.05.
If a result of a p-value is smaller than the α, the null hypothesis is rejected in favor
of the alternative hypothesis that the two distributions come from different popula-
tions. Speaking of the analyzed metrics, different distributions are expected because
the authors assumed the adoption of CI fastens the Pull-based development. Then
another non-parametric metric–Cliff’s delta was used to measure the magnitude of
the difference between the two distributions. The higher Cliff’s delta value, the
greater the difference between distributions. Generally, the standards set by Ro-
mano et al. [27] are used, that is a delta < 0.147 is considered negligible difference,
a delta < 0.33 shows small difference, a delta < 0.474 is considered medium and a
delta >= 0.474 is seen as large difference. Likewise, large Cliff’s delta values are
expected.
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4.2.2 Regression Discontinuity Design

4.2.2.1 Motivation

RQ1 was proposed due to the concern of the impact of hidden patterns regarding
time series in metrics, e.g. a normal growth in PR submissions on the results. The
choice of Regression Discontinuity Design (RDD) is inspired by the research of Zhao
et al. [20]. Since the RDD is the most powerful among varies quasi-experimental
designs to asses the existence and extent of the impact introduced by an intervention
[32], in the study of Zhao et al., RDD was applied to measure the longitudinal effect
made by the adoption of Travis-CI to their analyzed projects. The results gave
them a graphical overview of the trend before and after the intervention as well as
significant results through statistical analysis. The effectiveness and convenience of
the RDD motivate me to apply it in this study.

4.2.2.2 Identification

RDD is a fairly old idea firstly proposed by Thistlethwaite and Campbell at 1960
[33]. It experiences a renaissance in recent years [34]. It is a quasi-experimental
pretest-posttest design that elicits the causal effects of interventions by assigning a
cutoff above or below which an intervention is assigned. The assumption of RDD
is that the trend continues without changes if the intervention does not exist. In
this case, the intervention refers to the adoption of CI, a cutoff refers to the time
point when CI was introduced. The expected result in this study is an obvious
discontinuity around the cutoff point for the analyzed metric.

4.2.2.3 Estimation

In this study, several models are chosen to fit the data. Firstly define variables that
appear in the models.

• Di ∈ 0, 1 as the intervention, which is also called the treatment, refers to the
timepoint when CI service was adopted.

• Xi as the forcing variable, the time difference between when a PR was created
and when the CI was adopted in weeks. It totally determines the value of Di

with cutpoint c. Di = 1 {Xi > c}

• Yi(1) and Yi(0) represent the value of the dependent variable (delivery delay)
of the corresponding PR record with and without the impact of intervention
respectively.
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• E[Yi(d) | Xi, Di] as the estimation of the delivery time given Xi and Di.

• τ as the treatment effect.

Before applying different models, a visual inspection to the data gives an overview
of the trend and sometimes implies which model(s) are appropriate to use. In this
study, there are four models of RDD to be discussed as shown in Figure 4.4. Take
the upper left figure as an example, which describes an RDD estimation to the
dependent variable by a linear model with a common slope. The model could be
formulated as

E[Yi(0)|Xi, Di] = α + βc+ τDi + βXi (1)

where α represents the intercept of a fitted regression line and β represents the
slope. The linear model with different slopes and the non-linear model have similar
forms but more parameters. The models are fitted by lm function in R. The bottom
right model shown in Figure 4.4 uses a distinct way from the former three. The
model is generated by using RDestimate function in rdd package of R. The function
performs local linear regression using the Imbens-Kalyanaraman optimal bandwidth
calculation to better fit the data 5. Instead of fitting the whole bucket of data before
or after the intervention, as the former linear or non-linear model does, this function
highly focuses in the local area around the cutoff.

(a) Linear model (common slope) (b) Linear model (diff slopes)

(c) Non-linear model (d) Local linear regression

Figure 4.4: RDD estimation models

5https://www.rdocumentation.org/packages/rdd/versions/0.57/topics/RDestimate
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4.2.2.4 Explanation of Sample Results

Except for graphical results like Figure 4.4, the RDD method also generates a sta-
tistical report that determines whether the results are significant or not. Table 4.1
gives a summary of a sample linear model with common slope, with the dependent
variable of merge time. τ in formula 1 is the value of ci in this table, which means
that the intervention brings an increase of merge time in 1.6 days with statistically
significance at the 5% level, and a standard deviation value of 0.781. The R2 value
also decides the effectiveness of a model because that the higher a R2 is, the better-
observed outcomes are accurate compared with the real values. The summary table
of a linear model with different slopes or a non-linear model is similar to Table
4.1. Although such a table includes more parameters, the value of ci (the τ) in the
formula, the significance level as well as R2 are the emphases.

Figure 4.5 shows the summary of a model generated by RDestimate function in R.
LATE in the table is the abbreviation of the local average treatment effect. The
estimation of LATE is calculated by the optimal bandwidth, suggests that with
statistical significance at the 0% level, the adoption of CI results in 1.1757 days
increase in merge time of a PR.

Table 4.1: Sample linear model with common slope

Dependent variable:
merge_time

ci 1.600∗∗

(0.781)

ci_week −0.004
(0.008)

Constant 1.936∗∗∗

(0.484)

Observations 93
R2 0.143
Adjusted R2 0.124
Residual Std. Error 1.500 (df = 90)
F Statistic 7.514∗∗∗ (df = 2; 90)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Figure 4.5: Sample results of RDestimate in R

4.2.3 Regression Model

Regression Modeling with Ordinary Least Squares is used to replicate and extend
the original RQ3, which is the goal of RQ2 of this study. The research question
aims to tell factors in the Pull-based development that could partially decide the
delivery delay of a PR. Multiple linear regression models are fitted to describe the
relationship between explanatory variable X, e.g., code churn, merge time of a PR
record, and the dependent variable Y (delivery delay of merged PRs). For each
project, I build two models, one that uses the PR data before CI, and another that
uses the data after applying CI.

I follow the steps for fitting linear models from Harrell Jr.’s book[35]. Figure 4.6
shows an overview of the workflow.

Figure 4.6: The process of fitting a linear regression model.

Step1: transform the response variable (delivery delay) by log function. In metadata,
the scale of delivery delay of PRs is enormous, from 0 to thousands in days and the
skewness of all delivery-delays is a high value of 27. Log transformation is a common
and simple way of pre-processing data in order to reduce skewness [36].
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Step2: do a similarity check between every pair of the explanatory variables. The
function varclus of Hmisc package in R implements Spearman correlation test and
supports hierarchical variable clustering analysis. For variables within a cluster that
have a correlation of ρ2 > 0.7, the variable with least skewness within a cluster is
remained.

Step3: conduct redundancy check. Spearman’s test in the previous step can detect
monotonic but nonlinear relationships. A redundancy check is able to detect non-
linear relationships that a variable can be easily predicted from all other predictors
by using flexible parametric additive regression models [35]. I use the default value
of 0.9 as the cutoff of R2. Redundant variables are removed for later analysis.

Step4: fit regression models. The R2 is used to assess the fit of a model because it
statistically measures how close the data are to the fitted regression line. It explains
the percentage of the response variable variation that is explained by the model.
Similar to the original study, only regression models that obtain R2 values higher
than 0.5 are seen as valid. From 27 models in total, 18 use data of PRs without CI
adoption, and the other 9 use data of PRs with CI applied are valid. ols function
in R is applied.

Step5: use the Wald X2 maximum likelihood test to get explanatory power of each
variable of the 27 valid models. The largerX2 value of a variable, the larger influence
the variable has. The X2 is calculated by anov function of package rms in R.
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This chapter presents the results of each research question (RQ). Since the study
subject is almost the same as the original study, not only does every section illustrate
the results of its own, but a comparison to the original outcomes.

5.1 RQ0 Results

To gain a deeper and detailed understanding of the study of Bernardo et al., a
replication study is conducted.

5.1.1 RQ1 in the Original Study

The RQ1 of the original study investigated the impact of delivery delay of PRs by
adopting CI. They analyzed three metrics, which are delivery delay (days between
when a PR got merged and when it was released), merge delay (days between when
a PR was submitted and when it was merged), and lifetime (delivery delay+merge
delay). As stated in Section 4.2.1, the authors applied two non-parametric tests
to analyze the distribution of the data, and so does this study. As expected, the
replication results are very close to the original results, and the differences are shown
in Table 5.1. For metric merge delay and delivery delay, the results of the proportion
of projects observed significant changes, the median Cliff’s delta value, and the
proportion of projects which had a smaller value of the metric are listed sequentially.
The median Cliff’s delta of metric lifetime was however missed in the original study.

Note that even the same metadata is fed into the same statistical methods, the
results are not exactly the same. The reason could be the authors may apply different
data pre-processing procedures that are not described in the paper. Both the original
results and replication outcome support the claim that after the CI adoption, in
most projects the merge time of a PR got faster, yet either the delivery delay or the
lifetime did not show significant changes which contradict the assumption that the
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introduction of CI should fasten the delivery process.

Metric Original Result Replication Result Diff(abs)

Delivery
delay

82.8% 83.9% 1.1%
0.304 0.284 0.02
51.4% 47.9% 3.5%

Merge
delay

72.4% 78.2% 5.8%
0.206 0.195 0.011
27% 29.4% 2.4%

Lifetime 71.3% 72.4% 1.1%
48.4% 52.4% 4%

Table 5.1: Comparison between the original results and the replication results.

5.1.2 RQ2 in the Original Study

Following RQ1, RQ2 in the original study then tried to find the reason for this
phenomenon by observing the development activities per release of a project before
and after the CI adoption. The authors applied the Mann-Whitney-Wilcoxon test
and Cliff’s delta again to measure all the metrics, along with using a box plot to
visually summarize the comparison. Firstly, they analyzed PR submission, merge,
and delivery rates per release. Figure 5.1 is from the original paper, showing 3
boxplots for the metrics respectively. Figure 5.2 on the right is from this study. The
number shown in each box is the median value of the distribution, and the difference
of each pair of median values from the original study and replication study is 0 for
every metric. The results tell that after CI was adopted, the number of submitted,
merged and released PRs per release increases. Similar to Table 5.1, Table 5.2 shows
the difference of the statistical tests. The first row of each metric gives p-value of the
observed increases in metrics after CI, and the second row lists the value of Cliff’s
Delta. Since the distribution differences of metric releases/ year are not significant
(p-value = 0.146 / 0.301), Cliff’s Delta was not computed.

Although all the p-values and Cliff’s deltas are not exactly equal with the original
results, they show similarity that both the values shows strong significance or a
medium magnitude of the difference between the two distributions. All the signifi-
cance values are far less than 0.05 which means the increase of each metric is always
significant. Then they analyzed the sum of code churn per release of each project.
The code churn is the sum of added and deleted lines of code of all commits in
one PR. The authors also observed a significant increase in this metric, so does the
replication study.

However, they did not observe significant changes in released frequency after CI.
Figure 5.3 shows that from the two research results, both two data distributions are
of small difference, and the p-values presented in Table 5.2 gives statistical evidence
of this.
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Figure 5.1: Results from
the original study.

Submitted PRs Merged PRs

Released PRs

Figure 5.2: Results from the replication study.

Metric Original Result Replication Result Diff(abs)

PR submission/ release 1.5e-04 7.73e-05 7.27e-05
0.332 0.332 0.0

Merged PR/ release 7.9e-05 3.9e-05 4e-05
0.347 0.347 0.0

Delivered PR/ release 1.37e-05 6.83e-06 6.87e-06
0.382 0.382 0.0

Churn/ release 2.27e-03 1.1e-3 1.17e-3
0.27 0.27 0.0

Releases/ year 0.146 0.301 0.155

Table 5.2: Comparison between the original results and the replication results.

(a) Original result (b) Replication result

Figure 5.3: Release/year before and after CI
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The replication study successfully reproduces the results in the original study with
acceptable minor deviations. This task gives me a full understanding of the motiva-
tions, approaches, and outcomes of the original study, thus lays a solid foundation
for continuing researching on the following RQs.

5.2 RQ1 Results

Owing to the concern of hidden patterns in data may impact the original results,
the first RQ in this study is proposed to check whether similar results of RQ1 and
RQ2 can be found when applying an alternative statistic method to the projects and
dataset in the original study. The Regression Discontinuity Design (RDD) method is
applied to investigate whether the intervention of CI adoption influences the metric
performances on the scale of time.

For the RQ1 of the original study, there are three metrics: delivery delay, merge
delay and lifetime. To choose a suitable model for RDD analysis, firstly I generate
scatter plots and conduct a visual inspection for every project. Figure 5.4 contains
sample results from 3 different projects, mantl/mantl, aframevr/aframe, and
mozilla-b2g/gaia. The x-axis represents the forcing variable, which is the number
of weeks between the CI adoption time and the created time of a merged PR record.
The y-axis is the delivery delay of a PR in days. There is an obvious pattern that
the scatter points compose many line segments with a negative slope. This pattern
exists in these three projects, and almost all the 87 projects. The explanation of the
phenomenon is that delivery time of a merged PR is heavily dependent on when the
integrators decided to launch a release. A straight conclusion from the visualization
result is that there seems no universal pattern regarding time in the metric delivery
time. Similarly, the lifetime metric has the pattern also, as shown in Figure 5.5.
Therefore, RDD is not applicable to the two metrics.

But such a pattern does not exist in the merge time metric by visual inspection.
And it’s hard to tell if a linear model or a non-linear model can fit the data better
simply from the scatter plots. Hence, all four models described in Section 4.2.2 are
applied. The data of a project is divided into two buckets by the cutoff point of
when CI was adopted, and one model fits all data in one bucket is built. Figure 5.6
shows the fitted models of project boto/boto. In the first three models, the red
and blue lines fit data after and before the intervention respectively.

Among 87 projects, none of the linear or non-linear models gives a value of R2 higher
than 0.35. It means a very low proportion of the variance for the merge time that
could be explained either by the time difference from the time introducing CI, or
whether a record applying CI, or the interaction between the former two variables.
So, the conclusion that there is no pattern regarding time exists for merge time
metric is drawn. Regardless of the small R2, 63% (55/87) of the projects suggest that
PRs before CI adoption merge faster, which is consistent with the original study. As
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Figure 5.4: Visual inspection of metric delivery delay

Figure 5.5: Visual inspection of metric lifetime
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(a) Linear model (common slope) (b) Linear model (diff slopes)

(c) Non-linear model (d) Local linear regression model

Figure 5.6: RDD models of project boto/boto
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for the results of RDestimate function, 65/87 valid RD models are got–the reason for
22 of them not being valid is that internal errors occur when estimating bandwidth
in the calculation. 47.7% (31/65) projects show significance of the estimation at
the 5% level (p-value = 0.05). 61.3% (19/31) of models give a positive estimation
of LATE (local average treatment effect) around the cutoff which means that PRs
merge slower after CI adoption.

The metrics of RQ2 in the original study are submitted, merged, delivered number
of PRs per release, code churn per release and number of releases per year. The
number of data records equals to the number of releases of each project, thus the
data size is too small to apply RDD. Alternatively, I check the release frequency
before and after the CI adoption by a different metric which is the number of days
between two consecutive releases. As Figure 5.7 shows, the median of days between
two releases before CI adoption is 35.23 with a median value of 33.75 after applying
CI. The MWW test gives a p-value of 0.115 > 0.05, which means the difference
between the two distributions is not significant. The result is consistent with the
original study.

Figure 5.7: Box plot of days between two releases

5.3 RQ2 Results

The RQ2 in this study explores new metrics that have strong explanatory power if
it is added to the linear regression model whose dependent variable is delivery delay
of PRs. In the original study, following the guideline of fitting model in Harrel Jr.’s
book [35], the authors built two models for each project. One model uses PR data
before CI, another uses PR data after CI. The authors used 13 metrics in every
model, 6 of them showed a certain extent of explanatory power to the variation
to delivery delay according to Figure 10 and Figure 11 in the paper [8]. Based on
their results, variables without obvious influence on the models are removed from
this analysis work. The remaining variables from original study are merge workload,
contributor experience, queue rank, contributor integration, activities, and merge
time. Table 5.3 lists the detailed definition and rationale of each variable. In this
study, a new metric named come in time is introduced. As Figure 5.8 shows, it is
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the time interval in days between the time when a PR got merged with the begin of
the release cycle in which the PR was delivered.

Figure 5.8: The definition of metric come in time

By following the steps described in Section 4.2.3, I get 17 out of 86 valid models
that are fitted form PR data without CI and have R2 values higher than 0.5. The
median of the R2 values is 0.58. 9 out of 86 are valid models using the data of PRs
with CI adoption. The median of R2 values is 0.57. These two median values are
both lower than the results of the original study, and a possible reason could be that
the more predict variables, the higher a R2 gets. There were 13 predictors in the
original study, while in this study I have 7 factors, that 6 of them were proved very
influential, 1 of them is newly introduced. Figure 5.9 shows the number of projects
for one explanatory variable that has the strongest influence. Take the metric merge
workload for example, it shows the strongest influential power in 3 models that are
fitted from PR data before CI. Figure 5.9 tells that either for PR data before CI or
after CI, the metric come in time is the most influential attribute to the variation
of delivery delay.

Figure 5.9: The number of models for the explanatory variables that shows the
strongest influence

30



5. Results

Factor Definition (d) | Exposition (e)

Number of
Activities

d: An activity is an action to a PR conducted by a GitHub user,
eg. labeled, assigned.
e: Generally a high number of activities represents plenty of dis-
cussion rounds between the integrator and contributors [37].

Merge Time
d: The time interval between when a PR was created and when
it was merged by an integrator.
e: If a PR was merged quickly, it is also likely to be released
quickly, maybe because that the PR fixes a serious bug.

Contributor
Experience

d: The number of released PR that were created by author of a
certain PR.
e: If a user has previously contributed a lot released PRs to the
project, the next PR submitted by the person would be seen very
valuable and thus got merged and released quickly [8].

Contributor
Integration

d: The mean value in days of the released PRs that were submitted
by a particular user.
e: If the past PRs submitted by a particular contributor were
released quickly, then the next PR submitted by the same user
would also be released rapidly [8].

Merge
Workload

d: The number of PRs waiting to be merged at the time when the
certain PR was submitted [8].
e: Since the energy of an integrator is limited and each submitted
PR requires analyzed, the more unmerged PRs, the heavier work-
load of an integrator would have. This might impact the delivery
of PRs. [8]

Queue Rank

d: The order of the merged PRs in a release cycle. For example,
the first merged PR in the release cycle is assigned with a value
of 1, the hundredth one is assigned with 100 [8].
e: A merged PR might be released faster or slower depending of
its queue position [38].

Come in
Time

d: The time interval in days between the time when a PR got
merged with the begin of the release cycle in which the PR was
delivered.
e: The earlier a PR comes in the release cycle, the longer it would
take for the PR to be delivered.

Table 5.3: Definition and Exposition of each Variable in Linear Regression Model.
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5.4 RQ3 Results

In the original study, though the delivery time of merged PRs was not impacted
by the introduction of CI, increasing trends of other metrics including merge time
of submitted PRs, the number of submitted, merged PRs per release, etc. was
observed with statistical significance after CI. The study of this RQ aims to control
over the projects that never apply CI in their lifetime and inspects the results. If
similar results are generated from this study, then the adoption of CI is not a unique
factor that impacts the development activities in open source projects. As Section
4.1.1 states, a mocked-CI-point referring to the time when 38% of a project’s lifetime
was spent is introduced, functioning as an intervention. mocked-CI is distinguished
from CI for clarity in this Section. 28 valid projects from GitHub are collected and
analyzed using all methods applied in former RQs.

5.4.1 Changes in Time Spans of PRs after mocked-CI-point

By applying Wilcoxon signed rank test, among 28 projects, 25 (89.3%) of them
obtain significant p-value when comparing the merge time of submitted PRs before
and after mocked-CI with a median Cliff’s delta value of 0.266 (small). The majority
projects (18 out of 25) merge PRs more quickly before mocked-CI. For delivery time
and lifetime of PR, I do not observe a change of the data distribution in the majority.
A total of 96.4% (27/28) of the projects gain significance on the time of a merged PR
waiting to be delivered along with a median of delta value of 0.292 (small). Only
59.2% of the projects deliver PRs faster after mocked-CI. Considering the small
number of analyzed projects, a phenomenon in the 59% could not represent the
majority. In 25 (89.3%) out of 28 projects significant p-values as well as a median
of Cliff’s delta of 0.35 are observed. 60% (15/25) of them even have longer lifetime
after mocked-CI. All differences in lifetime distribution of the 25 projects are non-
negligible according to Cliff’s delta results. 44% (11/25) of such projects obtain
small delta values with a median of 0.249, 16% (4/25) are observed having medium
deltas with a median of 0.357, and the rest 40% (10/25) of them acquire a median
of 0.651 among 10 large delta values.

Following the RQ1 of this study, the alternative method RDD is again used in
this task to detect time series patterns in metric merge time. A linear model with
common slope, a linear model with different slopes, a quadratic model and a model
generated by RDestimate function in R. The validity of linear and non-linear models
is evaluated by R2 value. However, for each project none of the models obtain a
R2 value higher than 0.4, meaning that more than 40% of the variation in merge
time is not explained by the model. All models are under-fitted, indicating that
the relationship between merge time with the time series factor regarding CI is
neither linear nor quadratic. Thus there is no time series pattern existed in the
metric merge time. Regardless of R2 values, 57.1% (16/28) of the models suggest
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PRs after mocked-CI merge faster. The RDestimate function generates models for
17 projects. Only 29.4% (5/17) of the models give significant estimation at the
5% level to the changes after mocked-CI. Put the significance aside, 64.7% (11/17)
imply after mocked-CI, the submitted PRs get merged faster.

The non-parametric results in the 28 projects without CI are consistent with the
findings in the original paper regarding these three metrics, that the merge time and
lifetime of submitted PRs is even longer after the time node, and the acceleration
in delivery time of merged PRs is significant only in approximately half of the total
projects. However the outcome of RDD gives different results from the original
86 projects and the projects without CI that the merge time of PRs significantly
increase after CI in a majority of projects, whilst a decline is observed in most 28
projects without CI after the mocked-CI.

5.4.2 Changes in Development Activities after mocked-CI-
point

The first 3 boxplots of Figure 5.10 show the number of created, merged and released
PRs per release before and after mocked-CI respectively. Two metrics show increases
of the median values after mocked-CI, that the median value of submitted PRs
increases from 27.0 to 39.7 and the median value of merged PRs increases from
21.2 to 31.0. For delivered PRs per release, although the upper quartile, which is
the upper bound of a box meaning 75% of data fall below the line, increases after
mocked-CI, the value of median drops by 6.95. From a statistical perspective, none
of the metrics shows significance. A Wilcoxon signed rank test reveals that the
increase in the number of submitted PRs is not significant (p-value = 0.09085 >
0.05), with a small Cliff’s delta of 0.209. The number of merged PRs gets a bigger
p-value of 0.121 by the MWW test, with a small delta of 0.184. A non-significant
value (p-value = 0.294) is also observed in the MWW test for the number of released
PRs per release, as well as a negligible Cliff’s delta value (0.085). The sum of churns
in submitted PRs per release almost doubles (from 13,229 to 23,428) when observing
the median value before and after mocked-CI. The p-value = 0.033 < 0.05 suggests
the increase is significant, with a small Cliff’s delta of 0.288.

Comparing to results in the original study (check Figure 5.1) that the observed in-
creases in submitted and merged PRs per release are statistically significant, but the
increases observed from projects with mocked-CI are not significant. The discrep-
ancy is bigger when comparing the released PRs per release, that in original study
the number of released PRs per release increased significantly (p-value = 2.27e-
03) after CI, while the difference in the distribution before and after mocked-CI
observed here is not significant. For the sum of PR code churn per release, both
studies observe a significant increase after the selected time node.

Figure 5.10d shows the distribution of the number of releases per year before and

33



5. Results

(a) #Submitted PRs/release (b) #Merged PRs/release

(c) #Delivered PRs/release (d) #release/year

(e) #Days between two releases

Figure 5.10: Results of RQ3
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after mocked-CI. The projects tend to launch 9.07 releases per year after mocked-CI
and a slightly smaller number of 8.52 before mocked-CI in the median. A Wilcoxon
signed rank test shows that the increase is far from significant with p-value = 0.286.
Similarly, the result in the original study also gives an insignificant p-value of 0.146
with a drop from 12.03 to 10.15 number of released shipped per year. Another metric
that evaluates the release frequency computes the time difference in days between
two consecutive releases is introduced in Section 5.2. As Figure 5.10e shows, the
time interval between releases increases from 26.61 to 42.08 in the median. Since
fewer releases are shipped per year, the time interval between two releases increases.
The phenomenon is not significant with a p-value of 0.138, which is consistent with
the metric release per year.

5.4.3 Most Influential Variables in Linear Regression Mod-
els

Following Section 5.3, the task of this section is fitting linear regression models to find
out which factors can impact the delivery time of projects that never apply CI. The
analyzed variables are activities, come in time, merge time, contributor integration,
contributor experience, merge workload, and queue rank as detailed explained in
Table 5.3. The analysis procedure follows the approaches defined in Section 4.2.3,
that filtering redundant variables goes first, then fitting a linear regression model,
finally getting the explanatory power of each variable in the model by a Wald X2

maximum likelihood test. In 28 models that use data after mocked-CI, only 2 models
have R2 value higher than 0.5. One of them obtains a R2 of 0.929 with queue rank
as the most influential variable, another obtains a R2 of 0.528 with contributor
experience as the most powerful one. In models using data before mocked-CI, 3 of
them have R2 value higher than 0.5 (0.729, 0.592, 0.810), with queue rank being
the most influential variable. queue rank always shows the strongest explanatory
power both in models that fit data before or after mocked-CI. It represents the
sequential order of merged PRs in a release cycle (see Table 5.3). And contributor
experience infers the number of successfully delivered PRs submitted by a particular
contributor previously. These two factors are of the biggest explanatory power to
the variation in delivery time of PRs of projects that never apply CI.

5.4.4 Comparing to the Original Results

Considering the performance of the projects that never apply CI from all the metrics,
the divergence between them and the previous investigated 87 projects is not trivial.
In merge time of PRs, the authors claimed that 73% of the projects tended to merge
PRs slower after CI and results of RDD from this study Section 5.2 seconds them.
However in 28 projects without CI applied, the merge time of PRs after mocked-CI
drops according to the analysis of RDD. For the release related development activi-
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ties, the authors observed a significant increase in the number of submitted, merged
and delivered PRs after adopting CI. In this study, increases are also observed, yet
non-significant. Lastly, the original study found that merge workload and queue
rank are the most influential variables in linear regression models using data before
and after CI respectively. However, the variable that has the biggest explanatory
power is queue rank either for models analyzing data before or after the mocked-CI
time node. Therefore from the comparison, it is recognized that the adoption of CI
makes the projects distinct from the projects that do not apply CI.

5.5 RQ4 Results

This RQ aims to test the generalizability of findings in the original paper by col-
lecting 54 new projects adopted CI from GitHub then conducting analysis. Similar
outcomes as the original results are expected naturally.

5.5.1 Changes in Time Spans of PRs after CI

Firstly applying Wilcoxon signed rank test to the distributions before and after CI
and measuring Cliff’s delta to the difference magnitude as the original study did.
The statistical results are listed in Table 5.4. The table also lists outcome from the
original paper as a reference, for showing the differences between two result-sets.
The results of the proportion of projects observe significant changes, the median of
Cliff’s delta value, and the proportion of projects which have a smaller value of the
metric after CI are listed sequentially. The median Cliff’s delta of metric lifetime
was however missed in the original study. In general, the discrepancy of one metric
for the two datasets containing different projects are small, thus one can claim that
the validity of the original finding holds in this study.

Metric Original Result RQ4 Result

Delivery delay
82.8%(72/87) 98.0% (50/51)
0.304(small) 0.254(small)
51.3%(37/72) 58%(29/50)

Merge delay
72.4%(63/87) 80.4%(41/51)
0.206(negligible) 0.188(negligible)
27%(46/63) 19.5%(33/41)

Lifetime 71.3%(62/87) 79.6%(43/54)
48.4%(30/62) 46.5%(20/43)

Table 5.4: Comparison between the original results and RQ4 results.

Then RDD is applied to inspect time series patterns in merge time with four mod-
els (two linear models, one non-linear model and one generated from RDestimate
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function). The R2 values of all linear, nonlinear models are smaller than 0.4, indi-
cating that all models underfit the data thus there is no time series pattern existing
in metric merge time. Regardless of R2, that 57.4%(31/54) of the projects merge
PRs faster after CI is observed. RDestimate function successfully generates models
for 41 projects, and 56.1% (23/41) of them outputs estimation at the 5% level of
significance (p-value = 0.05). A total of 60.9% (14/23) of the models give negative
estimation meaning that the time for a submitted PR waiting to be merged gets
smaller after CI.

By conducting non-parametric tests as the original study did, findings from the 54
projects with CI are still consistent with the outcome of the paper. In other words,
the original results are proved valid regarding metrics of merge time, delivery time
and lifetime of PRs. But analyzing the new dataset by RDD reveals an opposite
consequence that instead of an increase in merge time of PRs after CI, a decrease
is observed in over half of the projects.

5.5.2 Changes in Development Activities after CI

In Figure 5.11, the first 3 plots show the number of submitted, merged and released
PRs per release before and after CI introduction. Each of the plots gives an overview
of an increase in the data that the location of the "box" moves upward on y-axis after
CI. In further detail, the median value of submitted PRs increases from 13.95 before
CI to 29.91, the median of merged PRs per releases also experiences an increase
from 8.72 to 20.53, and the number of released PRs increases to 16.1 from 7.59.
All increases are significant, which are supported by the MWW rank test with p-
values far less than the threshold 0.05 and Cliff’s delta values in between 0.33 and
0.47 of medium magnitude. Besides, the median value of the sum of code churns
in submitted PRs within a release cycle after CI (15,715) doubles the value before
CI (7,453). The change is significant supported by a p-value = 6.7e-03 with a small
Cliff’s delta (0.276). Table 5.5 shows the comparison between the results from the
original paper and from this study. The table lists p-value from MWW test in
the first rown and the median of Cliff’s delta in the second row for each metric.
Regarding the five metrics, one can tell the two result-sets have small gaps.

The boxplots in Figure 5.11d shows the distribution of the number of releases per
year before and after CI. The projects tend to deliver 7.97 releases per year after
CI compared to a slightly bigger value of 8.98 before CI in the median. An MWW
test gives a p-value of 0.409 showing non-significance in the changes of the two
distributions. Similarly, the original paper also claimed that there was a small drop
from 12.03 to 10.15 in the median of the number of shipped releases per year with
an insignificant p-value = 0.146. Figure 5.11e shows an increase from a median of
35.9 to 45.7 of the time interval in days between two continuous releases after CI.
Still, the increase is not significant (p-value = 0.123) with a negligible Cliff’s delta.

37



5. Results

(a) #Submitted PRs/release (b) #Merged PRs/release

(c) #Delivered PRs/release (d) #Release/year

(e) #Days between two releases

Figure 5.11: Results of RQ4

Metric Original Result RQ4 Result Diff(abs)

PR submission/ release 1.5e-04 3.67e-04 2.17e-04
0.332 0.377 0.055

Merged PR/ release 7.9e-05 2.1e-04 1.31e-04
0.347 0.394 0.047

Delivered PR/ release 1.37e-05 8.19e-04 8.05e-04
0.382 0.352 0.03

Churn sum/ release 2.27e-03 6.7e-03 4.43e-03
0.27 0.276 0.006

Releases/ year 0.146 0.409 0.263

Table 5.5: Comparison between the original results and RQ4 results.
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5.5.3 Most Influential Variables in Linear Regression Mod-
els

In this section, I analyze the explanatory power of each variable, then compare the
results to the original findings. Similar to Section 5.3, I computed 7 metrics and
fitted linear regression models with the dependent variable as the delivery time. In
54 models that use data after CI, 2 models are regarded valid as their R2 values
are bigger than 0.5. One of them obtains a R2 of 0.696 with contributor integration
as the most influential variable, another gets a R2 of 0.537 with queue rank being
the most powerful one. In models using data before CI, only 5 of them obtain R2

values higher than 0.5 (0.985, 0.552, 0.904, 0.561, 0.513). 3 out of 5 models result in
queue rank as the most significant factor for impacting the delivery time, the other
models reveal that contributor integration and merge workload are also able to alter
delivery time.

If relaxing the threshold of R2 to 0.3, meaning that at least 30% of the variability of
my data is explained by a linear regression model, more models are considered valid.
In models using data after the adoption of CI, 16 are regarded as valid with a median
R2 of 0.349. On the other hand, 19 out of 54 models using data before CI are valid
with a median R2 of 0.415. Table 5.6 shows the number of models per the most
influential variables for data before or after CI. Still, queue rank and contributor
integration are the first and second most powerful factor either for models fitting
the data before CI or after CI. contributor experience and merge workload also get
their time of being the most powerful variables.

practice queue rank contributor
integration

contributor
experience merge time merge

workload
CI 7 6 1 0 2
NO-CI 8 7 1 1 2

Table 5.6: The number of projects per the most influential variables

5.5.4 Comparing to the Original Results

Most of the statistical results from the new 54 projects second findings from the
original paper. By non-parametric tests, half (58%) of the new projects deliver
merged PRs faster after CI, comparing to a value of 51.3% in the old projects. The
increases in the number of merged delivered and submitted PRs are significant as
found in the original study. Although there is a divergence in which one influences
the delivery time of PRs by fitting linear regression models using data before CI,
that in the original study, it is merge workload, yet in this study, the answer is queue
rank, followed by merge workload which obtains the second strongest explanatory
power. Therefore, the new projects with CI are observed with similar statistical
performance as the old projects.
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6
Threats to Validity

This chapter addresses the potential threats to validity in this thesis work.

6.1 Construct Validity

Construct validity would be a threat if the research design has flaws or inaccurate
so that it is not able to measure what it claims or purports [39]. The statistical
methods including two non-parametric tests (MWW test and Cliff’s delta), linear
regression modeling and Regression Discontinuity Design (RDD) are considered old
and mature methods. The implementations of the methods are either supported
in R or in Python, and one can believe that the implementations have been tested
and verified by the software provider. Hence a construct threat to validity might
be introduced by errors in the processes of collecting projects and metadata. Before
collecting new dataset, I have tried to collect raw data and compute metrics for one of
the 87 projects used in the original study then compared my results to the metadata
that the authors publish online, for the correctness and a full understanding of their
approaches. Also from time to time, I verify the intermediate results during the
process of collecting.

6.2 External Validity

External validity concerns to what extent do the findings still hold under a more
generalized circumstance [39]. In this study, 52 new projects with CI adopted have
been analyzed to test the generalizability of the results in the original paper, and 30
projects without CI are investigated for the purpose of controlling the impacts of CI.
But the amount of investigated objects is small compared to the number of available
data online. Besides, it could be interesting that applying the methodologies in this
paper to datasets with different settings, for example, a dataset covering private
projects.
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6.3 Internal Validity

Internal validity questions the ability to draw conclusions from all the involved fac-
tors, that if any of the factors are potentially affected by other unexpected variables.
One threat could be that the purpose of each collected project may influence the
release activities, yet is not analyzed in this study. Commercial software releases
regularly and fast to end-users, e.g. Amazon delivered to production every 11.6 sec-
onds on average in May 2011, Facebook released twice a day [40]. Non-commercial
projects, which are maintained by core contributors from enthusiasm, may release
less regularly. Should differentiate projects according to its purpose, the influence
brought by CI could be more obvious.

42



7
Conclusion & Future Work

This thesis work is motivated by the study of Bernardo et al. which investigating
the influence brought by adopting CI on the delivery delay of PRs empirically. The
goal of this study is to replicate the findings, extend the analysis scope and test the
validity of the findings under different settings. Here I summarize each RQs of this
study.

RQ0: Can the original results be reproduced?
Firstly to fully understand the work of Bernardo et al., I have learned the method-
ologies they applied and replicated the main results. The results are described in
Section 5.1. By comparing the results I have obtained to the original results, I can
safely claim that I have understood the original study enough which lays a solid
foundation for later analysis work.

RQ1: Can similar results to the original study are found when applying an alterna-
tive statistical method?
RQ1 was proposed by concerning for validity in their study that they did not try
investigating hidden pattern rooted in data. In order to dispel the concerns, Regres-
sion Discontinuity Design, which analyzes the impact of an intervention (in this case,
the adoption of CI) by a time series analysis, is applied for detecting such pattern.
The results show that there is no time series pattern existing in the analyzed metrics
from the original dataset, and the original results are supported by this method.

RQ2: Are there any other metrics that have strong explanatory power if added to
the linear regression model in the original paper?
The work of RQ2 tries to figure out any metric other than those in the original study
could also influence the delivery time of PRs by fitting linear regression models. I
came up with the new metric come in time, and it shows overwhelming explanatory
power among all other metrics.

RQ3: Can similar results be found when applying the same methodology to projects
that never introduced CI?
RQ3 was analyzed for testing the credibility of the original results by controlling
over projects that never apply CI. I collected 28 new projects from GitHub and
computed needed metrics. After conducting all methods that are used in the former
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tasks, I observe that the statistical performance from the projects without CI is
different from the projects which are investigated in the original study. Therefore
the adoption of CI is a unique factor in impacting the delivery time of PRs as well
as other development activities.

RQ4: Can similar results are found when applying the same methodology to different
projects that introduced CI in their lifecycle?
The final RQ aims to test the generalizability of the findings of the original study.
I collected 54 projects with CI adopted and analyzed them. The outcome shows
that the new projects have similar statistical performance as the old projects, that
only half of the projects deliver PRs faster after CI, and the development activities
increase significantly.

7.1 Future Work

Either by applying an alternative method (RDD) or expanding the study objects
(projects that never apply CI), results in the original study are proved solid and
extensible. Still, further research on this topic is necessary. This study only uses
data from public open source projects. In the future, if circumstances permit, one
can investigate private projects (e.g. private projects from GitHub, private enterprise
projects). Besides, further study is needed considering the possible impact of the
factor that whether a project is commercial-oriented as stated in Section 6.3. Finally,
regarding the study which controls over projects never apply CI, this study chooses
a time node of when 38% lifetime has spent based on the mean and median value
of when CI was adopted in the 87 old projects. One could try setting another time
point in the analysis. For example, Hilton et al. claimed that the median time
before CI was adopted was around one year [19].
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