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Abstract

Lane change maneuvers are commonly performed by drivers in highway driving situations. It starts with
the driver planning and making the decision whether a lane change maneuver is necessary according to the
situation. Once the driver decides to do the maneuver, he/she starts to prepare themselves. Next, he/she
changes their lateral position until the vehicle crosses the line between lanes. Finally after crossing the lane
marking, the driver adapts to his/her new positions by stabilizing the vehicle. When lane change maneuvers
are done incorrectly, accidents may happened which can be fatal to those involved in the crash.

Advanced Driver Assistance Systems (ADAS) include several functions that rely on lane change detection
e.g., lane departure warning (LDW) system and lane change assistance system. These functions can be used
to help driver perform a safer lane change maneuver. Having a system which can accurately retrieve and
recognize the driving characteristics of a lane change maneuver will be beneficial for the development of ADAS.
Identifying lane changes in driving data can be done manually by annotations, but it costs a substantial amount
of time and money in case of large driving databases. A cheaper solution would be to use machine learning
algorithms as they excel in this type of problem. Several machine learning algorithms, specifically artificial
neural networks, have been used in many different research applications, including lane change predictions.

This thesis work included several steps. Firstly, driving data was retrieved from UDRIVE, which contains
naturalistic driving data collected from various European countries. The data was processed into segments
containing lane changes and baseline driving. It served as an input for training and testing using a sliding
time window approach. Three neural networks were constructed to identify lane changes. One served as the
baseline model, and the other two were variations of the baseline model called modified Long Short Term
Memory (LSTM) and stacked LSTM, respectively. Training and testing were conducted to these networks
using the same configuration and dataset. During the training process, some of the parameters were adjusted
according to their performance and some could not be adjusted. Parameters that cannot be adjusted are
called hyperparameters and they usually relate to the structure of a neural network model. Both the modified
LSTM and stacked LSTM were subjected to parameter tuning, which is a process of changing various trainable
parameter in order to make the model perform optimally. After parameter tuning was done, the best model
was further evaluated by using cross validation.

Results have shown that the stacked LSTM model has the best performance among the three models.
It managed to reach F1 score of 0.7178 and able to identify 95% of the lane change data. However, the
stacked LSTM model has performance problems in terms of training time in identifying the transition phases
of lane change maneuver. Several factors which contributes to this performances issue are identified, such as
the imbalanced training data, the variables selection, the structure of the network, the number of trainable
parameters, the hyperparameter settings, and how the raw input data is processed. If these issues are resolved,
it is expected that the stacked LSTM would have a higher performance in the range of 0.85 in F1 score.
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1 Introduction

Highways have become an integral part of our transportation system. They accommodate high-speed vehicular
traffic by having separate roads for each direction with multiple lanes for each road, limited access as they
can only be entered or exited at a certain locations, and offers few to no obstacles during a driving session.
In most European countries, there is a high speed limit on highways, varying from 90 km/h to 140 km/h
(European Road Safety Observatory, 2018). These factors make highways very attractive not only for long
distance driving, but also for short distance driving as it allows driver to bypass city roads in order to get to
the destination quicker.

According to the European Road Safety Observatory (European Road Safety Observatory, 2018), European
countries have invested heavily in the construction of highways. In 1990, the total length of highways in EU-28
was estimated to be 42.207 kilometres. This was increased by 72.5% to approximately 75.820 kilometres by
2015. Because of these extensions, people were able to travel to a different cities easier than before, so they
had more incentive to use highways. In Germany, the mileage of cars on highways has risen from 203 billion
kilometres in 2000 to 244 billion kilometres in 2016 (Ahlswede, 2018) while in the Great Britain, 68.7 billion
miles out of 327.1 billion miles were driven on highways in 2017 (Department for Transport, 2018). Moreover,
data from 2017 suggested a 10% increase in highway traffic over the last decade (Department for Transport,
2018).

In highway driving, several maneuvers can be observed. These include following the lane, changing lanes to
overtake vehicles, following a vehicle, and stopping at the shoulder due to an emergency. Based on the study
by Li et al. (2015), three maneuvers were identified as the most common maneuver performed by the drivers:
free driving (i.e., keeping a single lane without interference from other vehicles), following a lead vehicle, and
performing a lane change maneuver.

A lane change maneuver in the highway driving context refers to the deliberate movement of a vehicle
towards another lane. According to Chovan, Tijerina, Alexander, and Hendricks (1994), a lane change is a
deliberate and substantial change in lateral position of a vehicle, while Beggiato and Krems (2013) defined that
a lane change moment is when the center of vehicle crossed the line between two lanes. In Fitch et al. (2009),
it is stated similarly that a lane change is a driving maneuver that moves a vehicle to another lane where
both lanes have the same travel direction. In Griesbach (2019), it is mentioned that a lane change maneuver
can be divided into four phases: planning, preparation, crossover, and adjustment. Firstly, the driver plans
and decides to perform a lane change maneuver according to the situation. Secondly, if the driver decides to
execute the maneuver, s/he may accelerate or decelerate relative to the vehicles in the target lane. Thirdly, the
driver accelerates their lateral velocity substantially until the vehicle cross the line between two lanes. After
the crossing, the driver decelerates their lateral velocity to straighten the car. Finally, the driver adapts to
his/her new position by accelerating or decelerating the vehicle relative to the lead vehicle until a safe distance
is reached.

Figure 1.0.1: A simple illustration of a lane change maneuver. The arrow indicates the driving direction, the
smaller box represents maneuvering car, and the longer box represents a leading vehicle.

Lane change maneuvers can be dangerous if it done improperly. Several law firms rated unsafe lane change
as one of the top causes of road accidents Pines Salomon (2018), Adley Law Firm (2019), Lever & Ecker (2018),
Ward Law Firm (2018). In Sen, Smith, Najm, et al. (2003), it is noted that in 1999, approximately 6.3 million
crashes were recorded with 9% of them involving various scenarios of lane change maneuvers in the United
States of America. 38.4% of these lane change crashes were categorized as a ”typical lane change” scenario
where one vehicle changing lane intentionally and colliding with another vehicle in the adjacent lane.

In European countries, Volvo Accident Research Team (2011) recorded 1.7 million traffic accidents on
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average between 2005 and 2008. Approximately 55− 65% of them were crashes involving trucks causing car
occupants injuries, and around 5% of these crashes were caused by a lane change maneuver in highways.

Advanced Driving Assistance Systems (ADAS) are systems that can be used to increase safety while driving
a vehicle. Accurately identifying lane change maneuvers can be beneficial for the development of ADAS
especially in several functions that rely on lane change detection e.g., lane centering, lane departure warning
(LDW) system, and lane change assistance system. Drivers could be warned when they are about to change
lanes in a way that is dangerous or violates traffic safety laws, thus reducing the possibility of crashing into
another vehicle. In order to make an accurate identification possible, driving characteristics of a lane change
maneuver must be retrieved and recognized by a potential system. Having an algorithm which can automatically
recognize these characteristics can make the development process faster and more reliable.

Lane change maneuver data can also be retrieved and recognized manually by humans. This might seem
easier to do as humans can be trained to recognize them in a short time. However, this approach has two
problems. Firstly, it is not possible to do recognition in real time as humans can only examine what has
happened in the past. Secondly, due to the sheer amount of driving data, it can be expensive in terms of time
and money.

Machine learning algorithms are known for their ability to find the underlying pattern in a large amount of
data and being used to make predictions based on what it has learned from the data. The accuracy of their
prediction is determined by the quality of the training data. The higher data quality being put into a machine
learning model, the better its prediction will be. Machine learning algorithms have been used extensively in
several fields which provide a huge amount of data, such as image recognition (Simonyan & Zisserman, 2014),
machine translation (Wu et al., 2016), traffic prediction (Lv, Duan, Kang, Li, & Wang, 2014), search engine
suggestion (Ozertem, Chapelle, Donmez, & Velipasaoglu, 2012), and many more. Thus, applying machine
learning algorithms seems reasonable also for a lane change identification.

Much research has been conducted on modelling driver’s behavior using machine learning algorithms. In
Tomar, Verma, and Tomar (2010) and Ding, Wang, Wang, and Baumann (2013), neural networks are used,
which is a type of machine learning algorithm, to predict the lane change trajectory. In Olabiyi, Martinson,
Chintalapudi, and Guo (2017) and Jain et al. (2016), a complex neural network model is utilized to anticipate
driver actions. In Cui, Ke, and Wang (2018) a neural network is applied for traffic speed prediction. In
Leonhardt and Wanielik (2018), two neural network models are used that run in parallel to predict lane changes
to the left and to the right, respectively. In Griesbach (2019), two algorithms are implemented: a neural
network and an echo state network. Both were used to predict lane changes in urban areas. These approaches
focused on the prediction task where a model is trained to predict the maneuver based on the current data.

In Mandalia and Salvucci (2005), a different machine learning algorithm is applied, called Support Vector
Machine (SVM), to detect lane change maneuvers. This is different from the previously mentioned approaches
as the model identified lane change maneuvers by classifying the given data as ”Lane Change” or ”Lane
Keep”. For this task, they used several variables, such as acceleration, steering angle, lateral acceleration, and
various lane position variables. Since lane change maneuvers do not have a fixed time length, they opted to
use fixed-length time windows. These windows moved across the data stream and captured variable values
that were inside them. Both overlapping and non-overlapping time windows were tested. They achieved the
best result, 97.9% accuracy, with an overlapping window of 1.2 seconds. However to achieve this result, they
exclusively used lane positions as their dataset. Consequently, the result was relying only on lane positions and
thus, the relevance of the other variables for lane change maneuvers was undiscovered.

In Dang, Fürnkranz, Biedermann, and Hoepfl (2017), a neural network model is proposed to identify lane
change maneuvers. They used this model to approach the problem in two ways: as a regression problem i.e.,
predicting the maneuver, and as a classification problem. The two approaches only differ in the produced
output of the model. The classification model produced the probability of the data being labeled as ”Lane
Change” or ”Lane Keep” while the regression model produced a ”time-to-lane-change” value which is the time
left until the driver performs a lane change maneuver. In order to make the results comparable, they converted
their regression result into a classification label by looking whether the driver is actually performing a lane
change maneuver after the predicted time has passed. Compared to Mandalia and Salvucci (2005), in Dang
et al. (2017) more variables were used. They categorized the variables into three groups: driver monitoring (e.g.
head and gaze direction), vehicle information (e.g. velocity, acceleration, steering wheel angle, and steering
wheel moment), and environment information (e.g. lead car distance, relative distance to the middle of the lane,
and relative angle between the lane and the vehicle’s longitudinal axis). They also encapsulated these variables
into time windows which is similar to what Mandalia and Salvucci (2005) did. They reported similar results
from both approaches: the classification approach reached 86% accuracy while regression approach reached
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87% accuracy. Both have the best result when they used 2.5 seconds as the length of time window. However,
they are still worse than the SVM model by Mandalia and Salvucci (2005). This is expected since a lot more
information was processed than the SVM model. More information generally means better performance, but it
is also more likely to make mistake as the model has to consider every information in order to make a decision.
Furthermore, the proposed model architecture was quite simple and may contribute to the weaker performance.

Based on these works, lane change identification can be approached as a regression problem and as a
classification problem. Although they only differ in the output produced, it was decided to approach this as a
classification problem because the goal is to correctly identify lane change maneuver, not to predict whether
lane change maneuver will be performed in the future or not. The neural network model proposed by Dang et al.
(2017) is chosen as the baseline model because they used their model to classify lane change maneuvers with a
good result. Two neural network models are adapted from a baseline model. All the models are trained using a
naturalistic driving database consisted of data from different European countries. A selection of variables were
chosen based on what Dang et al. (2017) and (Mandalia & Salvucci, 2005) used and what is currently available.
The overlapping time window method is used to encapsulate the variables and each window is given a label.

The rest of this report is structured as follows. In Chapter 2, I briefly review the theory of machine learning
and artificial neural networks related to the proposed neural network. In Chapter 3, I explain the tools that
were used for this project, methods of data extraction and analysis, and introduce three neural network models,
two of which are modified from the baseline model. The performance of these three models is presented in
Chapter 4. The evaluation, discussion, and conclusion of the approach and the models performances are detailed
in Chapter 5. Finally, details about the future work are outlined in Chapter 6.

1.1 Scope

Since deep machine learning methods, particularly neural networks, are used in this thesis, several limitations
were identified:

• It is particularly known that training time of a neural network model depends on several factors: the
complexity of the model, the size of the dataset, and the availability of computational resources. More
complex models often means longer training time. Thus, only a limited amount of neural networks is
constructed in this project.

• UDRIVE consists of driving data from cars and trucks in various situations and environments across
European countries. Even with only highway driving data, it is computationally costly to use the entire
UDRIVE database. Thus, a smaller dataset consisting of randomly chosen parts of the UDRIVE database
with highway driving data from cars is used to be the training and test dataset.

2 Theory

2.1 Time-series Data

Time-series data is a set of observations taken at a specific time t (Brockwell, Davis, & Calder, 2002). It has
three characteristics (Kulkarni, 2017):

1. The newly arrived data is regarded as a new entry

2. Typically the data is ordered by time, and new data arrives in time order

3. Time is the primary axis

2.2 Machine Learning

The term ”machine learning” was first introduced by Samuel (1959) when he created an algorithm which can
learn to play a game of checkers when given only the rules of the game, a sense of direction, and a list of
parameters which he thought have something to do with the game. He argued that providing a minute and
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exact detail of a solution is a time consuming and costly approach, and this detailed programming effort might
be eliminated by programming computers to learn from experience.

Russel and Norvig (2010, p. 693) supported this argument by providing three reasons. Firstly, the designers
cannot anticipate all possible situations, or states, a program might end up in. For example, if someone designs
a program to play chess, they have to consider every possible board state during each turn and put the states
into the program. As the amount of possibilities is so enormous, it is not humanly possible for the designer to
consider everything. Moreover if they can somehow put every state into the program, the computational cost is
too high. This will result in a program that needs countless hours to calculate its next move. Secondly, the
designers cannot anticipate changes over time, e.g., a stock-prediction program must adapt when stock market
suddenly changes due to an unseen factor. Lastly, the human programmer might not know how to program the
solution himself or herself, e.g. we can instantly read hand-written digits because our brains are trained to
recognize and know their meaning since we were young. However, we may be unable to build a program that
acts like a brain which can learn hand-written digits unless a learning algorithm is used.

According to Russel and Norvig (2010, p. 695), learning can be differentiated by the types of feedback
received from the learning process. These are: supervised learning, unsupervised learning, and reinforcement
learning.

In unsupervised learning, the algorithm receives no feedback. Instead, it will learn patterns in the given
input data. The most common task in unsupervised learning is clustering, which is a task of grouping data into
several clusters in a way that data within the same group are similar. For example, grouping types of stars
based on their characteristics. Since there is no predefined categories of stars based on their attributes, the
labels are not predetermined and therefore cannot be served as feedback. Thus, the astronomers have to do
clustering.

In reinforcement learning, the algorithm will receive some feedback in the form of reward or punishment,
and the instruction usually is to maximize the reward, or minimize the punishment. For example, suppose a
robot is put inside a maze. The robot will be penalized for every move it makes, and it is given the goal to
get out of the maze as quick as possible. At first, the robot will make a series of random movement. If then
robot manages to get out of the maze, a reward is calculated and given to the robot. Afterwards, the robot
will be put back into the same starting point as before. Based on the previous experience, the robot will try
to improve its movement in order to improve its reward at the end. After it gets out from the maze again, a
reward is calculated and the robot will be put back into the same position just like before. This process is
repeated multiple times until the optimum path is found and the maximum reward is achieved.

In supervised learning, the algorithm will be given some examples of input-output pairs. Based on these
examples, it will learn a function which maps from input to output. The feedback from this type of learning is
an error measure of how far the output of the algorithm is from the ground truth value. The closer the output
is to the ground truth value, the smaller will be the error. The algorithm will adjust its parameters based on
this error. For example, a model is created to identify images of cat and dog. Several images of cat or dog
(but not both) are given to the model for training. At first, the model will make a random guess, i.e., a cat
image will be labeled as a dog image. As training goes on, the model learns the feature of cats and dogs and
able to make a better guess. Once training is finished, a final test is conducted to judge the performance of
the model. By this point, the model should be able to guess correctly when it is given an image of cat or dog.
The difference between supervised learning and reinforcement learning is in the reinforcement learning, every
decision can impact the future decision whereas in supervised learning, every prediction is made independently
i.e, they do not influence the future prediction. Supervised learning methods have been used to solve many
different, such as weather forecasting (Abrahamsen, Brastein, & Lie, 2018), image recognition (Simonyan &
Zisserman, 2014), and stock market prediction (Guresen, Kayakutlu, & Daim, 2011). These examples are done
using artificial neural network which is one of the most widely used learning algorithm in supervised learning.

2.3 Artificial Neural Network

Artificial Neural Network (ANN) is a computational model which takes inspiration from the biological neural
networks that constitutes brain of humans and animals (Wahde, 2008, p. 151).

There are 3 main components of a physical (e.g., human) neuron cell: Dendrite, Axon, and Synaptic
terminals. First, input signals will be received by Dendrites and their dendritic branches. These signals will be
transmitted through the axon. When the signals reached Synaptic terminals, it will be propagated to another
neuron cell connected to these terminals, starting the same process for the other neuron. A simple neuron is
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Figure 2.3.1: A simple illustration of a neuron cell

illustrated in Figure 2.3.1

Figure 2.3.2: An illustration of a McCulloch-Pitts Neuron.

McCulloch and Pitts (1943) introduced a computational model based on this process, called McCulloch-
Pitts (MCP) Neuron. In a MCP Neuron, a weighted sum of their inputs are calculated first. This can be
mathematically expressed as:

o =

n∑
i=1

wixi (2.1)

where wi are the connection weights, xi are the input signals or the transmitted signals from another neuron,
and o is the weighted sum.

Next, output signal y will be only propagated to the next neuron if the weighted sum exceeds a certain
threshold θ. This can be mathematically expressed as below.

y =

{
1, if o ≥ θ
0 otherwise

(2.2)

Threshold θ is one example of an activation function which responsible for activating a neuron.
MCP neuron model has two limitations. Firstly, it can only support boolean inputs, which means xi can

only support 0 and 1 as the value. Secondly, the weights are constant and only have two possible values: 1 and
−1. Rojas (2013) noted that a MCP neuron is similar to conventional logic gates.

Fifteen years later, Rosenblatt (1958) proposed a more general version of a MCP Neuron known as
Perceptron. It shares a similarity with the MCP Neuron, i.e., a Perceptron uses a threshold function similar
to Equation 2.2 as the activation function. However, several changes were made.

Firstly, a constant bias is introduced. This bias serves as an offset to shift the input away from the origin
(Hill, 2017). It is also giving neurons a chance to activate even in the absence of any input (Wahde, 2008).

5



Secondly, it now supports non-boolean inputs with weights associated to the inputs. These weights are now
variable weights instead of constant weights like a MCP Neuron. Thus, Equation 2.1 is adjusted as follows:

o =

n∑
i=1

wixi + b (2.3)

where b is the bias term.
Secondly, a Perceptron uses Hebbian Learning which was first introduced by Hebb (1949). It was an

attempt to understand the mechanism behind machine learning. He postulates that: ”When an axon of cell A
is near enough to excite a cell B and repeatedly or persistently takes part in firing it, some growth process
or metabolic change takes place in one or both cells such that A’s efficiency, as one of the cells firing B, is
increased.” This means the connection between two neuron cells will be strengthened if they fired simultaneously.
In mathematical terms, the change of the connection strength denoted by wij over time can be described as

dwij
dt

= ηxixj (2.4)

where η is a constant that denotes the learning rate, and xi and xj denote the output of neuron i and j,
respectively. A model of a Perceptron can be seen in Figure 2.3.3.

Figure 2.3.3: A neuron in a perceptron model.

This perceptron can be chained together to form an Artificial Neural Network. Typically, an ANN is
arranged in the form of layers. There are at least three layers in an artificial neural network: the Input layer
which is the input data itself, the Output layer which represents the desired output of one or several values,
and the Hidden layer which is located between Input layer and Output layer. There can be multiple hidden
layers in an ANN.

Parameters in an ANN can be separated into two types. The trainable parameters are parameters
which can be adjusted as the ANN performs training, i.e., the connection weights between neurons and layers.
The hyperparameters are parameters which cannot be adjusted during training process. These include the
number of layers, the number of neurons in each layer, the learning rate value, number of epochs, dropout
probability, and so on. Tuning the hyperparameters refers to the process of choosing their values so that the
ANN achieved the optimal performance.

Based on how connections are made between neurons, there are two types of ANNs: Feed-Forward Neural
Network and Recurrent Neural Network.

2.3.1 Feed-Forward Neural Network

A Feed-Forward Neural Network (FFNN) is a neural network which has connections only in one direction
(Russel & Norvig, 2010). Thus, it forms a directed and acyclic graph as shown in Figure 2.3.4. Every neuron in
a layer receives data from the previous layer, or directly from the input data. Then, a weighted sum of the
inputs are calculated based on Equation 2.3. Next, an activation function will generate an output based on the
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Figure 2.3.4: An example of Feed-forward Neural Network with three inputs, two hidden layers, and two outputs.

value of the sum, and finally the output value will be propagated forward to the next layer. There are no loops
involved in this structure.

2.3.2 Recurrent Neural Network

A Recurrent Neural Network (RNN) is a type of neural network that delivers the output not only to the next
layer, but also feeds it back to itself creating cycles. This may lead to a more chaotic behavior than FFNN
since the respond of the current input depends on its initial state which may depends on the previous input.
Hence, RNN can support short-term memory (Russel & Norvig, 2010).

Figure 2.3.5: An unfolded RNN figure

As seen from the figure above, the RNN can use its internal state to process sequences of inputs and generate
several outputs for every step. This means both the input and output can be variable in length.

Due to this property, their mathematical representation is adjusted:

ht = σ (Uxt + V ht−1 + bh)

ot = σ (Wht + by)
(2.5)

where ht is the state of the hidden unit at time t, U is the connection weight between input x and hidden unit
h, V is the weight between sequences, W is the weight between hidden unit and the output, ot is the output of
the RNN at time t, and σ denotes the logistic activation function.

Due to these characteristics, a RNN is suitable for a problem with a sequence of data as an input, e.g., a
machine translation problem. However, Bengio, Simard, Frasconi, et al. (1994) discovered that it is difficult
for RNN to learn long-term dependencies using traditional gradient descent for training because the gradient
tend to vanish (approaching zero) or explode (approaching infinity). As a result, a RNN struggles to reach
convergence in the training step because of the variations in the gradient and thus, a RNN will only capture
the short-term dependencies instead.

To circumvent this problem, two approaches have been proposed. One of them is to use a better learning
algorithm than stochastic gradient descent, e.g., gradient clipping approach by Pascanu, Mikolov, and Bengio
(2013), using Hessian-free optimization approach by Martens and Sutskever (2011). Beggiato and Krems (2013)
summarizes these methods as an alternative to a simple gradient descent for training a RNN.
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The other approach is to augment the neuron itself and using a more sophisticated structure. The earliest
example of this is a Long Short-Term Memory (LSTM) unit, proposed by Hochreiter and Schmidhuber (1997).

2.3.3 Long Short-Term Memory

Long Short-Term Memory (LSTM) was first introduced by Hochreiter and Schmidhuber (1997) as an answer to
vanishing gradient problem. Figure 2.3.6 illustrates an LSTM cell along with the processes involved in the cell.

Figure 2.3.6: An LSTM cell

A LSTM cell consists of several gates: input gate, output gate, and forget gate. These three gates
control the information flow within an LSTM cell. The Input gate decides which information will be updated,
the output gate controls how much should be propagated from the cell, and the forget gate determines whether
the previous state of the cell should impact the current state. This can be represented mathematically as:

ft = σ (Wfxt + Ufht−1 + bf )

it = σ (Wixt + Uiht−1 + bi)

ot = σ (Woxt + Uoht−1 + bo)

ct = ft ◦ ct−1 + it ◦ tanh (Wcxt + Ucht−1 + bc)

ht = ot ◦ tanh (ct)

(2.6)

where W and U contains the weights of input and recurrent connections, σ and tanh denotes the logistic and
hyperbolic tangent activation function, xt, ht, and ct denote the input, output and cell state of the LSTM
cell at time t. f , i, and o denote the forget gate, input gate, and output gate, respectively and lastly, every
multiplication mentioned is an element-wise multiplication.

A cell state acts as an information carrier in a LSTM. It also serves as the ”memory” of the network, i.e., it
can carry information from earlier time steps to later time steps and this enables the network to ”remember”.
As the process goes on, new information will be added or removed to the cell state with the help of the gates.
So, cell states act as an information ”highway” capable of carrying information for a long time. Consequently,
the gradient will also flow backward using the same highway, thereby reducing the vanishing gradient effect.

2.3.4 Activation Function

In an ANN, the activation function computes an output value based on the weighted sum of inputs. This
output value will determine if a neuron will fire or not (Nwankpa, Ijomah, Gachagan, & Marshall, 2018). One
example of such a function can be seen in Equation 2.2.

Although they exist in every layer, activation functions have a different purpose depending on their position
within the network. When it is located in the input layer or hidden layer, it serves to convert a linear mapping of
the input to non-linear forms for propagation. However when placed in the output layer, it performs prediction
instead.
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There exist several activation functions that can be used in a neural network, but choosing a suitable one
relies heavily on the type of problem at hand. For instance, a sigmoid function on the output layer might be
suitable for regression or binary classification problems, but it is not suitable for a multi-class classification.
Choosing an ill-suited activation function may also result in difficulties in the training process, i.e., slow
convergence. Therefore, it is very common to use multiple types of activation function in an ANN. Below are
the functions that was used in this project.

Sigmoid Function

The sigmoid function is a non-linear activation function commonly used in FFNN. It can be described
mathematically as:

f(x) = σ(x) =
1

1 + e−x
(2.7)

The sigmoid function can appear in the hidden layer for keeping the output of a neuron bounded between
[0, 1]. This will determine how much a neuron node can contribute to the next layer. The sigmoid function can
also appear in the output layer for representing probability based outputs. For instance, in binary classification
problems, for modelling logistic regression tasks and in other domains (Nwankpa et al., 2018).

There are also several drawbacks, such as slow convergence, gradient saturation, and non-zero centered
output causing gradient updates to propagate in different directions which make optimization harder. Because
of this, other activation functions were proposed to remedy these problems.

Hyperbolic Tangent Function

The hyperbolic tangent function, or tanh function, serves as an alternative to the sigmoid function. It has a
zero-centered output and bounded in the range of [−1, 1]. This relationship can be described as follows.

f(x) = tanh (x) =
ex − e−x

ex + e−x
(2.8)

In a multi-layer neural network, tanh function gives a better training performance than the sigmoid function
(Karlik & Olgac, 2011). The zero-centered output also prevents gradient updates to propagate in a different
direction, thus helping in the learning process. However, due to this zero-centered property, the tanh function
is also capable of producing a dead neuron, which is a neuron that will never contribute to any learning process
because its activation function output is always zero.

The tanh functions have been used in the LSTM cell as seen from the previous chapter. It has also been
used for natural language processing (Dauphin, Fan, Auli, & Grangier, 2017) and speech recognition (Maas,
Hannun, & Ng, 2013).

Rectifier Linear Unit

Rectifier Linear Unit (ReLU) was first introduced by Nair and Hinton (2010). It performs a threshold operation
where values less than zero are given zero as the output. This can be mathematically represented as:

f(x) = max(0, x) =

{
x, if x ≥ 0

0 otherwise
(2.9)

From the equation, it can be seen that ReLU nearly retains the linear properties of the network since it
does not compute exponentials or divisions. Thus, using ReLU with gradient-descent methods will make a
faster convergence than using Sigmoid or tanh.

Softmax Function

The Softmax function is another alternative for an activation function. It computes a probability distribution
from a vector of real numbers and produces a range of values between [0, 1], with the sum of the values equal to
1 (Goodfellow, Bengio, & Courville, 2016, p. 181). The Softmax function can be described mathematically as:

f(x)i =
exi∑J
j=1 e

xj

for i = 1, ..., J (2.10)
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The Softmax function is useful in multi-class classification problem. It will generate a set of probabilities
with the target class having the highest. If the problem is a binary classification problem, the Softmax function
will behave in the same way as the Sigmoid function. Thus, the Softmax function can be seen as a more general
version of the Sigmoid function.

2.3.5 Loss Function

A loss function, in terms of artificial neural network, is a function that measures the difference between the
ground truth value and value the generated by the network. Typically during the training step, the network will
optimize itself by updating the connection weights based on the loss function and their values. The objective is
to minimize the loss value. A low loss means the network is able to predict a value that is close to the ground
truth. Thus, loss function dictates both the network’s performance and how they should learn from errors.

Since the loss function is responsible for both performance and training, it must be chosen carefully as
different loss functions have different purposes. For instance, the Mean Squared Error (MSE) function is widely
used for linear regression problems, but it is not suitable for classification problems.

Cross-entropy Loss

Cross-entropy loss measures the performance of a neural network model that is used to solve a classification
problem. Cross-entropy loss increases when the predicted probability value deviates from the ground truth
value. A perfect model will have a cross-entropy value of 0.

Cross-entropy loss function can be described mathematically as:

L = −
M∑
i=1

yi log ŷi (2.11)

with M is the number of classes, yi is the ground truth value, and ŷi is the predicted value from the classification
model. When cross-entropy is used to classify more than two classes, it is often called categorical cross-
entropy.

2.3.6 Back-Propagation

When an input data is fed to a neural network, every neuron inside the input layer calculates the weighted
sum of the input, passes the result to an activation function, and the final output will be transmitted to every
neuron in the next layer. The process will be repeated for every hidden layer until it reaches the output layer.
Once in the output layer, the network will produce a prediction value of ŷ which can be compared to the ground
truth value y to produce a loss value. This process is called forward propagation (Goodfellow et al., 2016).

Back-propagation, or backprop, is an algorithm that allows data to flow backwards from the output
layer to the input layer using chain rule of calculus, carrying gradients from the loss function with respect to
its parameters. These gradients will be used by another algorithm to optimize the strength of the connection
weights between layers. A simple illustration of back-propagation can be seen in Figure 2.3.7.

2.3.7 Dropout

Neural networks can contain multiple hidden layers, making them able to learn complicated patterns and
relationships between inputs and outputs and may improve prediction result. However, not all data is helpful
during the training phase. A training dataset may contain noises and outliers that can interfere with predictions.
A complex model can capture these noises and outliers as part of their learning. The model will try to cater
to these noises and outliers if there are too many of them. Typically, this results in bad performance during
testing phase. This is commonly known as Overfitting.

One of several methods to combat overfitting is the Dropout method. The term ”dropout” refers to dropping
out neurons in a neural network with a probability of p. The dropped neuron will not received nor transmit
anything during training phase, temporarily removing them from the network. This will result in a simpler
model which is beneficial to avoid overfitting. Srivastava, Hinton, Krizhevsky, Sutskever, and Salakhutdinov
(2014) has shown that using dropout will result in a better generalization compared to other methods of
avoiding overfitting. Figure 2.3.8 shows an example of a feed-forward neural network with dropout applied.
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Figure 2.3.7: The flow of information for forward propagation and back-propagation, highlighted in black and
red respectively
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Figure 2.3.8: An example of FFNN with Dropout applied, resulting in a simpler neural network model.

Dropout can also be applied to a RNN and its variants. In this case, there are two types of dropout: regular
dropout and recurrent dropout. The regular dropout works like the dropout in the feed-forward neural network,
that is, it drops the neuron and temporarily disable them according to a certain probability. The recurrent
dropout works slightly different. It drops the recurrent connections, that it, the connection between the time
steps, according to a certain probability. This effectively makes the RNN ignoring the previous time step.

2.3.8 Batch Normalization

During the training phase, the distribution of each layer’s inputs change as the parameters of the previous layer
changes. This forces the learning rate parameter to be small and thus, slows down training time. Ioffe and
Szegedy (2015) called this phenomenon as internal covariate shift. Internal covariate shift makes training
hard because the layers need to adapt to the changing distribution of parameters, and a small change in
parameters affects all preceding layers.

When training a neural network, giving input data in small batches can be beneficial (Ioffe & Szegedy,
2015). Firstly, the gradient of loss over a batch is an estimate of the gradient over the whole training data. The
quality of the gradient estimate will be better as the size of the batch grows. Secondly, batch computation can
be more efficient than individual computation due to the parallelism capability of modern computers.

Batch Normalization is an algorithm which speeds up training by performing normalization on a small batch
of data after it has gone through the activation function. This reduces the internal covariate shift and utilizes
the benefits from using mini-batch.

Batch Normalization takes values of x over a mini-batch B of size m as input. It introduces two learnable
parameters γ, β to make sure that the transformation inserted in the network can represent the identity
transform (Ioffe & Szegedy, 2015). Lastly, it will generate yi as output which will transmitted to the next layer.

11



This algorithm consists of four equation which are executed in this order:

µB =
1

m

m∑
i=1

xi

σB2= 1
m

∑m
i=1(xi−µB)2

x̂i =
xi − µB√
σB2 + ε

yi = γx̂i + β

(2.12)

2.3.9 Optimization Algorithm

Optimization, in general terms, is the science of determining the best solution for a given problem, e.g., optimal
models of manufacturing and management systems (Snyman, 2005). As concrete example: Given limited fuel
in a truck, how should the driver press the gas and brake pedal in order to maximize the distance travelled?
These problem can be solved using optimization algorithms. Likewise in terms of neural networks, how should
one update the weights between each layer given a certain loss value? In this case, an iterative optimization
algorithm such as gradient descent can be used to solve this problem.

Gradient descent is a first-order optimization algorithm that uses the gradient vector, or simply gradient
∇f , which is calculated by performing derivation on the loss function to determine the step direction. Once
the step direction has been determined, it will be multiplied with the learning parameter η to determine the
step size, and finally the parameters will be updated according to the step size. This process converges to the
global or local optimum. Gradient descent can be described mathematically as:

θt+1 = θt − η∇f (2.13)

where θt+1 indicates the updated parameter value and θt denotes the current parameter value.
In artificial neural network, the gradient vector is calculated based on the loss value. This gradient vector

will be propagated backwards in order to update the connection weights between layers. The gradient vector
calculation and propagation will be handled by the backprop algorithm, while the optimization algorithm,
such as gradient descent, will determine how the update should be carried out. However, gradient descent has
some problems (Walia, 2017). First, gradient descent can be very slow to achieve convergence because it will
produce only one update after the gradient is calculated for the whole dataset. Second, it makes redundant
computations for large datasets as it will recompute the gradient for similar examples (Ruder, 2016).

Several algorithms have been proposed to improve the performance of gradient descent. Stochastic
Gradient Descent (SGD), Momentum, and Nesterov Accelerated Gradient (NAG) focused on
how to faster achieve convergence. Others such as Adagrad, Adadelta, and RMpProp were introduced
adaptation of the updates to the individual parameters, i.e., perform larger or smaller updates depending on
their importance (Walia, 2017; Ruder, 2016).

RMSprop

The idea behind Adagrad is to adapt the learning rate to the parameters: larger updates, i.e., high learning
rates for parameters that are less important and smaller updates, i.e, low learning rates for parameters that are
more important (Duchi, Hazan, & Singer, 2011; Ruder, 2016). This adaptation eliminates the need to manually
tune the learning rate. However, Adagrad suffers from diminishing learning rates. This is making it harder to
learn new knowledge as training goes on for long time.

RMSProp (Root Mean Square prop) was proposed by Tieleman and Hinton (2012) to tackle the
diminishing learning rate with Adagrad. It involves using an exponentially weighted average of gradients. This
weighted average will be used to calculate the new parameter. It can be represented mathematically as:

St = βSt−1 + (1− β)g2t

θt+1 = θt − η
gt√
St

(2.14)

where both St and St−1 are the weighted averages of the gradient at time t and t− 1, respectively. The gradient
is gt at time t, η is the learning rate parameter, θt and θt+1 are the parameters for time t and t+ 1, and finally,
β is the constant parameter for the moving average. Tieleman and Hinton (2012) suggests β to be set to 0.9
and η set to 0.001. Chollet et al. (2015) states that RMSprop is a good choice for RNN.
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2.4 Evaluation

2.4.1 Overfitting and Underfitting

Overfitting was mentioned in Section 2.3.7. To summarize, overfitting is a situation when a model is ”memorizing”
instead of ”learning to generalize” from the dataset. This is due to the model capturing noises and outliers and
adapting to them in the training data. An illustration about overfitting can be seen below.

Conversely, underfitting is a situation when a model is not able to capture the underlying patterns of the
data. Underfitting will likely happened if the model has not enough parameters to represent the dataset. A
comparison image of how underfitting, overfitting, and a robust model is shown in Figure 2.4.1.

Figure 2.4.1: The blue and red lines represent underfitting and overfitting respectively

2.4.2 Cross Validation

Cross validation is a model validation technique which measures how well a model generalizes to an
independent dataset (Drakos, 2018). In the most basic approach, which often is called K-fold cross validation
(Pedregosa et al., 2011), the training dataset is split into k smaller sets. For each of these k folds, the following
procedure is applied:

• The model will be trained using k − 1 folds as training data.

• The remaining data will be used as test data.

The performance measured by k-fold cross validation is the average of accuracy (or other types of measure).
This method ensures every data is involved in both training and testing, resulting in a more general estimation
of the model’s performance. Furthermore, cross validation also prevent overfitting because the model will not
be biased towards a certain part of the data.

2.4.3 Confusion Matrix

Confusion Matrix is a matrix used to evaluate the performance of a classification model. It has two
dimensions: one dimension represents the predicted label, and the other represents the true label. The diagonal
elements represent the number of correct predictions for which the predicted label is equal to the true label.
Conversely, the off-diagonal elements represent the number of incorrect predictions made by the model. The
higher the values in the diagonal elements the better (Pedregosa et al., 2011).

There are four variables involved when using a confusion matrix:

1. True Positive (TP). This value represents the correctly predicted positive class, which means the actual
class is positive and the predicted class is also positive.

2. False Positive (FP). This value represents an incorrect prediction which occurs when the actual class
is negative, but the model outputs a prediction in positive class.

3. True Negative (TN). This value represents a correctly predicted negative class, which means the actual
class is negative and the predicted class is also negative.

4. False Negative(FN). This value represents an incorrect prediction similar to False Positive, but in the
opposite direction. It happens when the actual class is positive, but the model outputs a prediction in
negative class.
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Figure 2.4.2: How k-fold cross validation works with k=5

Figure 2.4.3: An illustration of a confusion matrix with a multiclass classification problem.

With these four parameters, several metrics can be calculated. One of them is Accuracy metric, which
is calculated by dividing the TP value with the total observations. This metric can represent the general
performance of a model if the dataset is balanced, i.e., each class has the same amount of data.

However, in real-life applications, most of the datasets are not balanced. For instance, suppose a model is
built to identify driver’s behaviour in an urban traffic. The behaviour is classified into three labels: ”Following
the road”, ”Left Turn”, and ”Right Turn”, assuming the driver never puts the car in reverse gear. The data
will most likely dominated by the data from ”Following the road” label because in real life, the driver will
spend most of his, or her, time just driving straight and following the road and making left or right turn as
needed like in an intersection. He, or she, will not do left turn and right turn consistently all the time unless
he, or she, is drunk. Therefore when this data is fed into the model and tested, there is a possibility that it
can blindly put every data into ”Following the road” label and still get a high accuracy. In this case, a high
accuracy does not represent the general performance of the model. Thus, another metric is required to judge
the true performance of the model.

F1 Score is an alternative metric to accuracy. It considers both precision (When the model predicts
positive, how often is it correct.) and recall (When it is actually positive, how often does it predict positive.).
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Their relationship can be described as follows:

precision =
TP

TP + FP

recall =
TP

TP + FN

F1 = 2× precision× recall
precision+ recall

(2.15)

As it can be seen in Equation 2.15, F1 score takes both FP and FN into account and it seeks balance
between precision and recall (Shung, 2018; Joshi, 2016). Good F1 score is achieved when a model has low FP
and low FN, which means the model is able to identify and classify data more accurate. A model is considered
to be perfect if it has an F1 score of 1. Conversely, 0 F1 score means a model is a total failure.

In a multi-class classification problem, F1 score can be computed for each class. The final F1 score is
calculated by averaging across multiple F1 scores (Pedregosa et al., 2011). There are multiple ways to calculate
average F1 scores. When using macro average, F1 scores is calculated independently for each class and then
take the arithmetic mean to get the final F1 score. This way, every class is regarded as equals. However when
using micro average, F1 score is calculated once by applying precision and recall globally. This means the
sum of TP, FP, and FN from every class are used. Thus, every sample is regarded as equals. This is the
preferable method if the dataset suffers from an imbalanced class. Both these methods are useful to measure
the performance of a multi-class classification model as it forces the model to have a good performance on
every class if it wants to have a high F1 score in both micro and macro average.

3 Methods

3.1 Tools

Python (Van Rossum & Drake Jr, 1995) was chosen as the programming language for this project along with
various packages e.g., NumPy (Oliphant, 2006) and Scikit-learn (Pedregosa et al., 2011) for mathematical
computations, Matplotlib (Hunter, 2007) for plotting various graphs, and Keras (Chollet et al., 2015) for
building neural network. Jupyter Notebook (Kluyver et al., 2016) was also used to organize code blocks. These
packages were chosen for their simplicity and versatility.

3.2 Data

3.2.1 UDrive Project

The UDrive project was a large scale naturalistic driving study in Europe on cars, trucks, and powered
two-wheelers (Barnard, Utesch, van Nes, Eenink, & Baumann, 2016). The aim of UDrive was to achieve a
better understanding of driver behaviour (Bärgman et al., 2017). This is attained by conducting several tasks
of which one is building a central database with the collected Naturalistic Driving Data (NDD).

The UDrive NDD contains eight video streams, data from the vehicle’s Controlled Area Network (CAN),
accelerometer and angular rate sensors, GPS, and a smart camera. Vehicle data was collected in various
European countries. NDD from cars was collected in France, Germany, Great Britain, Poland, and the
Netherlands, NDD from trucks was collected from the Netherlands, and NDD from powered two-wheelers
(scooters) was collected from Spain. A tool called SALSA is used in UDrive to perform various tasks, e.g.,
develop, share, and apply algorithms for signal processing, inspect driving data in various situations, etc.

In this thesis, only the highway driving data from cars was used to create a dataset for the training,
validation, and testing. The reasoning is that a lane change maneuver is easier to observe in highways compared
to urban roads.

3.2.2 Data Extraction

In several studies involving lane changes, different researchers used similar variables to each other. Mandalia
and Salvucci (2005) used acceleration, lane position, lateral acceleration, and steering angle. Meanwhile, Dang
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et al. (2017) used speed, distance to next vehicle, head and gaze direction, and lateral distance together with
the previously mentioned variables.

Based on this observation, nine signals, which have a frequency of 10Hz were extracted from the UDrive
database. Eight of them are the combination of what Mandalia and Salvucci (2005) and Dang et al. (2017)
were using except of the head and gaze direction. The last signal, E LaneChange, is used as the basis of the
labeling process. This signal detects lane change based on consecutive peaks in the lateral acceleration. The
peaks are the first or the last maximum values higher than the 95th percentile of the lateral acceleration within
the same segment. The lane change start and end is defined as two peaks with a positive peak indicating the
start of a lane change, and the negative peak indicating its ending. Between and including the start and the
end, a value of one will be emitted by the signal. This indicates the driver initiating, performing, and ending a
lane change maneuver.

Data extraction was done using the SALSA tool and MATLAB scripts. First, driving data was divided into
two groups based on the road type: Highway driving, which consists of any driving data on urban and country
motorways, and non-highway driving, which consists of driving on rural, urban (city), and slip roads. Then,
segments were generated for the highway driving group where each segment contains the timestamps and the
nine signals mentioned before. Finally, each segment was saved as a MATLAB struct and stored in a separate
file. These files were then processed by Python, which will be explained in the next section.

3.2.3 Data Processing

Multiple steps were taken for processing the segments from the UDrive database. First, driving data was read
and re-arranged into a form that is more compatible with supervised learning methods. Since the lane change
identification problem is a classification problem, a supervised learning method with input-output pairs seems
suitable. However, the driving data from UDrive is time-series data. This was problematic because multiple
lane changes can occur within a single segment and each of these lane changes may have different patterns
of signals. Thus, not only will a single input-output pair for each segment not work, but they do not make
any sense either as a segment might be labeled ”Lane Change” with no details on the amount of lane change
maneuvers performed and when they started. It is necessary to break each segment into several time windows.
As for the size of the window, both Mandalia and Salvucci (2005) and Dogan, Edelbrunner, and Iossifidis
(2011) achieved the best result when they used between 2.0 and 2.5 seconds. Thus, 2.0 seconds was chosen
to be the window size used in this project. The re-arranging process was done with the help from a function
proposed by Brownlee (2017) which breaks a time-series data into several constant-sized time windows, making
it compatible with supervised learning methods.

Next, a cleanup process was performed to the transformed data. It removed segments which have invalid
values that might exist inside time windows due to sensor malfunctions. After cleanup, the next step was to
create new class labels for each window based on the E LaneChange signal. Initially, two classes, ”Lane Change”
and ”No Lane Change” were considered for this problem. However, the data between these two became similar
from each other, specifically at the beginning and at the ending of a lane change maneuver. Because of this, it
would be harder to make a distinction between the two. Since E LaneChange signal only had zeros and ones as
its value, a ratio between them was calculated and used for categorize the data into four classes:

1. ”No Lane Change” (noLC): E LaneChange signal emits zero for the entirety of the time window. This
indicates during a window of two seconds, no lane change maneuver is detected, and driver mostly
following the lane in this window.

2. ”Lane Change Start” (sLC): E LaneChange signal begins to emit one and the ratio of ones and zeros is
less 0.33. This represents the first 0.67 seconds of the lane change.

3. ”Lane Change” (LC): E LaneChange signal continues to emit 1 after exceeding the ratio of 0.33 as
mentioned above, and continues for the duration of lane change. Once it starts to emit 0, the window
will still be regarded as LC as long as the ratio of 0’s and 1’s does not exceed 0.33. This represents the
actual process of lane change maneuver.

4. ”Lane Change End” (eLC): E LaneChange continues to emit 0 after exceeding the ratio of 0.33. This
represents the ending of a lane change maneuver and the driver is about to complete the lane change and
following the lane again.
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Figure 3.2.1: How a lane change signal is broken down into four classes

Approximately 296 segments with a total of 948 lane changes and 16 hours of driving time were processed.
Around 493, 060 overlapping time windows were generated. Eighty percent of these used as the training dataset,
while twenty percent was set aside to be the test dataset which was not used in the training process.

3.2.4 Statistical Analysis

As it can be seen in the previous section, creating new label relies heavily on the ratio of 0’s and 1’s. Choosing
a wrong ratio can be a contributing factor to an imbalanced class problem. Therefore, a statistical analysis
was performed on the training dataset, specifically the student’s t-test. T-test was conducted by taking
non-overlapping time windows from noLC class and the first window of sLC class for each lane change. Then
these two sets were fed into a function ttest ind (Jones, Oliphant, Peterson, et al., 2001–) to calculate a
p-value for each signal. If one of the p-values was below 0.05, then noLC and sLC class have a significant
different between each other.

Imbalanced Class

In total, 394, 448 time windows were selected randomly as the training dataset. Unfortunately, these windows
were not balanced in terms of classes. Class noLC was dominating the dataset with 80.68%, followed by class
LC having 16.7%, class eLC 1.8%, and lastly class sLC 0.81%. This is expected since lane change maneuvers
are not executed very frequently in normal driving conditions. However, this also posed a problem in the
training step. If a model was trained using this dataset, the result would be heavily biased towards the noLC
class and the model would have a hard time to distinguish the sLC and eLC class.

Two methods were reviewed to alleviate this problem: random undersampling and oversampling. Random
undersampling involves taking the majority class and randomly discards data, with each data has the same
probability to be discarded, until the number of data is below a certain threshold. On the other hand,
oversampling involves replicating data from the minority class until it is above a certain threshold. Excessive
oversampling means the minority class will be filled with the same data over and over, and this is detriment
to the model training because doing so will induce overfitting in the model. Additionally, data from the
noLC class was mostly straight driving data and had similar signal values between each other. Thus, random
undersampling on the noLC class was the better choice based on this observation.

3.3 Neural Network Model

3.3.1 Model Construction

Three neural network architectures were used to construct classification models. One model was inspired from
Dang et al. (2017) and serves as the base model. The other models were modifications of the first (base) model
by adding layers and using different configurations.
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Baseline LSTM Model

Figure 3.3.1: A neural network model adopted from Dang, Fürnkranz, Biedermann, and Hoepfl (2017).

This model was originally proposed to predict the time-to-lane-change (TTLC) by Dang et al. (2017). It utilized
five hidden layers. It begins with a single LSTM layer with 250 neurons and output was generated from the
final timestep. The output was fed into two fully connected layers with each having 256 neurons. Two dropout
layers with 0.5 probability of dropouts were applied between each of the FC layer. A softmax layer was added
as the final layer to conform with the defined classification problem. In total, there were 390, 076 trainable
parameters in this model.

Some changes were made to adjust this model to be more compatible with the current problem. The model
was compiled using RMSprop as the optimizer with learning rate of 0.0005 and categorical cross-entropy as the
loss function.
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Modified LSTM Model

Figure 3.3.2: A modified neural network based on the previous network. This modes has a deeper fully connected
layer compared to the LSTM model.

A modified LSTM Model was constructed based on the previous model. It employed a single LSTM layer with
an increased cell amount, from 250 to 256, and outputs were generated from every timestep. These outputs
were put through four layers of a fully connected network with batch normalization applied between each of
these layers effectively replacing the dropout layer from the previous model. Since outputs were generated
from every timestep, a flatten layer was used before the final batch normalization layer to aggregate outputs
across timesteps, thus helping the model to determine the final output. A softmax layer was added as the final
layer, similar to the previous model. There were 335, 740 trainable parameters which are slightly less than
the baseline model. This was caused by the reduction of the neurons used in the fully connected layer as a
compensation for making it deeper.

All configuration parameters remained the same as for the base model. The modified LSTM Model used
RMSprop as its optimizer with a learning rate of 0.0005 and categorical cross-entropy as the loss function.
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Stacked LSTM Model

Figure 3.3.3: Another modification based on the LSTM model. This one has two stacked LSTM layer with a
slightly deeper fully connected layer compared to the LSTM layer.

The stacked LSTM Model was a simpler modification based on the first (base) model. As Figure 3.3.3 shows,
this model employs two stacked LSTM with the same 256 cells and three layers of fully connected network.
Batch normalization was applied between each layer as a replacement of the dropout layer, similar to Modified
LSTM Model. However, a flatten layer was used directly after the first batch normalization, thus the aggregation
process occurred earlier than the previous model. Both input and output layers were again identical to the
previous model. This model boasted 996, 132 trainable parameters, more than twice as many compared to the
previous models. This was caused by the second LSTM layer as the second LSTM layer accommodates every
output from every timestep in the first LSTM layer.

Similar to the previous model, this model used RMSprop as the optimizer with the same learning rate of
0.0005. Categorical cross-entropy was used as the loss function.
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3.3.2 Hyperparameter Tuning

To find the optimal performance for training and testing, both the modified LSTM and the stacked LSTM
model were subjected to different settings of their hyperparameters. These include changing the number of
neurons on each layer and applying dropouts where it is applicable. The number of neurons and the dropout
probability were increased by a constant interval with each layer having different intervals. After these changes,
training was conducted for 50 epochs and the resulting performances were compared with each other.

There were seven sets of hyperparameter changes for the modified LSTM model: three changes in the LSTM
layer which involved the number of neurons, the dropout probability, and the recurrent dropout probability,
and four changes in each of the fully connected layers which involved the number of neurons. However, for the
stacked LSTM model, there were only five sets of hyperparameter changes: the dropout probability and the
recurrent dropout probability in the LSTM layer, and three changes in each of the fully connected network.
The details can be seen from the table below.

Hyperparameter Changes Values
Set #1 LSTM neurons 100, 200, 300
Set #2 First FC neurons 160, 192, 224
Set #3 Second FC neurons 80, 96, 112
Set #4 Third FC neurons 24, 32, 40
Set #5 Fourth FC neurons 12, 16, 20
Set #6 LSTM Dropout 0.3, 0.6, 0.9
Set #7 LSTM Recurrent Dropout 0.3, 0.6, 0.9

Table 3.1: Hyperparameter tuning sets for modified LSTM

Hyperparameter Changes Values
Set #1 First FC neurons 128, 192, 256
Set #2 Second FC neurons 64, 96, 128
Set #3 Third FC neurons 32, 48, 64
Set #4 LSTM Dropout 0.3, 0.6, 0.9
Set #5 LSTM Recurrent Dropout 0.3, 0.6, 0.9

Table 3.2: Hyperparameter Tuning for Stacked LSTM

3.3.3 Model Training

Training process was conducted using an identical configuration: 500 epochs, i.e. loops, with batch size of 64.
Three Keras specific callbacks were used and these were ModelCheckpoint, EarlyStopping, and CSVLogger.
ModelCheckpoint was used to guarantee the best performing model during training process would be saved,
EarlyStopping was used during the hyperparameter tuning to stop the training process if the loss value was not
improved until a certain epoch had passed, and CSVLogger was used to log the training performance into CSV
files.

During training, 20% from the training data were held back and served as a validation set while the
remaining 80% were used as the actual training data. After each epoch, the model was checked using the
validation set. Parameters within the model were tuned based on the performance of the validation process.
Once training was finished, four metrics were extracted: training accuracy, training loss, validation accuracy,
and validation loss. These four values were used to determine whether a model achieved convergence and fit for
the testing phase, or if it suffered from overfitting or underfitting.

4 Results

As stated in the previous chapter, training was conducted for the proposed networks with the same configuration
and the same dataset. Afterwards, they were subjected to testing with the same test dataset. This way, the
result can be compared across neural network models. Both the neural network performance figures and the
hyperparameter tuning results are given in this chapter. The results are given in graphs which depict the
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training performances. Additionally for the neural network performance, confusion matrices and F1 scores are
also provided. The numbers that shown on the confusion matrices represents the time windows as mentioned
in Chapter 3 Section 3.2.3.

4.0.1 Neural Network Performances

The results for the neural network performances are grouped by model. Each model has training accuracy
and loss graphs, and a confusion matrix which denotes their testing performance. F1 scores of these three
models were compared to each other with both micro and macro averages. The cross validation evaluation was
conducted only for the stacked LSTM model. Since the F1 score was used in the cross validation, its value is
divided into micro and macro averages as well.

Baseline LSTM Model
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Figure 4.0.1: Training performances of the baseline model.

Training performances for the baseline model can be seen from Figure 4.0.1. The left and right figures are
the training and validation accuracy and loss for each epoch, respectively. It can be seen from the figures that
the baseline model was struggling during training phase. The training accuracy hits around 75% mark and it
started to go down as the training went on. On the other hand, validation accuracy was fluctuating widely
between 30% and 70%, although in some cases it plummeted down to 10%. Both the training and validation
accuracy had a downward trend which means it got worse over time. The same can be said when looking at
the loss graph. The training loss went down at the beginning, but after 100 epochs it began to increase steadily.
This means the training performance becoming worse as the training went on. The validation loss has similar
characteristics with the validation accuracy: fluctuating wildly and it got worse over time. Both the training
and validation loss had an upward trend.

After the training phase was done, the baseline model was evaluated with the test dataset. The evaluation
result can be seen in Figure 4.0.2. It shows that the baseline model labeled every test data as either ”noLC”
and ”LC” only. By doing this, the model managed to identify the majority of ”noLC” and ”LC” class. However,
this also means that the model completely missed the ”sLC” and ”eLC” class, indicating there is something
wrong with the training process. As a result, the model has a disparity between F1 micro and F1 macro, which
will be presented later. In summary, this model was not very good at detecting lane changes.

Modified LSTM Model

As it can be seen from Figure 4.0.3, the modified LSTM model was slightly better than the baseline model in
terms of training performance. It can be seen that the training accuracy and training loss were getting better
as training went on. This is normal as during the training phase, both training accuracy and training loss were
expected to be better, approaching 100% accuracy and zero loss, respectively. However, the model has several
problems. Firstly, it was slow. After 500 epochs passed, it only managed to achieved approximately 80% in
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Figure 4.0.2: The confusion matrix for the Baseline LSTM model
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Figure 4.0.3: Training performances of the modified LSTM model.

training accuracy and 0.6 in training loss. Secondly, the validation accuracy and loss were also fluctuating
widely. Thirdly, its validation loss were worse than the baseline model’s training loss, reaching a maximum of
2.2 of loss. Best validation accuracy and loss were achieved before 300 epochs passed and after that point, it
steadily went worse.

When the modified LSTM model was put to test using the same test dataset, the resulting confusion matrix
can be seen from Figure 4.0.4. It shows that while the modified LSTM model tried to identify every class, its
performance was not good. While it managed to identify the majority of the ”LC” class, i.e., 84.1% of them, it
also made a bad guess on every other class. Specifically, 68.4% of the ”noLC” class were classified as ”LC”,
which is highlighted in red in the figure, only 4% of the ”eLC” class were identified, and less than 1% of the
”sLC” class. These misclassifications have a large negative effect on its F1 scores, both in micro and macro
average as shown later.

Stacked LSTM Model

According to Figure 4.0.5, the training phase was running well for the stacked LSTM model. It managed to
achieve 95% of training accuracy and almost 0.1 of training loss. Moreover, its validation accuracy and loss
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Figure 4.0.4: The confusion matrix for the Modified LSTM model
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Figure 4.0.5: The training performances of the stacked LSTM model.

were still fluctuating, but they were significantly better than the other models because they showed an upward
trend and downward trend for the accuracy and loss respectively. At the end of the training, they achieved
approximately 90% in validation accuracy and 0.15 in validation loss. However, this model has one problem.
When the loss graph is examined closely, one can see that the training loss were increasing slowly after 300
epochs. This indicates the model started to suffer from overfitting, although the effects were still minor.

Testing was conducted on the stacked LSTM to judge its final performance, and it produced a confusion
matrix which can be seen in Figure 4.0.6. This is generally better than the other models as it identified the
majority of ”noLC” and ”LC” classes correctly while also identified a decent amount of ”sLC” and ”eLC”
classes. Specifically, 90.9% of the ”noLC”, 59.2% of the sLC, 95.8% of the ”LC”, and 77.2% of the ”eLC”
were correctly identified. It can also be seen that the incorrect guesses were sparsely distributed with most of
them were made on ”sLC” and ”eLC” classes. These misclassifications have a negative effect on its F1 score,
although it is not as severe as the modified LSTM model.
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Figure 4.0.6: The confusion matrix for the Stacked LSTM model

F1 scores

To have a better grasp on the performances of these models, F1 scores were calculated using both micro and
macro averages. Both confusion matrices and F1 scores were used to evaluate the performance of the models.

Baseline LSTM Modified LSTM Stacked LSTM
F1 Score Micro 0.7473 0.3975 0.9122
F1 Score Macro 0.3431 0.2154 0.7178

Table 4.1: F1 Scores between each model

As Table 4.1 has shown, the best F1 score in both micro and macro average was achieved by the stacked
LSTM model which corresponds to its confusion matrix. Conversely, the modified LSTM had the lowest F1
score in both micro and macro average. However, it was not enough to measure the general performance of the
stacked LSTM model because the test data was selected randomly and it might be similar to the training data.
Thus, cross validation evaluation was performed on the stacked LSTM model. During this evaluation, F1 scores
were calculated for each fold, and the final score was produced by calculating the average of F1 scores across
the folds. As it can be seen from Table 4.2, the F1 scores in both micro and macro average have a rather small
margin between the folds. This indicates the general performance of the stacked LSTM model is somewhere
around these values.

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average
Stacked LSTM (Micro) 0.9157 0.9209 0.9119 0.9202 0.9215 0.9180
Stacked LSTM (Macro) 0.6879 0.6876 0.6692 0.6964 0.7023 0.6887

Table 4.2: F1 Scores for each fold in cross validation process

4.0.2 Hyperparameter Tuning

Both the modified LSTM and the stacked LSTM were subjected to the hyperparameter tuning process in order
to find the optimal setting that can draw the best performance for them. As it has been explain in the previous
chapter, hyperparameter changes were divided into several sets and each of them have their own impact. Each
set was represented by a training loss graph as it is enough to approximate the general performance of a model.
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Modified LSTM model

As it can be seen from Figure 4.0.7, several hyperparameter changes were tested. The set #1, which changed the
number of neurons in the LSTM layer, was the only one which showed an improvement, as the loss decreased
when the LSTM had 200 and 300 neurons compared to just 100 neurons. However the difference between using
200 and 300 neurons were small, indicating that the ideal neuron was somewhere between these two numbers.
The set #2 to #5, in which the number of neurons was changed in each fully connected layer, produced roughly
the same result. Generally, the more neurons they had, the better they were, but the improvements were small.
This can be seen easily in set #5 as changes in the fourth fully connected layer didn’t have any significant
changes to the training loss. The set #6 and #7, which changed the dropout probability in the LSTM layer,
were the only one which produced varied results. In set #6, the model achieved overall the best loss when using
a dropout probability of 0.6. However, training stopped after 20 epochs because of the EarlyStopping callback.
Dropout probability of 0.3 produced a slightly worse result, and dropout probability of 0.9 produced the worst
result. In the final set, their loss was increased as the recurring dropout probability was also increased.

Stacked LSTM model

Five sets of hyperparameter changes were tested, three of them changed the number of neurons in the fully
connected layers while two of them changed the dropout and recurrent dropout probability of the LSTM layers.
The results can be seen in Figure 4.0.8. In general, immediate improvements are clearly visible with all the sets.
However, all of them also triggered the EarlyStopping callback because training went on without improving the
best loss. Thus, none of them finished the training process. Furthermore, while they showed a downward trend
at first, they stagnated after 10 epochs. When compared to the original setting, at first the original setting
had the worst performance. However as the training went on, it surpassed the others and still continued to be
better.

5 Discussion & Conclusion

Three neural network models were constructed with different architectures and hyperparameters. These models
were trained with the same dataset and configurations, and they evaluated with the same methods.

The results show that using neural network approach to identify lane change maneuvers in UDRIVE is
possible, particularly with the stacked LSTM model. This model performed better than the baseline and the
modified LSTM model. However, the stacked LSTM model still has room for improvement as misclassifications
were still made even though the training went well. As for the other models, they struggled during the training
and test process. This is due to several factors, which will be discussed below.

5.1 Neural Network Models

5.1.1 Baseline Model

As it has been stated in Chapter 1 and 3, the baseline model was adopted from Dang et al. (2017). This
model was chosen because it used LSTM, which is highly compatible with time-series data, and it reaches a
desired layer depth. It has one LSTM layer and two fully connected layers, making it categorized as a deep
neural network. The same parameters were applied here with exception of the optimizer and the learning rate.
Variables used for training are already mentioned in the Chapter 3 Section 3.2.2. However compared to what
was originally used by Dang et al. (2017), gazing behaviour and head rotation was not used in both the training
and testing process.

The results show that the baseline model struggled during training and testing phase. Normally, a neural
network is expected to have high enough accuracy, i.e., above a certain value, e.g., 95%, and low loss at the
end of the training phase. However, as the training went on for this model, it got worse over time in both the
accuracy and the loss. During testing, it also labeled the data only as either ”noLC” or ”LC” while ignoring
the ”sLC” and ”eLC” (start and end of lange change). This was caused by the fact that the training dataset
was heavily dominated by ”noLC” and ”LC” classes, suggesting that the undersampling might not be aggresive
enough. The ”sLC” and ”eLC” were minuscule compared to the other two. This, along with the training
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struggle, caused the model to ignore ”sLC” and ”eLC” as it could not distinguish any pattern which is unique
to these classes.

Although only ”noLC” and ”LC” were found for this model, these two classes were identified with rather
good performance which is why their F1 score micro is quite high. F1 scores with micro average takes class
imbalance into the account and as stated above, both ”noLC” and ”LC” data is dominating. Thus, one can
easily achieve high accuracy just by predicting these two classes and ignoring the rest. On the other hand, F1
macro score assumes every class has the same weight, hence ignoring class imbalance. Since the model did not
make any guess in both ”sLC” and ”eLC”, the F1 macro score suffered heavily.

According to Griesbach (2019), driver gaze behaviour and head rotation could be a good indicator for lane
change identification. Not having these variables was proven to be detrimental in lane change identification as
these two variables were not part of the input data. Moreover, the LSTM architecture might also contribute to
the difficulties in the training. By having only the last timestep to transmit output to the next layer in the
LSTM, some information might be lost in the process. Another plausible factor is the number of parameter in
this model. It has approximately 390.000 trainable parameters and while this might seems to be sufficient, the
results show that this number should be changed. Increasing the number of trainable parameters might lead to
a better performance with the risk of overfitting, while decreasing them might lead to a faster training time
with the risk of underfitting.

5.1.2 Modified LSTM Model

In the modified LSTM model, two changes were made compared to the base model. Outputs were emitted
for each timestep in the LSTM layer instead of only at the last. This way, information is preserved between
timesteps, and thus it can be taken into consideration for the next layer. Furthermore, the depth of the fully
connected layer was also increased as a deeper fully connected layer often means a performance improvement.
However, the number of neurons was reduced to compensate the depth as going too deep with too many
neurons often results in overfitting. As a result, the number of trainable parameters in this model is less than
the baseline model.

The results show that this model is better than the baseline model during the training phase. The increase in
the depth of the fully connected network may have helped during the training phase as both training accuracy
and training loss got better over time. However, both the validation accuracy and loss were worse than the
baseline model. Moreover, when this model was put to test, it achieved worse F1 scores than the baseline model.
It is believed that the low scores was caused by the low number of parameters in this network. Having too few
parameters often means the model could not capture the patterns of a lane change maneuver. Moreover, both
the training accuracy and loss converged less than what was expected, signifying that this model might be
suffering from underfitting.

To alleviate this, several hyperparameters were changed and tested to make the model perform better. The
changes were mostly in the number of neurons in each layer to increase its trainable parameters. Dropout was
also applied in the LSTM layer. Some of these changes resulted in immediate improvement at the start of the
training compared to the original setting. However, these changes also produced similar results. They all seems
to converge around 0.45 loss, and even in some hyperparameter changes, like the dropout and the recurrent
dropout, the loss is even higher than before. Thus, it is believed that making the fully connected layer deeper
was not enough to improve the performance. By looking at the model structure, it is clear that regardless of
the depth of the fully connected layer, they still depend on a single LSTM layer because it interacts directly
with the input data. If the LSTM layer made a mistake, the fully connected layer will base their choice on this
mistake, and this can be detrimental to the overall performance.

5.1.3 Stacked LSTM Model

Based on the problems of the modified LSTM model, this model has two LSTM layers stacked on top of each
other. The second LSTM layer exist to review every output and minimize any mistake made by the first LSTM
layer. Furthermore, this model has an extra fully connected layer, making it slightly deeper compared to the
baseline model but not as deep as the modified LSTM layer. These modification results in a massive increase
in the number of trainable parameters, almost three times the number of trainable parameters in the baseline
model.

The results show that this model performed much better compared the other two models. This is due to
the high number of trainable parameters in the model caused by the second LSTM layer. Trainable parameters
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determine the ability of a neural network to learn patterns within the input data. More trainable parameters
often mean better ability to distinguish complex patterns, but too much of them can make a network suffers
from overfitting. In this case, the stacked LSTM model certainly benefited with its high number of parameters,
but it also suffers from minor overfitting. This means either it has too many trainable parameters, or it is
trained for too many epoch.

Like the modified LSTM model, hyperparameter tuning was also conducted for this model. The number of
neurons of each fully connected layer was changed and dropout also applied on the LSTM layers. It produced
an immediate improvement, but all of them could not finished the training process as they stopped earlier than
expected. Moreover, their loss converged to a loss that is worse than the original setting. It is suspected that
these changes result in overfitting as in their original setting, the number of parameters were already high,
almost three times as the number of parameters in the baseline model.

Aside from overfitting, the stacked LSTM model also has some issues. Firstly, the model has a mediocre
performance according to its F1 scores macro, although it was the best when compared with the other models.
Increasing the number of parameters would not work because it already shows signs of overfitting, so model
improvement would be tricky. Secondly, the model takes a long time to train due to the large number of
trainable parameters, so it can be difficult to tune the hyperparameters since training would have to start from
scratch.

5.2 General Performance and Limitations

As it has been shown, these networks have a highly varied performances, with the baseline model performed
the worst and the stacked LSTM performed the best. However, the stacked LSTM model produced a rather
mediocre results. Several factors which affect the performance were identified and they have been consistent
across the models. These factors are the input variables selection, the architecture, the number of trainable
parameters, and their hyperparameters. Other factors also contributes to the performance, such as how the
input data is processed.

The training dataset used by the models only consists of vehicle data and their surrounding environment.
Head rotation and gaze direction only exists in the form of video, so, as of this writing, they cannot used
directly by the neural network. Griesbach (2019) mentioned that these two variables could be a good indicator
to identify a lane change and Dang et al. (2017) used them in their network and produced good results. Without
these two, identify lane change was more harder, as evidenced by the results. Furthermore, the training dataset
suffers from imbalanced data and, unfortunately, this was expected as it has been explained in Chapter 3
Section 3.2.4.

The neural network architecture and the number of trainable parameters are also directly affecting its
performance, as evidenced by the results. Since the data is in the form of time-series data, using LSTM as
the first layer is logical because it can use the information from the previous timestep to influence the current
output. The LSTM layer were connected to several fully connected layers. These layers acts as the classifier,
i.e., they decide which class the data belongs to. All of these models proposed here were using this combination
and their results were highly varied. They both have around the same amount of trainable parameters, but it
seems this was not enough because they were struggling during both training and testing phase. The modified
LSTM even have a deeper fully connected layer than the baseline model, thus hinting at the modification
should be done in the LSTM layer instead. When another LSTM layer was added, the model suddenly have a
much higher trainable parameter, almost three times as much compared to the other two. As a result, it excels
in training compared to the other two. However, the testing results only got slightly better. This indicates the
stacked LSTM model shows promise, but it still needs an improvement. At this stage, the improvement is
usually done in the form of finding the optimal hyperparameters, such as the number of neurons of each layer,
which activation functions should be used, which optimizer should be used, how much is the learning rate, etc.

It might also be the case that the hyperparameter tuning process was not enough. In this project,
hyperparameter tuning only affects the number of neurons in each layer and the LSTM’s dropout probabilities.
There are other hyperparameter that can affect a neural network’s performance, e.g., the choice of the optimizer
function, the learning rate, the number of epochs, the number of batches, etc. Considering the possibilities, the
number of hyperparameter changes in this project are certainly limited as it only changed by a fixed amount.
One solution of testing more hyperparameter changes would be to use a grid search algorithm or even employs
an evolutionary algorithm, although the training time will then increase exponentially.

Another factor which can influence neural network performance is how the input data is processed. In
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this case, raw input data was broken down into several time windows of two seconds and labels were given
by looking at the ratio of zeros and ones inside a time window. These two processes affects the performance
of the model. Firstly, the length of the time window controls how much data will be fed into the model. As
a result, the model has more information and it can make different judgments, thus leading to a different
performance. Secondly, the ratio controls the class distribution of the data. Given the right ratio, data inside a
class should be significantly different from the other class. Consequently, the model should be able to identify
each class more clearly and make a better guess. Finding the optimal setting for these two can be difficult to
do. When changing the time window length, the models will have to be adjusted to accommodate the change,
and training will have to start from scratch. On the other hand, changing the ratio can produce an imbalanced
training data. Assuming the time window is still the same, the model need no adjustment. However when
trained on this data, the model may not perform as expected i.e., it might be biased toward one or more classes
just as reflected in the training data.

As it was mentioned in Chapter 3 Section 3.3, the baseline model was adopted from Dang et al. (2017)
because they reported a good performance while using this model to classify lane change maneuver. However
when it was applied using UDRIVE as the training data, it performed well below what was reported. It is
already mentioned that this might be caused by omitting head rotation and gaze direction variables. Thus,
the stacked LSTM model has a potential to be better than the model from Dang et al. (2017) if given these
variables. Moreover if the other issues are fixed, humans can use this model to identify lane change maneuvers
quicker and more accurately compared to the manual methods. This model can also potentially be used by
ADAS directly to improve their modules which relate to lane change maneuvers, such as lane keeping system,
lane departure warning system, lane change assistance system, etc. As a result, drivers may perform lane
change maneuvers more safely and thus, accidents can be averted.

5.3 Conclusion

Identifying lane change maneuver in highway driving can be done using a deep neural network. Three neural
network models were implemented to identify lane change maneuvers using naturalistic driving data from the
UDRIVE project. All three models were using a combination of LSTM and fully connected layers with each
having a different modifications. The baseline model, which adapted from Dang et al. (2017), was performing
below expectation since head rotation and gaze direction was omitted. The modified LSTM model, which
has deeper fully connected layer than the baseline model, performed slightly better during the training phase,
but worse during the testing phase. The stacked LSTM model, which stacked two LSTM layers and had a
slightly deeper fully connected layer than the baseline model, performed the best during training phase. It also
performed the best during testing phase, however it was still not good enough as it had only an F1 score of
0.6887 on average when evaluated using cross-validation. Several factors were identified as the reason why the
model rather struggling with identifying lane changes, especially with the start of lane change. These factors
are: the time window size and the labeling ratio, the variable selection and the imbalanced data, and the neural
network architecture, their hyperparameters, and the number of trainable parameters. Despite this, the stacked
LSTM model seems promising and once its issue is fixed, it should be able to identify lane change maneuver
easily.

6 Future Work

Future work of this project should focused on improving the performance of the stacked LSTM model. This
can be done in many different ways. One idea would be to merge the outputs from the first LSTM layer into
the next layer. By merging outputs across timesteps, information are consolidated and as a result, the second
LSTM layer will be fed with less timesteps, thereby reducing the number of parameters. Another idea would be
to implement another neural network to find the head rotation and gaze direction from the video input. The
model’s performance can be better if these two variables is available. Choosing an optimal configuration for a
neural network model can also be better by using grid search method or employing evolutionary algorithms,
such as genetic algorithm or particle swarm optimization. Using them might mean the training time will be
increased considerably, but when they have finished, the optimal configuration is found. Once a good model
with an optimal configuration is found, it can be applied to the UDRIVE data to help with the lane change
identification. A comparison test can also be conducted between lane change identification with neural network
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and lane change identification with manual video recognition. Thus, the performance gap can be discovered
and used further to improve the development of the neural network.
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Figure 4.0.7: Results of hyperparameter tuning conducted on the modified LSTM model
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Figure 4.0.8: Results of the hyperparameter tuning conducted on the stacked LSTM model

36


	Abstract
	Contents
	Introduction
	Scope

	Theory
	Time-series Data
	Machine Learning
	Artificial Neural Network
	Feed-Forward Neural Network
	Recurrent Neural Network
	Long Short-Term Memory
	Activation Function
	Loss Function
	Back-Propagation
	Dropout
	Batch Normalization
	Optimization Algorithm

	Evaluation
	Overfitting and Underfitting
	Cross Validation
	Confusion Matrix


	Methods
	Tools
	Data
	UDrive Project
	Data Extraction
	Data Processing
	Statistical Analysis

	Neural Network Model
	Model Construction
	Hyperparameter Tuning
	Model Training


	Results
	Neural Network Performances
	Hyperparameter Tuning


	Discussion & Conclusion
	Neural Network Models
	Baseline Model
	Modified LSTM Model
	Stacked LSTM Model

	General Performance and Limitations
	Conclusion

	Future Work
	References

