
Generating Character Animation for the
Apex Game Engine using Neural Networks
Implementing immersive character animation in an industry-
proven game engine by applying machine learning techniques

Master’s thesis in Computer science and engineering
for a degree at MPIDE - Interaction Design and Technologies, MSc.

JOHN SEGERSTEDT

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2020

Master’s thesis 2021

Generating Character Animation for the
Apex Game Engine using Neural Networks

Implementing immersive character animation in an industry-proven
game engine by applying machine learning techniques

JOHN SEGERSTEDT

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2021

i

Generating Character Animation for the Apex Game Engine using Neural Networks
Implementing immersive character animation in an industry-proven game engine by
applying machine learning techniques

JOHN SEGERSTEDT

Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

© JOHN SEGERSTEDT, 2021.

mentor:
Andreas Tillema, Avalanche Studios Group

initial supervisor:
Marco Fratarcangeli, Department of Computer Science and Engineering

substitute supervisor:
Palle Dahlstedt, Department of Computer Science and Engineering

examiner:
Staffan Björk, Department of Computer Science and Engineering.

Master’s Thesis 2021
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX
Gothenburg, Sweden 2021

ii

Generating Character Animation for the Apex Game Engine using Neural Networks
Implementing immersive character animation in an industry-proven game engine by
applying machine learning techniques

JOHN SEGERSTEDT

Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
The art of machine learning, here using neural networks to map pairs of inputs to
outputs, has been greatly expanded upon recently. It has been shown to be able to
produce generalizable solutions within multiple different fields of research and has
been deployed in real-world commercial products. One of these research areas in
which regular scientific achievements are made is game development, and specifi-
cally character animation. However, compared to other fields, even though there
has been much work on applying machine learning techniques to character anima-
tion, few efforts have been made to applying them in real-world game engines. This
thesis project aimed to research the applicability of one such piece of previous work,
within the proprietary Apex game engine. The final results included an in-engine
solution, producing character animation purely from a predicative phase-functioned
neural network. Additionally, several different network configurations were evalu-
ated to compare the impact of using, for example, a deeper network or a network
that had trained for a longer period of time, in an attempt to investigate potential
improvements to the original model. These alterations were shown to have negligible
positive impacts on the final results. Also, an additional network configuration was
used to investigate the applicability of this approach on an industry-used skeleton,
producing promising but imperfect results.

Keywords: machine learning, phase-functioned neural network, locomotive character
animation, Avalanche Studios Group, Apex, thesis

iii

iv

Generating Character Animation for the Apex Game Engine using Neural Networks
Implementing immersive character animation in an industry-proven game engine by
applying machine learning techniques

JOHN SEGERSTEDT

Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Acknowledgements
First and foremost, the author wants to show their appreciation for Andreas "Andy"
Tillema for being an incredibly supportive mentor who has, especially during the
later stages of this project, been a pillar of support. Without Andys guidance, this
project would not have been possible.

Secondly, the two supervisors Marco Fratarcangeli and Palle Dahlstedt deserves
thanks for their support and feedback; Marco for initial project scope and Palle for
aiding in the process of turning a programming implementation into an actual thesis.

Thirdly, there have been multiple Avalanche employees that have offered their aid to
this project. Some of these that deserve praise include Robert "Robban" Petterson,
for helping with the .bvh retargeting, and Preeth Punnatjanath, for helping with
.bvh to 3D model skinning. The later of which, able to provide aid on a short notice,
even when tackling other deadlines.

John Segerstedt, Gothenburg, June 2021

v

vi

Contents

1 Introduction 1
1.1 Background . 1
1.2 Research Problem . 2
1.3 Research Question . 2
1.4 Scope . 3

2 Theory 5
2.1 Artificial Neural Networks . 5

2.1.1 Network Layers . 5
2.1.2 The Mculloch-Pits Neuron . 6
2.1.3 Supervised Learning of a Neural Network 7
2.1.4 Underfitting and Overfitting 8
2.1.5 Gradient Descent . 9
2.1.6 Adam Optimizer . 10

2.2 Related Work . 11
2.2.1 Phase-Functioned Neural Networks for Character Control (2017) 12
2.2.2 Mode-Adaptive Neural Networks for Quadruped Motion Con-

trol (2018) . 12
2.2.3 Neural State Machine for Character-Scene Interactions (2019) 13
2.2.4 Local Motion Phases for Learning Multi-Contact Character

Movements (2020) . 13
2.2.5 Learned Motion Matching (2020) 14

2.3 File Types & Software Libraries . 15
2.3.1 The .bvh filetype . 15
2.3.2 Theano . 16
2.3.3 Eigen . 16

3 Methodology 17
3.1 To Answer the Research Questions 17

3.1.1 Researching Responsivity . 17
3.1.2 Researching Accuracy . 18
3.1.3 Researching Architecture . 19
3.1.4 Simple Difference Significance Evaluation 21

3.2 The Phase-Functioned Neural Network 22

vii

Contents

3.2.1 Network Structure . 22
3.2.2 The Input Vector . 22
3.2.3 The Output Vector . 23
3.2.4 The Phase Function . 24

3.3 The Full PFNN Pipeline . 25
3.3.1 Generate Patches . 25
3.3.2 Generate Database . 25
3.3.3 Network Training . 25
3.3.4 Neural Network . 26

4 Process 29
4.1 The Runtime Package . 29

4.1.1 Using the Runtime Package 29
4.1.2 ProceduralAnimations . 30
4.1.3 PFNN . 31
4.1.4 Character . 31
4.1.5 Trajectory . 31
4.1.6 Settings . 31
4.1.7 HelperFunctions . 32
4.1.8 ErrorCalculator . 32
4.1.9 Waypoint . 33

5 Result 35
5.1 Responsivity Results . 35
5.2 Responsivity Visualizations . 37
5.3 Accuracy Results . 39
5.4 Accuracy Visualizations . 43
5.5 Training Process . 44
5.6 Pipeline Overview . 45
5.7 Skinning Visualization . 46

6 Discussion 49
6.1 Discussing the Research Questions . 49

6.1.1 Discussing Responsivity . 49
6.1.2 Discussing Accuracy . 50
6.1.3 Discussing Architecture . 52

6.2 Ethical Considerations . 53
6.3 Takeaways . 54

6.3.1 Integration Contextualization 54
6.3.2 Integration Placement . 55
6.3.3 Implementation Expertise . 55
6.3.4 Equipment Suitability . 56
6.3.5 Neural Network Rigidity . 56

6.4 Future Work . 56
6.4.1 Runtime skeleton retargeting 56
6.4.2 Consistent world-axis orientations 57
6.4.3 Full pipeline integration . 58

viii

Contents

7 Conclusions 59
7.1 Summary . 59
7.2 Final Words . 60

Bibliography 61

List of Figures 67

List of Tables 69

A Apendix I
A.1 .bvh Interpolator . III
A.2 Filenames . VII
A.3 AVA skeleton joint names . IX
A.4 Responsivity Data . XIII
A.5 Accuracy Data - Means . XV
A.6 Accuracy Data - Standard Deviations XVII
A.7 Training Mean-Squared Error . XIX

ix

1
Introduction

1.1 Background
The domain of machine learning techniques applied within video game development
has been greatly expanded during the last few years with multiple AAA-level pub-
lishers funding machine learning dedicated departments. Amongst others, these
include Ubisoft La Forge funded by Ubisoft Entertainment [1], and SEED funded
by Eletronic Arts Inc [2]. Additionally, there has been great achievements within
academia on this topic, such as the research done at the University of Edinburgh by
Sebastian Starke, Daniel Holden, and others [3].

Within the specific sub-domain of generated character animation, considerable achieve-
ments in research has been made by some of the aforementioned entities, much of
which published as recently as during the year 2020, see Section 2.2.

One of the reasons behind the new additions of machine learning within character
animation is the need of automation for managing potentially hundreds of thousands
of animation clips; as the demand for variation and fidelity, and also more adaptive
and life-like animations, has increased, there has been an exponential demand in
the number of animations within newer game titles. This great escalation of the
problem space can be exemplified when there is an expectancy of animations that
adapt to external factors, such as uneven terrain. Otherwise, the lack of more
context-specific animations may lead to the players’ sense of immersion being broken.
By using scalable and context-free machine learning techniques to generate more
environmentally feasible animations, players may be kept more emerged into the
gameplay experience without having to manually link seemingly endless number of
animation clips and states.

As a result of the video game industry’s immense size, there is a myriad of stakehold-
ers to potential revolutionary and commercially viable innovations using the newly
emerging techniques within machine learning; amongst others within research, de-
velopment, publishing, and consumption, of video games.

Within the context of this thesis, the video game development studio Avalanche
Studios Group [4] is a direct stakeholder to the outcome of this project as a result
of their direct collaboration with the project.

1

1. Introduction

1.2 Research Problem
The aim of this master’s thesis is to investigate the possibility of generating real-
istic character animations using a predicative neural network trained on previously
captured animation data. This is to be achieved utilizing phase-functioned neural
networks (PFNN), based off of previous research by Holden et al. [5].

Additionally, this master thesis aims to contribute to the research field by developing
an implementation solution within the Apex Game Engine [6], contrary to previous
research. This proprietary game engine will be provided by the Avalanche Studios
Group [4] for use within this thesis.

1.3 Research Question
Main research question:

• How can the applicability of a Phase-Functioned Neural Network approach for
generating real-time locomotive character animation in modern game engines
be further improved?

To answer the wicked problem that is the main research question, this thesis aims
to investigate the following subsidiary questions:

• Responsivity - How much computational time is required for procedural single-
character locomotive animations, in a industry-proven game engine, on consumer-
grade hardware?

• Accuracy - How accurate are the generated locomotive character animations,
in an industry-proven game engine, to the original animation data?

• Architecture - How can the phase-functioned neural network architecture pre-
sented in Holden et al. be improved?

Additionally, analysis and comparisons will be made between the quantitative results
during the responsivity and accuracy research of the following networks, see Section
3.1.3:

• Holden - Default

• Holden - Extra Trained

• Holden - Extra Layer

• Avalanche

Also, a summary of some of the most important learnings produced by this thesis
project will be written, see Section 6.3.

2

1. Introduction

1.4 Scope
network type
As of its simplicity, which is further discussed in Section 2.2, a phase-functioned
neural network was selected as the chosen network architecture for this project.

network architecture
To answer the subsidiary research question regarding network architecture, and as
a clear delimitation of the scope of this thesis project, comparisons will be made
solely between the list of network archetypes listed in Section 1.3.

previous research
Since the phase-functioned neural network architecture was developed by Holden et
al. at the University of Edinburgh [5], the publicized network pipeline and accompa-
nying motion data will be used as a basis for this project. This previous research is
based on a left-handed world-axis orientation, see Section 3.3.4. The motion capture
data is of the .bvh filetype, see Section 2.3.1.

gait styles
To limit the space of character animations, only standard bipedal locomotive char-
acter animations are to be considered. Therefore, only animations such as walking,
jogging, crouching, and strafing, are to be considered. Similarly, interactions with
advanced terrain and environments, such as balancing on elevated narrow beams
and dynamic crouching beneath low ceilings will not considered. As such, these
movement styles will be obsolete from the responsivity evaluation, see Section 1.3.
However, motion capture files associated with these movements will still be part of
the data set for the evaluation process, see Section 1.3.

game engine
This thesis will evaluate the feasibility of procedural animations only within the
Apex game engine, provided by Avalanche Studios Group. This engine uses a right-
handed world-axis orientation, see Section 3.3.4.

confidentiality
As a result of the Apex game engine being proprietary software solely used in-house,
a certain level of discretion is required by Avalanche Studios Group. This includes,
but is not limited to, potential omission of engine-specific details from the final
report.

phase function computation
Out of the three methods of computing the phase variable, as presented in Holden
et al. [5], only ‘constant’ is to be considered during this thesis project. This, in an
effort to reduce the number of permutations of network settings.

terrain and inclination
The original demonstration application produced by Holden et al. [5] uses a static
heightmap for terrain height sampling. As this is not the case for the Apex game
engine, the phase-functioned neural network implementation integration as part of
this project will assume a fully flat terrain during runtime.

3

1. Introduction

hardware
The entire evaluation process, and the network training, will be limited to be per-
formed on a single set of hardware specifications:

• CPU - Intel i7-8700k @ 3.70GHz

• GPU - NVIDIA GTX 1060 6GB

• RAM - 16.0GB

4

2
Theory

2.1 Artificial Neural Networks
This section provides an introduction to artificial neural networks, the machine learn-
ing model used for mapping input features to output targets by updating network
weights and biases.

The concept of an artificial neural network is based off the human brain; given a
sensory input, and as internal energy levels surpasses specific thresholds, synapses
are fired between neurons connected in a graph network.

A neural network can be trained to model arbitrary input-output relationships using
either:

• Supervised learning - Comparing network outputs to a ground truth; for an
example, used for image and speech recognition.

• Unsupervised learning - Attempts to minimize a given error measure as no
specific ground truths are given; for an example, used for clustering and clas-
sification.

• Reinforcement learning - Traverses the solution space by being provided in-
termediary encouragement and punishment given specific state spaces; for an
example, used for self-driving vehicles.

For this thesis project, and for the rest of this theory segment, supervised learning
is the considered context.

2.1.1 Network Layers
A neural network can be modelled as a feed-forward directed acyclical graph with
multiple connected layers, see Figure 2.1.

When a neural network is given sensory input, this data is feed into the input
layer. Then, through evaluating the outputs of each layer given its predecessor’s,
see Section 2.1.2, the resulting evaluation of the network is produced in the output
layer. A network can have any number of hidden layers between the input and the
output layers, and any different number of nodes in each layer.

5

2. Theory

Figure 2.1: Simplified fully connected neural network model

Within the research field of machine learning, there are different network architec-
tures consisting of other types of network layers than the fully connected layer type
shown in Figure 2.1. Some other network types and examples of their usage are:

• Recurrent Neural Networks - By allowing for cyclical node connections, infor-
mation is able to be passed and remembered between iterations. Used in text
recognition and translation, amongst other fields.

• Convolutional Neural Networks - Through using feature convolving kernels
that sequentially read subsets of the input, pattern recognition can be per-
formed independent of the location of that pattern within the input data.
Used in image recognition, amongst other fields.

2.1.2 The Mculloch-Pits Neuron
Named after its founders, the smallest component of a neural network is the single
Mculloch-Putts neuron [7]. Such a neuron, see Figure 2.2, produces an output given
an internal threshold and the weighted inputs of other neurons.

Figure 2.2: Simplified Mculloch-Pitts neuron model

Consider Equation 2.1; to evaluate the output signal of a Mculloch-Pitts neuron,
one firstly considers the local field b

(L+1)
i and inputs it into an activation function

g. Popular activation functions include the ReLU (= max(0, bi)) and the Sigmoid

6

2. Theory

(= 1
1+e−bi

) functions [8].

S
(L+1)
i = g(b(L+1)

i) = g(
∑

j

w
(L+1)
ij S

(L)
j − θi) (2.1)

where:

• g is the activation function of the neuron

• wij is the weight scalar from neuron j to neuron i

• S
(L)
j is the output of neuron j in the previous layer L

• θi is the bias/threshold of neuron i

2.1.3 Supervised Learning of a Neural Network
By adjusting the weights and biases, a network can map any given set of input
features X to any specific output Y . These are often referred to as pairs of input
and output vectors.

To achieve this, a training process such as the following is performed:

Simplified training algorithm of a neural network

1. Split the data into two sets: training and validation

2. Initialize the network with random weights and biases

3. Use backpropagation to train the network using the training data according
to the algorithm below (= an ‘epoch’)

4. Evaluate the accuracy of the network by performing complete prediction of all
data points in the validation set, see Section 2.1.5

5. If the validation accuracy is increasing, according to some heuristic, go to step
3. Otherwise, terminate training (= ‘early stopping’), see Section 2.1.4

Backpropagation is the technique of using the chain rule [9] to compute the update
for weights backwards through the network, using the computed error in the output
layer.

This is done by performing the following algorithm:

Backpropagation algorithm for a neural network

1. Forward propagate the input through the network

2. Calculate the output error using the difference to the ground truth

3. Propagate the errors back through the network

4. Update the weights using the backpropagated errors

7

2. Theory

5. Update the biases using the backpropagated error

equivalent to:

1. S(L)
i ← g(∑j w

(L)
ij S

(L+1)
j − θ(L)

i), for all neurons i in layers L

2. δ(O)
k ← g′(b(O)

k)(yk − S(O)
k), for all neurons k in output layer O

3. δ(L)
i ← ∑

j δ
(L+1)
i w

(L+1)
ij g′(bL)

j), for all neurons i in non-output layers L

4. w(L)
ij ← w

(L)
ij + ηδ

(L)
j S

(L−1)
i , for all neurons i in layers L

5. θ(L)
i ← θ

(L)
i − ηδ(L)

i , for all neurons i in layers L

where η ∈ (0, 1) is the learning rate of the network and which may decay during the
training process. The learning rate, and other parameters such as number of epochs
or the batchsize, are collectively referred to as hyperparameters.

2.1.4 Underfitting and Overfitting
When training a neural network, or when performing other types of regression model
fitting, the choice of model complexity may give rise to issues as a result of a com-
plexity level too low or too high.

Consider Figure 2.3, here one can observe the same data points and three different
regression models. The optimal model for these types of problems is that which can
most accurately represent the data distribution, and therefore can most precisely
predict future data points belonging to the same data set. In the figure, the left
model suffers from underfitting, wheras the right model suffers from overfitting.

Figure 2.3: Simplified example of under/overfitting in 2D regression
Left: Underfitting, model fails to accurately represent data.
Middle: Optimal fit, model mimics the sampled distribution.
Right: Overfitting, model fails to generalize observations

In the previous example shown in Figure 2.3, the polynomial degree of a regression
model was shown to be directly relating to any potential underfitting or overfitting.
However, when it comes to neural network training, the complexity of the model
is already decided upon previous to the training session. As such, the analogous
parameter for neural network training is instead the number of training iterations.

8

2. Theory

Figure 2.4: Simplified example of early stopping
As the prediction error on the training data reduces during the training process,
the prediction error on the validation data initially decreases. After some time the
prediction error starts to increase as generalizability is lost.

Consider Figure 2.4; here a neural network is trained repeatedly using a training
data set of input and output vector pairs, see Section 2.1.3. A trivial expectancy of
such a training process is that the prediction error on the training data set steadily
declines as the training, often counted in the number of epochs, proceeds. However,
to prevent the potential loss of generalization of the network, a separate validation
data set is used. The network is at no point allowed to learn from, or update
its network weights and biases in response to, being shown the validation data set.
Instead, this data set is solely used to estimate the prediction qualities of the network
given unseen data.

In other words, the calculated error of the network predictions on the validation
data set is considered to be proportional to the generalizability of the network. As
such, the ideal performance of the network is when the validation error reaches a
minimum, at which the training process should terminate. This is visualized in
Figure 2.4, where halting training before the validation error starts to increase leads
to potential underfitting, and halting post this minima leads to overfitting.

2.1.5 Gradient Descent
The backpropagation algorithm presented in Section 2.1.3 attempts to minimize
the prediction error by updating each weight and bias with regards to the function
derivative of the error function with respect to each variable respectively.

Conceptually, one can visualize this process by using Figure 2.5, which shows how the
prediction error of a neural network is directly dependent on the values of the weights
and biases. Then, as a training process includes initializing random weights and
biases, consider a marked spot at a random starting point on the line. From there
one, through gradient descent during the network training process, that marked spot
will move downhill as the network weights and biases are updated.

9

2. Theory

Figure 2.5: Simplified example of prediction error depending on weights/biases
This model is heavily simplified. In actuality, a more realistic representation has
one dimension for each weight value and for each bias value.

However, through using true gradient descent on an unknown error landscape, one
might get stuck in local minimas. This can be visualized in Figure 2.5 if one were
to initialize a network configuration close to the noted local minima. To avoid
this serious issue, one introduces even more randomness to the network training
procedure. As such, if we allow the network solution to occasionally move in an
opposite direction of the error function gradient, a weights and biases configuration
may escape a local minima.

This introduction of further randomness in the network training process can be
done by updating the weights and biases after only having seen a randomly chosen
subset, called a batch, of the training data set. This is called batch training and
the technique of adding further randomness to the model training is referred to as
stochastic gradient descent.

2.1.6 Adam Optimizer
The Adam optimization algorithm [10] [11] is an extension to stochastic gradient
descent, see Section 2.1.5, first presented in 2015, aiming to increase efficiency during
neural network training.

The most impactful difference between the Adam optimization algorithm and stan-
dard stochastic gradient descent is where the latter uses a single learning rate for
all trainable parameters, the former uses individualized learning rates for each pa-
rameter that may decay individually. This decay is controlled through the hyper-
parameters beta1 and beta2.

10

2. Theory

2.2 Related Work
Recently, advancements in machine learning using deep neural networks has been
made in a number of various fields:

Since ImageNet [12] 2015, the annual image recognition algorithm competition, com-
petitors have been able to produce machine learning solutions that outperform hu-
mans in classifying photographs of objects [13].

In 2020, the AlphaFold agent developed by the Deepmind team, funded by Google,
was able to make accurate predictions of protein shapes based off its sequence of
amino acids, potentially beeing able to "accelerate research in every field of biology"
[14].

The tech giant Google is using machine learning techniques for a multitude of their
online services, such as: busyness metrics for public areas, individual passage index-
ing on webpages, song/music identification, breaking news detection, and language
translation [15] [16].

Within gaming specifically, there has been multiple recent breakthroughs:

In 2016, the machine learning agent AlphaGo, produced by the Deepmind team,
defeated Lee Sedol, winner of 18 world titles, in the board game of Go [17]. The
achievement lead to AphaGo officially being the first ever computer agent being
rewarded the highest ranking certification within the sport; 9 dan [17], a large step
forward from the narrow matches between IBM’s Deep Blue and Garry Kasparov
in the much less complex game of Chess in 1997.

In a similar vein after AlphaGo’s triumph in Go, computer games has become a
new focus for deep learning agents. One of these is AlphaStar, also developed by
Deepmind, which in 2019 became the first AI to achieve the highest ranking within
a widely popular esport title without any game restrictions in the computer game
of StarCraft II [18].

Another such agent is OpenAI Five, developed by the OpenAI team and funded
amongst others by Elon Musk, which also in 2019 achieved both expert-level per-
formance and human-AI cooperation in the computer game of Dota 2 [19].

However, world class competition is not the only use for neural network agents. Mul-
tiple games have officially launched with either fully, or partially, machine learned
agents, such as the A.I. that players can play against in the game Planetary Annihi-
lation [20]. Another example, where machine learning is only partially used, is the
threat response, the fight-or-flight reaction, of the A.I. agent in the game Supreme
Commander 2 [21]. Additionally, similar agents have been developed to the benefit
of the game designers and developers, for reasons such as gameplay balancing and
strategy win predictions [22].

Other uses of machine learning techniques to increase productivity, generalizability,
or efficiency of the game development process include the field of procedurally gen-
erated game content. Applicable areas were machine learning techniques have been

11

2. Theory

applied such research include: level design, text and narration, music and sound
effects, model textures, and character animations [23].

Some other specific examples of applied machine learning applied during game de-
velopment is much of the research done at the machine learning research division
Ubisoft La Forge [1] who have conducted research on, amongst others; 3D charac-
ter navigation [24], motion in-betweening for character animations [25], data-driven
physics simulations [26], automatic code bug detection [27], and motion capture
data denoising [28].

As this report is on the topic of neural network generated locomotive character an-
imations, the rest of this section is dedicated to presenting different advancements
within this field and to, where relevant, relate their respective strengths and weak-
nesses in contrast to that of phase-functioned neural networks.

The following research is presented chronologically.

2.2.1 Phase-Functioned Neural Networks for Character Con-
trol (2017)

In this paper, Holden et al., at the University of Edinburgh, introduces a single net-
work architecture for generating locomotive character animation over rough terrain
using a phase function [5].

At each frame during runtime, this neural network takes as input the current pose
of the character, any potential user input, and information of specific sample points
along the ground ahead and behind the character, to produce the next character
pose. This character pose consists of information regarding each joint within the
character model, such as their position and orientation.

To accurately model the cyclical nature of the human walk, a phase variable produc-
ing function is introduced. This variable models the transitions between the contact
of each of the two feet of the character with the ground. This ensures a perpetual
forward animation of the character, stepping with each foot sequentially.

For a more in-depth presentation of the phase-functioned neural network used in
this report, see Section 3.2.

2.2.2 Mode-Adaptive Neural Networks for Quadruped Mo-
tion Control (2018)

This paper, authored by researchers at the University of Edinburgh, introduces
a dual neural network system for generating locomotive character animation for
quadrupeds [29].

The first of these two networks is the motion prediction network, highly similar to
the neural network used in a phase-functioned neural network, see Section 3.2. The
second, a gating network that outputs blending coefficients that are used as inputs
in the motion prediction network similar to the phase variable of a phase-functioned

12

2. Theory

neural network, see Section 3.2.

By controlling the motion weights of the motion network using another generative
neural network, one trades manually labeling the phase of the motion training data
for the requirement of training this separate gating network. This, however, is
necessary for quadrupeds as the cyclical leg movement of these is heavily dependent
on gait styles and cannot be modelled with a single phase variable [29].

Result-wise, the mode-adaptive neural networks approach achieve more realistic
quadruped motion for flat terrain than that of a phase-functioned neural network
[30]. However, direct comparisons in memory footprint or computational complexity,
for either flat or rough terrain, was omitted from the original paper.

2.2.3 Neural State Machine for Character-Scene Interac-
tions (2019)

Compared to other research presented here, this paper, also from the University
of Edinburgh, specifically focuses on the interaction between a character and scene
objects, such as opening doors, sitting on chairs, and lifting and carrying boxes [31].

For the training data, specific motion capture clips of the supported object interac-
tions were recorded and a set of control points were manually labeled, such as the
armrests of an interacted with chair. A data augmentation scheme was then used
to generate a 16GB training set from the initial data.

At runtime, the state machine can transition and blend between animation modes
such as walk, sit, open, carry, etc, triggered by user input. Additionally, this system
is fed not solely the pose of the character and specific control points along the
trajectory of the character, but also the geometry of the nearby surroundings through
voxelization.

Contrary to the neural state machine which was built for this specific purpose, a
phase-functioned neural network produces unsatisfactory and jittery results when at-
tempting to produce character animation of scene object interactions [32]. However,
for strictly locomotive tasks, a phase-functioned neural network produced compara-
ble results in areas such as foot sliding and response time [31].

Additionally, the neural state machine presented in this research includes two differ-
ent conjoined neural networks, similar to the system structure presented in Section
2.2.2, and one of which includes a phase variable similar to that of the compared
to solution. Also, the comparatively massive training data adds considerably longer
training time than that of a phase-functioned neural network [31].

2.2.4 Local Motion Phases for Learning Multi-Contact Char-
acter Movements (2020)

This paper, authored by researchers at Electronic Arts and the University of Edin-
burgh, presents the concept of local motion phases and shows successful applications

13

2. Theory

of this concept both within new fields of animations and within the context of pre-
vious research from the university [33].

The local motion phase is conceptually similar to the phase variable in a phase-
functioned neural network, see Section [5]. However, rather than modelling the
locomotive movement of an entire character with a single phase variable, local motion
phases are automatically calculated and maintained on a per-bone basis. This allows
for more realistic animations during highly detailed movements than that which can
be generated by a phase-functioned neural network [34].

At its core, the system presented in this paper has a similar dual network structure
to those mentioned in Section 2.2.2 and Section 2.2.3. However, in addition to
the inclusion of the local motion phases, this paper introduces an autoencoder for
the user input. This generative control model encodes and decodes user input at
runtime, pretrained on the motion capture data.

This approach has been shown to produce high quality animations for tasks such
as lifting boxes similar to those presented in Section 2.2.3, playing basketball, and
for quadruped movement similar to those presented in Section 2.2.2. However, as
this approach builds upon multiple advanced concepts, its final network structure is
substantially more intricate than that of the phase-functioned neural network.

2.2.5 Learned Motion Matching (2020)
Traditional motion matching [35] consists of a system that regularly fetches the most
appropriate pre-processed animation from an animation database, given a set of
pose features, for a specific character. Such a database consists of highly structured
and non-overlapping directional movement, as to minimize the number of recorded
animation sequences. This, as the memory footprint of a motion matching system
scales linearly with the size of the database as the latter must be kept fully in
memory during runtime.

Learned motion matching [36], however, is a technique presented by Ubisoft La Forge
[1] that introduces a neural network approach to motion matching that removes
direct dependency on an animation database. Performance-wise, although a learned
motion matching system is able to produce indistinguishable results to that of a
traditional motion matching system with a substantially smaller memory footprint,
it does so requiring considerably longer computational time [36].

Compared to using a phase-functioned neural network, a learned motion matching
network uses slightly less memory and significantly less computational time at run-
time while requiring an incredibly shorter training period [36] and while being able
to produce similar or better results [37].

Although, a learned motion matching system does not require phase-labeling, it
instead demands to be trained on a meticulously constructed database of encom-
passing motion capture data. Additionally, compared to a phase-functioned neural
network, a motion matching system requires three distinct networks, each with their
own features, targets, and error functions.

14

2. Theory

2.3 File Types & Software Libraries
This section aims to present relevant file types and software libraries used within
this project, and to provide a brief introduction on how to use them.

2.3.1 The .bvh filetype
The .bvh, Biovision Hierarchy, filetype can be used to store motion capture data.
These are human-readable text files, containing both a structural definition for the
motion capture joint skeleton and the per frame joint data.

HIERARCHY
ROOT Hips
{

OFFSET 0.000000 0.000000 0.000000
CHANNELS 6 Xposition Yposition Zposition Zrotation Yrotation Xrotation
JOINT LeftLeg
{

OFFSET 1.000000 -1.000000 1.000000
CHANNELS 3 Zrotation Yrotation Xrotation
End Site
{

OFFSET 0.000000 0.000000 0.000000
}

}
JOINT RightLeg
{

OFFSET -1.000000 -1.000000 1.000000
CHANNELS 3 Zrotation Yrotation Xrotation
End Site
{

OFFSET 0.000000 0.000000 0.000000
}

}
}
MOTION
Frames: 3
Frame Time: 0.008333
2.801100 17.851100 -0.421913 -0.943466 0.030603 6.685755 -1.889587 17.864721 4.969343
-14.847416 -7.065584 -13.249440 1.025640
2.800815 17.848850 -0.421355 -0.932144 0.000126 6.685797 -1.904051 17.868369 4.931144
-14.870445 -7.095567 -13.284463 1.082333
2.800560 17.846750 -0.420267 -0.919127 -0.037791 6.682931 -1.919381 17.879059 4.896097
-14.894115 -7.119117 -13.317921 1.137596

Figure 2.6: Simplified .bvh file example

Consider the simple .bvh example in Figure 2.6.

Firstly, a ‘HIERARCHY’ of skeleton nodes are defined by name and parent offset.
Additionally, each joint has a number of ‘CHANNELS’ associated with them. In
this example, a skeleton of three joints is defined: a parent ‘Hips’ joint with the two
children joints: ‘LeftLeg’ and ‘RightLeg’.

Lastly, a .bvh file features a ‘MOTION’ section where the per frame motion captured
data is listed. In order, each floating point value here corresponds to one of the
‘CHANNELS’ specified in the previous section. Each new row of data corresponds to
a new frame. Joint orientations are stored in degrees, within the interval (−180, 180].

Software, such as Blender, can import .bvh files and render the motion applied to
the skeleton, as defined within the .bvh.

15

2. Theory

2.3.2 Theano
Theano [38] is a Python library built on top of Numpy [39] for efficient multi-
dimensional array computations on the GPU. Theano was initially released in 2007
and further development on the project was shut down in 2017 [40].

Usage of Theano is done by creating ‘theano.function’:s that specify both input/output
parameters and the actual operation to perform. For a simple example of Theano
code, see Figure 2.7. However, Theano can be used for much more complex compu-
tations, such as neural network training, by passing the error function and learning
rate update to the ‘theano.function’ function.

import theano
from theano import tensor

a = tensor.dscalar()
b = tensor.dscalar()

c = a + b
f = theano.function([a,b], c)

print(f(0.5, 1.5))

Figure 2.7: Simplified Theano code snippet for addition on the GPU
The code snippet is expected to print ‘2’ to the console after performing an addition

of the scalars 0.5 and 1.5 on the GPU.

2.3.3 Eigen
Eigen [41] is a C++98 library used to perform high-speed matrix and array oper-
ations. Eigen was first released in 2006 and has since been used in the creation of
other software libraries, such as TensorFlow [41] [42].

In Eigen, one can define both statically-sized and dynamically-sized matrices and
arrays. However, arithmetic inter-data type operations between matrices and arrays
are not allowed, requiring users to cast objects between the types at runtime.

For a simple example on how to use Eigen arrays to represent a single-layed neural
network, see Figure 2.8.

Eigen::ArrayXf W0;
Eigen::ArrayXf b0;
Eigen::ArrayXf Y;

void PerformNetworkPrediction(Eigen::ArrayXf X){
Y = (W0.matrix() * X.matrix()).array() + b0;

}

Figure 2.8: Single-layered network implementation using Eigen
Note: this example requires variable initialization before use of the ‘PerformNet-
workPrediction()’ function.

16

3
Methodology

3.1 To Answer the Research Questions
After the neural network solution has been fully integrated into the Apex game
engine, its viability for generating locomotive character animations will be quanti-
tatively evaluated in the following two ways.

3.1.1 Researching Responsivity
Responsivity will be measured in computational time required, per frame, during
runtime for the network related code.

This will be tested for locomotive character animations around a static obstacleless
track course, as to ensure deterministic user input. This obstacle course will be
defined using waypoints, see Section 4.1.9, that both acts as positional checkpoints
along the course and which dictates what movement style the character is expected
to produce while traversing the environment toward the waypoint.

The track course will be defined using the following waypoints, see Table 3.1:

Index Pos (m) Gait Speed StrafeDir.
0 (-30, 40) Walk 2.5 -
1 (-50, 0) Walk 2.5 (-0.5, -0.5)
2 (-25, -25) Jog 10.5 -
3 (25, -40) Jog 10.5 -
4 (10, -10) Crouch 2 -
5 (25, 50) Walk 2.5 (0, -1)

Table 3.1: Track course details
Pos = the position of the waypoint in meters in world space
Gait = gait type, see Holden et al. [5]
Speed = goal root speed
StrafeDir. = normalized character facing direction vector when strafing

The final responsivity result will include the statistic for mean and standard devia-
tions of frametime on a per lap basis of 19 laps. The in-engine representation of the

17

3. Methodology

track course can be seen in Section 5.2.

The reason behind the choice of evaluating responsivity specifically, is how high
responsiveness is a requirement for both immersive and interactive non-passive ex-
periences, such as computer games, and that it that can be evaluated quantifiably.
Additionally, low responsiveness may influence both player enjoyment and perfor-
mance when playing computer games, interrupting a possible state of flow [43].

3.1.2 Researching Accuracy
The accuracy of the integrated network solution will be measured by comparison
between the predicted output pose and the corresponding ground truth for the
entirety of the training data.

To allow for this comparison, pairs of input and output vectors will be generated
similarly as those during the database generation process, see Section 3.3.2, and will
be evaluated as part of the final runtime package, see Section 4.1.8.

There are multiple different error definitions used within regression, such as mean-
squared error (MSE), root mean-square error (RMSE), and mean-absolute error
(MAE) [44].

The error definition to be used as part of the accuracy evaluation in this report
will be mean-absolute error. This was chosen as firstly, mean-absolute error is more
forgiving for outliers which may be expected in this particular data set, and secondly,
mean-squared error is already used as part of the training process. A different error
calculation for the evaluation process than what is used during training may be useful
for testing generalization and to allow for comparisons between the two errors.

The error will be presented in both mean and standard deviation on a per-file basis,
evaluated through a per-frame calculation according to the following mean-absolute
error formula:

1
|j|
∑

j

|tj − pj|
tj

(3.1)

Where |j| is the total number of frames in this file, tj is the three-dimensional
position of joint j as defined in the motion capture database, and where pj is the
three-dimensional network predicted output position of joint j. The values taken
from the motion capture database, including tj, is referred to as the ground truth.

As this definition includes the tj denominating term, an error evaluated using the
formula can be interpreted as the relative prediction error in percentage. In other
words, an error of 0.01 equals an average joint position error of 1%.

Additionally, as a result of restrictive system memory, the maximum number of
frames considered in each motion capture data file is that which equals at most
500’000 discrete joint positions. In other words, for a skeleton with 191 joints, only
the first 2’617 unique frames will be considered.

18

3. Methodology

3.1.3 Researching Architecture
To answer the subsidiary research question regarding architecture optimality, com-
parisons will be made between the results of the different network configurations, as
presented in Section see Section 1.3.

This analysis is to be done by comparison of the evaluation results, as presented in
Section 3.1.1 and Section 3.1.2, between the following neural network configurations:

• Holden - Default (HOLDEN) - The default network solution as presented in
Holden et al. [5]: a phase-functioned neural network with a single hidden
network layer of 512 nodes, trained for 2’000 epochs 3.3.3.

• Holden - Extra Layer (HOLDEN-XL) - The default network solution as pre-
sented in Holden et al. [5] but using two hidden network layers of 512 nodes
each.

• Holden - Extra Trained (HOLDEN-XT) - The default network solution as
presented in Holden et al. [5] but trained for 4’000 epochs.

• Avalanche (AVA) - The default network solution as presented in Holden et al.
[5] but heavily altered to accompany an in-house skeleton.

The reasoning behind these specific choices in network configurations were that
firstly, there must be a control case network that mimics the original implementa-
tion. Then, having a longer network, or a network that is trained for a longer period
of time, could be used for conceptually straightforward comparisons. Additionally,
evaluating a network with a longer trained process would also be interesting to inves-
tigate whether the original implementation by Holden et al. suffers from overfitting,
see Section 2.1.4, given that that implementation uses no validation data or early
stopping 2.1.4.

the holden configurations
The hyperparameters that will be used for the network configurations are directly
based on the work by Holden et al. [5], see Section 3.2.

Additionally, the 31 joint .bvh, see Section 2.3.1, skeleton used for these configura-
tions is that of the original .bvh files made public by Holden et al. [5], see Figure
3.1.

The HOLDEN and HOLDEN-XT networks will both have an input layer width of
342, a hidden layer width of 512, and an output layer width of 311. The extra
hidden layer present in the HOLDEN-XL network configuration will also have 512
nodes.

19

3. Methodology

Figure 3.1: Visualization of the .bvh skeleton used by the Holden configurations
This is the same skeleton as presented by Holden et al. [5].

the avalanche configuration
The altered AVA network will general use the same network hyperparameters as
that of the Holden configurations.

However, it will use a different skeleton, one that is used in a live Avalanche product.
This skeleton is visualized in Figure 3.2.

Figure 3.2: Visualization of the .bvh skeleton used by the AVA configuration
The ‘extra’ joints that appear outside the character body are used for tasks such as
deformation, object interactions, and player camera locations. Do notice the many
extra, compared to in Figure 3.1, joints in the character head and hands. For the
complete list of joint names in this skeleton, see Appendix A.3.

To accommodate for the AVA skeleton having 191 joints, rather than the 31 of the
Holden configurations, the Avalanche network will have a input layer width of 1’302,

20

3. Methodology

the same hidden layer width of 512, and an output layer width of 1’751.

Also, since this configuration aims to use an in-house Avalanche skeleton, the .bvh
files made public by Holden et al. [5] will need to be re-generated. This retargeting
step will be done by professionals employed at Avalanche.

Additionally, since the network is trained for 60Hz predictions, whereas the retar-
geted .bvh files was retargeted to the in-house standard of 30Hz, these .bvh files will
need to be interpolated, see Figure A.1 and Figure A.2 in Appendix A.1.

As a consequence of the greater number of joints, the network training database
used for the AVA configuration will only include every fourth motion capture frame.
This, as otherwise the training database does not physically fit in the runtime mem-
ory of the system used as part of this thesis, see 1.4. To reemphasize: the AVA
configuration will be trained on a fourth of the number of motion capture frames
than that of the Holden configurations. However, each frame in the Ava training
database will contain data of more than six times the joints than in the Holden
training database. This issue, however, could have been resolved by rewriting the
network training logic such that the network could onload, and offload, parts of the
training database. This would lead to the network being able to indirectly train
on the entire data set, including all movement frames, even though the database
would be too large to fit in system memory at once. However, this procedure would
require an extensive rewrite of the original implementation by Holden et al., and this
would potentially drastically increase the time required during the training process
as onloading and offloading such large chunks of memory is a slow process.

Also, a specific subset of the joints most equivalent to those of the Holden skeleton
used in the Avalanche skeleton will be referred to as the Avalanche Masked skeleton:
AVA-M. In other words, the AVA-M skeleton are the subset of Avalanche joints most
similar to those in the Holden skeleton, see Section 3.3.3.

3.1.4 Simple Difference Significance Evaluation
To evaluate the statistical significance in the difference between two data sets, a and
b, the following version of heuristic will be used:

2|mean(a)−mean(b)|
sd(a) + sd(b) (3.2)

This is equivalent to evaluating the difference between the means of the two data
sets in measurements of the average of their respective standard deviation.

The absolute difference is used here for the same reasons that mean-absolute error
is used for the accuracy evaluation, see Section 3.1.2.

21

3. Methodology

3.2 The Phase-Functioned Neural Network
A phase-functioned neural network, as presented by Holden et al. [5], is a neural
network with weights generated by a cyclic phase variable produced by a phase
function.

This section aims to describe the functional components of a phase-functioned neural
network within the specific context of this project, as presented in Holden et al. [45].

3.2.1 Network Structure
The network architecture used in Holden et al. [5] is a neural network with the
following structure, where each network node uses a trainable bias:

• H0 - Input layer of 342 nodes, see Section 3.2.2.

• H1 - Fully-connected hidden layer of 512 nodes.

• H2 - Output layer of 311 nodes, ELU [8] activation function, see Section 3.2.3.

3.2.2 The Input Vector
The input vector xi, at frame i, is a concatenation of, amongst others; sample points
on the terrain along the traversed and expected path of the animated character, see
Figure 3.3, and the current joint positions and velocities of the character.

xi = {tp
i , td

i , th
i , t

g
i , j

p
i−1, jvi−1} ∈ Rn (3.3)

where:

• tp
i ∈ R2t, the x, y positions of the sample points in character local space

• td
i ∈ R2t, the x, y trajectories of the sample points in character local space

• th
i ∈ R3t, the heights of each sample point and additional sub-sample points

• tg
i ∈ R5t, a vector containing the gait of the character along the sample points

• jpi−1 ∈ R3j, the position of all j character joints in the previous frame j − 1

• jvi−1 ∈ R3j, the velocities of all j character joints in the previous frame j − 1

where:

t is the number of sample points centered around, and including the at the feet of,
the character. This value was set to 12 in Holden et al. [5], equaling five sample
points ahead, and six sample points behind, the character.

j is the number of joints within the character model. This value is was set to 31 in
Holden et al. [5].

22

3. Methodology

Figure 3.3: Subset of PFNN input vector visualized
a: sample point positions - tp

i ∈ R2t

b: sample point trajectories - td
i ∈ R2t

c: (sub-)sample point heights - th
i ∈ R3t

source: Holden et al. [46].

3.2.3 The Output Vector
Similarly, the output vector yi, at frame i, is a concatenation of both predicted
future states, the next pose of the character, and an update of certain metadata.

yi = {tp
i+1, td

i+1, j
p
i , jvi , jai , rx

i , r
z
i , r

a
i , ṗi, ci, } ∈ Rm (3.4)

where:

• tp
i+1 ∈ R2t, the predicted x, y positions of the sample points in character local
space of the next frame i+ 1

• td
i+1 ∈ R2t, the predicted x, y trajectories of the sample points in character
local space of the next frame i+ 1

• jpi ∈ R3j, the generated position of all j character joints

• jvi ∈ R3j, the generated velocities of all j character joints

• jai ∈ R3j, the generated angles of all j character joints

• rx
i ∈ R, local character velocity in the relative x direction

• rz
i ∈ R, local character velocity in the relative z direction

• ra
i ∈ R, local character angular velocity around the world up vector

• ṗi ∈ R, phase variable update delta

• ci ∈ R4, binary contact labels of heel and toe joints with the ground

23

3. Methodology

3.2.4 The Phase Function
The Phase function blends between four sets of network weights, αk0 ,αk1 ,αk2 ,αk3 ,
using cubic Catmull-Rom interpolation [47]. As such, the number of network weights
needed to be stored in memory at runtime is multiple times that of a singular network
configuration.

The phase function Θ is evaluated:

Θ(p; αk0 ,αk1 ,αk2 ,αk3) =
αk1

+w(1
2αk2 − 1

2αk0)
+w2(αk0 − 5

2αk1 + 2αk2 − 1
2αk3)

+w3(3
2α

k1
− 3

2αk2 + 1
2αk3 − 1

2αk0)

(3.5)

where:

w = 4p
2π (mod 1) (3.6)

kn =
⌊ 4p

2π

⌋
+ n− 1 (mod 4) (3.7)

Within this project, the phase function will be evaluated during runtime. An al-
ternative approach would be to precompute the function and store its results in
memory. This would reduce the computational load at runtime but increase the
memory footprint [5].

24

3. Methodology

3.3 The Full PFNN Pipeline

Figure 3.4: The full PFNN pipeline
‘data’ = offline storage
‘script’ = runnable files
‘memory’ = temporary, runtime

This section aims to provide an overview of the full phase-functioned neural network
pipeline, as designed by Holden et al. [5] and as presented in Figure 3.4. The final
integrated version of this model is presented in Section 4.1.

3.3.1 Generate Patches
To allow for the generation of locomotive character animations that adhere to the
roughness of the topography, the training data used later must include different
types of terrain. A solution to this is to fit heightmaps to the separately recorded
motion capture data, firstly producing intermediate patches of terrain.

3.3.2 Generate Database
During this step, each input and output vector pair, see Section 3.2.2 and Section
3.2.3, is produced and stored. Each vector pair is created on a per-frame basis using
motion captured data, see Section 2.3.1, and associated labels, such as the phase
and gait variables. Additionally, for each motion capture clip, the ten most suitable
heightmaps are fitted to the foot-to-ground contacts of the character.

3.3.3 Network Training
Training will be performed using the Theano [38], a Python library for multi-
dimensional array computations on the GPU - see Section 2.3.2, implementation
by Holden et al. [5], and an Adam optimizer, see Section 2.1.6. The result of this
step will be the finalized trained network weights. The default hyperparamters for
the training will be:

25

3. Methodology

• batchsize = 32

• learning rate = 0.0001

• beta1 = 0.9

• beta2 = 0.999

• epochs = 2000

• error function = mean-squared error

For the order of the motion capture data files, see Table A.1 in Appendix A.2.

During the training process, the translation and orientation of the joints not on
the following list, or equivalent to these in the case of the Avalanche configuration,
within the input vector will be put to ≈ 0, as is done in Holden et al. [5]:

• Hips

• LeftUpLeg

• LeftLeg

• LeftFoot

• LeftToeBase

• RightUpLeg

• RightLeg

• RightFoot

• RightToeBase

• Spine

• Spine1

• Neck1

• Head

• LeftArm

• LeftForeArm

• LeftHand

• RightArm

• RightForeArm

• RightHand

Additionally, this training process will not make use of the early-stopping technique,
see Figure 2.4.

3.3.4 Neural Network
This step includes the entire package necessary for runtime pose prediction. Dur-
ing initialization, all necessary trained network weights will be read and loaded in
memory. Then, each frame, a prediction request is passed to the package, provid-
ing a character pose in the current frame and expecting an updated character pose
as return value. In addition to the character pose, other metadata is feed to the
network for prediction, such as sample points of the topography and user input, see
Section 3.2.2.

In this step is where the bulk of the integration work will be. However, the overall
package structure will be based of the demonstration codebase made public by
Holden et al. [5], with the neural network model defined in Eigen, see Section 2.3.3,
arrays and matrices.

Additionally, as mentioned in Section 1.4, the motion capture data, and therefore
the trained neural network, uses left-handed world-axis, whereas the Apex engine
uses a right-handed world-axis, see Figure 3.5.

26

3. Methodology

Figure 3.5: Visual representation of left/right-handed world-axis orientations
Left: Left-handed world-axis (green)

Right: Right-handed world-axis (purple)

For this reason, the runtime neural network package must be altered such that
it can convert between the world-axis orientations. The character pose, living in
a right-handed world-axis, is to be converted to the left-handed world-axis of the
neural network. Then, the neural network outputted updated character pose must
be converted back into right-handed world-axis before being applied to the character
skeleton.

27

3. Methodology

28

4
Process

4.1 The Runtime Package
This section aims to present the runtime package implemented for the phase-functioned
neural network solution, originally based on the demonstration software made public
by Holden et al. [5]. An overview of this package is presented in Figure 4.1.

Figure 4.1: The Procedural Animations runtime package
The neural network solution is accessible either from the ProceduralAnimations
class, or indirectly through the ErrorCalculator class.

4.1.1 Using the Runtime Package
The runtime package, see Section 4.1, is aimed to have a low level of coupling,
such that other programmers need not to interact with, nor understand, the deeper
machinations of the package.

As such, to use the runtime package, a programmer would only need to perform
two things: initialize the Procedural Animations class and to call ‘GetNextPose(...)’
when wanting to use the network for predictions, see Section 4.1.2.

During initialization, the ProceduralAnimations constructor takes three optional
parameters, see Figure 4.2:

• new world transform - A 4D matrix for character scaling/rotation/translation.

• new setting - A Setting enum, see Section 4.1.6, for network configurations.

• new waypoint sptr - A pointer to a vector of Waypoint:s, see Section 4.1.9.

29

4. Process

CProceduralAnimations(
AosMatrix4 new_world_transform = AosMatrix4(0.0f),
CSettings::SETTING new_setting = CSettings::HOLDEN,
std::vector<CProceduralAnimationsWaypoint*>* new_waypoints_ptr = nullptr);

Figure 4.2: Procedural Animations constructor

Then, during the constructor execution, the objects that the ProceduralAnimation
class owns are initialized.

During runtime prediction, only the ‘GenerateNextPose(...)’ function is required, see
Figure 4.3. This function takes two parameters: a pointer to the current character
pose, and a pointer to the translational character-in-world offset. Then, the ‘Gen-
erateNextPose(...)’ updates the two input parameters in place, given the outputs of
the neural network.

void GenerateNextPose(CPose* pose, AosVector3* translation_offset);

Figure 4.3: Procedural Animations per frame prediction

4.1.2 ProceduralAnimations
This class owns the pointers to the PFNN, Character, Trajectory, and Settings rep-
resentations. As the ErrorCalculator class is intended only for evaluation purposes,
the ProceduralAnimations class is the default way to access the phase-functioned
neural network solution.

Inside the ‘GenerateNextPose(...)’ function, see Figure 4.3, the flow of sub-function
calls is organized as follows:

1. Prepare - Stores the input pose information in the Character object.

2. Input - Evaluates the Waypoint information and sets the Trajectory state.

3. Insert - Inserts the Character and Trajectory states into the input vector.

4. Predict - Runs the network prediction, setting the output vector.

5. Output - Stores the relevant output vector information in the return pose.

6. Update - Update Character and Trajectory states using output vector.

The time required to perform these six steps is recorded e ach frame for use in
evaluating the systems responsivity, see Section 3.1.2.

Additionally, this class has debug rendering functionality for visually rendering net-
work parameters, such as the joint skeleton, the sample points, character velocities,
etc., in the engine.

30

4. Process

4.1.3 PFNN
This struct holds the memory representation of the neural network and is responsible
for the network prediction.

When initialized, the PFNN struct loads the network weights and biases into Eigen,
see Section 2.3.3, matrices in memory from stored .bin files. The .bin directory and
network configuration is fetched from the Settings object. Additionally, the PFNN
struct is the only part of the runtime package dependent on the Eigen library.

During the prediction step, the PFNN struct performs the matrix multiplications
necessary to propagate the input vector state, and then standardizes the result
before storing it in the output vector data structure.

4.1.4 Character
The Character struct stores the positions and translations, in model space, of all
character joints in the current frame. Additionally, the same information is stored
for the few previous frames to allow for output blending when setting the return
pose values.

4.1.5 Trajectory
Similar to the Character struct, the Trajectory struct holds all information regarding
the sample points along the ground, see Figure 3.3, such as positions and velocities.
These values are also stored between multiple frames to allow for output blending.

4.1.6 Settings
The Settings class is used to manage easy switching between the different network
configurations, see Section 3.1.3, which is represented as an enum passed to the
constructor.

To allow for a low level of coupling and extensibility, in the form of being able
to add additional network configurations requiring minimal changes in the code
base, the Setting class holds all data that may be affected by the choice of network
configuration. In other words, if one wants to add another network configuration,
one would only need to add support for it in the Setting class.

For an example, all paths to the network .bins are defined in the Setting class. This
means that when a PFNN object initializes, it simply calls something similar to
‘settings->GetWeightsPath()’, without needing any logic, e.g. switch cases, that
requires the knowledge of a network configuration enum or how that configuration
would affect this class. This is shown in Figure 4.4

31

4. Process

class Settings{
enum CONFIG {HOLDEN, AVA};

string path;

Settings(CONFIG new_config){
switch(new_config){

case HOLDEN:
path = "/holden_weights/"
break;

case AVA:
path = "/avalanche_weights/"
break;

}
}

string GetPath(){
return path;

}
}

Figure 4.4: Simplified example of Settings implementation
(DISCLAIMER: PSEUDO CODE! NOT ACTUAL IMPLEMENTATION!)

4.1.7 HelperFunctions
This is a simple, fully static class that holds functions such as debug outprints and
definitions for specific matrix operations.

4.1.8 ErrorCalculator
When evaluating the network, rather than creating an instance of the Procedu-
ralAnimations class, one initializes an ErrorCalculator instead. This object acts
as a wrapper around a ProceduralAnimations instance and, rather than depending
on an input pose, uses stored input and output vector pairs, see Section 3.2.2 and
Section 3.2.3.

This class is therefore responsible for calculating the evaluative results required
in the answering of the research question regarding accuracy, see Section 1.3 and
Section 3.1.2.

This evaluation process can either be run immediately on initialization, or on a per
frame basis to allow for visualization of the network prediction, compared to the
ground truth. This is controlled with a ‘run-offline’ flag.

Since the ErrorCalculator constructs an internal ProceduralAnimations instance, it
also requires the same input parameters; both in the constructor, see Figure 4.5,
and on the per frame prediction, see Figure 4.6.

CProceduralAnimations(
AosMatrix4 new_world_transform = AosMatrix4(0.0f),
CSettings::SETTING new_setting = CSettings::HOLDEN,
std::vector<CProceduralAnimationsWaypoint*>* new_waypoints_ptr = nullptr,
bool run_offline = false);

Figure 4.5: Error Calculator constructor

32

4. Process

float CalculateError(CPose* pose);

Figure 4.6: Error Calculator per frame prediction

4.1.9 Waypoint
Each Waypoint instance is a simple datastructure, representing one checkpoint along
the obstacle course that the characters will traverse as part of the responsivity
research, see Table 3.1 in Section 3.1.1.

In addition to its inherent world translation, each Waypoint holds information rep-
resenting the goal movement style that a character aims to perform when reaching
it. This includes the gait styles; walking, jogging, crouching, etc, but also movement
speed and facing direction. This, in an aim to deterministically simulate user input
during the evaluation process.

The ProceduralAnimations instance keeps track of the current Waypoint index, and
increments that number upon reaching the next checkpoint.

33

4. Process

34

5
Result

5.1 Responsivity Results
All responsivity data, which is used to produce the figures and tables presented in
this section, is available in Appendix A.4. For more information regarding the track
course used, see Section 3.1.1.

The responsivity results presented in Figure 5.1 shows the average frame time com-
putation in milliseconds per lap around the course. The same data is presented as
a box plot in Figure 5.2, and summarized in Table 5.1.

Figure 5.1: Line chart of responsivity results

35

5. Result

Figure 5.2: Boxplot of responsivity results

HOLDEN HOLDEN-XL HOLDEN-XT AVA
Mean 0.376 0.499 0.382 1.55
SD 0.0173 0.0161 0.0167 0.0430

Table 5.1: Mean and standard deviation results of responsivity evaluation
Values are rounded to three significant digits.

By combining the visual results of the line chart in Figure 5.1 and the box plot in
Figure 5.2, one can conclude that there is a considerably sized difference in compu-
tational time required for that of the AVA network configuration. A potential root
cause of this is the great increase in number of joints for that network, see Section
6.1.1 for further discussion on this topic.

For the Holden configurations, the results of HOLDEN and HOLDEN-XT have al-
most perfect overlap in both Figure 5.1 and in Figure 5.2. As such, one can conclude
that these two network configurations have practically equivalent responsivity. How-
ever, this is not too surprising as, in theory, a network having trained longer, with
otherwise the same hyperparameters, should only result in a different set of network
weights. Subsequently, two otherwise equivalent networks but with different weights
should still be evaluated at runtime at the same speed.

Finally, for the HOLDEN-XL configuration, it is not as visually clear whether it at
runtimes evaluates at a considerably different speed than that of the other Holden
configurations. For this, the similarity metric defined in Section 3.1.4 can be used.
This metric evaluates the absolute difference between each mean result, standardized
by the average standard deviation of the two data series. In other words, the metric
evaluates how many standard deviations two data points differ.

2|mean(a)−mean(b)|
sd(a) + sd(b) (5.1)

36

5. Result

• HOLDEN to HOLDEN-XT: 2|0.382−0.376|
0.0173+0.0167 ≈ 0.35

• HOLDEN-XL to HOLDEN-XT: 2|0.499−0.382|
0.0161+0.0167 ≈ 7.1

• AVA to HOLDEN-XT: 2|1.55−0.499|
0.0430+0.0161 ≈ 36

These calculations, together with the visualizations in both Figure 5.1 and in Fig-
ure 5.2, can be combined to suggest the relative significance of the differences in
standard deviations between the responsivity results. Even though the number of
standard deviations between the results of the HOLDEN-XL configuration and that
of the HOLDEN-XT results are much smaller than that to the results of the AVA
configuration, one can still make the argument that there is a noticeable dissimilarity
in computational time required for the HOLDEN-XL configuration. This difference
could be explained through the fact that adding another layer in a neural network
strictly increases the number of computations, and therefore the time, required for
evaluation at runtime. For further discussion on this topic, see Section 6.1.1.

5.2 Responsivity Visualizations
Video recordings of these visualizations are available here [48].

Figure 5.3: Some frames from the HOLDEN responsivity evaluation
Top left: jogging, Top right: crouching
Bottom left: strafing backwards, Bottom Right: walking
White globes are Waypoints, see Section 4.1.9.
The golden Waypoint is the next positional target of the network.

37

5. Result

Figure 5.4: Some frames from the AVA responsivity evaluation
Top left: jogging, Top right: crouching
Bottom left: strafing backwards, Bottom Right: walking
White globes are Waypoints, see Section 4.1.9.
The golden Waypoint is the next positional target of the network.

In Figure 5.3 and Figure 5.4, one can see examples of the skeleton joint position
outputs the HOLDEN and AVA network configurations produced during their re-
spective responsivity evaluations.

For the AVA configuration, certain errors occurred, potentially as a result of the
network not being trained on sufficient amount of data frames, see Section 6.1.3
and 6.4.1 for further discussion. For an example, notice how poorly the produced
joint skeleton appears to be crouching in the bottom right photograph in Figure
5.4. Additionally, the AVA configuration failed to adapt to tight turns, making the
outputted skeleton overshoot the target, see Figure 5.5.

Figure 5.5: Directional overshoot during the AVA responsivity evaluation
The goal of the network is to move the skeletal character towards the golden

Waypoint. However, the AVA configuration fails to sufficiently turn the character
towards this goal before the character has passed it.

38

5. Result

5.3 Accuracy Results
All accuracy data, which is used to produce the figures and tables presented in this
section, is available in Appendix A.5 and Appendix A.6.

The accuracy results presented in Figure 5.6 shows the average error per motion
capture data file for each of the four network configurations. The error calculation
is defined as presented in Section 3.1.2:

1
|j|
∑

j

|tj − pj|
tj

(5.2)

Where |j| is the total number of frames in this file, tj is the three-dimensional
position of joint j as defined in the motion capture database, and where pj is the
three-dimensional network predicted output position of joint j. The values taken
from the motion capture database, including tj, is referred to as the ground truth.

Additionally, the fifth data series ‘AVA-M’ shown in this figure represents the results
of the AVA network limited to the subset of network outputs equivalent to those
joints present in the original motion capture data made public by Holden et al. [45],
see Figure 3.1 and Section 3.1.3.

Similarly, Figure 5.7 presents the standard deviations, a measurement of spread in
the data distribution, of the per motion capture file network outputs for each of the
network configurations. A smaller standard deviation equates to little difference be-
tween data points within a data series, whereas a higher standard deviation equates
to more fluctuating data points.

The same accuracy data is presented as a box plot in Figure 5.8, and summarized
in Table 5.2.

39

5. Result

Figure 5.6: Line chart of mean results of accuracy evaluation
The error is defined as mean absolute error compared to the training data.
For full definition of error, see Section 3.1.2.
For indexing of motion capture files, see Appendix A.2.

What can be seen in Figure 5.6 is that the results of the three Holden configura-
tions are greatly overlapping throughout the training data set. The blue diamond
HOLDEN data series is almost perfectly obscured by the green triangle HOLDEN-
XT series.

Somewhat similarly, the two Ava results appear to follow a slightly similar curvature,
however vertically translated to a lower error level than that of the Holden config-
urations. Internally, however, the curvature of the two Ava data series is highly
similar, though also vertically translated. In other words, if the AVA-M data series
would be shifted downwards in the chart, there would be almost constant visual
overlap between it and the AVA data series. However, visually there is almost no
similarity in the curvatures of the Holden and Ava configurations.

Throughout the entirety of Figure 5.6, the Ava data series produce a lower error
than that of the Holden configurations. This is visualized through how the AVA
and AVA-M data series are consistently below the other three.

The motion capture files that all network configurations performed the worst at,
data files indexed at 72-75, were that of the files containing movement interacting
with more advanced terrain and environments, such as balancing on elevated narrow
beams and dynamic crouching beneath low ceilings.

40

5. Result

Figure 5.7: Line chart of standard deviation results of accuracy evaluation
The error is defined as mean absolute error compared to the training data.
For full definition of error, see Section 3.1.2. For indexing of motion capture files,
see Appendix A.2.

As a similar trend to the means presented in Figure 5.6, the standard deviations
shown in Figure 5.7 has almost perfect overlap for the three Holden configurations.
Once again, the blue diamond HOLDEN data series is almost perfectly obscured by
the green triangle HOLDEN-XT series.

However, the curvature of the AVA-M data series appears to be a a midpoint to
that of the Holden configurations and that of the AVA data series. Visually, the
AVA-M has local maxima and minima similar to both of aforementioned series.
Additionally, the values of the AVA-M series are positionally closer to that of the
Holden configurations than to that of the AVA data series. In other words, data
points along the turqoise circle AVA-M line are further away from that of the purple
crossed AVA line than to those of the other three data series.

41

5. Result

Figure 5.8: Boxplot of accuracy results
The error is defined as mean absolute error compared to the training data.
For full definition of error, see Section 3.1.2.

As a reminder: an error of 0.01 equates to an average prediction error of 1%, see
Section 3.1.2. As a concrete example; the predicted three-dimensional joint positions
that the HOLDEN network configuration produced had, on average, a translational
error of ≈ 4.4%.

HOLDEN HOLDEN-XL HOLDEN-XT AVA AVA-M
Mean 0.0439 0.0448 0.0446 0.0148 0.0258
SD 0.00954 0.00980 0.00981 0.00283 0.00483

Table 5.2: Mean and standard deviation results of accuracy evaluation
Values are rounded to three significant digits.

For all three Holden configurations, the results have almost perfect overlap in both
Figure 5.6 and in Figure 5.7. As such, one can conclude that these three network
configurations have practically equivalent accuracy. This is rather interesting as
both the HOLDEN-XL and HOLDEN-XT configurations each respectively have a
specific advantage, in the form of extra network depth and extra training time,
compared to the default HOLDEN configuration. These results suggest that there
is no benefit to these specific network design alterations.

For the AVA configuration, by combining the visual results of the line chart in Figure
5.6 and the box plot in Figure 5.8, one can conclude that there is a significantly lower
error in the AVA prediction than that of the Holden configurations.

Lastly, the AVA-M data series appear to share some similarity to both the Holden
and AVA data series. To measure this similarity, one may utilize the difference
metric used in Section 5.1 and originally presented in 3.1.1; calculating the number
of standard deviations between the means. This produces the following results:

42

5. Result

• HOLDEN to HOLDEN-XT: 2|0.0439−0.0446|
0.00954+0.00981 ≈ 0.072

• HOLDEN to HOLDEN-XL: 2|0.0439−0.0448|
0.00954+0.00980 ≈ 0.0093

• HOLDEN-XT to HOLDEN-XL: 2|0.0446−0.0448|
0.0448+0.00980 ≈ 0.0073

• AVA-M to HOLDEN: 2|0.0258−0.0439|
0.00483+0.00954 ≈ 2.5

• AVA to AVA-M: 2|0.0148−0.0258|
0.00283+0.00483 ≈ 2.9

These differences can be summarized as the three Holden network configurations
producing practically equivalent results, with an especially large overlap between
HOLDEN and HOLDEN-XT, and the AVA-M results being slightly closer to that
of the Holden configurations than to that of the AVA configuration.

5.4 Accuracy Visualizations
Video recordings of these visualizations are available here [48].

Figure 5.9: Some frames from the HOLDEN accuracy evaluation
Gray: Ground truth joint positions.
Blue: HOLDEN joint positions.

Figure 5.10: Some frames from the AVA accuracy evaluation
Gray: Ground truth joint positions.
Magenta: AVA joint positions.

In Figure 5.9 and Figure 5.10, one can see examples of the skeleton joint position

43

5. Result

outputs the HOLDEN and AVA network configurations produced during their re-
spective accuracy evaluations.

5.5 Training Process
During the training process, the prediction mean-squared error of the full output
vector was recorded after each epoch. Do note the difference in error definition, and
the fact that the entire output vector is used rather than just the predicted skeleton
joint positions, compared to the one used in Section 5.3. This data is available in in
full in Appendix A.7, and presented as a line chart in Figure 5.11.

Figure 5.11: Mean-squared error of entire output vector during training
HOLDEN-XT is hidden during the first half of its training process as its design, and
therefore results, is entirely equivalent to that of the HOLDEN configuration.

Figure 5.11 shows similarity through overlap between the HOLDEN and HOLDEN-
XL configurations throughout their training period. Additionally, during the extra
training period of the HOLDEN data series, here equivalent to that of the HOLDEN-
XT configuration, the mean-squared error remains relatively unchanged. This fur-
ther reemphasizes the similarity in accuracy argued in Section 5.3.

As a reminder; the green triangle HOLDEN-XT was trained for twice the number
of epochs than the other network configurations, which results in a twice as long
output error result.

For the AVA configuration, one can visibly determine a larger mean-squared error
during the entirety of its training process compared to the Holden configurations.
This is visualized through the fact that the purple crossed AVA data series lies
relatively significantly above the others in Figure 5.11. Additionally, the mean-
squared error of the entire output vector appears visibly more irregular between
epochs during the training process than that of the Holden configurations.

44

5. Result

5.6 Pipeline Overview
This section aims to present the computation time, see Table 5.3, and the data size,
see Table 5.4, for each step of the full phase-functioned neural network pipeline,
presented in Section 3.3.

Step HOLDEN HOLDEN-XL HOLDEN-XT AVA
Generate Patches 28min - - -
Generate Database 90min - - 55min
Network Training 43h 47h 91h 31h
Neural Network 0.38ms 0.50ms 0.38ms 1.5ms

Table 5.3: Computational time required throughout the pipeline
Entries marked ‘-’ share the HOLDEN results.

In summary, for the HOLDEN-XL configuration, Table 5.3 shows that there is little
difference in training time when adding a new network layer to the Holden network.

The much longer training time of the HOLDEN-XT configuration was not unex-
pected, as a result of it being trained for twice the number of epochs, see Section
3.1.3.

Additionally, the table shows that the database generation, and to some extent
the network training, is considerably quicker for the AVA configuration. This means
that even though the AVA configuration had six times the number of skeleton joints,
see Section 3.1.3, the fact that it only had a fourth of the frames compared to the
Holden configurations, see Section 3.1.3, resulted in it being trained considerably
faster.

Data HOLDEN HOLDEN-XL HOLDEN-XT AVA
Height Fields 134MB - - -

Terrain Patches 606MB - - -
Motion Capture Files 848MB* - - 7.62GB*

Phase Labels 7.04MB - - -
Other Labels 56.9MB - - -

Training Database 7.12GB - - 10.4GB
Network Weights 122MB 176MB 122MB 374MB

Table 5.4: Size of different data throughout the pipeline
Entries marked ‘-’ share the HOLDEN results
*: Motion Capture Files are in 120Hz.

In summary, Table 5.3 shows the considerable increase in memory size between that
of the Holden, to that of the AVA, network configurations. As mentioned in 3.1.3,
do note that the AVA database only contains a number of frame data points equal
to a quarter of that of the Holden configurations.

45

5. Result

Additionally, as discussed previously, given that the HOLDEN-XT configuration
differs from the default HOLDEN configuration solely through training time, it is
expected that the network weights produced by the two have the same memory size.

In contrast, given that the HOLDEN-XL configuration has more network nodes
than that of the HOLDEN configuration, it is expected that there are more weights,
requiring more memory, for the former.

5.7 Skinning Visualization
Video recordings of these visualizations are available here [48].

These were the in-engine results of the network orientational outputs after switching
the X- and Z-rotations, and inverting the Y- and switched X-rotations.

Figure 5.12: HOLDEN positional and orientational output skinned
Left: The skinned HOLDEN character model in default stance.
Middle: HOLDEN output skinned.
Right: HOLDEN output skinned with visible skeleton.

Figure 5.13: AVA positional and orientational output skinned
Left: The skinned AVA character model in default stance.
Middle: AVA output skinned.
Right: AVA output skinned with visible skeleton.

In Figure 5.12 and Figure 5.13, one can see examples of the skeleton joint translation

46

5. Result

and orientation outputs the HOLDEN and AVA network configurations produced
during their respective responsivity evaluations skinned to 3D character models.

The HOLDEN skinning, at a quick glance, appears correct in general. Occasionally,
certain specific joints experience single-frame orientation errors. For an example,
the head and torso sometimes rotate over 180 degrees around an axis in a single
frame. As of writing, this error is still being investigated.

Similarly, the skinned AVA results also produce certain erroneous orientations, how-
ever much more frequently and for more than only two joints. In the middle panel
of Figure 5.13, one can see the torso joint being rotated over 180 degrees. As of
writing, this error is still being investigated. Additionally, the original skeleton file,
on which the motion capture data was retargeted using, was lost and replaced with
a new skeleton file for the runtime process. This new skeleton is perfectly equivalent
to the old one, except for the facial structure. As such, the facial contortions shown
in Figure 5.13 is to be expected.

However even though the character model occasionally appears incorrect, the un-
derlying skeleton still moves correctly. This shows that the positional outputs of the
neural networks are correct, however that is not always the case for the orientational.
This is presumably a result of the fact that the network is trained in another set
of world-axis orientations, see Section 3.3.4, compared to that of the Apex engine.
The positional outputs of the neural networks are manually converted in runtime
to match that of the engine, hence the apparently correct skeletal output. This
inconsistency in world-axis orientations, however, does not affect the results of the
responsivity or accuracy evaluations. This is further discussed in Section 6.4.2.

47

5. Result

48

6
Discussion

6.1 Discussing the Research Questions
This section aims to, through discussion, answer the research questions as presented
in Section 1.3.

6.1.1 Discussing Responsivity
The research question regarding responsivity asked how much computational time is
required for procedural single-character locomotive animations, see Section 1.3. This
is answered through testing an engine-integrated solution using the four different
network configurations.

The responsivity results presented in Section 5.1 reveals a considerable computa-
tional difference between the Avalanche and the Holden network configurations.

This significant distinction in frametime could be explained by the difference in
number of skeleton joints. As mentioned in Section 3.1.3, the two skeleton types
have 31 and 191 joints, respectively. Since all skeleton joints are fed into the neural
network during the runtime prediction process, the width of the networks, and in
turn the number of computations each frame, depend on the number of joints.

Since the AVA network required a size of 1’302x512x1’751, whereas the two shallower
configurations required only a size of 342x512x311, the number of computations
required each frame to propagate the character pose through the network is therefore
greatly increased in the former configuration.

A naive, since it assumes sequential computing, way of counting computations in a
simple feed-forward network like the one used in this project is to sum the number
of inter-layer network connections and the number of biases, like so:

∑
l

nl(1 + nl+1) (6.1)

Where: ‘l’ is the index of all non-output network layers, ‘l + 1’ is the index of the
subsequent network layer following layer ‘l’, and ‘nl’ is the number of nodes (width)
in layer ‘l’.

49

6. Discussion

The number of computations per network configuration using the above formula can
be seen in Table 6.1.

HOLDEN HOLDEN-XL HOLDEN-XT AVA
computations 335’501 598’157 335’501 1’566’701

Table 6.1: The number of computations required per network configuration

These data points can then be inserted into a line chart to display the linear rela-
tionship between the number of skeleton joints and the frametime, such as Figure
6.1.

Figure 6.1: Linear regression of computational time over network calculations
Beware; this is a gross simplification simply to show a possible relation between
network size and computational load at runtime.
Regression line: y ≈ 9.6x · 10−7 + 0.018

6.1.2 Discussing Accuracy
The second subsidiary research question asked how accurate the generated locomo-
tive character animations are to the original animation data, see Section 1.3. This
is answered here through relative comparisons between the network configurations.

difference between the holdens
The three Holden network configurations maintain close resemblance with equivalent
results throughout the error evaluation process. This can be seen through consistent
overlap between the data shown in both Figure 5.6, Figure 5.7, and Figure 5.8, and
with a near zero divergence metric, as presented in Section 3.1.1. Additionally, the
mean-squared-error evaluation during the training process also shows no significant
difference between the Holden configurations, see Figure 5.11.

50

6. Discussion

Through these statistics, one can conclude that there was insignificant gain in either
doubling the number of hidden layers in the neural network, as was the case for the
HOLDEN-XL configuration, or doubling the duration of the training process, as was
the case for the HOLDEN-XT configuration.

Additionally, the lack of improvement in results between the default HOLDEN and
the long trained HOLDEN-XT configuration is evidence that the original imple-
mentation by Holden et al. does not suffer from underfitting, see Section 2.1.4 and
Section 3.1.3.

ava versus ava-m
Additionally, the AVA and AVA-M data series closely follow the same curvature in
Figure 5.6, however translated vertically. This curvature is distinctively different
from that of the Holden configurations.

Given that the AVA data series has consistently less of an error than the AVA-M
series, one can deduce that the masked joints, those not present in AVA-M, give rise
to a constantly lower error in comparison.

The mean absolute error definition used in this project includes a normalizing de-
nominator, see Equation 3.1, as to allow the error to be relative to the ground truth
positional values. For an example, an error of 0.01 equates to a predicted joint
position that is 1% off the ground truth, see Section 3.1.2. However, this means
that further away joints, joints at positions with high positional values, would need
a larger absolute error to produce the same effective evaluated error than that of a
joint closer to the axis origin.

As a concrete example, consider a joint a with a ground truth position at at = 100.
For this joint to contribute with an error of 0.1, the predicted position would need
to be at ap = 101. However, if we consider a different joint b with a ground truth
position at bt = 1, the predicted position would need only to be bp = 1.01 to
contribute with the same error.

Out of the the masked AVA joints, a considerable number of these are highly con-
centration within the character head and face, see Section 3.1.3. As these joints are
further away from the axis origin, the discrepancy in error between AVA and AVA-M
may be a result of the inherent relativity design of the mean absolute error definition
used in this project. As such, AVA-M might be more suitable for comparisons with
the Holden configurations.

ava-m versus the holdens
Also, even though the mean-absolute prediction error at runtime of the AVA con-
figuration was significantly lower than that of the Holden configurations, see Figure
A.5, the mean-squared prediction error during the training process of the former
was considerably higher than that of the latters, see Figure 5.11.

This difference could be a result of the fact that the runtime evaluation only con-
sidered the three-dimensional skeleton joint positions, wheras the training process
evaluation considered the entire output vector. This means that it is possible that

51

6. Discussion

the AVA network configuration is comparatively much better at joint position pre-
diction than at predicting the other output features, such as: joint orientations and
velocities, and sample point positions and trajectories, see Section 3.2.3.

Additionally, another potential reason behind this difference is the fact that the
two evaluation processes used different error definitions; mean-absolute error and
mean-squared error. The fact that the absolute error was lower than the squared
error could be an indicator that the data, in this case the accuracy of the AVA
network, had many extreme outliers. This, as the mean-squared error definition
squares the per data point error, meaning that errors smaller than one get reduced
and errors larger than one get amplified, compared to that of the mean-absolute
error definition.

However, a potential source of the difference in error between the AVA and Holden
configurations was the choice of evaluation frames per motion capture file, see Section
3.1.2. As a result of insufficient system memory for keeping each joint position in
each frame in memory, a decision to only consider the first 500’000 three-dimensional
joint positions in each datafile was made. This in combination with the fact that the
AVA configuration only considered every fourth frame and that the AVA skeleton
had more than six times the skeleton joints, see Section 3.1.3, means that it is
probable that if the maximum joint position number is met, the two configurations
would consider different blocks of frames within the motion capture data.

In other words, if the Holden configurations reached the memory limit of 500’000
joint positions, it will have considered the first 500′000

31 ≈ 16′000 frames. On the other
hand, if the AVA configuration reached the memory limit of 500’000 joint positions,
it would have instead only considered the first 500′000·4

191 ≈ 10′000 frames. If the
different network configurations was evaluated on a different set of motion frames,
then that could make for an unfair comparison.

6.1.3 Discussing Architecture
The final subsidiary research question asked about how the phase-functioned neural
network architecture presented in Holden et al. could be improved, see Section 1.3.

An initial hypothesis may be that allowing a neural network to train for a longer
period of time, or to have a deeper network, may increase the predictive accuracy
of the network. However, when comparing the accuracy results between that of the
Holden configurations, see Section 6.1.2, one can conclude that is not the case, at
least not for this particular model. This was shown through insignificant difference
in accuracy between the three network configurations; default (HOLDEN), double
the hidden layers (HOLDEN-XL), and double the training time (HOLDEN-XT),
see Section 6.1.2.

On the other hand, not just that there was no strictly positive sides of any of the two
altered Holden configurations, there was still strictly negative ones. For an example,
given that the HOLDEN-XL configuration required an additional layer of network
weights and biases, it was shown to require both longer computational time, see

52

6. Discussion

Figure 5.1 and Table 5.3, and more memory, see Table 5.4, at runtime. For the
HOLDEN-XT configuration, the only clear downside of it, compared to the default
HOLDEN network, was the increase in training time, see Table 5.4. As such, the
altered Holden configurations have been shown to only perform equally, or worse,
compared to that of the default HOLDEN configuration.

The fourth network configuration, AVA, that in one aspect may be used to evaluate
the generalizability of the phase-functioned neural network approach, had its own
fair share of issues. For the responsivity evaluation, the AVA network was shown to
be significantly much slower to evaluate at runtime, compared to all other network
configurations. This, however, may be quite unsuprising as it required many more
computations for each prediction, see Figure 6.1, as a result of it being based on
a character skeleton using more than six times the joints than that of the skeleton
used for the other network configurations.

On the other hand, the accuracy evaluation implied an increase in prediction accu-
racy for the AVA configuration. However, it is questionable whether this comparison
was truly fair. Certain special considerations were taken to avoid memory overflows
as a result of, both directly and indirectly, the greatly increased number of skeleton
joint. These include introducing a maximum number of considered frames during
the accuracy evaluation, see Section 3.1.2, and having the network train on only a
quarter of the training data frames, see Section 3.1.3.

Additionally, as shown in Section 5.2, the actual orientational outputs of the AVA
configuration is erroneous to the extent that they are practically useless within the
engine. This is assumed to be a result a side-effect of the inconsistent world-axis
orientations, see Section 3.3.4.

To produce a more fair comparison between the AVA and the Holden network config-
urations, certain alterations in the AVA network configuration should be considered.
These include only utilizing a subset of the skeleton joints, similar to the AVA-M
subset - see Section 3.1.3, in the AVA skeleton that are equivalent to the Holden
skeleton, see Section 6.4.1 , and implementing consistent world-axis orientations
throughout the process, see section 6.4.2. This is further discussed in Section 6.4.

6.2 Ethical Considerations
Given that this project encompassed work with proprietary software, the Apex game
engine, a certain level of consideration regarding confidentiality was taken, as pre-
viously mentioned in Section 1.4. The disclosure or misuse of sensitive information
pertaining to the Avalanche Studios Group, including that of any of their systems or
projects, may indirectly damage both the company and its intellectual properties.
To ensure the personal liability of the thesis author towards any such consequences,
a non-disclosure clause regarding sensitive information was signed as part of the
collaborative contract. As such, no intricate details about the engine, in either text
or photo, is included as part of this report.

As far as potential repercussions regarding the research content of this project, no

53

6. Discussion

further ethical considerations were taken into direct consideration. Theoretically,
revolutionary development within this field of research may lead to to industry-wide
adoption of new techniques, nullifying certain current artist and engineering employ-
ment positions. Such a substantial alteration of the standard character animation
pipeline might remove the need for the currently adapted animation state machines,
and therefore eliminate certain common work tasks. However, a new animation
pipeline, that uses neural networks, would still require plenty of similar talents, in
addition to the need of new machine learning programmers.

Much consideration must be taken during the planning and recording of the motion
capture data, or what other data is to be used during the training process. As
such, there might be a shift in the work force towards the number of motion capture
specialists, in favor of the number of animators. Animation programmers will still
be needed to attach the neural network solution to the project. Additionally, even
if a project were to shift to a neural network based animation engine, there might
still be the need of standard animations. Certain specific animations, such as in
object interaction or those used in cutscenes and cinematics, may utilize hand-made
animations to achieve the highest level of detail in the bodily expression.

6.3 Takeaways
This section aims to summarize some of the most important learnings produced by
this project on the topic of neural network integration into a modern game engine,
or integration work in general. As such, the goal of these takeaways is to be broader
lessons, based on the concrete scenario of this thesis project, valuable even within
other contexts.

6.3.1 Integration Contextualization
Some of the obstacles encountered during thesis work, as a result of mismatching
assumptions on the implementation, was handled in a way such as to avoid altering
the to-be-integrated codebase and to rather adapt the solution at runtime. One such
examplifying situation is where even though the original phase-functioned neural
network pipeline by Holden et al., see Section 3.3, used a different set of world-axis
orientations to that of the Apex engine, see Section 3.3.3 and Section 6.4.2, it was
kept unaltered.

The original reasoning behind this was twofold. Firstly, as this thesis project aimed
to only integrate this work within the specific context of the Apex game engine, it
was assumed that manually taking care of an issue such as the inconsistent world-axis
orientations would be a more rapid way of handling the problem, rather than at-
tempting to make editions throughout the original phase-functioned neural network
pipeline. Secondly, this decision was taken as to minimize the potential locations of
integration bugs. If this thesis project included a fully altered pipeline, there would
be many more places in the code base in where issues and programming mistakes
could arise, given that the original implementation by Holden et al. was assumed
to be fully functional.

54

6. Discussion

However, even given these reasonings, there would be much to gain from fully con-
textualizing the to-be-integrated solution before initiating an integration process.
As such, similar future work could be recommended to have further preemptive
research on the integral differences between the two solutions of an integration pro-
cedure, identifying in which aspects alterations to the to-be-integrated solution may
be necessary.

6.3.2 Integration Placement
Similarly to how certain steps were taken to as most rapidly be able to integrate
the work by Holden et al. into the Apex engine by the inelegant solution of solving
the world-axis orientation mismatch at runtime, certain shortcuts were taken on the
other side of the integration work. The location in the Apex game engine where
the phase-functioned neural network solution developed as part of this thesis work
resides, was one where the integration could occur most effortlessly.

As such, the integrated solution was located within the game engine editor where it
could be easily accessed and debugged by programmers. However, given the nature
of its location, certain other parts of the engine became separated to the neural
network solution. Therefore, the current implementation of the network integration
has no access to neither the user input system nor the terrain sampling system,
causing such features to be unavailable to the network solution.

A more rigorous integration process could potentially have unlocked the function-
ality of these systems, allowing the network to be able to produce terrain-adaptive
animation as a result of being able to be fed the raycasted height data of nearby
terrain, for an example, see Section 6.4.3.

6.3.3 Implementation Expertise
Something that may be overlooked in integration work is for there to be represen-
tatives within the integration team that together are both read-up on the work to
be integrated and deeply experienced within the solution into which the integration
will occur.

Within the context of this thesis project, both sides of the integration software coin,
but especially the Apex engine, was brand new to the author. As such, much time
was spent tackling with obstacles inherent to the engine that was novel to the author.
Additionally, some less optimal integrational design choices could be attributed to
this fact.

Even though the thesis mentor was able to provide guidance within this area, there
is only so much such a person can provide while still maintaining their expected
daily tasks and obligations.

55

6. Discussion

6.3.4 Equipment Suitability
Certain areas within computer science are more computationally dependent than
others. One of these is working with neural networks. Even though networks can
be fluently used at runtime, the actual training process is extensive and may lock
up a workstation for days. As such, it should be recommended to have designated
training stations where the networks can complete this process without disturbing
other operations.

Additionally, one limitation that became evident as part of this thesis work was the
demand on system memory as a result of massive training databases. This issue
can of course be resolved in other ways, such as implementing a runtime skeleton
retargeting system as to avoid bloating the network pipeline when using a skeleton
with a greatly increased number of joints, see Section 6.4.1. However, for this thesis
project, simply having a training station with larger system memory capacity would
resolve any such issues without having to alter the training process itself.

6.3.5 Neural Network Rigidity
Another inherent characteristic that became evident when working with the the
neural network implementation of this project was their lack of flexibility.

A certain level of care must be taken, such as making sure that the framerate of
the neural network during the training process matches with that in which it is
expected to operate at runtime. Similarly, the joint skeleton, both in numbers and
position, must be maintained when transitioning between the training and runtime
applications, especially when considering skinning 3D models to the skeletons.

Therefore, other systems, such as inverse-kinematics or other pose-affecting features,
cannot be allowed to operate on the character pose if that pose is part of a neural
network feedback-loop.

The integration implementation produced during this project alleviated this issue
by allowing the neural network to hold an internal copy of the character pose. This
means that the outputting pose is able to be kept unaltered, for being inputted in
the next frame, allowing other systems to operate on another copy, the one that the
network broadcasts.

6.4 Future Work
This section presents three different avenues of potential improvements, or further
advancements, on the topic of this project: runtime skeleton retargeting, consistent
world axis orientations, and full pipeline integration.

6.4.1 Runtime skeleton retargeting
Many issues with the AVA network configuration are likely inherent to the much
greater number of joints in the AVA skeleton, compared to what was necessary in

56

6. Discussion

the Holden network configurations. These include the incredible computational time
required during runtime, see Section 5.1, and the steps taken as a result of insufficient
system memory, such as the max ceiling of evaluation frames, see Section 3.1.2 and
the quartering of training frames, see Section 3.1.3.

Many of the joints used in the AVA skeleton are, by design, not meant to be used
for locomotive animations. Many joints that exist in the skeleton are there for other
purposes, such as for deformation or inverse-kinematics. Additionally, a considerably
large portion of the joints in the skeleton are used to represent the structure and
muscles of the face of the character.

A very clear avenue of improvement in the methodology of this report would be to
only consider a subset of the joints in the AVA skeleton, such as the joints used in the
AVA-M data series, see Section 3.1.3. This would not only mean that the network
potentially could more easily discern the locomotive motion of the character, but
would also mean that all frames of the motion capture data may be used in both
the training and for the evaluation.

This means that a runtime retargeting system would need to be written that sets all
updated joint values in the actual skeleton that is unaccounted for in the network.
Otherwise, for an example, all the joints in the character face would stay perfectly
still while the character moves, as these are not updated by the engine. Such a
retargeting system would need to store a resting character pose, such that it can
update the child joints accordingly after the network updates the chosen parent
joints. In other words, when the neural network moves the singular head joint, the
runtime retargeting system would need to correctly update the face joints to match
that of the head.

Additionally, such a retargeting system would be highly useful in general if a neural
network solution would be applied in a real-world project as the generated anima-
tions must be able to be reproduced across multiple similar skeletons. It is unrealis-
tic to have separate neural networks, and separately recorded motion capture data,
trained for each character, given that there is expected to be variations within the
design of the physique of different characters.

6.4.2 Consistent world-axis orientations
As mentioned in Section 1.4 and explained in Section 3.3.4, the original work by
Holden et al. assumes a left-handed world-axis orientation, different from the right-
handed orientation used in the Apex game engine.

During this project, as the neural networks was trained using the motion capture
data provided by Holden et al., the clash in world-axis orientation required much
care. As such, the final runtime package includes multiple conversions at runtime
between the right-handed character pose and the left-handed neural network.

This handling of the axis inconsistencies was done at runtime, where both the in-
putting, and outputting, data was flipped such that it was translated correctly be-
tween the world-axis orientations, depending on where the data was to be used; in

57

6. Discussion

the neural network representation or in the engine. Additionally, these conversions
were made such that the Holden configurations produced accurate positional and
orientational outputs, without taking further care for the AVA configuration. That
the AVA configuration may have been in need of special care to resolve the world-
axis inconsistency issue could be reason why it produced such imperfect results, see
Section 5.7.

If a motion capture data set was used that featured right-handed world-axis orienta-
tion, such that it is consistent for the game engine at runtime, the visual orientational
errors in the skinnings could be potentially resolved, or at least more easily studied.

6.4.3 Full pipeline integration
The runtime neural network solution produced as part of this project was integrated
into the Apex engine, as far as the solution executing as an internal part of the engine
running.

However, this is still a far step away from a full integration into the runtime pipeline.
The current network package is positioned where it would be most easy to be put;
a part of the engine used by programmers during the development process. Ideally,
the package would instead by integrated within the actual runtime engine pipeline.

Such a full integration would not just allow for more realistic evaluation of the in-
game performance of the neural network solution, but would also open it up to be
combined with multiple other engine sub-systems.

Currently, character input, in the form of where the character is moving towards,
with what movement style, and at what speed, is deterministically determined by
the obstacleless track course, as defined in Section 3.1.1. With a full integration, the
neural network solution could be able to poll the user input system, such that the
character could be controlled at runtime with a gamepad or mouse and keyboard.

Similarly, a full integration would allow the network package to utilize raycasts to
sample the height of the terrain, such that the terrain adapting locomotive anima-
tions may be unlocked without using hard-coded simulative values.

Finally, by moving the network package to the runtime system, one would be able to
combine animation techniques. In such a case, the neural network solution may be
used to produce the underlying locomotive character animations, and then standard
character animations may be blended on top to provide more intricate character
animations, such as interacting with, or holding, equipped items and scene objects.

58

7
Conclusions

This section aims to provide closure to this thesis by firstly summarizing the answers,
see Section 6.1, to the research questions, see Section 1.3. Additionally, this section
features some short closing words where the outcomes of this thesis is attempted to
be put into a broader context.

7.1 Summary
In an attempt to evaluate the phase-functioned neural network architecture pre-
sented in Holden et al. [5], and to investigate how it could be further improved
upon, this project evaluated different versions of the network, see Section 1.3. These
network configurations were to be integrated into the Apex game engine, provided
by Avalanche Studios Group.

The first evaluated network was the default control configuration HOLDEN - the
default network solution as presented in Holden et al. [5]: a network with a sin-
gle hidden layer, see Section 3.3.3, trained for 2’000 epochs. For comparison, two
otherwise direct replicas of this network was used: HOLDEN-XL, with two hidden
layers, and HOLDEN-XT, which trained for 4’000 epochs.

The HOLDEN-XL network, as a result of it needing more network weights and
computations for its additional hidden layer, required a larger computational and
memory footprint. The HOLDEN-XT configuration, however, required a twice as
long training process, but was at runtime not more cumbersome than the default
HOLDEN network.

In summary, the two altered Holden networks did not yield any considerable im-
provement to that of the original network; especially not considered their respective
downsides.

Additionally, a fourth network configuration, AVA, was evaluated that used a differ-
ent character skeleton. The original motion capture data used in Holden et al. [5]
was retargeted to this skeleton for use during the training and evaluation process.

The AVA network, based on a skeleton with more than six times the joints than the
one used in the Holden configurations, required a significantly larger computational
and memory footprint. To avoid system overflow, this great increase in memory was
attempted to be compensated through sub-sampling of the motion capture data. As

59

7. Conclusions

such, the AVA network was feed with only a quarter of the motion capture frames
used in the Holden configurations. Additionally, the great increase in memory usage
lead to a cap in how many frames were considered in each motion capture data file
during the evaluation process.

The final results of the AVA configuration was a network that was much less respon-
sive, had questionable accuracy, and unstable joint orientations. However, these is-
sues are not considered testaments against the applicability of the phase-functioned
neural network as they may be side-effects of unsuitable conversions during inte-
gration, such as the overabundant number of skeleton joints or the mismatching of
world-axis orientations, see Section 3.3.4.

7.2 Final Words
This thesis project aimed to evaluate a specific machine learning approach, phase-
functioned neural networks, to locomotive character animations. By continuing on
previous work made by Holden et al. [5], this thesis was able to evaluate the default
phase-functioned neural networks, and similar configurations with minor alterations,
rudimentarily integrated into a professional real-world game engine.

Additionally, this project also attempted to evaluate the generalizability of the
phase-functioned neural network by attempting to utilize this prediction model with
a new skeleton. Through this process, multiple affecting factors were identified that
are in need of addressing to fully be able to generalize this algorithm into a real-world
application, see Section 6.4.

Compared to the traditional approach to character animations, a machine learning
perspective, like the phase-functioned neural network considered in this report, may
require a massive readjustment of the entire animations pipeline. Through applying
previous research within this topic, and in combination with a professional game
engine, this thesis aimed to contribute to this research field - hopefully producing
conclusions of value through both quantifiable results, summarized learnings, and
suggestions for future work, specifically to the Avalanche Studios Group.

It is likely that as further achievements are made within the field of machine learning
for character animations, or for machine learning in game development in general,
various major actors may move to evaluate the possibility of integrating these strides
into their products, in an effort to potentially reduce development costs and time.

60

Bibliography

[1] Ubisoft Entertainment, “Ubisoft La Forge,” 2020. [Online]. Available: https:
//montreal.ubisoft.com/en/our-engagements/research-and-development/ Ac-
cessed on 12 December 2020.

[2] Electronic Arts Inc., “SEED // Search for Extraordinary Experiences
Division,” 2018. [Online]. Available: https://www.ea.com/seed Accessed on 12
December 2020.

[3] S. Starke, “AI4Animation: Deep Learning, Character Animation, Control,”
2020. [Online]. Available: https://github.com/sebastianstarke/AI4Animation
Accessed on 12 December 2020.

[4] Avalanche Studios Group, “Avalanche Studios Group,” 2020. [Online].
Available: https://avalanchestudios.com/ Accessed on 12 December 2020.

[5] D. Holden, T. Komura, and J. Saito, “Phase-Functioned Neural Networks
for Character Control,” 2017. [Online]. Available: http://theorangeduck.com/
media/uploads/other_stuff/phasefunction.pdf Accessed on 12 December 2020.

[6] Avalanche Studios Group, “OUR TECHNOLOGY,” 2020. [Online]. Available:
https://avalanchestudios.com/technology Accessed on 12 December 2020.

[7] A. Chandra, “McCulloch-Pitts Neuron — Mankind’s First Mathematical
Model Of A Biological Neuron,” 2018. [Online]. Available: https:
//towardsdatascience.com/mcculloch-pitts-model-5fdf65ac5dd1 Accessed on
29 January 2021.

[8] C. Hanses, “Activation Functions Explained - GELU, SELU, ELU,
ReLU and more,” 2019. [Online]. Available: https://mlfromscratch.com/
activation-functions-explained/ Accessed on 28 January 2021.

[9] Q. Chen, “Deep learning and chain rule of calculus,” 2018.
[Online]. Available: https://medium.com/machine-learning-and-math/
deep-learning-and-chain-rule-of-calculus-80896a1e91f9 Accessed on 24 March
2021.

[10] V. Bushaev, “Adam — latest trends in deep learning opti-
mization.” 2018. [Online]. Available: https://towardsdatascience.com/
adam-latest-trends-in-deep-learning-optimization-6be9a291375c Accessed on

61

https://montreal.ubisoft.com/en/our-engagements/research-and-development/
https://montreal.ubisoft.com/en/our-engagements/research-and-development/
https://www.ea.com/seed
https://github.com/sebastianstarke/AI4Animation
https://avalanchestudios.com/
http://theorangeduck.com/media/uploads/other_stuff/phasefunction.pdf
http://theorangeduck.com/media/uploads/other_stuff/phasefunction.pdf
https://avalanchestudios.com/technology
https://towardsdatascience.com/mcculloch-pitts-model-5fdf65ac5dd1
https://towardsdatascience.com/mcculloch-pitts-model-5fdf65ac5dd1
https://mlfromscratch.com/activation-functions-explained/
https://mlfromscratch.com/activation-functions-explained/
https://medium.com/machine-learning-and-math/deep-learning-and-chain-rule-of-calculus-80896a1e91f9
https://medium.com/machine-learning-and-math/deep-learning-and-chain-rule-of-calculus-80896a1e91f9
https://towardsdatascience.com/adam-latest-trends-in-deep-learning-optimization-6be9a291375c
https://towardsdatascience.com/adam-latest-trends-in-deep-learning-optimization-6be9a291375c

Bibliography

29 January 2021.

[11] J. Brownlee, “Gentle Introduction to the Adam Optimization Algorithm for
Deep Learning,” 2021. [Online]. Available: https://machinelearningmastery.
com/adam-optimization-algorithm-for-deep-learning/ Accessed on 14 April
2021.

[12] Stanford Vision Lab, Stanford University, Princeton University, “ImageNet,”
2021. [Online]. Available: https://image-net.org/index.php Accessed on 4 May
2021.

[13] W. Zeng, “Toward human-centric deep video understanding,” 2020.
[Online]. Available: https://www.researchgate.net/publication/338566118_
Toward_human-centric_deep_video_understanding Accessed on 4 May 2021.

[14] The Deepmind Team, “AlphaFold,” 2020. [Online]. Available: https:
//deepmind.com/research/case-studies/alphafold Accessed on 4 May 2021.

[15] Kyle Wiggers, “Google details how it’s using AI and machine learning to im-
prove search,” 2020. [Online]. Available: https://venturebeat.com/2020/10/15/
google-details-how-its-using-ai-and-machine-learning-to-improve-search/ Ac-
cessed on 4 May 2021.

[16] Barak Turovsky, “Found in translation: More ac-
curate, fluent sentences in Google Translate,” 2016.
[Online]. Available: https://blog.google/products/translate/
found-translation-more-accurate-fluent-sentences-google-translate/ Accessed
on 4 May 2021.

[17] The Deepmind Team, “AlphaGo,” 2017? [Online]. Available: https:
//deepmind.com/research/case-studies/alphago-the-story-so-far Accessed on
4 May 2021.

[18] ——, “AlphaStar: Grandmaster level in StarCraft II
using multi-agent reinforcement learning,” 2019, [On-
line]. Available: https://deepmind.com/blog/article/
AlphaStar-Grandmaster-level-in-StarCraft-II-using-multi-agent-reinforcement
-learningAccessedon4May2021.

[19] The OpenAI Team, “OpenAI Five,” 2019? [Online]. Available: https:
//openai.com/projects/five/ Accessed on 4 May 2021.

[20] X. Matos, “Meet the computer that’s learning to kill and the man who
programmed the chaos,” 2014. [Online]. Available: https://www.engadget.com/
2014-06-06-meet-the-computer-thats-learning-to-kill-and-the-man-who-progra.
html Accessed on 7 May 2021.

[21] M. Robbins, “Using Neural Networks to Con-
trol Agent Threat Response,” 2016. [Online]. Avail-
able: http://www.gameaipro.com/GameAIPro/GameAIPro_Chapter30_
Using_Neural_Networks_to_Control_Agent_Threat_Response.pdf Ac-

62

https://machinelearningmastery.com/adam-optimization-algorithm-for-deep-learning/
https://machinelearningmastery.com/adam-optimization-algorithm-for-deep-learning/
https://image-net.org/index.php
https://www.researchgate.net/publication/338566118_Toward_human-centric_deep_video_understanding
https://www.researchgate.net/publication/338566118_Toward_human-centric_deep_video_understanding
https://deepmind.com/research/case-studies/alphafold
https://deepmind.com/research/case-studies/alphafold
https://venturebeat.com/2020/10/15/google-details-how-its-using-ai-and-machine-learning-to-improve-search/
https://venturebeat.com/2020/10/15/google-details-how-its-using-ai-and-machine-learning-to-improve-search/
https://blog.google/products/translate/found-translation-more-accurate-fluent-sentences-google-translate/
https://blog.google/products/translate/found-translation-more-accurate-fluent-sentences-google-translate/
https://deepmind.com/research/case-studies/alphago-the-story-so-far
https://deepmind.com/research/case-studies/alphago-the-story-so-far
https://deepmind.com/blog/article/AlphaStar-Grandmaster-level-in-StarCraft-II-using-multi-agent-reinforcement-learning
https://deepmind.com/blog/article/AlphaStar-Grandmaster-level-in-StarCraft-II-using-multi-agent-reinforcement-learning
https://deepmind.com/blog/article/AlphaStar-Grandmaster-level-in-StarCraft-II-using-multi-agent-reinforcement-learning
https://openai.com/projects/five/
https://openai.com/projects/five/
https://www.engadget.com/2014-06-06-meet-the-computer-thats-learning-to-kill-and-the-man-who-progra.html
https://www.engadget.com/2014-06-06-meet-the-computer-thats-learning-to-kill-and-the-man-who-progra.html
https://www.engadget.com/2014-06-06-meet-the-computer-thats-learning-to-kill-and-the-man-who-progra.html
http://www.gameaipro.com/GameAIPro/GameAIPro_Chapter30_Using_Neural_Networks_to_Control_Agent_Threat_Response.pdf
http://www.gameaipro.com/GameAIPro/GameAIPro_Chapter30_Using_Neural_Networks_to_Control_Agent_Threat_Response.pdf

Bibliography

cessed on 7 May 2021.

[22] J. H. Kim and R. Wu, “Leveraging Machine Learning for Game
Development,” 2021. [Online]. Available: https://ai.googleblog.com/2021/03/
leveraging-machine-learning-for-game.html Accessed on 7 May 2021.

[23] J. Liu et al., “Deep Learning for Procedural Content Generation,” 2020.
[Online]. Available: https://arxiv.org/pdf/2010.04548.pdf Accessed on 7 May
2021.

[24] E. Alonso et al., “Deep Reinforcement Learning for Navigation in AAA
Video Games,” 2020. [Online]. Available: https://montreal.ubisoft.com/en/
deep-reinforcement-learning-for-navigation-in-aaa-video-games/ Accessed on 7
May 2021.

[25] F. G. Harvey et al., “Robust Motion In-Betweening,”
2020. [Online]. Available: https://montreal.ubisoft.com/en/
automatic-in-betweening-for-faster-animation-authoring/ Accessed on 7 May
2021.

[26] D. Holden, “A data-driven physics simulation based on Machine
Learning,” 2019, [Online]. Available: https://montreal.ubisoft.com/en/
ubisoft-la-forge-produces-a-data-driven-physics-simulation-based-on-machine-
learning/Accessedon7May2021.

[27] J. Oliver, “US and China back AI bug-detecting projects ,” 2018. [Online]. Avail-
able: https://www.ft.com/content/64fef986-89d0-11e8-affd-da9960227309 Ac-
cessed on 7 May 2021.

[28] D. Holden, “Robust Solving of Optical Motion Capture Data by Denoising,”
2018. [Online]. Available: https://montreal.ubisoft.com/wp-content/uploads/
2018/05/neuraltracker.pdf Accessed on 7 May 2021.

[29] H. Zhang et al., “Mode-Adaptive Neural Networks for Quadruped Motion
Control,” 2018. [Online]. Available: https://github.com/sebastianstarke/
AI4Animation/raw/master/Media/SIGGRAPH_2018/Paper.pdf Accessed on
12 December 2020.

[30] S. Starke, “[SIGGRAPH 2018] Mode-Adaptive Neural Networks for Quadruped
Motion Control,” 2018. [Online]. Available: https://youtu.be/uFJvRYtjQ4c?
t=269 Accessed on 25 January 2021.

[31] H. Zhang et al., “Neural State Machine for Character-Scene Interactions,” 2019.
[Online]. Available: https://github.com/sebastianstarke/AI4Animation/blob/
master/Media/SIGGRAPH_Asia_2019/Paper.pdf Accessed on 12 December
2020.

[32] S. Starke, “[SIGGRAPH Asia 2019] Neural State Machine for Character-Scene
Interactions,” 2019. [Online]. Available: https://youtu.be/7c6oQP1u2eQ?t=
393 Accessed on 25 January 2021.

63

https://ai.googleblog.com/2021/03/leveraging-machine-learning-for-game.html
https://ai.googleblog.com/2021/03/leveraging-machine-learning-for-game.html
https://arxiv.org/pdf/2010.04548.pdf
https://montreal.ubisoft.com/en/deep-reinforcement-learning-for-navigation-in-aaa-video-games/
https://montreal.ubisoft.com/en/deep-reinforcement-learning-for-navigation-in-aaa-video-games/
https://montreal.ubisoft.com/en/automatic-in-betweening-for-faster-animation-authoring/
https://montreal.ubisoft.com/en/automatic-in-betweening-for-faster-animation-authoring/
https://montreal.ubisoft.com/en/ubisoft-la-forge-produces-a-data-driven-physics-simulation-based-on-machine-learning/
https://montreal.ubisoft.com/en/ubisoft-la-forge-produces-a-data-driven-physics-simulation-based-on-machine-learning/
https://montreal.ubisoft.com/en/ubisoft-la-forge-produces-a-data-driven-physics-simulation-based-on-machine-learning/
https://www.ft.com/content/64fef986-89d0-11e8-affd-da9960227309
https://montreal.ubisoft.com/wp-content/uploads/2018/05/neuraltracker.pdf
https://montreal.ubisoft.com/wp-content/uploads/2018/05/neuraltracker.pdf
https://github.com/sebastianstarke/AI4Animation/raw/master/Media/SIGGRAPH_2018/Paper.pdf
https://github.com/sebastianstarke/AI4Animation/raw/master/Media/SIGGRAPH_2018/Paper.pdf
https://youtu.be/uFJvRYtjQ4c?t=269
https://youtu.be/uFJvRYtjQ4c?t=269
https://github.com/sebastianstarke/AI4Animation/blob/master/Media/SIGGRAPH_Asia_2019/Paper.pdf
https://github.com/sebastianstarke/AI4Animation/blob/master/Media/SIGGRAPH_Asia_2019/Paper.pdf
https://youtu.be/7c6oQP1u2eQ?t=393
https://youtu.be/7c6oQP1u2eQ?t=393

Bibliography

[33] S. Starke et al., “Local Motion Phases for Learning Multi-Contact Character
Movements,” 2020. [Online]. Available: https://github.com/sebastianstarke/
AI4Animation/blob/master/Media/SIGGRAPH_2020/Paper.pdf Accessed on
12 December 2020.

[34] S. Starke, “[SIGGRAPH 2020] Local Motion Phases for Learning Multi-
Contact Character Movements,” 2020. [Online]. Available: https://www.
youtube.com/watch?v=Rzj3k3yerDk Accessed on 25 January 2021.

[35] S. Clavet, “Motion Matching and The Road to Next-Gen Anima-
tion,” 2016. [Online]. Available: https://www.gdcvault.com/play/1023280/
Motion-Matching-and-The-Road Accessed on 12 December 2020.

[36] D. Holden et al., “Learned Motion Matching,” 2020. [On-
line]. Available: https://static-wordpress.akamaized.net/montreal.ubisoft.com/
wp-content/uploads/2020/07/09154101/Learned_Motion_Matching.pdf Ac-
cessed on 12 December 2020.

[37] Ubisoft La Forge, “Learned Motion Matching,” 2020. [Online]. Available:
https://youtu.be/16CHDQK4W5k?t=92 Accessed on 25 January 2021.

[38] PyMC3, “Theano,” 2020. [Online]. Available: https://github.com/Theano/
Theano Accessed on 29 January 2021.

[39] C. R. Harris et al., “Array programming with NumPy,” Nature, vol. 585, no.
7825, pp. 357–362, Sep. 2020, accessed on 14 April 2021. [Online]. Available:
https://doi.org/10.1038/s41586-020-2649-2

[40] OyMC Developers, “Theano, TensorFlow and the Future of
PyMC,” 2018. [Online]. Available: https://pymc-devs.medium.com/
theano-tensorflow-and-the-future-of-pymc-6c9987bb19d5 Accessed on 14 April
2021.

[41] Eigen, “Eigen’s Tuxfamily Main Page,” 2021. [Online]. Available: https:
//eigen.tuxfamily.org/index.php Accessed on 30 April 2021.

[42] Abadi et al., “TensorFlow: Large-scale machine learning on heterogeneous
systems,” 2015. [Online]. Available: https://www.tensorflow.org/ Accessed on
30 April 2021.

[43] K. Claypool and M. Claypool, “On frame rate and player performance in
first person shooter games,” 2007. [Online]. Available: https://web.cs.wpi.edu/
~claypool/papers/fr/fulltext.pdf Accessed on 4 May 2021.

[44] S. Wu, “3 Best metrics to evaluate Regression Model,”
2020. [Online]. Available: https://towardsdatascience.com/
what-are-the-best-metrics-to-evaluate-your-regression-model-418ca481755b
Accessed on 4 May 2021.

[45] D. Holden, “Phase-Functioned Neural Networks for Character Con-
trol,” 2017. [Online]. Available: http://theorangeduck.com/page/

64

https://github.com/sebastianstarke/AI4Animation/blob/master/Media/SIGGRAPH_2020/Paper.pdf
https://github.com/sebastianstarke/AI4Animation/blob/master/Media/SIGGRAPH_2020/Paper.pdf
https://www.youtube.com/watch?v=Rzj3k3yerDk
https://www.youtube.com/watch?v=Rzj3k3yerDk
https://www.gdcvault.com/play/1023280/Motion-Matching-and-The-Road
https://www.gdcvault.com/play/1023280/Motion-Matching-and-The-Road
https://static-wordpress.akamaized.net/montreal.ubisoft.com/wp-content/uploads/2020/07/09154101/Learned_Motion_Matching.pdf
https://static-wordpress.akamaized.net/montreal.ubisoft.com/wp-content/uploads/2020/07/09154101/Learned_Motion_Matching.pdf
https://youtu.be/16CHDQK4W5k?t=92
https://github.com/Theano/Theano
https://github.com/Theano/Theano
https://doi.org/10.1038/s41586-020-2649-2
https://pymc-devs.medium.com/theano-tensorflow-and-the-future-of-pymc-6c9987bb19d5
https://pymc-devs.medium.com/theano-tensorflow-and-the-future-of-pymc-6c9987bb19d5
https://eigen.tuxfamily.org/index.php
https://eigen.tuxfamily.org/index.php
https://www.tensorflow.org/
https://web.cs.wpi.edu/~claypool/papers/fr/fulltext.pdf
https://web.cs.wpi.edu/~claypool/papers/fr/fulltext.pdf
https://towardsdatascience.com/what-are-the-best-metrics-to-evaluate-your-regression-model-418ca481755b
https://towardsdatascience.com/what-are-the-best-metrics-to-evaluate-your-regression-model-418ca481755b
http://theorangeduck.com/page/phase-functioned-neural-networks-character-control
http://theorangeduck.com/page/phase-functioned-neural-networks-character-control
http://theorangeduck.com/page/phase-functioned-neural-networks-character-control

Bibliography

phase-functioned-neural-networks-character-control Accessed on 26 January
2021.

[46] Yoshiboy2, “Phase-Functioned Neural Networks for Character Control,” 2017.
[Online]. Available: https://youtu.be/Ul0Gilv5wvY Accessed on 27 January
2021.

[47] J. Li and S. Chen, “The Cubic α-Catmull-Rom Spline,” 2016. [Online]. Avail-
able: https://mlfromscratch.com/activation-functions-explained/ Accessed on
28 January 2021.

[48] J. Segerstedt, “Videos of thesis results,” 2021.
[Online]. Available: https://drive.google.com/drive/folders/
1UDsGAKUhxKyQEd8yinwXLMOx1cRCvY-d?usp=sharing Accessed on 6
June 2021.

65

http://theorangeduck.com/page/phase-functioned-neural-networks-character-control
http://theorangeduck.com/page/phase-functioned-neural-networks-character-control
http://theorangeduck.com/page/phase-functioned-neural-networks-character-control
https://youtu.be/Ul0Gilv5wvY
https://mlfromscratch.com/activation-functions-explained/
https://drive.google.com/drive/folders/1UDsGAKUhxKyQEd8yinwXLMOx1cRCvY-d?usp=sharing
https://drive.google.com/drive/folders/1UDsGAKUhxKyQEd8yinwXLMOx1cRCvY-d?usp=sharing

Bibliography

66

List of Figures

2.1 Simplified fully connected neural network model 6
2.2 Simplified Mculloch-Pitts neuron model 6
2.3 Simplified example of under/overfitting in 2D regression 8
2.4 Simplified example of early stopping 9
2.5 Simplified example of prediction error depending on weights/biases . 10
2.6 Simplified .bvh file example . 15
2.7 Simplified Theano code snippet for addition on the GPU 16
2.8 Single-layered network implementation using Eigen 16

3.1 Visualization of the .bvh skeleton used by the Holden configurations . 20
3.2 Visualization of the .bvh skeleton used by the AVA configuration . . . 20
3.3 Subset of PFNN input vector visualized 23
3.4 The full PFNN pipeline . 25
3.5 Visual representation of left/right-handed world-axis orientations . . . 27

4.1 The Procedural Animations runtime package 29
4.2 Procedural Animations constructor 30
4.3 Procedural Animations per frame prediction 30
4.4 Simplified example of Settings implementation 32
4.5 Error Calculator constructor . 32
4.6 Error Calculator per frame prediction 33

5.1 Line chart of responsivity results . 35
5.2 Boxplot of responsivity results . 36
5.3 Some frames from the HOLDEN responsivity evaluation 37
5.4 Some frames from the AVA responsivity evaluation 38
5.5 Directional overshoot during the AVA responsivity evaluation 38
5.6 Line chart of mean results of accuracy evaluation 40
5.7 Line chart of standard deviation results of accuracy evaluation 41
5.8 Boxplot of accuracy results . 42
5.9 Some frames from the HOLDEN accuracy evaluation 43
5.10 Some frames from the AVA accuracy evaluation 43
5.11 Mean-squared error of entire output vector during training 44
5.12 HOLDEN positional and orientational output skinned 46
5.13 AVA positional and orientational output skinned 46

6.1 Linear regression of computational time over network calculations . . 50

67

List of Figures

A.1 The .bvh Interpolator script . IV
A.2 Side-by-side comparisons of the original and retargeted .bvh skeletons V

68

List of Tables

3.1 Track course details . 17

5.1 Mean and standard deviation results of responsivity evaluation 36
5.2 Mean and standard deviation results of accuracy evaluation 42
5.3 Computational time required throughout the pipeline 45
5.4 Size of different data throughout the pipeline 45

6.1 The number of computations required per network configuration . . . 50

A.1 Ordering of motion capture (.bvh) file names VII
A.2 Ordering and names of joints in the AVA skeleton XI
A.3 Full responsivity results - Average frametime per lap. XIII
A.4 Full accuracy results - Mean errors XVI
A.5 Full accuracy results - Standard deviation errors XVIII
A.6 The mean-squared errors of the entire output vector - HOLDEN . . . XIX
A.7 The mean-squared errors of the entire output vector - HOLDEN-XL . XX
A.8 The mean-squared errors of the entire output vector - HOLDEN-XT . XXI
A.9 The mean-squared errors of the entire output vector - AVA XXII

69

List of Tables

70

A
Apendix

I

II

A.1 .bvh Interpolator
To allow for easy conversion between framerate, given that the project needed to
at least be able to interpolate 30Hz .bvh files to 60Hz/120Hz .bvh files, see 3.1.3,
a Python scrip able to convert .bvh files to any given target framerate value was
written. When run, this script takes all files in a given source folder, interpolates
them, and stores the results in another given target folder.

----- bvh_interpolator.bvh -----
This script takes all .bvh files in 'source_folder'...
...converts the framerate to 'target_fps' and...
...stores the resulting .bvh:s in 'target_folder'.

Changable Parameters
source_folder = "source"
target_folder = "target"
target_fps = 60

##
##

Imports
import os # .listdir()
import re # .split()
import math # .ceil()

returns 'value', clamped between 'other_a' and 'other_b' ('other_a' < 'other_b')
def clamp(value, other_a, other_b):

return max(other_a, min(other_b,value))

returns 'value', clamped between 'other_a' and 'other_b'
def clamp_bi(value, other_a, other_b):

return clamp(value, other_a, other_b) if other_a < other_b else clamp(value, other_b, other_a)

returns linear interpolation between 'a' and 'b' with factor 'ratio'
def interpolate(a, b, ratio):

return a * (1-ratio) + b * ratio

returns linear interpolation between 'a' and 'b' with factor 'ratio', angles has to be [-180, 180)
def interpolate_angles(a, b, ratio):

difference = abs(a-b)
if difference > 170 and difference < 190:

a = (a+180) % 360

sensitivity = 90
if a < -sensitivity and b > sensitivity:

a += 360
if b < -sensitivity and a > sensitivity:

b += 360
interpolated = (a * (1-ratio) + b * ratio)
return_value = interpolated % 360 if (interpolated % 360) < 180 else (interpolated % 180) - 180
return return_value

returns list of interpolatd, clamped, and rounded stored frame data correctly formated into row data
def formatList(interpolation_ratio, source_frame_data, prev_source_frame, next_source_frame):

prev_data = source_frame_data[prev_source_frame]
next_data = source_frame_data[next_source_frame]
positions = [interpolate(prev_frame_data, next_frame_data, interpolation_ratio) \

for prev_frame_data, next_frame_data in zip(prev_data[:3], next_data[:3])]
orientations = [interpolate_angles(prev_frame_data, next_frame_data, interpolation_ratio) \

for prev_frame_data, next_frame_data in zip(prev_data[3:], next_data[3:])]
positions.extend(orientations)
return positions

III

Main Loop - For each file in source directory...
for filename in os.listdir(source_folder):

------ VARIABLE INITIALIZIATION ------
target_filename = "./"+target_folder+"/"+filename
target_frametime = 1.0 / (float)(target_fps)
target_num_frames = -1
target_content = []

source_filename = "./"+source_folder+"/"+filename
source_frametime = -1.0
source_num_frames = -1
source_frames_index = -1
source_fps = -1
source_file = open(source_filename, 'r')
source_content = source_file.readlines()
source_frame_data = []

conversion_ratio = -1

------ FIND START OF FRAME DATA ------
is_at_frames = False
count = 0
for line in source_content:

---- STORE SOURCE FRAME DATA INDEX AND METADATA ----
if not is_at_frames:

if "Frames:" in line:
source_num_frames = (int)((re.split(r'(\S[^:]+):\s*(.*\S)', line))[2])

if "Frame Time:" in line:
source_frametime = (float)((re.split(r'(\S[^:]+):\s*(.*\S)', line))[2])
source_fps = int(1.0 / source_frametime)
target_num_frames = (int)(source_frametime * source_num_frames / target_frametime)
conversion_ratio = target_frametime / source_frametime
is_at_frames = True
source_frames_index = count+2

target_content.append(line[:-1])

--- STORE FRAME DATA --
if is_at_frames and count >= source_frames_index-1:

source_frame_data.append([float(i) for i in line.split()])

count += 1

----- INTERPOLATE FRAME DATA -----
for target_frame in range(0, target_num_frames):

prev_source_frame = (int) (min(source_num_frames-2, max(0, target_frametime * target_frame \
/ source_frametime)))
next_source_frame = (int) (min(source_num_frames-1, 1 + prev_source_frame))
prev_source_time = prev_source_frame * source_frametime
next_source_time = next_source_frame * source_frametime
target_time = target_frame * target_frametime
interpolation_ratio = clamp((target_time - prev_source_time) \
/ (next_source_time - prev_source_time), 0, 1) if target_time - prev_source_time != 0 else 0
target_content.append(formatList(interpolation_ratio, source_frame_data, \
prev_source_frame, next_source_frame))

----- WRITE TARGET METADATA -----
for line_index in range(0, len(target_content)):

if "Frames:" in target_content[line_index]:
row = re.split(r'(\S[^:]+):\s*(.*\S)', target_content[line_index])
target_content[line_index] = "Frames: " + str(target_num_frames)

if "Frame Time:" in target_content[line_index]:
row = re.split(r'(\S[^:]+):\s*(.*\S)', target_content[line_index])
target_content[line_index] = "Frame Time: " + str(target_frametime)

source_file.close()

----- WRITE TO TARGET FILE -----
target_file = open(target_filename, 'w')
target_file.writelines([re.sub('\,|\[|\]', '', "%s\n" % item) for item in target_content])
target_file.close()

print("SUCCESS - Converted '"+filename+"' from "+str(source_num_frames)+"@"+str(source_fps)+"Hz to \
"+str(target_num_frames)+"@"+str(target_fps)+"Hz")

print("TERMINATED SUCCESSFULLY")

Figure A.1: The .bvh Interpolator script

IV

Figure A.2: Side-by-side comparisons of the original and retargeted .bvh skeletons
Left: Original .bvh skeleton as defined by Holden et al. [45].
Right: Retargeted and interpolated .bvh AVA skeleton.

V

VI

A.2 Filenames

Index Filename Index Filename
0 LocomotionFlat01-000 40 NewCaptures04-000
1 LocomotionFlat01-000-mirror 41 NewCaptures04-000-mirror
2 LocomotionFlat02-000 42 NewCaptures05-000
3 LocomotionFlat02-000-mirror 43 NewCaptures05-000-mirror
4 LocomotionFlat02-001 44 NewCaptures07-000
5 LocomotionFlat02-001-mirror 45 NewCaptures07-000-mirror
6 LocomotionFlat03-000 46 NewCaptures08-000
7 LocomotionFlat03-000-mirror 47 NewCaptures08-000-mirror
8 LocomotionFlat04-000 48 NewCaptures09-000
9 LocomotionFlat04-000-mirror 49 NewCaptures09-000-mirror
10 LocomotionFlat05-000 50 NewCaptures10-000
11 LocomotionFlat05-000-mirror 51 NewCaptures10-000-mirror
12 LocomotionFlat06-000 52 NewCaptures11-000
13 LocomotionFlat06-000-mirror 53 NewCaptures11-000-mirror
14 LocomotionFlat06-001 54 WalkingUpSteps01-000
15 LocomotionFlat06-001-mirror 55 WalkingUpSteps01-000-mirror
16 LocomotionFlat07-000 56 WalkingUpSteps02-000
17 LocomotionFlat07-000-mirror 57 WalkingUpSteps02-000-mirror
18 LocomotionFlat08-000 58 WalkingUpSteps03-000
19 LocomotionFlat08-000-mirror 59 WalkingUpSteps03-000-mirror
20 LocomotionFlat08-001 60 WalkingUpSteps04-000
21 LocomotionFlat08-001-mirror 61 WalkingUpSteps04-000-mirror
22 LocomotionFlat09-000 62 WalkingUpSteps04-001
23 LocomotionFlat09-000-mirror 63 WalkingUpSteps04-001-mirror
24 LocomotionFlat10-000 64 WalkingUpSteps05-000
25 LocomotionFlat10-000-mirror 65 WalkingUpSteps05-000-mirror
26 LocomotionFlat11-000 66 WalkingUpSteps06-000
27 LocomotionFlat11-000-mirror 67 WalkingUpSteps06-000-mirror
28 LocomotionFlat12-000 68 WalkingUpSteps07-000
29 LocomotionFlat12-000-mirror 69 WalkingUpSteps07-000-mirror
30 NewCaptures01-000 70 WalkingUpSteps08-000
31 NewCaptures01-000-mirror 71 WalkingUpSteps08-000-mirror
32 NewCaptures02-000 72 WalkingUpSteps09-000
33 NewCaptures02-000-mirror 73 WalkingUpSteps09-000-mirror
34 NewCaptures03-000 74 WalkingUpSteps10-000
35 NewCaptures03-000-mirror 75 WalkingUpSteps10-000-mirror
36 NewCaptures03-001 76 WalkingUpSteps11-000
37 NewCaptures03-001-mirror 77 WalkingUpSteps11-000-mirror
38 NewCaptures03-002 78 WalkingUpSteps12-000
39 NewCaptures03-002-mirror 79 WalkingUpSteps12-000-mirror

Table A.1: Ordering of motion capture (.bvh) file names
The files are available at the online repository uploaded by Holden et al. [45].

VII

VIII

A.3 AVA skeleton joint names

Index Joint Name Index Joint Name
0 Hips 40 fLeftBrowInnerADowner
1 UpperHips 41 fLeftLwrCheek
2 Spine 42 fLeftTemple
3 Spine1 43 fLeftMouthCorner
4 Spine2 44 fLeftEar
5 Spine3 45 fLeftMidCheek
6 Neck 46 fLeftNoseA
7 Head 47 fLeftUprCheek
8 offset-facialOrienter 48 fLeftNoseCheek
9 fJaw 49 fLeftBrowOuterA
10 fLeftChin 50 fLeftBrowMidA
11 fLeftLwrLip2 51 fLeftBrowInnerA
12 fLeftLwrLip 52 fRightUprLip
13 fLeftLwrLipSticky 53 fRightUprLipSticky
14 fRightChin 54 fRightEyeLidBulgeUp
15 fRightLwrLip2 55 fRightEyeLidBulgeDown
16 fMidLwrLip2 56 fRightBackCheek
17 fToungeRoot1 57 fRightCheekCrease
18 fToungeTip 58 fRightUprLid
19 fChinDowner 59 fRightLwrLid
20 fRightLwrLip 60 fRightEye
21 fRightLwrLipSticky 61 fMidUprLip2
22 fMidLwrLip 62 fRightUprLip2
23 fChin 63 fRightJawFlesh
24 fJaw-loose 64 fRightEyeCornerIn
25 fLeftUprLip 65 fRightEyeCornerOut
26 fLeftUprLipSticky 66 fRightBrowOuterADowner
27 fLeftEyeLidBulgeUp 67 fRightBrowMidADowner
28 fLeftEyeLidBulgeDown 68 fRightBrowInnerADowner
29 fLeftBackCheek 69 fMidUprLip
30 fLeftCheekCrease 70 fNoseback
31 fLeftUprLid 71 fRightLwrCheek
32 fLeftLwrLid 72 fRightTemple
33 fLeftEye 73 fRightMouthCorner
34 fLeftUprLip2 74 fRightEar
35 fLeftJawFlesh 75 fRightMidCheek
36 fLeftEyeCornerIn 76 fRightNoseA
37 fLeftEyeCornerOut 77 fRightUprCheek
38 fLeftBrowOuterADowner 78 fRightNoseCheek
39 fLeftBrowMidADowner 79 fRightBrowOuterA

IX

Index Joint Name Index Joint Name
80 fRightBrowMidA 120 FPAdjustorLeftShoulder
81 fRightBrowInnerA 121 LeftShoulder
82 fNoseFront 122 LeftArm
83 fThroat 123 LeftForeArm
84 fApple 124 LeftForeArmRoll
85 FPAdjustorRightShoulder 125 LeftForeArmRoll-DF-1
86 RightShoulder 126 LeftForeArmRoll-DF-2
87 RightArm 127 LeftHand
88 RightForeArm 128 LeftInHandPinky
89 RightForeArmRoll 129 LeftHandPinky1
90 RightForeArmRoll-DF-1 130 LeftHandPinky2
91 RightForeArmRoll-DF-2 131 LeftHandPinky3
92 RightHand 132 LeftHandPinky4
93 RightInHandPinky 133 LeftInHandRing
94 RightHandPinky1 134 LeftHandRing1
95 RightHandPinky2 135 LeftHandRing2
96 RightHandPinky3 136 LeftHandRing3
97 RightHandPinky4 137 LeftHandRing4
98 RightInHandRing 138 LeftHandIndex1
99 RightHandRing1 139 LeftHandIndex2
100 RightHandRing2 140 LeftHandIndex3
101 RightHandRing3 141 LeftHandIndex4
102 RightHandRing4 142 LeftHandMiddle1
103 RightHandIndex1 143 LeftHandMiddle2
104 RightHandIndex2 144 LeftHandMiddle3
105 RightHandIndex3 145 LeftHandMiddle4
106 RightHandIndex4 146 LeftHandThumb1
107 RightHandMiddle1 147 LeftHandThumb2
108 RightHandMiddle2 148 LeftHandThumb3
109 RightHandMiddle3 149 LeftHandThumb4
110 RightHandMiddle4 150 LeftInHandAttach
111 RightHandThumb1 151 LeftHandReverseIKOffset
112 RightHandThumb2 152 LeftArmRoll
113 RightHandThumb3 153 LeftArmRoll-DF-1
114 RightHandThumb4 154 LeftArmRoll-DF-2
115 RightHandReverseIKOffset 155 FPAdjustorWeaponAndCam
116 RightInHandAttach 156 CharacterCam2
117 RightArmRoll 157 CharacterCam2-PostAffector
118 RightArmRoll-DF-1 158 Sternum-weaponRoot
119 RightArmRoll-DF-2 159 Sternum-AimRef

X

Index Joint Name
160 ChestToRightHandIK
161 ChestToLeftHandIK
162 Global-SternumRightHandAttach
163 SternumRightHandAttach
164 Global-SternumLeftHandAttach
165 SternumLeftHandAttach
166 LeftHandAttach
167 CharacterCam1
168 CharacterCam1-PostAffector
169 LeftHandIKTarget
170 RightHandIKTarget
171 RightHandAttach
172 HipsToLeftHandIK
173 HipsToRightHandIK
174 LowerHips
175 LeftUpLeg
176 LeftLeg
177 LeftLegRoll
178 LeftKnee
179 LeftFoot
180 LeftToeBase
181 LeftUpLegRoll
182 LeftAss-DF-1
183 RightUpLeg
184 RightLeg
185 RightLegRoll
186 RightKnee
187 RightFoot
188 RightToeBase
189 RightUpLegRoll
190 RightAss-DF-1

Table A.2: Ordering and names of joints in the AVA skeleton

XI

XII

A.4 Responsivity Data

Lap HOLDEN HOLDEN-XL HOLDEN-XT AVA
1 0.388623 0.496462 0.379074 1.473621
2 0.393882 0.478219 0.372569 1.487441
3 0.389684 0.527579 0.387475 1.496202
4 0.362003 0.505760 0.415037 1.456730
5 0.365993 0.489539 0.407157 1.450569
6 0.388100 0.483170 0.350097 1.554174
7 0.360687 0.483187 0.394324 1.487500
8 0.353109 0.516471 0.362927 1.483788
9 0.388259 0.474980 0.376687 1.487613
10 0.357007 0.494261 0.370764 1.521477
11 0.366729 0.509333 0.402152 1.485579
12 0.385496 0.490648 0.389647 1.462317
13 0.338432 0.504941 0.363286 1.471249
14 0.398865 0.486274 0.383576 1.471035
15 0.355426 0.513662 0.360077 1.456486
16 0.387522 0.482759 0.382811 1.449753
17 0.390639 0.517458 0.393618 1.514399
18 0.379178 0.506789 0.374275 1.490249
19 0.385632 0.524149 0.383185 1.397291

Table A.3: Full responsivity results - Average frametime per lap.
Values are in milliseconds.

XIII

XIV

A.5 Accuracy Data - Means

Index HOLDEN HOLDEN-XL HOLDEN-XT AVA AVA-M
0 0.0496 0.0477 0.0501 0.0403 0.0505
1 0.0503 0.0475 0.0517 0.0414 0.0536
2 0.0442 0.0370 0.0446 0.0298 0.0388
3 0.0456 0.0391 0.0480 0.0311 0.0415
4 0.0464 0.0396 0.0470 0.0316 0.0420
5 0.0444 0.0379 0.0451 0.0313 0.0427
6 0.0496 0.0457 0.0503 0.0340 0.0413
7 0.0497 0.0467 0.0508 0.0330 0.0430
8 0.0448 0.0431 0.0469 0.0332 0.0415
9 0.0474 0.0465 0.0483 0.0305 0.0383
10 0.0473 0.0449 0.0488 0.0305 0.0429
11 0.0488 0.0460 0.0501 0.0299 0.0433
12 0.0416 0.0354 0.0429 0.0235 0.0303
13 0.0406 0.0364 0.0434 0.0243 0.0318
14 0.0434 0.0373 0.0449 0.0245 0.0324
15 0.0437 0.0393 0.0457 0.0260 0.0344
16 0.0509 0.0492 0.0520 0.0356 0.0449
17 0.0532 0.0514 0.0549 0.0368 0.0476
18 0.0481 0.0448 0.0488 0.0288 0.0406
19 0.0462 0.0433 0.0470 0.0291 0.0398
20 0.0500 0.0474 0.0511 0.0297 0.0406
21 0.0509 0.0489 0.0525 0.0301 0.0412
22 0.0473 0.0457 0.0486 0.0317 0.0440
23 0.0447 0.0437 0.0468 0.0313 0.0389
24 0.0493 0.0450 0.0503 0.0353 0.0458
25 0.0484 0.0451 0.0503 0.0354 0.0460
26 0.0369 0.0395 0.0364 0.0301 0.0383
27 0.0419 0.0432 0.0409 0.0303 0.0426
28 0.0272 0.0304 0.0272 0.0274 0.0388
29 0.0271 0.0304 0.0273 0.0272 0.0400
30 0.0421 0.0441 0.0429 0.0285 0.0379
31 0.0438 0.0429 0.0449 0.0305 0.0429
32 0.0416 0.0468 0.0422 0.0303 0.0392
33 0.0419 0.0462 0.0430 0.0305 0.0404
34 0.0277 0.0296 0.0278 0.0280 0.0395
35 0.0283 0.0301 0.0284 0.0278 0.0416
36 0.0292 0.0316 0.0290 0.0280 0.0403
37 0.0282 0.0304 0.0285 0.0284 0.0422
38 0.0280 0.0296 0.0280 0.0255 0.0363
39 0.0291 0.0312 0.0294 0.0283 0.0434

XV

Index HOLDEN HOLDEN-XL HOLDEN-XT AVA AVA-M
40 0.0303 0.0333 0.0305 0.0275 0.0383
41 0.0282 0.0305 0.0276 0.0276 0.0404
42 0.0381 0.0412 0.0383 0.0294 0.0383
43 0.0397 0.0430 0.0402 0.0322 0.0454
44 0.0382 0.0408 0.0394 0.0324 0.0419
45 0.0389 0.0424 0.0394 0.0331 0.0439
46 0.0465 0.0497 0.0461 0.0292 0.0386
47 0.0492 0.0522 0.0484 0.0278 0.0341
48 0.0492 0.0528 0.0486 0.0299 0.0372
49 0.0500 0.0522 0.0490 0.0304 0.0404
50 0.0465 0.0465 0.0454 0.0303 0.0394
51 0.0407 0.0430 0.0406 0.0325 0.0443
52 0.0483 0.0512 0.0478 0.0293 0.0381
53 0.0487 0.0516 0.0483 0.0300 0.0397
54 0.0359 0.0395 0.0370 0.0289 0.0383
55 0.0349 0.0374 0.0360 0.0287 0.0391
56 0.0373 0.0413 0.0385 0.0273 0.0341
57 0.0382 0.0413 0.0392 0.0288 0.0374
58 0.0395 0.0419 0.0408 0.0313 0.0403
59 0.0402 0.0432 0.0414 0.0327 0.0448
60 0.0345 0.0373 0.0355 0.0282 0.0381
61 0.0359 0.0376 0.0365 0.0289 0.0425
62 0.0366 0.0388 0.0374 0.0301 0.0400
63 0.0349 0.0376 0.0361 0.0300 0.0392
64 0.0474 0.0526 0.0476 0.0316 0.0358
65 0.0484 0.0539 0.0486 0.0334 0.0391
66 0.0414 0.0467 0.0424 0.0305 0.0377
67 0.0418 0.0475 0.0430 0.0313 0.0417
68 0.0392 0.0446 0.0401 0.0280 0.0339
69 0.0393 0.0447 0.0405 0.0280 0.0353
70 0.0621 0.0690 0.0614 0.0385 0.0503
71 0.0599 0.0666 0.0614 0.0402 0.0514
72 0.0752 0.0776 0.0776 0.0484 0.0595
73 0.0781 0.0821 0.0798 0.0511 0.0623
74 0.0522 0.0527 0.0525 0.0307 0.0433
75 0.0528 0.0535 0.0527 0.0317 0.0446
76 0.0557 0.0568 0.0581 0.0322 0.0431
77 0.0577 0.0599 0.0601 0.0339 0.0443
78 0.0509 0.0561 0.0506 0.0308 0.0424
79 0.0476 0.0517 0.0471 0.0327 0.0447

Table A.4: Full accuracy results - Mean errors
For definition of error, see Section 3.1.2.

XVI

A.6 Accuracy Data - Standard Deviations

Index HOLDEN HOLDEN-XL HOLDEN-XT AVA AVA-M
0 0.0602 0.0590 0.0625 0.0403 0.0683
1 0.0556 0.0548 0.0566 0.0414 0.0793
2 0.0516 0.0410 0.0569 0.0298 0.0559
3 0.0565 0.0500 0.0596 0.0311 0.0622
4 0.0564 0.0514 0.0594 0.0316 0.0617
5 0.0501 0.0457 0.0517 0.0313 0.0644
6 0.0536 0.0517 0.0546 0.0340 0.0628
7 0.0581 0.0576 0.0603 0.0330 0.0691
8 0.0406 0.0407 0.0431 0.0332 0.0538
9 0.0498 0.0496 0.0480 0.0305 0.0584
10 0.0454 0.0448 0.0462 0.0305 0.0638
11 0.0577 0.0584 0.0580 0.0299 0.0815
12 0.0426 0.0406 0.0436 0.0235 0.0464
13 0.0422 0.0418 0.0464 0.0243 0.0526
14 0.0480 0.0439 0.0494 0.0245 0.0503
15 0.0489 0.0481 0.0509 0.0260 0.0583
16 0.0558 0.0553 0.0571 0.0356 0.0634
17 0.0633 0.0678 0.0658 0.0368 0.0717
18 0.0590 0.0590 0.0608 0.0288 0.0655
19 0.0568 0.0609 0.0587 0.0291 0.0645
20 0.0546 0.0555 0.0566 0.0297 0.0648
21 0.0601 0.0664 0.0611 0.0301 0.0664
22 0.0428 0.0462 0.0453 0.0317 0.0672
23 0.0413 0.0447 0.0439 0.0313 0.0536
24 0.0549 0.0527 0.0582 0.0353 0.0711
25 0.0531 0.0523 0.0560 0.0354 0.0728
26 0.0692 0.0783 0.0713 0.0301 0.0627
27 0.0813 0.0890 0.0823 0.0303 0.0834
28 0.0445 0.0483 0.0420 0.0274 0.0623
29 0.0446 0.0465 0.0418 0.0272 0.0679
30 0.0601 0.0608 0.0582 0.0285 0.0644
31 0.0718 0.0756 0.0724 0.0305 0.0734
32 0.0663 0.0748 0.0657 0.0303 0.0754
33 0.0750 0.0914 0.0791 0.0305 0.0784
34 0.0439 0.0474 0.0423 0.0280 0.0649
35 0.0524 0.0533 0.0510 0.0278 0.0765
36 0.0524 0.0572 0.0494 0.0280 0.0686
37 0.0474 0.0494 0.0454 0.0284 0.0764
38 0.0452 0.0462 0.0431 0.0255 0.0593
39 0.0502 0.0519 0.0493 0.0283 0.0859

XVII

Index HOLDEN HOLDEN-XL HOLDEN-XT AVA AVA-M
40 0.0623 0.0706 0.0594 0.0275 0.0598
41 0.0536 0.0634 0.0491 0.0276 0.0674
42 0.0507 0.0538 0.0477 0.0294 0.0534
43 0.0546 0.0570 0.0526 0.0322 0.0716
44 0.0484 0.0507 0.0481 0.0324 0.0568
45 0.0492 0.0515 0.0459 0.0331 0.0664
46 0.0432 0.0454 0.0411 0.0292 0.0474
47 0.0455 0.0498 0.0436 0.0278 0.0403
48 0.0460 0.0490 0.0431 0.0299 0.0440
49 0.0460 0.0478 0.0433 0.0304 0.0527
50 0.0466 0.0448 0.0438 0.0303 0.0510
51 0.0427 0.0425 0.0414 0.0325 0.0663
52 0.0480 0.0513 0.0459 0.0293 0.0484
53 0.0462 0.0490 0.0437 0.0300 0.0509
54 0.0561 0.0627 0.0498 0.0289 0.0595
55 0.0459 0.0484 0.0457 0.0287 0.0651
56 0.0395 0.0435 0.0382 0.0273 0.0450
57 0.0394 0.0434 0.0385 0.0288 0.0509
58 0.0569 0.0590 0.0544 0.0313 0.0878
59 0.0586 0.0617 0.0587 0.0327 0.0712
60 0.0419 0.0445 0.0401 0.0282 0.0577
61 0.0456 0.0471 0.0445 0.0289 0.0627
62 0.0503 0.0554 0.0519 0.0301 0.0538
63 0.0456 0.0477 0.0442 0.0300 0.0545
64 0.0419 0.0457 0.0401 0.0316 0.0369
65 0.0410 0.0456 0.0396 0.0334 0.0441
66 0.0490 0.0532 0.0466 0.0305 0.0516
67 0.0484 0.0565 0.0478 0.0313 0.0676
68 0.0484 0.0540 0.0462 0.0280 0.0445
69 0.0438 0.0495 0.0435 0.0280 0.0508
70 0.1195 0.1350 0.1082 0.0385 0.0773
71 0.1124 0.1280 0.1086 0.0402 0.0799
72 0.1095 0.1166 0.1126 0.0484 0.1143
73 0.1012 0.1092 0.1011 0.0511 0.0913
74 0.0702 0.0720 0.0710 0.0307 0.0716
75 0.0690 0.0664 0.0709 0.0317 0.0720
76 0.0705 0.0759 0.0738 0.0322 0.0705
77 0.0699 0.0795 0.0719 0.0339 0.0730
78 0.1161 0.1270 0.1126 0.0308 0.0707
79 0.1002 0.1110 0.0990 0.0327 0.0745

Table A.5: Full accuracy results - Standard deviation errors
For definition of errorn, see Section 3.1.2.

XVIII

A.7 Training Mean-Squared Error

0 0.442 400 0.275 800 0.265 1200 0.260 1600 0.256
10 0.354 410 0.275 810 0.265 1210 0.259 1610 0.257
20 0.336 420 0.274 820 0.265 1220 0.260 1620 0.256
30 0.326 430 0.276 830 0.266 1230 0.259 1630 0.255
40 0.319 440 0.273 840 0.265 1240 0.260 1640 0.255
50 0.315 450 0.274 850 0.264 1250 0.259 1650 0.257
60 0.311 460 0.273 860 0.265 1260 0.260 1660 0.256
70 0.307 470 0.273 870 0.264 1270 0.260 1670 0.256
80 0.304 480 0.272 880 0.264 1280 0.259 1680 0.255
90 0.303 490 0.273 890 0.263 1290 0.259 1690 0.256
100 0.300 500 0.272 900 0.265 1300 0.259 1700 0.256
110 0.298 510 0.271 910 0.264 1310 0.259 1710 0.256
120 0.295 520 0.271 920 0.263 1320 0.259 1720 0.255
130 0.295 530 0.271 930 0.264 1330 0.259 1730 0.256
140 0.292 540 0.271 940 0.263 1340 0.258 1740 0.254
150 0.292 550 0.271 950 0.263 1350 0.259 1750 0.255
160 0.291 560 0.270 960 0.262 1360 0.258 1760 0.256
170 0.290 570 0.270 970 0.263 1370 0.259 1770 0.255
180 0.288 580 0.271 980 0.263 1380 0.258 1780 0.255
190 0.287 590 0.270 990 0.263 1390 0.258 1790 0.254
200 0.286 600 0.269 1000 0.262 1400 0.257 1800 0.255
210 0.286 610 0.269 1010 0.263 1410 0.257 1810 0.255
220 0.285 620 0.269 1020 0.262 1420 0.258 1820 0.255
230 0.284 630 0.270 1030 0.262 1430 0.258 1830 0.255
240 0.284 640 0.269 1040 0.262 1440 0.257 1840 0.254
250 0.283 650 0.268 1050 0.262 1450 0.258 1850 0.253
260 0.282 660 0.269 1060 0.261 1460 0.257 1860 0.255
270 0.282 670 0.268 1070 0.262 1470 0.257 1870 0.255
280 0.281 680 0.267 1080 0.261 1480 0.257 1880 0.254
290 0.282 690 0.268 1090 0.261 1490 0.258 1890 0.254
300 0.280 700 0.267 1100 0.260 1500 0.258 1900 0.253
310 0.279 710 0.268 1110 0.261 1510 0.257 1910 0.254
320 0.279 720 0.267 1120 0.261 1520 0.257 1920 0.254
330 0.279 730 0.266 1130 0.260 1530 0.257 1930 0.254
340 0.278 740 0.267 1140 0.262 1540 0.257 1940 0.253
350 0.278 750 0.267 1150 0.261 1550 0.256 1950 0.254
360 0.277 760 0.266 1160 0.261 1560 0.257 1960 0.254
370 0.276 770 0.266 1170 0.261 1570 0.256 1970 0.253
380 0.278 780 0.266 1180 0.260 1580 0.256 1980 0.253
390 0.275 790 0.265 1190 0.260 1590 0.257 1990 0.254

Table A.6: The mean-squared errors of the entire output vector - HOLDEN

XIX

Ep. MSE Ep. MSE Ep. MSE Ep. MSE Ep. MSE
0 0.474 400 0.273 800 0.261 1200 0.255 1600 0.251
10 0.371 410 0.272 810 0.262 1210 0.255 1610 0.250
20 0.350 420 0.272 820 0.261 1220 0.255 1620 0.251
30 0.336 430 0.271 830 0.260 1230 0.254 1630 0.251
40 0.326 440 0.271 840 0.261 1240 0.255 1640 0.251
50 0.319 450 0.271 850 0.261 1250 0.255 1650 0.250
60 0.314 460 0.271 860 0.260 1260 0.254 1660 0.250
70 0.309 470 0.270 870 0.259 1270 0.254 1670 0.250
80 0.306 480 0.270 880 0.260 1280 0.255 1680 0.251
90 0.304 490 0.269 890 0.260 1290 0.254 1690 0.251
100 0.301 500 0.269 900 0.259 1300 0.254 1700 0.251
110 0.299 510 0.268 910 0.259 1310 0.253 1710 0.250
120 0.297 520 0.268 920 0.259 1320 0.254 1720 0.250
130 0.295 530 0.268 930 0.259 1330 0.253 1730 0.250
140 0.293 540 0.268 940 0.258 1340 0.254 1740 0.250
150 0.292 550 0.268 950 0.258 1350 0.253 1750 0.251
160 0.290 560 0.267 960 0.259 1360 0.253 1760 0.249
170 0.289 570 0.267 970 0.259 1370 0.253 1770 0.250
180 0.288 580 0.266 980 0.258 1380 0.253 1780 0.249
190 0.287 590 0.266 990 0.259 1390 0.254 1790 0.250
200 0.285 600 0.265 1000 0.258 1400 0.253 1800 0.249
210 0.285 610 0.266 1010 0.257 1410 0.253 1810 0.249
220 0.283 620 0.266 1020 0.258 1420 0.254 1820 0.249
230 0.282 630 0.266 1030 0.257 1430 0.252 1830 0.250
240 0.283 640 0.265 1040 0.259 1440 0.252 1840 0.249
250 0.281 650 0.265 1050 0.257 1450 0.252 1850 0.249
260 0.280 660 0.264 1060 0.257 1460 0.253 1860 0.249
270 0.280 670 0.264 1070 0.257 1470 0.252 1870 0.250
280 0.280 680 0.264 1080 0.257 1480 0.252 1880 0.250
290 0.280 690 0.264 1090 0.256 1490 0.252 1890 0.249
300 0.278 700 0.264 1100 0.256 1500 0.253 1900 0.249
310 0.277 710 0.263 1110 0.256 1510 0.252 1910 0.249
320 0.277 720 0.263 1120 0.257 1520 0.253 1920 0.248
330 0.276 730 0.264 1130 0.256 1530 0.251 1930 0.248
340 0.276 740 0.263 1140 0.257 1540 0.251 1940 0.249
350 0.275 750 0.262 1150 0.256 1550 0.252 1950 0.249
360 0.275 760 0.262 1160 0.255 1560 0.251 1960 0.248
370 0.274 770 0.261 1170 0.256 1570 0.251 1970 0.248
380 0.274 780 0.261 1180 0.255 1580 0.252 1980 0.248
390 0.273 790 0.261 1190 0.255 1590 0.251 1990 0.248

Table A.7: The mean-squared errors of the entire output vector - HOLDEN-XL

XX

Ep. MSE Ep. MSE Ep. MSE Ep. MSE Ep. MSE
2000 0.253 2400 0.251 2800 0.250 3200 0.247 3600 0.247
2010 0.252 2410 0.251 2810 0.249 3210 0.248 3610 0.247
2020 0.253 2420 0.250 2820 0.249 3220 0.248 3620 0.246
2030 0.253 2430 0.252 2830 0.249 3230 0.248 3630 0.246
2040 0.252 2440 0.251 2840 0.250 3240 0.249 3640 0.246
2050 0.253 2450 0.250 2850 0.248 3250 0.247 3650 0.247
2060 0.253 2460 0.251 2860 0.249 3260 0.248 3660 0.247
2070 0.253 2470 0.251 2870 0.249 3270 0.247 3670 0.245
2080 0.253 2480 0.251 2880 0.250 3280 0.247 3680 0.246
2090 0.254 2490 0.251 2890 0.249 3290 0.248 3690 0.247
2100 0.252 2500 0.252 2900 0.249 3300 0.248 3700 0.246
2110 0.253 2510 0.251 2910 0.249 3310 0.248 3710 0.246
2120 0.253 2520 0.251 2920 0.249 3320 0.248 3720 0.246
2130 0.252 2530 0.251 2930 0.249 3330 0.248 3730 0.246
2140 0.252 2540 0.250 2940 0.248 3340 0.248 3740 0.246
2150 0.253 2550 0.250 2950 0.249 3350 0.247 3750 0.247
2160 0.253 2560 0.250 2960 0.249 3360 0.247 3760 0.246
2170 0.253 2570 0.249 2970 0.248 3370 0.247 3770 0.247
2180 0.252 2580 0.251 2980 0.248 3380 0.247 3780 0.247
2190 0.252 2590 0.249 2990 0.249 3390 0.247 3790 0.246
2200 0.252 2600 0.250 3000 0.248 3400 0.247 3800 0.246
2210 0.252 2610 0.250 3010 0.248 3410 0.248 3810 0.246
2220 0.253 2620 0.251 3020 0.248 3420 0.247 3820 0.245
2230 0.252 2630 0.250 3030 0.249 3430 0.246 3830 0.246
2240 0.252 2640 0.250 3040 0.250 3440 0.246 3840 0.245
2250 0.253 2650 0.250 3050 0.248 3450 0.247 3850 0.246
2260 0.251 2660 0.250 3060 0.248 3460 0.247 3860 0.246
2270 0.251 2670 0.249 3070 0.249 3470 0.247 3870 0.245
2280 0.252 2680 0.250 3080 0.248 3480 0.247 3880 0.246
2290 0.252 2690 0.250 3090 0.248 3490 0.247 3890 0.246
2300 0.252 2700 0.250 3100 0.248 3500 0.247 3900 0.246
2310 0.251 2710 0.249 3110 0.248 3510 0.246 3910 0.246
2320 0.251 2720 0.250 3120 0.248 3520 0.247 3920 0.247
2330 0.252 2730 0.250 3130 0.248 3530 0.247 3930 0.245
2340 0.252 2740 0.249 3140 0.248 3540 0.246 3940 0.246
2350 0.252 2750 0.250 3150 0.247 3550 0.247 3950 0.245
2360 0.251 2760 0.249 3160 0.247 3560 0.247 3960 0.245
2370 0.252 2770 0.250 3170 0.248 3570 0.246 3970 0.245
2380 0.251 2780 0.249 3180 0.248 3580 0.247 3980 0.245
2390 0.251 2790 0.249 3190 0.248 3590 0.246 3990 0.245

Table A.8: The mean-squared errors of the entire output vector - HOLDEN-XT

XXI

Ep. MSE Ep. MSE Ep. MSE Ep. MSE Ep. MSE
0 0.782 400 0.542 800 0.464 1200 0.455 1600 0.463
10 0.711 410 0.572 810 0.562 1210 0.532 1610 0.460
20 0.633 420 0.506 820 0.499 1220 0.492 1620 0.511
30 0.670 430 0.520 830 0.480 1230 0.483 1630 0.451
40 0.616 440 0.501 840 0.484 1240 0.468 1640 0.463
50 0.575 450 0.495 850 0.517 1250 0.520 1650 0.520
60 0.603 460 0.502 860 0.530 1260 0.528 1660 0.464
70 0.578 470 0.529 870 0.493 1270 0.545 1670 0.462
80 0.599 480 0.583 880 0.478 1280 0.453 1680 0.460
90 0.555 490 0.479 890 0.454 1290 0.454 1690 0.580
100 0.539 500 0.484 900 0.528 1300 0.469 1700 0.464
110 0.619 510 0.593 910 0.498 1310 0.468 1710 0.491
120 0.548 520 0.496 920 0.464 1320 0.561 1720 0.519
130 0.618 530 0.494 930 0.512 1330 0.482 1730 0.444
140 0.561 540 0.479 940 0.476 1340 0.468 1740 0.444
150 0.558 550 0.479 950 0.491 1350 0.496 1750 0.477
160 0.556 560 0.507 960 0.474 1360 0.448 1760 0.461
170 0.552 570 0.545 970 0.494 1370 0.481 1770 0.446
180 0.586 580 0.493 980 0.477 1380 0.481 1780 0.475
190 0.548 590 0.509 990 0.510 1390 0.467 1790 0.473
200 0.527 600 0.540 1000 0.509 1400 0.517 1800 0.538
210 0.507 610 0.492 1010 0.494 1410 0.514 1810 0.456
220 0.524 620 0.491 1020 0.488 1420 0.520 1820 0.472
230 0.522 630 0.519 1030 0.456 1430 0.450 1830 0.457
240 0.520 640 0.555 1040 0.456 1440 0.494 1840 0.506
250 0.575 650 0.472 1050 0.488 1450 0.510 1850 0.447
260 0.625 660 0.505 1060 0.511 1460 0.465 1860 0.489
270 0.517 670 0.534 1070 0.458 1470 0.451 1870 0.496
280 0.518 680 0.470 1080 0.525 1480 0.465 1880 0.506
290 0.517 690 0.488 1090 0.490 1490 0.448 1890 0.489
300 0.547 700 0.472 1100 0.475 1500 0.465 1900 0.443
310 0.532 710 0.469 1110 0.488 1510 0.541 1910 0.473
320 0.559 720 0.534 1120 0.475 1520 0.491 1920 0.442
330 0.509 730 0.468 1130 0.489 1530 0.567 1930 0.472
340 0.510 740 0.486 1140 0.474 1540 0.451 1940 0.475
350 0.509 750 0.469 1150 0.534 1550 0.506 1950 0.470
360 0.539 760 0.534 1160 0.453 1560 0.509 1960 0.444
370 0.510 770 0.481 1170 0.469 1570 0.464 1970 0.472
380 0.526 780 0.519 1180 0.493 1580 0.447 1980 0.472
390 0.521 790 0.500 1190 0.468 1590 0.448 1990 0.461

Table A.9: The mean-squared errors of the entire output vector - AVA

XXII

	Introduction
	Background
	Research Problem
	Research Question
	Scope

	Theory
	Artificial Neural Networks
	Network Layers
	The Mculloch-Pits Neuron
	Supervised Learning of a Neural Network
	Underfitting and Overfitting
	Gradient Descent
	Adam Optimizer

	Related Work
	Phase-Functioned Neural Networks for Character Control (2017)
	Mode-Adaptive Neural Networks for Quadruped Motion Control (2018)
	Neural State Machine for Character-Scene Interactions (2019)
	Local Motion Phases for Learning Multi-Contact Character Movements (2020)
	Learned Motion Matching (2020)

	File Types & Software Libraries
	The .bvh filetype
	Theano
	Eigen

	Methodology
	To Answer the Research Questions
	Researching Responsivity
	Researching Accuracy
	Researching Architecture
	Simple Difference Significance Evaluation

	The Phase-Functioned Neural Network
	Network Structure
	The Input Vector
	The Output Vector
	The Phase Function

	The Full PFNN Pipeline
	Generate Patches
	Generate Database
	Network Training
	Neural Network

	Process
	The Runtime Package
	Using the Runtime Package
	ProceduralAnimations
	PFNN
	Character
	Trajectory
	Settings
	HelperFunctions
	ErrorCalculator
	Waypoint

	Result
	Responsivity Results
	Responsivity Visualizations
	Accuracy Results
	Accuracy Visualizations
	Training Process
	Pipeline Overview
	Skinning Visualization

	Discussion
	Discussing the Research Questions
	Discussing Responsivity
	Discussing Accuracy
	Discussing Architecture

	Ethical Considerations
	Takeaways
	Integration Contextualization
	Integration Placement
	Implementation Expertise
	Equipment Suitability
	Neural Network Rigidity

	Future Work
	Runtime skeleton retargeting
	Consistent world-axis orientations
	Full pipeline integration

	Conclusions
	Summary
	Final Words

	Bibliography
	List of Figures
	List of Tables
	Apendix
	.bvh Interpolator
	Filenames
	AVA skeleton joint names
	Responsivity Data
	Accuracy Data - Means
	Accuracy Data - Standard Deviations
	Training Mean-Squared Error

