
Migrating and Evolving Software
Product Lines:
An Industrial Case Study of Feature Location and
Visualization Techniques

Master’s thesis in Computer science and engineering

BERIMA KWEKU ANDAM

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2018

Master’s thesis 2018

Migrating and Evolving Software Product Lines:

An Industrial Case Study of Feature Location and
Visualization Techniques

BERIMA ANDAM

Department of Computer Science and Engineering
Division of Software Engineering

Chalmers University of Technology
University of Gothenburg

Gothenburg, Sweden 2018

Migrating and Evolving Software Product Lines:
An Industrial Case Study of Feature Location and Visualization Techniques
BERIMA ANDAM

© BERIMA ANDAM, 2018.

Supervisors: Prof. Thorsten Berger, Prof. Michel R. V. Chaudron,
Software Engineering Department
Department of Computer Science and Engineering
Division of Software Engineering
Chalmers University of Technology and University of Gothenburg

Supervisor: Dr. Andreas Burger
ABB Corporate Research
Ladenburg, Germany

Examiner: Prof. Regina Hebig
Chalmers University of Technology and University of Gothenburg

Master’s Thesis 2018
Department of Computer Science and Engineering
Division of Software Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

iv

Migrating and Evolving Software Product Lines:
An Industrial Case Study of Feature Location and Visualization Techniques
BERIMA ANDAM
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
Many software development tasks revolve around features of a system, for example
adding or removing a feature from a system. As a first step to performing these
tasks, we need to know which source artifacts implement the feature(s).
Knowledge of these so-called feature traces are often stored in feature-source trace
documentations. In reality however, feature-source trace documentations are often
either outdated or entirely unavailable. The main reason why this is often the case
is that feature implementing source artifacts change so quickly that it is hard to
keep its documentation up-to-date.
In previous work, approaches aiming at reducing the amount of work needed to keep
documentation up-to-date have been proposed. One such approach embeds feature-
source trace documentation directly in the source artifacts using annotations [27]. It
was found in the study that such annotations are cheap to create and maintain whiles
its benefits far out-weight its costs as they naturally co-evolve with the artifacts they
annotate.
In this thesis, we adapt this approach and propose tool support for creating, main-
taining and exploiting such annotations. The goal of the approach is two-folds:
first to reduce the amount of manual work required to create and maintain these
annotations in order to encourage developers to use them. Secondly, to provide
visualizations and metrics of the embedded documentation to enable developers to
understand the documented system from its feature perspective.
Sometimes experts who can embed feature trace knowledge are not available. There-
fore, in the second part of the thesis we propose an approach for recovering feature-
source trace documentation from source artifacts. It is based on a machine learning
approach to predict feature traces.
The approach was evaluated through a case study at ABB Corporate Research where
it was tested on a product family. The results of a preliminary study with developers
shows that they found the visualizations and metrics provided by the tool useful for
comprehending the features in the system and its properties. The results of the
experiments show that the proposed machine learning approach for feature location
produces accurate feature trace predictions over time.

Keywords: Features, Feature Location, Software Metrics, Visualization, Tool Sup-
port, Machine Learning.

v

Acknowledgements
First, I would like to express my gratitude to my academic supervisors Prof. Thorsten
Berger and Prof. Michel Chaudron, for their patience, support and guidance through-
out the period of this thesis.
I would also like to thank the Software Engineering Group at ABB’s Corporate
Research Center in Ladenburg for hosting and supporting the research project. I
would especially like to thank my industrial supervisor, Dr. Andreas Burger for his
continuous support and for tirelessly organizing all the resources needed to undertake
the research. I could not have asked for better mentors.
Finally, I would also like to thank my wife and best friend Sophia Amenyah and
parents Mr. and Mrs. Andam for their love and support.

Berima Kweku Andam, Gothenburg, 12 2018

vii

Published Parts of Thesis
Section 5, parts of Section 1 and Section 6 of this thesis document has been published
in the paper [2] at the 11th International Workshop on Variability Modelling of
Software-intensive Systems, held in Eindhoven, Netherlands on the 1 – 3 of February.

Contents

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Problem Statement . 1
1.2 Purpose of Thesis . 3

2 Background 7
2.1 Software Product Lines . 7
2.2 Features and Feature Oriented Development 8
2.3 Feature Location Recovery . 8
2.4 Embedded Feature Annotations . 9

2.4.1 Feature Model . 10
2.4.2 File and Folder Annotations 11
2.4.3 In-File Annotations . 11
2.4.4 Feature References for Ambiguous Feature Names 11

2.5 Machine Learning . 12
2.5.1 Concepts . 12
2.5.2 Multilable classification . 13
2.5.3 Feature reduction . 13

3 Related Work 15
3.1 Feature Location . 15
3.2 Product-Line Engineering Tools . 16
3.3 Concern and Topic Visualization . 17

4 Abstract View Generation Approach and Implementation
(FLOrIDA) 19
4.1 View Generation Approach . 19
4.2 Implementation . 22
4.3 Feature-Oriented Views . 23

4.3.1 Browse Feature View . 23
4.3.2 Trace Views . 24
4.3.3 Metrics Views . 25
4.3.4 Feature-Location Recovery . 26

4.4 Evaluation and Feedback . 27

ix

Contents

5 An ML Algorithm Based Recommendation System For Feature
Location 29
5.1 Approach . 29
5.2 Methodology . 30

5.2.1 Research Questions . 31
5.2.2 Exepriment Setup: RQ2.1 Best source code properties for

feature location . 31
5.2.3 Exepriment Setup: RQ2.2: Best source code granularity

for feature location . 35
5.2.4 Exepriment Setup: RQ2.3: Best Machine learning algo-

rithm for feature location . 35
5.2.5 Exepriment Setup: RQ2.4: How many example feature

locations must already exist for the best configuration to give
the best predictions? . 36

5.2.6 Exepriment Setup: RQ2.5: Best Training Interval 37
5.2.7 Experiment Setup: RQ2.6: How accurate is a classifier

when predicting feature associations for code that do not di-
rectly implement any features 37

5.2.8 Steps in an Experiment . 38
5.2.9 Evaluation . 39
5.2.10 Subject System . 40

5.3 Experimental Results . 41
5.3.1 RQ2.1: Best Source Code Properties for prediction 42
5.3.2 RQ2.2: Source Code Granularity for prediction 42
5.3.3 RQ2.3: Best performing classification algorithm 43
5.3.4 RQ2.4: Initial manual effort requirement 45
5.3.5 RQ2.5: Required Interval for Retraining Classifier 45
5.3.6 RQ2.6: Classifier Accuracy for Unlabeled Test Data 46

5.4 Limitations of Study . 48

6 Conclusion 51

Bibliography 55

A Experiment Results I
A.1 Comparison of Source Code Property Sets I
A.2 Comparison of Retraining Intervals V
A.3 Comparison of Source Code Granularity IX
A.4 Comparison of Machine Learing Alrogrithms XIV

x

List of Figures

1.1 Annotating and displaying feature traces 4

2.1 Example feature model in Clafer syntax 10
2.2 Examples of mapping features to files and folders 11

4.1 Demarcation of feature locations in source code 23
4.2 Feature-file trace view . 24
4.3 Feature-folder trace view . 25
4.4 Visualization of an in-file annotation 26
4.5 Feature metrics view . 26
4.6 Metrics shown directly in a trace view 27

5.1 Feature-file trace view . 30
5.2 Training and Test Data Combinations 39
5.3 F-Measure Scores for Combinations of Source Code Location Distance

(SCLD), Text Similarity Metrics (TSM), Number of Already Existing
Feature Annotations (NAEFA) Over Time 42

5.4 F-Measure Scores for Source Code Granularity over Time 43
5.5 F-Measure Scores for evaluated machine learning algorithms over time 44
5.6 F-Measure Scores of Training Intervals over Time 46
5.7 Precision, Recall and F-Measure scores of KNN Algorithm over Time 47
5.8 Precision, Recall and F-Measure scores of SVM Algorithm over Time 47
5.9 Relationship between performance difference of KNN and percentage

of added unannotated source code (i.e. RQ2.3 and RQ2.5) 48

xi

List of Figures

xii

List of Tables

4.1 Feature, folder, and project metrics 22

5.1 Source code property sets used in the experiments 31
5.2 Source Code Granularities tested in the experiments 35
5.3 Machine Learning Algorithms tested in the experiments 36
5.4 Clafer Tools Source Code Properties 41
5.5 Average F-Measure Scores for ML Algorithm and Source Code Prop-

erties . 41
5.6 Average F-Measure Scores for Source Code Granularity over Time . . 43
5.7 Average F-Measure scores of evaluated algorithms 44
5.8 Average F-Measure Scores for Training Intervals 45
5.9 Average F-Measure, Precision and Recall Scores for Un-annotated Data 46
5.10 Average F-Measure, Precision and Recall Scores for Un-annotated Data 48

A.1 Comparison of Source Code Property Sets V
A.2 Comparison of Retraining Intervals IX
A.3 Comparison of Source Granularity . XIV
A.4 Comparison of Machine Learning Algrithms XVIII

xiii

List of Tables

xiv

Acronyms

AST Abstract Syntax Tree. 16

BR Binary Relevance. 35, 36

CIDE Colored Integrated Development Environment. 16
CTSM Cosine Text Similarity Metrics. 31–33

DT Decision Tree. 35, 43–45, 52

FLA Feature Location Approaches. 29, 30
FLOrIDA Feature LOcatIon DAshboard. 3–5, 22–28, 32, 52
FPC Feature Presence Condition. 32

IDE Integrated Development Environment. 16
IR Information Retrieval. 15, 16, 29, 31, 32

kNN K-Nearest Neighbor. 35, 43, 46, 48

LoC Lines of Code. 16, 35, 38, 39, 41–43, 45, 46, 52

MLA Machine Learning Algorithm. 12, 13, 38, 46
MLP Multi-Layer Perceptron. 35

NAEFA Number of Already Existing Feature Annotations. xi, 31, 32, 42–46, 52
NoAu Number of Authors. 17, 23

SCLD Source Code Location Distance. xi, 31, 34, 42–44, 46
SCP Source Code Property. 38, 39, 42, 46
SPL Software Product Line. 7, 8
SVM Support Vector Machine. 35, 41, 43–46, 52

TSM Text Similarity Metrics. xi, 31, 42–44, 46, 52

WEKA Waikato Environment for Knowledge Analysis. 35, 44

xv

Acronyms

xvi

1
Introduction

The notion of feature is commonly used when engineering software systems. A
feature abstracts over concrete software artifacts, such as code, requirements or
models. Developers use features for communicating and reasoning about a system,
as well as keeping a comprehensive understanding of it. Using features is especially
helpful when many variants of a system exist, as features provide an intuitive way
of distinguishing individual variants [12, 9, 13].
Many software-engineering activities are centered around features [38], such as ex-
tending or removing a feature, propagating features across variants, or consolidating
cloned features. All these activities require developers to understand the features
that exist in a system, as well as their exact locations in the artifacts. Thus, explic-
itly recording and maintaining features and their locations can support many such
feature-related activities [38].

1.1 Problem Statement
In most software systems however, features are not treated as first-level entities. The
trace between features of the system and their implementing source artifacts are not
clearly defined. In systems where features are treated as first level entities, and
traces between them and their implementing artifacts are kept, it is still a difficult
task to keep such trace documentation up-to-date.
The reason is that maintaining feature locations can be a daunting task. Imple-
menting source artifacts change so quickly that externally kept feature location
information may quickly become inaccurate when it is not continuously updated—a
laborious and error-prone task [14]. Developers must choose between constantly
updating documentation of already implemented features or implementing new fea-
ture request from customers (the main business). Usually the choice is to focus on
implementing feature request from customers over updating documentation. As a
consequence, up-to-date feature-source documentation often only exist in the minds
of the experts of the system. When these experts are no longer available, the docu-
mentation is thus also not available.
The resulting missing trace between features and their implementing artifacts make
software development tasks that require feature location knowledge rather unneces-
sarily difficult, time and resource intensive.
Several approaches have been proposed in previous work to support feature - source
traceability documentation. A notable approach that shows significant prospects
proposes embedding feature annotations in the source artifacts themselves, instead

1

1. Introduction

of keeping them separately in external storage mediums such as documents or
databases [27]. It has been shown that embedding feature trace documentation
in the artifacts themselves can significantly reduce the amount of work needed to
keep the documents up-to-date. Embedding feature traces prevents documented
feature traces from getting out of date when source code is moved around, as the
documentation is also moved along with it. Adding such annotations to artifacts
is cheap, while the maintenance effort is low, as they naturally co-evolve with their
artifacts (i.e. as opposed to externally kept feature locations), which significantly
reduces manual updates [27]. Embedded annotations have also been shown as ben-
eficial for engineering software with many variants [27, 38], especially when variants
are not realized as a software product line [7, 18, 4] with an integrated platform,
but using clone-and-own.
Problem 1: In traditional documentation approaches, knowledge of a software’s
feature implementation is kept in artifacts such as class or package diagrams. These
artifacts typically store knowledge at different levels of abstraction. Thus, when a
developer is interested in the details of the systems implementation on a certain
level of abstraction, they would refer to the artifact corresponding to that level of
abstraction. Compared to this, embedded annotations are on a fairly low level.
After documenting using embedded annotations, finding code related to a feature
can then be done by using simple tools such as grep [37] to search for the name
of the feature in the source code. When working on small systems, the number
of artifacts that may be returned may not be large, thus such tools may suffice.
However, in large systems, the number of embedded annotations may be huge, and
trying to understand a feature’s implementation by investigating the returned source
files may still require a lot of work. The cognitive effort required to understand a
features implementation on this level might be quite high as the abstractions and
simplifications embedded in traditional approaches are no longer there.
In this way, even though embedded annotations solve the problem of keeping doc-
umentation up-to-date, making it practically useful requires answering some ques-
tions which are currently open such as; What are the best approaches to exploiting
knowledge embedded in annotations? How can we create aggregate views on several
abstraction levels from embedded annotations? How can we calculate metrics about
the features from annotations? Can embedded annotations provide knowledge that
are typically stored in more traditional documentation? What types of documen-
tation artifacts (i.e. views and metrics) can be extracted from them in that case?
Are the views and metrics as useful for comprehending the system as traditional
documentation? Do they suffice on their own or do they serve as a complimentary
source to more traditional ones? etc.
To make embedded annotations useful for practical applications, these and other
questions need to be investigated further.
Problem 2: A second problem is that, even though embedding feature annotations
have been shown to significantly reduce the amount of work required to keep feature
- source trace documentation updated (compared to traditional approaches), in large
systems, the number of annotations that will be required to fully document features
can be considerably large. Thus, a significant amount of work is still required to
create and maintain even embedded documentation for such systems. A way to

2

1. Introduction

reduce this effort required, could be to use automatic feature location approaches to
find the feature locations in the first place and then tool support to then document
them using embedded annotations.
A number of such feature location and documentation approaches have been pro-
posed in previous work. These feature location approaches provide a useful starting
point by finding relevant pieces of source code that may implement a feature of
interest. However, these approaches have short-comings that prevent their adoption
in practice [48]. Current feature location approaches can be divided into two broad
groups; Static and Dynamic. Dynamic approaches are quite accurate but usually re-
quire input that are hard to get in real life. Static approaches on the other hand are
often less accurate or are programming language dependent. Hybrid feature location
approaches try to combine the strengths of dynamic and static approaches but often
require substantial effort for their application, still leaving the majority of the work
to the developers, a situation that can be laborious and expensive when working on
large systems. Furthermore, current automatic feature location approaches identify
feature implementing code on a relatively coarse-grained level; on the file or func-
tion/method level, although features are often more fine-grained, comprising just
one or few lines of code [48].
In order to be feasible for use in real life situations, a feature location approach
must provide an acceptable level of accuracy while using input that is readily avail-
able (or relatively inexpensive to come-by). They must also be as programming
language independent as possible (so that they can be applicable for many system
types). Finally, the granularity of the returned artifacts must be flexible as fea-
ture implementations usually span multiple levels of abstraction (It could be a line
of code, a method or a whole package, or a mix of these). None of the currently
existing feature location approaches meets this criterion. [48, 56]

1.2 Purpose of Thesis

The aim of this thesis is to investigate the hypothesis that: It is possible to create ag-
gregate views from embedded annotations and that these aggregate views can reduce
the cognitive effort required to understand feature locations documented as embed-
ded annotations. Secondly, that a machine learning approach to feature location
that relies on expert knowledge of feature locations documented using embedded
annotations can be used to accurately recover feature location for undocumented
parts of the same system.
The thesis contains several contributions:

1. An approach for generating some aggregate traditional software views from
embedded annotations

2. A tool Feature LOcatIon DAshboard (FLOrIDA) that implements the ap-
proach

3. A machine learning approach for predicting new feature locations based on
existing embedded annotations

4. An experiment that evaluates the performance of the proposed machine learn-
ing algorithm for feature location

3

1. Introduction

The tool supported approach is expected to be useful for two main software develop-
ment use cases involving features; as summarized in Figure 1.1. The primary one is
to support continuous addition of traceability information (i.e., features and feature
annotations) during development. The secondary—but sometimes necessary—use
case is retroactive feature-location recovery of legacy software. Figure 1.1 summa-
rizes these two main use cases. For both, a developer starts the tool and selects the
root directory of the project’s codebase (i.e. large, gray folder on the top-left of Fig-
ure 1.1) that is or should be annotated. It then builds an internal model containing
the files in the project, the declared feature model, and then associates the files to the
features based on the embedded annotations. Using this model, the tool FLOrIDA
can then generates graphical views and metrics (i.e. arrow ¶ in Figure 1.1), which
can support developers who observe (i.e. arrow ¿ in Figure 1.1) these for reasoning
about the system and keeping an overview understanding of the features. In addi-
tion, using the proposed feature location based on existing annotations, FLOrIDA
then can provide a feature-location recovery to suggest feature locations in legacy
(i.e., not annotated) code.

Annotated Project Source

Feature Metrics

Graphical Views

adds / edits annotations

Feature-Location Techniques

Lucene

Lucene & PageRank

observes and browses
Developer

identifies feature
locations and
proposes
annotations

Confirm and
edit annotation
proposals

use case 2

Key:

use case 1

done by feature
dashboard

generates views
from annotations

describes features

Annotation
Proposals

Not-Annotated
Project Codebase

annotates source with
features

initiates feature-location technique
use case 1 & 2

input

adds/edits feature model

.cpp

.featuredescription featuremodel.cfr

.feature-file.feature-folder

1

2

3
4

5

6

7

9
8

10

Figure 1.1: Annotating and displaying feature traces

To achieve these objectives, the thesis tries to answer specifically these research
questions:

• RQ1: How can we exploit information documented in embedded annotations
for source code comprehension?
– RQ1.1 What types of traditional source code views can we extract from

embedded annotations
– RQ1.2 What types of metrics can we extract from embedded annota-

tions?
• RQ2: How can we use machine learning to accurately predict feature locations

in source code?
– RQ2.1: What source code properties are best predictors of feature loca-

tions?

4

1. Introduction

– RQ2.2: At what granularity of source code, is feature location using
machine learning most accurate?

– RQ2.3: What machine learning algorithm(s) provide the most accurate
predictions of feature locations?

– RQ2.4: How many example feature locations must already exist for the
best configuration to give the best prediction?

– RQ2.5: How often must a machine be retrained to get good predictions?
– RQ2.6: How does the performance of the machine learning algorithm(s)

differ when tested on a sample containing both annotated and unanno-
tated code?

The rest of the thesis document is organized as follows: Section 2 describes work
that this thesis builds on as well as technologies used which may be needed to
understand the rest of the thesis. Section 3 describes previous work in the areas of
feature location, concern visualization and how this work relates to them. Section 4
describes the approach for generating aggregate views and its implementations in the
FLOrIDA tool. It also introduces the features of the FLOrIDA tool, how it is built
and feedback from developers. Then section Section 5 describes the semi-automated
hybrid approach to feature location, the setup of the experiment to evaluate these
configurations, and the results of the experiments. Finally the results of the work is
summarized in Section 6.

5

1. Introduction

6

2
Background

2.1 Software Product Lines

Developing software from scratch is an expensive and error prone activity. One way
to reduce the cost and improve the quality of software is to reuse already existing
software assets [42]. Typically, a software system’s evolution is driven by customer
demands for new product features. An effective way of reducing time-to-market
and to improve productivity is to reuse already existing assets. When a customer
requests an already existing product, but with some addition or removal of features,
a common way to build the requested products is to use the ad hoc re-use strategy,
clone-and-own [42].
However, when the number of product variants grow, the time required to perform
maintenance and evolution tasks on the system also grows exponentially. Eventually,
a more systematic reuse and development strategy such as migrating the system to
an Software Product Line (SPL) is needed to manage the complexity [42].
Motivated by the need to avoid this problem of overlaps and to encourage long-
term systematic reuse of similar functionality, companies sometimes try to migrate
these products to an SPL [8]. In an SPL, features from all the products are pooled
together and using variability management mechanisms, and individual products are
built by selecting specific features from the pool. This arrangement provides several
benefits to the organization, such as the ability to meet customized customer needs
faster and cheaper and to increase the product quality significantly over time as the
feature components in the pool mature [8].
A set of software systems is considered as an SPL if the products share a set of
common features, which are managed collectively in a single pool. The features in
the pool are designed to meet a set of predefined needs of a certain domain [18].
According to Krueger [30], there are three paths to establishing an SPL; The first
and most preferred path(i.e. the proactive approach) is to perform a complete
analysis of the domain that the SPL is to be established for, then set in place
variability management mechanisms and further, to design feature implementations
to solve problems in the domain. Subsequently, single products are built for a specific
customer by selecting features from the pool which correspond to the customer’s
needs. A second approach is to build an SPL from the beginning. Then build
and modify new products separately for each new customer and then periodically
integrate common occurring modifications into the SPL. Finally, a last approach is
to build products independently without an SPL creation goal in mind, but only
regenerating the separate products into an SPL when it becomes necessary to do

7

2. Background

so. The last-mentioned approach is the most commonly used path even though it
appears less intuitive. The reason is that, at start, most products are created to
satisfy a customer’s needs without an SPL creation intention in mind. As described
earlier, new products are added to the product family as new customer needs emerge.
A further motivation especially for using the clone-and-own methodology is that it
is effective for quickly introducing new products to market before re-engineering is
later considered.

2.2 Features and Feature Oriented Development
Many software-engineering activities besides migrating legacy software to an SPL
are also centered around features [38], such as extending or removing a feature,
propagating a feature across variants, or consolidating cloned features into an SPL [7,
18, 4].
It is common however, to find that such documentation is entirely unavailable or
outdated. Therefore, accurate feature-source trace documentation is often only in
the minds of experts (i.e. the developers who implemented these features). Thus,
when these experts are no longer available, the documentation is also not available.

2.3 Feature Location Recovery
Several studies in the past have proposed approaches for recovering feature-source
traces. These feature location approaches use different kinds of information from
the system being analyzed to locate the source code of a feature. The approaches
can be classified based on whether the source of the data used for location is gained
by running the system being analyzed or not. There are three categories of feature
location approaches according to this categorization; dynamic, static and hybrid
feature location approaches [48, 20, 23].
Dynamic approaches identify features by collecting and analyzing dynamic data
while executing the feature to be located. They are often very precise as they
collect precise information about elements of the program that are activated as a
feature is executed [6, 57, 58, 21, 54]. Static feature location approaches on the
other hand extract and analyze static information from the systems source code or
related documentation such as dependencies between program elements, or relat-
edness of vocabulary used in the documents [1, 14, 45, 49, 59]. A third group of
approaches; Hybrid feature location approaches combine both dynamic and static
data for locating features [43, 22].
The aim of all feature location approaches is to find only relevant feature traces
(i.e. high precision) while trying to recover all relevant traces (i.e. high recall) [48].
According to Rubin et al, [48] neither dynamic nor static approaches are able to
achieve both, as each category of approaches has its limitations.
Dynamic feature location approaches are able to achieve high precision as they are
conservative in nature [6]. The reason is that, execution traces can contain a lot
of noise. Therefore, multiple traces are needed to identify feature relevant code.
The traces are obtained by running two sets of test cases for each feature to be

8

2. Background

identified. One set which executes the feature of interest exclusively and another set
which executes all other features but the feature of interest. This is something that is
often unavailable in real life and expensive to obtain. Dynamic approaches however
often have low recall as the quality of test cases selected by the user directly affects
the quality of outputs given by the approaches. According to Simon et al, [50],
"selecting test cases that exercise too much or too little of the system can cause
problems". Static feature location approaches on the other hand, often use input
which are often readily available or inexpensive to obtain. They achieve a high level
of recall, but suffer a low level of precision. Hybrid feature location approaches try
to combine the strengths of these approaches while reducing its draw backs.
Some of the approaches (i.e. dynamic location approaches) require input that are
hard to acquire in real industrial cases [20]. Other approaches (i.e. Static ap-
proaches) require input that are readily available, but on the other hand often
require a lot of time investment from experts to refine their outputs, as they may
return a lot of false positives [48]. Furthermore, most of the approaches do not
make use of expert knowledge of features and their location in the recovery process
but rather attempt automatic location which so far does not work. Feature locations
returned by expert driven approaches may also be defective even for experts of the
system. This happens because, typically, a lot of time would have passed between
developing the feature and when feature location needs to be done [48, 20].
We believe that features and their locations should be recorded early, when they
are implemented, to avoid high costs for retroactively identifying features and their
locations. Instead of migrating clone-based products in a costly and risky process,
we strive to establish a truly incremental product-line adoption process—a.k.a.,
the virtual-platform approach [4].This process should support using only a subset
of product-line concepts (e.g., features, traceability, configurator, pre-processor or
build system), allowing a truly incremental adoption of a product line, where an
incremental investment (e.g., introducing features) provides an incremental benefit
(e.g., keeping an overview understanding of features across cloned products).

2.4 Embedded Feature Annotations
To record feature locations, two storage strategies can be used. Locations can be
stored outside the source artifacts as is done traditionally in external storage, such
as in a traceability database or in plain documents. Alternatively, they can be stored
directly within the artifacts with embedded annotations. Typically, feature-source
trace knowledge is kept in documents or in trace databases. However, external stor-
age of feature locations is brittle and requires continuous effort to maintain. To make
feature-trace documentation more robust, several approaches have been proposed in
past research. A notable approach by Wenbin et al [27], proposes embedding feature
traces documentation directly in software artifacts implementing the features. The
advantage of this approach over external approaches is that embedded documenta-
tion eliminates one of the reasons why documentation becomes outdated. Namely,
Embedding the feature-location information facilitates keeping it updated when the
codebase evolves. The study also showed that many of the annotations naturally
co-evolved with the artifacts (e.g., when code is moved), not requiring active an-

9

2. Background

notation maintenance. Feature-source trace is still intact even when source code is
moved from one location in the source structure to another, which would not be the
case for externally kept trace knowledge.
A case study shows that the cost of creating and maintaining the annotations is
low to negligible, while the benefit for feature-related activities is substantial [27].
Specifically, 18% of the recorded feature locations as annotations saved 90% of
feature-location costs needed for typical feature-related activities. sBesides this,
embedding feature-source traces gives the advantage that, similar copied features
between two variants can later be located and merged when needed.
Exploitation of embedded annotations however remains untapped. Embedded an-
notations in industrial scaled systems can be significantly large. The sheer number
of annotated artifacts for a single feature can be overwhelming for a developer who
wants to understand the source code, if they are retrieved in plain format. Besides
this, the artifacts in raw format alone does not provide a lot of information about
the feature properties that may be useful for reasoning about it, or for performing
feature oriented tasks.

Controller
XOR CPU

Athlon 64
Sempron

Application
Lighting
Heating
Flow Control

Bus Types
BACnet
PROFINET IO

Report Format
CSV
XML

Figure 2.1: Example feature model in Clafer syntax

2.4.1 Feature Model
Documenting feature locations using embedded annotations can be done using the
Clafer syntax [3]. To begin the documentation process, the developer first creates a
simple, textual feature model, that lists out the features that the system implements
(i.e. as shown in Figure 2.1 and then saves it as featuremodel.cfr. This file is then
stored at the project’s root folder. Features are added to the model: one feature per
line, with the feature hierarchy being expressed by indentation—a Clafer convention.
The top feature should be the name of the project. Any simple text editor suffices
to edit the model.
Although the Clafer language is much richer, to document feature traces, only using
the simple hierarchical feature suffices. Yet, developers could also add domain-
specific feature dependencies into the model (e.g., feature groups, such as the XOR
group CPU in Figure 2.1), which could be exploited later when propagating features
across cloned variants or merging variants.

10

2. Background

To relate parts of an artifact to features, embedded annotations (i.e. escaped as
comments) are used. To relate a whole artifact (e.g., source file) or a whole folder to
one or more features, textual mapping files are added to the folder structure. These
traces relate artifacts to features, which were earlier defined in the feature model.

2.4.2 File and Folder Annotations
To associate whole source artifacts with features in the model, the developer creates
special mapping files. Specifically, to associate files in a folder with a feature, a
simple text file .feature-file has to be created within the folder. Each line in the
file contains a mapping between one or multiple features and a file using the syntax
featureName: fileName(,fileName)*, as shown in Figure 2.2a. Mapping whole
folders to features is similar. The developer creates a .feature-folder file in the
parent folder. Each line in the file maps a feature to one or multiple folders using
the syntax featureName: folderName(,folderName)*, as shown in Figure 2.2b.

Athlon	64:	AMDmodelbred.c,
Processorformat.cpp,
Socket751.cpp,
EquivalencControl.cpp;

Sempron:	SempronChipUpdate.c,
FM2Sempron.c,
MemoryManagSemp.c;

(a) .feature-files

Athlon	64:	Firmware,
Cache,
SocketNative,
AthlonSafetyModule,
AnthlonClockWork;

Sempron:		SempronUpdate,
Microprocesses;

(b) .feature-folders
Figure 2.2: Examples of mapping features to files and folders

2.4.3 In-File Annotations
Annotating parts of a file with features is slightly different. To annotate multiple
lines, the developer simply surrounds them with a beginning tag //&begin[featureName]
and an ending tag //&end[featureName], see line 4 and 10 in Listing 2.1. If only
one line should be associated to a feature, the developer can use a single line annota-
tion with the syntax: //&line[featureName] on top of the line of code as shown for
example in line 1 of Listing 2.1. Note that in our examples, the comments (//) are
C/C++ specific. For other languages, the tags should be used within the respective
commenting characters.

2.4.4 Feature References for Ambiguous Feature Names
In feature annotations, features are referenced using their least-partially-qualified
(LPQ) names. These are usually just the feature names if they are unique within
the feature model (i.e. which is the case for all features in our example). However,
if a name is not unique, then it must be qualified partially—just enough to make
the reference unique.

11

2. Background

1 ////&line[System Monitor]
2 void HEAPUTILModuleOp(tModOp ModOp)
3 {
4 //&begin[State Visualizer]
5 i f (ModOp == CloseModOp)
6 {
7 s i z e = f i l e . t e l l g () ;
8 memblock = new char [s i z e] ;
9 f i l e . seekg (0 , i o s : : beg) ;

10 f i l e . read (memblock , s i z e) ;
11 f i l e . c l o s e () ;
12
13 cout << " the e n t i r e f i l e content i s in memory" ;
14
15 de l e t e [] memblock ;
16 }
17 //&end[State Visualizer]
18 }
19 ////&line[Report Maker]

Listing 2.1: Annotated source code

For example, the feature Sempron has a unique name in the model and can be simply
referred to by its name. If this name occurred twice in the model (e.g., if another
feature also named Sempron occurred under the feature Application), then both
must be qualified to uniquely identify them from each. Using their LPQ name,
features could be referenced as application::sempron and cpu::sempron. While
fully qualified names could also be used (e.g., ::controller::cpu::sempron), they
are much longer and more brittle as compared to the LPQ names when the feature
model evolves.

2.5 Machine Learning
Machine learning algorithms identify patterns in large amounts of data describing a
problem that is presented to it, and then uses the learned pattern to detect future
occurrences in similar data. They are often used to improve the performance of a
program on a task by learning from past data.

2.5.1 Concepts
In this study, Machine Learning Algorithm (MLA) will be used to map instances
of data (i.e. source code) to different classes (i.e. features of the subject system).
Each piece of source code is described by a set of extracted source code properties
and associated source code property values. A source code property is a derived
descriptive statistic, calculated from the source code it represents - for example the
cosine similarity between the words used in the source code and the words used
in a sample already known source code implementing the feature of interest. All
pieces of source code are described with the same set of source code properties, but
each source code exhibits different source code property values, depending on which
feature it is implementing. There are two alternative groups of MLAs that can be
used for classifying source code to features, supervised or unsupervised groups of
MLAs. Unsupervised (clustering) algorithms are used to group source code into
different clusters (i.e. in our case features). The number of clusters to be created

12

2. Background

are not know before hand, the clustering algorithm groups the source code based
on the similarities in the source code’s property values. It decides the number and
statistical nature of the clusters.
The features of a system are however typically known before hand (as many software
engineering activities revolve around them). The supervised group of algorithms are
thus more suitable.

2.5.2 Multilable classification
Traditional single label classification deals with assigning a label to an instance to
be classified. However, as pieces of source code (which are the instances in our case)
can belong to multiple features (labels) at the same time, a variation of classifiers
known as multilabel classifiers are more suitable for the task. Several multilabel clas-
sification algorithms are available in literature. These can be grouped into two main
categories, problem transformation algorithms and algorithm adaptation. Problem
transformation algorithms, transform a multilabel tasks into one or more single-
label classification, regression or ranking tasks. Algorithm adaptation methods on
the other hand extend specific single-label learning algorithms to handle a multi-
label learning problem [55].

2.5.3 Feature reduction
Several descriptive source code properties can be calculated from each piece of code
to be classified, which can be used for training a classifier. Examples are size of the
source code, author, date of creation, many different text similarity metrics, etc.
In practice, the best subset of these properties must be deduced and used, as it is not
feasible to use the maximum set of possible source code properties. This is because
it is computationally intensive to create and use all possible properties and will most
likely result in a slow performing MLA. Besides this, the representativeness of the
set of source code properties can have a great impact on the predictive performance
of a MLA. It is not always the best option to train a classier using the maximum
set of source code properties attainable. The reason is that redundant source code
properties can negatively affect the predictive performance of a classifier.
The process of selecting the number and types of features for training the machine
can be done manually through trial and error. However, this can be tedious if the
number of features to consider are large. Some automatic approaches are available
for automatic feature selection. These are grouped into filter or wrapper selection
models. Filter algorithms calculate a metric to rate properties and then to select
a subset of properties based on this rating. Wrapper methods on the other hand
evaluate the features in combination with the algorithm to be used algorithms to be
used. It results in a tailored set of properties for each algorithm [19].

13

2. Background

14

3
Related Work

3.1 Feature Location

Feature location has been studied extensively. However, there are still problems
with current feature location approaches that prevent their use in practice. As
mentioned in previous chapters, feature location approaches can be grouped into
two main categories; static and dynamic. Static approaches are the oldest and most
intuitive approach used by programmers to find feature locations in source code. An
example is the use of pattern matching supported by popular tools like grep, fgrep,
set, awk that perform pattern matching on strings. Although these approaches are
very intuitive, fast to use and allow searching on a low level of granularity, they miss
out on feature location knowledge stored in structural dependencies between source
code elements [39].
To address this problem, several studies propose approaches for searching the source
code, where the system is represented as a graph. Entities in the system are rep-
resented as nodes in the graph while relationships among these entities are repre-
sented as edges between them. Concrete examples of tools based on this approach
are FEAT[46], Ripples [17], Scan [39] and Rigi [36]. FEAT uses the built graph to
facilitate the separation of different feature code from one another whiles Scan uses
the information to support the user to find related source code during incremental
change [44]. The advantage that graph-based approaches provide over search based
approaches such as grep, is their ability to retain structural dependency informa-
tion among program elements as additional input for feature location. Examples of
structural information that may be useful for feature location are for example data-
flow, inheritance, inclusion and control flow relationships. This information is vital
during the stages of searching and analyses of relevant feature locations. According
to Singer [51], during software comprehension, software engineers use this relation-
ship information to traverse the graph for the location of concepts. We also believe
that structural information is important for locating features. Thus, similar to the
above-mentioned approaches we also analyze the structural (i.e. in our case location
based) relationships between known locations and a source code to be classified and
use this information for training the classifier.
Another group of feature location approaches, the Information Retrieval (IR) based
approaches rely on making meanings out of semantic information embedded in the
comments and identifier names used in the source code of the system and surround-
ing documentation. IR based feature location approaches differ in a number of ways
including how they store intermediate results, their pre-processing needs and the

15

3. Related Work

granularity of source code they return as results of the feature location process [34].
IR systems are widely used in web search engines, libraries etc. where are used for
storing, managing and retrieving unstructured data. Some IR based feature loca-
tion approaches use identifiers in source codes alone for the feature location task [5].
Other approaches use the text in source artifacts such as source code comments and
external documentation surrounding the source code [35]. Some IR feature location
approaches identify source artifacts on the function or on the class level while others
work on a component level [5, 35]. Our approach, just as with the approaches men-
tioned above also makes use of embedded semantic knowledge scored in identifier
names in the source code. However, unlike other approaches such as that of Marcus
et al [35] who also make use of source code comment as input for feature location,
the approach proposed in this thesis does not use source code comments as part of
the identification process . As another difference, the approach presented in this
work identifies source code on the Lines of Code (LoC) granularity level as opposed
to the method, class or component level.
This study investigates the possibility of combining the strengths of the approaches
mentioned above whiles at the same time improving accuracy. The approach uses
easy to find static and IR-based metrics to encode expert knowledge and then au-
tomate feature location thereafter.
As of the time of the writing of this thesis, no approaches have been identified that
have tried to apply the machine learning to the task of predicting feature locations.
However, similarly studies where machine learning has been applied to a number of
related tasks such as requirement - source tracing exist [52].

3.2 Product-Line Engineering Tools
There are many available tools that supports different sets of phases of Feature-
Oriented Software Development (FOSD) and Feature-Oriented Product-Line Devel-
opment (FOPLD). FeatureIDE [29] for example, is an Eclipse based Integrated
Development Environment (IDE) for feature oriented development that provides
tool support for all phases of FOSD, namely domain analysis, requirements analy-
sis, domain implementation, and software generation.
Pure::variants and Gears are commercial tools that also provide similar features
for managing different phases of FOSD and FOPLD. They both contain tools for
mapping features to software assets so that customized software system can be
generated given a selection of these features.
Another available tool is Colored Integrated Development Environment (CIDE) [28],
an open-source, IDE that helps developers to select specific pieces of code that
implement optional features in legacy Java software systems. Each optional feature
is assigned a color which is then used to color the pieces of code that are selected
by the developer as implementing that feature. Behind the scenes CIDE uses this
information to select parts of the Abstract Syntax Tree (AST) representation of the
source code to help compile different products from these colored sources.
All the tools mentioned above are full blown IDE (i.e. heavy weight tools) that
provide tools for creating variability in the target system. They are tailored for
the purpose of creating variability in the target system. Annotation support is pro-

16

3. Related Work

vided as way of distinguishing implementations of optional features as opposed to
distinguishing implementations of all types of features. They focus more on provid-
ing support for the actual development of variable assets. Thus, their support for
annotating and visualizing feature traces is oriented towards this purpose. Anno-
tating feature implementations in source code is also usually done manually by the
developer through the tool.
Unlike these however, FLOrIDA is designed as a lightweight tool whose purpose is
to support feature-source traceability as a first step towards establishing a software
product line (i.e., before all other, later stage SPL infrastructure, such as a con-
figurator, preprocessor or build system etc. which these other tools consist of are
needed) or for gaining a feature perspective of a system while performing purely
feature oriented activities such as adding, removing or extending of features.
FLOrIDA provides complementary views that not only shows views as defined in the
annotations but also different levels of abstract views and metrics on this relation-
ship (more details about the views are provided in Section 4.3). In contrast to Fea-
tureIDE, FLOrIDA, as explained, also incorporates approaches for semi-automatic
location of features in legacy systems. Beyond this, FLOrIDA provides proactive
support for documenting newly added source code with features.
Pleuss et al. [41] interactively visualize variability expressed in feature models of
a product line. Similar to us, they present several abstracted views and filters of
the features (i.e. which are configuration options) in the model, such as to illus-
trate cross-tree constraints, and to present consequences (i.e. with explanations) of
selecting particular features.

3.3 Concern and Topic Visualization
Concerns and topics can be seen as similar, if not more general, concepts. Concern
location has been studied intensively, and various concern visualization approaches
exist specially to support program understanding and feature location.
FEAT [47] provides the developer a mechanism for creating structural views of re-
lated program elements by adding them to a concern graph. Through a querying
mechanism, the user can then associate the graph elements to pieces of source code.
TraceGraph [32] incorporates a simple visualization of program traces which allows
changes in the program execution traces to be easily identified. The tool aims at
supporting concept location tasks prior to feature oriented development tasks such
as bug-fixing or feature extension with particular focus on long running interac-
tive software. Furthermore, the notion of topics is typically used to characterize
developer discussions or comments. Likewise, topic visualization approaches exist.
For instance, Izquierdo et al. [26, 47] provide graphical visualizations and metrics
for Github issues annotated with labels representing issue topics. Features could
be seen as topics. Their visualizations are network diagrams illustrating the label
usage, label timelines, and user involvements. Our metrics and views also cover
some of their information, such as the Number of Authors (NoAu); yet, we provide
additional metrics, such as feature scattering and tangling degrees.

17

3. Related Work

18

4
Abstract View Generation

Approach and Implementation
(FLOrIDA)

4.1 View Generation Approach

As described in Section 1, raw feature annotations (just like source code) contain too
much details and may be overwhelming for a developer who wants to get an overview
understanding of a systems implementation. Traditionally, high level diagrams such
as a package diagram may provide such a perspective. In this section, we propose
an approach for generating abstract views but in this case of the feature-to-source
relationship. To generate these views from embedded annotations, the following
algorithms are proposed.

Processing files in project
To start off, all source files and annotations in the project must be read and annota-
tions associated with the source artifacts to which they correspond. The following
procedure can be used for this purpose:

1: L← Line in File
2: F← File in Folder
3: Fo← Folder in project
4: FoAnF← Folder Annotation File
5: FiAnF← File Annotation File
6: BegEndAn← Begin-End Annotation
7: LiAn← Line Annotation
8: for Fo ∈ Project do
9: if exists (FaAnF || FiAnf) then

10: goto processAnnotation.
11: end if
12: for F ∈ Fo do
13: create a file-node for F.
14: for L ∈ F do
15: create a line-node for L.
16: if L contains a LiAn or BegEndAn then
17: add annotation to list of project LiAns/BegEndAn respectively.

19

4. Abstract View Generation Approach and Implementation
(FLOrIDA)

18: goto processLineAnnotations.
19: end if
20: end for
21: end for
22: end for

Processing Folder Annotations
The following algorithm can then be used to process feature-folder annotations and
thus to associate the features found in them to the folder that they annotate:

1: L← Line in File
2: F← File in Folder
3: Feat← Feature in project
4: Fo← Folder in project
5: FoAnF← Folder Annotation File
6: PrFoAnFs← All Project Folder Annotation Files
7: add FoAnF to list of project PrFaAnFs
8: for Feat ∈ FoAnF do
9: add Fo to Feat list of folders.

10: add Feat to Fo list of features.
11: end for

Processing file Annotations
For each found feature-file annotation, the following algorithm can be used to process
and associate the features that it mentions to the relevant files:

1: L← Line in File
2: F← File in Folder
3: Feat← Feature in project
4: Fo← Folder in project
5: FiAnF← Folder Annotation File
6: PrFiAnFs← All Project Folder Annotation Files
7: add FiAnF to list of project PrFiAnFs
8: for Feat ∈ FiAnF do
9: add F to Feat list of files.

10: add Feat to F list of features.
11: end for

Processing Line Annotations
Further more, to process file annotations the following algorithm can be used:

1: LiAn← Line Annotation
2: Feat← Feature in project
3: PrLiAns← All Project Line Annotation Files
4: for Feat ∈ FiAnF do

20

4. Abstract View Generation Approach and Implementation
(FLOrIDA)

5: add L to Feat list of Lines.
6: add Feat to L list of features.
7: end for
8: add LiAn to project PrLiAns

Processing Begin-End Annotations
Finally, begin-end annotations can be processed using this algorithm:

1: LiAn← Line Annotation
2: Feat← Feature in project
3: BegEndAn← Begin-End Annotation
4: PrBegEndAns← All Project Line Annotation Files
5: for Feat ∈ BegEndAn do
6: add L to Feat list of Lines.
7: add Feat to L list of features.
8: end for
9: Add BegEnd annotation to project BegEnd Annotations

Feature-Folder abstract view
After reading into memory the project files and associating them with found em-
bedded annotations, abstract views can be created from them using the following
different algorithms. For example, the feature-folder view can be created using the
following algorithm.

1: Fo← Folder in project
2: Feat← Feature
3: for selected Feat do
4: create a feature-view-node for feature.
5: for Fo ∈ Project do
6: if Feat in Fo contains selected Feat then
7: create folder-view-node for folder
8: draw an edge between folder-view-node and feature-view-node
9: end if

10: end for
11: end for

Feature-File abstract view
Again to answer the question what files in the project implement a feature, a corre-
sponding view can be generated using the the algorithm:

1: F← File in Project
2: Feat← Feature
3: for selected Feat do
4: create a feature-view-node for feature.
5: for F ∈ Project do
6: if Feat in F contains selected Feat then

21

4. Abstract View Generation Approach and Implementation
(FLOrIDA)

7: create file-view-node for F
8: draw an edge between file-view-node and feature-view-node
9: end if

10: end for
11: end for

Metrics Generation Algorithms
Embedded annotations also encapsulate knowledge about the relationship between
the features of the system and their implementing source code. To further improve
user understanding of the properties of a feature’s implementation, a quantitative
measure of this relationship is calculated using the well known metrics described in
Table Figure 4.1 below.

Table 4.1: Feature, folder, and project metrics
Metric Description

Feature Metrics
SD Scattering Degree: total number of all annotations directly referencing the feature (i.e., in-file,

folder, and file annotations referencing it)
NoFiA Number of File Annotations: total number of file annotations directly referencing the feature
NoFoA Number of Folder Annotations: total number of folder annotations directly referencing the fea-

ture.
TD Tangling Degree: number of other features that share the same artifacts (or parts of such) with

the feature. Two features share (parts of) artifacts when the latter is annotated with both
features.

LoFC Lines of Feature Code: lines of code belonging to artifacts, either directly annotated, or indirectly
(when a folder is annotated, all descendants are taken into account)

ND Nesting depths of annotations: Maximum (MaxND), Minimum (MinND), and Average
(AvgND) nesting depth the annotations directly referencing the feature. The project’s root
folder has depth 0 (and so has any file contained in it). Each sub-folder increases the depth by
one, a file inherits the depth of its containing folder. The depth of a (top-level, i.e., non-nested)
in-file annotation is the depth of the file increased by one. Since in-file annotations can be nested,
each nesting increases the depth by one. All nesting-depth metrics are calculated relative to the
project root folder.

NoAu Number of Authors who contributed to a feature’s artifact. Author information is automatically
extracted from author tags (format: “Author: firstname lastname”) in comments wrapped by
“/**” and “*/” in the source code if they exist.

Folder Metrics
NoF Number of Features: total number of features directly referenced in annotations (folder, file,

in-file) of the folder and any of its descendants
LoFC Lines of Folder Code: total lines in any descendant file of the folder
NoFi Number of Files: number of all descendant files of the folder

Project Metrics
NoF Number of features in project
Total LoFC Total Lines of Feature Code: sum of LoFC (all features)
Avg. LoFC Average Feature Lines of Code: sum of LoFC (all features) / NoF
Avg. ND Average Feature Nesting Depth: sum of ND (all features) / NoF
Avg. SD Average Feature Scattering Degree: sum of SD (all features) / NoF

4.2 Implementation
The tool FLOrIDA implements the above mentioned algorithms. It is designed as
a lightweight tool that comes within one binary without requiring any installation
procedure. It is implemented as a stand-alone Java program, which allows running
it on any Java-supported platform. Finally, the embedded annotations are indepen-
dent of the target programming language, so any kind of artifact can be annotated
as belonging to a feature.

22

4. Abstract View Generation Approach and Implementation
(FLOrIDA)

Figure 4.1: Demarcation of feature locations in source code

The implementation of FLOrIDA is divided into four parts. The first part, the
annotations extractor, recursively traverses files and folders of the codebase to gather
embedded annotations. The parser creates an internal model of the project that
contains nodes for the source artifacts (i.e. files and folders) and the features, which
are associated based on the annotations. For each file, it also checks for embedded
(i.e. in-file) annotations (e.g., //&line[System Monitor]). If an annotation is
found, the file is associated with the respective feature(s), and the specific lines are
stored in the internal model.
The second part, the metrics calculator, derives metrics based on the feature model
and the annotations. No programming-language- or project-specific information
is taken into account, except for the metric NoAu (i.e. see Table 4.1), which is
extracted from author information embedded in comments.
The third part, the visualization module, is responsible for rendering the graphical
views. The graphical visualizations are done with the help of PLANTUML1, which
internally uses the DOT [24] graphics library.
The fourth part, the feature-location module, relies on the algorithms PageRank and
Vector Space Model implemented by the Lucene2 search engine. These algorithms
have been used in previous work for feature location [10].

4.3 Feature-Oriented Views
We now present the graphical views and metrics that FLOrIDA provides for devel-
opers.

4.3.1 Browse Feature View
A developer can select a feature to show the artifacts annotated with that feature.
One can then select a source file in order to explore and to analyze the source code.
Any embedded annotations within the source file are highlighted with the assigned
color of the feature. This option helps to clearly demarcate to the user where the

1http://plantuml.sourceforge.net/index.html
2https://lucene.apache.org

23

http://plantuml.sourceforge.net/index.html
https://lucene.apache.org

4. Abstract View Generation Approach and Implementation
(FLOrIDA)

t

Figure 4.2: Feature-file trace view

annotated implementation of a feature begins and ends. Figure 4.1 shows such a
demarcation.

4.3.2 Trace Views
A developer can select one or multiple features from FLOrIDA’s displayed feature
tree. Then, it displays the implementing files of the feature(s) and a graphic visual-
ization of this relationship. When more than one feature is selected, the visualization
also shows the interaction between features in terms of shared implementing source
artifacts. The visualizations can be on the file level or folder level, as shown in
Figures 4.2 and 4.3.
FLOrIDA’s file-level-visualization (Figure 4.2) shows the relationship between a se-
lected feature(s) and its implementing artifacts. When a feature is selected by a
user, a feature node is created by FLOrIDA for that feature, and a color is assigned.
For each of its implementing artifacts, a source node is created and an edge between
the source and the feature is drawn, using the same color as assigned to the fea-
ture. The colors help to highlight the interactions between features when they are
implemented by the identical source artifacts.
Developers can also explore a feature implementation on the folder level (Figure 4.3).
When such a request is made, FLOrIDA creates a feature node just as in the case
of the file-level visualization. Thereafter, for every folder that is annotated as im-
plementing the selected feature(s) (in .feature-folder), or that contains a file imple-
menting the feature (in .feature-files), a folder node is created. Then just as in the

24

4. Abstract View Generation Approach and Implementation
(FLOrIDA)

Figure 4.3: Feature-folder trace view

case of the file-level visualization, an edge is created between each feature and its
associated folders.
In the case of in-file annotations (i.e., annotations on a lines of code level), FLOrIDA
creates an in-file annotation node for the annotated code. An edge is then drawn
from the feature to the created node using the feature’s assigned color (Figure 4.4).

4.3.3 Metrics Views
To further enhance the understanding of feature’s properties, feature, folder and
project metrics are also provided. All currently supported metrics are provided in
Table 4.1.
A user can view metrics related to a feature(s) of interest. The user does this by
selecting the said feature(s) and then selecting the metrics tab. FLOrIDA then
displays several metrics describing the feature and its implementing artifacts and
their relationship.
Feature metrics describe each feature’s relationship with its implementing artifacts,
as shown in Figure 4.6. Some of the metrics are well-known feature-related metrics,
such as those provided by Liebig et al. [31] and Berger et al. [11]. We use the
established terms, but even though we write “code” as in LoFC (lines of feature
code), we actually count the related lines in any kind of non-binary artifact. Feature
metrics are also shown directly on each feature node in the trace views, as shown in
Figure 4.6.
Finally, the folder metrics describe each folder and its relationship to the features
in the system, and the project metrics provide some aggregate numbers about all

25

4. Abstract View Generation Approach and Implementation
(FLOrIDA)

Figure 4.4: Visualization of an in-file annotation

Figure 4.5: Feature metrics view

features that exist in the whole project.

4.3.4 Feature-Location Recovery
Feature locations can also be retroactively recovered using FLOrIDA’s built-in feature-
location approach. To use this functionality, the developer has to, besides defining a
feature model (featuremodel.cfr) of the system, provide a description of each feature
defined in the feature model. To do this, the developer must create a description
file .feature-description in the project’s root folder. Inside this file, a description for
each feature is specified using the syntax featureName∼featureDescription. When
FLOrIDA’s automated feature-location option is selected, it will process the project,
locate, and automatically create annotations in the code-base. To distinguish them
from manually created ones, a flag [auto] is appended to each line, for instance
featureName:fileName [auto].
Two choices of feature-location algorithms are provided from which the developer can
select: Lucene and Lucene combined with PageRank. The choice allows exploring
the accuracy of two different algorithms.
The Lucene algorithm uses the provided feature description information to automat-
ically retrieve the most semantically similar source artifacts. Lucene implements the
Vector Space Model algorithm used to calculate similarity of a body of text to an-
other. Every document (i.e. in our case files; support for the method level is planned)
is represented as a vector where the contents are the words in the document. Sim-
ilarity between the feature’s description and each document is then calculated by
comparing how many unique words in the feature’s description appear in the docu-
ment. Unique words are obtained by using the Term Frequency/Inverse Document
Frequency algorithm. Words that appear in all documents are weighted less than
words that appear in a few documents. A code-file’s similarity to a feature is, thus,

26

4. Abstract View Generation Approach and Implementation
(FLOrIDA)

Figure 4.6: Metrics shown directly in a trace view

the combined score of each unique word in the code file that also appears in the
features description.
The Lucene with PageRank algorithm first uses Lucene to calculate each file’s simi-
larity with the feature of interest, but then further refines this ranked list of similar
artifacts using PageRank. The latter assesses the originality or importance of a doc-
ument by calculating an importance metric based on how many documents reference
a document against how many documents the document itself references. A higher
score is given to documents that are referenced by others, but that do not reference
others.
The developer can subsequently modify the annotations done by FLOrIDA by re-
moving some or adding additional annotations. If a developer accepts one of the
suggestions, FLOrIDA then automatically annotates the newly added code to reduce
the effort required by the developer.

4.4 Evaluation and Feedback
To answer the question of the scalablity of the approach when applied on real cases
preliminary evaluation were conducted on industrial automation system with 3.2
MLOC.
As there were no existing feature models of the system, one was created from ana-
lyzing existing user manuals, sales brochures, and system documentation. A total
of about 82 features was extracted from the documentation. Feature descriptions
were then written in natural language for each feature.
Even though the system is considerably large, it took only about four minutes to
run the feature location algorithm Lucene+PageRank and to annotate the source
with the proposed annotations. Then, it took another 25 seconds to extract all 6110

27

4. Abstract View Generation Approach and Implementation
(FLOrIDA)

embedded annotations and to generate the views and calculate the metrics.
We also conducted an interview with two experts who participated in the devel-
opment of the system. The first expert, currently an architect, has worked on the
system as a developer since its inception (decades ago). The second expert, also
an architect, has worked on the system for more than ten years. They expressed
their opinions about the tool and how it is suited for the particular system after a
demonstration of 1.5h.
The experts were positive about the robustness that the embedded annotation ap-
proach could give to the documentation of feature locations, which means that a
large amount of documentation time could be saved as opposed to keeping docu-
mentation externally. They believe this will give a certain amount of robustness to
the documentation which they do not have currently.
They also stated that the visualization and navigation that the tool provides is
necessary to benefit from the stored knowledge, which could increase exponentially
for very large systems, such as the case study. They believe that the additional
metrics provided by the tool helps to measure properties of the system that are
useful for making future decisions about the features, such as refining the feature.
Finally, the experts were confident that the approach will work well with their
currently used agile development method. A thorough and systematic evaluation
together with the experts, studying the exact usage, benefits, and costs of using the
tool FLOrIDA and the embedded annotations could be the focus of an extension
study.

28

5
An ML Algorithm Based

Recommendation System For
Feature Location

As mentioned in the introduction, feature locations documented as embedded anno-
tations still require significant effort to create and maintain. This section presents
an experiment, meant to answer the question of how to transfer feature location
knowledge from an expert to a classifier.

5.1 Approach

In all Feature Location Approaches (FLA)s, the expert undertaking the feature
location task, provides some form of encoded knowledge to the FLA. This encoded
knowledge contains hints to the approach about how to locate the source artifacts
of the feature the expert is trying to locate. In dynamic approaches, the expert
provides test cases which exercise the feature. The test cases serve as a rule set
mapping all source artifacts exercised by them to the feature that they test. In
static and IR based approaches, the user also provides some encoded knowledge to
the FLA. In this case however, the knowledge is in the form of a string query with
key words. The rule here is: all source artifacts matching this query implement the
feature described by the query. These approaches described above and indeed a large
majority of existing FLAs use indirect ways of providing feature location knowledge
to the FLA.When such test cases or query strings exist in real industrial cases, they
may serve as good starting point for locating features. However, as described in
previous chapters, inputs required by dynamic approaches are often unavailable and
expensive to create. Besides this, there are also inherent problems with the approach
used by previous FLAs, that make them inaccurate. For example, test cases are
often not designed with feature location in mind. They may therefore exercise more
than one feature at a time or may not execute all possible paths in a feature’s use
case. Thus, using such test cases for feature location may results in inaccurate or
incomplete results. Information retrieval approaches based on using queries have
also been found to return many false positives. This is because, software assets that
implement different features may share a common vocabulary. As a results using
this input solely for feature location may provide faulty results.
The approach proposed in this work, presents a more direct way of transferring
feature location knowledge to the FLA. In this approach, as depicted by Figure 5.1,

29

5. An ML Algorithm Based Recommendation System For Feature Location

the user directly selects a sample of source artifacts that they already know are
feature locations for a feature of interest Ê. The FLA then analyzes the values of the
properties of this supplied sample for patterns that connect them together Ë. When
such a pattern is found, it learns it Ì and then uses it to find and propose other
artifacts that have similar properties Í. In the approach, finding source artifacts
with similar properties is done with the help of a classifier. The feature location
task is formulated as a classification problem. The sample feature locations supplied
by the expert are transformed into a training data set for training the classifier. The
trained classifier is then used to predict feature associations for new source code,
that a developer adds.
The classifier is retrained at a decided interval as the development proceeds. It is
expected that the accuracy of the classifier will increase over time as the size of the
training data set increases until a point where the accuracy is sufficient.

Developer

Project Source code

Annotate File
with Feature A

Annotate File
with Feature B

1 1

Learns
Annotation
strategy

2

Classifier

3
Writes new
code

4 4
Proposes

Feature(s) for
added code

Proposes
Feature(s) for
added code

Figure 5.1: Feature-file trace view

5.2 Methodology
To explore the feasibility of using machine learning for the task of feature location, an
evaluation of different factors affecting the predictive performance of such a machine
is needed. These factors may include for example, which machine learning algorithms
provide the most precise predictions? What source code properties give the best
description of source artifacts for feature location? How many source artifacts must
already exist for a the best machine to predict accurately? Experiments were setup
to find out the answers to these questions. Each of these experiments simulate a
software development scenario where a developer has added new source code to a
system’s repository and then asked a trained machine to predict feature locations
for the newly added code. The predictive accuracy resulting from using different

30

5. An ML Algorithm Based Recommendation System For Feature Location

alternatives of the factors are then recorded to find out which of the alternatives
provide the most accurate results.
Together, the set of experiments over all commits of the system, simulate the
performance-evolution of the alternatives over time as the system evolves (i.e. from
the beginning of development when the system has only a few lines of code, to the
end, when it is a fully developed system with millions of lines of code).

5.2.1 Research Questions
Concretely, this part of the thesis tries to answer the following sub-questions of RQ2
(presented in the introductory section).

RQ2.1: What source code properties are best predictors of feature locations?
RQ2.2: At what granularity of source code, is feature location using machine
learning most accurate?
RQ2.3: What machine learning algorithm(s) provide the most accurate pre-
dictions of feature locations?
RQ2.4: How many example feature locations must already exist for the best
configuration to give the best predictions?
RQ2.5: How often must a machine be retrained to get good predictions?
RQ2.6: How accurate is a classifier when predicting feature associations for
code that do not directly implement any features?

The setups used to investigate these questions are described in more details below.

5.2.2 Exepriment Setup: RQ2.1 Best source code properties
for feature location

To train a classifier to recognize a feature’s implementation, properties of the fea-
ture’s current implementing code must be exposed to the classifier in a machine
readable format (i.e. as shown in Listing 5.1), from which it can learn to identify
similar source code that implements the same feature. new locations by recognizing
new source code with similar property values. To create this descriptive property
set for representing a feature location, several IR and static source code properties
were evaluated in the experiments.

SCP Sets
SCP Set 1 SCP Set 2 SCP Set 3

SCLD, NAEFA, TSM NAEFA, TSM TSM

Table 5.1: Source code property sets used in the experiments

These properties include:
1. Number of Already Existing Annotations (NAEFA
2. Cosine Text Similarity Metrics (CTSM): A Set of text similarity scores between

a piece of code and the vocabulary used in all of the known locations for that
feature.

3. Distance score between location of piece of source code and the location of all
other feature locations for a feature (SCLD).

31

5. An ML Algorithm Based Recommendation System For Feature Location

These are described in more details in the following subsections. The motivation
for selecting IR and static source code metrics as described in previous sections is
that static and IR properties are easier to obtain and readily available in real life
compared to dynamic data.
The existing annotated feature implementing code for each feature in the subject
system were then extracted from the source code using the FLOrIDA tool. Then,
for each annotated feature location, a data vector is created to represent it (i.e.
as shown in Listing 5.1, with a concrete example in Listing 5.2). The data vector
contains the metric values of the properties of a feature location mentioned above.
The combined vectors for each feature are then used as data points to train the
classifier to recognize feature locations for that particular feature.
Different well known text similarity metrics were evaluated in the initial experiments
however the CTSM metric gave the most promising results. Details of these metrics
are described in the subsections below:

1 [FPC:{F1_(0/1), F2_(0/1), F3_(0/1), ... ,F(n)_(0/1),}
2 CTSM_metric1:{ctms_score_F1, ctms_score_F2, ...ctms_score_F(n)},
3 SCLD_metric:{scld_score_F1, scld_score_F2, ...scld_score_F(n)},
4 NEAF_metric:{neaf_score_F1, neaf_score_F2, ...neaf_score_F(n)},]

Listing 5.1: Feature Data Vector Encoding

1 [1, 0, 0, 1, 0,0.64, 0.32, 0.15, 0.00, 0.11,0.75, 0.01, 0.03, 0.75, 0.00,2, 0, 0, 1, 0]

Listing 5.2: Feature Data Vector Encoding Example

Feature Presence Condition (FPC)

As shown in the blue line of Listing 5.1 and with an example in the blue line of
Listing 5.2, the set of known features in the system are represented by a set of
equally numbered set of binary numbers. In the training data set, if a feature is
annotated on a piece of code, then the value for that feature in the feature data
vector representing that piece of code will be 1 otherwise it will be 0. In the test
data set, the value of the FPC are zero, representing that no features are currently
associated with the piece of code. The classifier sets the values of the associated
detected features to one, and the remaining features remain 0.

Number of Already Existing Annotations (NAEFA) Metric

Another metric used to predict feature locations for newly added code is the number
of locations each feature has at the point when a new code is to be classified. For
example, if Feature A by the third commit is associated with 2 annotations and
Feature B is not associated with any annotations, the score of Feature A and B on
this metric is 2 and 0 respectively. In Listing 5.1, NAEFA is represented by the
read line with a concrete example on the red line of Listing 5.2.

Text Similarity Metrics

Several well-known text similarity metrics were evaluated in the study. The metrics
were used to try to quantify in numeric terms how close the vocabulary used in a

32

5. An ML Algorithm Based Recommendation System For Feature Location

piece of source code to be classified is to the vocabulary used in the source code of
the already known feature locations for each feature in the system. The hypothesis
here is that, the similarity score between the vocabulary in a piece of code and that
is also a feature location for a feature should be close to the vocabulary used in the
code of already existing feature locations of that feature than for any other feature
in the system.
There are several already existing similarity metrics algorithms to choose from.
To make a choice of the best similarity metric, a few of these were selected and
evaluated in our experiments. These are described below. However, after some initial
experiments, the CTSM gave the best output and thus was used in the encoding.
In Listing 5.1 the CTSM metrics is represented by the green line of numbers, with
a concrete example on the corresponding green line of Listing 5.2

Cosine Text Similarity Metric (CTSM): The cosine similarity between two
documents represented as vectors, is a measure that calculates the cosine of the
angle between them. It is thus a judgment of orientation and not magnitude: two
vectors with the same orientation have a cosine similarity of 1, two vectors at 90°
have a similarity of 0, and two vectors diametrically opposed have a similarity of -1,
independent of their magnitude. In our experiment, the source code extracted from
an annotation is considered as one document and the description of a feature as the
other document [2].

Jaccard Similarity Metric: This is another token based vector space similarity
measure like the cosine distance and the matching coefficient. Jaccard Similarity
uses word sets from the comparison instances to evaluate similarity. The Jaccard
similarity penalizes a small number of shared entries (as a portion of all non-zero
entries) more than the Dice coefficient [1].

Levenshtein distance: The Levenshtein distance is the basic edit distance func-
tion whereby the distance is given simply as the minimum edit distance which trans-
forms string1 into string2 [2]. Edit Operations are listed as follows:

1. Copy character from string1 over to string2 (cost 0).
2. Delete a character in string1 (cost 1).
3. Insert a character in string2 (cost 1).
4. Substitute one character for another (cost 1).

The distance measure is calculated by summing up the cost of the copy, insert and
delete operations which are calculated with the formulas 5.1, 5.2 and 5.3 respectively.

D(i− 1, j − 1) + d(si, tj)//subst/copy (5.1)

D(i, j) = minD(i− 1, j) + 1//insert (5.2)

D(i, j − 1) + 1//delete (5.3)

d(i, j)isafunctionwherebyd(c, d) = 0ifc = d, 1else (5.4)

33

5. An ML Algorithm Based Recommendation System For Feature Location

Needleman-Wunch distance or Sellers Algorithm Metric: This approach
is known by various names, Needleman-Wunch, Needleman-Wunch-Sellers, Sellers
and the Improving Sellers algorithm [2]. It is similar to the basic Levenshtein dis-
tance. It adds a variable cost adjustment to the cost of a gap, i.e. insert/deletion,
in the distance metric. So, the Levenshtein distance can simply be seen as the
Needleman-Wunch distance with G=1. Distance measure is calculated by summing
up the cost of edit actions needed to convert one one string to another. The cost
of the copy, insert and delete actions are calculated using the formulas 5.5, 5.6, 5.7
respectively.

D(i− 1, j − 1) + d(si, tj)//copy (5.5)

D(i, j) = minD(i− 1, j) + G//insert (5.6)

D(i, j − 1) + G//delete (5.7)

Matching Coefficient Metric: The Matching Coefficient Metric is a simple
vector based approach which simply counts the number of similar terms, (dimen-
sions), on which both vectors are non-zero. So, for vector set X and set Y the
matching coefficient is |X & Y|. This can be seen as the vector based count of co-
referent terms. This is similar to the vector version of the simple hamming distance
although position is not taken into account. [2]

Block Distance Metric: It computes the distance that would be traveled to get
from one data point to the other if a grid-like path is followed. The Block distance
between two items is the sum of the differences of their corresponding components.
[2]

Euclidean Distance Metric: This is calculated as the square root of the sum
of squared differences between corresponding elements of the two vectors. [2]

Source Code Location Distance Metric (SCLD)

Another property of source code that was used for predicting feature locations for
newly added code is the relative distance of that piece of code to the location of
known feature locations in the project structure.
This metric tries to calculate a depth measure to express how far a piece of code to
be classified is to the already known locations of a feature in the project structure.
For example, a file compress.c can be 50% close to file send.c because file compress.c
shares 50% of its file path with file send.c. File delete.c on the other hand can be 0%
similar to file send.c because it is in a completely different file path. This distance
measure is calculated for all known feature locations for each feature. Then an
average is calculated to get a measure of how far the piece of code is to the feature.
SCLD is represented by the brown line in Listing 5.1, and 5.2).

34

5. An ML Algorithm Based Recommendation System For Feature Location

5.2.3 Exepriment Setup: RQ2.2: Best source code granu-
larity for feature location

Beside this, Source code committed to a repository could be a few lines of code,
whole files, a folder or a mixture of these. Thus, another open question the study
aims to answer is at what source code granularity feature location must be done, to
get the most accurate predictions? To answer this question, experiments were run,
where different granularity levels were evaluated.
The granularity options that were tested in the experiment were file, folder and
LoC level granularity. Lines of code added to a file are aggregated into a single
data-point, when predicting on the file level, each single file addition is treated as a
data-point on its own and multiple files added in a folder are separated per file, and
each file is treated as an independent data-point. When predicting on the LoC level,
each new line added to the source code is treated as a data-point on its own. If a
whole file is added to the source code, each line in the file is extracted and treated
as a separate data-point.

Source Code Granularities Tested
LoC (Line of Code)
File
Folder

Table 5.2: Source Code Granularities tested in the experiments

5.2.4 Exepriment Setup: RQ2.3: Best Machine learning al-
gorithm for feature location

This section describes the classifiers evaluated in the study and the reason for select-
ing them. The goal was to select a classifier that gives the best prediction for feature
locations. The best classifier must be able to support multilabel classification as the
problem to be solved is of a multilabel nature. Besides this, other requirements
are that the classifier must also be able to support categorical and numerical data,
handle incomplete data and be accurate while working with small samples of data.
The last requirement is particularly important as this would be a good incentive
for developers looking to adopt the approach (i.e. they do not have to have a large
sample annotated code set before the classifier is accurate enough).
A popular problem transformation algorithm, Binary Relevance (BR) algorithm was
selected for use in the study. The BR algorithm was selected for use particularly as
it provides the freedom of using different kinds of underlying binary classifiers. This
made it possible to evaluate several popular classifiers which were evaluated in the
study. The underlying binary classifiers selected for evaluation were the Support
Vector Machine (SVM), Decision Tree (DT), K-Nearest Neighbor (kNN) and Multi-
Layer Perceptron (MLP).
Implementations of these classifiers found in the Waikato Environment for Knowl-
edge Analysis (WEKA) [25] machine learning library were used in the study. Each
of the algorithms have tuning parameters which in the ideal case can be tuned to op-
timize its predictive performance for the problem being modeled. However, there is

35

5. An ML Algorithm Based Recommendation System For Feature Location

also often a possibility to over tune the algorithm and thus to influence its predictive
performance for the particular case study (i.e. in effect reducing the transferabil-
ity of the predictive performance to other systems). To avoid this tuning bias, the
defaults values of these parameters were used. The algorithms are described briefly
below.

Binary Relevance(BR) BR is the most commonly used problem transformation
algorithms for multilabel classification. Using BR, a multilabel data set is trans-
formed into a set of single label data sets. Then, BR learns a binary classifier for
each label in a multilabel problem [53].

Support Vector Machine (SVM) The classifier classifies data-sets into differ-
ent labels by calculating a maximal margin hyper-plane that separates the classes
of data.
To learn non-linearly separable functions, the data being classified is mapped to a
higher dimensional space where a separating hyper-plane is found using a kernel
function. New samples are classified according to the side of the hyper-plane they
belong to [33].

Decision Tree (DT) Decision tree classifiers label data-set into different classes
by grouping them based on the value of their properties. The classification mech-
anism of a decision tree is a tree-like structure where each node in the tree is a
property of the data-set and each branch represents values or value ranges the data
instances can take. Individual data instances are then classified by sorting them
based on value of their properties, starting from the root of the tree until they end
up in a branch of the tree (i.e. their class)[40].
The property of the data-set that best divides the instance of the data-set are
usually selected as the root of the tree. Several approaches exist for finding this
best property including the gini index[16] and information gain [15]. The information
gain approach was used in this study.

Machine Learning Algorithms Used
kNN Naive Bayes
SVM Bootstrap Aggregation
DT Stacked Aggregation
Random Forest

Table 5.3: Machine Learning Algorithms tested in the experiments

5.2.5 Exepriment Setup: RQ2.4: How many example fea-
ture locations must already exist for the best config-
uration to give the best predictions?

To find out how the treatments performed at different stages of software develop-
ment, the subject system’s evolution history was divided into stages. These stages

36

5. An ML Algorithm Based Recommendation System For Feature Location

correspond to changes made to the source code as the system is being developed (i.e.
as found in its version control history). Each change of the source code (i.e. commit)
is considered as one stage in the systems evolution. Thus, to predict features for the
source code in the change set of commit (n+1), feature locations found in the source
code up to commit n are used to train the machine. To predict feature locations for
the source code in the change set in commit (n+2), feature location in the source
code up to commit (n+1) are used to train the machine and so on.

5.2.6 Exepriment Setup: RQ2.5: Best Training Interval
Additionally, it is useful to know how often a machine must be retrained after
new source has been added in order to get the best predictions. To achieve this,
experiments were also run where the wait time before retraining is done were varied.
Since software systems can be quite large, it may not be feasible to retrain the
machine every time a new commit is made. Especially when the system is being
developed by multiple people concurrently. To answer the question of how the
retraining intervals affect a machine’s accuracy, we set up experiments where the
length of retraining time was varied. We evaluated three different retraining lengths:

1. Retrain after each commit
2. Retrain after every tenth commit
3. Retrain after every twentieth commit.

5.2.7 Experiment Setup: RQ2.6: How accurate is a classi-
fier when predicting feature associations for code that
do not directly implement any features

In the subject system used in the experiments, some source code were annotated and
others were not. Non of the experts who did the original annotations were around
to provide a reason why these source code were not annotated. Several plausible
alternative reasons why these may have not been annotated can be imagined. These
reasons may include:

1. Those pieces of source code are not directly associated with any features
2. They are associated with all features of the system.
3. They are associated with a feature(s) but have not been annotated yet.

To be certain of the accuracy score that can be attributed to the classifiers being
evaluated, ground truth with certainty is needed. In the study, this ground truth
was obtained from annotations(i.e. if a piece of source code is annotated with feature
A, a classifier is wrong if it associates it with feature B, or with no features at all).
However, since it was not clear why a large part of the code was unannotated (As
there were no experts to explain why they were not annotated). Thus, if a classifier
associates a piece of unannotated source code with feature A, we cannot be sure if
it is right or wrong. It would be right if we assume reason 3 to be true but wrong
if we assume reason 1 or 2 to be true. The safest choice was thus to leave all such
pieces of code out of the experiments. Hence, all such source code were ignored in
the experiments to test the hypothesis for R.Q 2.1 to 2.5.

37

5. An ML Algorithm Based Recommendation System For Feature Location

However, if we assume reason 1 to be true, we can attempt to test the hypothesis
of how accurate a classifier would be, when classifying source code that are not
directly associated with any feature of the system. Thus, to answer R.Q 2.6, an
experiment was set up where a classifier is trained with annotated source code and
tested on a mix of annotated and unannotated source code. The expectation is that,
the classifier would associate the annotated source code with their correct features
and will not associate the unannotated features with any features at all.
Further more, since a large majority of the source code in the subject system were
unannotated, it took a long time to run the experiments for each version of the source
code (training data:commit n, test data: commit n+1) if all unannotated source code
were included in the test set. Thus instead of using the entire unannotated source
code in each test version, a sample of the unannotated code, corresponding to 40%
of the size of the annotated test set for that version is randomly selected. Together,
the annotated test set and the selected 40% are then used to test the classifier. To
ensure random selection of the unannotated test set. The LoCs are places inserted
into a list at random and then the first n elements corresponding to 40% of the size
of the annotated test set are then selected.
The reason why a fixed percentage of the unannotated part of the test set was fixed
at 40% of the size of the annotated test set, was so that, a rough numeric estimate
can be calculated of the size of the effect the added unannotated source code would
have on the accuracy of the classifier, as compared to the classifier’s accuracy score
recorded in RQ 2.3. It should be noted however that, the number 40 in itself was
not chosen for any special reason. The size could as well have been 20, 50 or 60%
and still serve the same purpose.

5.2.8 Steps in an Experiment
In conducting each of the experiments described above, the following steps were
followed:

1. Source code (i.e. containing some feature annotations) in an nth commit is
pulled from a source code repository (i.e. as would be the case when a devel-
oper has written an initial set of source code and annotated it with features).

2. The Source Code Property (SCP) set (i.e. from Table 5.1 and explained fur-
ther below) being evaluated in the current experiment run, are then extracted
from the existing set of annotations for each feature in the pulled source and
converted into a data vectors for training the machine.

3. The MLA (i.e. from Table 5.3) being evaluated in the test run is then trained
with the data vectors.

4. To test the accuracy of the just trained machine, source code from the ((n+1))th
commit is pulled (i.e. as would be the case when a developer has added new
code and would like to get feature predictors for it)

5. For each annotated LoC and un-annotated LoC(i.e in the case of RQ2.6 testing
the behavior of the machine when tested on un-annotated source code) source
in the change set, the same SCPs as in the training data are extracted and a
data vector is built to represent the LoC.

6. For each of the data vectors in the test set, the machine then predicts its

38

5. An ML Algorithm Based Recommendation System For Feature Location

feature associations.
7. The prediction is then compared to the actual annotations in the pulled

change-set, to calculate the treatment’s accuracy for the experiment run.
The above process is then repeated with all combinations of SCPs and algorithms
in each stage of evolution to test each treatments accuracy for that stage.
One algorithm will be tried at each test run. But each algorithm will be run on all
sets of SCPs. A stage in the source code evolution includes a set of two commits
from the source codes version control history. An nth commit (i.e. used for training
the ml algorithm) and an (n+1)th commit used for testing the algorithm.
Each of these factors has several alternatives.

Annotate Code
in commit n

Annotates Code
in commit n+1

Trained on
Annotations in

commit n

Tested on
Annotations in
commit n+1

Figure 5.2: Training and Test Data Combinations

5.2.9 Evaluation
To test the performance of each algorithm during each experiment the the well
known classification metrics precision, recall and the f-measure as described in the
formulas below are used.

Relevant Features (i.e. regards a LoC(x): All features in the set of features
x is implementing according to the training data

Non Relevant Features (i.e. regards a LoC(x): All features not in the set
of features x is implementing according to the training data

f-measure = 2× precision× recall
precision + recall (5.8)

39

5. An ML Algorithm Based Recommendation System For Feature Location

precision = relevant features ∩ retrieved features
retrieved features (5.9)

recall = relevant features ∩ retrieved features
relevant features (5.10)

false positive = retrieved features− correctly labelled features (5.11)

false positive = retrieved features− correctly labelled features (5.12)

true positive = retrieved features− incorrectly labelled features (5.13)

true negative = retrieved features− correctly labelled features (5.14)

For each stage in the evolution history, we record the optimum set of code attributes
that gives the highest accuracy, and each algorithms performance with this set. Over
the entire evolution history of the project we track the overall performance of each
treatment and calculate an average performance score. From the analysis of this
gathered data we can then try to answer each of our research questions.

5.2.10 Subject System
To run the described experiment and effect to answer our research questions, we
need a subject system with already existing feature annotations that we could use
as ground truth to both train and test the algorithms and to select appropriate
source code artifact properties. The approach we develop is designed to be pro-
gramming language independent and so the subject system could be written in any
programming language. The subject system we used in our experiment was the
Clafer Tool set.

Clafer Tools

Clafer Tools is a tool set containing 4 tools developed in HTML and JavaScript. The
tool set was developed using clone-and-own and feature annotations were created
whiles the features in the system were being implemented. Therefore, each feature
in the system has several associated feature annotations, which link the feature to
its implementing source code. We had access to the system’s version control history
consisting of commits of feature annotated code over the development life cycle of
the systems in the tool chain. We could therefore, replay this history to simulate
the prediction of feature locations during its development. The properties of the
Clafer Tool chain are summarized in the table below:

40

5. An ML Algorithm Based Recommendation System For Feature Location

General Project Properties
Programming Language JavaScript
Size (LoC) 10,000
Number of developers 15

Features
No. Features in project 82
No. Features with Annotations 20
Avg. No. Annotations per Feature 60

Feature Annotations
Total No. Feature Annotations 1400
No. Single-Line Annotations 150
No. Multi-Line Annotations 300
No. File Annotations 700
No. Folder Annotations 250

Code Evolution History
No. of Commits in VC history 150
Avg. Annotation per commit 5

Table 5.4: Clafer Tools Source Code Properties

Description of Data-set

As shown in 5.4, our data set included a total of 1400 feature annotations tracing
the 81 features of the Clafer Tools System to its source code. The Annotations are
distributed over 150 commits of feature code which were made by 15 developers
over the life span of the system. The average number of feature annotation per
commit was 5. Each feature had an average of 60 annotations. The annotations
were extracted from the source code of Clafer Tools. Out of these annotations,
150 were Single-Line Annotations, 300 were Multi-Line Annotations, 700 were File
Annotations and 250 were Folder Annotations.

5.3 Experimental Results

The results of the experiments are now presented in the subsections below:

Table 5.5: Average F-Measure Scores for ML Algorithm and Source Code Proper-
ties

SCP
ML Algorithm SCP Set 1 SCP Set 2 SCP Set 3 Averages
SVM 0,99 0,97 0,49 0,82
kNN 0,97 0,97 0,66 0,87
Averages 0,98 0,97 0,58

41

5. An ML Algorithm Based Recommendation System For Feature Location

0,00

0,20

0,40

0,60

0,80

1,00

1,20

3 10 16 22 27 32 37 42 47 52 57 62 67 72 77 82 87 92 97 102 107 112 117 122 127 132 137 142 147 152 157 162 167 172 177 182 187 192

Comparison of Source Code Property Sets

CTS_NEA_CL SVM CTS_NEA SVM CTS SVM

Figure 5.3: F-Measure Scores for Combinations of SCLD, TSM, NAEFA Over
Time

5.3.1 RQ2.1: Best Source Code Properties for prediction
Several combinations of SCPs were tested in order to find out which SCP or com-
bination of SCPs provides the highest predictive accuracy when used for feature
location prediction. The results of the experiments show that the best is the com-
bination of SCPs: SCLD, TSM and NAEFA). It achieves the best micro F-measure
score across all training stages and classifier at 98% accuracy. The second-best
combination of source code properties was the set as the TSM and NAEFA with
an average F-measure score of 97%. This combination produces an acceptable pre-
diction accuracy rate compared to the maximum set even with one less predictive
attribute. The next best performing set of source code properties was TSM by itself.
Its produces an average F-measure score of 58% as shown in the table 5.5.

5.3.2 RQ2.2: Source Code Granularity for prediction
Feature locations in terms of granularity can also be a LoC, file or a folder container
multiple sub folders. Another important question open to answer is thus at what
source code granularity a classifier must classify newly added code. An intuitive
approach would be to use the same level of granularity as the developer has used
for annotating the source code. Thus, if the developer annotates a line of code and
a folder, the folder and line of code will both be transformed into a training data
point and used to train the machine. Another approach would be to split the entire
annotated sample source into file clusters. Each file will then be converted into a
training data point. Using this option, newly added code is also aggregated/split
into files and then classified accordingly. Thus, features will only be mapped to
files using this option. On an even more coarse level the sample source code can be
aggregated/split into folder units and used for both training and prediction. As the

42

5. An ML Algorithm Based Recommendation System For Feature Location

0,00

0,20

0,40

0,60

0,80

1,00

1,20

3 6 9

1
2

1
5

1
8

2
1

2
4

2
7

3
0

3
3

3
6

3
9

4
2

4
5

4
8

5
1

5
4

5
7

6
0

6
3

6
6

6
9

7
2

7
5

7
8

8
1

8
4

8
7

9
0

9
3

9
6

9
9

1
0

2

1
0

5

1
0

8

1
1

1

1
1

4

1
1

7

1
2

0

1
2

3

1
2

6

1
2

9

1
3

2

1
3

5

1
3

8

1
4

1

1
4

4

1
4

7

1
5

0

1
5

3

1
5

6

1
5

9

1
6

2

1
6

5

1
6

8

1
7

1

1
7

4

1
7

7

1
8

0

1
8

3

1
8

6

1
8

9

1
9

2

1
9

5

P
re

ci
si

o
n

Commit

Comparison of Source Granularity

TAEC_LoC_SVM TAEC_File_SVM TAEC_Folder_SVM

Figure 5.4: F-Measure Scores for Source Code Granularity over Time
Source Code Granularity LoC File Folder
F-Measure 0,97 0,65 0,28

Table 5.6: Average F-Measure Scores for Source Code Granularity over Time

other extreme end, the entire sample source code can be split into LoCs and used for
training. Newly added code is also then split into LoCs and classified individually.
Because it is not clear which of these options results in a better prediction per-
formance, an experiment was set up to compare the performance of each of these
options. As shown in Figure 5.4 and 5.6 overall, the LoC granularity level provided
the best average predictive performance with an average F-measure score of 97%
followed by the file level granularity with an F-Measure score of 65%. The folder
level granularity performed poorest with an F-Measure score of 28%.

5.3.3 RQ2.3: Best performing classification algorithm
The SVM algorithm performed consistently better than all other tested algorithms
throughout the life-span of the Clafer tools system whiles using the maximum set of
source code properties (i.e. SCLD, TSM and NAEFA) with an average F-Measure
score of 99%. The kNN algorithm was the next best performing algorithms with
an F-Measure score of 97%. While using the source code property set TSM and
NAEFA, the kNN algorithm and SVM algorithm perform equally well with an F-
Measure score of 97% each. Finally using only the TSM source code property the
DT algorithm outperforms the SVM algorithm with an F-Measure score of 66%
against 49%. On the average however, over all three sets of source code properties,
the DT classifier performed better than the SVM algorithm with an average of 87%
against 82%.
What these results show is that; the choice of source code property affects the

43

5. An ML Algorithm Based Recommendation System For Feature Location

performance of the algorithms. Thus, if the user decides to use the source code
properties TSM and NAEFA, then the DT algorithm it is not very important which
classifier the user should select as each of them performs equally well with this set.
However, if the user chooses to use the maximum set of source code properties (i.e.
SCLD, TSM and NAEFA) then the SVM classifier is the go to algorithm. One
the other hand if the user would like to only use the TSM source code property
exclusively, the DT algorithm is the better choice.
As mentioned in the Section 5.2.4, the default settings of the algorithms as provided
in the WEKA [25] was used for each of the algorithms. Thus, the results presented
here are valid only for this configuration. Thus, the performance of the algorithms
could be entirely different if the algorithms are tuned to match the data set being
analyzed. The goal of this work is not to find the best configuration of each of the
algorithms but to evaluate on a high level the feasibility of using these algorithms
in general for the feature location task.

0,00

1,00

2,00

3,00

4,00

5,00

6,00

7,00

8,00

3 16 27 37 47 57 67 77 87 97 107 117 127 137 147 157 167 177 187

Comparison of Source Granularity

TAEC_SVM TAEC_Decision Tree TAEC_MLALGO_KNearest_Neighbors TAEC_MLALGO_Random_Forest

TAEC_MLALGO_Naive_Bayes TAEC_MLALGO_Bootstrap_Aggregation TAEC_MLALGO_Stacked_Aggregation

Figure 5.5: F-Measure Scores for evaluated machine learning algorithms over time

Table 5.7: Average F-Measure scores of evaluated algorithms

ML Algorithm Average F-Measure (All stages)
SVM 0.99
DT 0,97
KNN 0,74
Random Forest 0,89
Naive Bayes 0,79
Stacked Aggregation 0,45

44

5. An ML Algorithm Based Recommendation System For Feature Location

Table 5.8: Average F-Measure Scores for Training Intervals

Training Interval Every Commit Every Fifth Commit Every Tenth Commit
F-Measure 0,99 0,96 0,94

5.3.4 RQ2.4: Initial manual effort requirement

An important question to answer is how much effort is required for the initial effort
required of the programmers to create the initial set of feature locations for training
the classifier.
As shown in the Figure 5.4 while predicting on the LoC granularity, the size of initial
training set required for getting good predictions is really low for both classifiers.
Both classifiers become very stable very early in the development cycle (i.e. commit
16) when NAEFA is around 600 feature locations. However, the SVM algorithm
becomes stable much earlier than the DT algorithm at commit 10 when the number
of annotations are around 6.

5.3.5 RQ2.5: Required Interval for Retraining Classifier

As a software development process is continuous process of adding or removing code
to implement new requirements or to remove no longer needed ones, the classifier
must also be continuously updated in order to stay up to date with the changing
nature of the properties of a feature (which it tracks) in order to maintain its pre-
dictive performance. However, a question that remains open is how frequent this
retaining process should occur in order to maintain an acceptable level of predictive
performance. To answer this question, experiments were run where the retraining
interval was varied to see the effect of different intervals on predictive performance.
Retraining was done in intervals of; after every commit, after every 5th commit, af-
ter every 10th commit. The results of the experiments, as shown in table 5.9 shows
that the best average predictive performance is recorded when retraining after every
commit at 99% accuracy, followed by an second best average accuracy of 96%, when
retraining after every 5th commit. Finally, the comparatively worse average accu-
racy of 94% is recorded when retraining the machine after every 10th commit. Thus,
the results appear to favor a more frequent retraining interval to a less frequent one.
However looking at the graphs in Figure 5.8, the effect of the retraining interval is
more sever in the early phase of the project (i.e. when the size of training examples
is small). Eventually, the predictive performance of the classifiers become similar
regardless of the retraining interval after a certain number of commits depending on
the retraining interval. For the intervals of 1 and 5 commits the machine becomes
stable on the 7 commits and for the 10th interval the machine becomes stable after
the 11th commit.

45

5. An ML Algorithm Based Recommendation System For Feature Location

Table 5.9: Average F-Measure, Precision and Recall Scores for Un-annotated Data

Recall Precision F-Measure
SVM 0,07 0,23 0,10
kNN 0,52 0,45 0,48

0,00

0,20

0,40

0,60

0,80

1,00

1,20

3 7 11 14 18 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 100103106109112115118121124127130133136139142145148151154157160163166169172175178181184187190

Comparison of Retraining Intervals

TAEC_SVM TAE5C_SVM TAE10C_SVM

Figure 5.6: F-Measure Scores of Training Intervals over Time

5.3.6 RQ2.6: Classifier Accuracy for Unlabeled Test Data

To find out how a classifier behaves when predicting source code that do not directly
implement any features, an experiment of this nature was carried out. The exper-
iment was carried out using the LoC level of granularity and the best performing
SCPs (i.e. the combination of the SCPs, SCLD, TSM and NAEFA) and the two
best performing MLA algorithms kNN and SVM. To reduce the number of data
points to process, (i.e. as processing takes a long time when the entire set of all
un-annotated LoCs for each stage is used) a sample of the test data was selected
instead of running the experiment on all of the un-annotated data. It was ensured
that exactly 40% of the test data were unlabeled. The results of the experiment as
illustrated in Figure 5.7 shows that, there is a decrease in the performance of both
of the best performing algorithms:SVM and kNN. Figure 5.9 and Table 5.10 show a
comparison graph of the accuracy achieved by the kNN in R.Q 2.3 (i.e. reduced by
40% per stage) and the performance of the same algorithm in RQ 2.6. It is worthy
to note that, the percentage reduction in the performance overall seems to have a
relationship to the percentage of un-annotated data added to the second experi-
ment (R.Q 2.6) as shown in Table 5.10. The kNN algorithm, contrary to the earlier
experiment also performed better than the SVM algorithm.

46

5. An ML Algorithm Based Recommendation System For Feature Location

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

3 13 23 33 43 53 64 74 84 94 104 114 124 134 144 154 164 174 184 194

KNN	Performance	Unlabled	Test	Data

MLALGO_KNearest_Neighbors	Recall MLALGO_KNearest_Neighbors	Precision MLALGO_KNearest_Neighbors	F-Measure

Figure 5.7: Precision, Recall and F-Measure scores of KNN Algorithm over Time

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

3 13 23 33 43 53 64 74 84 94 104 114 124 134 144 154 164 174 184 194

SVM	Performance	Unlabled Test	Data

MLALGO_Support_Vector_Machines	Recall MLALGO_Support_Vector_Machines	Precision MLALGO_Support_Vector_Machines	F-Measure

Figure 5.8: Precision, Recall and F-Measure scores of SVM Algorithm over Time

47

5. An ML Algorithm Based Recommendation System For Feature Location

Table 5.10: Average F-Measure, Precision and Recall Scores for Un-annotated
Data

ML Algorithm Average F-Measure (All stages)
kNN(R.Q 2.3) 0.74 * 0.6 0.444
kNN(R.Q 2.6) 0,48

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 100103106109112115118121124127130133136139142145148151154157160163166169172175178181184187190

Relationship	between	Accuracy	of	KNN	in	RQ2.3	and	RQ2.5

KNN-R.Q_2_3	*	06 KNN-R.Q_2_6

Figure 5.9: Relationship between performance difference of KNN and percentage
of added unannotated source code (i.e. RQ2.3 and RQ2.5)

5.4 Limitations of Study
To run the experiments for RQ 2.1 to RQ 2.5 only source code with annotations
were selected for creating both the training and test data vectors. This was done in
order to be sure that the data used for the experiments were accurate (i.e as there
were no experts to explain why the rest of the code were not annotated). Even
though this was done to have clean ground truth needed for testing the accuracy of
the trained-classifiers, this could also hinder the use of the predictive model in real
life. The reason is that, in real life, not all source code may directly implement a
feature of the system. Some source code may be infrastructure code that contribute
to all features of the system or that supports the general running of the system. In
the study all such code may have been removed with the unannotated code. Thus,
the accuracy of the classifier for such pieces of code is not shown in this study.
The results presented in Section 5.3 show the classifiers’ overall performance for
all features/feature types in each stage. The averages thereof show the average
classification performance for all features/feature types in all stages. The classifiers
may however perform differently for different features/feature types of the system.
This study however is of a preliminary nature, to assess the overall potential of
using machine learning for the task of feature location, and the factors that may
influence such a predictive performance. Further studies may focus on performance
differences based on individual features, feature types or annotation types etc.
The results presented in Section 5.3.6 are based on making the assumption that all
unannotated code in the subject system were code that did not directly implement

48

5. An ML Algorithm Based Recommendation System For Feature Location

any features. This was a best guess, as there were no experts available to explain
why these pieces of code were not annotated. As such, the results may not directly
reflect the classifiers ability to classify code that do not implement any features
(i.e. the code may not have been annotated for any of the reasons presented in
Section 5.2.7.

49

5. An ML Algorithm Based Recommendation System For Feature Location

50

6
Conclusion

Maintaining feature-source traces manually is a tedious, inefficient and error-prone
activity. Software artifacts change so quickly that, maintaining feature-source traces
requires a huge time investment in constant revision; a task that is hard to keep
up in real life software development scenarios. Feature-source trace documenta-
tion is thus often outdated or entirely unavailable. When this knowledge is needed
for performing software development tasks, feature location techniques are used to
recover it. Several approaches have been proposed in past research for this task.
However, a large part of these techniques (i.e. dynamic feature location techniques)
require hard-to-get input which are often unavailable in real-life. The remaining part
(i.e. static feature location techniques) use available input, but return results with
an unacceptable rate of false positives. This thesis contributes to the research on
feature-source trace documentation, feature location techniques and feature-source
documentation exploitation.
For the task of documenting and exploiting feature-source traces, it presents a
lightweight tool to support developers by automating the repetitive tasks of docu-
menting source code and also in exploiting the documented knowledge by providing
visualizations and navigation capabilities on them as the volume of documentation
can be huge for large industrial systems. The idea is that, the retained embedded
knowledge will support developers during other feature oriented software develop-
ment tasks. For example, the tool can support management of a feature oriented
variant-rich system that is not consolidated in a software product line with an in-
tegrated platform. To document feature locations in a robust way, it relies on a
programming-language-independent, embedded feature-annotation system proposed
in previous work. Thereafter, the embedded feature-source documentation is pro-
cessed and visualized using different kinds of views. Standard metrics about the
feature-source relationship is then calculated to help the developer get a feel for the
system’s feature properties. To evaluate the tools usefulness for the stated purpose,
it was used to visualize feature annotations in a large industrial system with 3.2M
lines of code. Feedback from 2 experts working on the system provided positive feed-
back that the tool provides useful feature oriented views of the system and further
provided feedback on additional views that may also be useful.
In the second part, the thesis proposes a semi-automated machine-learning-based
approach for feature location in source code. Furthermore, it provides experimental
results on the evaluation of the approach on a real system. The approach identifies
feature locations by leveraging feature location knowledge of developers, and then
uses this knowledge as a training data set for a classifier. The trained classifier is
then used to predict feature locations for the remaining code in the project or for

51

6. Conclusion

future added code. To train the machine, properties of the source code, such as
identifier words used in the source code, location of annotated source code in the
project structure, and the number of already existing annotations of a feature are
used as indicators. Metrics based on the above-mentioned properties are calculated
and used to create a data vector which represents a piece of annotated source code
from which they are calculated. The data vectors are then used to train the machine.
The study presents several contributions. It proposes several source code properties
that may be good indicators for a machine learning algorithm, to learn the differences
between source code that implement each feature’s in the system for which it has a
training data set. Further, it proposed an encoding of a piece of code, based on these
source code properties, for representing it to a machine. To find out what algorithms
are effective for the task, it then explored the effectiveness of using several popular
machine learning algorithms for the task of feature location. In addition, the study
evaluates the accuracy achieved while varying the granularity level of the source code
being classified, as well as the effect of varying retraining intervals of a machine after
new codes has been added.
To study the effect of varying these parameters several experiments were then run
to simulate the evolution of a project over a 192-commit long life-span. The case
study has 10,000 lines of code 82 features and developed by 20 in parallel.
The results of the experiments show that, cosine text similarity, no of already existing
annotations for a feature and the location of a piece of source code (i.e. code to be
classified, compared to existing known locations of a feature in the project source
code structure) together produced the most precise predictions of feature locations
for all of the evaluated machine learning algorithms. Nonetheless, using only the
TSM and NAEFA properties along also produced acceptably precise results at an
average of 98% F-Measure score for both algorithms tested. Using the TSM property
alone produced an impressive average F-Measure score of 58%.
The results of the experiments indicate for the granularity question that, classifying
source code on the level of LoC produces the most precise predictions.
In the matter of selecting a machine learning algorithm, the results show that when
using all three source code properties, the SVM performs better than the DT clas-
sification algorithm with an average F-Measure score of 99% and 97% respectively.
On the contrary, the DT outperforms the SVM algorithm when only the best source
code property (TSM) is used, DT achieves an average F-Measure score of 66%
against 49%. There were no performance differences however, between the two al-
gorithms when the TSM and NAEFA source code properties are used together with
an average F-Measure score of 97% each.
Future work will focus on extending FLOrIDA with further metrics (e.g., process
metrics extracted from an underlying version-control system) and views. It is also
planned that in the future, the tool will have the capability of importing feature
models and descriptions from other tools and exports metrics to excel. However,
most importantly a more thorough evaluation is planed with teams of developers
who are maintaining and evolving a large industrial-automation system with many
variants.
On the part of the feature location approach, future work will be focus on finding out
if tuning the parameters of the algorithms affect the performance of the algorithms

52

6. Conclusion

evaluated in this study.

53

6. Conclusion

54

Bibliography

[1] A. V. Aho. Pattern matching in strings. Formal Language Theory: Perspectives
and Open Problems, pages 325–347, 1980.

[2] B. Andam, A. Burger, T. Berger, and M. R. Chaudron. Florida: Feature
location dashboard for extracting and visualizing feature traces. In Proceedings
of the Eleventh International Workshop on Variability Modelling of Software-
intensive Systems, pages 100–107. ACM, 2017.

[3] M. Antkiewicz, K. Bąk, A. Murashkin, R. Olaechea, J. Liang, and K. Czarnecki.
Clafer tools for product line engineering. In SPLC, 2013.

[4] M. Antkiewicz, W. Ji, T. Berger, K. Czarnecki, T. Schmorleiz, R. Lämmel,
S. Stănciulescu, A. Wąsowski, and I. Schäfer. Flexible product line engineering
with a virtual platform. In ICSE, 2014.

[5] G. Antoniol, G. Canfora, G. Casazza, and A. De Lucia. Identifying the starting
impact set of a maintenance request: A case study. In Software Maintenance
and Reengineering, 2000. Proceedings of the Fourth European, pages 227–230.
IEEE, 2000.

[6] G. Antoniol and Y.-G. Guéhéneuc. Feature identification: An epidemiological
metaphor. IEEE Transactions on Software Engineering, 32(9):627–641, 2006.

[7] S. Apel, D. Batory, C. Kästner, and G. Saake. Feature- Oriented Software
Product Lines. Springer, 2013.

[8] S. Apel, D. Batory, C. Kästner, and G. Saake. Feature-Oriented Software Prod-
uct Lines. Springer, 2013.

[9] S. Apel and C. Kästner. An overview of feature- oriented software development.
Journal of Object Technology (JOT), 8(5):49–84, 2009.

[10] A. Armaly, J. Klaczynski, and C. McMillan. A case study of automated feature
location techniques for industrial cost estimation. In ICSME, 2016.

[11] T. Berger and J. Guo. Towards system analysis with variability model metrics.
In VaMoS, 2014.

[12] T. Berger, D. Lettner, J. Rubin, P. Grünbacher, A. Silva, M. Becker,
M. Chechik, and K. Czarnecki. What is a feature? A qualitative study of
features in industrial software product lines. In SPLC, 2015.

[13] T. Berger, D. Nair, R. Rublack, J. M. Atlee, K. Czarnecki, and A. Wasowski.
Three cases of feature-based variability modeling in industry. In MODELS,
2014.

[14] T. J. Biggerstaff, B. G. Mitbander, and D. Webster. The concept assignment
problem in program understanding. In ICSE, 1993.

[15] J. G. Carbonell, R. S. Michalski, and T. M. Mitchell. An overview of machine
learning. In Machine learning, pages 3–23. Springer, 1983.

55

Bibliography

[16] B. Chandra and P. P. Varghese. Fuzzifying gini index based decision trees.
Expert Systems with Applications, 36(4):8549–8559, 2009.

[17] K. Chen and V. Rajich. Ripples: tool for change in legacy software. In Software
Maintenance, 2001. Proceedings. IEEE International Conference on, pages 230–
239. IEEE, 2001.

[18] P. Clements and L. Northrop. Software Product Lines: Practices and Patterns.
Addison-Wesley, 2001.

[19] M. Dash and H. Liu. Feature selection for classification. Intelligent data anal-
ysis, 1(1-4):131–156, 1997.

[20] B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk. Feature location in source
code: a taxonomy and survey. Journal of software: Evolution and Process,
25(1):53–95, 2013.

[21] D. Edwards, S. Simmons, and N. Wilde. An approach to feature location in
distributed systems. Journal of Systems and Software, 79(1):57–68, 2006.

[22] T. Eisenbarth, R. Koschke, and D. Simon. Locating features in source code.
IEEE Transactions on software engineering, 29(3):210–224, 2003.

[23] A. D. Eisenberg and K. De Volder. Dynamic feature traces: Finding features
in unfamiliar code. In Software Maintenance, 2005. ICSM’05. Proceedings of
the 21st IEEE International Conference on, pages 337–346. IEEE, 2005.

[24] E. R. Gansner and S. C. North. An open graph visualization system and
its applications to software engineering. Software – Practice and Experience,
30(11):1203–1233, 2000.

[25] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Wit-
ten. The weka data mining software: an update. ACM SIGKDD explorations
newsletter, 11(1):10–18, 2009.

[26] J. L. C. Izquierdo, V. Cosentino, B. Rolandi, A. Bergel, and J. Cabot. Gila:
Github label analyzer. In SANER, 2015.

[27] W. Ji, T. Berger, M. Antkiewicz, and K. Czarnecki. Maintaining feature trace-
ability with embedded annotations. In SPLC, 2015.

[28] C. Kästner. CIDE: decomposing legacy applications into features. In SPLC
(2), pages 149–150, 2007.

[29] C. Kästner, T. Thum, G. Saake, J. Feigenspan, T. Leich, F. Wielgorz, and
S. Apel. FeatureIDE: A tool framework for feature-oriented software develop-
ment. In ICSE, 2009.

[30] C. W. Krueger. Easing the transition to software mass customization. In
PFE’01, 2001.

[31] J. Liebig, S. Apel, C. Lengauer, C. Kästner, and M. Schulze. An analysis of the
variability in forty preprocessor-based software product lines. In ICSE, 2010.

[32] K. Lukoit, N. Wilde, S. Stowell, and T. Hennessey. Tracegraph: Immediate
visual location of software features. In icsm, pages 33–39, 2000.

[33] D. P. Mandic and V. S. L. Goh. Adaptive and learning systems for signal,
processing, communications, and control. Complex Valued Nonlinear Adaptive
Filters: Noncircularity, Widely Linear and Neural Models, pages 325–325, 2001.

[34] A. Marcus, V. Rajlich, J. Buchta, M. Petrenko, and A. Sergeyev. Static tech-
niques for concept location in object-oriented code. In Program Comprehension,

56

Bibliography

2005. IWPC 2005. Proceedings. 13th International Workshop on, pages 33–42.
IEEE, 2005.

[35] A. Marcus, A. Sergeyev, V. Rajlich, and J. I. Maletic. An information retrieval
approach to concept location in source code. In Reverse Engineering, 2004.
Proceedings. 11th Working Conference on, pages 214–223. IEEE, 2004.

[36] H. A. Müller, S. R. Tilley, M. A. Orgun, B. Corrie, and N. H. Madhavji. A
reverse engineering environment based on spatial and visual software intercon-
nection models. In ACM SIGSOFT Software Engineering Notes, volume 17,
pages 88–98. ACM, 1992.

[37] G. Navarro. Nr-grep: a fast and flexible pattern-matching tool. Software:
Practice and Experience, 31(13):1265–1312, 2001.

[38] L. Passos, K. Czarnecki, S. Apel, A. Wąsowski, C. Kästner, and J. Guo. Feature-
oriented software evolution. In VaMoS, 2013.

[39] S. Paul, A. Prakash, E. Buss, and J. Henshaw. Theories and techniques of
program understanding. In Proceedings of the 1991 conference of the Centre
for Advanced Studies on Collaborative research, pages 37–53. IBM Press, 1991.

[40] T. N. Phyu. Survey of classification techniques in data mining. In Proceedings
of the International MultiConference of Engineers and Computer Scientists,
volume 1, pages 18–20, 2009.

[41] A. Pleuss and G. Botterweck. Visualization of variability and configuration
options. International Journal on Software Tools for Technology Transfer,
14(5):497–510, 2012.

[42] K. Pohl, G. Böckle, and F. J. v. d. Linden. Software Product Line Engineering:
Foundations, Principles and Techniques. Springer, 2005.

[43] D. Poshyvanyk, Y.-G. Gueheneuc, A. Marcus, G. Antoniol, and V. Rajlich.
Feature location using probabilistic ranking of methods based on execution sce-
narios and information retrieval. IEEE Transactions on Software Engineering,
33(6):420–432, June 2007.

[44] V. Rajlich. A methodology for incremental changes, 2002.
[45] M. P. Robillard. Automatic generation of suggestions for program investigation.

In ACM SIGSOFT Software Engineering Notes, volume 30, pages 11–20. ACM,
2005.

[46] M. P. Robillard and G. C. Murphy. Feat: a tool for locating, describing, and
analyzing concerns in source code. In Proceedings of the 25th International
Conference on Software Engineering, pages 822–823. IEEE Computer Society,
2003.

[47] M. P. Robillard and G. C. Murphy. Representing concerns in source code. ACM
Trans. Softw. Eng. Methodol., 16(1), Feb. 2007.

[48] J. Rubin and M. Chechik. A survey of feature location techniques. In Domain
Engineering. 2013.

[49] D. Shepherd, Z. P. Fry, E. Hill, L. Pollock, and K. Vijay-Shanker. Using natural
language program analysis to locate and understand action-oriented concerns.
In Proceedings of the 6th international conference on Aspect-oriented software
development, pages 212–224. ACM, 2007.

57

Bibliography

[50] S. Simmons, D. Edwards, N. Wilde, J. Homan, and M. Groble. Industrial tools
for the feature location problem: an exploratory study. Journal of Software:
Evolution and Process, 18(6):457–474, 2006.

[51] J. Singer, T. Lethbridge, N. Vinson, and N. Anquetil. An examination of
software engineering work practices. In CASCON First Decade High Impact
Papers, pages 174–188. IBM Corp., 2010.

[52] G. Spanoudakis, A. S. d. Garcez, and A. Zisman. Revising rules to capture
requirements traceability relations: A machine learning approach. In SEKE,
pages 570–577, 2003.

[53] E. Spyromitros, G. Tsoumakas, and I. Vlahavas. An empirical study of lazy
multilabel classification algorithms. In Hellenic conference on Artificial Intel-
ligence, pages 401–406. Springer, 2008.

[54] P. Tonella and M. Ceccato. Aspect mining through the formal concept analysis
of execution traces. In Reverse Engineering, 2004. Proceedings. 11th Working
Conference on, pages 112–121. IEEE, 2004.

[55] G. Tsoumakas and I. Katakis. Multi-label classification: An overview. Inter-
national Journal of Data Warehousing and Mining, 3(3), 2006.

[56] N. Wilde, M. Buckellew, H. Page, and V. Rajlich. A case study of feature
location in unstructured legacy fortran code. In Software Maintenance and
Reengineering, 2001. Fifth European Conference on, pages 68–76. IEEE, 2001.

[57] N. Wilde and M. C. Scully. Software reconnaissance: mapping program features
to code. Journal of Software Maintenance: Research and Practice, 7(1):49–62,
1995.

[58] W. E. Wong, S. S. Gokhale, J. R. Horgan, and K. S. Trivedi. Locating program
features using execution slices. In Application-Specific Systems and Software
Engineering and Technology, 1999. ASSET’99. Proceedings. 1999 IEEE Sym-
posium on, pages 194–203. IEEE, 1999.

[59] W. Zhao, L. Zhang, Y. Liu, J. Sun, and F. Yang. Sniafl: Towards a static
noninteractive approach to feature location. ACM Transactions on Software
Engineering and Methodology (TOSEM), 15(2):195–226, 2006.

58

A
Experiment Results

A.1 Comparison of Source Code Property Sets

Commit Number CTS_NEA_CL_SVM CTS_NEA_SVM CTS_SVM
3 1.00 1.00 0.75
5 0.94 0.94 0.43
6 0.69 0.69 0.37
7 0.49 0.47 0.20
9 1.00 0.77 0.35
10 1.00 1.00 0.35
11 1.00 0.94 0.35
12 1.00 1.00 0.37
13 1.00 0.99 0.34
14 1.00 1.00 0.35
16 1.00 0.99 0.30
17 0.99 1.00 0.20
18 0.98 0.94 0.32
20 1.00 0.82 0.38
21 1.00 1.00 0.34
22 1.00 0.95 0.36
23 1.00 1.00 0.34
24 1.00 0.84 0.37
25 0.98 0.98 0.36
26 1.00 0.95 0.33
27 0.96 0.98 0.34
28 0.97 0.80 0.32
29 1.00 1.00 0.30
30 1.00 1.00 0.35
31 1.00 1.00 0.29
32 1.00 0.99 0.42
33 1.00 1.00 0.46
34 0.99 0.99 0.50
35 1.00 1.00 0.41
36 1.00 1.00 0.71
37 1.00 1.00 0.53

I

A. Experiment Results

38 1.00 1.00 0.52
39 0.99 0.99 0.60
40 0.97 0.92 0.52
41 1.00 1.00 0.61
42 1.00 1.00 0.55
43 1.00 1.00 0.68
44 1.00 1.00 0.54
45 1.00 1.00 0.68
46 1.00 1.00 0.66
47 1.00 1.00 0.55
48 1.00 1.00 0.67
49 1.00 1.00 0.55
50 1.00 1.00 0.54
51 1.00 1.00 0.59
52 1.00 1.00 0.59
53 0.99 0.99 0.45
54 1.00 1.00 0.64
55 1.00 1.00 0.61
56 0.95 0.96 0.41
57 1.00 0.94 0.42
58 1.00 1.00 0.41
59 1.00 1.00 0.42
60 1.00 1.00 0.39
61 1.00 0.95 0.40
62 0.98 0.98 0.55
63 0.98 0.97 0.51
64 1.00 0.96 0.52
65 1.00 0.99 0.36
66 0.96 0.83 0.24
67 0.99 0.97 0.47
68 0.98 0.98 0.46
69 1.00 0.96 0.50
70 1.00 0.99 0.51
71 1.00 1.00 0.51
72 0.99 0.98 0.55
73 1.00 1.00 0.66
74 1.00 1.00 0.52
75 1.00 1.00 0.51
76 1.00 1.00 0.49
77 1.00 1.00 0.62
78 1.00 0.98 0.56
79 1.00 1.00 0.70
80 1.00 0.97 0.39
81 0.98 0.98 0.64

II

A. Experiment Results

82 1.00 1.00 0.62
83 1.00 1.00 0.67
84 1.00 0.99 0.52
85 1.00 1.00 0.51
86 1.00 1.00 0.67
87 1.00 0.95 0.52
88 1.00 1.00 0.68
89 1.00 0.95 0.51
90 1.00 1.00 0.66
91 1.00 0.95 0.52
92 1.00 1.00 0.51
93 1.00 1.00 0.50
94 1.00 1.00 0.64
95 1.00 0.97 0.49
96 1.00 1.00 0.71
97 1.00 0.95 0.41
98 1.00 1.00 0.67
99 1.00 0.95 0.50
100 1.00 1.00 0.48
101 1.00 1.00 0.48
102 1.00 1.00 0.67
103 1.00 0.94 0.48
104 1.00 1.00 0.48
105 1.00 1.00 0.48
106 1.00 1.00 0.48
107 1.00 1.00 0.41
108 1.00 0.98 0.47
109 1.00 1.00 0.66
110 1.00 0.95 0.45
111 1.00 1.00 0.67
112 1.00 0.94 0.47
113 1.00 1.00 0.47
114 1.00 1.00 0.67
115 1.00 0.96 0.46
116 1.00 1.00 0.45
117 1.00 1.00 0.66
118 1.00 0.94 0.45
119 1.00 1.00 0.46
120 1.00 0.95 0.44
121 1.00 1.00 0.45
122 1.00 1.00 0.67
123 1.00 0.97 0.43
124 1.00 1.00 0.66
125 1.00 0.93 0.39

III

A. Experiment Results

126 1.00 1.00 0.69
127 1.00 0.94 0.44
128 1.00 1.00 0.44
129 1.00 1.00 0.67
130 1.00 0.95 0.43
131 1.00 1.00 0.68
132 1.00 0.92 0.42
133 1.00 1.00 0.43
134 1.00 1.00 0.44
135 0.95 0.95 0.42
136 1.00 1.00 0.37
137 1.00 1.00 0.70
138 1.00 0.96 0.37
139 1.00 1.00 0.39
140 1.00 0.94 0.38
141 1.00 1.00 0.71
142 1.00 0.94 0.38
143 1.00 1.00 0.71
144 1.00 0.95 0.39
145 1.00 1.00 0.41
146 1.00 0.81 0.41
147 0.94 0.94 0.36
148 0.94 0.96 0.31
149 0.86 0.89 0.21
150 0.97 0.94 0.39
151 0.97 0.97 0.67
152 1.00 0.95 0.95
153 1.00 1.00 0.93
154 1.00 1.00 0.93
155 1.00 1.00 0.95
156 1.00 1.00 0.93
157 1.00 1.00 0.91
158 0.99 0.99 0.87
159 1.00 1.00 0.88
160 0.94 0.94 0.74
161 1.00 1.00 0.83
162 0.85 0.85 0.55
163 0.96 0.98 0.40
164 1.00 0.97 0.39
165 0.95 0.96 0.35
166 1.00 1.00 0.46
167 0.76 0.76 0.33
168 1.00 1.00 0.64
169 1.00 0.99 0.33

IV

A. Experiment Results

170 1.00 1.00 0.58
171 0.98 0.88 0.32
172 0.96 0.95 0.30
173 1.00 1.00 0.65
174 0.97 0.92 0.28
175 0.99 0.99 0.45
176 0.98 0.96 0.30
177 0.99 0.99 0.32
178 1.00 0.93 0.30
179 1.00 1.00 0.64
180 1.00 0.91 0.32
181 1.00 1.00 0.31
182 1.00 0.98 0.32
183 0.99 0.99 0.31
184 0.99 0.99 0.30
185 1.00 1.00 0.29
186 1.00 1.00 0.51
187 0.99 0.95 0.29
188 1.00 0.99 0.30
189 1.00 1.00 0.30
190 1.00 1.00 0.49
191 1.00 0.96 0.29
192 1.00 1.00 0.29

Table A.1: Comparison of Source Code Property Sets

A.2 Comparison of Retraining Intervals

Commit Number TAEC_SVM TAE5C_SVM TAE10C_SVM TAE20C_SVM
3 1.00 1.00 1.00 1.00
5 0.94 0.46 0.46 0.46
6 0.69 0.67 0.67 0.67
7 0.49 0.39 0.39 0.39
9 1.00 0.99 0.41 0.41
10 1.00 1.00 0.34 0.34
11 1.00 1.00 0.35 0.35
12 1.00 0.99 0.42 0.42
13 1.00 1.00 1.00 0.36
14 1.00 1.00 1.00 0.36
16 1.00 0.96 0.96 0.30
17 0.99 0.93 0.93 0.26
18 0.98 0.98 0.94 0.37
20 1.00 1.00 0.95 0.37
21 1.00 0.98 0.94 0.36

V

A. Experiment Results

22 1.00 0.98 0.94 0.36
23 1.00 1.00 1.00 1.00
24 1.00 1.00 1.00 1.00
25 0.98 0.98 0.98 0.98
26 1.00 0.98 0.98 0.98
27 0.96 0.94 0.94 0.94
28 0.97 0.97 1.00 1.00
29 1.00 0.97 1.00 1.00
30 1.00 0.97 0.97 0.97
31 1.00 0.97 1.00 1.00
32 1.00 0.97 0.97 0.97
33 1.00 1.00 1.00 0.95
34 0.99 0.97 0.97 0.94
35 1.00 1.00 1.00 0.95
36 1.00 0.75 0.75 0.71
37 1.00 0.98 0.98 0.93
38 1.00 1.00 0.98 0.92
39 0.99 1.00 0.86 0.85
40 0.97 0.97 0.93 0.89
41 1.00 0.92 0.77 0.73
42 1.00 1.00 0.98 0.93
43 1.00 1.00 1.00 1.00
44 1.00 0.99 0.99 0.99
45 1.00 1.00 1.00 1.00
46 1.00 1.00 1.00 1.00
47 1.00 0.99 0.99 0.99
48 1.00 1.00 1.00 1.00
49 1.00 1.00 0.99 0.99
50 1.00 1.00 0.99 0.99
51 1.00 1.00 1.00 1.00
52 1.00 1.00 1.00 1.00
53 0.99 0.99 0.99 0.99
54 1.00 0.99 0.99 0.99
55 1.00 0.99 0.99 0.99
56 0.95 0.94 0.94 0.95
57 1.00 0.95 0.95 0.91
58 1.00 1.00 0.96 0.92
59 1.00 0.99 0.94 0.91
60 1.00 1.00 0.90 0.85
61 1.00 0.98 0.90 0.86
62 0.98 0.97 0.92 0.89
63 0.98 0.98 0.98 0.98
64 1.00 0.98 0.98 0.98
65 1.00 0.96 0.96 0.96

VI

A. Experiment Results

66 0.96 0.90 0.90 0.90
67 0.99 0.94 0.94 0.94
68 0.98 0.98 0.95 0.95
69 1.00 0.98 0.94 0.94
70 1.00 0.98 0.94 0.94
71 1.00 0.98 0.94 0.94
72 0.99 0.98 0.93 0.93
73 1.00 1.00 1.00 1.00
74 1.00 1.00 1.00 0.91
75 1.00 1.00 1.00 0.91
76 1.00 1.00 1.00 0.91
77 1.00 1.00 1.00 1.00
78 1.00 1.00 0.97 0.89
79 1.00 1.00 1.00 1.00
80 1.00 0.97 0.92 0.77
81 0.98 0.94 0.94 0.97
82 1.00 1.00 1.00 1.00
83 1.00 1.00 1.00 1.00
84 1.00 1.00 1.00 1.00
85 1.00 1.00 1.00 1.00
86 1.00 1.00 1.00 1.00
87 1.00 0.99 0.99 0.99
88 1.00 1.00 1.00 1.00
89 1.00 0.99 0.98 0.98
90 1.00 1.00 1.00 1.00
91 1.00 0.99 0.98 0.98
92 1.00 0.99 0.98 0.98
93 1.00 1.00 1.00 0.98
94 1.00 1.00 1.00 1.00
95 1.00 0.99 0.99 0.97
96 1.00 1.00 1.00 1.00
97 1.00 0.99 0.99 0.96
98 1.00 1.00 1.00 1.00
99 1.00 0.98 0.98 0.96
100 1.00 0.98 0.98 0.96
101 1.00 0.98 0.98 0.96
102 1.00 1.00 1.00 1.00
103 1.00 1.00 1.00 1.00
104 1.00 1.00 1.00 1.00
105 1.00 1.00 1.00 1.00
106 1.00 1.00 1.00 1.00
107 1.00 1.00 1.00 1.00
108 1.00 1.00 1.00 1.00
109 1.00 1.00 1.00 1.00

VII

A. Experiment Results

110 1.00 0.98 0.98 0.98
111 1.00 1.00 1.00 1.00
112 1.00 0.96 0.96 0.96
113 1.00 1.00 1.00 0.96
114 1.00 1.00 1.00 1.00
115 1.00 0.99 0.99 0.95
116 1.00 0.99 0.99 0.95
117 1.00 1.00 1.00 1.00
118 1.00 1.00 0.97 0.93
119 1.00 1.00 0.98 0.94
120 1.00 1.00 0.97 0.93
121 1.00 1.00 0.97 0.93
122 1.00 1.00 1.00 1.00
123 1.00 1.00 1.00 1.00
124 1.00 1.00 1.00 1.00
125 1.00 0.98 0.98 0.98
126 1.00 1.00 1.00 1.00
127 1.00 0.98 0.98 0.98
128 1.00 1.00 0.98 0.98
129 1.00 1.00 1.00 1.00
130 1.00 0.98 0.95 0.95
131 1.00 1.00 1.00 1.00
132 1.00 0.96 0.94 0.94
133 1.00 1.00 1.00 0.94
134 1.00 1.00 1.00 0.94
135 0.95 0.95 0.95 0.89
136 1.00 0.95 0.95 0.88
137 1.00 1.00 1.00 1.00
138 1.00 1.00 0.95 0.89
139 1.00 1.00 0.94 0.87
140 1.00 1.00 0.94 0.88
141 1.00 1.00 1.00 1.00
142 1.00 0.97 0.92 0.85
143 1.00 1.00 1.00 1.00
144 1.00 1.00 1.00 1.00
145 1.00 1.00 1.00 1.00
146 1.00 1.00 1.00 1.00
147 0.94 0.95 0.95 0.95
148 0.94 0.94 0.96 0.96
149 0.86 0.87 0.87 0.87
150 0.97 0.83 0.84 0.84
151 0.97 0.97 0.97 0.97
152 1.00 1.00 1.00 1.00
153 1.00 1.00 1.00 0.97

VIII

A. Experiment Results

154 1.00 1.00 1.00 0.97
155 1.00 1.00 1.00 1.00
156 1.00 1.00 1.00 0.97
157 1.00 1.00 1.00 0.97
158 0.99 0.99 0.99 0.99
159 1.00 1.00 1.00 0.97
160 0.94 0.94 0.94 0.94
161 1.00 0.95 0.95 0.97
162 0.85 0.81 0.81 0.85
163 0.96 0.96 0.96 0.96
164 1.00 0.71 0.71 0.71
165 0.95 0.75 0.75 0.75
166 1.00 0.76 0.76 0.76
167 0.76 0.53 0.53 0.53
168 1.00 1.00 0.79 0.79
169 1.00 0.85 0.74 0.74
170 1.00 0.76 0.54 0.54
171 0.98 0.87 0.72 0.72
172 0.96 0.82 0.64 0.64
173 1.00 1.00 1.00 0.60
174 0.97 0.95 0.95 0.71
175 0.99 0.91 0.91 0.55
176 0.98 0.94 0.94 0.73
177 0.99 0.94 0.94 0.60
178 1.00 1.00 0.94 0.74
179 1.00 1.00 1.00 0.60
180 1.00 0.99 0.95 0.72
181 1.00 1.00 0.98 0.68
182 1.00 0.98 0.94 0.62
183 0.99 0.99 0.99 0.99
184 0.99 0.99 0.99 0.99
185 1.00 1.00 1.00 1.00
186 1.00 0.98 0.98 0.98
187 0.99 0.99 0.99 0.99
188 1.00 1.00 0.99 0.99
189 1.00 1.00 0.99 0.99
190 1.00 1.00 0.97 0.97
191 1.00 0.98 0.97 0.97
192 1.00 0.98 0.97 0.97

Table A.2: Comparison of Retraining Intervals

A.3 Comparison of Source Code Granularity

IX

A. Experiment Results

Commit Number TAECLoCSV M TAECF ileSV M TAECF olderSV M
3 1.00 0.00 0.67
4 0.94 0.00 0.00
5 0.69 0.22 0.00
6 0.49 0.81 0.00
7 1.00 0.55 0.00
8 1.00 0.00 0.67
9 1.00 0.61 0.38
10 1.00 0.96 0.48
11 1.00 0.87 0.41
12 1.00 0.86 0.36
13 1.00 0.89 0.41
14 0.99 0.93 0.41
15 0.98 0.00 0.00
16 1.00 0.74 0.44
17 1.00 0.00 0.00
18 1.00 0.78 0.46
19 1.00 0.00 0.00
20 1.00 0.86 0.36
21 0.98 0.92 0.47
22 1.00 0.92 0.50
23 0.96 0.93 0.00
24 0.97 0.91 0.39
25 1.00 0.89 0.45
26 1.00 0.89 0.34
27 1.00 0.77 0.44
28 1.00 0.50 0.42
29 1.00 0.82 0.39
30 0.99 0.84 0.42
31 1.00 0.76 0.39
32 1.00 0.85 0.42
33 1.00 0.89 0.45
34 1.00 0.54 0.42
35 0.99 0.83 0.45
36 0.97 0.00 0.62
37 1.00 0.93 0.45
38 1.00 0.90 0.45
39 1.00 0.00 0.62
40 1.00 0.62 0.50
41 1.00 0.00 0.62
42 1.00 0.73 0.45
43 1.00 0.00 0.62
44 1.00 0.69 0.49
45 1.00 0.00 0.62

X

A. Experiment Results

46 1.00 0.00 0.62
47 1.00 0.67 0.49
48 1.00 0.91 0.62
49 0.99 0.63 0.49
50 1.00 0.89 0.49
51 1.00 0.00 0.62
52 0.95 0.91 0.55
53 1.00 0.87 0.52
54 1.00 0.90 0.57
55 1.00 0.93 0.57
56 1.00 0.67 0.58
57 1.00 0.67 0.60
58 0.98 0.83 0.57
59 0.98 0.84 0.59
60 1.00 0.00 0.62
61 1.00 0.86 0.59
62 0.96 0.56 0.43
63 0.99 0.71 0.57
64 0.98 0.75 0.70
65 1.00 0.78 0.56
66 1.00 0.77 0.36
67 1.00 0.81 0.49
68 0.99 0.48 0.60
69 1.00 0.89 0.67
70 1.00 0.88 0.54
71 1.00 0.88 0.67
72 1.00 0.83 0.56
73 1.00 0.00 0.62
74 1.00 0.90 0.67
75 1.00 0.85 0.56
76 1.00 0.87 0.56
77 0.98 0.00 0.67
78 1.00 0.82 0.53
79 1.00 0.00 0.67
80 1.00 0.68 0.42
81 1.00 0.00 0.67
82 1.00 0.00 0.62
83 1.00 0.00 0.67
84 1.00 0.83 0.50
85 1.00 0.78 0.47
86 1.00 0.00 0.63
87 1.00 0.77 0.40
88 1.00 0.00 0.63
89 1.00 0.00 0.43

XI

A. Experiment Results

90 1.00 0.00 0.63
91 1.00 0.76 0.43
92 1.00 0.84 0.40
93 1.00 0.88 0.38
94 1.00 0.00 0.67
95 1.00 0.71 0.43
96 1.00 0.00 0.67
97 1.00 0.75 0.42
98 1.00 0.00 0.75
99 1.00 0.70 0.42
100 1.00 0.85 0.42
101 1.00 0.85 0.42
102 1.00 0.00 0.67
103 1.00 0.71 0.41
104 1.00 0.85 0.41
105 1.00 0.84 0.41
106 1.00 0.85 0.41
107 1.00 0.85 0.41
108 1.00 0.85 0.67
109 1.00 0.00 0.67
110 1.00 0.70 0.40
111 1.00 0.00 0.67
112 1.00 0.74 0.67
113 1.00 0.86 0.39
114 1.00 0.00 0.67
115 1.00 0.00 0.39
116 1.00 0.74 0.39
117 1.00 0.00 0.67
118 1.00 0.73 0.38
119 1.00 0.95 0.67
120 1.00 0.87 0.38
121 1.00 0.87 0.38
122 1.00 0.00 0.67
123 1.00 0.87 0.38
124 1.00 0.00 0.67
125 1.00 0.88 0.38
126 1.00 0.00 0.67
127 1.00 0.88 0.38
128 1.00 0.88 0.38
129 1.00 0.00 0.67
130 1.00 0.88 0.37
131 0.95 0.00 0.67
132 1.00 0.91 0.37
133 1.00 0.90 0.37

XII

A. Experiment Results

134 1.00 0.90 0.37
135 1.00 0.82 0.37
136 1.00 0.89 0.37
137 1.00 0.00 0.67
138 1.00 0.80 0.37
139 1.00 0.94 0.67
140 1.00 0.89 0.40
141 1.00 0.00 0.67
142 1.00 0.80 0.39
143 0.94 0.00 0.67
144 0.94 0.71 0.35
145 0.86 0.93 0.67
146 0.97 0.86 0.36
147 0.97 0.81 0.30
148 1.00 0.76 0.55
149 1.00 0.66 0.54
150 1.00 0.84 0.55
151 1.00 0.00 0.59
152 1.00 0.00 0.70
153 1.00 0.00 0.76
154 0.99 0.00 0.76
155 1.00 0.00 0.70
156 0.94 0.75 0.76
157 1.00 0.64 0.73
158 0.85 0.00 0.73
159 0.96 0.00 0.79
160 1.00 0.00 0.73
161 0.95 0.69 0.63
162 1.00 0.16 0.56
163 0.76 0.74 0.00
164 1.00 0.75 0.52
165 1.00 0.77 0.78
166 1.00 0.66 0.76
167 0.98 0.58 0.67
168 0.96 0.40 0.67
169 1.00 0.77 0.74
170 0.97 0.62 0.62
171 0.99 0.78 0.76
172 0.98 0.75 0.00
173 0.99 0.00 0.00
174 1.00 0.63 0.00
175 1.00 0.70 0.00
176 1.00 0.79 0.00
177 1.00 0.75 0.00

XIII

A. Experiment Results

178 1.00 0.81 0.00
179 0.99 0.78 0.00
180 0.99 0.80 0.00
181 1.00 0.79 0.00
182 1.00 0.80 0.00
183 0.99 0.79 0.00
184 1.00 0.79 0.00
185 1.00 0.75 0.00
186 1.00 0.68 0.00
187 1.00 0.73 0.00
188 1.00 0.75 0.00
189 1.00 0.83 0.00
190 1.00 0.78 0.00
191 1.00 0.82 0.00
192 1.00 0.76 0.00
193 1.00 0.76 0.00
194 1.00 0.81 0.00
195 1.00 0.82 0.00

Table A.3: Comparison of Source Granularity

A.4 Comparison of Machine Learing Alrogrithms

Commit
Num-
ber

TAEC
SVM

TAEC
Deci-
sion
Tree

TAEC
MLAL-
GOKN-
earest
Neigh-
bors

TAEC
MLALGo
Ran-
dom
Forest

TAEC
MLALGO
Naive
Bayes

TAEC
MLALGO
Boot-
strap
Aggre-
gation

TAEC
MLALGO
Stacked
Aggre-
gation

3 1.00 1.00 1.00 1.00 0.03 1.00 0.78
5 0.94 0.83 0.24 0.88 0.80 0.83 0.35
6 0.69 0.43 0.05 0.22 0.27 0.69 0.13
7 0.49 0.37 0.09 0.34 0.33 0.37 0.10
9 1.00 0.81 0.11 0.60 0.67 1.00 0.10
10 1.00 1.00 0.19 0.99 0.85 0.94 0.25
11 1.00 1.00 0.18 1.00 0.86 1.00 0.25
12 1.00 1.00 0.11 0.60 0.71 1.00 0.15
13 1.00 1.00 0.18 0.99 0.74 1.00 0.24
14 1.00 1.00 0.18 1.00 0.84 1.00 0.24
16 1.00 1.00 1.00 0.99 0.87 1.00 0.24
17 0.99 0.98 0.99 0.81 0.95 0.98 0.33
18 0.98 0.98 0.98 0.98 0.87 0.98 0.25
20 1.00 1.00 0.11 0.70 0.70 1.00 0.11
21 1.00 1.00 1.00 0.85 0.94 1.00 0.36

XIV

A. Experiment Results

22 1.00 1.00 0.20 0.98 0.89 0.97 0.25
23 1.00 1.00 0.21 0.98 0.89 0.91 0.25
24 1.00 1.00 0.12 0.56 0.69 0.82 0.12
25 0.98 0.98 0.21 0.94 0.87 0.89 0.25
26 1.00 1.00 1.00 0.91 0.92 1.00 0.27
27 0.96 0.95 0.12 0.85 0.83 0.86 0.20
28 0.97 0.68 0.10 0.64 0.67 0.62 0.11
29 1.00 1.00 0.11 0.67 0.69 0.82 0.11
30 1.00 1.00 0.20 0.99 0.88 0.91 0.24
31 1.00 1.00 0.11 0.44 0.64 0.82 0.11
32 1.00 1.00 0.20 0.95 0.85 1.00 0.25
33 1.00 1.00 1.00 0.78 0.94 1.00 0.38
34 0.99 0.98 0.97 0.88 0.90 0.98 0.38
35 1.00 1.00 1.00 0.93 0.96 1.00 0.46
36 1.00 0.82 1.00 0.95 0.79 0.82 0.75
37 1.00 1.00 1.00 0.99 0.96 1.00 0.46
38 1.00 1.00 1.00 0.98 0.96 1.00 0.47
39 0.99 0.98 0.21 0.94 0.93 0.98 0.62
40 0.97 0.97 0.96 0.96 0.90 0.96 0.49
41 1.00 1.00 0.18 0.84 0.72 1.00 0.67
42 1.00 1.00 1.00 0.99 0.96 1.00 0.47
43 1.00 1.00 0.19 0.72 0.79 1.00 0.67
44 1.00 1.00 0.22 0.99 0.94 1.00 0.49
45 1.00 1.00 0.19 0.85 0.83 1.00 0.67
46 1.00 1.00 0.19 0.70 0.83 1.00 0.67
47 1.00 1.00 0.22 0.95 0.93 1.00 0.49
48 1.00 1.00 0.19 0.71 0.83 1.00 0.67
49 1.00 1.00 0.22 0.94 0.84 1.00 0.49
50 1.00 1.00 0.22 0.94 0.91 1.00 0.49
51 1.00 1.00 0.19 0.91 0.71 1.00 0.77
52 1.00 1.00 0.19 0.96 0.71 1.00 0.77
53 0.99 0.99 0.99 0.94 0.84 0.99 0.48
54 1.00 1.00 0.22 0.92 0.93 1.00 0.54
55 1.00 1.00 1.00 1.00 0.93 1.00 0.51
56 0.95 0.81 0.07 0.40 0.53 0.81 0.32
57 1.00 0.87 0.16 0.88 0.81 0.84 0.43
58 1.00 1.00 1.00 0.88 0.92 1.00 0.45
59 1.00 1.00 0.18 0.98 0.77 1.00 0.42
60 1.00 1.00 0.94 0.71 0.78 1.00 0.45
61 1.00 1.00 1.00 0.94 0.78 1.00 0.39
62 0.98 0.98 0.16 0.83 0.73 0.91 0.41
63 0.98 0.99 1.00 1.00 0.83 0.94 0.34
64 1.00 1.00 1.00 0.98 0.76 0.86 0.36
65 1.00 0.67 0.06 0.65 0.73 0.80 0.25

XV

A. Experiment Results

66 0.96 0.93 0.08 0.84 0.71 0.93 0.23
67 0.99 0.66 0.10 0.78 0.75 0.78 0.33
68 0.98 0.98 0.12 0.95 0.68 0.98 0.38
69 1.00 0.99 1.00 0.97 0.71 0.90 0.42
70 1.00 1.00 1.00 0.99 0.70 1.00 0.41
71 1.00 1.00 1.00 0.97 0.73 1.00 0.41
72 0.99 0.84 0.08 0.98 0.68 0.84 0.41
73 1.00 1.00 1.00 0.77 0.78 1.00 0.91
74 1.00 1.00 1.00 0.97 0.73 1.00 0.41
75 1.00 1.00 1.00 0.99 0.70 1.00 0.40
76 1.00 1.00 1.00 0.99 0.71 1.00 0.40
77 1.00 1.00 0.59 0.72 0.84 1.00 0.87
78 1.00 0.99 1.00 0.98 0.73 0.99 0.40
79 1.00 1.00 0.60 0.68 0.85 1.00 0.86
80 1.00 0.83 0.07 0.83 0.70 1.00 0.23
81 0.98 0.98 0.98 0.82 0.80 0.98 0.79
82 1.00 1.00 1.00 0.73 0.82 1.00 0.83
83 1.00 1.00 1.00 0.71 0.80 1.00 0.87
84 1.00 1.00 1.00 0.98 0.68 1.00 0.37
85 1.00 1.00 1.00 0.97 0.71 1.00 0.37
86 1.00 1.00 1.00 0.76 0.80 1.00 0.87
87 1.00 1.00 1.00 0.99 0.71 1.00 0.37
88 1.00 1.00 1.00 0.73 0.81 1.00 0.87
89 1.00 1.00 1.00 0.98 0.71 1.00 0.37
90 1.00 1.00 1.00 0.78 0.80 1.00 0.87
91 1.00 1.00 1.00 0.98 0.72 1.00 0.37
92 1.00 1.00 1.00 0.98 0.71 1.00 0.37
93 1.00 1.00 1.00 0.98 0.69 1.00 0.37
94 1.00 1.00 1.00 0.76 0.81 1.00 0.83
95 1.00 1.00 1.00 0.98 0.73 1.00 0.37
96 1.00 1.00 1.00 0.78 0.81 1.00 0.91
97 1.00 0.83 0.07 0.91 0.66 1.00 0.25
98 1.00 1.00 1.00 0.75 0.81 1.00 0.87
99 1.00 1.00 1.00 0.98 0.76 1.00 0.35
100 1.00 1.00 1.00 0.99 0.76 1.00 0.34
101 1.00 1.00 1.00 0.98 0.71 1.00 0.34
102 1.00 1.00 1.00 0.73 0.82 1.00 0.87
103 1.00 1.00 1.00 0.98 0.76 1.00 0.34
104 1.00 1.00 1.00 0.98 0.76 1.00 0.34
105 1.00 1.00 1.00 0.99 0.72 1.00 0.34
106 1.00 1.00 1.00 0.98 0.72 1.00 0.34
107 1.00 0.85 0.08 0.91 0.67 1.00 0.23
108 1.00 1.00 1.00 0.99 0.71 1.00 0.33
109 1.00 1.00 1.00 0.69 0.84 1.00 0.87

XVI

A. Experiment Results

110 1.00 1.00 1.00 0.98 0.77 1.00 0.32
111 1.00 1.00 1.00 0.78 0.83 1.00 0.87
112 1.00 1.00 1.00 0.99 0.79 1.00 0.30
113 1.00 1.00 1.00 0.98 0.79 1.00 0.30
114 1.00 1.00 1.00 0.73 0.83 1.00 0.87
115 1.00 1.00 1.00 0.99 0.80 1.00 0.29
116 1.00 1.00 1.00 0.98 0.80 1.00 0.29
117 1.00 1.00 1.00 0.74 0.83 1.00 0.87
118 1.00 1.00 1.00 0.98 0.80 1.00 0.29
119 1.00 0.87 0.10 1.00 0.80 1.00 0.30
120 1.00 1.00 1.00 0.98 0.81 1.00 0.29
121 1.00 1.00 1.00 0.99 0.82 1.00 0.29
122 1.00 1.00 1.00 0.83 0.83 1.00 0.87
123 1.00 1.00 1.00 0.98 0.81 1.00 0.28
124 1.00 1.00 1.00 0.79 0.83 1.00 0.87
125 1.00 0.87 0.10 0.99 0.82 1.00 0.20
126 1.00 1.00 1.00 0.83 0.84 1.00 0.87
127 1.00 1.00 1.00 0.98 0.82 1.00 0.27
128 1.00 1.00 1.00 0.99 0.84 1.00 0.26
129 1.00 1.00 1.00 0.76 0.84 1.00 0.87
130 1.00 1.00 1.00 0.98 0.84 1.00 0.25
131 1.00 1.00 1.00 0.86 0.84 1.00 0.87
132 1.00 1.00 1.00 0.98 0.86 0.93 0.27
133 1.00 1.00 1.00 0.99 0.87 1.00 0.27
134 1.00 1.00 1.00 0.99 0.83 1.00 0.27
135 0.95 0.83 0.10 0.95 0.75 0.95 0.28
136 1.00 1.00 1.00 0.99 0.79 1.00 0.27
137 1.00 1.00 1.00 0.74 0.84 1.00 0.80
138 1.00 1.00 1.00 0.99 0.84 1.00 0.27
139 1.00 0.87 0.10 0.99 0.82 1.00 0.28
140 1.00 1.00 1.00 0.99 0.83 1.00 0.27
141 1.00 1.00 1.00 0.75 0.84 1.00 0.80
142 1.00 1.00 1.00 0.99 0.87 1.00 0.23
143 1.00 1.00 1.00 0.83 0.85 1.00 0.21
144 1.00 1.00 1.00 0.85 0.90 1.00 0.23
145 1.00 1.00 1.00 0.96 0.91 0.96 0.38
146 1.00 1.00 1.00 0.96 0.91 1.00 0.37
147 0.94 0.82 0.10 0.78 0.78 0.94 0.25
148 0.94 0.95 0.96 0.95 0.75 0.95 0.21
149 0.86 0.88 0.86 0.82 0.70 0.88 0.26
150 0.97 0.97 0.97 0.94 0.73 0.97 0.28
151 0.97 0.97 0.97 0.96 0.77 0.97 0.85
152 1.00 1.00 1.00 0.90 0.84 1.00 0.95
153 1.00 1.00 1.00 0.94 0.67 1.00 0.93

XVII

A. Experiment Results

154 1.00 1.00 1.00 0.95 0.68 1.00 0.93
155 1.00 1.00 1.00 0.91 0.64 1.00 0.95
156 1.00 1.00 1.00 0.93 0.69 1.00 0.93
157 1.00 1.00 1.00 0.93 0.69 1.00 0.93
158 0.99 0.99 0.99 0.87 0.67 0.99 0.91
159 1.00 1.00 1.00 0.91 0.70 1.00 0.86
160 0.94 0.94 0.94 0.91 0.62 0.94 0.78
161 1.00 1.00 1.00 0.92 0.68 0.96 0.77
162 0.85 0.85 0.12 0.79 0.61 0.81 0.52
163 0.96 0.76 0.99 0.95 0.57 0.77 0.42
164 1.00 1.00 1.00 0.97 0.82 1.00 0.40
165 0.95 0.90 0.96 0.94 0.73 0.89 0.34
166 1.00 1.00 0.99 0.96 0.83 1.00 0.42
167 0.76 0.76 0.12 0.63 0.64 0.76 0.33
168 1.00 1.00 1.00 0.79 0.86 1.00 0.84
169 1.00 0.98 1.00 0.98 0.85 0.99 0.27
170 1.00 1.00 0.99 0.99 0.77 1.00 0.48
171 0.98 0.98 0.98 0.97 0.88 0.98 0.27
172 0.96 0.96 0.12 0.94 0.82 0.96 0.25
173 1.00 1.00 1.00 0.86 0.85 1.00 0.84
174 0.97 0.98 0.97 0.95 0.89 0.96 0.24
175 0.99 0.94 0.12 0.97 0.77 0.94 0.39
176 0.98 1.00 1.00 0.97 0.87 0.99 0.27
177 0.99 0.99 0.99 0.84 0.90 0.97 0.37
178 1.00 1.00 1.00 0.96 0.90 0.99 0.27
179 1.00 1.00 1.00 0.84 0.94 1.00 0.84
180 1.00 1.00 1.00 0.96 0.91 1.00 0.29
181 1.00 1.00 1.00 0.96 0.89 0.96 0.29
182 1.00 1.00 1.00 0.96 0.87 1.00 0.30
183 0.99 0.99 0.99 0.97 0.85 0.99 0.30
184 0.99 0.99 0.99 0.97 0.84 0.99 0.27
185 1.00 1.00 1.00 0.93 0.87 1.00 0.30
186 1.00 1.00 1.00 0.90 0.84 1.00 0.58
187 0.99 0.99 0.99 0.97 0.87 0.99 0.26
188 1.00 1.00 1.00 0.97 0.87 0.97 0.29
189 1.00 1.00 1.00 0.97 0.88 1.00 0.29
190 1.00 1.00 1.00 0.97 0.84 1.00 0.52
191 1.00 1.00 1.00 0.97 0.88 0.99 0.30
192 1.00 1.00 1.00 0.97 0.87 0.97 0.31

Table A.4: Comparison of Machine Learning Algrithms

XVIII

	List of Figures
	List of Tables
	Introduction
	Problem Statement
	Purpose of Thesis

	Background
	Software Product Lines
	Features and Feature Oriented Development
	Feature Location Recovery
	Embedded Feature Annotations
	Feature Model
	File and Folder Annotations
	In-File Annotations
	Feature References for Ambiguous Feature Names

	Machine Learning
	Concepts
	Multilable classification
	Feature reduction

	Related Work
	Feature Location
	Product-Line Engineering Tools
	Concern and Topic Visualization

	Abstract View Generation Approach and Implementation (FLOrIDA)
	View Generation Approach
	Implementation
	Feature-Oriented Views
	Browse Feature View
	Trace Views
	Metrics Views
	Feature-Location Recovery

	Evaluation and Feedback

	 An ML Algorithm Based Recommendation System For Feature Location
	Approach
	Methodology
	Research Questions
	Exepriment Setup: RQ2.1 Best source code properties for feature location
	Exepriment Setup: RQ2.2: Best source code granularity for feature location
	Exepriment Setup: RQ2.3: Best Machine learning algorithm for feature location
	 Exepriment Setup: RQ2.4: How many example feature locations must already exist for the best configuration to give the best predictions?
	Exepriment Setup: RQ2.5: Best Training Interval
	 Experiment Setup: RQ2.6: How accurate is a classifier when predicting feature associations for code that do not directly implement any features
	Steps in an Experiment
	Evaluation
	Subject System

	Experimental Results
	RQ2.1: Best Source Code Properties for prediction
	RQ2.2: Source Code Granularity for prediction
	RQ2.3: Best performing classification algorithm
	RQ2.4: Initial manual effort requirement
	RQ2.5: Required Interval for Retraining Classifier
	RQ2.6: Classifier Accuracy for Unlabeled Test Data

	Limitations of Study

	Conclusion
	Bibliography
	Experiment Results
	Comparison of Source Code Property Sets
	Comparison of Retraining Intervals
	Comparison of Source Code Granularity
	Comparison of Machine Learing Alrogrithms

