
6DOF camera localization through a short
image sequence
Master’s thesis in Signals, Systems and Mechatronics

Jonas Garsten & Ivar Wikenstedt

Department of Electrical Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden, February 2, 2020

Master’s thesis February 2, 2020

6DOF camera localization through
a short image sequence

Jonas Garsten & Ivar Wikenstedt

Department of Electrical Engineering
Signal processing and Biomedical engineering
Computer vision and medical image analysis
Chalmers University of Technology

Gothenburg, Sweden, February 2, 2020

6DOF camera localization through a short image sequence
Jonas Garsten & Ivar Wikenstedt

© Jonas Garsten & Ivar Wikenstedt, February 2, 2020.

Supervisor: Torsten Sattler, Department of Electrical Engineering
Examiner: Torsten Sattler, Department of Electrical Engineering

Master’s Thesis February 2, 2020
Department of Electrical Engineering
Division of Signal processing and Biomedical engineering
Computer vision and medical image analysis
Chalmers University of Technology
SE-412 96 Gothenburg

Cover: Visualization of the full reconstruction of CMU-Seasons-Extended [51] 3D-
models using Meshlab [12], where each slice is represented by a unique colorcode.

Typeset in LATEX
Gothenburg, Sweden, February 2, 2020

iv

6DOF camera localization through a short image sequence
Jonas Garsten & Ivar Wikenstedt
Department of Electrical Engineering
Chalmers University of Technology

Keywords: Visual localization, Structure from motion, Computer vision, Sequential
localization

v

Acknowledgements
Thank you to Torsten Sattler our supervisor and examiner for all the discussions
and feedback he assisted with. Test early and test often.

To Rasmus Lundin for the endless supply of coffee and Linux support.

To David Frisk for creating the LATEX-template used in this report, licensed under
CC BY 4.0.

Authors advice: When in doubt, run RANSAC! Jonas Garsten & Ivar Wikenstedt,

Gothenburg, February 2, 2020

vii

Contents

Abstract xi

List of Figures xiii

List of Tables xv

1 Introduction 1
1.1 Related Work . 2

1.1.1 Ways to localize images . 2
1.1.2 Point Cloud Compression . 4

1.2 Content of thesis . 5

2 Theory 7
2.1 Camera Model . 7
2.2 Finding point coordinates and projection matrices 8
2.3 A Structure from Motion Pipeline . 10
2.4 The Generalized Camera . 13

2.4.1 Pose estimation using the Generalized Camera 14
2.5 Random Sample Consensus . 15

2.5.1 RANSAC with Td,d test . 16

3 Method 17
3.1 Query Reconstruction . 18
3.2 Compute 3D Descriptors . 18
3.3 Matching 3D Descriptors . 19

3.3.1 Implementation . 19
3.4 Camera Pose Estimation . 19

3.4.1 Implementation . 19
3.5 Compressing 3D Point Cloud . 21
3.6 Special case: One Image . 21

4 Results 23
4.1 Datasets . 23

4.1.1 Cambridge Landmarks St Mary´s Church 23
4.1.2 Cambrige Landmarks Street 23

4.2 Evaluation . 23
4.2.1 Results Model compression . 28

ix

Contents

5 Conclusion 31

6 Future Work 33

Bibliography 35

x

Abstract

Camera localization is a core problem in the computer vision field and is a hot topic
as cameras are more commonly integrated into navigation applications. With re-
cent technological advancements it is now possible to store and process large data
streams locally or in the cloud. One such example would be video streams. Common
localization practices only localize one image at a time. The generalized camera de-
scribes image observations as ray origins and ray directions in 3D space. Gaining the
advantage of localizing many images at the same time and can use information from
many images to do so. In this paper we develop a pipeline for camera localization
using the generalized camera and evaluate how localization accuracy is affected by
different sequence lengths. We present results showing our pipeline outperforming
state of the art localization pipelines on the Cambridge Landmarks Street and St
Mary’s Church datasets.

xi

Contents

xii

List of Figures

2.1 Camera extrincics . 8
2.2 Camera intrinsics . 9
2.3 Visualization of point triangulation 10
2.4 Extracted features and matches . 11
2.5 Image gradient computation into keypoint descriptors. 12
2.6 Graphical visualization of cameras viewing the same points 14
2.7 Graphical visualization of the generalized camera model 14

3.1 Overview pipeline . 17

4.1 Comparison methods, St Mary’s Church dataset 30
4.2 Comparison methods, Street dataset 30

xiii

List of Figures

xiv

List of Tables

4.1 Localization results presented as bins with thresholds 25
4.2 Localization results presented as median values 26
4.3 Reconstruction drift for sequence lengths 27
4.4 Localization results for overlapping sequences 28
4.5 Localization results Street, presented as median values 29
4.6 Localization results from state of the art localization pipelines 29

xv

List of Tables

xvi

1
Introduction

Visual localization is a method of identifying a camera’s location and orientation
given an image from the camera, also known as the camera pose. This problem is core
to computer vision with applications such as Structure from Motion (SfM) [1, 53],
augmented reality (AR) [42] and simultaneous localization and mapping (SLAM)
[13,63] to name a few.
Visual localization can be done in a multitude of ways depending on the application
and aim. A common approach is to find local 2D features in an image which can
be compared and matched to features in a 3D map. By matching enough features
between the two, the camera can be localized [32,59]. A more recent approach that
has gained popularity with the development of machine learning is to substitute
conventional methods with machine learning. One can use machine learning to
generate 2D features [56], match 2D and 3D features [14] or to skip these steps and
localize the camera directly [29].
In this paper, we will describe a visual localization pipeline that differentiates itself
by using the generalized camera model. The generalized camera model describes
a match between a 2D image point and a 3D model point, hereafter referred to as
2D-3D match, as a ray origin and ray direction. As matches are described in 3D
space it is possible to use matches from different images to localize many images
at a time. This makes it possible to localize more than one camera at a time by
combining the information of several images.
This pipeline takes an image sequence as input and estimates the camera trajectory
as a local point cloud by doing Structure from Motion (SfM). The points in the local
point cloud are then matched to points in a global point cloud, which is commonly
referred to as a structure-based method. To find the camera trajectory in the image
sequence, all cameras in the sequence are transformed into one generalized camera
model. Then we localize the sequence by finding a similarity transform that maps the
generalized camera to the global point cloud, based on our point correspondences.
The main question of this research is to draw a conclusion whether or not using an
image sequence can improve camera pose estimation results using the generalized
camera model. Additional questions that we want to answer is the impact of memory
compressed 3D-point model and splitting up the query sequence into fixed sequence
length.
In this report we make the following contributions: (i) A localization pipeline us-
ing a 3D structure-based method with the properties of a sequential-based method.
This will use a 3D-point map and an image sequence query or otherwise known as
a video to compute a trajectory. (ii) An evaluation of our sequential localization
algorithm on datasets commonly used for localization comparison. (iii) An exper-

1

1. Introduction

imental evaluation of the effects using different sequence lengths and compressed
3D-point clouds on our pipeline.

1.1 Related Work
This thesis main objective is to implement and evaluate how the use of generalized
cameras can improve visual localization. Therefor we make use of already existing
methods and theory when implementing our pipeline.

1.1.1 Ways to localize images
Camera localization has been a developing area for many years where different meth-
ods have emerged based on new areas of application and current technological ad-
vances. An intuitive localization type is 2D image-based localization, also known as
image retrieval. This localization method makes use of existing information associ-
ated with images such as GPS location [7, 45] and either assigns the same position
to the query images or computes the position [44] by matching features present
in both images and finding a transformation between them. The challenge is to
find the best matching image from the library in an efficient way. When libraries
grow to hundreds of thousands or millions of images [10, 11] exhaustive matching
between images becomes to slow and tasks that require localization in real time
become impossible to solve. This has made the use of Bag of Words (BoW) and
tree structures [7,24,54,55] increasingly popular because of the increased computa-
tional speed compared to exhaustive methods. One of these real time applications
is simultaneous localization and mapping (SLAM). A common problem for SLAM
is compounding errors. A small error in position estimation will grow larger with
time as more and more estimations are done. Image retrieval has had great success
in dealing with this through loop closure [22,65]. Loop closure occurs when a place
is visited a second time and is recognized as a previously visited location.

2D image based localization relies on images with location information such as
GPS tags to estimate camera poses for new image. 3D structure-based localiza-
tion removes the need for poses to be attached to images and calculates the camera
pose from a 3D reference model instead. Most structure-based localization algo-
rithms make use of the same general structure of extracting features from images
and matching these to points in a point cloud model where with enough matches,
a position and pose can be computed. This is the same independent of geograph-
ical scope, ranging from neighborhood [60] to world wide [30] localization. Even
tough geographical scope is completely different, the same localization challenges
appear. In urban environments, many of the structures have similar patterns and
colors such as brick walls. This occurs in rural areas as well but instead of structures
it is vegetation that looks similar. With changing seasons and lighting conditions
added on top, the task of finding robust and unique matches become increasingly
challenging [30,49,66].
A wide variety of methods have been proposed to increase localization accuracy on
increasingly challenging data sets. The most common way of matching features is

2

1. Introduction

to match image-to-model. In [31] it is proposed that doing the opposite, matching
model-to-image will increase localization accuracy. Since this method utilizes that
similar images will have similar features. This is done by creating different scenes
that images can be matched against. This has the potential of greatly reducing the
number of feature comparisons. Similarly, [32] makes use of co-visibility between
3D points to not consider every match in isolation instead of evaluating if an image
has many closely related matches. In a co-visibility graph the nodes are 3D points
where two co-visible points, pi, pj, in the graph are bi-directional connected with
edges eij and eji. The wight of the edge is calculated with

cij = |Ai ∩ Aj|
|Aj|

(1.1)

where cij is the weight if edge eij, Ai and Aj is the set if database images containing
point pi and pj.
As with image retrieval, there have been suggestions to use BoW for structure-based
localization. BoW is used in computer vision to index similar images or features un-
der words. This will make it easier to find which images are similar to one another.
One proposal [48] is to use a fine vocabulary, where a BoWs vocabulary refers to the
resolution of the grouping of images, in combination with co-visibility constraints
to localize cameras and present results of greatly reduced memory requirements for
large datasets.

A more recent development in the computer vision field is to switch out traditional
practices for machine learning alternatives. Machine learning uses neural networks
that are modeled after neurons in the human brain. These networks are trained on
massive amounts of data to make certain connection between input data and desired
output. A simple example would be that given an image as input, the network will
output the probabilities of which country it was taken in. The two main applica-
tions of neural networks to camera localization are (i), to directly predict a cameras
pose from the input image. (ii), to replace some part of the camera localization
pipeline with a neural network. In the case of (i), [29] uses a convolutional neural
network (CNN) to estimate camera poses and displays result of more robust pose
estimation. Walch et al. [64] built on this idea by adding a long short-term memory
(LSTM) [23]. Adding a LSTM helps in preventing overfitting, a phenomenon in
machine learning where the network becomes adapted to the training data and its
ability to make correct predictions on new data decrease.
As for ii, in [39] normal feature detection is replaced by synthetic view point gen-
eration that is then evaluated with the SeqSlam [40] algorithm. There is a problem
in camera localization where a change in view point, such as lateral shifts, can neg-
atively affect localization results. The proposed solution has a network trained to
estimate depth maps, assigning how far objects are from the camera. With this
depth map, it is possible to generate new view points that are shifted laterally. All
views are then evaluated separately for better results.

In many modern application of camera localization, the images to be localized are
not disordered but come from a video stream where each consecutive image should

3

1. Introduction

have a lot in common. This sequential data flow is common in robots, autonomous
cars and SLAM. The sequential nature of query images can be exploited by estimat-
ing movement trajectories [13] from the most recent pose estimations or to not only
match one image at a time but match an entire sequence of images [40] to increase
the likelihood of good matches. This method is referred to as sequential-based.

In most of the previous works, there has only been cases where a single camera
is used. This does imply that research into utilizing multi-camera systems have
been overlooked. Multi-camera systems are not a new idea. The topic has been
researched since the early two thousands [16, 26]. Most of the work up till now
have focused on using multiple cameras for SLAM [9, 26, 63] where the benefit of
more cameras is a wider filed of view, enabling the multi-camera rig to analyze more
structure at the same time.
In image localization where there is no rig or robot to add more cameras to the
approach has instead been to try and represent cameras in a more general way to
localize multiple images as if they were only a single image. This was introduced
by Grossberg and Nayar [17] who proposed a way of modeling pixels in an image as
raxels. A Raxel is the virtual representation of a photo sensitive element measur-
ing the light intensity a pixel is exposed to.The idea of modeling light sensors was
then further expanded upon by [43] who introduced the generalized camera model.
The generalized camera model switched out raxels for Plücker vector, simplifying the
camera model by, for example, removing the modulation of light intensity. Recently,
Sweeney et al. [59] applied the generalized camera to large scale SfM and displayed
impressive results reconstructing the city of Rome in only twenty two minutes.

1.1.2 Point Cloud Compression
With generalized cameras having the ability to localize more than one image at a
time by using the combined information present in all images, it is of interest to
know how this added information can be used for camera localization. One applica-
tion is point cloud compression. As camera localization moves towards applications
requiring real-time performance [18,34] and the hardware in current mobile devices
is not yet powerful enough for running high preforming localization algorithms in
real-time. An alternative is then to offload the localization to a server [38]. The
issue with this is that visual information captured by the mobile device has to be
sent to the server requiring fast transfer speeds. To minimize transfer speed require-
ments one can use point cloud compression to reduce the total data that has to be
transmitted. Point cloud compression is generally done in two ways. Either the
number of points are reduced [8, 31] or the point descriptor is compressed [18, 48].
Both approaches try to achieve the same result in reducing the memory require-
ments for point cloud models. When selecting a subset of points the goal is to
create a more compact description of a model without losing significant localization
performance. In the method by S. Cao and N. Snavely [8] compression is done by
incrementally selecting points which have good coverage and are distinct until all
images can see k points. How good coverage a point has is not determined by how
many images it is visible in but rather a probability pij of point i being visible in

4

1. Introduction

image j is defined. This is similar to simply selecting the points with best coverage
in the already registered images. However, it was found that using a probabilistic
approach contributed to finding good feature matches. Points are then selected to
maximize the probability of each images seeing k points. To increase the likelihood
of picking distinct points the distance between a point and already picked points
in descriptor space is also considered. Compressing the descriptors is tricky as the
objective is to reduce the size while maintaining the distinctiveness of the descrip-
tors. Intuitively, reducing the size of all descriptors would result in a less descriptive
model representation and result in poor localization and [34] is an example of com-
pression affecting localization accuracy. However, the application here is a SLAM
system and the worse image localization accuracy did not significantly impact its
pose estimation performance.They employ product quantization [25] which reduces
a high dimensional descriptor into several descriptors of lower dimensionality. The
low dimensional descriptors are clustered using k-means clustering and each cluster
is then represented with a single descriptor. In the original descriptor each low di-
mensional descriptor will be exchanged with a descriptor representing the cluster it
belongs to.
Given the increase in demand for real-time solutions in mobile applications, viewing
the effects of using a compressed point cloud model in our pipeline is in our interest.

1.2 Content of thesis
This thesis is split into four sections: Theory, Method, Results and Conclusion. In
Theory we will explain how camera localization works and what a generalized camera
is. Method will explain the different parts of our pipeline and specify what software
and methods we use. Results will include our findings and discussion regarding our
results. Finally we present our findings in short in the Conclusion section and will
discuss what more can be done in Future Work.

5

1. Introduction

6

2
Theory

Visual localization has been a research topic for decades where many methods have
been developed to improve localization accuracy. In this chapter the underlying the-
ory for visual localization will be presented to give the reader information necessary
to understand the topic of visual localization.
Our pipeline boils down to two steps, creating models using Structure from Motion
and localizing images by comparing Structure from Motion models. The first chap-
ters will explain how cameras are modeled and how these models can be used to
calculate camera positions as well as to build 3D models of a scene. The later chap-
ters describe how the generalized camera works and how images can be localized
using this model. Lastly a method called RANSAC will be explained and why it is
necessary to use RANSAC when the data is noisy or contain outliers.

2.1 Camera Model
A camera model describes the transformation of points in the world into an image.
There are many different types of camera models depending on for example which
type of lens a camera is using. The simplest camera model is the pinhole camera
model. This camera model has a camera center C where all image rays intersect.
Global points are projected, transformed to the image plane, by following the ray
connecting the point to the camera center until it intersects the image plane. The
transformation from world coordinates into a pinhole camera can be expressed with
the projection matrix

P = K
[
R t

]
, (2.1)

where R is a 3x3 rotation matrix, t is a 3x1 translation vector and K is a 3x3
calibration matrix. R and t are called the extrinsic parameters of a projection
matrix containing information about camera orientation and position while K is the
intrinsic parameters describing the camera. As seen in Figure 2.1 the rotation R
and translation t transform global point into a camera coordinate system.
From a camera coordinate system, points can be projected by applying the camera
calibration matrix K as seen in Figure 2.2. The calibration matrix for a pinhole
camera looks like

K =

γf sf x0
0 f y0
0 0 1

 , (2.2)

where the parameters are; focal length f, the distance between the center of projec-
tion and the image plane. Skew s, which describes tilt of the pixels in the image.

7

2. Theory

Aspect ratio γ, determining the pixel x-y ratio and finally x0 and y0 maps the origin
from where the z-axis intersects the image plane to the upper left pixel. When ap-
plying the calibration matrix, the distances are transformed into pixel values. With
this, an image pixel coordinate can be found by reprojecting its corresponding global
point

[
X Y Z

]T
into the image. The projection matrix would be applied as

λ

xy
1

︸︷︷︸

x̄

= P

X
Y
Z
1

︸ ︷︷ ︸

X̄

, (2.3)

where [x y]T is an image pixel coordinate and λ is a scaling parameter. This
compact way of applying R,t and K requires the use of homogeneous coordinates.
Homogeneous coordinates lift a N-dimensional point to a N+1 dimensional line. This
allows for translations and projections to be expressed as matrix multiplications.
The N-dimensional point can after a transformation be retrieved by dividing by the
last entry and then dropping the last entry.
If we instead want to transform a point from an image into world coordinates, a
problem occurs. To project a point, we apply P and divide with the last entry.
But when transforming a point from the image into the world the last entry is not
known. Calculating the last entry is not possible with a single image. For this a
second image has to be added.

2.2 Finding point coordinates and projection ma-
trices

Given two cameras with different position, if both cameras can see the same 3D point
its exact position can be computed. Because the point is present in both images,
there are two different lines describing where it is located in 3D space. Its position is

Figure 2.1: Visualization of applying the extrinsic parameters of camera matrix
P will transform a 3D point from global coordinates into the camera coordinate
system.

8

2. Theory

then where both lines intersect (Figure 2.3). In essence, an equation system is solved
by inserting image and 3D point information in Equation (2.3). The same principle
can be applied when solving camera matrices. A camera matrix has the dimensions
of 3x4, containing twelve variables. We only have to solve eleven variables as it is
determined up to an arbitrary scale. To solve eleven variables, eleven equations are
required. The camera equation (2.3) gives three equations for every point but λ also
has to be solved for each new point. The number of points required then becomes

3n ≥ 11 + n⇒ n ≥ 5.5 (2.4)

A simple approach to solve systems of linear equations is called direct linear trans-
form (DLT) [20]. This approach expresses all equations in terms of a matrix mul-
tiplication and finds an approximate nullspace for the matrix. The DLT algorithm
explained below is a slightly modified version [27] of the one in Hartley and Zisser-
mans book [20]. First, lets express P as

P =

p1
p2
p3

 (2.5)

where pi, i = 1, 2, 3, are 1x4 row vectors from P . Insert this representation of P
into (2.3) and it can be written as

p1X − λx = 0 (2.6)
p2X − λy = 0 (2.7)
p3X − λ = 0 (2.8)

which in matrix form looks like

X
T 0 0 −x

0 XT 0 −y
0 0 XT −1

pT

1
pT

2
pT

3
λ

 =

0
0
0

 . (2.9)

Figure 2.2: Applying the calibration matrix K to a point in camera coordinates
will reproject it into the image as a pixel coordinate.

9

2. Theory

Figure 2.3: Visualization of how 3D point locations can be determined by finding
correspondences in two separate image and evaluate where the rays intersect.

This is the matrix for only a single point. To find P at least 5.5 points are required
according to equation 2.4. Since you can not use partial points, six points are
required. If we include more points in equation 2.9 the matrix will be on the form

XT
1 0 0 −x1 0 0 · · ·

0 XT
1 0 −y1 0 0 · · ·

0 0 XT
1 −1 0 0 · · ·

XT
2 0 0 0 −x2 0 · · ·

0 XT
2 0 0 −y2 0 · · ·

0 0 XT
2 0 −1 0 · · ·

XT
3 0 0 0 0 −x3 · · ·

0 XT
3 0 0 0 −y3 · · ·

0 0 XT
3 0 0 −1 · · ·

...

︸ ︷︷ ︸

M

pT
1
pT

2
pT

3
λ1
λ2
λ3
...

︸ ︷︷ ︸

v

=

0
0
0
0
0
0
...

. (2.10)

This equation can be solved by finding a non-zero vector in the nullspace of M .
Since the scale of the solution is arbitrary the constraint ||v||2 = 1 can be applied.
This system will most likely not have an exact solution and a least squares solution
is found by minimizing

min
||v||2=1

||Mv||2. (2.11)

2.3 A Structure from Motion Pipeline
A Structure from Motion (SfM) pipeline is widely used to reconstruct 3D point
models from images [1, 53, 59]. A SfM pipeline is divided into the following steps:

10

2. Theory

1. Extract image features and compute descriptors. To compare images against
each other, it is possible to simply use individual pixel values or a blurred
version to see if general patterns match. However, this yields poor results and
unique features are instead computed.

2. Match descriptors. With sufficiently unique features, they can now be matched
to determine if the same feature is present in multiple images.

3. Estimate camera positions and create point cloud model. Matched features can
now be triangulated into 3D points. This can be done either by Incremental
SfM [1] or Global SfM [41].

Feature extraction is commonly done by using SIFT [33] descriptors. This is done
by sliding a Difference of Gaussian filter over the image and detecting local extrema
for the filter. Descriptors [3,33,46] are used to describe feature points. A descriptor
does not have to be made in any particular way but a common descriptor such as
SIFT [33] uses gradient vectors to describe features. As seen in Figure 2.5, gradients
are created by analyzing a small portion of the image and creating gradients to
nearby pixels based on changes in light intensity. All gradients are then placed into
the bins of multiple histograms which are concatenate to form a descriptor. When
creating a descriptor, the goal is to make it as robust and unique as possible. A
robust descriptor will not change in different lighting and weather conditions. This is
an important characteristic for matching features in images taken over long periods
of time. Uniqueness in the other hand is important as to not match descriptors
which do not represent the same point, so called false positives.

Figure 2.4: Extracted features (red dots) and the matched features between images
(blue line). Both images are from the dataset Cambridge Landmarks St Mary’s
Church [29]. Feature extraction and matching was done with COLMAP [53].

11

2. Theory

Figure 2.5: Image gradient computation into keypoint descriptors.

Matching descriptors to one another is a simple task in theory. As with simple 3D
points, comparing descriptors is done by computing the Euclidean distance between
them. What may not be obvious is that with high dimensional data such as descrip-
tors, this distance will be large even to close matches [2]. Close matches will have
many dimensions that match well but some will not and this is enough for distances
to grow large. High dimensional data is also usually gathered in large quantities
because of the larger space they reside in. This makes matching all descriptors a
non trivial task that can take lots of time. To decrease the time spent matching,
approximate search [35] is used instead of exhaustively looking for the best match.
Approximate search can be done by arranging all data into a k-d tree (k-dimensional
tree) [4]. Arranging the data in a tree structure makes it easier to only search data
that is similar. Starting from the top of the tree, similar data can be found by
following the path down the tree which has the best matches. To further ensure
that good matches are found it is common to use Lowe´s ratio test [33] to discard
matches that are probable to be false. The ratio test takes the ratio of the distance
between the first and second nearest neighbors of the descriptor to be matched and
evaluates if the ratio is less than a pre-defined threshold. The first nearest neighbor
is the most similar descriptor to the matched descriptor while the second nearest
neighbor is the second most similar descriptor. This is expressed as

|di − dN1|2

|di − dN2|2
≤ tol (2.12)

where di is the descriptor to be matched, dN1 and dN2 are the first and second
nearest neighbor matches and tol is the predefined tolerance. A match passes the
ratio test if the ratio is below the threshold. Employing the ratio test ensures that
matched descriptors are more similar to each other than to other descriptors. This
filters out matches that are unlikely to be correct.

Creating a point cloud model can be done in two ways, incrementally or globally.
Incremental SfM [53] adds one image at a time to the reconstruction, incrementally
expanding the model. Global SfM [41] estimates all camera positions at the same
time by first constructing a graph connecting cameras viewing the same scene. Only
incremental SfM will be explained here.

12

2. Theory

Incremental SfM first finds a good starting image pair from which an initial model
can be created. Given this initial model, one by one images are added to the model.
Each new image has to see n 3D points already in the model for a camera pose to
be computed. The number of points depend on how much information is available
about the camera and also determines which PnP solver to be used [67]. New
point correspondences can then be triangulated and added to the point cloud. As
more images are added, small errors will accumulate distorting the model. It is
therefor common to perform optimization on both 3D point and camera poses with
set intervals.

Optimization or more specifically bundle adjustment [62] is performed to minimize
growing errors by shifting the position of 3D points and, depending on how much
information about the camera is known, tuning the projection matrix. Localization
error is usually quantified as the reprojection error of 3D points. It is computed by
taking the square of all 2D image points subtracted by their respectively reprojected
3D point correspondence as

e =
n∑

i=1

m∑
j=1

∣∣∣∣∣
∣∣∣∣∣
(
xij −

p1
i Xj

p3
i Xj

, yij −
p2

i Xj

p3
i Xj

)∣∣∣∣∣
∣∣∣∣∣
2

(2.13)

where
[
xij yij

]
is the 2D image point in camera i corresponding to 3D point j.

pk
i , k = 1, 2, 3 are the rows of the projection matrix P for camera i in Equation

(2.5).
Unfortunately, minimizing Equation (2.13) is not simple as this is a non-linear least
squares problem. Therefor gradient decent methods are used for local optimization.

2.4 The Generalized Camera

The generalized camera describes image observations as rays of light. These rays
have two components, one vector for the direction in which the ray is pointing and
and a point which lies on the ray. This parameterization is not unique to generalized
cameras and can be used for pinhole cameras as well. Though, there are distinct
differences between them. A pinhole camera has a center of projection/camera
center. In Figure 2.6 this would be Ci, i = 1, 2, 3. A center of projection is where
all rays intersect. A generalized camera does not have this constraint. In theory,
every single ray could have its own center of projection. Another distinguishing
feature is the lack of individual camera coordinate systems. For normal multi-
camera systems such as the one in Figure 2.6, the pose of each individual camera
has to be computed separately because the same rotation and translation will not
transform 3D point correctly into all different camera coordinate systems. If the
system is instead formulated as a generalized camera (Figure 2.7), all rays will be in
the same coordinate frame and a single transformation is needed to find a solution.

13

2. Theory

Figure 2.6: A graphical visualization of multiple cameras viewing the same points.

2.4.1 Pose estimation using the Generalized Camera
As mentioned before, generalized cameras represent image observations as rays of
light. A ray-point correspondence can be expressed as

sqi + αir̄i = Rri + t, i = 1, 2, 3, ... (2.14)

where s, R, t is the scale, rotation and translation for the sought transformation
from world coordinates into the generalized camera coordinate system [58]. The ray
has ray origin qi and ray direction r̄i. αi stretches the rays to meet the 3D point ri

matched to ray i such that αi = ||Rri + t− sqi||. The rotation can be parameterized
using Cayley-Gibbs-Rodriguez to be represented with three unknowns. Translation
plus scale are four more unknowns. When the query is constructed it is arbitrary
scaled. Since the task is to localize in regards to the model, the scale needs to be
solved for. For each correspondence an α also has to be solved. This result in 7 + n
total unknown variables, where n is the amount of points used. The problem of
finding a transformation which lets 3D points coincide with rays can be expressed

Figure 2.7: A graphical visualization of how the cameras in Figure 2.6 could be
represented as a single generalized camera.

14

2. Theory

as minimizing the cost function

C(R, t, s) =
n∑

i=1
||r̄i −

1
αi

(Rri + t− sqi)||2 . (2.15)

We have one slight problem. For every correspondence added a new equation is
introduced but so is a new unknown variable. Fortunately, it is possible to exploit
linear dependence between unknowns and rewrite the equation in terms of only the
rotation R. Equation (2.14) can be rewritten as

r̄1 q1 −I

.
r̄n qn −I

︸ ︷︷ ︸

A

α1
...
αn

s
t

︸ ︷︷ ︸

x

=

R

. . .
R

︸ ︷︷ ︸

W

ri
...
rn

︸ ︷︷ ︸

b

(2.16)

⇔ Ax = Wb (2.17)

where x contain all linearly dependent variables to be eliminated. Manipulating
Equation (2.17) it is possible to express x as

x = (ATA)−1ATWb =

US
V

Wb (2.18)

where U,S,V are constant matrices constructed from (ATA)−1AT . By expressing
t, s, α in terms of U, S, V,W, b it is now possible to rewrite Equation (2.14) and
(2.15) to only include the unknown rotation. There are now more equations than
unknowns and it is possible to find a least squares solution. Also observe that the
number of unknowns now is independent from the number of observations making
it scalable in terms of number of points used by the solver. For a more detailed
explanation, read [58].

2.5 Random Sample Consensus
Random Sample Consensus (RANSAC) [15] is a method for picking random data
samples in a way that ensures an outlier free subset of data to a certain degree. In
many optimization tasks, the data is not perfect. It contains noisy measurements
and outliers. Optimizing for all points can then be challenging. Outliers can be far
off from a correct measurement, contributing with large errors to the cost function,
drowning the effect of errors from correct measurements. The RANSAC method is
widely used to try and find a subset of data that only contains inliers.

Given a set of data points and a solver requiring s points to compute a solution,
RANSAC randomly picks a subset of s data points N number of times. The idea
is that in a set of points some will be outliers and some will be inliers. It is desired

15

2. Theory

to pick a subset of points which is outlier free, resulting in the computation of a
correct solution. The number of times a subset has to be picked is described by

N = log(1− p)
log(1− (1− e)s) (2.19)

where N is the number of iteration, s is how many points are needed to find a
solution, e is the ratio between outliers and all matched points and p represents the
desired probability of finding the best model.
The outlier ratio e is hard to determine and scarcely available. It can therefor
be necessary to update the distribution based on inlier results calculated during
runtime. The process of calculating inliers is done every iteration of RANSAC to
evaluate if the subset of points picked resulted in a good solution. To determine
if a 3D point is an inlier, the point is reprojected using (2.3). Then the distance
between the reprojected point and the image feature which the point is matched
against is computed. If this distance is smaller that a pre-determined threshold,
it is considered an inlier. This procedure is done for all points and will give the
number of inliers for a given solution. The number of inliers is used to calculate
a new outlier ratio and is then inserted back in (2.19) to calculate the number of
iterations needed.

2.5.1 RANSAC with Td,d test
The Td,d test [36] is a small addition to the normal RANSAC procedure. In normal
RANSAC each solution will be evaluated on all data points. This is computationally
expensive and shown to be unnecessary. Instead, the Td,d test uses a very smaller
subset d of data points for a first preliminary evaluation. If the preliminary evalu-
ation suggests that a good solution has been found by all points in d being inliers,
then all other data is also evaluated to determine if a new best solution has been
found. The number of iterations needed can be formulated as picking s + d inlier
points as

N = log(1− p)
log(1− (1− e)s+d) (2.20)

where d is the number of points to evaluate the solution on. It was shown in [36]
that choosing d << N is enough to confidently tell if a solution is correct or not.

16

3
Method

The task at hand is to create a localization pipeline using a 3D structure-based
method with the properties of a sequential-based method. By using a 3D-point
model and a query image sequence, multiple camera pose estimates are computed
and evaluated. The pipeline is built with a modular structure in mind so that if
desired, a part can be swapped without influencing the remaining modules. Given a
query of sequential images and a model, a camera pose estimations are computed for
every image in the sequence. This chapter will cover how the pipeline is constructed
as shown in figure 3.1.

Figure 3.1: This is an overview of the pipeline. Given a sequence of images a query
reconstruction is created. From the reconstruction, a 3D descriptor is computed and
matched against the models 3D descriptors.

Query reconstruction is a collective term for the process of computing a 3D SfM
reconstruction. Given a set of images, features are extracted from all images. All
features are matched against each other and then computed into a Structure from
Motion reconstruction. Feature extraction, feature 2D-3D matching and model gen-
eration is done with COLMAP [53]. Since COLMAP outputs descriptors for 2D
features and not for the reconstructed 3D points, a descriptor for each 3D point is
calculated by creating an elementwise mean descriptor from all feature descriptors
mapped to each 3D point. The 3D descriptor is then matched with the precom-
puted model 3D descriptor where a ratio test is used for outlier rejection. 3D-3D

17

3. Method

matching is done using a kd-tree search algorithm for nearest neighbor matching.
Using the matched points, a camera pose is computed using the generalized camera
solver gDLS [58].

It is also possible to include compression in the pipeline. Either the pipeline is run
from start to finish with an added step of compressing the model point cloud before
the matching step or using previous query reconstruction to only re-run the descrip-
tor matching and camera pose estimation steps in Figure 3.1 with a compressed
point cloud for the model. No implementation is available for running compressed
descriptors.
Below we will cover each module in detail starting with query reconstruction followed
by computing 3D descriptors, matching 3D descriptors, camera pose estimation,
compression of 3D model and the special case of using a sequence length of one.

3.1 Query Reconstruction
The query is reconstructed using COLMAP [53]. Given a sequence of images
COLMAP extracts feature points and 128-dimensional descriptors that describes
the respective point. COLMAP implements SIFT [33] to extract feature descriptors
in each image. This process is represented as Feature Extraction in Figure 3.1. The
data is then processed in Feature Matching by matching the descriptors between the
images, illustrated in Figure 2.4. The final step of the reconstruction is computing
the Structure from Motion model using the matched data. Using the matched fea-
tures between images 3D points are triangulated, resulting in a 3D reconstruction
and estimates of the cameras pose for each query image in the query-coordinate
frame obtained from the local reconstruction. The query-coordinate frame will from
here on be referred to as query frame. The resulting reconstruction is defined up to
an arbitrary scaling factor in its own query frame. As a last step, all 2D features
which are not assigned to a 3D point after the COLMAP reconstruction will be
assigned to a 3D point on the image plane and transformed into the query model
using the poses estimated from SfM. If only the points that were triangulated from
SfM were to be used in the estimation of the generalized camera pose, it would
result in to few rays and the solver would estimate significantly less accurate camera
poses. As the solver utilizes ray origins and ray directions the depth of a point is
not needed. However, the COLMAP reconstruction is still necessary to determine
all camera poses in the query frame.

3.2 Compute 3D Descriptors
The resulting data from the reconstructions provides 3D points in query coordinate
frame. The model and query are defined in their own frames from here on referred
to as world and query coordinate frame. These 3D points are only described in
space (X,Y,Z) and do not have a descriptor assigned to them. This is why the 3D
descriptor d̄ is computed, by taking the mean of the feature point descriptors di

that have been matched to the 3D point. The resulting descriptor d̄ = 1
n

∑n
i=0 di

18

3. Method

is assigned to the 3D point. The mean is used since the corresponding feature
descriptors should be similar due to matching. This results in a 128-long vector
describing the 3D-point. This is done for the query and model, where the model is
computed beforehand.

3.3 Matching 3D Descriptors
With 3D descriptors created for both query and model the task is to find matches
between these two models. We use the existing library FLANN, Fast Library for
Approximate Nearest Neighbors [35]. FLANN is used to find the most similar model
descriptor to all query descriptors, however due to the amount and dimensionality of
descriptors, a kd-tree search is implemented to reduce computation time. FLANN
outputs the indexes that correspond to the most similar descriptors in the model
and the distance between the descriptors, which is the vector norm of the difference
between the query d̄i and model dNN descriptors. Since there is a possibility that
some matches are outliers Lowe’s ratio test [33] is implemented as described in
Equation (2.12).

3.3.1 Implementation
The FLANN library was chosen as it is highly customizable, in our method a kd-tree
search is used. The default settings are used, with the exceptions of trees changed
from 1 to 10 and branches from 32 to 100. FLANN is set to search for the two
nearest neighbors. The tolerance used in Lowe’s ratio test is 0.75.

3.4 Camera Pose Estimation
Using the matched data and the camera poses from the query reconstruction, the
final step is to compute the camera pose estimation in world coordinate frame. For
this we use primarily the gDLS (generalized Direct Least Squares) solver [58] and
in the unique case when the image sequence is one image, the DlsPnp (Direct least
squares Perspective n Point) [21] solver is used. The solvers implementations in
Theia SfM library [57] are used. To handle outliers in the matches RANSAC with
Td,d test [37] is implemented.

3.4.1 Implementation
To use the solvers the matches needs to be converted into ray origins and ray direc-
tions. This is done by taking the difference between the point and camera center

qi,j = pi − Cj (3.1)

where qi,j is the ray origin, pi is the 3D point coordinate and Cj is the camera
center/ray origin, the light ray is then normalized. At least 4 light rays and 4 ray
origins are necessary to solve with both gDLS and DlsPnp. In the description for
the solver in the Theia SfM library [57] it says "Theoretically, up to 27 solutions

19

3. Method

may be returned, but in practice only 4 real solutions arise". Each solution contains
a scale s, rotation R and translation t representing a similarity transform between
query frame and world frame. Since there are outliers in the matching RANSAC
with Td,d test [37] is implemented to find the best solution. For a set amount of
iterations RANSAC samples five light rays and their ray origins where four of these
light rays and ray origins are used to compute solutions using the gDLS solver.
The resulting solutions are then applied to the fifth rays corresponding 3D point,
the point is transformed and reprojected down onto the image. If the reprojection
error is less then a set tolerance (we used 10 pixels) the light ray and ray origin is
considered good enough for the solution to be evaluated on all rays. By transforming
the query point cloud and reprojecting all points we evaluate how many inliers there
are. The solution that produces the most inliers after all RANSAC iterations will be
presented as best_solution. The choice of using RANSAC was due to the amount
of light rays and ray origins, to decreased the computation time for each iteration
RANSAC with Td,d test is used. However since the amount of sampled light rays
increase, based on Equation 2.19 the amount of iterations necessary for a given
probability of picking an outlier free subset is also increased. After the iterations,
the best_solution defined as (s, R, t) is then applied to the camera pose estimates
(Rq, tq) in query frame, resulting in the desired output (Rest, test) where Rest = RqR
and test = Restt+ 1

s
tq. The code used for computing the camera poses are presented

as pseudo-code in Algorithm 1.

Algorithm 1 Solver with RANSAC
1: Convert matches into light rays and ray origins
2: for Amount of RANSAC iterations do
3: Sample 5 random query rays and corresponding model 3D points
4: Use rays 1-4 in gDLS
5: for all solutions do
6: Apply solution to fifth point
7: Compute reprojection error of transformed fifth point
8: if reprojection error ≤ threshold then
9: inliers = 0

10: for all query points do
11: Apply solution
12: Compute reprojection error
13: if reprojection error ≤ threshold then
14: inliers = inliers + 1
15: if inliers > best_inliers then
16: update best_inliers
17: update best_solution
18: Apply best_solution to query

20

3. Method

3.5 Compressing 3D Point Cloud
When compressing the 3D model the total amount of 3D points are reduced. We
specify the compression as how many points are left compared to the original
amount. For example if there originally are one hundred points and after com-
pression only ten are left, this would be a compression rate of ten percent, thus
reducing the necessary static storage for the model into 1/10 of the original size. It
would be preferable if this percentage could be specified an input to the compression
algorithm but it introduces some unwanted problems. When compressing data the
goal is to preserve as much information as possible in a small set of all data. We
could simply pick the first x% of points based on how many images observe the point
as a measure. However, this could lead to the points being picked all ending up in
the same region of the model. This could happen if there are more images depicting
the same scene or if one scene contain more structural variance in the model dataset.
This would result in a compressed model with partial or no coverage for some areas.
We prevent this from happening by instead specifying a minimum amount of points
that all images must see, similar to the method by Li et al. [31]. First, points are
sorted and picked after how many images they are present in. As points are being
picked and an image reaches the minimum number of points required, it will no
longer count toward the number of images a point is present in and all points are
resorted. This continues until all images can see the minimum amount of points or
all points have been evaluated since it’s possible that some images view less then
the minimum requested amount of points.

3.6 Special case: One Image
When using a single image COLMAP can not create a query reconstruction. Instead,
a 3D point is created for every image feature. This point is placed in the image plane,
a z-distance of one, and the same x and y pixel value as the image feature. It is then
transformed with the inverse calibration matrix to be placed in the query coordinate
system. Using one images also results in all rays having the same ray origin. gDLS
can not find a solution if all rays have the same origin. Instead DlsPnP is used.

21

3. Method

22

4
Results

In this chapter we will present our localization results for different sequence lengths
as as well as how overlapping images and compressed data affect localization using
generalized cameras.

4.1 Datasets
To verify that our pipeline achieves significant results we have evaluated our pipeline
on the Cambridge Landmarks dataset [29] as it contains scenes of different sizes and
is widely used in the visual localization community. All scenes in the dataset were
recorded roughly under the same weather conditions.

4.1.1 Cambridge Landmarks St Mary´s Church
In the St Mary’s Church dataset all images come in a number of image sequences. It
contains a prebuilt model reconstructed from images intended to be used for training
of neural networks. It also contains test images that have not been used to create
the model. In total there are around 1500 training images and 500 test images to
evaluate on. As St Mary’s Church is a small dataset of a structure with well defined
features it is used as a first benchmark to determine if a localization algorithm is
able to localize images in a relatively easy scene.

4.1.2 Cambrige Landmarks Street
The Street scene shows King’s Parade street in Cambridge. It contains roughly
3000 training images which the included model is reconstructed from. There are
also nearly 3000 test images. The training images are divided into four sequences;
west, east, north and south. In each sequence the camera is only pointed in the
direction of the sequence name. The test images are instead taken by walking
up and down King’s Parade constantly rotating. Street poses a more challenging
localization problem as it features many repeated features over a larger area and a
greater variety of depth at which structure are located.

4.2 Evaluation
We evaluate our pipeline implementation on the above described datasets. The re-
sults will be presented in two ways. First to evaluate the impact of different sequence

23

4. Results

length our results from the St Mary’s and Street will be presented in the same way
as [51] to observe the trends of increasing sequence length. Our results will also be
presented as median positional and orientation error of the pose estimation to com-
pare results against other camera localization methods [52]. More specifically we
will compare against some deep learning approaches, PoseNet with geometric loss
function [28], MapNet [6], AnchorNet [47]; and some structure based approaches,
DSAC++ [5], and ActiveSearch [50] as well as the image retrieval method Den-
seVLAD [61] as this will be a good selection of methods highlighting localization
results from different approaches. Additionally to this we will evaluate the impact
of using a compressed 3D point model with the initial assumption that by using
more images the point cloud can be compressed to a fraction of its initial size with-
out significantly impacting localization results.

In [51] each image is placed in bins depending how accurately it was localized in posi-
tional error computed by the Euclidean distance and the orientation error (Xm,Y o).
There are three bins with thresholds (0.25m, 2o), (0.5m, 5o) and (5m, 10o) labeled
fine-, medium- and coarse-precision. An image is placed in all or none of the bins
depending on how accurately it was localized. We will measure pose accuracy as
the absolute orientation and position error between the estimation and the ground
truth. The orientation error |α| is measured by standard practice [19] and is com-
puted as 2 cos |α| = trace(R−1

gt Rest) where |α| is the minimum rotation angle to align
the estimated rotation matrix Rest to the ground truth rotation Rgt. The position
error is measured as the Euclidean distance between the ground truth camera origin
cgt and cest the estimated camera origin, ||cest − cgt||2.

The localization results for our pipeline on the Street and St Mary’s dataset shown
in bins can be seen in Table 4.1 where different sequence lengths are evaluated on
the two datasets. Of note is that the St Mary’s dataset contains three sequences of
images with two of them consisting of less than a hundred images. When localizing
images with sequence lengths of eighty five and above, the entire sequence was then
localized at the same time. There is a clear trend between sequence lengths where
results improve with each step up in sequence length until a certain point where
results start to fluctuate up and down. For Street this happens for longer sequence
lengths than St Mary’s. For both datasets the use of sequences vastly outperforms
the results from the single image solver. However for some sequence lengths the
single image case performs better. This is likely the result of some sequences not
being reconstructed and therefor the images in the sequence are not localized.
In Table 4.2 the results are presented as median position and orientation error to be
compared with state of the art localization results presented in [52]. We manage to
outperform the best Street localization result in position while our pipeline is only
surpassed by ActiveSearch in orientation error for a sequence length of eighty. This
is presented in Table 4.6 and visualized in Figure 4.1 and 4.2.
An advantage of localizing sequences of images is that we can overlap sequences with
each other thus the images exist in multiple queries. This increases the likelihood of
the image existing in a reconstruction and therefor being localized. When presented
with two or more poses we take the one with the most inliers, computed by pro-

24

4. Results

Street St Mary’s
m
deg

.25/.50/5.0
2/5/10

.25/.50/5.0
2/5/10

1 12.8/23.4/37.9 0/3.9/97.8
5 2.2/5.7/25.2 5.5/15.8/72.3
10 4.3/9.9/33.7 9.8/27.1/89.8
15 4.0/9.0/26.8 8.1/23.1/89.3
20 2.8/8.6/33.5 4.9/18.6/88.7
25 4.1/11.7/34.5 17.3/34.5/88.7
30 4.3/12.8/38.2 15.0/38.2/94.5
35 7.4/17.4/42.0 16.2/46.2/90.6
40 5.2/11.3/20.2 23.1/54.5/98.3
45 11.3/26.1/56.3 21.2/48.5/99.2
50 10.8/23.6/43.0 27.8/60.0/99.4
55 6.6/19.1/46.5 35.3/69.4/99.6
60 8.7/21.7/51.7 25.4/59.2/91.5
65 5.3/17.1/46.5 25.2/62.2/99.4
70 5.6/19.8/52.9 24.2/62.8/99.1
75 13.1/29.5/62.0 28.9/69.0/99.2
80 11.0/30.3/67.1 28.4/64.5/99.1
85 11.3/29.0/56.7 28.9/63.3/99.4
90 11.1/21.9/48.2 20.5/54.3/95.3
95 12.6/28.6/60.5 20.7/61.3/99.2
100 10.7/23.9/52.4 22.4/63.0/98.9

Table 4.1: This table shows localization results on the Street and St Mary’s
datasets for different sequence lengths where all images are assigned to bins de-
pending on how accurately they were localized. Presented is the percentage of
images clearing the threshold for each bin. In bold are the best localization results
for Street and St Mary’s dataset respectively.

25

4. Results

Street St Mary’s
Median position [m]/
orientation [o] error

Median position [m]/
orientation [o] error

1 17.690/68.290 0.82/1.05
5 30.249/54.616 2.11/2.07
10 15.911/38.968 0.91/1.44
15 16.190/41.723 1.03/1.43
20 19.448/38.515 1.19/1.75
25 6.601/11.711 0.67/1.22
30 11.087/14.759 0.66/0.99
35 4.521/8.274 0.54/1.16
40 3.443/12.327 0.43/0.80
45 3.077/6.326 0.51/0.84
50 3.246/6.570 0.40/0.71
55 1.956/3.302 0.35/0.60
60 1.459/4.147 0.40/0.76
65 1.945/4.068 0.39/0.82
70 1.586/4.983 0.40/0.77
75 0.968/2.066 0.36/0.69
80 0.82/2.458 0.39/0.81
85 0.853/2.530 0.39/0.71
90 2.856/5.467 0.46/0.89
95 1.096/3.386 0.40/1.10
100 1.486/3.390 0.40/0.84

Table 4.2: Localization results from our pipeline on Street and St Mary’s datasets
shown as median position and orientation error.

jecting the matched points onto the query image. In Table 4.4 we see that by using
overlapped sequences we improve our previous best results by over ten percentage
points in all bins compared to not using overlapped sequences. The best median
position and orientation error is also halved in Table 4.5.

When comparing our pipeline on the St Mary’s dataset, Figure 4.1, our method
preforms great in comparison to PoseNet, MapNet and DenseVLAD, but are out-
performed by ActiveSearch and DSAC++.
As for the Street dataset, Figure 4.2, our method outperforms both AnchorNet and
DenseVLAD, using sequences with no overlap our method reaches the same level of
accuracy in position error as ActiveSearch but is outperformed in orientation error.
Using overlapping sequences our method reaches an equal oritentional accuracy as
that of ActiveSearch and outperforms all methods in positional accuracy.

In Table 4.3 we have also evaluated if our localization results are correlating with
the reconstruction errors from COLMAP. If these are compared to the localization

26

4. Results

Street St Mary’s
Median position
error [m]

Median position
error [m]

5 15.8 1.3
10 14.3 1.8
15 65.7 1.6
20 29.9 2.5
25 12.4 2.1
30 20.3 1.8
35 13.8 1.8
40 19.2 1.8
45 6.7 3.4
50 16.8 2.1
55 9.1 1.9
60 6.4 1.9
65 16.2 2.4
70 6.5 2.5
75 3.6 2.2
80 6.7 2.7
85 8.2 3.6
90 11.3 5.0
95 9.3 3.9
100 13.3 3.1

Table 4.3: Pipeline reconstructions compared to ground truth poses for recon-
struction drift evaluation. The camera with the largest pose drift is selected for
each sequence. Reconstruction drift is then determined as the median of these val-
ues for each sequence length.

27

4. Results

Street - Overlap Street
m
deg

.25/.50/5.0
2/5/10

.25/.50/5.0
2/5/10

10 9.1/22.61/54.47 4.3/9.9/33.7
20 8.52/23.20/60.90 2.8/8.6/33.5
30 10.26/25.08/61.31 4.3/12.8/38.2
40 14.27/31.95/64.49 5.2/11.3/20.2
50 19.30/39.28/73.25 10.8/23.6/43.0
60 22.20/44.13/75.13 8.7/21.7/51.7
70 23.30/46.9/82.83 5.6/19.8/52.9
80 21.35/46.73/80.6 11.0/30.3/67.1
90 24.50/49.74/85.63 11.1/21.9/48.2
100 29.73/54.36/87.92 10.7/23.9/52.4

Table 4.4: This table shows localization results for the Street dataset where a
sequence overlaps the previous sequence with n/2 images if the sequence length is
n.

results we see that reconstructions for Street have reconstruction errors roughly in-
creasing and decreasing in a similar pattern as the localization errors for different
sequence lengths. This does however not seem to be the case for St Mary’s Church
as the smallest reconstruction errors are for shorter sequence lengths in comparison
the sequence lengths achieving the best localization results. Except for the sequence
length five, the reconstruction errors are similar until the start to grow for longer
sequence lengths. The observed trends indicate that reconstruction errors is a fac-
tor that can’t be ignored if one want to achieve good localization results for larger
datasets.

4.2.1 Results Model compression
When testing our pipeline on compressed 3d point clouds as described in Section
3.5 we never managed to get results even in the vicinity of our other localization
results. Our tests were performed on the Street dataset which 3d point cloud had
been compressed to 50%. To try and get good matches with the compressed point
cloud different values between 0.3 and 0.8 for the threshold in Lowe’s ratio test
was tested but none of the values tried managed to achieve presentable localization
results.

28

4. Results

Street - Overlap Street
Median position [m]/
orientation [o] error

Median position [m]/
orientation [o] error

10 2.750/3.210 15.911/38.968
20 1.730/2.810 19.448/38.515
30 1.605/3.042 11.087/14.759
40 1.163/2.312 3.443/12.327
50 0.726/1.794 3.246/6.570
60 0.620/1.419 1.459/4.147
70 0.541/1.239 1.586/4.983
80 0.555/1.382 0.82/2.458
90 0.500/1.164 2.856/5.467
100 0.435/0.983 1.486/3.4

Table 4.5: Same localization results as Table 4.4 but shown as median position/ori-
entation error.

Median error
Street St Mary’s

position [m] orientation [o] position [m] orientation [o]
PoseNet 20.3 25.5 1.57 3.32
MapNet - - 2.00 4.53
DenseVLAD 5.16 23.5 2.31 8.00
ActiveSearch 0.85 0.8 0.19 0.54
DSAC++ - - 0.13 0.4
AnchorNet 7.86 24.2 1.04 2.69
Our method 0.82 2.46 0.35 0.60
Our method w. overlap 0.435 0.983 - -

Table 4.6: This table shows the median errors of the state of the art localization
pipelines, PoseNet [28], MapNet [6], DenseVLAD [61], ActiveSearch [50], DSAC++
[5], AnchorNet [47], DenseVLAD [61], that we compare against for the Cambridge
Landmarks data sets

29

4. Results

Figure 4.1: Comparison on the dataset Cambridge Landmarks: St Mary’s Church
dataset [29] between our method and PoseNet [28], MapNet [6], DenseVLAD [61],
ActiveSearch [50], DSAC++ [5].

Figure 4.2: Comparison on the dataset Cambridge Landmarks: Street dataset [29]
between our method and AnchorNet [47], DenseVLAD [61] and ActiveSearch [50].

30

5
Conclusion

A localization pipeline has been implemented that utilizes a generalized camera
model for image localization. As the pipeline makes use of generalized cameras it
can localize an entire image sequence at once which has become highly relevant in
many modern localization applications that make use of video streams for capturing
visual information. It achieves significant results on the Street dataset by localizing
images more accurately than state of the art localization pipelines when using over-
lapping sequences. On the St Mary’s dataset it perform as well but not better than
other pipelines when using non overlapping sequences. This is likely due to that the
dataset covers only one primary structure. So when using a short image sequence
some queries will not be reconstructed and thus result in a decresed accuracy. By
testing different sequence lengths it is clear that sequence lengths of fifty or more is
desirable for accurate localization for this dataset. On the Street dataset a sequence
length of eighty images was used to reach the peak accuracy. Using overlapping
image sequences increased our pipelines accuracy and more accurate localization
could be achieved for shorter sequences. This is likely due to the images existing
in additional subsets and increases the likelihood that the image exists in a com-
plete reconstruction and thus computed a camera pose estimate. When testing the
pipeline in compressed datasets no presentable results were gathered.

31

5. Conclusion

32

6
Future Work

In this thesis we have presented some results for camera localization with generalized
cameras. The developed pipeline has a lot of potential for improvements as it is only
a first implementation where the amount of optimization has been minimal. The
gDLS solver is implemented in a way to maximize the likelihood of good results
at the cost of long run times. We believe that the run time could be significantly
shorter with a relatively small amount of adjustments and changes.
The gDLS solver solutions did not receive any bundle adjustment which should
improve results to some degree.
We hypothesized that using a generalized camera could help in localization with
compressed databases but we did not achieve any presentable results when testing
our pipeline on a compressed model of the Street dataset. This could be explored
further to narrow down the issue. It is possible that the fault is in our implementa-
tion of selecting 3D points or that Street simply is a challenging dataset to achieve
good results using model compression.
As applications for localization using image sequences usually require real-time per-
formance from the localization pipeline, the next step would be to create a pipeline
capable of real-time localization and record benchmarks for comparison to other
localization methods. We believe this could be possible by incrementally including
new images and discarding old ones from a single query reconstruction. By doing
so the SfM calculation would be significantly faster and previously good matches
between the query and reference model can be utilized when calculating the new
pose.

33

6. Future Work

34

Bibliography

[1] S. Agarwal, N. Snavely, I. Simon, S. M. Seitz, and R. Szeliski. Building Rome
in a day. In 2009 IEEE 12th International Conference on Computer Vision,
pages 72–79. IEEE, 9 2009.

[2] C. Aggarwal, A. Hinneburg, and D. Keim. On the Surprising Behavior of Dis-
tance Metrics in High Dimensional Space. In J. Van den Bussche and V. Vianu,
editors, Database Theory — ICDT 2001, pages 420–434. Springer Berlin Hei-
delberg, Berlin, Heidelberg, 2001.

[3] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool. Speeded-Up Robust Features
(SURF). Computer Vision and Image Understanding, 110(3):346–359, 6 2008.

[4] J. L. Bentley. Multidimensional binary search trees used for associative search-
ing. Communications of the ACM, 1975.

[5] E. Brachmann and C. Rother. Learning Less is More - 6D Camera Localiza-
tion via 3D Surface Regression. In Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, 2018.

[6] S. Brahmbhatt, J. Gu, K. Kim, J. Hays, and J. Kautz. Geometry-Aware Learn-
ing of Maps for Camera Localization. In Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, 2018.

[7] S. Cao and N. Snavely. Graph-Based Discriminative Learning for Location
Recognition. 2013 IEEE Conference on Computer Vision and Pattern Recog-
nition, pages 700–707, 2013.

[8] S. Cao and N. Snavely. Minimal scene descriptions from structure from motion
models. In Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, 2014.

[9] G. Carrera, A. Angeli, and A. J. Davison. SLAM-based automatic extrinsic cal-
ibration of a multi-camera rig. In Proceedings - IEEE International Conference
on Robotics and Automation, 2011.

[10] W.-T. Chu, X.-Y. Zheng, and D.-S. Ding. Image2Weather: A Large-Scale Image
Dataset for Weather Property Estimation. In 2016 IEEE Second International
Conference on Multimedia Big Data (BigMM), pages 137–144, 5 2016.

[11] O. Chum, J. Philbin, J. Sivic, M. Isard, and A. Zisserman. Total Recall: Auto-
matic Query Expansion with a Generative Feature Model for Object Retrieval.
In 2007 IEEE 11th International Conference on Computer Vision, pages 1–8,
5 2007.

[12] P. Cignoni, M. Callieri, M. Corsini, M. Dellepiane, F. Ganovelli, and
G. Ranzuglia. MeshLab: an Open-Source Mesh Processing Tool. In V. Scarano,
R. D. Chiara, and U. Erra, editors, Eurographics Italian Chapter Conference.
The Eurographics Association, 2008.

35

Bibliography

[13] A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse. MonoSLAM: Real-Time
Single Camera SLAM. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 29(6):1052–1067, 6 2007.

[14] M. Feng, S. Hu, M. H. Ang, and G. H. Lee. 2D3D-MatchNet: Learning to
Match Keypoints Across 2D Image and 3D Point Cloud. 2019 International
Conference on Robotics and Automation (ICRA), pages 4790–4796, 2019.

[15] M. A. Fischler and R. C. Bolles. Random sample consensus: a paradigm for
model fitting with applications to image analysis and automated cartography.
Communications of the ACM, 2002.

[16] J.-M. Frahm, K. Köser, and R. Koch. Pose Estimation for Multi-camera Sys-
tems. In H. H. Rasmussen, Carl Edward B{\"u}lthoff, B. Sch{\"o}lkopf, and
M. A. Giese, editors, Pattern Recognition, volume 3175, pages 286–293, Berlin,
5 2004. Springer Berlin Heidelberg.

[17] M. Grossberg and S. Nayar. A general imaging model and a method for find-
ing its parameters. In Proceedings Eighth IEEE International Conference on
Computer Vision. ICCV 2001, pages 108–115, 2001.

[18] C. Häne, L. Heng, G. H. Lee, F. Fraundorfer, P. Furgale, T. Sattler, and
M. Pollefeys. 3D visual perception for self-driving cars using a multi-camera
system: Calibration, mapping, localization, and obstacle detection. Image and
Vision Computing, 2017.

[19] R. Hartley, J. Trumpf, Y. Dai, and H. Li. Rotation Averaging. International
Journal of Computer Vision, 103(3):267–305, 7 2013.

[20] R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision.
Cambridge University Press, Cambridge, 2 edition, 2004.

[21] J. A. Hesch and S. I. Roumeliotis. A Direct Least-Squares (DLS) method for
PnP. In Proceedings of the IEEE International Conference on Computer Vision,
2011.

[22] K. L. Ho and P. Newman. Loop closure detection in SLAM by combining visual
and spatial appearance. Robotics and Autonomous Systems, 54(9):740–749, 9
2006.

[23] S. Hochreiter and J. Schmidhuber. Long Short-Term Memory. Neural Compu-
tation, 1997.

[24] A. Irschara, C. Zach, J.-M. Frahm, and H. Bischof. From structure-from-motion
point clouds to fast location recognition. In 2009 IEEE Conference on Computer
Vision and Pattern Recognition, pages 2599–2606, 2009.

[25] H. Jégou, M. Douze, and C. Schmid. Product quantization for nearest neighbor
search. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011.

[26] M. Kaess and F. Dellaert. Visual SLAM with a Multi-Camera Rig. Technology,
2006.

[27] F. Kahl. Lecture 3: Camera Calibration, DLT, SVD, 2018.
[28] A. Kendall and R. Cipolla. Geometric Loss Functions for Camera Pose Regres-

sion With Deep Learning. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 7 2017.

[29] A. Kendall, M. Grimes, and R. Cipolla. PoseNet: A Convolutional Network for
Real-Time 6-DOF Camera Relocalization. In 2015 IEEE International Confer-
ence on Computer Vision (ICCV), pages 2938–2946. IEEE, 12 2015.

36

Bibliography

[30] Y. Li, N. Snavely, D. Huttenlocher, and P. Fua. Worldwide pose estimation us-
ing 3D point clouds. In Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics).
ECCV, 2012.

[31] Y. Li, N. Snavely, and D. P. Huttenlocher. Location recognition using prioritized
feature matching. In Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
2010.

[32] L. Liu, H. Li, and Y. Dai. Efficient Global 2D-3D Matching for Camera Lo-
calization in a Large-Scale 3D Map. In Proceedings of the IEEE International
Conference on Computer Vision, 2017.

[33] D. G. Lowe. Distinctive Image Features from Scale-Invariant Keypoints. Inter-
national Journal of Computer Vision, 60(2):91–110, 11 2004.

[34] S. Lynen, T. Sattler, M. Bosse, J. Hesch, M. Pollefeys, and R. Siegwart. Get Out
of My Lab: Large-scale, Real-Time Visual-Inertial Localization. In Robotics:
Science and Systems XI. Robotics: Science and Systems Foundation, 7 2015.

[35] Marius Muja and David G. Lowe. Scalable Nearest Neighbor Algorithms for
High Dimensional Data. Pattern Analysis and Machine Intelligence, IEEE
Transactions, 36(11):2227–2240, 2014.

[36] J. Matas and O. Chum. Randomized RANSAC with Td,d test. In Image and
Vision Computing, 2004.

[37] J. r. Matas and O. r. Chum. Randomized RANSAC. In Proceedings of the
CVWW’02, pages 49–58, 2002.

[38] S. Middelberg, T. Sattler, O. Untzelmann, and L. Kobbelt. Scalable 6-DOF lo-
calization on mobile devices. In Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinfor-
matics), 2014.

[39] M. Milford, S. Lowry, N. Sunderhauf, S. Shirazi, E. Pepperell, B. Upcroft,
C. Shen, G. Lin, F. Liu, C. Cadena, and I. Reid. Sequence searching with deep-
learnt depth for condition- and viewpoint-invariant route-based place recogni-
tion. In 2015 IEEE Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW), pages 18–25. IEEE, 6 2015.

[40] M. J. Milford and G. F. Wyeth. SeqSLAM: Visual route-based navigation for
sunny summer days and stormy winter nights. In 2012 IEEE International
Conference on Robotics and Automation, pages 1643–1649. IEEE, 5 2012.

[41] P. Moulon, P. Monasse, and R. Marlet. Global fusion of relative motions for
robust, accurate and scalable structure from motion. In Proceedings of the IEEE
International Conference on Computer Vision, 2013.

[42] R. Paucher and M. Turk. Location-based augmented reality on mobile phones.
In 2010 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition - Workshops, CVPRW 2010, 2010.

[43] R. Pless. Using many cameras as one. In 2003 IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition, 2003. Proceedings., vol-
ume 2, pages 587–93. IEEE Comput. Soc, 2003.

[44] D. Robertson and R. Cipolla. An Image-Based System for Urban Navigation. In
A. Hoppe, S. Barman, and T. Ellis, editors, Proceedings of the British Machine
Vision Conference, pages 1–84. BMVA Press, 2004.

37

Bibliography

[45] A. Roshan Zamir and M. Shah. Accurate Image Localization Based on Google
Maps Street View. In K. Daniilidis, P. Maragos, and N. Paragios, editors,
Computer Vision – ECCV 2010, pages 255–268, Berlin, 2010. Springer Berlin
Heidelberg.

[46] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. ORB: An efficient alterna-
tive to SIFT or SURF. In 2011 International Conference on Computer Vision,
pages 2564–2571. IEEE, 11 2011.

[47] S. Saha, G. Varma, and C. V. Jawahar. Improved Visual Relocalization by
Discovering Anchor Points. In British Machine Vision Conference 2018, page
164, 2018.

[48] T. Sattler, M. Havlena, F. Radenovic, K. Schindler, and M. Pollefeys. Hyper-
points and fine vocabularies for large-scale location recognition. In Proceedings
of the IEEE International Conference on Computer Vision, 2015.

[49] T. Sattler, M. Havlena, K. Schindler, and M. Pollefeys. Large-Scale Location
Recognition and the Geometric Burstiness Problem. In 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages 1582–1590. IEEE,
6 2016.

[50] T. Sattler, B. Leibe, and L. Kobbelt. Efficient & Effective Prioritized Match-
ing for Large-Scale Image-Based Localization. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2017.

[51] T. Sattler, W. Maddern, C. Toft, A. Torii, L. Hammarstrand, E. Stenborg,
D. Safari, M. Okutomi, M. Pollefeys, J. Sivic, F. Kahl, and T. Pajdla. Bench-
marking 6DOF Outdoor Visual Localization in Changing Conditions. CVPR
2018, 2018.

[52] T. Sattler, Q. Zhou, M. Pollefeys, and L. Leal-Taixe. Understanding the Lim-
itations of CNN-Based Absolute Camera Pose Regression. In The IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR), 6 2019.

[53] J. L. Schonberger and J.-M. Frahm. Structure-from-Motion Revisited. In 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

[54] X. Shen, Z. L. Lin, J. Brandt, S. Avidan, and Y. Wu. Object retrieval and
localization with spatially-constrained similarity measure and k-NN re-ranking.
2012 IEEE Conference on Computer Vision and Pattern Recognition, pages
3013–3020, 2012.

[55] Sivic and Zisserman. Video Google: a text retrieval approach to object matching
in videos. In Proceedings Ninth IEEE International Conference on Computer
Vision, 2003.

[56] N. Sünderhauf, F. Dayoub, S. Shirazi, B. Upcroft, and M. Milford. On the
Performance of ConvNet Features for Place Recognition. IEEE International
Conference on Intelligent Robots and Systems (IROS), 1 2015.

[57] C. Sweeney. Theia Multiview Geometry Library: Tutorial & Reference.
http://theia-sfm.org.

[58] C. Sweeney, V. Fragoso, T. Höllerer, and M. Turk. gDLS: A Scalable Solution
to the Generalized Pose and Scale Problem. In Computer Vision – ECCV 2014,
pages 16–31, 2014.

[59] C. Sweeney, V. Fragoso, T. Hollerer, and M. Turk. Large scale SfM with the
distributed camera model. In Proceedings - 2016 4th International Conference
on 3D Vision, 3DV 2016, 2016.

38

Bibliography

[60] H. Taira, M. Okutomi, T. Sattler, M. Cimpoi, M. Pollefeys, J. Sivic, T. Pajdla,
and A. Torii. InLoc: Indoor Visual Localization with Dense Matching and View
Synthesis. Proc. CVPR, 3 2018.

[61] A. Torii, R. Arandjelovic, J. Sivic, M. Okutomi, and T. Pajdla. 24/7 place
recognition by view synthesis. In Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, pages 1808–1817, 10
2015.

[62] B. Triggs, P. F. McLauchlan, R. I. Hartley, and A. W. Fitzgibbon. Bundle
Adjustment — A Modern Synthesis. Workshop on Vision Algorithms, 1999.

[63] S. Urban and S. Hinz. MultiCol-SLAM - A Modular Real-Time Multi-Camera
SLAM System. arXiv preprint arXiv:1610.07336, 2016.

[64] F. Walch, C. Hazirbas, L. Leal-Taixé, T. Sattler, S. Hilsenbeck, and D. Cremers.
Image-based localization using LSTMs for structured feature correlation. ICCV,
2017.

[65] Z. Xin, X. Cui, J. Zhang, Y. Yang, and Y. Wang. Visual place recognition with
CNNs: From global to partial. In 2017 Seventh International Conference on
Image Processing Theory, Tools and Applications (IPTA), pages 1–6. IEEE, 11
2017.

[66] B. Zeisl, T. Sattler, and M. Pollefeys. Camera pose voting for large-scale image-
based localization. In Proceedings of the IEEE International Conference on
Computer Vision, 2015.

[67] Y. Zheng, Y. Kuang, S. Sugimoto, K. Astrom, and M. Okutomi. Revisiting
the PnP problem: A fast, general and optimal solution. In Proceedings of the
IEEE International Conference on Computer Vision, 2013.

39

Bibliography

40

	Abstract
	List of Figures
	List of Tables
	Introduction
	Related Work
	Ways to localize images
	Point Cloud Compression

	Content of thesis

	Theory
	Camera Model
	Finding point coordinates and projection matrices
	A Structure from Motion Pipeline
	The Generalized Camera
	Pose estimation using the Generalized Camera

	Random Sample Consensus
	RANSAC with Td,d test

	Method
	Query Reconstruction
	Compute 3D Descriptors
	Matching 3D Descriptors
	Implementation

	Camera Pose Estimation
	Implementation

	Compressing 3D Point Cloud
	Special case: One Image

	Results
	Datasets
	Cambridge Landmarks St Marys Church
	Cambrige Landmarks Street

	Evaluation
	Results Model compression

	Conclusion
	Future Work
	Bibliography

