
A scalable manycore simulator for
the Epiphany architecture

Master’s thesis in Computer science and engineering

Ola Jeppsson

Department of Computer Science and Engineering
Chalmers University of Technology
University of Gothenburg
Gothenburg, Sweden 2019

Master’s thesis 2019

A scalable manycore simulator for
the Epiphany architecture

Ola Jeppsson

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2019

A scalable manycore simulator for the Epiphany architecture
Ola Jeppsson

© Ola Jeppsson, 2019.

Supervisor: Sally A. McKee, Department of Computer Science and Engineering
Examiner: Mary Sheeran, Department of Computer Science and Engineering

Master’s Thesis 2019
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX
Gothenburg, Sweden 2019

iv

A scalable manycore simulator for the Epiphany architecture

Ola Jeppsson
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
The core count of manycore processors increases at a rapid pace; chips with hundreds
of cores are readily available, and thousands of cores on a single die have been demon-
strated. A scalable model is needed to be able to effectively simulate this class of proces-
sors. We implement a parallel functional network-on-chip simulator for the Adapteva
Epiphany architecture, which we integrate with an existing single-core simulator to cre-
ate a manycore model. To verify the implementation, we run a set of example programs
from the Epiphany SDK and the Epiphany toolchain test suite against the simulator. We
run a parallel matrix multiplication program against the simulator spread across a vary-
ing number of networked computing nodes to verify the MPI implementation. Having
a manycore simulator makes it possible to develop and optimize scalable applications
even before the chips for which they are designed become available. The simulator can
also be used for parameter selection when exploring richer hardware design spaces.

Keywords: Simulation, Functional Simulator, Manycore, Network-on-Chip, Adapteva,
Epiphany, eMesh, Shared Memory, MPI, Process-level parallelism, GDB

v

Preface
The Epiphany mesh network-on-chip simulator described in this thesis is original, in-
dependent work by the author. A shorter description has previously been published in
Jeppsson andMcKee [1]. This thesis is based on the Epiphany port of the GDB (The GNU
Debugger) simulator framework. GDB is a product of the Free Software Foundation.

Acknowledgements
First and foremost, I would like to express my deepest gratitude to my thesis supervisor
Professor Sally A.McKee. Prof. McKee has been a greatmentor and has been nothing but
encouraging throughout the writing of this thesis. I would also like to thank my thesis
examiner Professor Mary Sheeran for her patience, vital feedback, and sincere interest
in making the thesis better. In addition, thank you to Andreas Olofsson of Adapteva
Inc. Mr. Olofsson has always been available to answer any questions about architecture
details. This has been of utmost importance for the outcome of this thesis. Last but not
least, I would like to thank my parents and brother for all their support and for always
being there for me.

Ola Jeppsson, Clemson, August 2019

vii

Contents

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Why a manycore simulator is needed . 1
1.2 Method . 2
1.3 Limitations . 2
1.4 Related work . 3
1.5 Document structure . 3

2 Background 5
2.1 Epiphany architecture . 5

2.1.1 RISC cores . 5
2.1.2 Network-on-Chip . 6
2.1.3 Addressing scheme . 6
2.1.4 Core memory region layout . 7
2.1.5 Memory model . 7

2.2 The Parallella board . 8
2.3 The GNU debugger . 9

2.3.1 Simulator framework . 10

3 Implementation 11
3.1 Single-core simulator integration . 12

3.1.1 Interrupt implementation . 12
3.1.2 Hardware loops . 14

3.2 Device implementation . 14
3.2.1 Timers . 14
3.2.2 DMA . 15

3.3 eMesh simulator . 15
3.4 Parallella/Epiphany software development kit (SDK) support 15
3.5 Networking support . 16
3.6 Simulator frontend . 16
3.7 Simulation environments . 17

4 Results 19
4.1 Epiphany examples . 19

ix

Contents

4.2 Domino . 21
4.3 HPC demonstration . 21
4.4 Simulator frontend . 24
4.5 Integration with Epiphany SDK . 24

5 Discussion 25
5.1 Future work . 26

5.1.1 Clock count estimation . 26
5.1.2 Multicore debugging support . 27

6 Conclusion 29

Bibliography 31

Acronyms 33

Appendices 35

A Simulator frontend usage 37

x

List of Figures

2.1 Epiphany architecture . 6
2.2 Epiphany address layout . 6
2.3 Epiphany core address map . 7
2.4 Parallella board . 8
2.5 Parallella functional diagram . 9
2.6 GDB overview . 9

3.1 Simulator overview . 11
3.2 Interrupt service routine operation . 14
3.3 Host device communication . 16
3.4 Simulator frontend overview . 17

4.1 epiphany-examples test suite . 20
4.2 Domino message path . 21

5.1 NoC delay formula . 26

xi

List of Tables

2.1 Memory ordering guarantees . 8

4.1 Legend description for tables 4.2 to 4.5 23
4.2 Results for matmul-16 . 23
4.3 Results for matmul-64 . 23
4.4 Results for matmul-256 . 24
4.5 Results for matmul-1024* . 24

xiii

1
Introduction

For many decades shrinking feature sizes, following Moore’s law, have enabled more
and more transistors on-chip. This has allowed processor architects to consistently
deliver higher-performing designs by raising clock speeds and adding more hardware
to increase instruction-level parallelism (ILP). Techniques like speculative and out-of-
order execution not only increase performance — they also increase power consumption,
which, in turn, increases heat dissipation.

Power and thermal considerations are now first-class design parameters. Since the
performance gains from adding more complexity to a micro-architecture is only square
root proportional to the increase in power consumption [2], ILP does not scale as well as
thread-level parallelism in that regard. In the previous decade, industry leaders turned
to chip multiprocessor designs to deliver more parallel performance instead of focusing
on single-threaded performance. Some processor manufacturers have since turned to
manycore designs to deliver even greater parallel performance. Chips with hundreds
of cores are readily available today [3, 4]. The KiloCore [5] project has demonstrated
a functioning 1000-core chip. In 2016 Adapteva taped out Epiphany-V [6], a 1024-core
chip.

The Adapteva Epiphany architecture [7] is a manycore processor design consisting
of reduced instruction set computing (RISC) cores organized in a 2Dmesh network topol-
ogy. This type of 2D grid layout is a popular topology for manycore architectures due
to its relative ease of design and scalability. The cores are connected by three network-
on-chips (NoCs) for different types of traffic. The programming model offers a shared
address space in which every core has a dedicated memory region. Chips with 16-64
cores are readily available, but the architecture is designed to accommodate thousands
of cores per chip, and the address space supports up to 4095 cores1 in one shared address
space. Section 2.1 provides a more detailed architecture description.

1.1 Why a manycore simulator is needed

Prior to this thesis there existed only a single-core simulator for the Epiphany architec-
ture: simulating an Epiphany chip with all cores running concurrently was not possible.
While a single-core simulator is useful for tasks like register-transfer level (RTL) code
verification, and running a toolchain’s (compiler, assembler, linker, debugger) test suite,
most real-world applications targeting manycore systems naturally are multiple instruc-
tion streams, multiple data streams (MIMD).

1Epiphany-V 64-bit architecture supports systems with up to 1 billion cores.

1

1. Introduction

Further, a manycore simulator makes it possible to explore richer hardware design
spaces and makes it possible to develop and optimize scalable applications (even before
the chips for which they are designed become available).

A working Epiphany manycore simulator is a vital building block for doing full-
system simulation of the Parallella microcomputer board [8]. See section 2.2 for a de-
scription of the Parallella board.

1.2 Method

The objective of this Master’s thesis is to create a manycore simulator for the Epiphany
architecture. We do this by implementing a functional simulator for the Epiphany eMesh
NoC, see section 3.3. The eMesh simulator is integrated with the existing single-core
simulator to create a manycore simulator; this is described in section 3.1. We extend the
single-core simulator previously missing features, such as support for interrupts and
self-modifying code.

To exploitmaximumparallelism in the simulated applications, we add support for dis-
tributing the simulation across several networked nodes via message passing interface
(MPI). MPI is commonly supported in smaller clusters as well as in high-performance
computing (HPC) environments.

To verify the implementation, we run a set of example programs from the Epiphany
SDK and the Epiphany toolchain test suite against the simulator. We run a parallel
matrix multiplication program against the simulator spread across a varying number
of networked computing nodes to verify the MPI implementation.

1.3 Limitations

The focus of this thesis is on developing a functioning and scalable manycore simulator
for the Epiphany architecture. Features outside the thesis’s main scope have not been
prioritized and should therefore not be taken into account when assessing the outcome
of the project. These include:

• core functionality not implemented in the single-core simulator, i.e., functionality
not dependent on the NoC;

• cycle-accurate timing;
• detailed simulation of the on-chip network, i.e., instead of routing memory traffic
via intermediate nodes, we send requests directly to the target core;

• simulation of other components on the Parallella board (the Epiphany reference
platform). This includes details of the ARM cores, Zynq functionality, and operat-
ing system (OS) activity;

• features marked as LABS in the reference manual [9] (i.e., untested or broken func-
tionalities);

• Epiphany-V features. These include 64-bit addressing mode, double-precision
floating-point support, and new instruction set architecture (ISA) instructions.

The reasons for why we do not implement these features are the limited time at our
disposal, and that we want the simulator to be as fast as possible.

2

1. Introduction

1.4 Related work
There exists a variety of different CPU simulators having different implementations and
different goals. Some offer very precise simulationwhile others barely emulate the target
to achieve as close to native execution speed as possible. Before we started working on
the simulator, we compared different simulator frameworks, both to get inspiration and
to see if any of them was more suitable than the GDB simulator framework the already
available single-core Epiphany simulator was using.

• QEMU [10] is a widely used machine emulator. QEMU supports both user mode
and full-system simulation. It has support for a wide variety of CPU architectures
and peripherals. QEMUuses dynamic code translation to increase execution speed.
It can simulate a multi-processor system but does so in a single thread. There is
also ongoing work to support multi-threaded code translation [11], but this work
has not yet been merged into mainline QEMU. PQEMU [12] is a QEMU fork that
uses multiple threads to speed up simulation.

• gem5 [13] is a competent full-system simulator. Work to implementmultiple event
queues (for parallelism) had just begunwhen this project started andwas not ready
for use. gem5 has its own domain-specific language (DSL) for describing ISA op-
codes and semantics, which should make it easier to add new architectures. gem5
can be configured to provide a fine-grained, timing-accurate simulation. gem5 can
support both user-mode and full-system simulation.

• SID [14] is another computer system simulation framework. It can be used to
simulate complex computer systems with multiple cores, buses, and devices. It
is relevant for this work because of its CGEN (see section 2.3) support. CGEN is
used by the existing single-core simulator, which means that the ISA opcodes and
semantics description could be easily reused.

• Parallel Embra [15] is a functional multicore simulator. It uses OS-level threads
for parallelism and uses the underlying memory system of the host to synchro-
nize memory accesses. Parallel Embra supports full-system simulation. To speed
simulation, it uses binary translation and loose, but functionally correct, timing
constraints.

• Graphite [16] is the only CPU simulator we considered that supports distributing
a simulation across multiple machines. It does not use MPI, which is the goto
programming model in the HPC world, but instead rolls its own implementation,
which promises to be more dynamic and to make it more easy for users since they
do not need to preallocate resources.

1.5 Document structure
The rest of this thesis is organized as follows. Chapter 2 introduces the background and
relevant concepts needed to understand the rest of the thesis. Chapter 3 describes the
implementation. Chapter 4 shows the results and verification. Chapter 5 discusses the
results and further work. Chapter 6 provides a summary of the thesis outcome.

3

2
Background

This chapter introduces concepts relevant to Adapteva technology and the GDB simula-
tor framework. The information in this chapter is needed to understand and implement
a functional Epiphany manycore simulator. The actual implementation is described in
chapter 3.

2.1 Epiphany architecture

The Epiphany architecture is a manycore processor design comprised of three main com-
ponents: cores, NoCs, and off-chip I/O (eLink). These are depicted in fig. 2.1. The cores
are placed in a two-dimensional grid topology. They are connected by three separate
on-chip networks for different types of traffic, with one router per intersection.

Both the cores and the NoCs have been designed for scalability and energy efficiency,
and therefore many things one would expect in standard multicore processors have been
stripped away. For instance, there are no inter-core buses, no caches (and hence no cache-
coherence protocol), and no speculative execution (only static branch prediction). The
upside of these trade-offs is an energy-efficient architecture that can fit thousands of
cores on a single die [6].

2.1.1 RISC cores

The cores are simple RISCs, each equipped with one integer arithmetic logic unit (ALU)
and one IEEE-754 [17] compatible single-precision floating-point unit (FPU). The FPU
can also be configured to operate as a second ALU. The pipeline is dual-issue for the
ALU and FPU data paths. Alternatively, it can also execute one FPU instruction and
one load/store instruction per clock cycle. Since the FPU has fused multiply-accumulate
instructions, a core can effectively execute two floating-point operations and one load-
/store operation per clock cycle. The ISA includes about 40 instructions. The register
file has 64 general-purpose registers and a group of special-core registers. All registers
are memory-mapped. The basic word-size is 32 bits. There are no caches or memory
management unit (MMU), so the memory needs to be explicitly managed by the pro-
grammer. Branch prediction is static non-taken only, but to compensate for that there
are hardware loops. Each core also has two event timers, a two-channel direct memory
access (DMA) unit, and an interrupt controller with nested interrupt support.

5

2. Background

Figure 2.1: Epiphany architecture [9]

2.1.2 Network-on-Chip
Network-on-chip is a network-based approach for communicating between different
components on an integrated circuit (IC). It uses router-based packet-switching for com-
munication. Compared to traditional solutions such as system buses and crossbars, it
offers better scalability traded for higher latency.

Figure 2.1 shows the 2Dmesh layout of the Epiphany architectureNoC.TheEpiphany
implements separate networks for different types of traffic: one for reads (the rMesh),
one for on-chip writes (the cMesh), and one for off-chip writes (the xMesh). We collec-
tively refer to these as the eMesh. Packets are first routed east-west and then north-south.
A chip has one eLink per side. At a clock frequency of 1 GHz, total off-chip bandwidth
is 6.4 GB/s, and total on-chip network bandwidth is 64 GB/s at every core router.

2.1.3 Addressing scheme
The architecture has a shared, globally addressable 32-bit address space. An address is
logically divided into coreid (upper 12 bits), and offset (lower 20 bits). The coreid deter-
mines to which core a memory access should be routed. Addresses with all coreid bits
set to zero alias to the local core’s memory region. Further, the coreid is divided into row
(upper six bits), and column (lower six bits). Thus the addressing scheme can support a
grid of up to 64× 64 cores, each with its own 1 MB memory region. This is depicted in
fig. 2.2.

012345678910111213141516171819202122232425262728293031

coreid offset

row column
1 MB per core memory

region

Figure 2.2: Epiphany address layout

6

2. Background

2.1.4 Core memory region layout

The core memory layout for the Epiphany-III is shown in fig. 2.3. Memory in the range
[0x0000-0x8000] is backed by standard SRAM. The lowest 40 bytes comprise the
interrupt vector table (IVT). Each entry is four bytes and holds a relative branch instruc-
tion to an interrupt service routine (ISR). The remainder of the SRAM-backed memory
range can be used for program and data. The highest 64 KB of the memory region is
used for memory-mapped registers. A small portion of memory just above the IVT is
reserved by the application binary interface (ABI).

0xFFFFF

0xF0400

Special Core Registers
Program counter, Status, Config
…

... Reserved

0xF00FC

0xF0000

Memory-mapped general
purpose registers.
R0-R63

... Reserved for memory expansion

0x07FFF

0x00028

Normal SRAM
for program and data.
Read/writable

0x00027

0x00000

Interrupt Vector Table
10 entries × 4 bytes
(branch instructions)

Figure 2.3: Epiphany core address map [9]

2.1.5 Memory model

The supportedmemory operations are LOAD, STORE, and TESTSET (atomic synchroniza-
tion operation). All local memory accesses have a strongmemory ordering, i.e., they take
effect in the same order as they were issued. Memory accesses routed through one of the
three NoCs have a weaker memory ordering. The router arbitration and dispatch rules
are deterministic, but the programmer is not allowed to make assumptions regarding
synchronization since there is no way to know the global “system state”.

Section 4.2 of the reference manual [9] lists the only guarantees on which the pro-
grammer can depend (summarized in table 2.1). It is important to note that in this context
“previously written” means that the write (STORE operation) has propagated through the
network, reached its destination router, and has been stored to its target address. Hence,
if a write request is still in-flight (propagating through the network), a read request to the
same address will return the old value if the read request reaches the destination router
before the write request. Remember that read and write requests are routed through
separate networks (rMesh and cMesh).

7

2. Background

All local memory accesses have a strong memory ordering,
i.e., they take effect in the same order as they were issued.

All memory requests that enter the NoC obey the following:

Load operations complete before the returned data is
used by a subsequent instruction

Load operations using data previously written use the
updated values

Store operations eventually propagate to their ultimate
destination

Table 2.1: Memory ordering guarantees [9]

2.2 The Parallella board
The Parallella board [8], depicted in fig. 2.4, is a credit-card sized microcomputer and is
the de facto development board for the Epiphany architecture. It is based on a two-chip
solution, a Xilinx Zynq 7000 family chip and an Epiphany-III chip. The Zynq system on
a chip (SoC) is equipped with an ARM Cortex A9 processor and a field-programmable
gate array (FPGA). The ARM processor is connected with the Epiphany chip’s east eLink
via an advanced extensible interface (AXI) bus bridge interface implemented in FPGA
logic. This is shown in fig. 2.5.

Figure 2.4: Parallella board

8

2. Background

Figure 2.5: Parallella functional diagram [18]

2.3 The GNU debugger

gdb run

remoteexec simulator

API

User
interfaces

Targets

Figure 2.6: GDB overview

The simulator uses the common simulator framework for the GNU debugger (GDB),
which is widely used and serves as the defacto standard debugger in the open-source
community. Written by Richard Stallman in the 1980s, it was maintained by Cygnus So-
lutions throughout the 1990s until they merged with Red Hat in 1999. During this time
GDB gained most of its target support, and many GDB-based simulators were written.
Like the Adapteva simulator on which we base our work, most of these are for embedded
systems.

GDB is divided into three main subsystems: user interface, target control interface,
and executable file symbol handling [19]. See fig. 2.6 for an overview. Simulators are

9

2. Background

mostly concerned with the user interface and target control interface. Compiling GDB
with a simulator target creates two binaries, epiphany-elf-gdb and epiphany-
elf-run. epiphany-elf-gdb is linked with the target simulator (in our case
the Epiphany simulator) and presents the standard GDB user interface. epiphany-
elf-run is a stand-alone tool that connects to the simulator target and runs a binary
provided as a command-line argument.

2.3.1 Simulator framework
The GNU toolchain (compiler, assembler, linker, and tools) has been ported to many
architectures over the years, and since writing a simulator in the process makes it easier
to test generated code, GDB has acquired several simulator targets.

The process of adding a new architecture generally includes these steps:
• define the CPU components (register file, program counter, pipeline), instruction
set binary format, and instruction semantics in a CPU definition file;

• write architecture-specific devices;
• write needed support code for a main loop generator script; and
• write simulator interface code.

The CPU definition file is written in an embedded Scheme-based, DSL. That definition is
fed through CPU tools GENerator (CGEN) [20] to create C files for instruction decoding
and execution within the simulator framework. Since code for the simulator interface
and main loop tends to be similar across architectures, an existing simulator target can
often be used as a base. For example, parts of the Epiphany implementation originate
from the Mitsubishi M32R port. The CPU definition file is also used by other parts of the
toolchain (opcodes and as (the GNU assembler)).

10

3
Implementation

This chapter describes in detail the simulator implementation and operation. The system
can be seen as three main components:

• a single-core simulator,
• a eMesh NoC simulator, and
• a simulator frontend.

Figure 3.1 shows how we extend the single-core simulator to model a manycore sys-
tem. Our design is process-based: for every core in the simulated system, we launch
an epiphany-elf-run process. When the Epiphany simulator target is initialized,
it also initializes the eMesh simulator, which connects to a shared memory file. The
mesh network simulator uses POSIX shared memory to connect relevant portions of
each core simulator via a unified address space, and all memory requests are routed
through this eMesh simulator. The register file resides in the cpu_state structure.
Since the eMesh simulator needs to access remote CPU state for some operations, we
also store that state in the shared address space.

CPU Simulator 0
epiphany-elf-run

eMesh SimulatorMemory Access

CPU Simulator N
epiphany-elf-run

eMesh SimulatorMemory Access

Shared Memory

 CPU State

 CPU State

 Core SRAM

Core SRAM

External RAM... ...

Figure 3.1: Simulator overview

11

3. Implementation

3.1 Single-core simulator integration

We use the GDB Epiphany single-core simulator as a base in our work. Most instruction
semantics had already been defined, and it was working with a single core. Due to the
design of the GDB simulator framework, the simulator lacked support for self-modifying
code in the modeled system. Due to the small local memories (32KB) in the Epiphany
cores, executing code must be able to load instructions dynamically (like software over-
lays). Enabling self-modifying code required that we modify software mechanisms in-
tended to speed simulation. For instance, a semantics cache maintains decoded target
machine instructions, and in the original simulator code, writes to addresses in the se-
mantics cache would update memory but not invalidate the instructions in the cache.
The old code would still be executed. We added a flush mechanism.

We map the entire simulated 32-bit address space to a “shim” GDB device that for-
wards all memory requests to the eMesh network simulator. Recall that the CPU state
of all cores resides in the shared address space, where the eMesh simulator can access it
easily.

Algorithm 1 shows pseudocode for the simulator main loop. The highlighted lines
are from the original single-core main loop. Lines 1-6 and 9 are inserted by the main
loop generator script. The ISA has an IDLE instruction that puts the core in a low-power
state and disables the program sequencer. We implement something similar in software:
in line 8 we check whether the core is active, and if not, we sleep until we receive a
wakeup event.

In line 13 we check whether another core has a pending write request to a special-
core register (SCR). Writes to SCRs are serialized on the target core because they might
alter internal core state. In lines 10 and 18 we handle out-of-band events. Such events
might affect program flow and are triggered by writes to SCRs, e.g., by interrupts or reset
signals. See section 3.1.1 for a description of the interrupt handling implementation.

In line 19 we ensure that only instructions inside the core’s local memory region can
ever reside in the semantics cache. Without this constraint, we would need to do an
invalidate call to all cores’ semantics caches on all writes. In line 21 we check whether
the external write flag is set, and, if so, we flush the entire semantics cache. This flag is
always set on a remote core when there is a write to that core’s memory.

3.1.1 Interrupt implementation

Figure 3.2 shows the state machine of the Epiphany interrupt controller. For the inter-
rupt implementation, we use a simple event system which we incorporate into the main
loop(algorithm 1). All writes to SCRs and instructions that might affect the interrupt
state emit an interrupt event. In the main loop we then call
handle_out_of_band_events(), which in turn calls
interrupt_handler(), which implements the hardware side in fig. 3.2. The last
piece of the puzzle was to implement the RTI (ReTurn from Interrupt) instruction.

12

3. Implementation

Algorithm 1: Main loop (simplified for illustration)
Highlighted lines are the original main loop

1 while True do
2 sc← scache.lookup(PC);
3 if sc = ∅ then
4 insn← fetch_from_memory(PC);
5 sc← decode(insn);
6 scache.insert(PC , sc);
7 old_PC ← PC ;
8 if core is in active state then
9 PC ← execute(sc);

10 PC ← handle_out_of_band_events(PC);
11 else
12 wait_for_wakeup_event();
13 if ext_scr_write_slot.reg ̸= -1 then
14 reg_write(ext_scr_write_slot.reg,
15 ext_scr_write_slot.value);
16 ext_scr_write_slot.reg← -1;
17 signal_scr_write_slot_empty();
18 PC ← handle_out_of_band_events(PC);
19 if old_PC ̸∈ local memory region then
20 scache.invalidate(old_PC);
21 if external_mem_write_flag then
22 scache.flush();
23 external_mem_write_flag← False;

13

3. Implementation

Figure 3.2: Interrupt service routine operation [9]

3.1.2 Hardware loops

Hardware loops are controlled by the LC (loop counter), LS (loop start address), and LE
(loop end address) registers. When the next PC (program counter) is equal to LE, and
LC is non-zero, the program will jump to LS, and LC will be decremented by one. We
implement hardware loops by special-casing the handling of the PC in the CGEN CPU
definition file.

3.2 Device implementation

3.2.1 Timers

Our timer implementation supports the CLK and IDLE tick event types, which are the
most commonly used event types and a requirement of some of the
epiphany-examples programs. It also supports a CHAINED mode that combines
the two available timers (timer0 andtimer1) into a 64-bit wide counter. This feature
is only available on Epiphany-IV and later chips.

14

3. Implementation

3.2.2 DMA

Our DMA implementation supports everything except slave-mode DMA. Slave-mode
DMA is a LABS feature present in Epiphany-III and Epiphany-IV, but which is likely to
be removed in later generations of the Epiphany processor.

3.3 eMesh simulator

As shown in fig. 3.1, the eMesh simulator creates a shared address space accessible to
all simulated cores. This is accomplished via the POSIX shared memory application
programming interface (API). We use POSIX threads (pthreads) for inter-process com-
munication.

The eMesh simulator provides an API for the (LOAD, STORE, and TESTSET) memory
transactions, along with functions to connect and disconnect to the shared address space.
We also provide a client API so that other applications can access the Epiphany address
space (e.g., to model the external host or instrument a simulated application).

Every memory request must be translated. The translator maps an Epiphany address
to its corresponding location in the simulator address space. It also determines to which
type of memory (core SRAM, external DRAM, memory-mapped registers, or invalid) the
address corresponds.

How the request is serviced depends on the memory type. Accesses to core SRAM
and external DRAM are implemented as native load and store operations (the target core
need not be invoked). Memory-mapped registers are a little trickier. All writes to such
registers are serialized on the target core. This is accomplished with one write slot, a
mutex, and a condition variable. Reads frommemory-mapped registers are implemented
as normal load operations.

Since reads to memory-mapped, general-purpose registers are only allowed when
the target core is inactive, we check core status before allowing the request.

3.4 Parallella/Epiphany SDK support

We created a backend for the Epiphany hardware abstraction library (e-hal). By using
the eMesh simulator client API, we can compile Parallella host applications natively for
x86_64without codemodification 1 This is shown in fig. 3.3. We experimentedwith cross-
compiling programs (from the epiphany-examples repository on the Adapteva
GitHub account) with generally good results. Obviously, programs that use implicit
synchronization or depend on hardware timings might not work, and programs that use
core functionalities not yet supported will not work.

1Since data structures are passed between the host (64-bit x86_64), and target (32-bit Epiphany), their
memory layout must be explicitly defined.

15

3. Implementation

Host program
matmul-host.elf

Epiphany HAL API

eMesh simulator API

CPU Simulator 0 eMesh SimulatorMemory Access

CPU Simulator N eMesh SimulatorMemory Access

Shared Memory

 CPU State

 CPU State

 Core SRAM

Core SRAM

External RAM

Host Epiphany

Epiphany HAL
simulator target

Figure 3.3: Host device communication

3.5 Networking support

We have also extended the eMesh simulator with networking support implemented in
MPI [21]. We useMPI’s remotememory access (RMA)API to implement normalmemory
accesses (core SRAMand external RAM).We implement all register accesses with normal
message passing and a helper thread on the remote side. We implement TESTSET with
MPI_compare_and_swap(), which is only available in MPI-3.0 [22]. Since we use
both threads and MPI-3.0 functionalities, we require a fairly recent MPI implementation
compiled with MPI_THREADS_MULTIPLE support.

We divide the simulation into sub-tiles, which we map to the network nodes allo-
cated for the simulation. The eMesh simulator uses the single-host shared memory im-
plementation for accessing simulated cores that reside on the same node. MPI will only
be invoked when the target core simulator resides on a different node.

3.6 Simulator frontend

As noted, the simulator is process-based, i.e., one simulated core maps to one system pro-
cess. When we began development, we started these processes by hand (which is cum-
bersome and does not scale). We therefore created a command-line tool called epiphany-
elf-sim, which makes it easy to launch simulations. Mesh properties and the program(s)
that should be loaded onto the cores are given as command-line arguments, and the
tool spawns and manages the core simulator processes. Full program usage is listed in
Appendix A.

16

3. Implementation

Simulator frontend
epiphany-elf-sim

Core 0
epiphany-elf-run

Core 1
epiphany-elf-run

...
Core N

epiphany-elf-run

Figure 3.4: Simulator frontend overview

Listing 3.1: Example 8x8 epiphany-elf-sim invocation
$ epiphany−e l f−sim −r 8 −c 8 −−r e d i r e c t−d i r out . / h e l l o−world . e l f

Listing 3.2: Example epiphany-elf-sim invocation with a host program
$ epiphany−e l f−sim −−r e d i r e c t−d i r out −−hos t . / matmul−hos t . e l f

3.7 Simulation environments
The GDB simulator framework provides three different simulation environments, user,
virtual, and operating. User environment is intended to simulate normal user programs
whereas operating environment is for OSs or bare-metal type applications. It is not clear
what the virtual environment should be used for: different ports implement it slightly
differently. This is how we map the environments: user is the default for running
single-threaded applications with epiphany-elf-run; virtual is the default
for starting a stand-alone simulation (without a host) with epiphany-elf-sim;
and operating is the default when epiphany-elf-sim is started in host-device
mode (the --host argument). Interrupts are not supported in user environment, and
any interrupt or exception will cause the simulation to halt. Also, any instruction that
would put the core in an inactive state (e.g., the IDLE instruction) will stop the simula-
tion. Interrupts are supported in the virtual and operating environments, and a core can
become inactive without the simulation stopping. The only difference between how we
implement the virtual and operating environments is how a core is started. In the vir-
tual environment we trigger a sync interrupt, and in the operating environment the core
starts up in the inactive state, just as on the chip. It is then the responsibility of a host
program to load a binary image onto the core and start it by sending a sync interrupt.
We let the simulator handle traps in all three environments.

17

4
Results

The simulator supports all features not marked as LABS in the reference manual (i.e.,
untested or broken functionalities), with the exception that the event timers only sup-
port CLK and IDLE as event sources. The simulator executes millions of instructions
per second (per physical host core) and scales up to 4095 simulated cores running con-
currently on a single computer. For the networking backend, we have run tests with up
to 1024 simulated cores spread over up to 48 nodes in an HPC environment. In larger
single-node simulations the memory footprint averages under 6MB per simulated core.
Note that the simulator design requires that writes from non-local (external) cores flush
the entire semantics cache (see algorithm 1, line 21–23) rather than just invalidating the
affected region, which may hamper performance.

4.1 Epiphany examples

The epiphany-examples [23] repository contains a variety of self-contained ex-
ample programs that demonstrate how the Epiphany architecture and software libraries
can be used for solving basic tasks. These include (i) common math problems (such
as parallel FFT and matrix-multiplication), (ii) code more specific to the architecture
(such as DMA, timers, and interrupts), and (iii) pure library and platform regression
tests. Since all the examples use the Epiphany libraries and the simulator is a supported
e-hal backend, the epiphany-examples test suite can be run against the simula-
tor in place of real hardware. This is demonstrated in fig. 4.1. As can be seen in the
figure, the test suite passes when run against the simulator. A few test cases are ex-
pected to fail (indicated by CROSS_XFAIL). These failures are well understood and are
caused by (i) timing assumptions explicit to the Epiphany-III chip or Parallella board
(cpu/mutex, dma/dma_message_read), (ii) DMA slave mode not supported by the sim-
ulator (dma/dma_slave), and (iii) an addressing regression test for the Parallella FPGA
eLink/AXI bridge driver that is not applicable to the simulator (test/elink-rx-remapping).

19

4. Results

Figure 4.1: epiphany-examples test suite

20

4. Results

4.2 Domino
The Domino demo shows that a 4095 core chip can be simulated on one machine. The
aggregated memory usage was less than 6MB per simulated core. The example tests
inter-core communication, “model scalability”, and the interrupt implementation.

1. All cores except first calls “IDLE”
2. Leader:

(a) sends its coreid to next core
(b) triggers message interrupt on next
(c) calls “IDLE”

3. Next
(a) appends its coreid and sends to next
(b) triggers message interrupt on next
(c) calls exit

4. …
5. Last core sends message to leader
6. Leader traverses list and prints out the route the message took

Figure 4.2: Domino message path

4.3 HPC demonstration
Theparallel matrixmultiplication application fromepiphany-examples usesmany
CPU functions and performs all interesting work on the Epiphany chip, and thus, we
choose it for initial studies of simulator behavior. For simplicity, we move all host code
to the first core simulator process. For this test, we implemented our own data transfer
functions since the simulator did not yet support DMA at the time. Our port revealed
a race condition in the e-lib barrier implementation, which we attempted to fix (see
the discussion of the 1024-core simulation, below).

21

4. Results

For the tests, we allocated 32 nodes on an HPC cluster. Nodes contain two Intel Xeon
processors with 16 physical cores (eight per socket) connected by a Mellanox Infiniband
FDR. Hyper-threading is disabled. Tables 4.2-4.5 present results for 16, 64, 256, and 1024
simulated cores per computation, respectively.

Things to consider:
1. Using more nodes creates more network traffic (versus direct accesses to memory

within a node) for handling simulated memory accesses. This is orders of magni-
tude slower, even with FDR Infiniband.

2. More nodes means more physical cores. If all simulated cores only accessed their
local memory, the ideal number of nodes would be where there was a one-to-one
mapping between physical cores and simulated cores.

3. The e-lib barrier implementation does busy-waiting, and thus waiting for an-
other core increases total instructions executed. This also shows a clear limitation
of the simulator. Because there is no global time or rate-limiting, the number
of executed instructions could differ significantly between the simulator and real
hardware.

4. The nodes are allocated with exclusive access, but the network is shared between
all users of the cluster. This means that there might be network contention or
other system noise that could qualitatively affect results. Another error factor
is the network placement of the nodes for a requested allocation, which is also
beyond our control.

For matmul-16 and matmul-64, results are understandable: the rate of instructions
executed per simulated core increases until we reach a 2:1 mapping between physical
and simulated cores. The reason that 2:1 outperforms 1:1 is likely because all simulator
processes running on a node can be pinned to physical cores on the same socket, which
means more shared caches and less cache coherence communication between sockets.

Execution time increases for a modest number of simulated cores when we go from
one to two nodes due to network communication. We get a nice speedup in execution
time for matmul-64.

For matmul-256 two results stand out. The jump in execution time from one to two
nodes is much higher compared to matmul-16 and matmul-64. This data point might be
due to a system/network anomaly: unfortunately, we only ran this test once (to date),
so we cannot yet explain the observed behavior.1 For matmul-256 running on 32 nodes,
execution time jumps from 44 seconds on 16 nodes to 521 seconds on 32 nodes. We could
expect execution time to increase a bit, since there is a 1:1 mapping between physical
and simulated cores on 16 nodes, and we get more network traffic with 32 nodes. We
repeated the test a few times (on the same allocation) with similar results. This behavior,
too, requires further study.

When we tried to scale up to 1024 simulated cores, the program could not run to
completion. Attaching the debugger revealed that all simulated cores were stuck waiting
on the same barrier. It is likely that we hit the e-lib race condition and that our fix
proved insufficient. A proper fix has since been applied for the upstream e-lib barrier
implementation2.

As a limit study, we removed all barrier synchronization. This means that program
1In truth, our allocation of CPU hours expired before we could repeat all our experiments.
2https://github.com/adapteva/epiphany-libs/commit/67b6b63f

22

https://github.com/adapteva/epiphany-libs/commit/67b6b63f

4. Results

output is incorrect, and the results for matmul-1024 are not directly comparable to the
other runs. Since all synchronization is removed, we expect execution time to be lower
than it would have been in a correct implementation. However, the program still ex-
hibits a similar memory access pattern, so it is fair to assume that the instruction rate
tells something about performance even with synchronization back in place. From the
previous results, we would expect running on 128 nodes to yield the lowest execution
time and peak instruction rate. Running on a larger allocation is part of future work.

Legend Description
N The number of nodes used in the simulation.
∆t The execution time of the simulation.

Σinsns
The aggregate number of executed instructions for all simulated
cores.

mininsns

maxinsns
The number of executed instructions for the simulated core with
the minimum and maximum executed instructions, respectively.

⟨insns/core/s⟩ The average rate of executed instructions per core in the simulation.
⟨insns/s⟩ The aggregate rate of executed instructions for all simulated cores.

Table 4.1: Legend description for tables 4.2 to 4.5

N ∆t Σinsns mininsns maxinsns ⟨insns/core/s⟩ ⟨insns/s⟩
1 32.0 s 2.28E+09 1.40E+08 1.44E+08 4.45E+06 7.12E+07
2 37.9 s 4.22E+09 2.07E+08 3.29E+08 6.96E+06 1.11E+08
4 53.2 s 5.13E+09 2.49E+08 4.68E+08 6.03E+06 9.65E+07
8 65.8 s 5.51E+09 2.42E+08 5.55E+08 5.24E+06 8.38E+07

Table 4.2: Results for matmul-16

N ∆t Σinsns mininsns maxinsns ⟨insns/core/s⟩ ⟨insns/s⟩
1 81.6 s 6.01E+09 9.22E+07 9.52E+07 1.15E+06 7.37E+07
2 88.6 s 1.30E+10 1.26E+08 2.42E+08 2.30E+06 1.47E+08
4 46.5 s 1.29E+10 1.30E+08 2.52E+08 4.34E+06 2.78E+08
8 29.2 s 1.42E+10 1.33E+08 3.05E+08 7.60E+06 4.86E+08
16 29.9 s 1.46E+10 1.29E+08 3.16E+08 7.63E+06 4.88E+08
32 35.1 s 1.65E+10 1.52E+08 3.70E+08 7.35E+06 4.71E+08

Table 4.3: Results for matmul-64

23

4. Results

N ∆t Σinsns mininsns maxinsns ⟨insns/core/s⟩ ⟨insns/s⟩
1 344.3 s 2.10E+10 7.45E+07 8.51E+07 2.38E+05 6.10E+07
2 1007.3 s 1.52E+11 1.13E+08 9.18E+08 5.89E+05 1.51E+08
4 323.8 s 1.08E+11 1.51E+08 5.08E+08 1.31E+06 3.35E+08
8 103.0 s 6.98E+10 9.17E+07 3.53E+08 2.65E+06 6.77E+08
16 44.4 s 6.03E+10 1.36E+08 2.49E+08 5.31E+06 1.36E+09
32 520.9 s 1.58E+12 8.39E+07 6.32E+09 1.19E+07 3.04E+09

Table 4.4: Results for matmul-256

N ∆t Σinsns mininsns maxinsns ⟨insns/core/s⟩ ⟨insns/s⟩
16 262.8 s 1.50E+11 3.12E+07 1.47E+08 5.59E+05 5.73E+08
32 135.5 s 1.50E+11 3.12E+07 1.47E+08 1.08E+06 1.11E+09

Table 4.5: Results for matmul-1024*

4.4 Simulator frontend
The simulator frontend (epiphany-elf-sim) makes it easy to start simulations.
You specify the mesh layout, external memory base and size, and which binary(ies) to
load. It starts andmanages the core simulator processes. It supports redirecting standard
input and output to per-core files. It defaults to the Parallella configuration if no options
are provided.

4.5 Integration with Epiphany SDK
e-hal supports using the simulator as a target. The e-hal simulator target can be enabled
by providing the --host flag to epiphany-elf-sim. This makes it easy to run
programs written for the SDK against the simulator, without any code modification.

24

5
Discussion

The simulator was written with the goals of functional correctness, scalability, and per-
formance (i.e., instructions executed per time unit). In the previous chapter, we have
shown that our implementation achieves these goals.

• In section 4.1, we demonstrate that the simulator is functionally correct.
• In section 4.2, we show that the simulator can model systems with up to 4095
cores.

• In section 4.3, we show that a simulation can be distributed across multiple net-
work nodes. We present results with up to 1024 simulated cores spread over 32
compute nodes.

We have shown that the simulator is comparably fast, functionally correct, and that
our distributed networked implementation is a viable approach for scaling a manycore
simulator beyond thousands of simulated cores while still reaping the benefits of the
added parallelism.

The good simulation speed is achieved due to mainly two factors. We piggy-back on
the memory ordering of the host system on which the simulator is running. Also, we
have yet to implement a global timing model for the simulated cores. We describe how
the latter can be implemented in section 5.1.1.

Piggy-backing on the memory consistency model of the host system demands that
the host has an equal or stronger memory ordering guarantee than the simulated ar-
chitecture. Otherwise, the simulator cannot be functionally correct with this approach.
There is one more caveat: if the host system has stronger memory ordering (which is
the case for x86_64 and ARM64 vs. Epiphany), that means that the simulator is still
functionally correct. I.e., an application adhering to the memory model of the simulated
architecture will have a correct execution on the simulator. But a host system with
a stronger memory ordering guarantee can also hide memory ordering bugs in a user
application. The application will run fine on the simulator but break on real hardware.

The best use case for the simulator in its current state is for developers who wish to
design, test, and debug their applications. Debugging capabilities exist but are limited.
In section 5.1.2, we describe how the debugging experience can be improved.

Researchers and computer architects will have a harder time using the simulator
due to its lack of a decent timing model. Their use case requires more accurate timing
information to be able to evaluate if changing a design parameter, extending the ISA,
or adding hardware is worthwhile. We want to emphasize that the timing model does
not need to be perfectly cycle-accurate; gem5 [13] is not cycle-accurate, but its timing is
good enough to be widely used in this field.

We believe that a good timing model is an important component in a computer sys-
tem simulator, and that our simulator’s lack of such a model limits its usability. Further,

25

5. Discussion

the timing granularity should ideally be a tunable knob. Different use cases require dif-
ferent levels of timing accuracy, and more fine-grained timing will decrease simulation
speed due to the need for more synchronization.

5.1 Future work

5.1.1 Clock count estimation
The simulator lacks a good model for the number of clock cycles a program would take
to run on real hardware. The simulator can give a detailed summary of executed instruc-
tions and memory accesses, but that is it.

Three components are needed for better timing analysis: a CPU pipeline model, a
network delay model, and a global clock. The GDB simulator framework supports CPU
pipeline modeling, so that should be reasonably easy to implement. With a pipeline
model, the simulator would report accurate timing results for single-threaded programs.

In fig. 5.1 we show a simple formula for modeling the network delay. C is the number
of stall cycles, andM(a, b) is the Manhattan distance between core a and b. The 8 factor
is the number of clock cycles per router hop on the rMesh network, and 1.5 is the number
of clock cycles per router-hop on the cMesh (the return path). Themodel is applicable for
LOAD and TESTSET mesh transactions. STORE transactions incur no stall cycles. The
model assumes no network congestion.

C = (8 + 1.5)×M(a, b)

Figure 5.1: NoC delay formula

The last component needed for a better timing model is a global clock. Since the sim-
ulator uses one system process per simulated core, it is the task of the OS to schedule
the simulator processes fairly. The OS’s concept of fairness is equal execution time. Sim-
ulated cores might execute different instructions. Different instructions take different
amounts of time to simulate. This makes the clock cycle count drift among simulated
cores over time. As long as there is no communication among threads, this is not an
issue, threads will have different simulation times, but the clock count will stay cor-
rect. However, once synchronization (e.g., mutexes and barriers) is added into the mix,
threads become interdependent, and the clock drift spills over to different threads, and
that skews the clock count. This is even worse if the simulation processes are spread
over more than one node across a network.

The solution is to add a global clock to the simulation. In the most extreme case,
the simulator processes would have a synchronization point across all cores for every
simulated clock cycle. This will likely be unacceptably slow, especially over a network.
Instead, we suggest adding a barrier every k simulated clock cycle. A smaller k means
better clock accuracy at the price of worse performance. The parameter can be tuned to
suit the user’s needs.

26

5. Discussion

These measures will not make the simulator cycle-accurate, but we believe that it
will provide an estimate that is good enough to meet the requirements of application
developers and architecture researchers.

5.1.2 Multicore debugging support
Debugging multi-threaded applications can be a real challenge. Epiphany programs can
be debugged via the remote GDB protocol. Adapteva ships its own remote GDB server,
which is called e-server1. e-server has recently gained support for non-stop and
multiprocess, two advanced GDB debugging features [24, 25]. This allows for debugging
multi-threaded programs efficiently on the Parallella board. It would also be beneficial
if a simulator target were implemented for e-server, similarly to how e-hal has a
simulator target.

1https://github.com/adapteva/epiphany-libs/tree/master/e-server

27

https://github.com/adapteva/epiphany-libs/tree/master/e-server

6
Conclusion

In this thesis, we describe the implementation of a manycore simulator for the Adapteva
Epiphany architecture. The work is based on an existing single-core simulator. The
single-core simulator has been extended and integrated with our mesh NoC simulator.
This has enabled us to do full-chip simulationsmodeling large numbers of cores. We have
shown that the simulator is functionally correct, scalable, and has good performance.

The work in this thesis was included in the official Epiphany SDK in 2016. Since then
the SDK has been downloaded over 18,000 times. It is fair to say that the simulator has
reached a wide audience, even though we do not know how many people have actually
used it. The Adapteva Parallella community has over 7,000 registered members, and
over 10,000 evaluation boards have been sold to date. All source code is available from
https://github.com/adapteva/epiphany-binutils-gdb.git. We welcome others who would
like to contribute to the simulator’s further development.

29

https://github.com/adapteva/epiphany-binutils-gdb/tree/epiphany-gdb-8.2

Bibliography

[1] O. Jeppsson and S. A. McKee. “Towards a scalable functional simulator for the
Adapteva Epiphany architecture”. In: Proceedings of 8th Annual Workshop on Pro-
grammable Issues for Heterogeneous Multicores (MULTIPROG). 2015. url: http:
//research.ac.upc.edu/multiprog/multiprog2015/papers/
multiprog-2015-13.pdf.

[2] F. Pollack. Pollack’s Rule of Thumb for Microprocessor Performance and Area. 2007.
url: https://en.wikipedia.org/wiki/Pollack' s_Rule
(visited on 06/2019).

[3] B. de Dinechin et al. “A clustered manycore processor architecture for embedded
and accelerated applications”. In: Proceedings of 17th High Performance Extreme
Computing Conference (HPEC). IEEE Computer Society, 2013. doi: 10.1109/
HPEC.2013.6670342.

[4] A. M. Jones and M. Butts. “TeraOPS hardware: A new massively-parallel MIMD
computing fabric IC”. In: IEEE 18th Hot Chips Symposium (HC18). 2006. doi: 10.
1109/HOTCHIPS.2006.7477853.

[5] B. Bohnenstiehl et al. “KiloCore: A 32-nm 1000-Processor Computational Array”.
In: IEEE Journal of Solid-State Circuits 52.4 (2017), pp. 891–902. doi: 10.1109/
JSSC.2016.2638459.

[6] A. Olofsson. “Epiphany-V: A 1024 processor 64-bit RISC System-On-Chip”. In:
CoRR abs/1610.01832 (2016). arXiv. arXiv: 1610.01832.

[7] A. Olofsson, T. Nordström, and Z. Ul-Abdin. “Kickstarting high-performance energy-
efficient manycore architectures with Epiphany”. In: Proceedings of 48th Asilomar
Conference on Signals, Systems and Computers. IEEE, 2014, pp. 1719–1726. doi:
10.1109/ACSSC.2014.7094761.

[8] Parallella board website. url: https://www.parallella.org (visited on
06/2019).

[9] Adapteva Inc. EpiphanyArchitecture Reference. 2014. url:http://www.adapteva.
com/docs/epiphany_arch_ref.pdf.

[10] F. Bellard. “QEMU, a Fast and Portable Dynamic Translator”. In: Proceedings of
USENIX Annual Technical Conference. USENIX Association, 2005, pp. 41–46.

[11] “Multi-threaded emulation for QEMU”. In: lwn.net (2015). url: https://lwn.
net/Articles/697265/ (visited on 06/2019).

31

http://research.ac.upc.edu/multiprog/multiprog2015/papers/multiprog-2015-13.pdf
http://research.ac.upc.edu/multiprog/multiprog2015/papers/multiprog-2015-13.pdf
http://research.ac.upc.edu/multiprog/multiprog2015/papers/multiprog-2015-13.pdf
https://en.wikipedia.org/wiki/Pollack's_Rule
https://doi.org/10.1109/HPEC.2013.6670342
https://doi.org/10.1109/HPEC.2013.6670342
https://doi.org/10.1109/HOTCHIPS.2006.7477853
https://doi.org/10.1109/HOTCHIPS.2006.7477853
https://doi.org/10.1109/JSSC.2016.2638459
https://doi.org/10.1109/JSSC.2016.2638459
https://arxiv.org/abs/1610.01832
https://doi.org/10.1109/ACSSC.2014.7094761
https://www.parallella.org
http://www.adapteva.com/docs/epiphany_arch_ref.pdf
http://www.adapteva.com/docs/epiphany_arch_ref.pdf
https://lwn.net/Articles/697265/
https://lwn.net/Articles/697265/

[12] J.-H. Ding et al. “PQEMU: A parallel system emulator based onQEMU”. In: Proceed-
ings of 17th International Conference on Parallel and Distributed Systems (ICPADS).
IEEE. 2011, pp. 276–283.

[13] N. Binkert et al. “The Gem5 Simulator”. In: SIGARCH Computer Architecture News
39.2 (2011). ACM. doi: 10.1145/2024716.2024718.

[14] SID Simulator homepage. url: https://www.sourceware.org/sid/
(visited on 06/2019).

[15] R. Lantz. “Fast functional simulation with parallel Embra”. In: Proceedings of 4th
Annual Workshop on Modeling, Benchmarking and Simulation (MOBS). 2008.

[16] J. E. Miller et al. “Graphite: A distributed parallel simulator for multicores”. In:
Proceedings of 16th International Symposium on High Performance Computer Archi-
tecture (HPCA). IEEE, 2010.

[17] “IEEE Standard for Floating-Point Arithmetic”. In: IEEE Standard 754-2008 (2008).
doi: 10.1109/IEEESTD.2008.4610935.

[18] Adapteva Inc. Parallella-1.x ReferenceManual. 2016. url:https://www.parallella.
org/docs/parallella_manual.pdf.

[19] J. Gilmore and S. Shebs. GDB Internals. Tech. rep. 1991–2013.
[20] D. Evans and et al. CGEN: CPU tools GENerator. url: https://sourceware.

org/cgen/.
[21] D. W. Walker. “The design of a standard message passing interface for distributed

memory concurrent computers”. In: Parallel Computing 20.4 (1994). Elsevier, pp. 657–
673. doi: 10.1016/0167-8191(94)90033-7.

[22] M. P. I. Forum. MPI: A Message-Passing Interface Standard Version 3.0. Tech. rep.
2012.

[23] epiphany-examples github Repository. url:https://github.com/adapteva/
epiphany-examples.

[24] N. Sidwell et al. “Non-stop Multi-Threaded Debugging in GDB”. In: Proceedings of
GCC Developers’ Summit. 2008, pp. 117–128.

[25] P. Alves. “GDB, so where are we now? - Status of GDB’s ongoing target and run
control projects”. In: Slides from FOSDEM 2014 conference. 2014. url: https://
archive.fosdem.org/2014/schedule/event/gdb_target_
run_valgrind/attachments/slides/393/export/events/
attachments/gdb_target_run_valgrind/slides/393/pedro_
alves_gdb_slides.pdf.

32

https://doi.org/10.1145/2024716.2024718
https://www.sourceware.org/sid/
https://doi.org/10.1109/IEEESTD.2008.4610935
https://www.parallella.org/docs/parallella_manual.pdf
https://www.parallella.org/docs/parallella_manual.pdf
https://sourceware.org/cgen/
https://sourceware.org/cgen/
https://doi.org/10.1016/0167-8191(94)90033-7
https://github.com/adapteva/epiphany-examples
https://github.com/adapteva/epiphany-examples
https://archive.fosdem.org/2014/schedule/event/gdb_target_run_valgrind/attachments/slides/393/export/events/attachments/gdb_target_run_valgrind/slides/393/pedro_alves_gdb_slides.pdf
https://archive.fosdem.org/2014/schedule/event/gdb_target_run_valgrind/attachments/slides/393/export/events/attachments/gdb_target_run_valgrind/slides/393/pedro_alves_gdb_slides.pdf
https://archive.fosdem.org/2014/schedule/event/gdb_target_run_valgrind/attachments/slides/393/export/events/attachments/gdb_target_run_valgrind/slides/393/pedro_alves_gdb_slides.pdf
https://archive.fosdem.org/2014/schedule/event/gdb_target_run_valgrind/attachments/slides/393/export/events/attachments/gdb_target_run_valgrind/slides/393/pedro_alves_gdb_slides.pdf
https://archive.fosdem.org/2014/schedule/event/gdb_target_run_valgrind/attachments/slides/393/export/events/attachments/gdb_target_run_valgrind/slides/393/pedro_alves_gdb_slides.pdf

Acronyms

ABI application binary interface. 7
ALU arithmetic logic unit. 5
API application programming interface. 15, 16
AXI advanced extensible interface. 8, 19

CGEN CPU tools GENerator. 3, 10, 14

DMA direct memory access. 5, 21
DSL domain-specific language. 3, 10

e-hal Epiphany hardware abstraction library. 15, 19, 24

FPGA field-programmable gate array. 8
FPU floating-point unit. 5

GDB the GNU debugger. xi, 3, 5, 9, 10, 12, 17, 26, 27

HPC high-performance computing. 2, 3, 19, 22

IC integrated circuit. 6
ILP instruction-level parallelism. 1
ISA instruction set architecture. 2, 3, 5, 12, 25
ISR interrupt service routine. 7
IVT interrupt vector table. 7

MIMD multiple instruction streams, multiple data streams. 1
MMU memory management unit. 5
MPI message passing interface. v, 2, 3, 16

NoC network-on-chip. 1, 2, 5–7, 11, 29

OS operating system. 2, 3, 17, 26

RISC reduced instruction set computing. 1, 5
RMA remote memory access. 16
RTL register-transfer level. 1

33

SCR special-core register. 12
SDK software development kit. v, ix, 2, 15, 24, 29
SoC system on a chip. 8

34

Appendices

35

A
Simulator frontend usage

usage : epiphany−e l f−sim [−h] [−−ve rbo se] [− r ROWS] [−c COLS] [− f FIRST_CORE]
[− i FIRST_ROW] [− j FIRST_COL]
[−−environment ENVIRONMENT]
[−−ext−ram−s i z e EXT_RAM_SIZE]
[−−ext−ram−base EXT_RAM_BASE]
[−− r e d i r e c t−d i r REDIRECT_DIR]
[−−wait−a t t a c h [COREID [COREID . . .]]] [−−p r o f i l e]
[−−hos t PROGRAM [ARG . . .]] [−−ex t r a−a rg s ARGS]
[PROGRAM [PROGRAM . . .]]

Epiphany s imu l a t o r f r on t end .
Helps spawning s imu l a t o r p r o c e s s e s .

D e f a u l t c o n f i g u r a t i o n i s P a r a l l e l l a −16 Epiphany− I I I .
Rows : 4 Columns : 4
E x t e r n a l RAM s i z e : 32 MB Ex t e r n a l RAM base : 0 x8e000000
F i r s t co r e : 0 x808 (3 2 , 8)

P r e s s C t r l−C a t any t ime to a bo r t the s imu l a t i o n .

p o s i t i o n a l arguments :
PROGRAM Exe cu t a b l e program (s) . Not r e q u i r e d when environment

i s s e t to o p e r a t i o n a l . Program (s) w i l l be d i s t r i b u t e d
to c o r e s from l e f t (west) t o r i g h t (e a s t) and then
wrap to nex t row . I f the number o f programs i s l e s s
than the number o f cores , the l a s t program w i l l be
used f o r the remain ing co r e s

o p t i o n a l arguments :
−h , −−he lp show t h i s he lp message and e x i t
−−ve rbo se Verbose ou tpu t
−r ROWS, −−rows ROWS Number o f rows
−c COLS , −−c o l s COLS Number o f columns
−f FIRST_CORE , −− f i r s t −co r e FIRST_CORE

Core id o f upper l e f tm o s t (nor thwes t) co r e
− i FIRST_ROW , −− f i r s t −row FIRST_ROW

Row of upper l e f tm o s t (nor thwes t) co r e
− j FIRST_COL , −− f i r s t −c o l FIRST_COL

Column o f upper l e f tm o s t (nor thwes t) co r e
−−environment ENVIRONMENT

Environment . Must be one o f ‘ user ’ , ‘ v i r t u a l ’ , or
‘ ope r a t i ng ’ . NOTE : De f a u l t i s ‘ v i r t u a l ’ . Th i s i s
d i f f e r e n t from epiphany−e l f−run , where the d e f a u l t
environment s e t t i n g i s ‘ user ’

−−ext−ram−s i z e EXT_RAM_SIZE
Ex t e r n a l RAM s i z e in MB

−−ext−ram−base EXT_RAM_BASE
Ex t e r n a l RAM base add r e s s

−−r e d i r e c t−d i r REDIRECT_DIR
R e d i r e c t s t d i n , s t dou t , and s t d e r r to per p r o c e s s
f i l e s in REDIRECT_DIR . REDIRECT_DIR w i l l be c r e a t e d i f
i t does not e x i s t . F i l e s in the d i r e c t o r y w i l l be
o v e rw r i t t e n . s t d i n w i l l be r e d i r e c t e d to REDIRECT_DIR
/ core−0xXYZ . s t d i n i f t h a t f i l e e x i s t s .

−−wait−a t t a c h [COREID [COREID . . .]]

37

Wil l not spawn s imu l a t o r p r o c e s s e s f o r g iven
COREID (s) . Th i s i s u s e f u l when you want to a t t a c h
co r e s through gdb

−−p r o f i l e Enab le p r o f i l i n g
−−hos t PROGRAM [ARG . . .]

S t a r t s imu l a t i o n with hos t program . F i r s t argument i s
the n a t i v e program to spawn . The f o l l ow i n g arguments
a r e arguments to the hos t program .

−−ex t r a−a rg s ARGS Pass ARGS to epiphany−e l f−run . Enc l o s e in quotes , e . g
−−ex t r a−a rg s=”−− foo −−bar ”

38

	List of Figures
	List of Tables
	Introduction
	Why a manycore simulator is needed
	Method
	Limitations
	Related work
	Document structure

	Background
	Epiphany architecture
	RISC cores
	Network-on-Chip
	Addressing scheme
	Core memory region layout
	Memory model

	The Parallella board
	The GNU debugger
	Simulator framework

	Implementation
	Single-core simulator integration
	Interrupt implementation
	Hardware loops

	Device implementation
	Timers
	DMA

	eMesh simulator
	Parallella/Epiphany sdk support
	Networking support
	Simulator frontend
	Simulation environments

	Results
	Epiphany examples
	Domino
	HPC demonstration
	Simulator frontend
	Integration with Epiphany SDK

	Discussion
	Future work
	Clock count estimation
	Multicore debugging support

	Conclusion
	Bibliography
	Acronyms
	Appendices
	Simulator frontend usage

