
Automated GUI Testing:
A Comparison Study
With A Maintenance Focus
Master’s thesis in Software Engineering

PATRIK HAAR
DAVID MICHAËLSSON

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2018

Master’s thesis 2018

Automated GUI Testing:
A Comparison Study With A Maintenance Focus

PATRIK HAAR
DAVID MICHAËLSSON

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2018

Automated GUI Testing: A Comparison Study With A Maintenance Focus
PATRIK HAAR
DAVID MICHAËLSSON

© PATRIK HAAR, 2018.
© DAVID MICHAËLSSON, 2018.

Supervisor: Robert Feldt, Computer Science and Engineering
Advisor: Tomas Odin, CANEA Partner Group AB
Examiner: Eric Knauss, Computer Science and Engineering

Master’s Thesis 2018
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Sweden
Telephone +46 31 772 1000

Typeset in LATEX
Gothenburg, Sweden 2018

iv

Automated GUI Testing: A Comparison Study With A Maintenance Focus
PATRIK HAAR
DAVID MICHAËLSSON
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
Automated GUI (Graphical User Interface) tests can alleviate work from testers,
making it beneficial to convert manual test cases into automated GUI tests. How-
ever, automated GUI tests come with costs and drawbacks not found in manual
tests. These limitations can differ between automated GUI testing tools.
Two such tools are Selenium and EyeAutomate. The tools differ in their ways of
locating GUI components, with Selenium utilising underlying information about
a web page and EyeAutomate relying on image recognition. For a practitioner
deciding to adopt either tool, or similar ones, it is a benefit to know the strengths
and weaknesses of them.
This study has investigated general differences, implementation cost, maintenance
cost, return on investment, and the defect-finding capabilities of Selenium and
EyeAutomate. These properties were examined by subjecting tests written in
each tool to system changes using version control history. Additional capabilities
were determined by using manual fault injection. Qualitative data concerning the
tools and automated GUI testing were collected using interviews.
Results indicate that while EyeAutomate tests are quicker to implement than
Selenium tests, they require more time to maintain. Both tools have a similar
return on investment, being able to reach it within one year compared to running
a manual test suite weekly. The tools are comparable when finding defects during
system development, with EyeAutomate being able to find more purely graphical
related defects.

Keywords:
Software Engineering, Automated GUI Testing, Element-based Testing,
Visual GUI Testing, Maintenance, Return On Investment, Fault Detection

v

Acknowledgements
We want to thank our thesis supervisor Robert Feldt for handling our academic
questions and helping us flesh out the purpose of the thesis. CANEA provided
us with a place to work and easy access to coffee and fruit, for which we are
grateful. We would also like to thank the people at CANEA themselves; Tomas
Odin for being our company advisor when it came to questions regarding the
company and the rest of the developers for participating in our two-hour interviews.
Finally, we want to thank the people at Auqtus AB for their quick responses to
our EyeAutomate related questions.

Patrik Haar and David Michaëlsson, Gothenburg, June 2018

vii

Contents

List of Figures xiii

List of Tables xv

Glossary xvii

1 Introduction 1
1.1 Statement of the Problem . 2
1.2 Purpose of the Study . 3
1.3 Research Questions . 4

1.3.1 Supplementary Research Question 4

2 Background 5
2.1 Relevant Theory . 5

2.1.1 Regression Testing . 5
2.1.2 Automated GUI Testing . 6
2.1.3 Generations of GUI Testing Tools 6
2.1.4 Element-based GUI Testing 7
2.1.5 Visual GUI Testing . 7

2.2 Tools . 8
2.2.1 Selenium . 8
2.2.2 The EyeAutomate Family 9

2.3 Related Works . 10
2.3.1 Overview of the field . 11
2.3.2 Automated Testing . 12
2.3.3 Element-based GUI Testing Tools 12
2.3.4 VGT Tools . 13
2.3.5 Comparison of GUI Testing Tools 14
2.3.6 Defect Finding Capabilities 15
2.3.7 Implementation and Maintenance Cost 16
2.3.8 Return on Investment . 17

ix

Contents

2.4 Case . 17

3 Methods 19
3.1 Motivation . 19

3.1.1 Historical . 21
3.1.2 Artificial . 22
3.1.3 Interviews . 23
3.1.4 Triangulation . 23
3.1.5 Research Questions . 24

3.2 Historical . 25
3.2.1 Designing Tests . 25
3.2.2 Setup . 26
3.2.3 Execution . 26

3.3 Artificial . 28
3.3.1 Setup . 29
3.3.2 Changes . 30
3.3.3 Execution . 33

3.4 Interviews . 34
3.4.1 Setup . 34
3.4.2 Execution . 35

4 Results 37
4.1 Implementation Cost . 37
4.2 Maintenance Cost . 40
4.3 Return on Investment . 46

4.3.1 Calculated . 46
4.3.2 Infrequent Runs . 47
4.3.3 Frequent Runs . 49

4.4 Fault Detection Capabilities . 49
4.5 Differences Between the Tools . 53
4.6 Qualitative data . 53

5 Discussion 57
5.1 Research Methods . 57

5.1.1 Historical . 57
5.1.2 Artificial . 58
5.1.3 Interviews . 59

5.2 Maintenance Cost . 59
5.2.1 Repair Cost differences . 60
5.2.2 Fluctuating Maintenance Cost 60
5.2.3 Conclusion . 61

x

Contents

5.3 Return on Investment . 61
5.3.1 Implementation Cost . 61
5.3.2 Maintenance Cost . 62
5.3.3 Qualitative . 62
5.3.4 Conclusion . 63

5.4 Fault Detection Capabilities . 63
5.4.1 Test Scenario . 63
5.4.2 Comparison . 64
5.4.3 Conclusion . 64

5.5 Selenium vs. EyeAutomate Observations 64
5.5.1 Test Implementation . 65
5.5.2 PageObjects . 65
5.5.3 Prior Knowledge . 66
5.5.4 Locators . 66
5.5.5 Data Verification . 67
5.5.6 Conclusion . 68

5.6 Limitations . 68
5.7 Threats to Validity . 69

5.7.1 Conclusion Validity . 69
5.7.2 Internal validity . 70
5.7.3 Construct validity . 72
5.7.4 External validity . 72

5.8 Contributions . 72
5.9 Future work . 73

6 Conclusion 75

Bibliography 77

A Interview Answers I

B Selenium example VII

C EyeAutomate example IX

xi

Contents

xii

List of Figures

4.1 Selenium PageObjects over time . 38
4.2 Maintenance sample spread . 42
4.3 Total time spent per step . 43
4.4 Maintenance running total . 44
4.5 Histogram over repair time . 44
4.6 Return on Investment (Quarterly runs) 48
4.7 Return on Investment predictions (Quarterly runs) 48
4.8 Return on Investment (Weekly runs) 49

B.1 Example of Selenium locators . VIII

C.1 EyeStudio with an EyeAutomate script IX

xiii

List of Figures

xiv

List of Tables

3.1 Research methods . 20
3.2 Historical - Implementation . 27
3.3 Historical - Stepping . 28
3.4 Artificial - Structural . 30
3.5 Artificial - Graphical . 31
3.6 Artificial - Layout . 32
3.7 Artificial - Application . 33
3.8 Artificial - Browser . 33
3.9 Artificial - Execution . 34
3.10 Interviews - Tool walkthroughs . 36

4.1 Selenium implementation details . 38
4.2 EyeAutomate implementation details 39
4.3 Implementation differences . 40
4.4 Selenium stepping details . 41
4.5 EyeAutomate stepping details . 41
4.6 Maintenance time - Measured and extrapolated 45
4.7 Execution time - Manual and automated 46
4.8 Linear return on investment calculations 47
4.9 Unique findings - Bugs and breaks 50
4.10 Artificial result . 52

A.1 Interview answers - Pretest questions I
A.2 Interview answers - Selenium questions II
A.3 Interview answers - EyeStudio questions III
A.4 Interview answers - Posttest and general questions V

xv

List of Tables

xvi

Glossary

Artificial: One of the methods used in this study, which involved manually in-
jecting faults into the system in order to determine the fault detection capabilities
of the tools.

Element Locators: The identifiers used by the tests to keep track of GUI ele-
ments.

Fault detection capabilities: How good a tool is at detecting certain types of
faults.

GUI Testing: The process of testing the GUI of a software.

Historical: The main method used in this study, which involved using version
control history to retroactively simulate software evolution during a year.

Software evolution: The process of continuously updating software.

Test: The code that performs the instructions of a test case.

Test Case: A set of instructions that verifies that a system complies to its re-
quirements.

Test Script: File containing ordered test instructions to execute.

Test Suite: A collection of tests.

Test Tool: The program used to create automated GUI tests. In the context of
this study, test tool refers either to Selenium or EyeAutomate.

Version Control: Tracks the code changes of a system, used for collaboration
and back-up purposes.

xvii

List of Tables

xviii

1
Introduction

Interacting with and testing the GUI (Graphical User Interface) of an application
manually is often considered a mundane task. As this testing process is often
repeated during the development of an application, manual testing of applications
requires a lot of human resources and time. An alternative to manual GUI testing
is to let a computer perform the same interactions. This is known as automated
GUI testing. This way, personnel can spend time on other development activities.
Automated GUI testing also enables more frequent executions of a test suite,
allowing a developer to find defects earlier than through manual testing.

Despite the benefits of automated GUI testing, not all developers use it in devel-
opment. There are many explanations for why this is the case. One explanation is
that maintaining automated GUI tests can be difficult with tests breaking to minor
changes or throwing more false positives than they should [1]. Another explana-
tion is the often large implementation cost associated with the time-consuming
work of writing the tests [2].

Since automated GUI tests are generally faster to execute, the question becomes:
What is the most time efficient, manual testing or writing and maintaining auto-
mated tests? The answer to this question depends on which tool is used as there
are a lot of them and they all come with different benefits and drawbacks.

There are many studies related to GUI testing and a lot of opinions about which
tool to use. One of the more well-known testing tools within research is Selenium
WebDriver (henceforth called Selenium) which has been compared to many other
testing tools [3, 4, 5]. In contrast to Selenium, EyeAutomate with the script
editor EyeStudio is a new and less established testing tool within the VGT (Visual
GUI Testing) domain. EyeAutomate, being VGT-based, uses image recognition
to locate elements. In contrast to EyeAutomate, Selenium relies on the structure
of a web page to find elements. These characteristics makes the two tools very
different when writing and running tests.

1

1. Introduction

This study will compare EyeAutomate and Selenium in an industrial setting, some-
thing that the field needs more of [6]. EyeAutomate was chosen because it is a very
new tool with an interesting approach, Selenium was chosen to have something es-
tablished and thoroughly tested as a base of comparison. Outside of research,
this study aims to provide a way for practitioners and companies to make an in-
formed decision on which GUI testing tool to choose. Especially with regards to
the maintainability of an automated GUI test suite.

This chapter of the report, Introduction, will go through the research problem, the
purpose of this study and define the research questions. Chapter 2 goes through
the background including explanations of relevant concepts used in this report,
related research, information about the company the study will be performed at
and a description of the tools under test. Chapter 3 describes the methods used to
set up the study and gather data, with detailed steps describing the execution of
each approach. Chapter 4 states and illustrates the results of the study. Chapter
5 discusses the results and draws conclusions based on the data, reflects on the
methods used and defines any threats to validity. Finally, the study is summarised
and rounded off with a conclusion in chapter 6.

1.1 Statement of the Problem

There are many areas in which GUI testing tools can differ, making it difficult to
get an overview. The fragile nature of GUI testing, the opinion of the industry
and the cost of implementing tests are some of the major problems related to GUI
testing.

Fragility:
In contrast to unit tests, GUI tests are affected by both back-end and front-end
changes. A bug in the back end can propagate to the GUI. For instance, the
wrong page being displayed, incorrect output or a button that stops working. A
GUI may also change frequently during software evolution. Whether it’s a button
moved, an image swapped or a layout changed, all of them are able to break a GUI
test. These changes generates extra work for developers as they have to update
the test to the new GUI. It is therefore very important that a GUI testing tool can
accept some changes without breaking while still preventing any false negatives.
Achieving this balance is crucial when it comes to the usefulness of a testing tool.

2

1. Introduction

State of the industry:
There is a disconnect between the academic literature and the attitude of the
industry. Several research studies have been performed claiming the relevance of
automated GUI testing, image-based or not [7, 8, 9]. However, 58% of practitioners
do not agree that automated testing improve fault detection and 80% of them
cannot see how software testing could be fully automated [6]. Note that this study
is based on all types of automated testing and the answers might not be the same
when asked specifically about GUI testing. Nonetheless, automated GUI testing is
not well established within industry and part of this is because many practitioners
are not familiar to the field [6].

Cost:
Automated tests can be difficult to maintain if they are dependent on complex
and volatile source code. This is especially true for GUI tests. With their fragility
and frequent changes, The effort required to maintain them can exceed the effort
to do the test manually. Even if the maintenance cost is tolerable, there is also a
cost associated with creating the tests. This implementation cost can also be con-
siderable. Testing tools can come with hefty licensing costs, limiting practitioners
to try all that might be applicable. Perhaps even more important is the time
investment required to implement a test suite of reasonable size. An investment
of that size can prove a hurdle for many practitioners, forcing them to take a risk
and commit to a choice. This risk would be reduced if more and better research
existed within the area.

These three issues make it very hard for practitioners to include GUI testing in
their test suites. The existing distrust of GUI testing within the industry makes
practitioners hesitant to try it [6]. This would not be an issue if there was an easy
way to try the different testing tools, but with the high implementation cost of a
new test suite, this is simply not feasible. Add to this the fragility and maintenance
cost of GUI tests, and the outcome is practitioners who do not dare to commit
because of the high risk and uncertain results.

1.2 Purpose of the Study
The purpose of this study is to compare the two automated GUI testing tools
Selenium and EyeAutomate with a focus on maintainability. The study aims
for a result representative of the industry by using the version control history
of a real software product to simulate the maintenance cost over a year. The
tools will be examined both quantitatively and qualitatively. The study will then
describe their benefits and drawbacks, analyse them and draw conclusions of how
the differences affect their use. Therefore, the results of this study will be beneficial
for practitioners striving to adopt automated GUI testing.

3

1. Introduction

1.3 Research Questions

In order to guide this study, research questions have been formulated. This study
aims to answer three research questions related to the tools and their associated
costs. These research questions are:

RQ1: What are the practical differences between EyeAutomate and Selenium?

This research question will provide the basis of the comparison study as well as
provide context for practitioners.

RQ2: What is the cost to maintain automated GUI tests?

The maintenance cost is the effort required to fix a test after it has broken. More
specifically, the effort required to update a test to a passing state due to non-defect
system changes.

RQ3: What is the return on investment for the tools?

This research question can help the practitioners decide if the tools are worth the
implementation and maintenance effort. It involves gathering and comparing of
implementation cost, maintenance cost and manual testing cost. The return on
investment would then be the point in time where the accumulated time spent cre-
ating and maintaining an automated GUI test becomes less than the accumulated
time of running the same test manually.

1.3.1 Supplementary Research Question

The goal is to answer the following question as well because it is highly relevant to
the subject of the report. However, because the question can be scrutinised enough
to warrant a separate paper, the focus will be more on the basics and potential
outliers.

SRQ4: What are the fault detecting capabilities of the tools?

An essential property of any test is: Does it catch the bugs it should? If it is known
which types of bugs or defects are the most common ones in a given project, it is
important that these are covered by the chosen tool. This research question will
answer which types of defects the tools can and cannot find.

4

2
Background

This chapter will go through relevant background and technology, prior research
in the field and relevant information concerning the tools under inspection. This
chapter concludes with background information about the company where this
study was performed.

2.1 Relevant Theory

This section goes through and explains the most important concepts relevant to
the study. These includes testing methodologies and automated GUI testing tech-
nologies.

2.1.1 Regression Testing

The source code of an application is continuously updated during software evo-
lution. One issue with an ever-changing code base is that updates might break
previously working functionality. Regression testing is the process of performing
functionality tests on the source code in order to verify that the old code is working
with the new changes.

Regression testing can be done in different ways. One way is manually by using
human testers. Manual regression testing requires a human to perform specified
test case instructions in order to verify that the application still works. For a
human tester, this would take both time and resources.

5

2. Background

2.1.2 Automated GUI Testing

Automated testing is the approach of using software to execute tests. Instead of
using a human to perform instructions and evaluate responses, software is written
to perform the same tasks. Automated tests on a SUT (System under test) are
often created on two separate levels: source code level and GUI level. As the
name implies, automated source code tests interact with a system through the
source code. Unit tests are an example of source code level tests. In contrast, an
automated GUI test interacts with a SUT through its GUI, the same way a user
would. Automated GUI tests can be classified into two different categories based
on how the tests are created: Programmable and Record & Replay.

Programmable tests: These GUI tests are defined by manually typed instruc-
tions. The tests are written as code in the supported language of the GUI testing
library.

Record & Replay tests: Record & Replay (R&R), or alternatively Capture &
Replay (C&R), are tests created by recording a human tester’s interactions with a
GUI. These interactions can then be replayed in order to mimic a user Compared
to programmable tests, R&R tests usually have a lower implementation cost but
a higher maintenance cost [5].

2.1.3 Generations of GUI Testing Tools

With the GUI evolving over time, so have the tools to test it. There are currently
three generations of GUI testing tools: coordinate-, element- and image-based
tools, representing the 1st-, 2nd- and 3rd-generation respectively. The element-
based 2nd generation has almost completely replaced the coordinated-based 1st

generation due to its better stability. Hence, 2nd generation tools are very popular
in industry for automated GUI testing. The image-based 3rd generation is not a
new concept but has recently begun to rise in popularity, partly due to improved
image-recognition capabilities.

6

2. Background

2.1.4 Element-based GUI Testing

Element-based GUI testing, also called component-, DOM- and structure-aware
GUI testing, interacts with the GUI using references to the elements of the GUI.
The actual definition of an element varies between GUI implementations. For a
web page, an element could be an element of the DOM (Document Object Model).
For a Java Swing GUI, the element could be a reference to a Swing object.

Because it uses elements to navigate, element-based GUI testing can often perform
actions in an application before it has been rendered completely. While this can
cause problems in some cases, it is in general significantly faster and more precise
than a human tester. However, since element-based GUI testing is bound to an
application, any interactions outside of said application can be very complicated
or impossible to simulate. For example, using a desktop mail client when testing
a web application.

Element-based testing tools benefit from defined GUI element identifiers such as
IDs, type, labels, etc. In order to narrow selectable elements, these identifiers need
to be grouped and combined. Hence, in order to create effective element-based GUI
tests, a programmer would need to know these identifiers and the structure of the
GUI. These restrictions limit who can write element-based tests.

2.1.5 Visual GUI Testing

Using images, rather than elements, to navigate allows for complete black-box
testing. No knowledge of the application is necessary apart from knowing what
it looks like. Since there is no inherent limitation in the application, VGT can
switch context or application without a problem, even during a test. The ex-
ecution speed of a VGT (Visual GUI Testing) test is in general slower than a
corresponding element-based test [3], more on par with a very experienced human
tester in execution speed. However, image recognition is not perfect. In some cases
it is too strict and does not find an image that would be obvious to a human. In
other cases, the test is too imprecise and finds the wrong image.

7

2. Background

2.2 Tools

There are many software tools which can automate GUI interactions. This study
will evaluate two of them: Selenium and EyeAutomate. While EyeAutomate is
part of a collection of different tools working together called the EyeSuite, the
collection of tools provides a good basis for comparison. This section will fur-
ther describe the details of Selenium and EyeAutomate, revealing distinguishing
features for each tool and how they are used.

2.2.1 Selenium

Selenium1 is an element-based tool for automating web browsers, which means
that Selenium can be used to verify functionality of a web application through GUI
level tests. Creating Selenium tests can be done in two different ways: through the
use of Selenium IDE2 or by using Selenium WebDriver3. In this study, Selenium
Webdriver was used due to its lower maintenance cost [5].

Selenium IDE:
In Selenium IDE, interactions with the SUT is recorded and are stored as a Sele-
nium script. The script can later be replayed in order to test the GUI automati-
cally.

Selenium WebDriver:
Selenium WebDriver is an API which enables a coder to write Selenium scripts
using programming language bindings. In Selenium WebDriver, identifying which
element to interact with is done through locators. A locator uses the characteristics
of a web element in the DOM, such as a unique attribute or a defining arrangement,
to find elements. Going by the documentation as provided by Selenium HQ, the
organisation behind Selenium, the locators one can use with Selenium Webdriver
are:

• By ID
• By Class Name
• By Tag Name
• By Name

1http://www.seleniumhq.org (Accessed 2018-06-12)
2http://www.seleniumhq.org/projects/ide (Accessed 2018-06-12)
3http://www.seleniumhq.org/projects/webdriver (Accessed 2018-06-12)

8

http://www.seleniumhq.org
http://www.seleniumhq.org/projects/ide
http://www.seleniumhq.org/projects/webdriver

2. Background

• By Link Text
• By Partial Link Text
• By CSS
• By XPath
• By Javascript

Deciding which locator to use can be complicated. The recommended approach by
Selenium HQ is to use ID locators. The reasoning being that ID locators are more
readable and are less demanding on performance. Precaution should be taken for
auto-generated IDs as they are not necessary constant during software evolution.
CSS and XPATH locators can also be troublesome as they are susceptible to
DOM structure changes [3]. Some examples of Selenium locators are shown in
Appendix B.

PageObject Pattern:
A design pattern which can be used when implementing tests in Selenium is the
PageObject pattern. The pattern separates the GUI logic from a test to a separate
class which the test can interact with. The PageObject class should contain meth-
ods which interacts with a given page using locators. A benefit with this pattern
is that it reduces the maintenance time of a test suite. Though, the pattern also
increases the initial implementation effort for a test suite [10].

2.2.2 The EyeAutomate Family

The EyeSuite is a collection of four programs involving VGT. These programs com-
pose a toolset for testing applications. At the core is EyeAutomate, the program
running the test scripts and enabling the automation of applications. Support-
ing EyeAutomate is the IDE EyeStudio and server client EyeServer, providing a
custom tool for developing EyeAutomate scripts and a way to run them remotely.
In another category and not based on EyeAutomate is EyeScout, an exploratory
testing tool.

EyeAutomate:
EyeAutomate is the program that runs EyeAutomate test scripts. It has built-in
support for image-recognition and uses customisable commands written in Java to
call upon its functionality. This means that users can create their own commands
if their desired use-case isn’t covered by the base functionality. After EyeAutomate
has run a script, it generates a report of the run with screenshots for all executed
steps of the script, allowing testers to quickly locate where a problem could be.

9

2. Background

EyeStudio:
EyeStudio4 is an IDE for writing EyeAutomate scripts and was used to write all
the VGT scripts in this study. EyeStudio uses a "What You See Is What You
Get"-like approach to display scripts, where images and commands are shown as-is
to the user; what it looks like to work in EyeStudio can be seen in Appendix C. It
also provides some quality of life features, including the ability to run parts of a
test script and the integration with EyeAutomate result reports to highlight any
crashes directly in the code.

EyeServer:
Running scripts remotely on a dedicated server can be done using the web service
EyeServer5. Similarly as when running a script from EyeStudio, EyeServer gen-
erates a report of the result, the difference being that EyeServer also stores this
report with some overhead in order to create a history.

EyeScout:
EyeScout is a tool for augmented exploratory testing. The tool can repeat prior
test interactions and give suggestions of further test actions. EyeScout can be
used a regression testing tool. However, the main focus of the tool is exploratory
testing. This is why this study implemented the tests using EyeAutomate instead.

2.3 Related Works
Automatic GUI testing is an area that has been increasing in popularity over the
last 15 years, although the foundation was placed long before that. During the
1990’s, a number of different GUI automation tools were created [11, 12]. From
there it did not take long for similar tools to be used for automatic GUI testing
[13]. However, the coordinate-based technology of these first tools left much to be
desired in terms of stability, performance and ease of use [13]. After this, the field
of GUI testing was relatively quiet until around 2005 when the emergence of the
more easy-to-use element-based tools created a spike of interest from the industry.
Of the more than 50 studies, in the field of GUI testing and relevant to this study,
more than 80% were published after 2005.

Most of the information gathered for this literature study came from searches
using the keywords VGT, 2nd generation (component-/element-/DOM-/structure-
aware) GUI testing, web testing, regression testing, automated testing and the
state of the industry.

4http://eyeautomate.com/eyestudio.html (Accessed 2018-06-12)
5http://eyeautomate.com/eyeserver.html (Accessed 2018-06-12)

10

http://eyeautomate.com/eyestudio.html
http://eyeautomate.com/eyeserver.html

2. Background

2.3.1 Overview of the field

Regarding VGT, a large portion of the contributions to the field is written by Emil
Alégroth, often assisted by Robert Feldt, using the tool Sikuli6 and JAutomate7.
His contributions include the applicability of VGT in industry [14], its benefits
and limitations [15] and how to successfully transition a company into using VGT
[7].

The field of 2nd generation tools have been examined by many different researchers.
Antawan Holmes and Marc Kellogg confirmed the usefulness of the technology in
an agile workflow [16], Leotta et al. goes over the differences between scripting
and recording tests [5] and Adamoli et al. compares the performance of different
recording tools [17].

Filippo Ricca and Paolo Tonella have authored several studies within web testing,
with topics varying from testing processes [18], testing techniques [19] and different
types of locators [3].

Significant research concerning regression and automated testing related to GUI
testing has been done by Atif M. Memon. As one of the first researchers to focus
on GUI testing, he wrote an early evaluation of the process and potential pitfalls
of GUI testing [2]. After that, he focused on regression testing and published
papers about how they work for GUI testing [20], how to automate them [21]
and later how to automatically repair them [22]. He has also been a part of the
creation of several different GUI testing related tools such as DART, an aid for
daily/nightly GUI test automation [21], TerpOffice, used for evaluating new GUI
testing techniques [23], GUITAR, used for repairing GUI test suites for regression
testing [22].

Something that quickly became apparent during this literature study is that there
is a disparity between how academia views GUI testing and what the industry
wants from it. Vahid Garousi did a systematic literature review of literature re-
views within software testing and mapped what research had been made in the
field [24]. He then compared the titles of different conferences to highlight the
difference in approach to software testing used by the industry and academia [25].
Continuing on this track he made a survey to gather the opinion of practitioners,
concluding that academia is more interested in theoretically challenging topics
while industry wants the emphasis to be on effectiveness and efficiency [26].

6http://www.sikuli.org/ (Accessed 2018-06-12)
7http://jautomate.com/ (Accessed 2018-06-12)

11

http://www.sikuli.org/
http://jautomate.com/

2. Background

2.3.2 Automated Testing

Using automated testing in practice has been explored in an experience report by
Berner et al. They propose to select often run test cases for automation as these
will yield the highest return on investment. It was also observed that automated
tests cannot fully replace manual tests. Another finding was that automated tests
are not good at finding new defects but rather defects similar to the ones the auto-
mated test cover. The fact that automated tests benefit from being run frequently
in terms of maintenance was also observed in some of the cases. Berner et al.
emphasises that automated testing can free time for testers, enabling more work
on other tasks [27].

In a Systematic Literature Review (SLR) by Rafi et al., studies related to auto-
mated testing were mapped and practitioners’ views regarding automated testing
were gathered. From the SLR, some benefits with automated testing were noted
such as: high test coverage, less manual effort, reduction in cost and increased fault
detection. The authors also noticed some limitations with test automation such as
difficulties in maintenance, false expectations and that automation cannot replace
manual testing. A survey which gathered the opinions of practitioners regarding
automated testing was also created. According to the surveyees, the main benefits
of automation are: reusability, repeatability and effort saved. A limitation with
automation would be that automation has a high initial cost which can include
buying licenses or training staff. Another finding is that 80% of the surveyed
practitioners don’t think that software testing should be fully automated [6].

Another study of practitioners view found that context is a driving factor when
selecting automation tool such as the cost or if it is open source. Many practitioners
also seem to prefer more well-known tools [28].

Motivation: With the potential behind automation growing more and more,
companies look for new areas to automate. This study will further examine the
maintenance associated with regularly run automated GUI tests, which type of
tools are preferred and which types of tests are suited for automation.

2.3.3 Element-based GUI Testing Tools

Element-based testing tools are robust to minor layout changes. Changes to the
GUI code, platform or external libraries can have adverse effects [29, 30]. Li et al.
states that substantial manual effort is needed for R&R testing [31].

12

2. Background

Selenium has been explored in several studies [3, 4, 5, 16, 19]. In a Grey Literature
Review by Raulamo-Jurvanen et al., Selenium was found to be the most referenced
and compared tool in the assessed sources [28].

Research done by Raulamo-Jurvanen et al. has shown that Selenium is one of the
more popular automated testing tools as indicated by surveys and web scraping.
In the same study the prevalence of Element-based testing tools in the industry
can be seen with three of the top five test execution tools being Element-based
(Selenium, QTP and Rational Functional Tester) [32]. Similarly, Li et al. claims
that Selenium is one of the most popular AJAX testing tools [31].

Motivation: Considering the popularity of Selenium in both research and in-
dustry, Selenium would make a good reference tool to compare with EyeAuto-
mate. Additionally, Selenium uses information about the DOM to locate elements
whereas EyeAutomate uses images. It was mainly due to these reasons which
motivated the choice for Selenium.

2.3.4 VGT Tools

A noted benefit with VGT tools is that they are flexible to work with any appli-
cation with a GUI [33]. This is because the tools do not need access to the code
of the SUT, rather relying on captured images from the GUI alone. Due to this,
visual GUI testing is robust against changes in a system’s GUI code compared
element-based testing [30].

Transitioning manual regression tests to automated VGT has been researched by
Alégroth et al. They noted that a manual regression test that took 16 hours to run
could be executed as a VGT test in one hour. Furthermore, the bottleneck of the
VGT tests was the GUI of the SUT. This was due to the fact the tests often had
to wait for the GUI to react in order to proceed with the test suite. Additionally,
the VGT tests were able to uncover defects previously not found in the manual
regressions tests [33].

The combination of 2nd and 3rd generation techniques in a tool was explored in a
study by Alegroth et al. [34]. In this study it was determined that 3rd generation
technique reports fewer false positives compared to 2nd during acceptance testing.
Although for system testing, the opposite was observed in that 3rd generation tech-
nique reports more false positives than 2nd generation. The authors of the study
proposed that a combination of the two GUI testing techniques could mitigate the
studied drawbacks.

13

2. Background

The process of automatically generating Visual GUI tests from element-based test
suites has been researched by Leotta et al. This resulted in the tool PESTO which
can transfer test cases written in the 2nd generation tool Selenium WebDriver to
3rd generation test cases using Sikuli [35].

A case study at Spotify by Alégroth and Feldt investigated how VGT fares in
industry long-term. Some of the benefits observed from using VGT in practice is
the technique’s robustness, defect finding ability during regression and the ability
to share test script logic between different versions of the SUT. There were also
drawbacks associated with the technique. An obstacle to the technique is that VGT
does not support non-deterministic test data. In this case, the SUT relied a lot
on dynamically rendered content, which the VGT tool could not verify. Another
drawback is the maintenance cost of recapturing images. This was particularly
noted when the GUI graphics were removed or changed [7].

Motivation: Alégroth et al. acknowledges the need for more studies comparing
VGT with other GUI-based techniques in an industrial context [15]. Many of the
studies in VGT research has been centred around Sikuli [3, 7, 14, 15, 33, 34, 36, 37].
Further studies of other VGT tools could reveal new benefits and limitations of
using VGT. To the authors’ knowledge, there are currently no studies concerning
EyeAutomate.

2.3.5 Comparison of GUI Testing Tools

A comparison study of two VGT tools has been done by Börjesson and Feldt. In
this study, Sikuli and an undisclosed VGT tool were evaluated when used on a
system developed at SAAB. Between the tools, there were no statistically signifi-
cant differences in regards to development time, execution time and lines of code
(LOC) of the tests. It was also determined that Visual GUI tests can overcome
some R&R test limitations such as needing access to the code of a system or the
tests being strongly tied to a GUI component. The authors also advocate that
more studies are needed concerning the maintenance cost of a Visual GUI Test
suite as a system evolves [36].

Leotta et al. have compared DOM-based locators with visual locators in order to
compare the required number of locators, robustness, implementation, maintain-
ability and execution time between the two approaches. The result of the study
concludes that DOM-based locators are in general more robust compared to visual
locators. Another finding of the study was that developing and evolving tests using
DOM-based locators were less costly than using visual ones. The VGT tests took
a longer time to execute, though the difference wasn’t dramatic [3].

14

2. Background

The VGT tools JAutomate and Sikuli were evaluated at the company HAVELSAN
by Garousi et al. Some limitations of the tools were indicated such as difficulties
with using too small image locators and running the same VGT script on com-
puters with different display resolution. While there were differences regarding
features between JAutomate and Sikuli, such as the R&R feature found in JAu-
tomate, there were no statistically significant differences in regards of robustness
and repeatability. Concerning test development effort, the authors noted that the
test-code reuse pattern reduced development effort as it enabled a coder to reuse
existing test code. Based on the results, it was determined that JAutomate slightly
suited the needs of HAVELSAN better than Sikuli [37].

Motivation: To the researchers’ knowledge, most of the comparative studies of
GUI test tools have been limited to tools within the same generation of GUI testing
technology. An exception is the study made by Leotta et al., which compares the
3rd generation automation tool Sikuli with the 2nd generation tool Selenium [3].
This study aims to further this body of knowledge by instead comparing Selenium
with the newer 3rd generation test tool EyeAutomate.

2.3.6 Defect Finding Capabilities

Because GUI tests are prone to false positives [13, 30, 37], the accuracy, or fault-
detection, appears to be assumed as high and are not given much attention in
research. However, there are still some papers taking it into consideration. The
study made by Memon and Xie claimed a high accuracy with their 2nd generation
tool DART [38], with false negatives being drawbacks with the tool rather than
inherent limitations of the technique. In another paper Alegroth et al. presents
how VGT can be used to find bugs which are difficult to replicate through manual
means [39]. Alégroth et al. claims that VGT is actually more capable of detecting
faults than manual testing due to its low execution cost and speed [15], allowing
the frequently run tests to catch faults that only occurs occasionally.

Motivation: Some fault detection research has been done with GUI testing but
it has been limited to older tools or based on specific aspects. An aspect that has
not been covered is what types of faults a 3rd generation tool such as EyeAutomate
actually can handle. Garousi et al. has a similar idea and has stated it as future
work to investigate the difference in fault detection effectiveness between different
VGT tools [37].

15

2. Background

2.3.7 Implementation and Maintenance Cost

One of the first costs encountered when considering automated testing is the im-
plementation cost, because, in contrast to manual tests, automated tests have to
be implemented before they can be used. This initial implementation cost can
be high [6], perhaps too high to replace manual testing if the tests are run infre-
quently [29]. With VGT tools the primary cost with writing the test scripts is
related to the effort of making the scripts robust to unexpected system behaviour
[36], otherwise the tests would be too fragile and generate false positives.

The robustness of the tests is key since the implementation cost is not as important
as the maintenance cost, as stated by Berner et al. [27]. Although the paper by
Berner et al. referred to automated testing in general, the same conclusions seem
valid for automated GUI testing as well. Leotta et al. used the 2nd generation GUI
testing tool Selenium and also concluded that maintenance has a bigger impact
than implementation because of the large number of times the tests are run [5].
In the same paper, the authors also noted that different techniques of creating
the tests, Record & Replay and programmable, affected both implementation and
maintenance cost. R&R had a lower implementation cost and a higher maintenance
cost, causing the authors to favour the more technically challenging approach of
manually writing the test scripts.

With one of the biggest obstacles to automated GUI testing being the mainte-
nance of the test scripts, attempts have been made to automate even this, with
varying successes. Atif M. Memon created a tool, GUITAR, and automatically re-
paired many broken 2nd generation scripts successfully [22]. When he later teamed
up with Alegroth et al. to apply GUITAR in a VGT context it proved difficult
and not applicable in practice [34]. Coppola et al. have researched the causes of
test maintenance in Android projects. In their study, 27 causes for why an auto-
mated GUI test needs maintenance were classified into different categories. Some
identified categories were: Test code changes, Application code change, GUI in-
teraction change, GUI views arrangement, View Identification, and more. While
the study was performed on Android projects, the authors believe that the defined
test maintenance causes may be used for other GUI-based software types [40].

Motivation: While many studies have looked at maintenance cost of GUI testing,
the analysis was always based on different versions of the software. Usually, these
data-points were few and far apart. Different from these approaches, this study
will look at the maintenance cost over time with weekly samples during a year.
The SUT will be an established and active product, which is more in-line and
usable by the industry.

16

2. Background

2.3.8 Return on Investment

Alégroth et al. have researched the return on investment for VGT test suites us-
ing data gathered at Siemens and SAAB. They found that a positive return on
investment is possible for the introduction of a VGT suite. However, maintenance
cost can still be substantial when compared to the time spent on V&V(Verification
and Validation). The time needed to come to a positive return on investment is
consequently dependent on the amount of V&V done before the introduction of
VGT [8].

The viability of 2nd generation C&R tools has been examined in research. The
effort cost for such a tool was higher when compared to the effort of perform-
ing manual regression testing [29]. In a comparison of the implementation and
maintenance costs between Selenium IDE and Selenium WebDriver tests, it was
determined that two major releases are needed before a Selenium WebDriver test
suite becomes more convenient than a corresponding C&R one [5].

Berner et al. have noted that many organisations have the wrong expectations of
automated testing, with many of them hoping for a very short return on investment
since adopting automated testing [27]. Berner et al. also urges that the freeing of
human resources and shorter release cycles should be taken into account when
opting for automated testing.

Motivation: To the researcher’s knowledge, there have been no studies comparing
the return on investment for both a 2nd- and 3rd generation test suite against the
effort of performing the test cases manually.

2.4 Case

This case study will be done in collaboration with the company CANEA at its
Gothenburg office. To get a good coverage the topics were based on those suggested
by Kai Petersen and Claes Wohlin [41], although in a simplified version.

The product is CANEA ONE, a web-based business management tool. The first
framework, known then as CANEA Framework, was launched in 2002 as a local
desktop application. Throughout the years, it has been developed into what is
now known as CANEA ONE. In 2007, it was launched as a web-based application.
In 2012, CANEA ONE was made globally available.

17

2. Background

CANEA ONE is a large product composed of many different languages, the ma-
jority being written in C#, Type-/JavaScript, and HTML. The C# code alone
is more than 250 000 lines of code and the web-application has more than 100
unique pages. The source code is automatically tested through roughly 2700 unit
tests. The UI testing has only the most basic automatic testing through JMeter
and CodedUI. Most of the UI testing is done manually by a team of testers.

The development process at CANEA is an agile work method based on SCRUM
and Kanban. Each sprint is set to last three weeks, with major releases to cus-
tomers every third month. The code is automatically built and tested twice a day
on a TeamCity server during the sprints, with manual testing being done contin-
uously on the active build. Additional and more in-depth testing is performed
before each release.

The Organisation CANEA has offices in Malmö, Stockholm with the main of-
fice in Gothenburg and consists of three branches: Consulting, Training and IT
solutions. The branch IT solutions develops and maintains the product CANEA
ONE, which will be the subject of this study.

The People in the product developing part branch of the company consists of
testers and the usual personnel connected to SCRUM: Product owner, SCRUM
master, and developers. In Gothenburg, the team consists of one product owner,
one tester and nine developers. The developers are relatively young with 0 to 10
years of experience.

The Market CANEA operates on is that of business management software suites.
CANEA ONE is used by more than 200 organisation. Among these are Sandvik,
Göteborg Stad and Husqvarna. In the same market, there are other similar, com-
peting products such as Microsoft Project, Podio, and Basecamp. CANEA ONE
is a highly configurable, on-premises software. As such, setup and configuration
are significant procedures in the CANEA ONE usage process. A customer using
CANEA ONE can request support for these steps from CANEA.

18

3
Methods

The testing tools EyeAutomate and Selenium will be tested in a case study with
three different research methods: historical testing, artificial testing and inter-
views. The historical testing will be based on old versions of CANEA ONE and
will be focused on measuring the maintenance cost. Determining the defect finding
capabilities of the tools is the purpose of the artificial testing. Qualitative data
about the tools will be be captured by interviews. These will then be compared
with the cost in work-hours of manual testing to answer the research questions.
An overview of the study can be seen in Table 3.1.

3.1 Motivation

The main focus of this study is maintenance for test suites, which is dependant on
changes and repairs over time. Tests would need to be written and then repaired as
changes are introduced into the system. As with any time-related data gathering,
a long time period and frequent samples are the best. In this case, a longitudinal
study over a year or more with daily samples would be the optimal solution. This
is not feasible due to the time constraint of four months for the entire study.

The use of the company’s version control history and focus on the industry could
merit the use of a case study or action research. However, because the version
control history is based on what has already happened and does not rely on hu-
mans, a more controlled method such as an experiment is also a possibility. Using
action research wouldn’t suffice since one of the goals of the study is to get a real-
istic estimation of maintenance costs over time. An action research study strives
to improve the process during the study, thereby skewing the end result. A case
study could work, but with the small number of variables, it makes more sense to
use something more controlled.

19

3. Methods

Table 3.1: Summary of the the research methods of the study.

Historical - Quasi-experiment
Purpose Estimating implementation cost and maintenance cost over time.

Execution

1. Go back one year in version control.
2. Implement a number of carefully selected test cases.
3a. Step a week forward in version control.
3b. Run tests in both tools.
3c. Repair any broken tests.
4. Repeat 3 until 1 year has been examined.

Notes
If any bugs are found they will be recorded and circumvented
(if possible) in order to keep running the tests, even if the
bug remains.

Artificial - Experiment

Purpose Examining the accuracy/fault detection of the tools,
covering common cases in a strict manner.

Execution

1. Define around 20 different types of changes (visual, bugs
or minor).
2. Select one of the historical tests deemed to cover a large area.
3. Introduce the changes from 1 into the code one at
a time and run the test in both tools.
4. Record which changes broke/were caught by which tool.

Notes
While similar data can be gathered from the historical,
the artificial allows for wider coverage of changes and
a more direct comparison of the tools.

Qualitative - Semi-structured Interviews

Purpose Forming a qualitative opinion on the tools and the validity
of Automated GUI Testing.

Execution
1. Teach the interviewee the tools.
2. Have them create a test with the tools.
3. Hold an interview about their experience and opinions.

Notes Most interviewees will be developers due to the technical
requirement of Selenium, but not all.

An experiment would not work due to the inability to directly control the in-
dependent variable, which is undesirable to do in this case anyway. Instead, a
quasi-experiment would be ideal. If done as an experiment, the independent vari-
ables would be the tests written by the researchers and the changes to the code
introduced into the system. The writing of the tests is not a problem but the
new code would then have to be introduced randomly. Since it is desirable for

20

3. Methods

the new code to emulate normal development, the code needs to stay unmodified
and changes need to be in iterative order. This limits the usage of randomisation.
Therefore, the best alternative would be a historical quasi-experiment where the
introduction of new code would be based on version control, not randomly.

In order to properly highlight and triangulate the differences between the tools, an
examination of their capabilities and usability would be highly beneficial. To get
a complete image of the tool’s capabilities, a list of their features would have to be
created and every shared feature examined in detail. This type of in-depth analysis
is outside the scope of this study. However, by focusing on an essential function of
any testing tool, finding defects, the scope is reduced to a manageable size. While
the maintenance focused quasi-experiment can answer how often the tests break,
it does not provide a clear answer to what types of changes the different tools
can handle. Therefore, a quantitative second examination using artificial changes
should be performed in order to list which of these changes break the tools. Since
this artificial examination could be highly controlled, a small experiment would be
the best choice.

One area regarding the comparison of the tools which will not be fully covered by
the historical and artificial examinations, is their usability. Since the usability is
a subjective measurement, it is better analysed using qualitative measures rather
than quantitative ones. To cover this and other qualitative aspects of the tools, it
was deemed that the opinions of the researchers were not enough. To reduce bias,
interviews would be performed with the developers at CANEA.

3.1.1 Historical

The goal of the historical testing is to estimate the maintenance cost of automated
GUI testing over time, including any differences between the tools. To estimate
the cost over time, changes need to introduced over time as well. The most obvious
way of doing this is to let the developers work as normal while the researchers write
and analyse the test results in parallel. However, it would only be possible to have
a short period under examination due to the time restrictions of the study. It
would also be a potential threat to validity in that the developers would be aware
of the study and could change their behaviour. By instead using version control
history it allows for a longer period to be studied in the same time frame, since
the data gathering is not limited to the normal development pace.

21

3. Methods

Basing the study strictly on release versions of the product would not suffice.
Although the versions are in chronological order, they do not provide the consistent
intervals required to estimate the cost over time. Neither will they fulfil their
purpose of finding bugs early because the majority of bug will most likely be found,
and fixed, between releases. Therefore, the jumps through the version control
history should be done in time increments, on the active development branch,
instead of jumping between release versions. Another benefit of this method is
that it simulates the way the tests would be used, at regular intervals as regression
tests.

3.1.2 Artificial

The goal of the artificial testing is to get objective, quantitative numbers about
the fault detecting capabilities of the tools. When it comes to gathering objective
measurements, using an experiment-like approach is usually the first thing that
comes to mind. This is with good reason because an experiment has established
methods for setting up and defining these types of comparisons. The variable
requirements of an experiment, only changing one or a few variables while keeping
the rest constant, also fit the purpose of the artificial step. Therefore, it was
deemed that a small experiment was the best fit as a research method for the
artificial step.

In order to test if a tool detected a fault, the test would need to be constant while
a fault was introduced in the code. The question then becomes which types of
faults to use and how these faults are to be introduced into the code.

To decide which types of faults to introduce, these faults had to be defined. First,
it was decided that not only faults would be introduced but also normal changes
that occur during development. It was then discussed if the types of changes would
be decided by the researchers, by some sort of classification from research or by
taking the most common type of changes made at CANEA. In the end it was
decided that the common changes at CANEA would be used and complemented
by classifications from research [40], mainly to get a relevant but still wide coverage
of changes.

The changes could be introduced either manually or by a tool through mutation
testing. While mutation testing could give the correct type of results, it is limited
in the complexity of changes it can do. In order to get a more exhaustive list of
faults the tools could handle, it was decided that a curated list of changes were to
be introduced manually.

22

3. Methods

3.1.3 Interviews

The goal of the interviews is to get a qualitative impression of the functionality,
maintainability and overall viability of the tools. To do this it was decided to
gather the opinions of the developers at CANEA. This could be done through a
survey, structured-, unstructured- or semi-structured interviews.

There is a limited time each developer could reasonably spend on learning the
tools, but they have to understand them. A survey would not be the best choice;
since the developers have little to no experience with the tools, they would need
to be taught the tools before they could give their opinions on them. Because this
time is limited there is a large chance of misunderstandings. If the developers are
then given a survey without any possibilities of clarification, they could base their
answers on false assumptions.

A semi-structured interview fit the situation the best. In the interview, the devel-
opers would be able to ask questions to the researchers during the data gathering,
clearing up any misunderstandings. Because there should be a basis for compari-
son between the answers of the developers, there should be some structure to the
interviews. On the other hand, follow-up questions can catch the more personal
opinions that often arise while trying a new tool. The best fit for this case would
then be a mix between a structured- and an unstructured interview, which is the
definition of a semi-structured interview.

3.1.4 Triangulation

Triangulation has been a driving factor when deciding which research methods
to use. Relying on one research method to answer the research questions would
be risky as any flaws in the research method would affect the results. Gathering
data from multiple methods and sources will mitigate the potential risks found in
a research method. Observing the same phenomena from the results of the other
methods allows for more confident conclusions. The research methods will gather
both qualitative and quantitative data. With the different types of data, a more
diverse answer to the research questions can be given.

23

3. Methods

3.1.5 Research Questions

The methods in this section will answer the research questions as seen in sec-
tion 1.3.

RQ1: What are the practical differences between the EyeAutomate and Selenium?
RQ2: What is the cost to maintain the tests?
RQ3: What is the return on investment for the tools?
SRQ4: What are the fault detecting capabilities of the tools?

The historical method will gather data to answer: RQ1, RQ2, RQ3 and in some
capacity SRQ4.

Both during the implementation of the tests and the stepping through version
control history, any differences between the tools will be noted for RQ1. While
stepping, it will be timed for how long it takes to handle and fix each test, giving
all the data necessary for RQ2. This data will then be used to calculate the return
on investment for RQ3. Finally, which types of bugs were found and what caused
the tests to break can be used for SRQ4.

The artificial method will provide answers to RQ1 and SRQ4.

The data gathered from the test runs will help answer supplementary research
question SRQ4. Using fault-injection, the fault-detecting capabilities of the tools
can be determined. Since both tools are examined, any differences found can also
be used for RQ1.

Interviews will answer research questions RQ1 and RQ3.

As part of the interviews, each interviewed person will create GUI tests in each
of the tools. The interviewees can then provide an industrial perspective on the
tools after trying them, answering RQ1 and giving their opinions on RQ3. The
interviews will provide qualitative data as opposed to the quantitative data of the
other methods.

24

3. Methods

3.2 Historical

Historical testing involves going back to an earlier state of the code using version
control, and implementing GUI tests at that point in time. From that point, the
system will be updated using later commits in order to recreate the actual changes
to the system. This allows data gathering from a time-period longer than the study
duration of four months. The benefit of this approach is that the changes would
be based on industrial data. A maintenance cost can be estimated by measuring
the cost for correcting the tests that break between commits.

Normally, test-results are only analysed if they fail, often due to the cost of manual
labour. However, this approach would miss any false negatives. A way of find-
ing potential false negatives is through cross-comparing the run results. With a
comparison between two tools being one of the main objectives of this paper, any
deviations between the tools will be investigated.

3.2.1 Designing Tests

In place at CANEA are rigorous testing protocols for the current manual GUI
testing. These will be used as the basis for comparison between manual testing
cost and automatic testing cost. Some of the defined test cases in the manual
suite will be implemented as automated tests using each tool. These tests would
provide an estimation of the cost to make a transition to automated tests.

Automated GUI tests can be created in many different ways. Two tests that
are syntactically different can achieve the same end result. Though, during the
evolution of a system, the tests could have different results. To ensure robustness
of the tests, guidelines will be followed in order to avoid common pitfalls.

Selenium:
The PageObject pattern will be used when designing test cases. This choice was
motivated in that the PageObject pattern separates test logic from page logic and,
therefore, reduces the effort to repair broken tests [10].

Language and Framework:
The Selenium tests will be written in C# using Selenium WebDriver bindings for
C#. The choice of language was decided due to familiarity with the language at
CANEA. The choice of framework subsequently fell upon .NET Framework 4.7.1
for similar reasons.

25

3. Methods

Selenium WebDriver does not include test assertion functionality on its own. For
most Selenium tests, a unit test framework is needed. For .NET framework, there
are mainly three popular unit test frameworks: xUnit, NUnit and MSTest. These
test frameworks have similar capabilities and functionalities. For the Selenium
tests it was decided that NUnit would be used. This decision was motivated in
that NUnit is used at CANEA for unit testing.

EyeStudio: The guidelines found at the EyeAutomate webpage1 will be used
when designing tests scripts in EyeStudio. Development guidelines presented by
Alégroth and Feldt will also be taken into consideration [42]. Some suggested
actions when constructing tests are to use delays when needed, handle failed com-
mands, divide the test script into steps using begin blocks and using different
recognition modes depending on the locator image. Test functionality can be ex-
tracted to separate test scripts in order to enable reuse, also called modularisation.
In some cases, there can be minor differences between test steps except for some
input variables, for instance, a test logging in different users. Consequently, when-
ever necessary and possible, modularisation will be used to keep the tests smaller
and more maintainable.

3.2.2 Setup

Both the EyeSuite and Selenium tests need to be run frequently and without
human supervision. This requires an easy way to run the test suites consistently
and with good, verifiable reports. These requirements were met for EyeAutomate
through its HTML report functionality. For Selenium, the tests were written as
unit-tests and reports were generated using NUnit through Visual Studio.

3.2.3 Execution

The historical method has two main phases: the implementation phase and the
stepping phase. The first step of the implementation phase is to select which tests
to implement based on a set of well specified manual test cases. The second step is
then to decide who of the researchers to implement which tests. Finally, the tests
will be implemented and data will be gathered. This process is described in more
detail in Table 3.2.

1http://eyeautomate.com/documentation.html (2018)

26

http://eyeautomate.com/documentation.html

3. Methods

Table 3.2: The implementation phase of the historical testing. Where applicable
it is shown which type of data is gathered in which step.

Historical - Implementation
Choosing test cases

1. CANEA choose a few test cases with good coverage.
2. Researchers select a few of the remaining test cases randomly.
3. Go back one year in the version control history of CANEA ONE.

Data gathered4. Perform the tests manually
according to their specifications. Time to perform the tests

Dividing the test cases

5. The test cases chosen in step 1 are implemented by both
researchers in both tools together.

6.
The test cases chosen in step 2 are implemented by one researcher
in one tool, then by the other researcher in the second tool.
Who uses which tool is balanced between the researchers.

Writing the tests
Data gathered
Implementation time
Lines of Code
File size

7. All the tests from step 1 & 2 are
implemented according to 5 & 6.

Personal impressions

The second phase, the stepping phase, is the main part of the historical test. It
covers a year of development with weekly data points, with the exception of the
first and last week where samples will be taken every day. The tests are run and
analysed every iteration with any broken tests being repaired before continuing.
The stepping flow can be seen in more detail in Table 3.3.

27

3. Methods

Table 3.3: The stepping phase of the historical testing. Where applicable it is
shown which type of data is gathered in which step.

Historical - Stepping
Stepping between versions

1. Go forwards one week (one day for sample weeks) in version control.
2. Make sure the system builds correctly.

Data gathered
Test pass or fail3.

Run the test suites. Handle tests according
to their status: nothing for passed tests,
step 5 for failed ones. Personal impressions

4. Repeat from step 1 until done.
Handling failed tests

Data gathered
Analysis time5.

Determine what caused the test to fail
and categorise it.
Do 6, 7 or 8 depending on the type. Type of failure

6. Bug was found: Record the bug and, if possible, create a
workaround to run the rest of the test.

7. Occasional crash: Fails caused by unknown or unrelated
events are re-run.

Data gathered8. Breaks: The system has changed and the
test needs to be updated. Time to fix

3.3 Artificial

The artificial research procedure is an experiment for measuring the capabilities of
each tool. More specifically, which kinds of faults the tools can handle. Observing
how the tests handle introduced defects reveals some of these capabilities. Whether
the tests pass or not allow for robustness to be tested and decide which areas of the
GUI a given tool is best suited for. Therefore, using the data gathered from this
procedure, conclusions regarding the fault-detecting capabilities can be drawn.

The artificial testing is also a complement to the historical procedure. Changes
which did not emerge during the historical stepping phase can be injected by hand
into the system, in order to evaluate the capabilities of the tools.

28

3. Methods

3.3.1 Setup

A suitable test from the historical test suite will be chosen to test the introduced
changes. The type of changes to be applied will be based on which changes are the
most common at the company, complemented with changes used in other research.

As the artificial phase can be considered an experiment, the formal hypothesis and
variables can be defined as follows:

Hypothesis: There is a difference in the type of changes EyeAutomate and Sele-
nium can catch.
Splitting the caught changes into defects and harmless updates can determine the
capabilities of the tools. If a testing tool is too narrow and does not catch any
defects, it is useless. On the other hand, a tool that is too sensitive will catch
many of the harmless changes as well, leading to many false positives.

Independent variables: Sections of the code in a specific part of the system and
web browser.
The sections of code will be changed in several different ways, some harmless,
others clearly breaking the functionality of the system. Before beginning a new
change, the last one is removed and the system restored to its original state.
Therefore, there will only be one change in the code at any given time. For the
different browsers the system will not be changed, but rather the environment the
tests are run in.

Controlled variables: The tests, hardware and the parts of the system which are
not subjected to the changes.
Most notable of the controlled variables is the test. It will be the same test used
and refined during the historical testing, and will not be changed at all during the
entirety of the artificial testing. Moreover, the experiment will be performed on
the same computers so the hardware will not change. Neither will the majority of
the system because the changes introduced will be small and limited to a specific
part of the system.

Dependent variable: Whether the test result matches the expected behaviour.
Although this is the only data needed to answer the hypothesis, any other findings
will be recorded in order to relate it to the rest of the study.

29

3. Methods

3.3.2 Changes

Tests can fail for different reasons. As seen in Related Works, many studies have
explored this subject before. The categories listed in this section are derived
from previous studies, experiences from CANEA and the authors’ experiences
from working with the tools. All of the proposed changes have an expected test
outcome.

Where in the system a change will be injected is determined by the locators used
by the tests. A list of locators shared between the test tools will be created. From
this list, which locator or series of locators to change in the system will be selected
at random.

Structural changes: These changes consist of changes to the DOM. Some of
them will change the visual appearance of the GUI while others won’t. Selenium
should be susceptible to these changes as it locates GUI elements using the DOM
as seen in prior studies [3, 16]. The structural changes used for this study can be
seen in Table 3.4.

Table 3.4: Structural changes

Structural Change Desired Test
Outcome Notes

Change the tag type of
element targeted by a test
while keeping visual
appearance and functionality.

Pass

The innermost
DOM-element in the
locator will be changed
to a different type.

Surround element targeted
by a test with div tags. Pass

The innermost
DOM-element in the
locator will be
surrounded with tags.

Move element targeted by
a test up the DOM hierarchy.

Pass if
functionality is
kept, otherwise
fail.

The innermost
DOM-element in the
locator will be moved
to up to its parent’s level.

Remove element targeted
by a test from the DOM. Failure

The outermost
DOM-element in the
locator and its children
will be removed.

30

3. Methods

Graphical changes: A graphical component in a GUI may change in appear-
ance during software evolution. This category can be seen in Table 3.5 and will
capture these changes to the GUI. VGT tools such as EyeAutomate are fragile to
these changes. In contrast, Selenium, which is an element-based tool, should be
indifferent to graphical changes [42].

Table 3.5: Graphical changes

Graphical Change Desired Test
Outcome Notes

Major change to the size of a
GUI component
targeted by a test.

Failure Done by using CSS.

Minor change to the size of a
GUI component
targeted by a test.

Pass Done by using CSS.

Change the text resource of a
GUI component targeted by
a test.

Failure

Sets the text path
resource to another
randomly selected
text resource
in the system.

Change the image resource
of a GUI component
targeted by a test.

Failure

Sets the image path
resource to another
randomly selected
image in the system.

Hide a GUI component
targeted by a test Failure Done by using CSS.

Layout changes: The suggested changes in this section are changes which modify
the components of the GUI. This includes adding a new component to the view
or removing an existing one, which are changes that can occur during software
evolution. For some changes, it would be desirable that the tests should still pass,
such as the addition of a distinct view component. For other changes, it would be
desirable that the test fails, like when a view component covers a locator.

This category takes inspiration from the ’GUI views arrangement’ classification
[40]. Selenium and other element-based automated GUI test tools should be robust
against these changes [29]. The layout changes to be used in the study are seen in
Table 3.6.

31

3. Methods

Table 3.6: Layout changes

Layout Change Desired Test
Outcome Notes

Add GUI component
not targeted by test. Pass

The component will be
visible and close to
the component used
by the test.

Remove GUI component
not targeted by test. Pass

The removed component
will be close to the
component used the test

Hide a GUI component
targeted by test behind
another component.

Failure Done by using CSS.

Change location of a
GUI component targeted
by test significantly.

Failure Done by using CSS.

Application changes: These are changes to the back end of the system, concern-
ing the logic of the system. Even though a GUI test is created in order to verify
the GUI, it would be desirable if a GUI test could detect application level logic
defects as well. These type of changes have also been used by Coppola et al.[40].

Where the change will be injected into the system is tied to the locators of the
tests, if applicable. Given a locator and the corresponding interaction with the
system, the change will be injected in the code responsible for that interaction.
The full list of application changes can be seen in Table 3.7. For the Several shorter
suspended responses change, a series of randomly selected, applicable locators will
be chosen.

32

3. Methods

Table 3.7: Application changes

Application Change Desired Test
Outcome Notes

Injected internal error. Failure Generated by adding
a severe code error in the SUT.

One long
suspended response. Failure

A sleep statement waiting
longer than the timeout
cutoff of the tests.

Several shorter
suspended responses. Pass

Several sleep statements
waiting shorter than the
timeout cutoff of the tests.

Browser changes: Running the test in a different web browser can be achieved
in both Selenium and EyeAutomate. EyeStudio even supports some functionality
of Selenium by default, including the ability to launch specific browser drivers.
However, the GUI test case has been implemented to run on a specific browser,
the web browser Chrome. As such, browser-specific defects could emerge when the
GUI is run on a web browser other than Chrome, which would then be caught by
this test. The browsers to test are listed in Table 3.8. In contrast to the other
changes, the browser changes are not tied to some specific locator.

Table 3.8: Browser changes

Browser Change Desired Test
Outcome Notes

Edge Pass Using Microsoft Edge 41.
Firefox Pass Using Geckodriver 0.19.1 & Firefox 59.0.2.
Internet Explorer Pass Using Internet Explorer 11.

3.3.3 Execution

The procedure for the artificial experiment is based on running a test written in
both tools while introducing changes into the system. More specifically, for each
proposed change as defined in subsection 3.3.2, the instructions in Table 3.9 will be
performed. With 19 changes, the procedure will be repeated 19 times. The cause
for why a test does not pass or fail due to an injected change will be collected as
well.

33

3. Methods

Table 3.9: Artificial - Procedure for each change. Where applicable it is shown
which type of data is gathered in which step.

Artificial - Execution
1. If applicable, randomly select a shared locator between the tests.
2. Modify the system or environment to introduce the change.

Data gathered3. Run the test in Selenium. If the test failed or not.
4. Remove any added data from the system.

Data gathered5. Run the test in EyeStudio. If the test failed or not.
7. Reset the system or environment to its original state.

3.4 Interviews

To get a qualitative impression of the tools beyond the opinions of the researchers,
interviews will be held with personnel at CANEA. The interviewees will consist of
personnel working at the software development department at CANEA, both soft-
ware developers and testers. The interviewees will be taught the tools individually
and then get to implement a short test in the system. After the interviewees have
experienced both tools, the interview is held. During this interview, the questions
will focus on the tools used but also on their view on automated GUI testing in
general.

3.4.1 Setup

To make sure the test is of a reasonable size and the questions are manageable, a
pilot interview will be held. This pilot will do the full test as normal, but will also
get questions on the interview itself. Depending on the pilot interview, adjustments
will be made to improve the following interviews. Although the answers on the
regular questions for the pilot will be recorded, they will not be used for the study;
the study will be based on the interviews performed after the pilot has vetted the
procedure.

The coding during the interview phase will be done on the researchers’ computers.
The test environment will be prepared before every interview to have the tools
prepared, test instructions open and the SUT running.

34

3. Methods

3.4.2 Execution

The execution of each interview will be split into three parts: tool walkthrough,
test writing and questions. The first two parts will be repeated for each tool
resulting in a total of five steps. The order in which the tools are taught alternates
in order to mitigate bias in answers since the test case stays the same for both
tools. To make sure that every interviewee gets the same walkthrough, the process
used was defined into the steps shown in Table 3.10.

After the interviewee has had an explanation of the tool, the testing begins. The
task will be the same for every interviewee and between each tool. Though the
task will be short, it will also be wide enough that it requires both usage of and
additions to the existing test suite. The purpose of the test is for the interviewee to
form an opinion of the tools by using them. Because the opinion might be affected
by which tool the interviewee starts with, the starting order will be balanced when
looking at the whole group. Another factor that might affect the interviewee’s
opinion of the tools is how fresh in memory the tool is. This memory depends
both on how long ago they used the tool and on how much time they spent with
it. To keep a reasonable length on the interview, the time spent on each test will
be limited to 30 minutes; if an interviewee is getting close to, or going over, the
time limit, they will get assistance from a researcher.

When the interviewee has tried both tools and formed an opinion, the interview will
be performed. It will be a semi-structured interview focusing on the interviewee’s
perception of the tools and how well they could be integrated into the company.
The interview aims to be objective; the researchers avoid leading questions and
only help with ambiguity or misunderstandings of the questions.

35

3. Methods

Table 3.10: This table shows what was gone through during the walkthroughs,
the order is of lesser importance.

Tool walkthroughs
EyeStudio Selenium

Show the IDE
Script area Visual Studio
Selecting commands nUnit Tests

Structure
Tests Tests
Images PageObjects

Writing Tests
Images C#
- Capturing images Selenium library
- Re-capturing Test structure (setup/teardown)
- Set focus point/area Calling/Using PageObjects
Begin, End and Catch Assertions
Calls to other scripts Locators
Browser operations Finding elements
Check-waits / Sleep Waits / Sleep

Running tests
Reports Stack trace
Debugging Debugging

36

4
Results

This chapter contains the results gathered from the research methods described in
chapter 3. The first five sections look at the quantitative data gathered during the
study. It goes through the implementation- and maintenance cost which is then
used to calculate a return on investment. Following the return on investment is the
fault detection capabilities of the tools and a summary of their major differences.
The last section is about the qualitative data collected from interviews.

4.1 Implementation Cost

All implemented tests were chosen from a set of critical test cases called GXP tests
at CANEA. The GXP tests are carefully specified test scenarios normally used for
manual testing, numbering 20 in total. The test cases contains written instructions
and expected behaviour, making them ideal to transfer to automated GUI tests.
Test cases one, two and three were all chosen by employees at CANEA as cases
which covered important but varied areas of the system. These were implemented
together by the researchers. The remaining test cases were picked, as time allowed,
at random from the remaining test cases. These random tests were implemented
individually by the researchers in an alternating fashion; one researcher imple-
mented two EyeAutomate tests and one Selenium test, two Selenium test and one
EyeAutomate test for the other.

The implementation effort of Selenium was split up into two categories, tests and
PageObjects. The results can be seen in Table 4.1. Of particular note is the ratio
between the test LoC and the PageObject LoC. This difference is further examined
in Figure 4.1 which shows a trend of a higher percentage of effort being placed
on the parts unique to the test instead of the common PageObjects. This is most
likely due to the reusing of PageObjects as the test suite grows.

37

4. Results

Table 4.1: The implementation time, size in lines of code (LoC) and size on
disk for the Selenium tests. Lines of code are divided into test specific code and
common PageObject (PO) code. Both the full LoC of the files and the strictly
trimmed LoC from Visual Studio 2017 were given. LoC and file size are not used
in this study, but was included as a base of comparison between other studies in
the field. The tests are in order of implementation.

Selenium
Impl.
time
(s)

LoC
tests

LoC
tests

(trimmed)

LoC
PO

LoC - PO
(trimmed)

File size
Additions
(KB)

Test 1 41748 113 55 631 145 24.2
Test 2 3201 50 12 47 9 2.8
Test 3 25162 169 119 543 139 26.7
Test 4 23900 194 107 492 92 25.1
Test 5 30763 221 115 332 71 23.2
Test 6 12320 107 49 100 30 8.1
Total 137094 854 457 2145 486 110.4
Average 22849 142.3 76.2 358 81 18.4

Figure 4.1: Graph over the difference in new LoC specific to the test and LoC
added to the common PageObjects. The X-axis is sorted on the order the tests were
implemented. Note how the reuse of PageObjects allow for a higher percentage of
the work to be placed on the parts unique to the test itself.

38

4. Results

The implementation time of the EyeAutomate test suite is shown in Table 4.2
where it is split into two categories: time until the test passed and time until the
test felt robust. Which test needed the most improvement time was very context
dependent, e.g. verifying cells in information tables could lead to a lot of errors.

Table 4.2: The implementation time, the size of the tests in lines of code (LoC)
and size on disk for the EyeAutomate tests. The implementation time is split into
the time it took for the tests to pass and the improvement time in order to reduce
false positives and improve accuracy. LoC and file size are not used in this study,
but was included as a base of comparison between other studies in the field. The
test are in order of implementation.

EyeAutomate Impl. time
(seconds)

Improv. time
(seconds) LoC File size (KB)

Additions
Test 1 8672 12106 188 63.6
Test 2 406 783 10 3
Test 3 7661 0 201 45.5
Test 6 11523 1708 99 34
Test 5 11034 0 211 41.6
Test 4 10428 7341 229 52.4
Total 49724 21938 938 240.1
Average 8287 3656 156.3 40

EyeAutomate tests were significantly faster to implement than Selenium tests with
the Selenium test suite taking 91% longer to implement. Looking at the individual
test cases in Table 4.3 only one test takes longer to implement in EyeAutomate,
and that is only by 15 minutes. In total, EyeAutomate tests took roughly 20
hours to implement while Selenium took 38 hours. Using a two-tailed T-test
for two dependant means it was determined that the difference was statistically
significant with an alpha of 0.05. The reason that a T-test for two dependent means
was chosen is that the data was paired, the same test cases were implemented in
two different tools.

39

4. Results

Table 4.3: Table over the differences in implementation time between the tools.
The p-value was determined with a two-tailed T-test for two dependent means.

Implementation
differences

Selenium
time (min)

EyeAutomate
impl. + improv.

time (min)
Test 1 695.8 346.3
Test 2 53 19.8
Test 3 419.4 127.7
Test 4 398.3 296.2
Test 5 512.7 183.9
Test 6 205.3 220.5
Total 2284.9 1194.4 p = 0.039255
Average 380.8 199.1

4.2 Maintenance Cost

The maintenance cost for the tools has been gathered using data from the his-
torical testing. The stepping results can be seen in Table 4.4 and Table 4.5 for
Selenium and EyeAutomate respectively. Concerning the total amount of time
spent on maintaining tests, more time was spent on maintaining the EyeAutomate
tests than the Selenium tests. The difference was 11 hours and 22 minutes for
EyeAutomate compared to 7 hours and 47 minutes for Selenium, a difference of
32%. The average maintenance time for a single step was roughly 7 minutes for
Selenium and around 10 minutes for EyeAutomate. The median time for each tool
was 0 seconds. This is due to the majority of the samples the tests passing without
the need of maintenance. For both tools, the majority of the time was spent on
repairing broken tests. For the total repair time, there is a considerable difference
between the tools, with the EyeAutomate tests in total taking more than twice as
long to repair.

For handling bugs, the median time was zero for the test suites. The reason for
this is due to the way found bugs are handled. If a bug is found from a test and it
is still appearing during later runs of the same test, it would be flawed to measure
the time it takes to "find" the bug again. Since the prior knowledge of the bug’s
existence makes it easier to find, the time it would take to find it again would
be close to a few seconds. Consequently, the time was sampled as 0 for those
instances.

40

4. Results

Table 4.4: The stepping result for Selenium during the 65 steps. Occasional
crashes was unknown errors causing the tests to fail, but passed after a re-run.
The first five categories have their average, median and standard deviation based
solely on their occurrences, i.e. The average of ‘Analysing broken tests’ is the total
for the category divided by 19. The calculations for ‘Total per step’ is instead based
on the full period of 65 steps.

Selenium Total time
spent (s)

Steps
present

Average
time (s)

Median
time (s)

SD σ
(s)

Analysing broken tests 5475 19 288.2 203 381.1
Repairing broken tests 14831 19 780.6 344 875.8
Handling found bugs 2181 24 90.9 0 264.7
Handling false negatives 3399 2 1699.5 1699.5 2106.5
Occasional crashes 2166 4 541.5 347 494.7
Total per step 28052 28/65 431.6 0 997.8

Table 4.5: The stepping result for EyeAutomate during the 65 steps. Occasional
crashes was unknown errors causing the tests to fail, but passed after a re-run.
The first five categories have their average, median and standard deviation based
solely on their occurrences, i.e. the average of ‘Analysing broken tests’ is the total
for the category divided by 22. The calculations for ‘Total per step’ is instead
based on the full period of 65 steps.

EyeAutomate Total time
spent (s)

Steps
present

Average
time (s)

Median
time (s)

SD σ
(s)

Analysing broken tests 4041 22 183.7 131.5 158.8
Repairing broken tests 34243 22 1556.5 939 1609.8
Handling found bugs 1827 30 60.9 0 178
Handling false negatives 614 2 307 307 278.6
Occasional crashes 243 2 121.5 121.5 108.2
Total per step 40968 26/65 630.3 0 1310.2

The spread of the samples gathered during the historical can be seen in the boxplot
in Figure 4.2. The box plot depicts eight boxes, categorised according to main-
tenance type and tool. Several outliers can be seen for category C. As described
earlier, this is due to the way repeated bugs were measured. One category was
excluded and is missing from the plot and maintenance calculations, the time it
took to handle false negatives. The category was excluded due to its extremely low
sample size, only two samples for both tools. False negatives would not normally

41

4. Results

be handled since they can only found through cross-comparing different tools; it
is normally too expensive for practitioners to maintain several test suites testing
the same cases.

Figure 4.2: Boxplot describing the samples gathered from the historical testing.
Note that group D consists of few data points, four data points for Selenium and
two data points for EyeAutomate.

A graph showing time spent maintaining the tests can be seen in Figure 4.3. Here,
the Y-axis displays the time in seconds spent on handling and maintaining a test
suite for a given tool. The X-axis indicates the steps in which the tests were run.
As seen in the graph, most of the maintenance occurred early during the stepping.
During the latter half of the stepping, neither test suite needed much maintenance.

42

4. Results

The spikes in the graph represent tests where significant time was spent on repair-
ing the tests, most of these spikes can be explained. The first spike seen between
step index 1 to 7 was mainly caused by the tests still being immature, manifesting
as timing issues for Selenium and misclicks for EyeAutomate. The second spike
seen from step index 7 to 15 were caused by a graphical overhaul of the CANEA
system. Considerable time had to be spent on updating the locators for the Se-
lenium and EyeAutomate test suites. The spike at step index 31 was caused by
changes to different types of GUI inputs in the system such as date, text and
drop-downs. The last spike for Selenium seen around step index 47 was due to
a timing issue where a page transitioned too fast for the test. What these spikes
add up to can be seen in Figure 4.4.

A histogram of the combined time it takes to analyse and repair a broken test is
seen in Figure 4.5. The histogram depicts two samples of data: Selenium with a
sample size of 43 and EyeAutomate with a sample size of 56. The median values for
Selenium and EyeAutomate were 188 and 433 respectively. None of the sampled
data seems to be normally distributed based on the shape of the histogram. A
Shapiro-Wilk test confirmed that they were not normally distributed.

Figure 4.3: This graph shows how much time was spent on handling, analysing
and repairing the tests totalled for each step. Note that step 1-7 and 59-65 only
have one day between them while all the other steps have one week.

43

4. Results

Figure 4.4: The running total of time spent handling the test per step.

Figure 4.5: Histogram showing the distribution of the repair time for the tools.

44

4. Results

Determining whether the two groups are significantly different through using Stu-
dent’s T-test would not be suitable, as the two samples are not normally dis-
tributed. An alternative would be to use the Mann-Whitney U test. This non-
parametric test assumes that the samples are independent of each other and that
the data is ordinal. Testing the two samples using a two-tailed Mann-Whitney
U test concluded that the difference between the median of the two samples is
statistically significant with a p-value of 0.00279159 at a significance level of 0.05.

Distributions of the maintenance cost spread evenly over set periods of time can
be seen in Table 4.6. The values are derived from the total cost bar the time for
handling false negatives as seen in Table 4.4 and Table 4.5.

Table 4.6: The maintenance cost over time. The numbers are the totals from
Table 4.4 and Table 4.5 excluding the time for handling false negatives. The whole
year is based on the actual data while the other yearly costs are extrapolated from
a sub-set of the data. Monthly is the yearly time divided by 12 and daily is
the yearly time divided by 226, the average number of workdays per year for an
employee in Sweden.

Maintenance Time
period

Selenium
time (s)

EyeAutomate
time (s)

Yearly 52 453 93 855
Monthly 4 288 7 821

Based on
first third
(Extrapolated) Daily 228 415

Yearly 8904 22 776
Monthly 742 1 898

Based on
second third
(Extrapolated) Daily 39 101

Yearly 13 602 4 431
Monthly 1 134 369

Based on
last third
(Extrapolated) Daily 60 20

Yearly 24 653 40 354
Monthly 2 065 3 363Whole year

(Measured) Daily 109 179
Ratio 6.13:10

45

4. Results

4.3 Return on Investment

The base for return on investment, in this case, is the time spent on manual testing
compared to the time spent implementing and maintaining an automated test
suite. The time it takes to manually perform each test can be seen in Table 4.7.
The data is the time it took for the testers at CANEA to perform the manual
regression tests which the automated tests are based on. Normally these manual
tests are run once before every release, which is every third month.

Table 4.7: The manual test suite execution time for use in return on investment.
Selenium and EyeAutomate times are included for comparison and are averages
from full-pass runs.

Execution
time

Manual
exec. (s)

Selenium
exec. (s)

EyeAutomate
exec. (s)

Total 4459 450 1812
Average 743.2 75 302

The total implementation cost was 20 hours for EyeAutomate and 38 hours for
Selenium as seen in section 4.1. This is the cost that will have to be recuperated by
running the tests since automatic tests don’t need human supervision and therefore
saves time compared to manual ones.

The maintenance cost will be combined with the implementation cost. There will
be a continuous cost associated with repairing the automatic tests. In contrast,
manual tests do not carry repair costs. The maintenance cost is analysed in sec-
tion 4.2 and any repairs need to be included when comparing the investment to
manual testing.

4.3.1 Calculated

Going by the average maintenance cost for the whole year in section 4.2, both
Selenium and EyeAutomate have a higher maintenance cost than manual execution
time, meaning that a return on investment will never be reached. Even looking
at the best cases of the extrapolated sub-sets, second third for Selenium and last
third for EyeAutomate, it would take 15 years and 5 years respectively to reach
a return on investment. If any large changes to the system would happen during
these years, the time to reach return on investment could rise even more.

46

4. Results

By taking the yearly average and defining the maintenance cost as linear, return
on investment can be estimated as seen in Table 4.8. Note that this average is
based on weekly maintenance. This means that the maintenance cost would likely
be marginally lower for the release and monthly estimate while being somewhat
higher for the daily estimate.

Table 4.8: Calculated return on investment based on the implementation costs
in Table 4.3 and the linear yearly averages from Table 4.6 and Table 4.7.

Return on
investment

Selenium
time

EyeAutomate
time

1 per release
(4/year) Never Never

Monthly 4.75 years 5.45 years
Weekly 35 weeks 20 weeks
Daily 32 days 17 days

4.3.2 Infrequent Runs

Normally the manual tests are run every three months. Plotting this together with
the implementation and maintenance cost creates Figure 4.6. The figure assumes
that the manual testing cost stays constant per run. Going by the visuals alone
it is possible that a return on investment is reached after several years, but it is
hard to be more specific without further investigation.

To get a better estimate of when a return on investment occurs in the long term,
a trend-line prediction based on the first year was created. The best fit for both
Selenium and EyeAutomate was a logarithmic curve and the resulting prediction
can be seen in Figure 4.7. Due to the long time until a return on investment, even
a few spikes of maintenance can disrupt this prediction quite a bit.

47

4. Results

Figure 4.6: The manual test suite run quarterly compared to the the test suite
investment for each tool.

Figure 4.7: Prediction over time with quarterly test runs. Both Selenium and
EyeAutomate had the best fit with a logarithmic function based on the first year.
Selenium with ‘6045ln(x) + 136818’ and EyeAutomate with ‘9919.8ln(x) + 74676’.
The manual cost was defined as a linear function ‘343x’ (a weekly average of
4459 every third month). Selenium equals the manual cost at 510 weeks, whereas
EyeAutomate at 392 weeks.

48

4. Results

4.3.3 Frequent Runs

The previous graph was based on quarterly runs. However, the purpose of the au-
tomated GUI tests was not be run quarterly. The automated tests were meant to
be run frequently as regression tests, in order to find defects earlier. A graph plot-
ted for weekly tests can be seen in Figure 4.8. In this case, a return on investment
would be reached in 24 weeks for EyeAutomate and 36 weeks for Selenium.

Figure 4.8: The manual test suite run weekly compared to the test suite invest-
ment for each tool. EyeAutomate crosses manual testing at 24 weeks, Selenium at
36 weeks.

4.4 Fault Detection Capabilities

The fault detecting capabilities of the tools have been explored using data gathered
from the historical and artificial testing. This data is summarised in Table 4.9 and
Table 4.10.

Table 4.9 was created from the data gathered during the historical testing. It
shows all instances where the test suites of the tools would break or find a bug due
to a change in the system. For Selenium, the total instances where the tests broke
and needed repair was 28. For EyeAutomate, this number was 37. For all the

49

4. Results

changes to the system, 8% of them broke both test suites simultaneously. Using a
Chi-Square test gives a P-value of 0.889 regarding the difference in how often the
tests break between the tools, hinting at the tools being similar in how often they
break but not with any statistically significant certainty.

Table 4.9: This table shows the number of unique cases where a test broke or
a bug was found. The amount is shown in relation to the other tool, meaning a
number "A (B)" shows that A findings were unique to the tool while B findings
were present in both tools.

Unique findings Selenium EyeAutomate
Broken Bugs found Broken Bugs found

Total
(x) is common 23 (5) 1 (14) 32 (5) 4 (14)

The number of bugs detected by the Selenium tests was 15. For EyeAutomate,
this number was 18. Most of the bugs found during the historical testing were
shared between the tools with a total of 14 bugs. Based on the data gathered from
the historical testing, 73% of all bugs were found by both tools. A Chi-Square
test gives a P-value of 0.283 regarding the difference in bugs found between the
tools, showing neither a significant difference nor a significant similarity. The
unique bug found by Selenium was the absence of a drop down component which
the corresponding EyeAutomate test missed. The four unique bugs found by the
EyeAutomate test suite were graphical and layout related bugs.

The fault detecting capabilities of the tools were also examined with the artificial
testing. The results gathered from this experiment are seen in Table 4.10. In
regards to whether the tools follow the desired test outcome, the tools are split
evenly with 12 successes and 7 failures. A success means that the executed test
had the same result as the desired test outcome, whereas a failure means that the
test did not achieve the same result. In the following paragraphs, the differences
between the tools will be explained for each category of changes.

Application: Both Selenium and EyeAutomate succeeded in detecting the inter-
nal error and long sleep statement. Where the tools differed was when there were
several sleep statements injected in the code, causing the Selenium test to pass
while the EyeAutomate test failed. The reason for why the EyeAutomate test
failed was because the injected sleep statements caused a timing issue during a
page transition. With the extra delay added, the EyeAutomate script erroneously
clicked on a GUI element not part of the test.

50

4. Results

Browser: Almost all of the tests failed in some way when running them on a
browser other than Chrome, the exception being Selenium in Internet Explorer.
For Selenium, the reason why most test runs failed was due to timing issues and
DOM-elements obscuring target elements, since the site became responsive before
having fully loaded. Internet Explorer did not have these issues as it was slower
to respond than Firefox and Edge, giving it time to load completely. For EyeAu-
tomate, the main reason for why all test runs failed was because of the slightly
different way each browser rendered the system.

Graphical: The graphical changes gave some different results. Both tools failed
to detect that a GUI component was too big. Why EyeAutomate failed to find the
larger component was because it falsely verified and identified another GUI com-
ponent as the target. As for Selenium, the test does not validate the appearance of
the GUI at all. For the rest of the changes, the EyeAutomate test was able to suc-
cessfully distinguish between the defects and minor changes. While the Selenium
did not manage to catch the differences with the text or images of a component,
it did manage to successfully break when not finding a hidden element.

Layout: Both of the tools manage the first three changes without any difficulties:
adding or removing a component not targeted by the test and hiding one that is.
However, the tools were not able to detect when a component changed location
significantly.

Structural: For the structural changes, the tools failed on different changes.
Selenium failed when the tag type of a DOM-element was changed. EyeAutomate
did not manage to fail when a targeted element was removed from the DOM. In
this case, it identified another element as the targeted one and proceeded the test
without failure.

51

4. Results

Table 4.10: The results from the artificial method. Check marks represent when
the outcome matches the desired one.

Change Desired Test
Outcome Selenium EyeAutomate

Application
Internal error Fail Fail (D) Fail (D)
Long sleep Fail Fail (D) Fail (D)
Shorter sleeps Pass Pass (D) Fail

Browser
Edge Pass Fail Fail
Firefox Pass Fail Fail
Internet Explorer Pass Pass (D) Fail

Graphical
Major size change Fail Pass Pass
Minor size change Pass Pass (D) Pass (D)
Text resource Fail Pass Fail (D)
Image resource Fail Pass Fail (D)
Hide element Fail Fail (D) Fail (D)

Layout
Add Pass Pass (D) Pass (D)
Remove Pass Pass (D) Pass (D)
Hide Fail Fail (D) Fail (D)
Change location Fail Pass Pass

Structural
Change tag Pass Fail Pass (D)
Surround tag Pass Pass (D) Pass (D)
Move up Pass Pass (D) Pass (D)
Remove Fail Fail (D) Pass

52

4. Results

4.5 Differences Between the Tools

This section compiles the quantitative results from the research methods in order
to specify differences between the tools.

As seen in Table 4.3, there is a difference in implementation cost between the
tools. In five out of six cases, implementing a manual test case in EyeAutomate
was faster than in Selenium. Running a ‘two-tailed T-test for two dependant
means’ concluded the difference to be statistically significant.

The data shown in Figure 4.5 indicates that there is a difference in maintenance
cost between the test suites. A two-tailed Mann-Whitney U test concluded that
the samples are statistically different, with the Selenium test suite having a lower
maintenance cost than the EyeAutomate one. The maintenance costs for the test
suites were not consistent over the year. As seen in Figure 4.3 and Table 4.6,
most maintenance occurred during the first third of the year and then gradually
decreasing over time.

The total cost of implementing and maintaining a test suite for a given tool can
be compared to the time it takes to perform the same test suite manually. The
calculated return on investment is seen in Table 4.8. As seen in the table, depend-
ing on how often the manual test suite would be run affects the time to a positive
return on investment. Comparing the tools, the EyeAutomate test suite reaches a
positive return on investment slightly faster than the Selenium test suite.

As seen in Table 4.9, most bugs found during the historical testing were found by
both test suites. The EyeAutomate test suite did manage to find more unique bugs
with four compared to one of Selenium. The artificial testing revealed the tolerance
of the test suites concerning system and environment changes. Table 4.10 shows
the results of the artificial changes. The test suites were equal in the number of
successes and failures. The data seen both from the historical and artificial testing
suggests that the tools are sensitive to some types of changes.

4.6 Qualitative data

This section contains a summarised version of the data gathered from the inter-
views described in section 3.4. The full result from the interviews can be read in
Appendix A.

53

4. Results

Note that while EyeAutomate is the program actually running the scripts, Eye-
Studio is the IDE used during the interviews. Therefore, only the term EyeStudio
was used to reduce confusion. This mismatch in terminology does not pose a
problem since EyeStudio can only write EyeAutomate scripts, making it easy to
extract whether a comment is related to EyeAutomate or EyeStudio. Any com-
ments regarding the syntax or running of the scripts relate to EyeAutomate while
any comments regarding the IDE relate to EyeStudio.

Prior experience with the tools:
The interviewees had very limited experience with automated GUI testing in gen-
eral. Only one of them had used a GUI testing tool before, and then only briefly
for performance testing. Of the five people interviewed, four were developers and
one was a tester. It was chosen to not only have developers in order to get more
varied opinions. None had any experience with EyeStudio but all the developers
had experience in C# and Visual Studio, which were used for the Selenium tests.

Impressions of Selenium:
Everyone interviewed mentioned to a lesser or greater extent that programming
knowledge is required to use Selenium. The developers were generally positive
and found Selenium easy to use due to its familiar language and development
environment, the tester claimed it was: "Not for me".

The PageObject pattern is meant to increase the reusability of the Selenium test
suite. True to the intention, interviewees felt that PageObjects made it easier to
reuse code. Therefore, the use of PageObjects was seen as something positive;
one interviewee even claiming PageObjects as one of the main reasons Selenium
felt better than expected. A downside with the pattern brought up by a few
interviewees was the possibility of the PageObjects becoming bloated as the test
suite grew.

Selenium’s reliance on DOM-based locators was only brought up a few times during
the interviews. Most of the interviewees grasped the concept fairly quickly and
did not even bring it up, apart from some syntactical questions while writing the
tests.

Two interviewees claimed that the knowledge of using CSS to form locators in the
DOM makes Selenium easier to use. Another saw the use of CSS as having the
potential for a positive feedback loop in that the usage improves the knowledge of
CSS in the team. This could lead to a higher product quality which in turn leads
to fewer tests breaking.

54

4. Results

Impressions of EyeStudio:
The interviewees found EyeStudio easy to use. The visual script with images made
it easy to get an overview and the clickable instructions made it easy get started.
One interviewee said that the program had an intuitive workflow which led it to
feel natural to use, stating that it felt "a lot like recording yourself and just doing,
rather than thinking".

Several interviewees said that a lot of technical knowledge is not required to get
started in EyeStudio, mostly due to the intuitive workflow. Since there are menus
with all the available commands, a beginner does not have to remember every
command. They can instead look it up. However, there were some areas where
experience is required, specifically when it came to handling timing issues and
different recognition modes.

Even though the reception of EyeStudio was mostly positive, there were also quite
a few negative remarks. Many interviewees noted how sensitive and error-prone
the image recognition felt, how the test hijacks the computer while running and
how difficult it is to reuse code. Some minor things brought up were: the lack of
IntelliSense, the unintuitive names for images and the inability to run several tests
in parallel.

Automated GUI tests replacing manual:
The general consensus of the interviewees is that an automated GUI test can
replace a manual one, but not all of them. Preferably they would want the most
boring and repetitive test automated as a complement to manual tests because a
machine is faster and does not get bored. The machine is also more consistent and
can perform the same steps in the exact same way every time. However, they feel
that the tests would have to be well defined in order to be automised, meaning
that exploratory testing cannot be replaced. A human could find issues outside a
strictly defined test case by following intuition and testing related features. The
interviewees also feel that an automated GUI test would lead to more false positives
and false negatives, partly because a human can be more forgiving or reasonable
about visual changes.

Viability for the company:
All the interviewees agree that automated GUI testing can be viable for the com-
pany. They believe that the automated GUI tests should be used as regression
tests and be run at least daily in order to find bugs early. The two tools had one
main point each brought up regarding viability: Selenium would be easy to inte-
grate with the current environment, and EyeStudio could be written by a wider
range of personnel. These two points also lined up with what the interviewees felt

55

4. Results

was best for the company. Some felt that the robustness and ease of integration of
Selenium should be utilised by having the developers implement the tests. Others
felt that it would be better to free up the developers by having another department
implement the tests in EyeStudio.

Maintenance:
While most interviewees were fine with repairing tests due expected changes, how
much repairing they felt was sustainable varied greatly. Some thought that half
of what they currently spent on manual testing would be reasonable, which would
total about 60 hours over three months. Others felt that no more than five minutes
every other week is acceptable, totalling 30 minutes over three months. Selenium
was said to be easier to maintain, at least for developers. EyeStudio gave the
impression that it would break a lot.

Impression of automated GUI testing:
Before trying to write the tests, each interviewee stated their expectations of au-
tomated GUI testing. Some expressed expectations of a high maintenance cost.
Others stated the high difficulty of implementing automated GUI testing correctly.
This leads to automatic GUI testing being somewhat of a "holy grail", very valuable
but hard to get right.

After the having tried both tools, the same question was asked again to see if any
opinions have changed. Two interviewees said that generally their expectations
were met. Most of the interviewees were more positive towards Selenium after
having tried it. EyeStudio was claimed to be easy enough that anyone with some
computer knowledge could use it. Finally, there was a comment that it is important
for the company to think about who is going to write the test.

56

5
Discussion

This chapter will go through the implications, weaknesses and significance of this
study. The research methods and the results in regards to the research questions
are under discussion. The limitations and threats to validity to this study are
discussed as well. Future research suggestions based on the results of this study
concludes this chapter.

5.1 Research Methods

Three different research methods were used during this study. Why they were
chosen can be seen in section 3.1. This section discusses the outcome of the
methods, what worked and what did not.

5.1.1 Historical

The most time-consuming part of the historical phase was the stepping between
versions, which often went slower than anticipated. In general the stepping went
well, but there were two main issues slowing the process down. The first was the
large size of the product, making it take around 15 minutes to just get the next
version and rebuild the project. The second issue was old dependencies or other
technical troubles, requiring workarounds to get the project working. Add the
time to run and repair the tests and the total time spent averaged about three
hours per step.

Even though the method might have taken longer to perform than desirable, it did
produce good and seemingly realistic data. The method is mimicking the execution

57

5. Discussion

of an automatic GUI test suite on a fixed interval and maintaining the tests as
the product changes, which is how such tests would realistically be implemented
in a company. The best would be to have this fixed interval set to daily, but due
to time constraints it was set to one week for this study. Something which might
have improved the results would be to pick a random day each week instead of
always picking the same. By randomising the day, the chance of missing issues
introduced and fixed between samples are up to chance rather than a systematic
choice in the study.

In practice, there is two-way relationship between the development of the system
and the automated tests, where one influences the other in a potential feedback-
loop [27]. The historical method only captured how the development of the system
influenced the automated tests, not the other way around. Determining how the
automated GUI tests influences the development of the system would be possible
to capture through an observational study.

5.1.2 Artificial

The artificial experiment tested the defect finding capabilities of the tools through
manually injected changes. An advantage with this method compared to the his-
torical testing is that it allows for a wider range of changes to the system than
what would normally occur during development.

A major factor to the result of the artificial experiment is the amount of human
decision making needed. One such decision is deciding what type of changes should
be injected. In the experiment, a combination of research findings, the experiences
of the company and the researchers’ experiences when working with the tools were
used to choose changes. A risk concerning the aforementioned sampling strategies
is that they are sensitive to bias.

Capturing and defining all relevant changes has also been a challenge in the ex-
periment. Depending on how the changes are categorised and defined, one tool
could be favoured over another. Injecting a change to the system is not always
fully apparent. In the experiment, a locator-based approach with randomisation
was used. For most of the changes, the approach worked well enough.

Deciding how severe a change would be has been a challenge in the artificial ex-
periment. Whereas for some changes, the change can be clearly defined such as
removing an element from the DOM. For other changes, the degree of change has to
be decided, such as moving a GUI component from its original position or increas-

58

5. Discussion

ing the size of a component. Randomisation was used when deciding this degree.
However, for some changes such as moving a GUI component, the randomisation
tactic was not suitable due to the many degrees of freedom the changes have. A
manual ad hoc strategy was employed instead where the change was implemented
to the degree that it looked like a severe fault in the system.

Due to the various factors mentioned above, it is not certain that the results
would be the same if the experiment would be repeated. An improvement to the
experiment design would be to inject and test a change more than one time in the
system, using a different degree of changes and injection places for each one. This
repeated approach would yield more data. Furthermore, the result would be more
robust to the shortcomings described above. The reason why this approach was
not used was due to time constraints.

5.1.3 Interviews

Interviews were performed in order to capture qualitative data regarding the test-
ing tools. Since the personnel at the company had no experience with the tools of
this study, the interviews were designed to teach the interviewee about the tools
before moving onto the actual interview. This presented a large risk to introduce
bias among the interviewees since the researchers were behind not only the teach-
ing, but the questions and evaluation as well. This threat to validity made it harder
to define what and how to teach each interviewee, as discussed in section 5.7.

The test and walk-through used to teach the interviewees were designed to test
the essentials of both tools and how to use them in a test suite. While the test was
on the right track, the pilot interview helped to focus on and which parts needed
to be expanded or removed. The resulting test and walk-through seemed to be
appreciated by the interviewees, they felt that the walk-through prepared them
well and the test covered both basic and challenging scenarios. The non-developer,
however, needed a lot of help during the Selenium test.

5.2 Maintenance Cost

The associated cost for maintaining an automated test suite is the subject of RQ2.
This section will compare the maintenance cost between the tools, go through
differences and describe the implications of the results.

59

5. Discussion

5.2.1 Repair Cost differences

The most time-consuming task when maintaining the test suites has been repair-
ing tests. Between the tools, the EyeAutomate test suite had a higher repair
cost. One possible explanation for the higher repair cost for EyeAutomate could
be that each repair instance is verified by rerunning the test, which adds time to
the EyeAutomate test suite since it has a noticeably slower execution time than
the Selenium test suite, as seen in Table 4.7. The average EyeAutomate execution
was 302 seconds per test. This longer execution time might also explain the no-
table difference between samples in the 500-1000 seconds bucket in the histogram
shown in Figure 4.5, with 16 instances of EyeAutomate maintenance compared to
4 Selenium instances.

Another potential factor causing the difference in repair time could be the Pa-
geObject pattern used in the Selenium test suite. The PageObject pattern has
been studied before with results pointing towards a decrease in maintenance cost
for a test suite [10]. The historical testing had no control group to compare the
PageObject test with, which in this case would be an equivalent Selenium test suite
without using the PageObject pattern. Consequently, there can be no conclusive
remarks on how much of the difference between Selenium and EyeAutomate was
due to the PageObject pattern.

5.2.2 Fluctuating Maintenance Cost

Both tools have seen inconsistent maintenance cost over the period of testing. As
seen in Figure 4.3, most maintenance occurred during the first third of the year.
One explanation for this is that the system underwent a lot of graphical changes
during this period, affecting both the image- and DOM-locators. Another con-
tributing factor could be that there is a maturation effect where the tests need to
be gradually improved before becoming more resilient to acceptable changes. This
maturation effect means that more training with the tools prior to implementa-
tion would reduce this first robustness improvement cost. There could also be a
potential learning effect with the researchers becoming more adept with the tools
as time passes, decreasing the time it takes to repair a test.

In the historical testing, the test suites were run with weekly intervals between
versions, except for two specific weeks where a daily sampling strategy was used.
Opting for two weeks with daily sampling was done to verify if important data
was missed by stepping weekly. The daily sampling was placed at the start and

60

5. Discussion

end of the year in order to see differences between a new and mature test suite.
More daily samples would have been taken during the year if time had allowed it.
With a more frequent sampling strategy, such as running the test suites daily for
the whole year, the measured maintenance cost would most likely be somewhat
higher.

5.2.3 Conclusion

With regards to maintenance cost, the Selenium test suite had, in general, a lower
maintenance cost than the EyeAutomate one; Selenium having a 32% lower main-
tenance cost than EyeAutomate. However, both tools appear to taper off with
regards to maintenance when looking at Figure 4.4 and the prediction in Fig-
ure 4.7. While an automated test suite always needs to be updated when changes
are made to areas affected by tests, over time the stability has hopefully increased
to the point that it only breaks from deliberate changes and found defects.

5.3 Return on Investment

Return on investment is one of the main foci of this study, both from an industrial
viewpoint and in the amount of data it uses. Return on investment is the entirety
of research question RQ3, but it also uses the results from the maintenance exam-
ination RQ2, together with both implementation cost and manual test execution
time.

5.3.1 Implementation Cost

The tests took a long time to implement, partly due to design. As seen in Table 4.3
it took more than three hours per test case on average. One reason for this
is that the test cases were based on manual ones, often very long and testing
multiple features in a sequence, something that is normally avoided in automatic
tests. Another reason is the attempt to slow down the learning effect by switching
between the tools often in order to get a fair comparison between them. In the
end, this will lead to a slower return on investment, which means the return on
investment calculations, seen in section 4.3, are most likely on the conservative
side.

61

5. Discussion

5.3.2 Maintenance Cost

The maintenance discussed in the previous section 5.2 can be split into three
categories: average-, actual- and predicted cost.

The average maintenance cost shown in Table 4.6 can be used to quickly get a
decent prediction for return on investment. This was done in Table 4.8. However,
this kind of prediction does not take any trends into consideration.

When looking at the actual maintenance shown in Figure 4.3 it is apparent that
the maintenance is not linear, but rather happens in spikes. There seems to be
a spike in maintenance cost right after implementing the test suite. In this case,
it was due to the newly implemented tests lacking robustness. This robustness
maintenance is more visible in Figure 4.4 where about one and a half hours were
spent on the first seven steps for both tools. Since these first seven steps were
part of a sample week, it means that the first week accounted for 20% and 13%
of the yearly total for Selenium and EyeAutomate respectively. Using the actual
maintenance instead of the average, return on investment can be reached in 23-36
weeks as seen in Figure 4.8 if the test suites are run weekly. However, since the
manual would not actually be run weekly because of the cost to do so, it could be
argued that the more frequent runs only bring an increase in product quality and
not a faster return on investment. If the tests were run quarterly the return on
investment would be reach in what appears to be several years as seen in Figure 4.6.

When looking at several years in the future, as when testing is done quarterly, a
predictive model is needed. Figure 4.7 shows a logarithmic prediction based on the
maintenance of the first year, resulting in a return on investment after 7.5 years
at best. However, maintenance costs are very context sensitive and often come as
spikes as mentioned before, especially if any more graphical overhauls occur like
the one between week 2 and 8. Considering the slowly rising logarithmic prediction
together with the risks of overhauls over a long time, it is safe to say that 7.5 years
is a very optimistic prediction.

5.3.3 Qualitative

Estimating return on investment was not the focus of interviews. However, sug-
gestions were gathered on how to best reach it, both regarding how often to run
the tests and who should write or maintain them.

62

5. Discussion

Every person interviewed agreed that the automated tests should be run at least
daily in order to be worthwhile. This is because the tests would detect bugs earlier
than the infrequent manual tests. As discussed previously, the more frequent the
test suite is run, the faster it meets a return on investment.

Another point brought up that affects the return on investment is who writes and
maintains the tests. The interviewees mentioned having different departments
responsible for the tasks. This can heavily affect the maintenance cost since the
tools have different knowledge requirements. If a tool is given to people without
the proper training, the time to return on investment can increase significantly.

5.3.4 Conclusion

The tools Selenium and EyeAutomate have similar performance when it comes to
return on investment with EyeAutomate being slightly better due to the lower im-
plementation cost. However, the tools are very different in their use and how much
prior knowledge is required. It is therefore important to consider who will be writ-
ing the tests and chose which tool to use based on that. Chosen correctly, return
on investment will be met within a year if the test suite is run fairly frequently. If
run daily, it could be met within a month.

5.4 Fault Detection Capabilities

To answer SRQ4, the fault detection capabilities of the tools have been evaluated
in this study. How the tools fared in finding defects will be discussed in this section.

5.4.1 Test Scenario

The manual tests, which the automated tests are based on, are mainly concerned
with regression testing functionality of the system. Much like any other kind of
tests, the tests are limited in what defects they will find by the test scenario.
Performing this study with automated test suites based on other scenarios would
likely reveal other defects.

63

5. Discussion

5.4.2 Comparison

Concerning the number of bugs found from the historical testing, the EyeAutomate
test suite found three more bugs than Selenium. These bugs were graphical and
layout bugs. The EyeAutomate test suite carries both advantages and disadvan-
tages with its sensitivity to visual changes. The results from the artificial method,
seen in Table 4.10, showcase some of these changes such as changing icon or text.
For both the historical and the artificial experiment, there were instances where
the EyeAutomate test suite failed at determining the absence of GUI components.
The test would instead select another GUI component and continue with the test.
In the historical testing, 73% of all detected bugs were found by both tools. So in
a context similar to the historical, the fault detection capabilities of the tools are
quite similar. Whether or not this holds for any other kind of software projects
has not been examined.

5.4.3 Conclusion

The main difference, in regards to the fault detection capabilities between the tools,
is for finding graphical bugs. Here, EyeAutomate is more capable than Selenium.
However, EyeAutomate’s sensitivity to graphical changes can also be a hindrance,
with the tool having a higher tendency of finding the wrong locator and continuing
the test than Selenium, which was observed in both the historical and artificial
testing.

5.5 Selenium vs. EyeAutomate Observations

While many of the previous sections include comparisons between the tools Eye-
Automate and Selenium and build towards RQ1, this section is solely dedicated to
it. The researchers have taken note of many differences between the tools while us-
ing them throughout the study. Some of the more considerable ones are discussed
in this section.

64

5. Discussion

5.5.1 Test Implementation

Both the test suites were quite heavy to implement when compared to the manual
cost of doing the tests. With the average time to implement a test being at least
15 times that of the average time to perform it manually, the implementation time
is far from negligible.

Using EyeAutomate, the main issue slowing down the implementation time is the
time spent preventing false negatives. When an EyeAutomate test first passes,
it is robust to small changes. However, this robustness also includes changes to
important details, meaning that the test does not fail even if it should. This is
discussed further is subsection 5.5.5.

The process of implementing Selenium tests was in general slower than the EyeAu-
tomate one, since it involved programming and looking through the DOM instead
of just selecting images. There was some upfront work required in Selenium to set
up the tests and handling the connection to the browser, but most of the upfront
cost came from creating PageObjects.

5.5.2 PageObjects

Using the PageObject pattern brought both positives and negatives with its lower
maintenance but higher upfront cost. The PageObjects required a large effort
upfront because they represent the GUI of the website. Because when committed
to PageObjects, there can be no testing of the GUI without them. Another minor
issue with using the PageObject pattern is the unavoidable context switching while
working on a specific test only to pause and work on a generic PageObject. On
the other hand, when a base of PageObjects has been created they instead lower
implementation cost, as PageObjects can quickly be reused between tests.

The maintenance feels easier when using PageObjects, especially if multiple related
tests fail at the same time. As mentioned in subsection 5.2.1 it cannot be said how
much of the difference in maintenance cost between Selenium and EyeAutomate
can be attributed to the PageObject pattern. However, both the researchers and
several of the experienced interviewees agree that the PageObject pattern feels
natural to use together with Selenium.

65

5. Discussion

5.5.3 Prior Knowledge

The tools differ a lot when it comes who can use them. For example, an opinion
that was repeated during the interviews when talking about Selenium was "expe-
rience is required". Since the tools are constantly being compared, this view refers
both to the need of a programming background in order to effectively use Selenium
and to how EyeAutomate does not need one. EyeAutomate is easy to get into and
most people can get productive with the tool fairly quickly, as long as they have
some general experience with computers and manual testing.

That said, both tools have some quirks that an experienced user knows how to
avoid. Selenium suffers from timing issues and elements not being accessible when
expected. EyeAutomate can solve the majority of the timing related issues with
a step delay but has its own problems with uniquely identifying images and ma-
nipulating components without unique features. Many of these issues are things
a new user encounters a few times, spends a lot of time fixing and then learns to
recognise them in advance next time.

5.5.4 Locators

The locators used is the biggest difference between the tools, with both kinds
having their own benefits and disadvantages. Selenium uses DOM-based locators
while EyeAutomate uses image-based locators and how they differ will be discussed
in this section. How the locators work on a higher level can be read more about
in subsection 2.1.4 and subsection 2.1.5.

EyeAutomate is great for quickly creating functioning locators through its screen-
capture tool. A problem is that the tool can be too lax in its image comparison.
This can lead to obviously different images being recognised as equal. This com-
parison error can often be solved by changing the recognition mode to a more strict
one, or by increasing the size of the image to form a more unique identifier. The
disadvantage of these solutions is the added risk that the image is not recognised
at all. It is therefore important to balance how much the locator image should
contain and the recognition mode to use with it.

Selenium is very precise in its choice of locators, which causes problems for dynam-
ically loaded components or elements without unique locators. Elements without
unique selectors on the element itself has to be located by using the surrounding
structure, leading to locators sensitive to structural changes. Dynamically loaded

66

5. Discussion

components are often auto-generated, which not only cause them to have poor
locators, they are also very sensitive to timing issues because the test has to wait
for everything to load correctly. While not as much trial and error as EyeAuto-
mate, these issues are also a balancing act in order to get a unique locator without
making the locator too sensitive to changes in surrounding components.

5.5.5 Data Verification

It is often important during GUI tests that specific details are present and correct,
something that the different tools are not equally adept at handling. Selenium
cannot verify the graphical look of components but has no problem fetching text
strings for verifying details. EyeAutomate on the other hand primarily verifies us-
ing images. Image recognition can cause problems when verifying text or handling
similar looking components. Verifying text in EyeAutomate was often solved by
marking text with the cursor, copying it and then using the clipboard for verifi-
cation. Similar images or identical images were especially troublesome for infor-
mation tables. Here, imaginative workarounds had to be used in order to locate
specific cells.

Since EyeAutomate has dynamic loading of Java programs, it is sometimes worth-
while to create custom commands with Selenium integration in order to solve the
more advanced instances of data verification. Creating custom commands, with
or without Selenium integration, is something that is supported and encouraged
by the creators of EyeAutomate, as stated on the EyeAutomate homepage1. Al-
though, this does place a significantly higher demand on the users’ programming
knowledge.

1http://eyeautomate.com/resources/EyeAutomateExpertCourse.pdf (Accessed 2018-06-
12)

67

http://eyeautomate.com/resources/EyeAutomateExpertCourse.pdf

5. Discussion

5.5.6 Conclusion

Selenium and EyeAutomate are two very different tools. Their purposes are the
same but the distinct locator technologies and writing styles result in two tools
for two different target audiences. Both tools are sufficient for testing with some
compromises when compared to each other. Selenium is more robust with its
element-based locators, with the trade-off being insensitivity to visual changes.
EyeAutomate is written in its own scripting language using the accessible IDE
EyeStudio, with the trade-off being the lack of functionality a more established
IDE and language can provide.

5.6 Limitations

The work on this study has been limited in various ways. A number of these lim-
itations have been identified. These are related to the tools studied, the historical
stepping and the test case definition.

This study was limited to only two tools: Selenium and EyeAutomate. While
more automated GUI test tools could have been included in the study, they were
excluded due to time constraints. Using a tool each from the 2nd and 3rd generation
was deemed sufficient for the purpose of this study.

Another limitation in the study has been the stepping length in the historical
research method. A shorter, more frequent stepping would have been possible and
would yield more data. Why a longer stepping length of one week was used as
a default was mainly motivated by the amount of work a shorter stepping length
would bring. Even if a shorter stepping length would have been used, the stepping
period for the historical would most likely have to be shorter than a year due to
the limited time frame of the study.

Defining a test case has not been included in any of the measurements defined in
this study. As the test cases had already been defined before the study as manual
test cases, this factor was excluded from this study.

68

5. Discussion

5.7 Threats to Validity

The results found in this study are subject to validity threats. This section will
go through the identified threats and how they were handled. The threats were
categorised as: threats to conclusion validity, threats to internal validity, threats
to construct validity and threats to external validity.

5.7.1 Conclusion Validity

A number of different outcomes have been observed during this study, this section
goes through said outcomes and analyses them in regards to how likely it is that
an error has occurred.

Implementation cost comparison:
The implementation cost difference was found significant in Table 4.3. It is there-
fore possible that a Type I error has been made. Considering only six tests were
written in each tool, there is an argument that the small sample size could have
caused an error. Leotta et al. also performed a comparison study between 2nd- and
3rd generation tools and came to the opposite conclusion. They found Selenium
to be faster. However, their way of implementing the tests for the 3rd generation
tool differed greatly to how it was done in this study.

However, a study by Leotta et al. comes to similar results [5]. The study compares
Selenium WebDriver, simply called Selenium in this study, with Selenium IDE, a
capture-replay version of Selenium very similar to how EyeAutomate was used in
this study. Worth to mention is that the same authors published another study
where they compared Selenium WebDriver to the 3rd generation tool Sikuli API.
In their study, Selenium was found to be faster to implement than Sikuli API [3],
but it has a low relevance to this study since the implementation of Sikuli API
tests have very little to do with how EyeAutomate tests are written.

Maintenance cost comparison:
Just like with the implementation cost, the maintenance cost difference was also
found to be significant, meaning there is a risk that a Type I error has been made.
There is a huge variance in the data as seen in Figure 4.2, meaning that there is
a risk of error. A similar study came to the result that Selenium WebDriver cost
less to maintain than the capture-replay tool Selenium IDE [5].

69

5. Discussion

Manual and automatic execution time:
The manual execution time is based on one run of the manual test suite, the
majority being performed by a very experienced manual tester. This makes it
unlikely that the time would decrease with more samples from other people, but
if it did, it would affect the return on investment of this study for the worse. A
higher manual execution time would improve the return on investment, but the
change would likely be marginal with only a few weeks or days change for the
monthly and daily run respectively. The automatic execution time is of little
interest since it is run without supervision. If a major change to the automatic
execution time occurs, it could affect the maintenance time or how often the tests
can be run. The observer effect, the effect that subjects performs differently when
under observation, should also be taken into account when evaluating the measured
manual execution time.

Unique bugs and breaks:
No statistically significant results could be found from the data in Table 4.9, neither
for bugs nor for breaks. The study would have benefited from a significant result
either as being different or being the same, since a conclusion for the number of
bugs and breaks between the tool is a good point of comparison. Although it
might be caused by bias, the experiences of the researchers points towards it being
very likely that there is a difference between the tools. With a larger sample size,
this difference will likely appear.

Fault detection capabilities:
Very similar to the previous subject of unique bugs and breaks. No significance
was found but the differences were distinct enough that a larger sample size would
likely show a significant difference between the tools.

Interviews:
There is a possibility that important nuances were lost during the analysing step
because the researchers selected which answers to focus on. To prevent this, great
care were taken to include all sides in the summaries about the interviews. Fur-
thermore, all the answers to the interviews can be seen in Appendix A together
with how many expressed the opinions.

5.7.2 Internal validity

Whether or not the treatment caused the measured outcome is the subject of inter-
nal validity. In this study, there may be other factors which could have influenced
the outcome of the methods.

70

5. Discussion

Biases:
The human aspect and cognitive biases are factors which could have influenced
the results. The researchers’ involvement in designing the tests, repairing tests,
defining defects and setting up the interviews are some procedures where personal
bias could influence the results of the study. The researchers have been sponsored
by the company behind EyeAutomate, Auqtus AB, through trial EyeAutomate li-
censes. The researchers have also received technical support from Auqtus AB. The
researchers’ thesis supervisor is also involved in Auqtus AB as a board member.
It has been the researchers’ intention to keep these procedures away from personal
influences as much as possible. When dealing with decisions, the researchers aimed
to face the issue from the same point of view as the case company, which is an
objective point of view to gather whether the usage of any of the tools would be
beneficial.

Learning effect:
One potential factor which could have influenced the results is the learning effect.
With time, a test developer could be more experienced with creating automated
GUI tests. This would influence implementation cost and maintenance cost. Sim-
ilarly, the initial experience level of a test developer can affect implementation
cost and maintenance cost for each tool. In order to reduce the impact of the
learning effect, tasks were split in a way so that the tools were used evenly by
the researchers. However, since the maintenance of the historical testing is a year
compressed into a few weeks, the implementations of the tests were still fresh in
the researchers’ memories which most likely improved the repairing process.

71

5. Discussion

5.7.3 Construct validity

Construct validity concerns whether or not the research methods have captured
relevant data to answer the research questions.

The historical testing has mainly used time as a measurement in order to answer
the research questions regarding maintenance cost and return on investment. Using
time as a measure of value is probably in line with many companies. However,
something the research methods miss to capture is the cost of other aspects such as
hardware costs, potential licensing costs, and the time it took to get comfortable
with the tools. These factors should be taken into account when evaluating the
results.

The interview method is subject to construct validity threats. Bias could have
influenced the interview questions in favour of one tool over the other. So, in
order to alleviate these concerns the researchers used the same questions for both
tools.

5.7.4 External validity

Whether or not the results can be generalised outside the scope of this study is
the concern of external validity.

The results of this study are limited to the tools Selenium and EyeAutomate. The
results should therefore be interpreted with these tools in mind. Similarly, this
study used data based on a single system. As such, caution should be exercised
when applying the results to other systems of different sizes and types.

5.8 Contributions

This study adds to the body of knowledge in many different ways, with several
aspects concerning automated GUI testing being examined in an industrial con-
text. Long-term usage of Selenium and EyeAutomate has been simulated using
version control history, something which, to the researchers’ knowledge, has not
been attempted in an automated GUI testing study before.

72

5. Discussion

The study fills a research gap concerning the maintenance cost of a 3rd generation
test suite as it grows during software evolution, a gap which has been noted in
previous studies [33, 36, 43].

The results of this study can also be of use to practitioners considering adopting
automated GUI testing. This thesis provides information about the associated
costs and benefits for 2nd- and 3rd generation tools, therefore providing a basis for
a decision.

5.9 Future work

This thesis has investigated various aspects of automated GUI testing. A pat-
tern noticed during this study is that the maintenance cost for an automated GUI
test suite is not consistent but can have spikes. An interesting aspect to evalu-
ate in the future is the maintenance cost of an automated GUI test suite for a
system under frequent changes. Investigating strategies to mitigate maintenance
cost during those development periods could be valuable for both researchers and
organisations. Another potential future research topic is the use of automated
GUI tests in conjunction with manual tests in order to determine the strengths
and weaknesses of both approaches.

73

5. Discussion

74

6
Conclusion

The purpose of this study was to compare two very different GUI testing tools
with a heavy focus on maintenance. The industry moves more and more towards
automation. GUI testing is something that has previously been viewed as strictly
manual labour. This creates a demand from the industry to get information on
what can be expected from automated GUI testing, how to implement it and the
expected return on investment. When considering contemporary image-based GUI
testing tools, there is also a need from academia to see how it performs compared
to more established ones.

This study was performed with the support of interviews and a small experi-
ment, but the main method used to reach the research goals was a simulation
of automated regression test suites using earlier system changes. The tools un-
der inspection were the new image-based tool EyeAutomate and the established
element-based tool Selenium.

The results differed between the tools depending on the aspect, especially in their
usability. Selenium tests took 91% longer to implement but had 32% lower main-
tenance cost than EyeAutomate. Considering the manual testing cost, both tools
would reach a return on investment within one year if run weekly and within
weeks if run daily. However, while the tools are somewhat similar in return on
investment, they are very different to use. The qualitative examination saw a large
difference in who could use the tools efficiently, with people without a programming
background being able to use EyeAutomate but not Selenium.

One of the main things to take away from this study is that different tools are
needed for different people and types of products, something that is often over-
looked when comparing testing tools. With this in mind, it is easy to make au-
tomated GUI testing beneficial as long as the product is not undergoing constant
graphical overhauls.

75

6. Conclusion

76

Bibliography

[1] Mark Grechanik, Qing Xie, and Chen Fu. Maintaining and evolving GUI-
directed test scripts. In Proceedings - International Conference on Software
Engineering, 2009. ISBN 9781424434527. doi: 10.1109/ICSE.2009.5070540.

[2] Atif M. Memon. Gui testing: Pitfalls and process. Computer, 2002. ISSN
00189162. doi: 10.1109/MC.2002.1023795.

[3] Maurizio Leotta, Diego Clerissi, Filippo Ricca, and Paolo Tonella. Vi-
sual vs. DOM-based web locators: An empirical study. Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelli-
gence and Lecture Notes in Bioinformatics), 2014. ISSN 03029743. doi:
10.1007/978-3-319-08245-5{_}19.

[4] Miikka Kuutila, Mika Mäntylä, and Päivi Raulamo-Jurvanen. Benchmarking
Web-testing-Selenium versus Watir and the Choice of Programming Language
and Browser. arXiv preprint arXiv:1611.00578, 2016.

[5] Maurizio Leotta, Diego Clerissi, Filippo Ricca, and Paolo Tonella. Capture-
replay vs. programmable web testing: An empirical assessment during test
case evolution. In Proceedings - Working Conference on Reverse Engineering,
WCRE, pages 272–281, 2013. ISBN 9781479929313. doi: 10.1109/WCRE.
2013.6671302.

[6] Dudekula Mohammad Rafi, Katam Reddy, Kiran Moses, and Kai Petersen.
Benefits and Limitations of Automated Software Testing : Systematic Liter-
ature Review and Practitioner Survey. Automation of Software Test (AST),
2012 7th International Workshop on, 2012. doi: 10.1109/IWAST.2012.
6228988.

[7] E Alégroth and R Feldt. On the long-term use of visual gui testing in industrial
practice: a case study. Empirical Software Engineering, 2017. ISSN 13823256
(ISSN). doi: 10.1007/s10664-016-9497-6.

77

Bibliography

[8] Emil Alégroth, Robert Feldt, and Pirjo Kolström. Maintenance of auto-
mated test suites in industry: An empirical study on Visual GUI Testing.
Information and Software Technology, 73:66–80, 2016. ISSN 09505849. doi:
10.1016/j.infsof.2016.01.012.

[9] Pekka Aho, Matias Suarez, Atif Memon, and Teemu Kanstren. Making GUI
Testing Practical: Bridging the Gaps. In Proceedings - 12th International
Conference on Information Technology: New Generations, ITNG 2015, 2015.
ISBN 9781479988273. doi: 10.1109/ITNG.2015.77.

[10] Maurizio Leotta, Diego Clerissi, Filippo Ricca, and Cristiano Spadaro. Im-
proving test suites maintainability with the page object pattern: An industrial
case study. In Proceedings - IEEE 6th International Conference on Software
Testing, Verification and Validation Workshops, ICSTW 2013, 2013. ISBN
978-0-7695-4993-4. doi: 10.1109/ICSTW.2013.19.

[11] Richard Potter. Triggers: Guiding Automation with Pixels to Achieve
Data Access. In Allen Cypher, Daniel C. Halbert, David Kurlander, Henry
Lieberman, David Maulsby, Brad A. Myers, and Alan Turransky, editors,
Watch What I Do:Programming by Demonstration, chapter 17, pages 361–
380. MIT Press, Cambridge, MA, USA, 1993. ISBN 0-262-03213-9. URL
http://dl.acm.org/citation.cfm?id=168080.168129.

[12] Luke S Zettlemoyer, Robert St. Amant, and Martin S Dulberg. IBOTS: Agent
Control Through the User Interface. In Proceedings of the 4th International
Conference on Intelligent User Interfaces, IUI ’99, pages 31–37, New York,
NY, USA, 1999. ACM. ISBN 1-58113-098-8. doi: 10.1145/291080.291087.
URL http://doi.acm.org/10.1145/291080.291087.

[13] Ellis Horowitz and Zafar Singhera. Graphical user interface testing. Technical
eport Us C-C S-93-5, 4(8), 1993.

[14] Emil Borjesson. Industrial applicability of visual GUI testing for system and
acceptance test automation. In Proceedings - IEEE 5th International Con-
ference on Software Testing, Verification and Validation, ICST 2012, 2012.
ISBN 9780769546704. doi: 10.1109/ICST.2012.129.

[15] Emil Alégroth, Robert Feldt, and Lisa Ryrholm. Visual GUI testing in prac-
tice: challenges, problems and limitations. Empirical Software Engineering,
20(3):694–744, 2015. doi: 10.1007/s10664-013-9293-5.

[16] Antawan Holmes and Marc Kellogg. Automating functional tests using sele-
nium. In Proceedings - AGILE Conference, 2006, 2006. ISBN 0769525628.
doi: 10.1109/AGILE.2006.19.

78

http://dl.acm.org/citation.cfm?id=168080.168129
http://doi.acm.org/10.1145/291080.291087

Bibliography

[17] Andrea Adamoli, Dmitrijs Zaparanuks, Milan Jovic, and Matthias Hauswirth.
Automated GUI performance testing. Software Quality Journal, 2011. ISSN
15731367. doi: 10.1007/s11219-011-9135-x.

[18] Filippo Ricca and Paolo Tonella. Testing processes of web applications.
Annals of Software Engineering, 2002. ISSN 10227091. doi: 10.1023/A:
1020549507418.

[19] Alessandro Marchetto, Filippo Ricca, and Paolo Tonella. A case study-based
comparison of web testing techniques applied to AJAX web applications. In
International Journal on Software Tools for Technology Transfer, 2008. ISBN
1000900800. doi: 10.1007/s10009-008-0086-x.

[20] Atif MMemon and Mary Lou Soffa. Regression testing of GUIs. Proceedings of
the 9th European software engineering conference held jointly with 10th ACM
SIGSOFT international symposium on Foundations of software engineering -
ESEC/FSE ’03, 2003. ISSN 01635948. doi: 10.1145/940071.940088.

[21] Atif Memon, Adithya Nagarajan, and Qing Xie. Automating regression testing
for evolving GUI software. In Journal of Software Maintenance and Evolution,
2005. ISBN 1532-060X. doi: 10.1002/smr.305.

[22] Atif M. Memon. Automatically repairing event sequence-based GUI test
suites for regression testing. ACM Transactions on Software Engineering and
Methodology, 2008. ISSN 1049331X. doi: 10.1145/1416563.1416564.

[23] A. Michail. Helping users avoid bugs in GUI applications. In Proceedings.
27th International Conference on Software Engineering, 2005. ICSE 2005.,
2005. ISBN 1-59593-963-2. doi: 10.1109/ICSE.2005.1553553.

[24] Vahid Garousi and Mika V. Mäntylä. A systematic literature review of liter-
ature reviews in software testing, 2016. ISSN 09505849.

[25] Vahid Garousi and Michael Felderer. Worlds Apart: Industrial and Academic
Focus Areas in Software Testing. IEEE Software, 2017. ISSN 07407459. doi:
10.1109/MS.2017.3641116.

[26] V. Garousi, M. Felderer, M. Kuhrmann, and K. Herkiloǧlu. What industry
wants from Academia in sofware testing? Hearing practitioners’ opinions. In
ACM International Conference Proceeding Series, 2017. ISBN 9781450348041.
doi: 10.1145/3084226.3084264.

[27] Stefan Berner, Roland Weber, and Rudolf K. Keller. Observations and lessons
learned from automated testing. In Proceedings of the 27th international

79

Bibliography

conference on Software engineering - ICSE ’05, 2005. ISBN 1595939632. doi:
10.1145/1062455.1062556.

[28] Päivi Raulamo-Jurvanen, Mika Mäntylä, and Vahid Garousi. Choosing the
Right Test Automation Tool: A Grey Literature Review of Practitioner
Sources. In EASE*17, pages 21–30, Karlskrona, Sweden, 2017. ACM. doi:
10.1145/3084226.3084252.

[29] Erik Sjösten-Andersson and Lars Pareto. Costs and Benefits of Structure-
aware Capture/Replay tools. In SERPS’06, Umeå, Sweden, 2006.

[30] Emil Alégroth. Visual GUI Testing: Automating High-level Software Testing
in Industrial Practice. PhD thesis, Chalmers University of Technology and
Göteborg University, Göteborg, 2015. URL https://research.chalmers.
se/publication/221145.

[31] Yuan-Fang Li, Paramjit K Das, and David L Dowe. Two decades of Web
application testing - A survey of recent advances. Information Systems, 2014.
ISSN 0306-4379. doi: http://dx.doi.org.pc124152.oulu.fi:8080/10.1016/j.is.
2014.02.001.

[32] Päivi Raulamo-Jurvanen, Kari Kakkonen, and Mika Mäntylä. Using surveys
and Web-scraping to select tools for software testing consultancy. In Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial In-
telligence and Lecture Notes in Bioinformatics), 2016. ISBN 9783319490939.
doi: 10.1007/978-3-319-49094-6{_}18.

[33] Emil Alégroth, Robert Feldt, and Helena H. Olsson. Transitioning man-
ual system test suites to automated testing: An industrial case study. In
Proceedings - IEEE 6th International Conference on Software Testing, Ver-
ification and Validation, ICST 2013, 2013. ISBN 978-0-7695-4968-2. doi:
10.1109/ICST.2013.14.

[34] Emil Alegroth, Zebao Gao, Rafael Oliveira, and Atif Memon. Conceptual-
ization and evaluation of component-based testing unified with visual GUI
testing: An empirical study. In 2015 IEEE 8th International Conference on
Software Testing, Verification and Validation, ICST 2015 - Proceedings, 2015.
ISBN 9781479971251. doi: 10.1109/ICST.2015.7102584.

[35] Maurizio Leotta, Andrea Stocco, Filippo Ricca, and Paolo Tonella. Auto-
mated generation of visual web tests from DOM-based web tests. In Proceed-
ings of the 30th Annual ACM Symposium on Applied Computing - SAC ’15,
2015. ISBN 9781450331968. doi: 10.1145/2695664.2695847.

[36] Emil Borjesson and Robert Feldt. Automated System Testing Using Vi-

80

https://research.chalmers.se/publication/221145
https://research.chalmers.se/publication/221145

Bibliography

sual GUI Testing Tools: A Comparative Study in Industry. 2012 IEEE
Fifth International Conference on Software Testing, Verification and Vali-
dation, pages 350–359, 2012. ISSN 9780769546704. doi: 10.1109/ICST.
2012.115. URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.
htm?arnumber=6200127.

[37] Vahid Garousi, Wasif Afzal, Adem Çağlar, İhsan Berk Işık, Berker Baydan,
Seçkin Çaylak, Ahmet Zeki Boyraz, Burak Yolaçan, and Kadir Herkiloğlu.
Comparing automated visual GUI testing tools: an industrial case study. In
Proceedings of the 8th ACM SIGSOFT International Workshop on Automated
Software Testing - A-TEST 2017, pages 21–28, 2017. ISBN 9781450351553.
doi: 10.1145/3121245.3121250. URL http://dl.acm.org/citation.cfm?
doid=3121245.3121250.

[38] Atif M. Memon and Qing Xie. Studying the fault-detection effectiveness of
GUI test cases for rapidly evolving software. IEEE Transactions on Software
Engineering, 2005. ISSN 00985589. doi: 10.1109/TSE.2005.117.

[39] Emil Alegroth, Johan Gustafsson, Henrik Ivarsson, and Robert Feldt. Repli-
cating Rare Software Failures with Exploratory Visual GUI Testing. IEEE
Software, 2017. ISSN 07407459. doi: 10.1109/MS.2017.3571568.

[40] Riccardo Coppola, Maurizio Morisio, and Marco Torchiano. Maintenance of
Android Widget-based GUI Testing: A Taxonomy of test case modification
causes. In ICSTW, pages 151–158, 2018. doi: 10.1109/ICSTW.2018.00044.

[41] Kai Petersen and Claes Wohlin. Context in industrial software engineering
research. In 2009 3rd International Symposium on Empirical Software En-
gineering and Measurement, ESEM 2009, 2009. ISBN 9781424448418. doi:
10.1109/ESEM.2009.5316010.

[42] Emil Alégroth and Robert Feldt. Industrial application of visual GUI testing:
Lessons learned. In Continuous software engineering. Springer International
Publishing, 2014. ISBN 9783319112831. doi: 10.1007/978-3-319-11283-1-11.

[43] Emil Alégroth, Michel Nass, and Helena H. Olsson. JAutomate: A tool for
system- and acceptance-test automation. In Proceedings - IEEE 6th Inter-
national Conference on Software Testing, Verification and Validation, ICST
2013, 2013. ISBN 978-0-7695-4968-2. doi: 10.1109/ICST.2013.61.

81

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6200127
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6200127
http://dl.acm.org/citation.cfm?doid=3121245.3121250
http://dl.acm.org/citation.cfm?doid=3121245.3121250

Bibliography

82

A
Interview Answers

Table A.1: The questions in this table were asked before the interviewees tried
the tools. The number of interviewees who expressed the same or similar opinion
are stated within parenthesis on the left.

Interview answers — Pretest questions
Experience with C#?
(4) Yes.
(1) No.
Experience with Visual Studio?
(4) Yes.
(1) Occasional usage for small tasks.
Experience with EyeStudio?
(5) None.
Experience with automated GUI testing?
(2) None.
(2) Some but not much.
(1) Has used an earlier tool, but only for performance testing.
Expectations of automated GUI testing before tests?
(2) Feels like it requires a lot of maintenance.

(2) Is sort of a "holy grail", but it can be hard to get a return on
investment due to the difficulty of implementing it correctly.

(1) Sceptically optimistic.
(1) Faster than a manual test.

I

A. Interview Answers

Table A.2: The questions in this table concerns the tool Selenium and were
asked after the interviewees had tried both tools. The number of interviewees who
expressed the same or similar opinion are stated within parenthesis on the left.

Interview answers — Selenium WebDriver questions
What is good about the tool?
(3) Familiar structure, encourages reusability.
(3) Familiar to programmers.
(1) Many different ways to find things (elements).

(1)
Results in a positive feedback loop with CSS. Knowledge of CSS is
needed to write the test, this knowledge improves the quality of the
site, making it easier to test.

(1) There is an expected behaviour to the tests, similar to programming.
(1) Not as sensitive (less prone to break) as EyeStudio.
(1) Faster execution speed.
(1) The modularity allows for easier maintenance.
(1) The tests are precise.
(1) Feels more flexible (than EyeStudio).
(1) Doesn’t hijack the computer (like EyeStudio does).
What is bad about the tool? Potential problem?
(3) Programming experience is required.
(2) PageObjects could grow into bloat, hard to get an overview.
(1) Requires knowledge about locators.
(1) There is an occasional need for Thread.Sleep() calls.
(1) Tests are fragile to markup changes.
How is the ease of use of the tool?
(2) It’s ok, especially after some time with the tool.
(1) Pretty much the same as EyeStudio after the introduction.
(1) Validating the absence of elements required some workarounds.

(1) Easy to use, mostly due to the familiarity with the language. It is
made even easier due to the use of the DOM through the browser.

(1) "Not for me"

(1) Knowledge of CSS selectors, JavaScript and nUnit makes
Selenium easier to use.

(1) Reusing parts becomes easier with the PageObject pattern.
Does the tool fit in the company’s workflow?
(3) Easy to integrate into existing test suite.
(1) Potential positive feedback loop with CSS knowledge.
(1) Steps it (the testing standards of the company) up to the next level.
(1) Adds value as regression tests.

II

A. Interview Answers

(1) Because it runs in the background it can use parallelisation to
improve execution speeds.

(1) Depends if it can be run in headless mode or not.
(1) It needs to be run nightly.
(1) Could replace existing automated GUI tests (Coded UI).
(1) Could fit if done by developers, not really possible for QA.
Any other general impressions of the tool?

(2) Went better than expected, especially with the easy to understand
code of the PageObjects.

(1) Most of the features of Selenium are context-dependent whether
they are good or not.

(1) With an established language & IDE (C# & Visual studio) you
have access to powerful refactoring tools.

(1) It was hard.
(1) Having precise error messages were good.
Can a Selenium test replace a manual test?
(3) Yes, at least most of them.
(2) Wouldn’t find bugs outside the test case.
(1) Yes, by they would need to be carefully specified.
(1) Yes, but unsure which types of tests.
(1) Would give more false negatives.
(1) Tired tester often just go by the book without reflection anyway.
(1) Exploratory testing would find more bugs.

Table A.3: The questions in this table concerns the tool EyeStudio and were
asked after the interviewees had tried both tools. The number of interviewees who
expressed the same or similar opinion are stated within parenthesis on the left.

Interview answers — EyeStudio questions
What is good about the tool?

(3) You don’t need a lot of technical knowledge to get started.
Due to images and ready, clickable, instructions.

(2) It’s easy to get an overview of the test.
(2) Easy to use the basic instructions.
(2) Didn’t require writing much code.
(1) Faster debugging (than Selenium).

(1) There was a nice "flow" where it was more doing than thinking.
It felt natural, a lot like simply recording yourself.

What is bad about the tool? Potential problem?

III

A. Interview Answers

(3) More error prone with sensitive images.
(2) Hijacks the computer while running.
(2) Low reusability of code.
(2) Fine-tuning, and therefore knowledge is required for writing tests.
(1) The autogenerated names for new images are not intuitive.
(1) Checks all windows for matches, not just the desired/active one.
(1) Slower than Selenium, especially with added delays.
(1) Hard to get an overview if they (the tests) get too long.

(1) Limited to the tool (EyeStudio), compared to the many languages
supported by Selenium.

(1) No intellisense.
(1) Difficult to structure code.
(1) Can find the "wrong" element leading to false positives/negatives.
(1) Difficult to run tests in parallel.
How is the ease of use of the tool?
(4) Easy to understand and use.

(1) More people in the organisation (in addition to
developers) could use it.

(1) The screenshot in the report were nice.

(1) Working with an IDE with buttons and menus (for commands)
make the development of tests easier.

(1) It had some irritating moments, the (poorly working) automatic
indentation in particular.

Does the tool fit in the company’s workflow?
(1) Same as Selenium (for me).

(1) EyeStudio is easier and can use more resources
(not only developers) for writing tests.

(1) Some of the repetitive tests, such as the smoke tests, could really
benefit from being automated.

(1) Best to run nightly.
(1) Happier employees who doesn’t have to run boring tests manually.

(1) Return on investment is important, depending on the
implementation cost it can be hard to break even.

(1) Selenium fit better.
(1) Would work, but depends on how often changes make the tests break.
(1) If it is supported by the current framework (TeamCity).
Any other general impressions of the tool?

(2) Some experience is required to recognise when to switch recognition
mode or knowing when timing could be a problem.

IV

A. Interview Answers

(2) Easy to get into.
(1) Fairly positive.
(1) Minimal setup required.
Can an EyeAutomate test replace a manual test?
(2) Yes, most of them.
(1) Yes, but they would need to be carefully specified.
(1) It would miss details a human tester could find.
(1) Unsure, feels like it breaks a lot.
(1) Yes, but unsure which types of tests.

Table A.4: The questions in this table were asked at the end to round up the
interview. The number of interviewees who expressed the same or similar opinion
are stated within parenthesis on the left.

Interview answers — Posttest, automated GUI testing questions
Is automated GUI testing valid for the company?
(4) Yes.
(2) Can function as regression tests.
(1) More enjoyable for developers to write a test than running it manually.
(1) I think so.
How could it be implemented to greatest effect?
(3) Test suite should be run at least once a day.

(2) Have another department (not developers) write the tests with
EyeStudio while doing regular testing.

(1) Selenium could be used while teaching developers about css.
(1) An automated regression suite allows for faster finding of bugs.

(1) Use strict test cases specified by QA and have the developers
implement them in Selenium.

(1) Use it as a complement to manual testing.
(1) Have someone working on it (half- to full-time).
What is sustainable maintenance wise when it comes to automated
GUI testing?

(2) About half of what is currently spent on manual testing per release.
(= 20-30 hours/month)

(1) 1 test per day for a 5 minute fix. (= 1,75 hours/month)

(1) Fails due to recent (expected) changes are not a problem to fix.
Otherwise about 5 minutes every second week. (= 10 minutes/month)

(1) Image changes are ok. Other breaks such as timing or browser related
ones, 1-2 (5 minute) fixes over a 3 month period. (= 2,5 minutes/month)

V

A. Interview Answers

(1) It would not be sustainable if a lot of time would have to be spent
repairing a test suite at the end of each release period.

(1) A selenium test would be more maintainable than an EyeStudio one
for a programmer.

What can automated GUI testing do that a human can’t do?

(5) Exact. A machine can repeat the same steps in the same way each time
(without getting bored and skipping/missing steps).

(2) Frequent tests allow for defects to be found earlier.
(2) It is faster than a human.
(1) Can be used as a proof of quality towards customer.
(1) Frees human resources for other tasks.
What can’t automated GUI testing do that human can?

(4) The machine cannot look outside the scope of it’s test.
Thereby missing apparent bugs/issues to the side.

(2) A human can draw conclusions and intuitively test related areas not
normally included in the test case.

(1) A human can be more forgiving about minor changes, causing fewer
false positives.

(1) Have difficulty/cannot finding weird bugs or glitches, doesn’t have a
concept of what "looks" wrong.

Does the expectation on automated GUI testing differ after the tests?
(3) More positive towards Selenium.
(2) Mostly what was expected.
(1) EyeStudio is easy enough that anyone could write it.

(1) It’s important for the company to think about who should write
the tests.

VI

B
Selenium example

Figure B.1 shows three different types of locators. Link text is convenient to use,
but there could be duplicates if there are many links on a page. CSS locators
are very powerful and was the most commonly used locator in this study, the
downside lies in their complexity, making them hard to use for the inexperienced.
XPath have much of the same power that CSS has, but is often associated with
absolute paths similar to the one displayed in the figure. While they have some
functionality making them necessary, they are slower than CSS in most cases and
should be avoided. Both CSS and XPath can be written as absolute paths, which
are very fragile to changes and should be avoided.

VII

B. Selenium example

Figure B.1: An example of three different types of locators: link text, CSS and
XPath.

VIII

C
EyeAutomate example

Figure C.1: EyeStudio with an EyeAutomate script.

IX

	List of Figures
	List of Tables
	Glossary
	Introduction
	Statement of the Problem
	Purpose of the Study
	Research Questions
	Supplementary Research Question

	Background
	Relevant Theory
	Regression Testing
	Automated GUI Testing
	Generations of GUI Testing Tools
	Element-based GUI Testing
	Visual GUI Testing

	Tools
	Selenium
	The EyeAutomate Family

	Related Works
	Overview of the field
	Automated Testing
	Element-based GUI Testing Tools
	VGT Tools
	Comparison of GUI Testing Tools
	Defect Finding Capabilities
	Implementation and Maintenance Cost
	Return on Investment

	Case

	Methods
	Motivation
	Historical
	Artificial
	Interviews
	Triangulation
	Research Questions

	Historical
	Designing Tests
	Setup
	Execution

	Artificial
	Setup
	Changes
	Execution

	Interviews
	Setup
	Execution

	Results
	Implementation Cost
	Maintenance Cost
	Return on Investment
	Calculated
	Infrequent Runs
	Frequent Runs

	Fault Detection Capabilities
	Differences Between the Tools
	Qualitative data

	Discussion
	Research Methods
	Historical
	Artificial
	Interviews

	Maintenance Cost
	Repair Cost differences
	Fluctuating Maintenance Cost
	Conclusion

	Return on Investment
	Implementation Cost
	Maintenance Cost
	Qualitative
	Conclusion

	Fault Detection Capabilities
	Test Scenario
	Comparison
	Conclusion

	Selenium vs. EyeAutomate Observations
	Test Implementation
	PageObjects
	Prior Knowledge
	Locators
	Data Verification
	Conclusion

	Limitations
	Threats to Validity
	Conclusion Validity
	Internal validity
	Construct validity
	External validity

	Contributions
	Future work

	Conclusion
	Bibliography
	Interview Answers
	Selenium example
	EyeAutomate example

