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Vehicle dynamics control using dimensionless MPC
Applying dimensional analysis to lateral position control and torque vectoring
JOSIP KIR HROMATKO
Department of Electrical Engineering
Chalmers University of Technology

Abstract
Modern electric cars often come with various advanced control systems. However,
developing and testing these systems requires significant resources. In this thesis,
the aim was to investigate if dimensional analysis, an approach used to simplify
experiments and reduce expenses, can be applied to vehicle dynamics control. This
was done by transforming two common vehicle models, the bicycle model and the
dual-track model, into dimensionless ones. Then, model predictive controllers were
designed for lateral position control and torque vectoring applications, based on
the dimensionless models. The lateral position controller was simpler, based on
the bicycle model, providing good results independent of vehicle parameters. The
torque vectoring one, based on the dual-track model, requires some further testing,
but the initial experiments look promising. Finally, further exploiting the benefits
of dimensional analysis could lead to significant savings in both the academia and
the automotive industry.

Keywords: vehicle dynamics, dimensional analysis, model predictive control, lateral
position control, torque vectoring
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1
Introduction

1.1 Background

With the advances in technology in the recent years, automobiles are becoming
increasingly more complex. Modern cars contain a large number of electronic sys-
tems, many of which have security roles. Systems such as Anti-lock Braking System
(ABS), Traction Control System (TCS), Electronic Stability Control (ESC) and sim-
ilar aim to improve the stability and handling characteristics of the vehicle. Also,
many modern vehicles contain systems which aim to reduce energy consumption
and improve the overall driving comfort.

Although the mentioned systems are used also with internal combustion vehicles,
probably the biggest recent change in the automobile industry was the introduction
of electric vehicles. These vehicles often have several motors, sometimes even one
for each wheel, which creates many new possibilities for control algorithms and inde-
pendent wheel control. This thesis focuses on electric vehicles with four independent
motors and lateral vehicle dynamics control using model predictive control, a type
of optimal control.

Testing on full scale vehicles requires significant time and resources. Therefore,
many researchers use high-fidelity simulation software or scaled versions of vehicles in
experimental setups. This is also the case at the Laboratory for Mechatronic Systems
at the Faculty of Electrical Engineering and Computing in Zagreb, Croatia. At the
Laboratory, a testbed consisting of a treadmill and a scaled remote-controlled car is
being developed with the aim of testing various vehicle dynamics control algorithms.

Finally, building a scaled model and using it in experiments is pretty much use-
less unless it relates to a certain degree to the corresponding full scale system. In
mechanical engineering, scaled models have been used for a long time, mainly in ap-
plications related to fluid mechanics, such as vessel propeller design or aerodynamic
testing. This thesis aims to apply the theory used in these areas to vehicle dynamics
control in order to verify that the results obtained with a scaled system can provide
insight into the behaviour of a full size one.
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1. Introduction

1.2 Related work
In research related to automotive applications, a book by R. Rajamani [2] is often
used as a reference for theoretical background on vehicle dynamics. Vehicle dynamics
control using model predictive control has been explored by many researchers and
this thesis is based on the work done by P. Falcone et al. in [3], [4] and B. Spahija et
al. in [5]. These papers have also focused on independent wheel control using MPC
and lateral vehicle dynamics through lateral position control and torque vectoring
algorithms.

The theory behind dimensional analysis was first presented by E. Buckingham in
[6], while examples of applications can be found in books by Westine et al. [7] or
Munson et al. [8] for fluid mechanics in particular. Using dimensional analysis with
vehicle dynamics control has been explored by S. Brennan and A. Alleyne in [9] and
[10]. Finally, the experimental setup at the Faculty in Croatia and some preliminary
results have been presented in [11].

1.3 Thesis aim and scope
The main goal of the thesis was to investigate how dimensional analysis can be
used for vehicle dynamics control. By comparing control performance of a full size
vehicle in simulations with a lab scale one on the experimental setup, one could see if
the dimensionless approach has potential for future applications. This was done by
implementing two control algorithms, lateral position control and torque vectoring,
and evaluating the performance of the dimensionless controller in comparison to the
dimensional one.

Although they were initially planned as additional goals, embedded system imple-
mentation and testing for robustness were not done within the scope of this thesis.
Also, the performance of the developed linear MPC controller was not compared
with that of a nonlinear one. These goals remain to be of interest in future work.

2



2
Theory

2.1 Vehicle dynamics

This section describes the models commonly used for vehicle dynamics control. They
are based on certain simplifications which make them unsuitable for simulations
where very high fidelity is required. However, these simplifications also make them
convenient for control system development and real-time applications.

2.1.1 The bicycle model

One of the most commonly used models for lateral vehicle dynamics control is the
so-called bicycle model or single-track model [2]. This model, shown in Figure 2.1,
considers two degrees of freedom - the vehicle’s position with respect to the center of
rotation and its orientation with respect to the global coordinate frame. Also, pairs
of wheels are lumped into a single one and the longitudinal speed of the vehicle is
assumed to be constant.

Figure 2.1: The bicycle model [11].
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2. Theory

The state-space formulation of the model is linear and given by:

d

dt


y
ẏ
ψ

ψ̇

 =


0 1 0 0
0 −2Cαf+2Cαr

mVx
0 −Vx − 2Cαf lf−2Cαrlr

mVx

0 0 0 1
0 −2Cαf lf−2Cαrlr

IzVx
0 −2Cαf l2f+2Cαrl2r

IzVx



y
ẏ
ψ

ψ̇

+


0

2Cαf
m

0
2Cαf lf
Iz

 δ (2.1)

with variables and parameters as shown in Table 2.1.

Table 2.1: Variables and parameters in the bicycle model.

y lateral distance from the center of rotation to vehicle centerline
ψ orientation w.r.t. the global coordinate system
Cαf front tire cornering stiffness
Cαr rear tire cornering stiffness
m vehicle mass
Iz vehicle moment of inertia around the z-axis
lf distance from CoG to front axle
lr distance from CoG to rear axle
Vx longitudinal speed
δ wheel steering angle

2.1.2 The dual-track model
The linear bicycle model is fairly simple and easy to use in control algorithms for
many applications such as lane keeping or electronic stability control. However,
for torque vectoring, a more complex model is needed. Since the aim with torque
vectoring is to control the driven wheels independently, a four-wheel model must be
used. Also, if wheel torque is to be controlled, wheel dynamics should be included.
Figure 2.2 shows the dual-track model, which can be used for this purpose.

vx

vy

l r

Figure 2.2: The dual-track model [11].

By setting up the equilibrium equations for vehicle body translation in x- and y-axes,
rotation around the z-axis and wheel rotation, vehicle dynamics can be described

4



2. Theory

by the following expressions:

mv̇x = mψ̇vy + Fflx + Ffrx + Frlx + Frrx (2.2a)
mv̇y = −mψ̇vx + Ffly + Ffry + Frly + Frry (2.2b)
Jzψ̈ = lf (Ffly + Ffry)− lr(Frly + Frry) + w(−Fflx + Ffrx − Frlx + Frrx) (2.2c)

Jwω̇•? = T•? − rwFw
•?x, • ∈ {f, r}, ? ∈ {l, r} (2.2d)

where vx, vy and ψ̇ denote the longitudinal, lateral and angular velocities of the
chassis. T•? and ω•? denote the torque and angular velocity of each wheel. Also, m
is the vehicle’s mass, Jz the moment of inertia around the yaw axis, w half of the
track width, lf and lr the distances from the front and rear axles to the center of
mass. Wheel moment of inertia is denoted by Jw and radius by rw.

The forces acting on the chassis are calculated as:

Ff?x = Fw
f?x cos δf? − Fw

f?y sin δf?, Fr?x = Fw
r?x (2.3a)

Ff?y = Fw
f?x sin δf? + Fw

f?y cos δf?, Fr?y = Fw
r?y (2.3b)

where δf? denotes the left/right wheel steering angle. The forces at the wheels are
generally functions of tire slip sx and slip angle α, road friction µ and vertical load
Fz:

Fw
•?x = fx(s•?x, α•?, µ•?, F•?z) (2.4a)
Fw
•?y = fy(s•?x, α•?, µ•?, F•?z) (2.4b)

Tire slips are defined as:

s•?x = rwω•?
vw•?x

− 1, vw•?x 6= 0 (2.5)

and slip angles as:

α•? = arctan
(
vw•?y
vw•?x

)
(2.6)

Individual wheel velocities can be calculated as:

vwf?x = vf?x cos δf + vf?y sin δf , vwr?x = vr?x (2.7a)
vwf?y = −vf?x sin δf + vf?y cos δf , vwr?y = vr?y (2.7b)

with

vflx = vx − wψ̇, vfly = vy + lf ψ̇ (2.8a)
vfrx = vx + wψ̇, vfry = vy + lf ψ̇ (2.8b)
vrlx = vx − wψ̇, vrly = vy − lf ψ̇ (2.8c)
vrrx = vx + wψ̇, vrry = vy − lf ψ̇ (2.8d)
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2. Theory

If certain assumptions are made (small acceleration, flat road, low aerodynamic ef-
fects), load transfer can be neglected and the vertical tire forces can be approximated
by the static load distribution on the two axles:

Ff?z = mglr
2(lf + lr)

, Fr?z = mglf
2(lf + lr)

(2.9)

Finally, the model can be compactly written in state-space form as:

ξ̇ = f(ξ, u) (2.10a)
η = h(ξ) (2.10b)

with ξ = [vx vy ψ̇ ωfl ωfr ωrl ωrr]> as the state vector, u = [Tfl Tfr Trl Trr]> as the
input vector and η as the output vector. The output mapping h(ξ) depends on the
tracked (referenced) states.

Although many other effects such as suspension dynamics, rolling resistance, com-
bined slip and mechanical losses are ignored, this model describes the most impor-
tant phenomena for passenger cars during normal driving. For simulating a vehicle,
a more advanced model should be used, but the one presented here is suitable for
designing a control system.

2.1.3 Tire modelling
The tire is one of the most important components of a vehicle, whose motion is
mainly dictated by the forces in the four contact points between the tires and the
ground. Also, tire models are generally nonlinear and describing the tire perfectly
is very difficult. It is therefore necessary to understand the basics of how a tire
behaves and be aware of the simplifications made during the modelling.

2.1.3.1 The linear model

The simplest tire model describes the tire with just two numbers. It assumes that
the longitudinal and lateral tire forces are proportional to tire slips and slip angles:

Fw
•?x = Cxs•?x, Fw

•?y = −Cyα•? (2.11)

The proportionality constants Cx and Cy are commonly referred to as the slip stiff-
ness and cornering stiffness. The negative sign for the lateral forces comes from the
coordinate system convention. This model describes the tire well only in a certain
region of small slips and slip angles. If the tire operates outside of this region, a
more advanced and nonlinear model must be used.

2.1.3.2 The "magic" formula

Almost 40 years ago, Hans Pačejka proposed probably the most well-known empiri-
cal tire model [12]. It is formed as a combination of trigonometric functions and, in

6



2. Theory

its simplest form, describes the tire forces with eight parameters:

Fw
•?x = Dx sin(Cx arctan(Bxs•?x − Ex(Bxs•?x − arctan(Bxs•?x)))) (2.12a)
Fw
•?y = Dy sin(Cy arctan(Byα•? − Ey(Byα•? − arctan(Byα•?)))) (2.12b)

The full model contains many additional parameters which need to be fitted to the
tire testing data. It also accounts for various effects needed for high-fidelity simula-
tions, which made it popular among both the researchers and car manufacturers.

2.1.3.3 Linear approximation

If the parameters of a full, nonlinear tire model are available, the linear model
parameters (2.11) can be found by looking at the tire characteristic around the
origin. For small slips and slip angles, the two coefficients are equal to the derivatives
of the force curves at the origin:

Cx = ∂Fx
∂sx

∣∣∣∣∣
sx=0

, Cy = ∂Fy
∂α

∣∣∣∣∣
α=0

(2.13)

Figure 2.3 shows the full nonlinear tire model ("magic" formula, denoted with MFe-
val) for a certain tire and fitted approximations using the simplified "magic" formula
and a linear model.

-0.3 -0.2 -0.1 0 0.1 0.2 0.3
-1.5

-1

-0.5

0

0.5

1

1.5

MFeval

Linear

Simplified

(a) Longitudinal force.

-10 -5 0 5 10
-1.5

-1

-0.5

0

0.5

1

1.5

MFeval

Linear

Simplified

(b) Lateral force.

Figure 2.3: Tire forces - nonlinear model and approximations.

2.2 Dimensional analysis
The idea of conducting experiments on a small scale system to gain knowledge
about a large scale one is often implemented in mechanical engineering, especially
fluid mechanics. With dimensional analysis, the behaviour of a system is described
in such a way that the equations hold true regardless of the absolute values of the
system’s parameters - only their relations are important. This allows for drawing
conclusions about large systems by working on their scaled versions, which can in
some cases lead to significant savings in time and resources.

7



2. Theory

2.2.1 The Buckingham Π theorem
In the early twentieth century, Edgar Buckingham sparked interest in the subject
of dimensional analysis through his publications. Although he was not the first one
to investigate it, he formulated the theorem which is the foundation of dimensional
analysis, the so-called Π theorem [6].

Theorem (Buckingham Π theorem). If an equation involving k variables is dimen-
sionally homogeneous, it can be reduced to a relationship among k-r independent
dimensionless products, where r is the minimum number of reference dimensions
required to describe the variables.

The theorem mainly answers the question of the number of parameters needed to
completely describe a system (degrees of freedom). Essentially, it states that any
equation of the form:

u1 = f(u2, u3, . . . , uk) (2.14)

can be rearranged into the form:

Π1 = g(Π2,Π3, . . . ,Πk−r) (2.15)

using combinations of ui to form Πi, which are dimensionless terms. The theorem
does not provide the function g, but it might be significantly easier to obtain g than
f through experimentation. Also, the obtained dimensionless terms Πi indicate
under which terms two systems follow the same dimensionless equations.

2.2.2 Dynamic similarity
The idea behind dimensional analysis can also be applied when differential equations
describing the system dynamics are known. In that case, it is necessary to normalize
(divide) all variables and parameters of one kind with a reference value of the same
kind – speed with speed, time with time, etc. – in order to obtain relative variables.
The reference values should be formed from fixed system parameters.

By doing so, physical quantities will be replaced by dimensionless ones, multiplied
by dimensionless numbers, i.e., ratios. These ratios will give information about the
conditions under which system similarity holds true. Finally, if two systems have
the same dimensionless governing equations, they are dynamically similar. Several
examples can be found in books on similarity in engineering [7] or those on fluid
mechanics [8].

2.3 Model predictive control
Most of the controllers used today are PID controllers. They are easy to understand,
implement and tune. However, for some applications, the requirements such as
energy optimization or actuator constraints cannot be met efficiently by such a
simple control law.

8



2. Theory

Model predictive control is a type of optimal control. As the name suggests, it uses a
model of the system to make predictions about its state trajectory and find the best
(optimal) control inputs in order to achieve the desired behaviour. It also allows for
including more knowledge about the system in the model (compared to PID control)
and extends easily to systems with multiple inputs and multiple outputs.

2.3.1 The moving horizon idea
The main idea behind MPC is to control systems by iteratively solving optimization
problems online. In every time step, a prediction of the system’s behaviour over
a finite prediction horizon is obtained based on the current state and the future
control inputs applied over the control horizon. The control sequence which gives
the best performance with respect to a specified objective or cost function is found.
Then, the first element in this optimal sequence is applied to the system. In the
next time step, the whole process is repeated again. Figure 2.4 illustrates the main
idea for one iteration.

Future inputs

State predictionClosed-loop state
(measured)

Past inputs

Figure 2.4: One instant of a moving horizon.

For an unconstrained system with nonlinear dynamics, the optimization problem to
solve can generally be formulated as:

min
u

J(ξ, u) (2.16a)

s.t. ξ+ = f(ξ, u), ξ(0) = ξ0 (2.16b)

The objective function J can be specified in many ways, depending on the goal such
as energy optimization, reference tracking etc. The state vector ξ and input vector
u can (in theory) be arbitrarily large - the limitations on the optimization problem
size are imposed by the hardware available for solving it. This also applies to the
prediction and control horizon lengths.

9



2. Theory

2.3.2 Constraints
In most applications there are certain constraints that should not be violated. For
example, actuators cannot operate beyond their limitations or certain states should
not exceed allowed levels (especially important in safety-critical applications). In
the MPC framework, it is relatively simple to include these limitations by adding
constraints to the optimization problem:

min
u

J(ξ, u) (2.17a)

s.t. ξ+ = f(ξ, u), ξ(0) = ξ0 (2.17b)
ξ(k) ∈ Ξ, u(k) ∈ U, for all k (2.17c)

By doing this, the controller will never demand more than the actuator can give. On
the other hand, hard constraints on system states can lead to infeasible optimization
problems (e.g., if the system is already in the forbidden state), but there are methods
for tackling this issue as well.

One possible solution is to use soft constraints. The main idea is to define new
variables as deviations from the desired limits and penalize these variables in the
objective function:

min
u,ε

J(ξ, u, ε) (2.18a)

s.t. ξ+ = f(ξ, u), ξ(0) = ξ0 (2.18b)
ξ(k) + ε(k) ∈ Ξ, u(k) ∈ U, for all k (2.18c)

With that, the optimization problem will have a solution and the controller will try
not to exceed the allowed limits (how hard, depends on the objective function).

2.3.3 Linear time-varying MPC
In general, nonlinear optimization is computationally demanding despite the ad-
vances in optimization algorithms, especially in real-time applications. However,
methods for solving convex optimization problems, and quadratic programs in par-
ticular, are already being used in embedded systems.

A common way to solve nonlinear optimization problems is to convert them to linear
time-varying ones, where the nonlinear functions are iteratively approximated by
linear functions and these approximations are used in the optimization instead. The
solutions are accurate only in a certain region around the approximation point (i.e.,
locally) so special care needs to be taken.

Linearizing a nonlinear model is usually done with a first-order Taylor expansion:

f(ξ, u) ≈ f(ξ0, u0) + ∂f

∂ξ

∣∣∣∣∣
(ξ0,u0)︸ ︷︷ ︸
A0

(ξ − ξ0) + ∂f

∂u

∣∣∣∣∣
(ξ0,u0)︸ ︷︷ ︸
B0

(u− u0) (2.19a)

= A0ξ +B0u+ d(ξ0, u0)︸ ︷︷ ︸
f(ξ0,u0)−A0ξ0−B0u0

(2.19b)
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2. Theory

where the last term represents the difference between evaluating the nonlinear and
linear models.

With LTV MPC, the system’s dynamics are linear, but changing over time as well
as the prediction horizon:

ξk+1 = Ak(t)ξk +Bk(t)uk + dk(t) (2.20a)
yk = Ck(t)ξk (2.20b)

First, a nominal trajectory Ξ̂ = [ξ̂0, ξ̂1, . . . , ξ̂N ]> starting from the current state,
ξ̂0 = ξ0, and applying a known input u0 (e.g., constant or shifted from the previous
step) is obtained by integrating the nonlinear model (2.10). Then, the Jacobians Ak
and Bk at time t can be calculated as:

Ak = ∂f

∂ξ

∣∣∣∣∣
ξk,uk

, Bk = ∂f

∂u

∣∣∣∣∣
ξk,uk

(2.21)

The last term in (2.19) can be calculated by:

dk = ξ̂k+1 − Akξ̂k −Bkuk (2.22)

and the LTV model finally becomes:

ξk+1 = Akξk +Bkuk + dk (2.23)

where ξk and uk represent the state predictions and optimal control inputs from the
previous step.

In order to obtain a convex optimization problem, the objective function should be
quadratic or linear and the constraints linear:

min
u,ε

J(ξ, u, ε) =
∑
k

∥∥∥ξk − ξrefk

∥∥∥2

Q
+ ‖uk‖2

R + ‖∆uk‖2
S + p ‖εk‖2 (2.24a)

s.t. ξ+ = Akξk +Bkuk + dk, ξ(0) = ξ0 (2.24b)
ξ(k) + ε(k) ∈ Ξ, u(k) ∈ U, for all k (2.24c)

where Q, R and S are positive semi-definite matrices, p is a scalar and Ak, Bk, dk
are calculated by linearizing the system around (ξ0, u0) [5].

Figure 2.5 illustrates the described process. Green circles mark the state predictions
and optimal inputs from the previous step, which are used to calculate the Jacobian
matrices Ai, Bi.
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State prediction

Closed-loop state
(measured)

Past inputs

uture inputs

1, 1

Ak+c-2,Bk+c-2

Figure 2.5: A visualization of LTV MPC.

2.3.4 Tuning
With a PID controller, the tuning parameters are the three gains, one for each of
the proportional, integral and derivative terms. In MPC, the controller is tuned by
changing the weighting matrices in the objective function. The bigger the weight
for a specific term, the more emphasis is put on minimizing that term.

For example, if the control input weight matrix (R in (2.24)) is very large, even small
inputs to the system will result in a large objective function value. This will result
in the controller avoiding large control inputs and reaching the reference slowly.
On the other hand, if the weights on the control input are small and the ones on
referenced states are large, the controller will be more aggressive in following the
reference despite the energy consumption. As usual, there will be a trade off between
the response time and the used energy. Very often, the actual values of the weight
matrices are less relevant compared to the ratios between them.
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3
Methods

3.1 Lateral position control

Probably the first topic that comes to mind when talking about lateral vehicle
dynamics is controlling the lateral position. This is a well researched problem and
can be done relatively well with a simple bicycle model. It was therefore chosen as
the first step in testing non-dimensional MPC.

3.1.1 Parameters

To verify the idea of dynamical similarity with a simple model, a bicycle model
(2.1) of the vehicle was used. The required parameters for a full size vehicle were
taken from a CarMaker’s demo vehicle, while those for a lab size vehicle were taken
from one of the lab vehicles developed at the Faculty in Zagreb, Croatia, shown
in Figures 3.1 and 3.2. The longitudinal speeds were chosen so that the vehicles
become dynamically similar (see next section). Both sets are given in Table 3.1.

Table 3.1: Bicycle model parameters for the full size and lab size vehicles.

symbol description full size lab size
Cαf front tire cornering stiffness [N/rad] 72705 8.25
Cαr rear tire cornering stiffness [N/rad] 72705 8.25
m vehicle mass [kg] 1600 1.173
Iz vehicle moment of inertia around the z-axis [kgm2] 2394 0.0337
lf distance from CoG to front axle [m] 1.311 0.1115
lr distance from CoG to rear axle [m] 1.311 0.141
Vx longitudinal speed [m/s] 16.67 2.12
δmax maximal steering angle [deg] 27.69 15.01
δ̇max maximal steering angle rate [deg/s] 27.69 15.01
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3. Methods

Figure 3.1: The experimental setup at the Faculty in Zagreb, Croatia [11].

Figure 3.2: The two scaled models used in the experimental setup [11].
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3. Methods

3.1.2 Similarity
As shown in [9], the bicycle model can easily be converted to the dimensionless form
due to its linearity. If the vehicle’s wheelbase, L = lf + lr, and longitudinal speed,
Vx, are chosen as reference parameters, the state vector ξ = [y ẏ ψ ψ̇]> can be
replaced by:

ξ = Mξξ
∗, Mξ = diag [L Vx 1 Vx/L] (3.1)

where Mξ is the state transformation matrix and ξ∗ = [y∗ ẏ∗ ψ∗ ψ̇∗]> is the dimen-
sionless state vector. Although given in radians, angles are commonly thought of
as dimensionless (an angle in radians is actually the ratio of a circular arc and a
radius) so input normalization is not required, i.e., u∗ = u. The state derivative ξ̇
can also be rewritten by normalizing time:

dξ

dt
= d(Mξξ

∗)
dt

= Vx
L
Mξ

dξ∗

dt∗
(3.2)

Finally, the original system:
dξ

dt
= Aξ +Bu (3.3)

can be written in the dimensionless form as:

dξ∗

dt∗
= L

Vx
M−1

ξ AMξξ
∗ + L

Vx
M−1

ξ Bu∗ = A∗ξ∗ +B∗u∗ (3.4)

To check if the full size and lab size vehicles are dynamically similar, one can com-
pare the corresponding π-groups, which are formed by normalizing the vehicle’s
parameters to obtain dimensionless terms [9]. The π-groups are given in Table 3.2.

Table 3.2: Bicycle model π-groups for the full size and lab size vehicles.

π-group full size lab size lab size, +1 kg
lf/L 0.5 0.449 0.449
lr/L 0.5 0.551 0.551
Cαf

L
mV 2

x
0.395 0.402 0.396

Cαr
L

mV 2
x

0.395 0.402 0.396
Iz

1
mL2 0.218 0.439 0.237

The values in the first two columns are relatively similar, except for the last one. If
the mass of the lab vehicle is increased by 1 kg, the values in the last column are
obtained. With these parameters, dynamic similarity can be checked by comparing
the eigenvalues of the non-dimensional state transition matrix (A∗), corresponding
to the system’s poles. The non-dimensional non-zero eigenvalues for the full size
vehicle are −1.58 and −1.82 and for the lab size vehicle −1.637 ± 0.5563j, which
suggests that their dynamics are similar. Although the lab size vehicle’s poles form
a complex conjugate pair, step response plots show that the oscillatory behaviour is
negligible.
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3. Methods

3.1.3 Controller design

3.1.3.1 Reference generation

For comparing the two differently sized vehicles, a test manoeuvre with parameters
relative to the vehicle parameters was used. It consists of a sine steer after a short
straight drive. The wavelength of the sinusoid was chosen as 32 times the vehicle’s
length, while the amplitude was equal to the vehicle’s length. The wavelength was
calculated from the assumed longitudinal speed and the desired period of around
5 seconds. The amplitude was chosen to be larger than track width to correspond
to a highway manoeuvre, but also to make it slightly more challenging. Figure 3.3
shows the reference path in dimensionless coordinates.
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Figure 3.3: Normalized lateral position reference.

3.1.3.2 Linear quadratic regulator

The LQR is a state-feedback controller of the form:

u(t) = −Kξ(t) (3.5)

which minimizes the quadratic cost function:

J(ξ, u) =
∫ ∞

0
(ξ>Qξ + u>Ru+ 2ξ>Nu)dt (3.6)

subject to the system dynamics ξ̇ = Aξ + Bu. The controller gain K can be found
by solving the associated algebraic Riccati equation:

A>S + SA− (SB +N)R−1(B>S +N>) +Q = 0 (3.7)

for S and calculating the gain from:

K = R−1(B>S +N>) (3.8)
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If dimensionless forms of system dynamics are used, A∗ and B∗, the LQR gains for
both the full size and lab size vehicles should be almost the same. Indeed, this was
the case for the two set of parameters considered - the resulting gains and closed
loop poles are given in Table 3.3.

Table 3.3: LQR gains and closed-loop poles.

parameter full size lab size
K1 1 1
K2 0.5549 0.6176
K3 1.2519 1.1958
K4 0.4670 0.4963
pole pair 1 −0.5210± 0.7495j −0.5260± 0.7136j
pole pair 2 −1.8227± 0.3587j −1.7279± 0.6199j

3.1.3.3 MPC

With the bicycle model, designing an MPC controller is fairly straightforward. The
dynamics are linear and the only additional constraints are the steering system
limitations. Switching between dimensional and dimensionless models can easily
be done according to (3.1). Since the input is an angle (dimensionless), no input
transformation is needed before applying the optimization result to the system. The
objective function and the constraints used were:

min
ξ,δ

J(ξ, δ) =
∑
k

∥∥∥ξk − ξrefk

∥∥∥2

Q
+ ‖δk‖2

r + ‖∆δk‖2
s (3.9a)

s.t. ξ+ = Aξk +Bδk, ξ(0) = ξ0 (3.9b)
|δk| < δmax, |∆δk| < ∆δmax, for all k (3.9c)

For the simulations, a sampling time of 10 ms was assumed. On a laptop, the
optimization took 1-2 ms on average. The sampling time was chosen as a few times
larger to simulate running on an embedded system. The bicycle model is linear with
four states and one input, which allows for a fast optimization and a relatively small
sampling time. The prediction horizon was set to N = 50 (corresponding to 0.5 s of
preview) and the control horizon to M = 5 with a last value hold.

Lateral position was the only tracked state, with a weight of Qy = 106. With the
dimensionless model, the objective function term relating to lateral position was
transformed using (3.1) and the weight becomes Q∗ = M>

ξ QMξ. Apart from the
system dynamics, constraints were set on the input (steering angle) and its rate.
Both were also penalized with the weight r = s = 10−6.

3.1.4 Simulation environment
The bicycle model was generally used as a first step in testing the hypothesis of
dynamical similarity. The focus was on obtaining qualitative results, i.e., roughly
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comparing the simulations instead of looking for a perfect match. Therefore, the
simulations were done using YALMIP for optimization problem modelling [13] and
OSQP [14] as the solver in MATLAB, with the same bicycle model as for controller
design, which neglects many phenomena such as combined slip, load transfer, aero-
dynamics etc.

3.2 Torque vectoring

Along with lateral position control, another focus area in vehicle dynamics control
is maintaining a desired yaw rate, i.e., ensuring stability and preventing the vehicle
from drifting or spinning out. This can be done, e.g., by controlling the brakes
independently or modifying the steering angle electronically. One of the main ad-
vantages of electric vehicles with multiple motors is the ability to control each of
them independently, a strategy commonly known as torque vectoring. If this is done
well, the torque acting on the vehicle around the z-axis can be modified and both
the stability and performance of the vehicle can be improved.

3.2.1 Parameters

For torque vectoring with MPC and four independent motors, a dual-track model
(2.2) was used. The parameters were again taken from CarMaker’s demo vehicle
and the lab vehicle in Zagreb. The linear model (2.11) was used for tire modelling
(in the prediction model). The additional required parameters in comparison with
the bicycle model 3.1 were the tire longitudinal stiffness, vehicle track width, wheel
radius and inertia and motor limitations. The full sets of parameters for both
vehicles are given in Table 3.4.

Table 3.4: Dual-track parameters for a full size and a lab size vehicle.

symbol description full size lab size
m vehicle mass [kg] 1600 1.173
Iz vehicle moment of inertia around the z-axis [kgm2] 2394 0.0337
lf distance from CoG to front axle [m] 1.311 0.1115
lr distance from CoG to rear axle [m] 1.311 0.141
w vehicle track width [m] 1.586 0.163
Cx tire slip stiffness [N ] 116377 25
Cy tire cornering stiffness [N/rad] 72705 8.25
rw wheel radius [m] 0.318 0.0325
Iw wheel moment of inertia [kgm2] 1.22 4 · 10−5

Tmax maximal motor torque [Nm] 250 0.05
Ṫmax maximal motor torque rate [Nm/s] 1000 0.2
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3.2.2 Similarity
In order to obtain a dimensionless model, a similar approach as with the bicycle
model was used. First, the system dynamics are linearized as described in (2.19).
Then, the linearized dynamics are transformed using (3.4) with the addition of input
normalization, u = Muu

∗, to obtain a dimensionless linear model. The transforma-
tion matrices can be obtained by following the approach in [9], which results in:

Mξ = diag
√CxL

m
,

√
CxL

m
,

√
Cxm

L
,

√
Cxm

L
,

√
Cxm

L
,

√
Cxm

L
,

√
Cxm

L

 (3.10a)

Mu = CxL · Inu (3.10b)

where L = lf + lr is the vehicle’s wheelbase, In is the identity matrix of size n
and nu is the number of control inputs. This model is finally discretized with a
dimensionless sampling time, T ∗s =

√
Cx/mL · Ts, giving the discrete-time matrices

needed for the LTV-MPC scheme.

3.2.3 Controller design

3.2.3.1 Reference generation

The first step in the control pipeline is to "translate" the driver commands (throttle,
brake, steering) into state references. For standard driving situations, a kinematic
bicycle model is used for this purpose. In most basic test maneuvers, the refer-
ence longitudinal speed, vrefx , is kept constant. Then, the desired yaw rate can be
calculated from the steering angle δf as:

ψ̇ref = vrefx

lf + lr
tan δf (3.11)

Finally, the reference lateral speed, vrefy , is often set to zero, which completes the
reference vector with three tracked states, ηref = [vrefx vrefy ψ̇ref ]>. With a controller
that outputs motor torques, wheel speeds do not need to be tracked - this would be
the task of a traction control system, for example.

3.2.3.2 MPC

With an LTV model, the optimization problem to be solved in every time step was
formulated as in (2.24). After the solution to the problem was found, the first control
input was applied to the system.

The first constraint in the prediction model were the state dynamics, which are
described by the dual-track model. Then, the actuator limitations were taken into
account by limiting the available torque on the driven wheels and its rate. Finally,
since the tires are approximated with a linear model which is accurate only in a
certain region of small slip, soft state constraints were added to limit the slip and
avoid the nonlinear dynamics. This range was determined from the plot of the
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3. Methods

tire model approximation, shown in Figure 2.3. The optimization problem was
formulated as:

min
u,ε

J(ξ, u, ε) =
∑
k

∥∥∥ξk − ξrefk

∥∥∥2

Q
+ ‖uk‖2

R + ‖∆uk‖2
S + p ‖εk‖2 (3.12a)

s.t. ξ+ = Akξk +Bkuk + dk, ξ(0) = ξ0 (3.12b)
|ξk| < εk, |uk| < umax, |∆uk| < ∆umax, for all k (3.12c)

with Q = diag[102 0 104], R = 10−3 · I4, S = 10−2 · I4 and p = 100. The sampling
time was set to 50 ms to allow for running the optimization, the prediction horizon
was set to N = 10 and the control horizon toM = 3. With the dimensionless model,
the cost function matrices were transformed into Q∗ = M>

ξ QMξ, R∗ = M>
u RMu and

S∗ = t̂−2 ·M>
u SMu, where t̂ =

√
mL/Cx.

3.2.4 Simulation environment
With the dual-track model and torque vectoring, the goal was to obtain results with
a higher fidelity. Therefore, a full nonlinear tire model (the "magic" formula) was
used, along with a 3DOF vehicle model. The tire model parameters were taken
from the .tir file provided by CarMaker. In this initial work, aerodynamics were
considered (also with parameters from CarMaker) and the suspension dynamics were
neglected.

The simulations were done in Simulink using YALMIP [13] with OSQP [14] as the
solver and the Vehicle Dynamics Blockset by Mathworks [15].
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4
Results

4.1 Lateral position control

For testing lateral position control, a sine steer manoeuvre as shown in Figure 3.3
was used, with a sampling time of 0.01 s and simulation time of 10 s. First, nondi-
mensionalization was tested by comparing simulations with a dimensional and a
dimensionless prediction model for both the full size and lab scale vehicles. Then,
transferability was evaluated by comparing the dimensionless states and inputs for
the two vehicles, which should be similar according to the theory.

4.1.1 Nondimensionalization

Figures 4.1 and 4.2 show the results obtained with using a dimensional and a non-
dimensional prediction model in the controller, for both the full size and lab scale
vehicle parameters. The manoeuvre consisted of driving straight for two seconds
and then initiating a sine steer. Constraints on the input and input rate are shown
with the dashed red lines, which is also used for the reference lateral position.
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Figure 4.1: Lateral control comparison with the two models (full size).
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Figure 4.2: Lateral control comparison with the two models (lab scale)

The plots indicate that very similar results can be obtained with either model, both
for the full size and the lab scale vehicle. Although the simulation in this case is
not very realistic, the expected behaviour can be verified and the vehicle seems to
follow the reference well.

It is interesting to note that the steering angle yaw rate exceeds the specified limits
in some time steps. This is probably due to the solver’s algorithm, which can
sometimes "bend" the constraints slightly. A possible solution for this would be to
decrease the allowed range so that the actual desired limits are not reached. Also,
the cost function weights for the input rate could be increased to achieve a similar
effect (although respecting the constraints is not guaranteed in that case).

4.1.2 Transferability

The next step in lateral position control evaluation was to compare the dimension-
less states of the two vehicles, which should again be similar if dynamic similarity
is achieved. Figure 4.3 shows the normalized states and inputs for the two vehicles,
with a slight difference in steering angle rate limits due to different vehicle param-
eters. As expected, the dimensionless states are very similar, which indicates that
the controller can operate independent of the vehicle scale.
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Figure 4.3: Inputs and non-dimensional states, full size and lab scale.

4.2 Torque vectoring

After verifying the basic assumptions with the bicycle model and lateral position
control, the goal was to test the torque vectoring algorithm. The initial plan was
to simulate the full size vehicle in Simulink or CarMaker and compare the results
with the experimental setup built at the Faculty in Zagreb during the last year. The
main reason was that there was no possibility of testing the algorithm on a real full
size vehicle. On the other hand, modelling the lab-sized vehicle to a level needed for
Simulink/CarMaker would require a significant amount of time and experimentation.

Unfortunately, hardware issues in the late stage of thesis work made it difficult to
obtain experimental results on the lab-size vehicle in good time. Also, the full lab-
size tire model is still unknown and modifying proprietary Simulink blocks is not
straightforward. This section therefore presents only the results obtained for the
full-size vehicle.

The torque vectoring algorithm was tested on two driving scenarios, a step steer and
a sine steer from the lateral position control testing (Figure 3.3). The inputs and
states of interest (longitudinal speed and yaw rate) are shown in Figures 4.4 and
4.5. The dashed red line marks reference values, which were held constant for the
longitudinal speed and calculated according to (3.11) for the yaw rate. Note that, in
the simulations done in Simulink, the coordinate system is oriented with the y-axis
to the right and z-axis downwards.
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(a) The dimensional model.
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(b) The non-dimensional model.

Figure 4.4: Torque vectoring comparison with the two models, step steer.
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(a) The dimensional model.
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Figure 4.5: Torque vectoring comparison with the two models, sine steer.

Although the yaw rate tracking seems similar, there are some differences in the
optimal torque calculated by the controller. This could be due to the LTV MPC
method, in which the nonlinear dynamics are linearized. This might, along with the
state and cost function transformation, result in an optimization problem with a
different minimum. Also, the longitudinal speed decreases more when dimensionless
MPC is used.

The controllers generally perform well and manage to track the reference. Further
testing is needed to find the cause of the mentioned differences, but the overall
results indicate that nondimensionalization could be possible and applicable for
torque vectoring.
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Conclusion

5.1 Overall results
Within this project, dimensional analysis was applied to both the bicycle model
and the dual-track model with realistic vehicle parameters. With the dimensionless
models obtained by a linear transformation, it was shown that differently sized
vehicles have similar dynamic equations if certain relations between their parameters
are satisfied. Then, two MPC controllers were developed and tested. The first one,
a lateral position controller, produced positive results similar to those in [11]. The
second one, used for torque vectoring, is slightly more difficult to evaluate, but
looks promising after a few initial experiments. Due to multiple reasons, the thesis
work was not conducted exactly as planned. Several issues with implementation in
both software and hardware caused delays and reduced the intended thesis output.
However, the results that were obtained confirm that dimensional analysis can be
used with MPC and vehicle dynamics control, demonstrate that the controllers give
similar results independent of the scale of the vehicle and show the potential of
further research.

5.2 Future work
As with almost every project, there are several things that can be considered as
the next step in the direction of this thesis. The first one would be to complete
the torque vectoring evaluation by either modelling the lab-size vehicle in more
detail in Simulink/CarMaker or working on the experimental setup. Another area
to investigate could be the comparison of a nonlinear MPC scheme (with a nonlinear
dimensionless model) and the presented LTV MPC scheme.

Additionally, more extensive work could be done on the theoretical background of
dimensional analysis and MPC, e.g., showing analytically under which conditions
two dynamical closed-loop systems become equivalent. Finally, it would be interest-
ing to look into the possibilities of robust or adaptive MPC with the dimensionless
model. As shown in [9], designing a controller in the dimensionless state space with
possibly smaller variations could allow for an easier use of the same controller in
different vehicles.
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